WO1999058940A1 - Radiation thermometer - Google Patents

Radiation thermometer Download PDF

Info

Publication number
WO1999058940A1
WO1999058940A1 PCT/JP1998/002045 JP9802045W WO9958940A1 WO 1999058940 A1 WO1999058940 A1 WO 1999058940A1 JP 9802045 W JP9802045 W JP 9802045W WO 9958940 A1 WO9958940 A1 WO 9958940A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermopile
heating
radiation thermometer
output
temperature
Prior art date
Application number
PCT/JP1998/002045
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Sakano
Original Assignee
Kazuhito Sakano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhito Sakano filed Critical Kazuhito Sakano
Priority to AU72346/98A priority Critical patent/AU7234698A/en
Priority to PCT/JP1998/002045 priority patent/WO1999058940A1/en
Priority to JP55273299A priority patent/JP3175775B2/en
Publication of WO1999058940A1 publication Critical patent/WO1999058940A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/70Passive compensation of pyrometer measurements, e.g. using ambient temperature sensing or sensing of temperature within housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0295Nulling devices or absolute detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/049Casings for tympanic thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof

Definitions

  • the present invention relates to a radiation thermometer, and more particularly, to a radiation thermometer that detects infrared rays radiated from a measurement target with a thermopile and measures the temperature of the measurement target in a non-contact manner.
  • thermometer has been used to detect infrared rays emitted from an object to be measured and to measure the temperature of the object without contact.
  • thermometers emit less radiation from the eardrum and surrounding tissues than contact-type thermometers such as the sublingual thermometer that measures the temperature of the oral cavity for the reasons of hygiene and convenience, and the axillary thermometer that measures the temperature of the armpit.
  • the demand for non-contact thermometers that measure body temperature by detecting infrared radiation is increasing.
  • the tympanic membrane Since the tympanic membrane is located deep in the human body and is less susceptible to the external environment, it can measure body temperature more accurately than other parts of the human body such as the oral cavity and axilla. One.
  • Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured.
  • a pyroelectric sensor is a sensor that detects, as an output, a change in the surface charge of a pyroelectric body due to a temperature change at a hook that absorbs infrared energy radiated from an object to be measured.
  • Impatience In order to output only when the temperature of the pyroelectric body changes, the electric sensor outputs the continuous output by intermittently cutting off the incident infrared rays by shoving.
  • a thermopile sensor is a sensor in which thermocouples are deposited using integrated circuit technology, and a continuous output for the temperature difference between the hot junction and the cold junction is obtained by a large number of directly connected thermocouples.
  • thermometer using a thermopile will be described as an example of a conventional radiation thermometer as a non-contact temperature sensor for detecting infrared rays radiated from an object to be measured.
  • thermometer As a conventional non-contact thermometer using a thermopile, there is, for example, a radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-27331. Such a radiation thermometer will be described based on the block diagram of FIG.
  • thermopile 21 provided in the radiation thermometer outputs a voltage corresponding to the amount of infrared radiation from the eardrum 30.
  • the amplifier 22 connected to the output terminal of the thermopile 21 amplifies the weak output voltage of the thermopile 21 to a predetermined magnitude.
  • the differential power amplifier 23 connected to the amplifier 22 applies an output to the heater 24 in proportion to the difference between the output of the amplifier 22 and a reference voltage (for example, set to 0 V).
  • the heat sink 25 is stored together with the heat sink 24 and the heat pile 21 in a block 26 made of a material having good heat conductivity.
  • the temperature calculation circuit 27 calculates the temperature of the block 26, that is, the temperature of the thermopile 21 from the resistance of the thermistor 25 and displays the temperature by the display means 28.
  • thermopile 21 the output of the thermopile 21 is V
  • T the temperature of the object to be measured
  • thermopile 21 the temperature of the thermopile 21 is ⁇ .
  • V of the thermopile 21 is given by Stefan-Boltzmann's law.
  • V k (T 4 — T. 4 ) k is a constant (1)
  • thermopile 21 is controlled by the output of the thermopile 21. Therefore, the output V of the thermopile 21 becomes 0.
  • thermopile 21 when the feedback control is performed so that the output V of the thermopile 21 becomes zero.
  • the temperature T of the object to be measured can be known by detecting the temperature T at the same time.
  • the radiation thermometer disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 3-2731 121 is not affected by the sensitivity of the thermopile 21 or the amplifier circuit, and therefore has the advantage that measurement errors can be reduced.
  • the radiation thermometer disclosed in Japanese Unexamined Patent Publication No. 3-27331 uses a control means for performing feedback control so that the output V of the thermopile 21 becomes zero.
  • the feedback control is a closed loop control, that is, a heat quantity corresponding to the output of the thermopile 21 heats the thermopile 21 via the heater 24 to adjust the temperature of the thermopile 21.
  • the heating amount of the heater 24 changes every moment according to the result of the feedback, and the output V of the thermopile 21 decreases toward 0. I have.
  • the amount of heating becomes small as shown in the heating amount-time graph of FIG. It takes a certain time from the start of heating to achieve the state where the output V is 0.
  • the amount of infrared light incident on the thermopile 21 changes due to a change in the insertion angle of the thermopile 21 inserted into the ear canal when measuring the temperature of the eardrum, and the influence of the temperature of the ear canal.
  • the output of the thermopile 21 changes as the amount of infrared light incident on the thermopile 21 changes during measurement of the eardrum temperature. Therefore, the amount of heat applied to the thermopile 21 is successively adjusted by the differential power amplifier 23. Particularly, when the output of the thermopile 21 is close to 0, the frequency of fine adjustment increases. Become.
  • the feedback control circuit usually has a propagation delay factor.
  • a transmission delay coefficient cannot be treated as a fixed constant when the heating state changes every moment due to feedback control. Therefore, a coefficient for correcting the propagation delay cannot be set, and the above-mentioned change in the output of the thermopile 21 is controlled while maintaining a large propagation delay coefficient. It cannot follow changes in the output of the thermopile 21.
  • This propagation delay causes the feedback finger Since a mismatch occurs between the command value and the control result, the heating adjustment of the thermopile 21 is frequently performed, and is finely controlled. Such fine adjustment causes a pulsation phenomenon in the vicinity of zero of the output of the thermopile 21 in combination with a change in the amount of infrared light incident on the thermopile 21. It takes a long time to correct such a pulsating phenomenon and to achieve a state where the output of the thermopile 21 is 0 as shown in the output one-hour graph of FIG.
  • the time t! Required for feedback control is required to improve the measurement accuracy, which is a conventional problem. Had to be set long beforehand.
  • priority was given to measuring the temperature of the measurement target instantaneously or in a very short time, which is a feature of the non-contact thermometer, a decrease in measurement accuracy was inevitable.
  • control means for performing feedback control so that the output V of the thermopile 21 becomes 0 requires a feedback control circuit including the amplifier 22 and the differential power amplifier 23 as described above.
  • the increase in the number of required parts has caused the cost to rise.
  • the present invention which is provided to solve the above-described problems, relates to a radiation thermometer that detects infrared rays emitted from a measurement target by a thermopile and measures the temperature of the measurement target.
  • This is a radiation thermometer having a detection device for detecting a temperature.
  • thermometer By having a detector for detecting the presence or absence of the output of the thermopile, the temperature of the thermopile at the time when the output of the thermopile is 0 can be detected. -No need for temperature control means for feedback control of the mopile temperature. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved, and the measurement time can be shortened. Also, an inexpensive radiation thermometer with a small number of parts can be provided.
  • the detection device for detecting the presence or absence of the output of the thermopile may be a detection device having a voltage comparator.
  • thermopile By using a detection device having a voltage comparator, the temperature of the thermopile at the time when the output of the thermopile is 0 can be detected by an inexpensive circuit.
  • the invention of the present application provided to solve the above-mentioned problem is to detect the presence or absence of the output of the thermopile in a radiation thermometer that detects infrared radiation emitted from the measurement target by a thermopile and measures the temperature of the measurement target.
  • a radiation thermometer comprising a detection device and a heating device for heating the thermopile.
  • thermopile By having a detection device that detects the presence or absence of the output of the thermopile and a heating device that heats the thermopile, the thermopile is heated independently of the output of the thermopile so that the output of the thermopile becomes 0 Since the temperature of the thermopile can be detected, there is no need for a temperature control means for controlling the thermopile temperature feedback. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
  • the detection device for detecting the presence or absence of the output of the thermopile may be a detection device having a voltage comparator.
  • thermopile By using a detection device having a voltage comparator, it is possible to detect the temperature of the thermopile when the output of the thermopile is 0 with an inexpensive circuit.
  • the heating device for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant.
  • thermopile By heating the thermopile with the heating amount per unit time being substantially constant, the thermopile can be heated without feedback control. Therefore, the output of the thermopile can be reduced to 0 in a short time.
  • the heating device for heating the thermopile is open-loop controlled during temperature measurement.
  • the heating device can be controlled by control.
  • the circuit including the heating device can be a simple circuit with a small number of components .
  • the heating device for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
  • thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating a thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating a thermopile from normal room temperature (eg, 20 ° C).
  • the present invention provided to solve the above-mentioned problem is directed to a radiation thermometer that detects infrared radiation emitted from a measurement target by a thermopile and measures the temperature of the measurement target.
  • a radiation thermometer characterized by having a radiation thermometer characterized by having a detection device for detecting an inverted output when the light is inverted to a region.
  • thermopile By having a detection device that detects the inverted output when the output of the thermopile is inverted from the positive area to the negative area, the output when the output of the thermopile is inverted from plus to minus, that is, the output of the thermopile is 0 Since the temperature of the thermopile at the time can be detected, there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved, and the measurement time can be reduced. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
  • the detecting device for detecting the inverted output when the output of the thermopile is inverted from the positive region to the negative region may be a detecting device having a voltage comparator.
  • thermometer that detects infrared radiation emitted from a measurement target by a thermopile and measures the temperature of the measurement target.
  • a radiation thermometer comprising: a detection device for detecting an inverted output when inverted to a region; and a heating device for heating a thermopile.
  • thermopile irrespective of the thermopile output by having a detector that detects the inverted output when the output of the thermopile is inverted from the positive area to the negative area, and a heating device that heats the thermopile
  • the temperature of the thermopile at the time when the output of the thermopile is 0 can be detected, so that there is no need for a temperature adjusting means for feedback controlling the temperature of the thermopile. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
  • the detection device for detecting the presence or absence of the output of the thermopile may be a detection device having a voltage comparator.
  • thermopile By using a detection device having a voltage comparator, it is possible to detect the temperature of the thermopile when the output of the thermopile is 0 with an inexpensive circuit.
  • the output inversion position can be set to have a hysteresis characteristic.
  • thermopile By providing a hysteresis characteristic at the output inversion position, the output of the thermopile is
  • a stable inverted output can be obtained even when transiently unstable near 0. Therefore, a pulsating phenomenon that occurs when the output of the thermopile is close to zero can be prevented, so that the measurement accuracy can be further improved.
  • the heating device for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant.
  • thermopile By heating the thermopile with the heating amount per unit time being substantially constant, the thermopile can be heated without feedback control. Therefore, the output of the thermopile can be reduced to 0 in a short time.
  • the heating device for heating the thermopile may be a heating device controlled by open loop control during temperature measurement.
  • a heating device that is controlled by open-loop control during temperature measurement feedback control that complicates the circuit is not required, so the circuit including the heating device can be a simple circuit with a small number of components .
  • the heating device for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
  • thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating a thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating a thermopile from normal room temperature (eg, 20 ° C).
  • thermometer for heating a thermopile in a radiation thermometer that detects infrared radiation emitted from a measurement target by a thermopile and measures the temperature of the measurement target
  • a radiation thermometer comprising: arithmetic means for detecting a thermopile output with respect to a set threshold value in a positive region of a thermopile output and a set threshold value in a negative region to obtain a temperature to be measured.
  • thermopile By having heating means for heating the thermopile, and calculating means for detecting the output of the thermopile with respect to the set threshold value in the positive area of the thermopile output and the set threshold value in the negative area to obtain the temperature of the measurement object
  • the thermopile is heated independently of the thermopile output, and the thermopile output is indirect from the thermopile output with respect to the set threshold in the positive region and the set threshold in the negative region of the thermopile output. Since the temperature of the thermopile can be detected when the value of the thermopile is 0, there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided ⁇
  • a pair having the same absolute value of the set threshold value in the positive region and the negative region is set as a pair, and a plurality of pairs having different set threshold values are set.
  • the target temperature can be measured with high accuracy by a simple calculating means. That is, if the absolute values of the set thresholds in the positive region and the negative region are made equal, a simple arithmetic means for correcting a measurement error caused by a difference in the measurement environment such as the ambient temperature and the measurement temperature with respect to the thermopile is sufficient.
  • a simple arithmetic means for correcting a measurement error caused by a difference in the measurement environment such as the ambient temperature and the measurement temperature with respect to the thermopile is sufficient.
  • the heating means for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant. By heating the thermopile with the heating amount per unit time almost constant, the thermopile can be heated without feedback control. Therefore, the output of the thermomodile can be reduced to 0 in a short time.
  • the heating means for heating the thermopile may be a heating device controlled by open loop control during temperature measurement.
  • the circuit including the heating device can be a simple circuit with a small number of components .
  • the heating means for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
  • thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating the thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating the thermopile from normal room temperature (eg, 20 ° C).
  • the present invention provided to solve the above-mentioned problem is directed to a temperature measuring method for measuring the temperature of an object to be measured by detecting infrared rays radiated from the object to be measured by a thermopile.
  • Mopile output is positive and negative
  • This is a temperature measuring method characterized by detecting a temperature of a measurement target by detecting a temperature of a thermopile when a set threshold value set in each output range is reached.
  • thermopile By detecting the temperature of the measurement object by detecting the temperature of the thermopile when the output of the thermopile reaches the set threshold set in the positive range and the negative range and the output range of the thermopile in the process of heating the thermopile, The thermopile is heated irrespective of the thermopile output, and the thermopile output is indirectly output from the thermopile output with respect to the set threshold in the positive region and the set threshold in the negative region of the thermopile output. Since the temperature of the thermopile at the time of 0 can be detected, there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile. Therefore, according to the temperature measurement method according to the present invention, it is possible to improve the measurement accuracy and shorten the measurement time.
  • the target temperature can be measured with high accuracy by a simple calculating means.
  • a simple calculation means is sufficient for correcting the measurement error caused by the difference in the measurement environment such as the ambient temperature and the measurement temperature for the thermopile.
  • the heating means for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant. By heating the thermopile with the heating amount per unit time being substantially constant, the thermopile can be heated without feedback control. Therefore, the output of the thermomodile can be reduced to 0 in a short time.
  • the heating means for heating the thermopile may be a heating device controlled by open loop control during temperature measurement.
  • the circuit including the heating device can be a simple circuit with a small number of components.
  • the heating means for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
  • thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating the thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating the thermopile from normal room temperature (eg, 20 ° C).
  • FIG. 1 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a relationship between a thermopile output time and a heating amount-time in the radiation thermometer according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between one hour of thermopile output and one hour of comparator output in a radiation thermometer according to another embodiment of the present invention.
  • FIG. 5 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between one hour of thermopile output and one hour of heating in a radiation thermometer according to another embodiment of the present invention.
  • FIG. 7 is a block diagram showing a temperature measuring circuit of a conventional radiation thermometer.
  • FIG. 8 shows the output of the thermopile-time and heating amount-time in the conventional radiation thermometer.
  • FIG. 4 is a diagram showing a relationship between symbols.
  • FIG. 1 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to one embodiment of the present invention.
  • the thermopile 1 provided in the radiation thermometer outputs a voltage depending on the amount of infrared radiation radiated from the eardrum and the temperature of the thermopile 1. That is, the thermopile 1 outputs a voltage corresponding to the difference between the temperature of the measurement target and the temperature of the thermopile 1, and such an output is output as a positive voltage when the temperature of the measurement target is higher than the temperature of the thermopile 1. If the temperature of the object to be measured is lower than the temperature of the thermopile 1, it is output as a negative voltage. In addition, the temperature and
  • thermopile 1 If the temperatures of mopile 1 are equal, the output of thermopile 1 will be 0.
  • the operational amplifier 2 connected to the thermopile 1 amplifies the small voltage output from the thermopile 1 to a predetermined magnitude.
  • the comparator (voltage comparator) IC 3 connected to the operational amplifier 2 detects whether or not the output of the thermopile 1 amplified by the operational amplifier 2 is present. In other words, the comparator IC 3 sends a signal indicating whether the output of the thermopile 1 is 0 or not to the microphone opening combination 7 regardless of the magnitude of the output of the thermopile 1 and the sign.
  • the detection device having the comparator IC 3 is used as an example of the detection device that detects the presence or absence of the output of the thermopile 1.
  • Thermistor 4 houses the thermopile 1 inside and is attached to a metal can package 5 with excellent thermal conductivity.
  • the thermometer 4 is a temperature measuring element for measuring the temperature of the thermopile 1 via the metal can package 5.A change in the resistance value in the thermometer 4 due to a change in the temperature of the thermometer 4 is converted into a voltage. And output.
  • the operational amplifier 6 connected to the summit 4 amplifies the output of the summit 4.
  • the micro-computer 7 has an A / D converter built in, and the micro-computer 7 performs arithmetic processing based on the output signal from the comparator 3 and the output signal from the monitor 4 to display the liquid crystal temperature. Sends the temperature value output of the object to be measured to the device 8.
  • the liquid crystal temperature display 8 digitally displays the temperature of the measurement target.
  • Light 9 is wrapped around metal can package 5 to heat thermopile 1.
  • the drive IC 10 transmits the heating command signal from the micro combination 7 to the evening 9.
  • a heating device having a heater 9 is used as an example of a heating device for heating the thermopile 1. The following describes how the temperature of the measurement object is measured by the temperature measurement circuit described above.
  • thermopile 1 before the temperature measurement is started, the micropile 1 is heated from the microcombination 7 to the heating 9 so that the temperature of the thermopile 1 becomes a preset temperature, for example, about 32 ° C. A command signal is sent. Therefore, at the start of temperature measurement, the temperature of thermopile 1 has risen to the set temperature.
  • thermopile 1 When a command to start temperature measurement is transmitted from the outside to the microcomputer 7, a heating command signal for heating the thermopile 1 with the heating amount per unit time being almost constant is sent from the microcomputer 7 via the drive IC 10. He is sent at 9pm. During temperature measurement, the thermopile 1 is heated by the open loop control, that is, without changing the heating amount of the heater 9.
  • thermopile 1 When the temperature measurement is started, the thermopile 1 is rapidly heated, and the output of the thermopile 1 rapidly decreases as shown in the thermopile output one hour graph in FIG. When heating proceeds and the temperature of the thermopile 1 becomes equal to the temperature of the eardrum to be measured, the output of the thermopile 1 becomes 0. Since the output signal of the thermopile 1 is sent to the microcomputer 7 by the comparator IC 3, the temperature of the thermopile 1 at the time when the output of the thermopile 1 becomes 0 becomes the temperature of the thermopile 1. The microcomputer 7 performs arithmetic processing based on the output from the CPU, thereby detecting the temperature of the eardrum to be measured. The detected temperature of the eardrum is recognized by being displayed on the liquid crystal temperature display.
  • thermopile 1 The heating of the thermopile 1 by the heater 9, the comparator Isseki IC 3 that the output of the mono- thermopile 1 is 0 after micro Combi Yu evening 7 detects, microcontroller at time t 2 of FIG. 2 The operation ends when the heating stop signal from Pyu-Yu 7 is transmitted to He-Yu 9.
  • the radiation thermometer uses a detection device having the comparator IC 3 as a detection device for detecting the presence or absence of the output of the thermopile 1, so that an inexpensive circuit can be obtained. Therefore, the temperature of the thermopile 1 at the time when the output of the thermopile 1 is 0 can be detected, so that there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile 1. Therefore, the radiation temperature according to the present embodiment According to the meter, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
  • thermopile 1 heats the thermopile 1 with the heating amount per unit time being substantially constant during the temperature measurement, as shown in the heating amount one hour graph in FIG.
  • the thermopile 1 can be rapidly heated without feedback control. Therefore, the output of the thermopile 1 can be made 0 in a short time as shown in the thermopile output-time graph of FIG.
  • the radiation thermometer uses a heating device controlled by open-loop control during temperature measurement, which eliminates the need for feedback control that complicates the circuit.
  • the circuit including can be a simple circuit with a small number of components.
  • the radiation thermometer according to the present embodiment can heat the thermopile 1 during the temperature measurement efficiently in a short time by heating the thermopile 1 to the set temperature before the start of the temperature measurement.
  • FIG. 3 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
  • the comparator (voltage comparator) IC 3 has a function of detecting an inverted output when the output of the thermopile 1 amplified by the operational amplifier 2 is inverted from the positive region to the negative region by heating the heater 9. Fulfill. That is, the comparator IC 3 sends a signal to the microcomputer 7 that the output area of the thermopile 1 has been inverted. In the present embodiment, the output reversal position of the comparator IC 3 is set to a position where the output of the sample 1 changes from the positive region to the negative region.
  • a detection device having a comparator IC 3 is used as an example of a detection device that detects an inverted output when the output of the thermopile 1 is inverted from the positive region to the negative region. I have.
  • the method for heating the thermopile 1 and the procedure for measuring the temperature of the object to be measured are almost the same. This is similar to the above-described embodiment. That is, when the temperature measurement is started, the thermopile 1 is rapidly heated as in the above-described embodiment, and the output of the thermopile 1 is rapidly reduced. When the heating proceeds and the temperature of the thermopile 1 becomes equal to the temperature of the eardrum to be measured, the output of the thermopile 1 is inverted from the positive region to the negative region.
  • thermometer 1 Since the output inversion signal of the output of thermopile 1 is sent to microcomputer 7 by comparison IC 3, the temperature of thermopile 1 at the time when the output of thermopile 1 is inverted is output from the thermometer 1
  • the temperature of the eardrum which is the measurement target, is detected by the microcomputer 7 performing arithmetic processing based on the data.
  • the detected temperature of the eardrum is recognized by being displayed on the liquid crystal temperature display.
  • the output inversion position of the comparator IC 3 is set to a position where the output of the thermopile 1 changes from the positive region to the negative region. It is also possible to set so as to have a hysteresis width as shown in FIG. That is, the output inversion position is set near 0 in the positive region and the negative region of the output of the thermopile 1 respectively. In this embodiment, the output at the time of the fourth time, as shown in FIG t 3 and 1 4 are reversed.
  • Such a hysteresis width can be set as close as possible to the output 0 as much as possible by setting a constant of the shunt circuit using the comparator.
  • the heating of the thermopile 1 proceeds, and a stable inverted output can be obtained even when the output becomes transiently unstable near 0. Therefore, a pulsating phenomenon that occurs near zero output can be prevented, so that the measurement accuracy can be further improved.
  • FIG. 5 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
  • the output of the thermopile 1 and the output of the thermopile 4 are not directly connected to the microcomputer 7 through the switch circuit 11 without using the comparator IC 3. Is detected.
  • the timing signal is sent from the microcombiner 7 to the switch circuit 11, so that the microcomputer 7 switches from the mode for processing the output signal of the thermopile 1 to the mode for processing the output signal of the thermistor 4. Switch to one.
  • the arithmetic processing inside the micro-computer 7 is different from that of the above-described embodiment. That is, in the present embodiment, as shown in FIG. 6, the microcomputer 7 detects only the thresholds set in the positive region and the negative region of the output of the thermopile 1 respectively. The threshold is set near zero of the output of the thermopile 1, and the absolute values of the thresholds are set to be equal.
  • thermometer measures the temperature of the measurement target.
  • the method of heating the thermopile 1 is almost the same as in the above-described embodiment.
  • thermopile 1 When a command to start temperature measurement is transmitted from the outside to the microcomputer 7 and temperature measurement is not started, the thermopile 1 is rapidly heated. Until the heating time 1 4 As shown in FIG. 6, that is carried out until a threshold output of the thermopile 1 is set to a negative region. In this way, the heating of the thermopile 1 proceeds, and the temperature of the thermopile 1 at the time when the output of the thermopile 1 reaches the above two thresholds is determined based on the output from the thermopile 4.
  • Convenience store 7 performs the arithmetic processing.
  • the temperature of the eardrum to be measured is detected by calculating the average value of the temperatures corresponding to the two thresholds.
  • the detected temperature of the eardrum is recognized by being displayed on a liquid crystal temperature indicator. Note that a plurality of pairs of thresholds having the same absolute value can be set.
  • the radiation thermometer detects the heating means for heating the thermopile 1 and the output of the thermopile 1 with respect to the set threshold in the positive region and the set threshold in the negative region of the output of the thermopile 1.
  • the thermopile 1 temperature can be detected indirectly from the output of the thermopile 1 when the output of the thermopile 1 is 0 with respect to the set threshold value in the negative region. No need for temperature control means. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be reduced. it can.
  • an inexpensive radiation thermometer with a small number of parts can be provided.
  • the target temperature can be accurately calculated by a simple arithmetic unit. Can be measured. That is, if the absolute values of the set thresholds in the positive region and the negative region are made equal, a simple calculation means for correcting the measurement error caused by the difference in the measurement environment such as the ambient temperature and the measurement temperature with respect to the thermopile 1 is sufficient. Also, by setting a plurality of pairs having different set thresholds, the measurement temperature can be calculated from a plurality of data, so that the accuracy can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Abstract

A radiation thermometer wherein a thermopile (1) outputs a voltage corresponding to the temperature difference between the object to be measured and the thermopile (1) and a thermistor (4) is an element for measuring the temperature of the thermopile (1). According to a command to start temperature measurement, the thermopile (1) is heated by a heater (9) with an almost constant amount of heat applied per unit time. As the thermopile (1) is rapidly heated, its output sharply decreases. As the thermopile (1) is heated, the temperature of the thermopile (1) becomes equal to that of the object, and the output of the thermopile (1) becomes zero. A microcomputer (7) calculates the temperature of the thermopile (1) at this point based on the output from the thermistor (4) to determine the temperature of the object.

Description

放射温度計 Radiation thermometer
技術分野 本発明は放射温度計に関し、 詳しくは測定対象から放射される赤外線をサーモ パイルにて検知して測定対象の温度を非接触で測定する放射温度計に関するもの である。 TECHNICAL FIELD The present invention relates to a radiation thermometer, and more particularly, to a radiation thermometer that detects infrared rays radiated from a measurement target with a thermopile and measures the temperature of the measurement target in a non-contact manner.
背景技術 従来から、 放射温度計を用ることにより測定対象から放射される赤外線を検知 して測定対象の温度を非接触で測定することが行われている。 例えば体温計では 近年、 衛生上及び利便上の理由から口腔内の温度を測定する舌下型体温計ゃ腋富 の温度を測定する腋窩型体温計等の接触型体温計よりも、 鼓膜や周辺組織から放 射される赤外線を検知することで体温を測定する非接触型体温計の需要が増大し つつある。 2. Description of the Related Art Conventionally, a radiation thermometer has been used to detect infrared rays emitted from an object to be measured and to measure the temperature of the object without contact. For example, in recent years, thermometers emit less radiation from the eardrum and surrounding tissues than contact-type thermometers such as the sublingual thermometer that measures the temperature of the oral cavity for the reasons of hygiene and convenience, and the axillary thermometer that measures the temperature of the armpit. The demand for non-contact thermometers that measure body temperature by detecting infrared radiation is increasing.
鼓膜は人体の深部に位置し外部環境の影響を受けにくいため、 口腔内や腋窩等 の人体の他の部位に比べて体温を正確に測定できることも非接触型体温計が注目 されている理由の一つである。  Since the tympanic membrane is located deep in the human body and is less susceptible to the external environment, it can measure body temperature more accurately than other parts of the human body such as the oral cavity and axilla. One.
非接触型体温計には、 一般に測定対象から放射される赤外線を検知するための 非接触型温度センサとして、 焦電型センサ又はサ一モパイルセンサが使用されて いる。 焦電型センサは測定対象から放射される赤外線エネルギを吸収したとぎの 温度変化による焦電体の表面電荷の変化を出力として検出するセンサである。 焦 電型センサは焦電体の温度が変化したときのみに出力を出すため、 入射赤外線を チヨッビングして断続的に遮断し連続的な出力を取り出している。 一方、 サーモ パイルセンサは熱電対を集積回路技術を用いて堆積し、 直接接続された多数の熱 電対により、 温接点と冷接点との温度差に対する連続的な出力を取り出すセンサ である。 Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured. A pyroelectric sensor is a sensor that detects, as an output, a change in the surface charge of a pyroelectric body due to a temperature change at a hook that absorbs infrared energy radiated from an object to be measured. Impatience In order to output only when the temperature of the pyroelectric body changes, the electric sensor outputs the continuous output by intermittently cutting off the incident infrared rays by shoving. On the other hand, a thermopile sensor is a sensor in which thermocouples are deposited using integrated circuit technology, and a continuous output for the temperature difference between the hot junction and the cold junction is obtained by a large number of directly connected thermocouples.
以下、 従来の放射温度計を、 測定対象から放射される赤外線を検知するための 非接触型温度センサとして、 サーモパイルを使用した非接触型体温計を例に説明 する。  Hereinafter, a non-contact thermometer using a thermopile will be described as an example of a conventional radiation thermometer as a non-contact temperature sensor for detecting infrared rays radiated from an object to be measured.
サーモパイルを使用した従来の非接触型体温計としては例えば、 特開平 3— 2 7 3 1 2 1に示された放射体温計がある。 かかる放射体温計を第 7図のブロック ダイヤグラムに基づいて説明する。  As a conventional non-contact thermometer using a thermopile, there is, for example, a radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-27331. Such a radiation thermometer will be described based on the block diagram of FIG.
第 7図において、 放射体温計に備えられたサーモパイル 2 1は鼓膜 3 0からの 赤外線の輻射量に応じた電圧を出力する。 このサーモパイル 2 1の出力端に接続 された増幅器 2 2は、 微弱なサ一モパイル 2 1の出力電圧を所定の大きさに増幅 する。 増幅器 2 2に接続された差動電力増幅器 2 3は、 増幅器 2 2の出力と基準 電圧 (例えば 0 Vに設定する。 ) との差に比例した出力をヒー夕 2 4に加える。 サ一ミス夕 2 5はヒー夕 2 4、 サ一モパイル 2 1とともに熱伝導性の良い材質で 作られたブロック 2 6の中に収納される。 温度演算回路 2 7はサーミス夕 2 5の 抵抗からブロック 2 6の温度、 すなわちサ一モパイル 2 1の温度を算出し表示手 段 2 8によって表示する。  In FIG. 7, the thermopile 21 provided in the radiation thermometer outputs a voltage corresponding to the amount of infrared radiation from the eardrum 30. The amplifier 22 connected to the output terminal of the thermopile 21 amplifies the weak output voltage of the thermopile 21 to a predetermined magnitude. The differential power amplifier 23 connected to the amplifier 22 applies an output to the heater 24 in proportion to the difference between the output of the amplifier 22 and a reference voltage (for example, set to 0 V). The heat sink 25 is stored together with the heat sink 24 and the heat pile 21 in a block 26 made of a material having good heat conductivity. The temperature calculation circuit 27 calculates the temperature of the block 26, that is, the temperature of the thermopile 21 from the resistance of the thermistor 25 and displays the temperature by the display means 28.
ここで、 サ一モパイル 2 1の出力を V、 測定対象の温度を T、 サ一モパイル 2 1の温度を Τ。 とすると、 サ一モパイル 2 1の出力 Vはステフアン一ボルツマン の法則により、  Here, the output of the thermopile 21 is V, the temperature of the object to be measured is T, and the temperature of the thermopile 21 is Τ. Then, the output V of the thermopile 21 is given by Stefan-Boltzmann's law.
V = k ( T 4— T。4 ) kは定数 (1 ) V = k (T 4 — T. 4 ) k is a constant (1)
と表される。 かかる特開平 3— 2 7 3 1 2 1に示された放射体温計では、 サーモ パイル 2 1の温度はサ一モパイル 2 1の出力により制御されるので、 サ一モパイ ル 2 1の出力 Vが 0になるようにフィードバック制御を行うことにより、 ( 1 ) 式は、 It is expressed as In the radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-273112, the temperature of the thermopile 21 is controlled by the output of the thermopile 21. Therefore, the output V of the thermopile 21 becomes 0. By performing feedback control so that
T - T 0 となる。 従って、 サーモパイル 2 1の出力 Vが 0になるようにフィードバック制 御されたときのサ一モパイル 2 1の温度 T。をサ一ミス夕 2 5にて検出することに より、 測定対象の温度 Tを知ることができる。 T-T 0 Becomes Therefore, the temperature T of the thermopile 21 when the feedback control is performed so that the output V of the thermopile 21 becomes zero. The temperature T of the object to be measured can be known by detecting the temperature T at the same time.
しかしながら、 以上の特開平 3— 2 7 3 1 2 1に示された放射体温計はサーモ パイル 2 1の感度や増幅回路等の影響を受けないため、 測定誤差を減少させるこ とができるという利点を有していたものの、 以下に示す問題があった。  However, the radiation thermometer disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 3-2731 121 is not affected by the sensitivity of the thermopile 21 or the amplifier circuit, and therefore has the advantage that measurement errors can be reduced. However, there were the following problems.
特開平 3— 2 7 3 1 2 1に示された放射体温計は、 サ一モパイル 2 1の出力 V が 0になるようにフィードバック制御する制御手段を使用している。 かかるフィ ードバック制御はクローズドループ制御、 すなわちサ一モパイル 2 1の出力に応 じた熱量がヒー夕 2 4を介してサーモパイル 2 1を加熱することでサーモパイル 2 1の温度を調整するものである。 第 8図の加熱量一時間グラフで示すようにフ イードバックの結果によりヒータ 2 4の加熱量は時々刻々変化し、 サーモパイル 2 1の出力 Vは 0に向かって減少するという特性を有している。 以上のようなフ ィ一ドバッグ制御はサ一モパイル 2 1の出力が 0近傍であるほど第 8図の加熱量 —時間グラフで示すように加熱量も微量となるため、 サ一モパイル 2 1の出力 V が 0である状態を達成するには加熱開始から一定の時間 を要する。  The radiation thermometer disclosed in Japanese Unexamined Patent Publication No. 3-27331 uses a control means for performing feedback control so that the output V of the thermopile 21 becomes zero. The feedback control is a closed loop control, that is, a heat quantity corresponding to the output of the thermopile 21 heats the thermopile 21 via the heater 24 to adjust the temperature of the thermopile 21. As shown in the heating amount-one-hour graph in FIG. 8, the heating amount of the heater 24 changes every moment according to the result of the feedback, and the output V of the thermopile 21 decreases toward 0. I have. In the above-described feedback control, as the output of the thermopile 21 is closer to 0, the amount of heating becomes small as shown in the heating amount-time graph of FIG. It takes a certain time from the start of heating to achieve the state where the output V is 0.
また、 例えば鼓膜の温度を測定する際に耳孔内に挿入するサーモパイル 2 1の 挿入角度の変化や、 外耳道の温度の影響などにより、 サーモパイル 2 1に入射す る赤外線量は変化する。 このように鼓膜温度測定中にサーモパイル 2 1に入射す る赤外線量が変化することによりサ一モパイル 2 1の出力も変化する。 従って、 サ一モパイル 2 1への加熱量は差動電力増幅器 2 3により逐次調整され、 特にサ —モパイル 2 1の出力が 0近傍では微調整の頻度が多くなるため、 測定時間 は 長時間となる。  Further, for example, the amount of infrared light incident on the thermopile 21 changes due to a change in the insertion angle of the thermopile 21 inserted into the ear canal when measuring the temperature of the eardrum, and the influence of the temperature of the ear canal. As described above, the output of the thermopile 21 changes as the amount of infrared light incident on the thermopile 21 changes during measurement of the eardrum temperature. Therefore, the amount of heat applied to the thermopile 21 is successively adjusted by the differential power amplifier 23. Particularly, when the output of the thermopile 21 is close to 0, the frequency of fine adjustment increases. Become.
さらに、 フィードバック制御回路は通常、 伝達遅延係数を有している。 かかる 伝達遅延係数は加熱状態がフィ一ドバック制御により時々刻々と変化する場合、 固定定数として扱うことができない。 従って、 伝達遅延を補正するための係数を 設定することができず、 上述のサーモパイル 2 1の出力変化に対しては大きな伝 達遅延係数を有した状態のまま制御することになり、 加熱調整はサ一モパイル 2 1の出力変化に追随することができない。 この伝達遅延によりフィードバック指 令数値と制御結果に不一致が発生するため、 サーモパイル 2 1の加熱調整は頻繁 に行われ、 かつ、 微小に制御される。 このような微調整は、 サ一モパイル 2 1の 出力の 0近傍において、 サ一モパイル 2 1に入射する赤外線量の変化と相まって 脈流現象を発生させる原因となる。 かかる脈流現象を修正し、 かつ、 サーモパイ ル 2 1の出力が 0である状態を達成するには第 8図の出力一時間グラフで示すよ うに は長時間となる。 Further, the feedback control circuit usually has a propagation delay factor. Such a transmission delay coefficient cannot be treated as a fixed constant when the heating state changes every moment due to feedback control. Therefore, a coefficient for correcting the propagation delay cannot be set, and the above-mentioned change in the output of the thermopile 21 is controlled while maintaining a large propagation delay coefficient. It cannot follow changes in the output of the thermopile 21. This propagation delay causes the feedback finger Since a mismatch occurs between the command value and the control result, the heating adjustment of the thermopile 21 is frequently performed, and is finely controlled. Such fine adjustment causes a pulsation phenomenon in the vicinity of zero of the output of the thermopile 21 in combination with a change in the amount of infrared light incident on the thermopile 21. It takes a long time to correct such a pulsating phenomenon and to achieve a state where the output of the thermopile 21 is 0 as shown in the output one-hour graph of FIG.
以上のように、 特開平 3— 2 7 3 1 2 1に示された放射体温計では、 従来から の課題である測定精度の向上を図るためにはフィードバック制御に要する時間 t! をあらかじめ長く設定する必要があった。 他方、 非接触型体温計の特長である、 瞬間又は極めて短時間に測定対象の温度を測定することを優先させた場合には測 定精度の低下は避けられなかった。  As described above, in the radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-273112, the time t! Required for feedback control is required to improve the measurement accuracy, which is a conventional problem. Had to be set long beforehand. On the other hand, when priority was given to measuring the temperature of the measurement target instantaneously or in a very short time, which is a feature of the non-contact thermometer, a decrease in measurement accuracy was inevitable.
また、 サ一モパイル 2 1の出力 Vが 0になるようにフィードバック制御する制 御手段は上述のように、 増幅器 2 2、 差動電力増幅器 2 3などからなるフィード バック制御回路を要するため、 これらの必要部品数の増大がコスト高の原因とな つていた。  Further, as described above, the control means for performing feedback control so that the output V of the thermopile 21 becomes 0 requires a feedback control circuit including the amplifier 22 and the differential power amplifier 23 as described above. The increase in the number of required parts has caused the cost to rise.
本発明は上記従来技術における問題点を解決し、 測定精度の向上を図り、 かつ、 測定時間の短縮を図ることができる放射温度計を提供することを目的とする。 また本発明は部品点数の少ない、 安価な放射温度計を提供することを目的とす る。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a radiation thermometer which solves the above-mentioned problems in the prior art, improves measurement accuracy, and shortens measurement time. Another object of the present invention is to provide an inexpensive radiation thermometer with a small number of components.
発明の開示 以上の課題を解決するため提供する本願発明は、 測定対象から放射される赤外 線をサ一モパイルにより検知して測定対象の温度を測定する放射温度計において、 サーモパイルの出力の有無を検出する検出装置を有することを特徴とする放射温 度計である。 DISCLOSURE OF THE INVENTION The present invention, which is provided to solve the above-described problems, relates to a radiation thermometer that detects infrared rays emitted from a measurement target by a thermopile and measures the temperature of the measurement target. This is a radiation thermometer having a detection device for detecting a temperature.
サ一モパイルの出力の有無を検出する検出装置を有することにより、 サ一モパ ィルの出力が 0の時点でのサ一モパイルの温度を検知することができるため、 サ —モパイルの温度をフィードバック制御する温度調節手段が必要ない。 従って、 本発明にかかる放射温度計によれば、 測定精度の向上を図り、 かつ、 測定時間の 短縮を図ることができる。 また、 部品点数の少ない、 安価な放射温度計を提供す ることができる。 By having a detector for detecting the presence or absence of the output of the thermopile, the temperature of the thermopile at the time when the output of the thermopile is 0 can be detected. -No need for temperature control means for feedback control of the mopile temperature. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved, and the measurement time can be shortened. Also, an inexpensive radiation thermometer with a small number of parts can be provided.
上記サ一モパイルの出力の有無を検出する検出装置は、 電圧比較器を有する検 出装置とすることができる。  The detection device for detecting the presence or absence of the output of the thermopile may be a detection device having a voltage comparator.
電圧比較器を有する検出装置とすることにより、 安価な回路にてサーモパイル の出力が 0の時点でのサ一モパイルの温度を検知することができる。  By using a detection device having a voltage comparator, the temperature of the thermopile at the time when the output of the thermopile is 0 can be detected by an inexpensive circuit.
また、 以上の課題を解決するため提供する本願発明は、 測定対象から放射され る赤外線をサーモパイルにより検知して測定対象の温度を測定する放射温度計に おいて、 サーモパイルの出力の有無を検出する検出装置と、 サーモパイルを加熱 する加熱装置とを有することを特徴とする放射温度計である。  The invention of the present application provided to solve the above-mentioned problem is to detect the presence or absence of the output of the thermopile in a radiation thermometer that detects infrared radiation emitted from the measurement target by a thermopile and measures the temperature of the measurement target. A radiation thermometer comprising a detection device and a heating device for heating the thermopile.
サ一モパイルの出力の有無を検出する検出装置と、 サーモパイルを加熱する加 熱装置とを有することにより、 サーモパイルの出力とは無関係にサ一モパイルを 加熱することでサーモパイルの出力が 0の時点でのサ一モパイルの温度を検知す ることができるため、 サーモパイルの温度をフイードバック制御する温度調節手 段が必要ない。 従って、 本発明にかかる放射温度計によれば、 測定精度の向上を 図り、 かつ、 測定時間の短縮を図ることができる。 また、 部品点数の少ない、 安 価な放射温度計を提供することができる。  By having a detection device that detects the presence or absence of the output of the thermopile and a heating device that heats the thermopile, the thermopile is heated independently of the output of the thermopile so that the output of the thermopile becomes 0 Since the temperature of the thermopile can be detected, there is no need for a temperature control means for controlling the thermopile temperature feedback. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
上記サ一モパイルの出力の有無を検出する検出装置は、 電圧比較器を有する検 出装置とすることができる。  The detection device for detecting the presence or absence of the output of the thermopile may be a detection device having a voltage comparator.
電圧比較器を有する検出装置とすることにより、 安価な回路にてサーモパイル の出力が 0の時点でのサーモパイルの温度を検知することができる。  By using a detection device having a voltage comparator, it is possible to detect the temperature of the thermopile when the output of the thermopile is 0 with an inexpensive circuit.
また、 上記サーモパイルを加熱する加熱装置は単位時間あたりの加熱量をほぼ 一定としてサ一モパイルを加熱する加熱装置とすることができる。  Further, the heating device for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant.
単位時間あたりの加熱量をほぼ一定としてサーモパイルを加熱することにより、 サーモパイルをフイードバック制御することなく加熱することができる。従って、 短時間にサーモパイルの出力を 0にすることができる。  By heating the thermopile with the heating amount per unit time being substantially constant, the thermopile can be heated without feedback control. Therefore, the output of the thermopile can be reduced to 0 in a short time.
また、 上記サーモパイルを加熱する加熱装置は温度測定中にオープンループ制 御にて制御される加熱装置とすることができる。 In addition, the heating device for heating the thermopile is open-loop controlled during temperature measurement. The heating device can be controlled by control.
温度測定中にオープンループ制御にて制御される加熱装置とすることにより、 回路が複雑になるフィードバック制御が不要であるため、 加熱装置を含む回路は 部品点数の少ない簡単な回路とすることができる。  By using a heating device that is controlled by open-loop control during temperature measurement, feedback control that complicates the circuit is not required, so the circuit including the heating device can be a simple circuit with a small number of components .
さらに、 上記サーモパイルを加熱する加熱装置は温度測定開始以前にサーモパ ィルを設定温度まで加熱する加熱装置とすることができる。  Further, the heating device for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
温度測定開始以前にサーモパイルを設定温度まで加熱する加熱装置とすること により、 温度測定中のサ一モパイルを短時間に効率よく加熱することができる。 すなわち、 一実施形態として本願発明が非接触型体温計である場合を考えると、 温度測定開始以前に設定温度を体温近傍の温度、例えば 3 2 °Cに設定しておけば、 測定対象温度である体温 ( 3 6 °C前後) までサーモパイルを加熱することを、 通 常時の室温 (例えば 2 0 °C ) からサ一モパイルを加熱する場合よりも短時間で行 うことができる。  By using a heating device that heats the thermopile to the set temperature before the start of temperature measurement, the thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating a thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating a thermopile from normal room temperature (eg, 20 ° C).
また、 以上の課題を解決するため提供する本願発明は、 測定対象から放射され る赤外線をサーモパイルにより検知して測定対象の温度を測定する放射温度計に おいて、 サーモパイルの出力が正領域から負領域へ反転した時の反転出力を検出 する検出装置を有することを特徴とする放射温度計を特徴とする放射温度計であ る。  Further, the present invention provided to solve the above-mentioned problem is directed to a radiation thermometer that detects infrared radiation emitted from a measurement target by a thermopile and measures the temperature of the measurement target. A radiation thermometer characterized by having a radiation thermometer characterized by having a detection device for detecting an inverted output when the light is inverted to a region.
サーモパイルの出力が正領域から負領域へ反転した時の反転出力を検出する検 出装置を有することにより、 サーモパイルの出力がプラスからマイナスへ反転し た時の出力、 すなわち、 サーモパイルの出力が 0の時点でのサーモパイルの温度 を検知することができるため、 サ一モパイルの温度をフィードバック制御する温 度調節手段が必要ない。 従って、 本発明にかかる放射温度計によれば、 測定精度 の向上を図り、 かつ、 測定時間の短縮を図ることができる。 また、 部品点数の少 ない、 安価な放射温度計を提供することができる。  By having a detection device that detects the inverted output when the output of the thermopile is inverted from the positive area to the negative area, the output when the output of the thermopile is inverted from plus to minus, that is, the output of the thermopile is 0 Since the temperature of the thermopile at the time can be detected, there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved, and the measurement time can be reduced. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
上記サ一モパイルの出力が正領域から負領域へ反転した時の反転出力を検出す る検出装置は、 電圧比較器を有する検出装置とすることができる。  The detecting device for detecting the inverted output when the output of the thermopile is inverted from the positive region to the negative region may be a detecting device having a voltage comparator.
電圧比較器を有する検出装置とすることにより、 安価な回路にてサ一モパイル の出力が◦の時点でのサーモパイルの温度を検知することができる。 また、 以上の課題を解決するため提供する本願発明は、 測定対象から放射され る赤外線をサーモパイルにより検知して測定対象の温度を測定する放射温度計に おいて、 サーモパイルの出力が正領域から負領域へ反転した時の反転出力を検出 する検出装置と、 サーモパイルを加熱する加熱装置とを有することを特徴とする 放射温度計である。 By using a detection device having a voltage comparator, it is possible to detect the temperature of the thermopile when the output of the thermopile is ◦ with an inexpensive circuit. Further, the present invention provided to solve the above-mentioned problem is directed to a radiation thermometer that detects infrared radiation emitted from a measurement target by a thermopile and measures the temperature of the measurement target. A radiation thermometer comprising: a detection device for detecting an inverted output when inverted to a region; and a heating device for heating a thermopile.
サ一モパイルの出力が正領域から負領域へ反転した時の反転出力を検出する検 出装置と、 サーモパイルを加熱する加熱装置とを有することにより、 サーモパイ ルの出力とは無関係にサーモパイルを加熱することでサーモパイルの出力が 0の 時点でのサ一モパイルの温度を検知することができるため、 サーモパイルの温度 をフィードバック制御する温度調節手段が必要ない。 従って、 本発明にかかる放 射温度計によれば、 測定精度の向上を図り、 かつ、 測定時間の短縮を図ることが できる。 また、 部品点数の少ない、 安価な放射温度計を提供することができる。 上記サーモパイルの出力の有無を検出する検出装置は、 電圧比較器を有する検 出装置とすることができる。  Heating the thermopile irrespective of the thermopile output by having a detector that detects the inverted output when the output of the thermopile is inverted from the positive area to the negative area, and a heating device that heats the thermopile As a result, the temperature of the thermopile at the time when the output of the thermopile is 0 can be detected, so that there is no need for a temperature adjusting means for feedback controlling the temperature of the thermopile. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided. The detection device for detecting the presence or absence of the output of the thermopile may be a detection device having a voltage comparator.
電圧比較器を有する検出装置とすることにより、 安価な回路にてサーモパイル の出力が 0の時点でのサーモパイルの温度を検知することができる。  By using a detection device having a voltage comparator, it is possible to detect the temperature of the thermopile when the output of the thermopile is 0 with an inexpensive circuit.
上記電圧比較器において、 出力反転位置をヒステリシス特性を持たせるように 設定することができる。  In the voltage comparator, the output inversion position can be set to have a hysteresis characteristic.
出力反転位置にヒステリシス特性を持たせることによりサーモパイルの出力が By providing a hysteresis characteristic at the output inversion position, the output of the thermopile is
0近傍で過渡的に不安定になつた場合でも安定した反転出力が得られる。 従って サ一モパイルの出力が 0近傍にて発生する脈流現象を防止することができるため、 測定精度のさらなる向上を図ることができる。 A stable inverted output can be obtained even when transiently unstable near 0. Therefore, a pulsating phenomenon that occurs when the output of the thermopile is close to zero can be prevented, so that the measurement accuracy can be further improved.
また、 上記サーモパイルを加熱する加熱装置は単位時間あたりの加熱量をほぼ 一定としてサ一モパイルを加熱する加熱装置とすることができる。  Further, the heating device for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant.
単位時間あたりの加熱量をほぼ一定としてサーモパイルを加熱することにより、 サーモパイルをフィードバック制御することなく加熱することができる。従って、 短時間にサーモパイルの出力を 0にすることができる。  By heating the thermopile with the heating amount per unit time being substantially constant, the thermopile can be heated without feedback control. Therefore, the output of the thermopile can be reduced to 0 in a short time.
また、 上記サーモパイルを加熱する加熱装置は温度測定中にオープンループ制 御にて制御される加熱装置とすることができる。 温度測定中にオープンループ制御にて制御される加熱装置とすることにより、 回路が複雑になるフィードバック制御が不要であるため、 加熱装置を含む回路は 部品点数の少ない簡単な回路とすることができる。 The heating device for heating the thermopile may be a heating device controlled by open loop control during temperature measurement. By using a heating device that is controlled by open-loop control during temperature measurement, feedback control that complicates the circuit is not required, so the circuit including the heating device can be a simple circuit with a small number of components .
さらに、 上記サーモパイルを加熱する加熱装置は温度測定開始以前にサーモパ ィルを設定温度まで加熱する加熱装置とすることができる。  Further, the heating device for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
温度測定開始以前にサーモパイルを設定温度まで加熱する加熱装置とすること により、 温度測定中のサーモパイルを短時間に効率よく加熱することができる。 すなわち、 一実施形態として本願発明が非接触型体温計である場合を考えると、 温度測定開始以前に設定温度を体温近傍の温度、例えば 3 2 °Cに設定しておけば、 測定対象温度である体温 (3 6 °C前後) までサーモパイルを加熱することを、 通 常時の室温 (例えば 2 0 °C ) からサ一モパイルを加熱する場合よりも短時間で行 うことができる。  By using a heating device that heats the thermopile to the set temperature before the start of temperature measurement, the thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating a thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating a thermopile from normal room temperature (eg, 20 ° C).
また、 以上の課題を解決するため提供する本願発明は、 測定対象から放射され る赤外線をサーモパイルにより検知して測定対象の温度を測定する放射温度計に おいて、 サーモパイルを加熱する加熱手段と、 サーモパイルの出力の正領域での 設定閾値及び負領域での設定閾値に対するサーモパイルの出力を検出して測定対 象の温度を求める演算手段とを有することを特徴とする放射温度計である。  Further, the invention of the present application provided to solve the above-described problem is a heating means for heating a thermopile in a radiation thermometer that detects infrared radiation emitted from a measurement target by a thermopile and measures the temperature of the measurement target, A radiation thermometer comprising: arithmetic means for detecting a thermopile output with respect to a set threshold value in a positive region of a thermopile output and a set threshold value in a negative region to obtain a temperature to be measured.
サーモパイルを加熱する加熱手段と、 サー乇パイルの出力の正領域での設定閾 値及び負領域での設定閾値に対するサーモパイルの出力を検出して測定対象の温 度を求める演算手段とを有することにより、 サ一モパイルの出力とは無関係にサ —モパイルを加熱し、 また、 サーモパイルの出力の正領域での設定閾値及び負領 域での設定閾値に対するサーモパイルの出力から間接的にサ一モパイルの出力が 0の時点でのサーモパイルの温度を検知することができるため、 サーモパイルの 温度をフィードバック制御する温度調節手段が必要ない。 従って、 本発明にかか る放射温度計によれば、 測定精度の向上を図り、 かつ、 測定時間の短縮を図るこ とができる。 また、 部品点数の少ない、 安価な放射温度計を提供することができ ο  By having heating means for heating the thermopile, and calculating means for detecting the output of the thermopile with respect to the set threshold value in the positive area of the thermopile output and the set threshold value in the negative area to obtain the temperature of the measurement object The thermopile is heated independently of the thermopile output, and the thermopile output is indirect from the thermopile output with respect to the set threshold in the positive region and the set threshold in the negative region of the thermopile output. Since the temperature of the thermopile can be detected when the value of the thermopile is 0, there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided ο
上記放射温度計では、 正領域及び負領域での設定閾値の絶対値が等しいものを 一対とし、 設定閾値が異なる対を複数設定することが望ましい。 正領域及び負領域での設定閾値の絶対値が等しいものを一対とし、 設定閾値が 異なる対を複数設定することにより、 簡易な演算手段で高精度に対象温度を測定 することができる。 すなわち、 正領域及び負領域での設定閾値の絶対値を等しく すれば、 サーモパイルに関して周囲温度及び測定温度等の測定環境の相違に起因 する測定誤差の補正する演算手段は簡易なもので足りる。 また、 設定閾値が異な る対を複数設定することにより、 複数のデ一夕から測定温度の演算をすることが できるため、 精度を向上させることができる。 In the radiation thermometer, it is desirable that a pair having the same absolute value of the set threshold value in the positive region and the negative region is set as a pair, and a plurality of pairs having different set threshold values are set. By setting a pair having the same absolute value of the set threshold value in the positive region and the negative region as a pair and setting a plurality of pairs having different set threshold values, the target temperature can be measured with high accuracy by a simple calculating means. That is, if the absolute values of the set thresholds in the positive region and the negative region are made equal, a simple arithmetic means for correcting a measurement error caused by a difference in the measurement environment such as the ambient temperature and the measurement temperature with respect to the thermopile is sufficient. In addition, by setting a plurality of pairs having different set thresholds, it is possible to calculate the measured temperature from a plurality of data, so that the accuracy can be improved.
上記サーモパイルを加熱する加熱手段は単位時間あたりの加熱量をほぼ一定と してサーモパイルを加熱する加熱装置とすることができる。 単位時間あたりの加 熱量をほぼ一定としてサ一モパイルを加熱することにより、 サーモパイルをフィ —ドバック制御することなく加熱することができる。 従って、 短時間にサ一モパ ィルの出力を 0にすることができる。  The heating means for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant. By heating the thermopile with the heating amount per unit time almost constant, the thermopile can be heated without feedback control. Therefore, the output of the thermomodile can be reduced to 0 in a short time.
また、 上記サ一モパイルを加熱する加熱手段は温度測定中にオープンループ制 御にて制御される加熱装置とすることができる。  The heating means for heating the thermopile may be a heating device controlled by open loop control during temperature measurement.
温度測定中にオープンループ制御にて制御される加熱装置とすることにより、 回路が複雑になるフィードバック制御が不要であるため、 加熱装置を含む回路は 部品点数の少ない簡単な回路とすることができる。  By using a heating device that is controlled by open-loop control during temperature measurement, feedback control that complicates the circuit is not required, so the circuit including the heating device can be a simple circuit with a small number of components .
さらに、 上記サーモパイルを加熱する加熱手段は温度測定開始以前にサーモパ ィルを設定温度まで加熱する加熱装置とすることができる。  Further, the heating means for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
温度測定開始以前にサーモパイルを設定温度まで加熱する加熱装置とすること により、 温度測定中のサーモパイルを短時間に効率よく加熱することができる。 すなわち、 一実施形態として本願発明が非接触型体温計である場合を考えると、 温度測定開始以前に設定温度を体温近傍の温度、例えば 3 2 °Cに設定しておけば、 測定対象温度である体温 (3 6 °C前後) までサーモパイルを加熱することを、 通 常時の室温 (例えば 2 0 °C ) からサーモパイルを加熱する場合よりも短時間で行 うことができる。  By using a heating device that heats the thermopile to the set temperature before the start of temperature measurement, the thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating the thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating the thermopile from normal room temperature (eg, 20 ° C).
また、 以上の課題を解決するため提供する本願発明は、 測定対象から放射され る赤外線をサーモパイルにより検知して測定対象の温度を測定する温度測定方法 において、 サ一モパイルを加熱する過程でサ一モパイルの出力が正領域及び負領 域それそれの出力範囲に設定した設定閾値になったときのサ一モパイルの温度を 検出することにより測定対象の温度を検出することを特徴とする温度測定方法で ある。 Further, the present invention provided to solve the above-mentioned problem is directed to a temperature measuring method for measuring the temperature of an object to be measured by detecting infrared rays radiated from the object to be measured by a thermopile. Mopile output is positive and negative This is a temperature measuring method characterized by detecting a temperature of a measurement target by detecting a temperature of a thermopile when a set threshold value set in each output range is reached.
サーモパイルを加熱する過程でサーモパイルの出力が正領域及び負領域それそ れの出力範囲に設定した設定閾値になったときのサ一モパイルの温度を検出する ことにより測定対象の温度を検出することで、 サーモパイルの出力とは無関係に サ一モパイルを加熱し、 また、 サ一モパイルの出力の正領域での設定閾値及び負 領域での設定閾値に対するサ一モパイルの出力から間接的にサーモパイルの出力 が 0の時点でのサ一モパイルの温度を検知することができるため、 サ一モパイル の温度をフィードバック制御する温度調節手段が必要ない。 従って、 本発明にか かる温度測定方法によれば、 測定精度の向上を図り、 かつ、 測定時間の短縮を図 ることができる。  By detecting the temperature of the measurement object by detecting the temperature of the thermopile when the output of the thermopile reaches the set threshold set in the positive range and the negative range and the output range of the thermopile in the process of heating the thermopile, The thermopile is heated irrespective of the thermopile output, and the thermopile output is indirectly output from the thermopile output with respect to the set threshold in the positive region and the set threshold in the negative region of the thermopile output. Since the temperature of the thermopile at the time of 0 can be detected, there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile. Therefore, according to the temperature measurement method according to the present invention, it is possible to improve the measurement accuracy and shorten the measurement time.
上記温度測定方法では、 正領域及び負領域での設定閾値の絶対値が等しいもの を一対とし、 設定閾値が異なる対を複数設定することが望ましい。  In the temperature measurement method described above, it is desirable to set a pair having the same absolute value of the set threshold value in the positive region and the negative region, and to set a plurality of pairs having different set threshold values.
正領域及び負領域での設定閾値の絶対値が等しいものを一対とし、 設定閾値が 異なる対を複数設定することにより、 簡易な演算手段で高精度に対象温度を測定 することができる。 すなわち、 正領域及び負領域での設定閾値の絶対値を等しく すれば、 サ一モパイルに関して周囲温度及び測定温度等の測定環境の相違に起因 する測定誤差の補正する演算手段は簡易なもので足りる。 また、 設定閾値が異な る対を複数設定することにより、 複数のデ一夕から測定温度の演算をすることが できるため、 精度を向上させることができる。  By setting a pair having the same absolute value of the set threshold value in the positive region and the negative region as a pair and setting a plurality of pairs having different set threshold values, the target temperature can be measured with high accuracy by a simple calculating means. In other words, if the absolute values of the set thresholds in the positive region and the negative region are made equal, a simple calculation means is sufficient for correcting the measurement error caused by the difference in the measurement environment such as the ambient temperature and the measurement temperature for the thermopile. . In addition, by setting a plurality of pairs having different set thresholds, it is possible to calculate the measured temperature from a plurality of data, so that the accuracy can be improved.
上記サーモパイルを加熱する加熱手段は単位時間あたりの加熱量をほぼ一定と してサーモパイルを加熱する加熱装置とすることができる。 単位時間あたりの加 熱量をほぼ一定としてサ一モパイルを加熱することにより、 サ一モパイルをフィ ードバック制御することなく加熱することができる。 従って、 短時間にサ一モパ ィルの出力を 0にすることができる。  The heating means for heating the thermopile may be a heating device for heating the thermopile with the heating amount per unit time being substantially constant. By heating the thermopile with the heating amount per unit time being substantially constant, the thermopile can be heated without feedback control. Therefore, the output of the thermomodile can be reduced to 0 in a short time.
また、 上記サーモパイルを加熱する加熱手段は温度測定中にオープンループ制 御にて制御される加熱装置とすることができる。  The heating means for heating the thermopile may be a heating device controlled by open loop control during temperature measurement.
温度測定中にオープンループ制御にて制御される加熱装置とすることにより、 回路が複雑になるフィードバック制御が不要であるため、 加熱装置を含む回路は 部品点数の少ない簡単な回路とすることができる。 By using a heating device controlled by open loop control during temperature measurement, Since feedback control that complicates the circuit is not required, the circuit including the heating device can be a simple circuit with a small number of components.
さらに、 上記サ一モパイルを加熱する加熱手段は温度測定開始以前にサ一モパ ィルを設定温度まで加熱する加熱装置とすることができる。  Further, the heating means for heating the thermopile may be a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
温度測定開始以前にサーモパイルを設定温度まで加熱する加熱装置とすること により、 温度測定中のサ一モパイルを短時間に効率よく加熱することができる。 すなわち、 一実施形態として本願発明が非接触型体温計である場合を考えると、 温度測定開始以前に設定温度を体温近傍の温度、例えば 3 2 °Cに設定しておけば、 測定対象温度である体温 (3 6 °C前後) までサ一モパイルを加熱することを、 通 常時の室温 (例えば 2 0 °C) からサ一モパイルを加熱する場合よりも短時間で行 うことができる。  By using a heating device that heats the thermopile to the set temperature before the start of temperature measurement, the thermopile during temperature measurement can be efficiently heated in a short time. That is, considering the case where the present invention is a non-contact type thermometer as one embodiment, if the set temperature is set to a temperature near the body temperature, for example, 32 ° C. before the start of the temperature measurement, the temperature is the temperature to be measured. Heating the thermopile to body temperature (around 36 ° C) can be done in a shorter time than heating the thermopile from normal room temperature (eg, 20 ° C).
図面の簡単な説明 第 1図は本発明の一実施の形態にかかる放射温度計の温度測定回路を示すプロ ック図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to one embodiment of the present invention.
第 2図は本発明の一実施の形態にかかる放射温度計において、 サ一モパイル出 カー時間及び加熱量—時間の関係を示した図である。  FIG. 2 is a diagram showing a relationship between a thermopile output time and a heating amount-time in the radiation thermometer according to one embodiment of the present invention.
第 3図は本発明の他の実施の形態にかかる放射温度計の温度測定回路を示すブ 口ック図である。  FIG. 3 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
第 4図は本発明の他の実施の形態にかかる放射温度計において、 サーモパイル 出力一時間及びコンパレ一夕出力一時間の関係を示した図である。  FIG. 4 is a diagram showing the relationship between one hour of thermopile output and one hour of comparator output in a radiation thermometer according to another embodiment of the present invention.
第 5図は本発明の他の実施の形態にかかる放射温度計の温度測定回路を示すブ 口ック図である。  FIG. 5 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
第 6図は本発明の他の実施の形態にかかる放射温度計において、 サーモパイル 出力一時間及び加熱量一時間の関係を示した図である。  FIG. 6 is a diagram showing the relationship between one hour of thermopile output and one hour of heating in a radiation thermometer according to another embodiment of the present invention.
第 7図は従来の放射温度計の温度測定回路を示すプロック図である。  FIG. 7 is a block diagram showing a temperature measuring circuit of a conventional radiation thermometer.
第 8図は従来の放射温度計において、 サ一モパイル出力—時間及び加熱量—時 間の関係を示した図である, 符号の説明 Fig. 8 shows the output of the thermopile-time and heating amount-time in the conventional radiation thermometer. FIG. 4 is a diagram showing a relationship between symbols.
1 サ一モパイル 1 Thermopile
2 Two
3 コンパレ一夕 I C 3 Compare Night I C
4 サ一ミス夕 4 Evening
5 金属缶パッケージ 5 Metal can package
6 6
7 マイクロコンピュー夕 7 Microcomputer
8 液晶温度表示器 8 LCD temperature display
9 ヒー夕 9 Heat Evening
1 0 ドライブ I C  1 0 Drive I C
スィツチ回路  Switch circuit
2 1 サ一モパイル  2 1 Thermopile
2 2 増幅器 2 2 Amplifier
2 3 twenty three
2 4 ヒー夕 2 4
2 5 サーミス夕 2 5 Thermis Evening
2 6 ブロック 2 6 blocks
2 7 温度算出手段 2 7 Temperature calculation means
2 8 表示手段  2 8 Display means
3 0 鼓膜  3 0 eardrum
発明を実施するための最良の形態 以下、 本発明の一実施の形態を図面を参照して説明する, 第 1図は本発明の一実施の形態にかかる放射温度計の温度測定回路を示すプロ ック図である。 第 1図において、 放射温度計に備えられているサ一モパイル 1は 鼓膜から放射される赤外線量及びサーモパイル 1の温度に依存する電圧を出力す る。 すなわち、 サ一モパイル 1は測定対象の温度とサーモパイル 1の温度との差 に応じた電圧を出力し、 かかる出力は測定対象の温度がサーモパイル 1の温度よ り大きい場合には正の電圧として出力され、 測定対象の温度がサ一モパイル 1の 温度より小さい場合には負の電圧として出力される。 また、 測定対象の温度とサBEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to one embodiment of the present invention. In FIG. 1, the thermopile 1 provided in the radiation thermometer outputs a voltage depending on the amount of infrared radiation radiated from the eardrum and the temperature of the thermopile 1. That is, the thermopile 1 outputs a voltage corresponding to the difference between the temperature of the measurement target and the temperature of the thermopile 1, and such an output is output as a positive voltage when the temperature of the measurement target is higher than the temperature of the thermopile 1. If the temperature of the object to be measured is lower than the temperature of the thermopile 1, it is output as a negative voltage. In addition, the temperature and
—モパイル 1の温度が等しい場合にはサーモパイル 1の出力は 0となる。 —If the temperatures of mopile 1 are equal, the output of thermopile 1 will be 0.
サ一モパイル 1に接続されたオペアンプ 2は、 サーモパイル 1から出力される 微小電圧を所定の大きさに増幅する。 オペアンプ 2に接続されたコンパレータ (電 圧比較器) I C 3はオペアンプ 2によって増幅されたサ一モパイル 1の出力の有 無を検出する。 すなわち、 コンパレー夕 I C 3はサーモパイル 1の出力の大きさ 及び正負にかかわらず、 サ一モパイル 1の出力が 0であるか否かの信号をマイク 口コンビユー夕 7に送る。 このように本実施の形態では、 サ一モパイル 1の出力 の有無を検出する検出装置の一例としてコンパレー夕 I C 3を有する検出装置を 使用している。  The operational amplifier 2 connected to the thermopile 1 amplifies the small voltage output from the thermopile 1 to a predetermined magnitude. The comparator (voltage comparator) IC 3 connected to the operational amplifier 2 detects whether or not the output of the thermopile 1 amplified by the operational amplifier 2 is present. In other words, the comparator IC 3 sends a signal indicating whether the output of the thermopile 1 is 0 or not to the microphone opening combination 7 regardless of the magnitude of the output of the thermopile 1 and the sign. As described above, in the present embodiment, the detection device having the comparator IC 3 is used as an example of the detection device that detects the presence or absence of the output of the thermopile 1.
サーミス夕 4はサーモパイル 1を内部に収納して熱伝導性に優れた金属缶パッ ケージ 5に取り付けられている。 このサ一ミス夕 4は金属缶パッケージ 5を介し てサーモパイル 1の温度を測定するための測温素子であり、 サーミス夕 4の温度 の変化によるサーミス夕 4内の抵抗値の変化を電圧に変換して出力する。 サ一ミ ス夕 4に接続されたオペアンプ 6はサ一ミス夕 4の出力を増幅する。  Thermistor 4 houses the thermopile 1 inside and is attached to a metal can package 5 with excellent thermal conductivity. The thermometer 4 is a temperature measuring element for measuring the temperature of the thermopile 1 via the metal can package 5.A change in the resistance value in the thermometer 4 due to a change in the temperature of the thermometer 4 is converted into a voltage. And output. The operational amplifier 6 connected to the summit 4 amplifies the output of the summit 4.
マイクロコンビユー夕 7には A D変換機が内蔵され、 かかるマイクロコンピュ 一夕 7はコンパレ一夕 3からの出力信号及びサ一ミス夕 4からの出力信号に基づ き演算処理して液晶温度表示器 8に測定対象の温度値出力を送る。 液晶温度表示 器 8は測定対象の温度をデジ夕ル表示する。  The micro-computer 7 has an A / D converter built in, and the micro-computer 7 performs arithmetic processing based on the output signal from the comparator 3 and the output signal from the monitor 4 to display the liquid crystal temperature. Sends the temperature value output of the object to be measured to the device 8. The liquid crystal temperature display 8 digitally displays the temperature of the measurement target.
ヒ一夕 9はサーモパイル 1を加熱するために金属缶パッケージ 5に巻き付けら れている。 ドライブ I C 1 0はマイクロコンビユー夕 7からの加熱命令信号をヒ —夕 9に伝達する。 このように本実施の形態ではサ一モパイル 1を加熱する加熱 装置の一例としてヒー夕 9を有する加熱装置を使用している。 以上に示した温度測定回路により、 どのように測定対象の温度が測定されるか を説明する。 Light 9 is wrapped around metal can package 5 to heat thermopile 1. The drive IC 10 transmits the heating command signal from the micro combination 7 to the evening 9. As described above, in the present embodiment, a heating device having a heater 9 is used as an example of a heating device for heating the thermopile 1. The following describes how the temperature of the measurement object is measured by the temperature measurement circuit described above.
本実施の形態にかかる放射温度計では、 温度測定開始前にサ一モパイル 1の温 度があらかじめ設定した温度、 例えば約 3 2 °Cになるようマイクロコンビユー夕 7からヒ一夕 9に加熱命令信号が送られる。 そのため、 温度測定開始時にはサー モパイル 1の温度は設定温度まで上昇している。  In the radiation thermometer according to the present embodiment, before the temperature measurement is started, the micropile 1 is heated from the microcombination 7 to the heating 9 so that the temperature of the thermopile 1 becomes a preset temperature, for example, about 32 ° C. A command signal is sent. Therefore, at the start of temperature measurement, the temperature of thermopile 1 has risen to the set temperature.
温度測定開始の命令が外部からマイクロコンビユー夕 7に伝達されると、 単位 時間あたりの加熱量をほぼ一定としてサーモパイル 1を加熱する加熱命令信号が マイクロコンピュ一夕 7からドライブ I C 1 0を介してヒ一夕 9に送られる。 ま た、 温度測定中はオープンループ制御にて、 すなわちヒー夕 9の加熱量を変化さ せることなくサ一モパイル 1を加熱する。  When a command to start temperature measurement is transmitted from the outside to the microcomputer 7, a heating command signal for heating the thermopile 1 with the heating amount per unit time being almost constant is sent from the microcomputer 7 via the drive IC 10. He is sent at 9pm. During temperature measurement, the thermopile 1 is heated by the open loop control, that is, without changing the heating amount of the heater 9.
温度測定が開始されると、 サーモパイル 1は急速に加熱され、 第 2図のサ一モ パイル出力一時間グラフに示すようにサーモパイル 1の出力は急速に減少する。 加熱が進み、 サ一モパイル 1の温度が測定対象である鼓膜の温度と等しくなると、 サーモパイル 1の出力は 0となる。 サーモパイル 1の出力の有無信号はコンパレ —夕 I C 3によりマイクロコンピュー夕 7に送られているので、 サ一モパイル 1 の出力が 0になった時点でのサ一モパイル 1の温度をサーミス夕 4からの出力を もとにマイクロコンピュー夕 7が演算処理を行うことで測定対象である鼓膜の温 度が検出される。 検出された鼓膜の温度は液晶温度表示器により表示されること により認知される。  When the temperature measurement is started, the thermopile 1 is rapidly heated, and the output of the thermopile 1 rapidly decreases as shown in the thermopile output one hour graph in FIG. When heating proceeds and the temperature of the thermopile 1 becomes equal to the temperature of the eardrum to be measured, the output of the thermopile 1 becomes 0. Since the output signal of the thermopile 1 is sent to the microcomputer 7 by the comparator IC 3, the temperature of the thermopile 1 at the time when the output of the thermopile 1 becomes 0 becomes the temperature of the thermopile 1. The microcomputer 7 performs arithmetic processing based on the output from the CPU, thereby detecting the temperature of the eardrum to be measured. The detected temperature of the eardrum is recognized by being displayed on the liquid crystal temperature display.
なお、 ヒータ 9によるサーモパイル 1の加熱は、 サ一モパイル 1の出力が 0で あることをコンパレ一夕 I C 3によりマイクロコンビユー夕 7が検知した後に、 第 2図の t 2の時点でマイクロコンピュー夕 7からの加熱停止信号がヒー夕 9に伝 達されることにより終了する。 The heating of the thermopile 1 by the heater 9, the comparator Isseki IC 3 that the output of the mono- thermopile 1 is 0 after micro Combi Yu evening 7 detects, microcontroller at time t 2 of FIG. 2 The operation ends when the heating stop signal from Pyu-Yu 7 is transmitted to He-Yu 9.
以上述べたように本実施の形態にかかる放射温度計は、 サ一モパイル 1の出力 の有無を検出する検出装置としてコンパレー夕 I C 3を有する検出装置を使用し ていることにより、 安価な回路にてサーモパイル 1の出力が 0の時点でのサ一モ パイルの温度を検知することができるため、 サ一モパイル 1の温度をフィードバ ック制御する温度調節手段が必要ない。 従って、 本実施の形態にかかる放射温度 計によれば、 測定精度の向上を図り、 かつ、 測定時間の短縮を図ることができる。 また、 部品点数の少ない、 安価な放射温度計を提供することができる。 As described above, the radiation thermometer according to the present embodiment uses a detection device having the comparator IC 3 as a detection device for detecting the presence or absence of the output of the thermopile 1, so that an inexpensive circuit can be obtained. Therefore, the temperature of the thermopile 1 at the time when the output of the thermopile 1 is 0 can be detected, so that there is no need for a temperature adjusting means for feedback-controlling the temperature of the thermopile 1. Therefore, the radiation temperature according to the present embodiment According to the meter, the measurement accuracy can be improved and the measurement time can be shortened. In addition, an inexpensive radiation thermometer with a small number of parts can be provided.
また、 本実施の形態にかかる放射温度計は、 第 2図の加熱量一時間グラフに示 すように温度測定中において、 単位時間あたりの加熱量をほぼ一定としてサ一モ パイル 1を加熱することにより、 サーモパイル 1をフィードバック制御すること なく急速に加熱することができる。 従って、 第 2図のサ一モパイル出力—時間グ ラフに示すように短時間にサ一モパイル 1の出力を 0にすることができる。  Further, the radiation thermometer according to the present embodiment heats the thermopile 1 with the heating amount per unit time being substantially constant during the temperature measurement, as shown in the heating amount one hour graph in FIG. Thus, the thermopile 1 can be rapidly heated without feedback control. Therefore, the output of the thermopile 1 can be made 0 in a short time as shown in the thermopile output-time graph of FIG.
また、 本実施の形態にかかる放射温度計は、 温度測定中にオープンループ制御 にて制御される加熱装置を使用することにより、 回路が複雑になるフィードバッ ク制御が不要であるため、 加熱装置を含む回路は部品点数の少ない簡単な回路と することができる。  In addition, the radiation thermometer according to the present embodiment uses a heating device controlled by open-loop control during temperature measurement, which eliminates the need for feedback control that complicates the circuit. The circuit including can be a simple circuit with a small number of components.
さらに、 本実施の形態にかかる放射温度計は、 温度測定開始以前にサーモパイ ル 1を設定温度まで加熱することにより、 温度測定中のサ一モパイル 1を短時間 に効率よく加熱することができる。  Further, the radiation thermometer according to the present embodiment can heat the thermopile 1 during the temperature measurement efficiently in a short time by heating the thermopile 1 to the set temperature before the start of the temperature measurement.
次に本発明の他の実施の形態を図面を参照して説明する。 但し、 上述した実施 の形態と重複する部分については説明を省略し、 相違する部分についてのみ説明 する。  Next, another embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 3図は本発明の他の実施の形態にかかる放射温度計の温度測定回路を示すブ 口ック図である。  FIG. 3 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
コンパレータ (電圧比較器) I C 3は本実施の形態においては、 オペアンプ 2 によって増幅されたサーモパイル 1の出力がヒー夕 9の加熱により正領域から負 領域へ反転した時の反転出力を検出する役割を果たす。 すなわち、 コンパレー夕 I C 3はサ一モパイル 1の出力領域が反転したという信号をマイクロコンビュ一 夕 7に送る。 本実施の形態ではコンパレ一夕 I C 3の出力反転位置をサ一モパイ ル 1の出力が正領域から負領域に変化する位置に設定している。  In this embodiment, the comparator (voltage comparator) IC 3 has a function of detecting an inverted output when the output of the thermopile 1 amplified by the operational amplifier 2 is inverted from the positive region to the negative region by heating the heater 9. Fulfill. That is, the comparator IC 3 sends a signal to the microcomputer 7 that the output area of the thermopile 1 has been inverted. In the present embodiment, the output reversal position of the comparator IC 3 is set to a position where the output of the sample 1 changes from the positive region to the negative region.
このように本実施の形態では、 サ一モパイル 1の出力が正領域から負領域へ反 転した時の反転出力を検出する検出装置の一例としてコンパレータ I C 3を有す る検出装置を使用している。  Thus, in the present embodiment, a detection device having a comparator IC 3 is used as an example of a detection device that detects an inverted output when the output of the thermopile 1 is inverted from the positive region to the negative region. I have.
本実施の形態では、 サーモパイル 1の加熱方法、 測定対象の温度測定手順はほ ぼ上述した実施の形態と同様である。 すなわち、 温度測定が開始されるとサーモ パイル 1は上述した実施の形態と同様、 急速に加熱され、 サ一モパイル 1の出力 は急速に減少する。 加熱が進み、 サ一モパイル 1の温度が測定対象である鼓膜の 温度と等しくなると、 サーモパイル 1の出力は正領域から負領域へ反転する。 サ ーモパイル 1の出力の出力反転信号はコンパレ一夕 I C 3によりマイクロコンビ ュ一夕 7に送られているので、 サーモパイル 1の出力が反転した時点でのサーモ パイル 1の温度をサーミス夕からの出力をもとにマイクロコンビユー夕 7が演算 処理を行うことで測定対象である鼓膜の温度が検出される。 検出された鼓膜の温 度は液晶温度表示器により表示されることにより認知される。 In the present embodiment, the method for heating the thermopile 1 and the procedure for measuring the temperature of the object to be measured are almost the same. This is similar to the above-described embodiment. That is, when the temperature measurement is started, the thermopile 1 is rapidly heated as in the above-described embodiment, and the output of the thermopile 1 is rapidly reduced. When the heating proceeds and the temperature of the thermopile 1 becomes equal to the temperature of the eardrum to be measured, the output of the thermopile 1 is inverted from the positive region to the negative region. Since the output inversion signal of the output of thermopile 1 is sent to microcomputer 7 by comparison IC 3, the temperature of thermopile 1 at the time when the output of thermopile 1 is inverted is output from the thermometer 1 The temperature of the eardrum, which is the measurement target, is detected by the microcomputer 7 performing arithmetic processing based on the data. The detected temperature of the eardrum is recognized by being displayed on the liquid crystal temperature display.
本実施の形態にかかる放射温度計によれば、 測定精度の向上を図り、 かつ、 測 定時間の短縮を図ることができる等上述した実施の形態と同様の効果が得られる。 ところで、 以上のように本実施の形態では、 コンパレータ I C 3の出力反転位 置をサ一モパイル 1の出力が正領域から負領域に変化する位置に設定しているが、 かかる出力反転位置を第 4図に示すようにヒステリシス幅を持たせるように設定 することも可能である。 すなわち、 サ一モパイル 1の出力の正領域及び負領域に おける 0近傍にそれそれ出力反転位置を設定する。 本実施の形態では、 第 4図に 示すように時間 t 3および 1 4の時点で出力が反転している。 かかるヒステリシス 幅は、 コンパレー夕を使用したシユミッ ト回路の定数設定により限りなく出力 0 近傍に設定することができる。 このように出力反転位置を設定することにより、 サーモパイル 1の加熱が進み、 出力が 0近傍で過渡的に不安定になつた場合でも 安定した反転出力が得られる。 従って出力が 0近傍で発生する脈流現象を防止す ることができるため、 測定精度のさらなる向上を図ることができる。 According to the radiation thermometer according to the present embodiment, the same effects as those of the above-described embodiment can be obtained, such as improvement of measurement accuracy and shortening of measurement time. As described above, in the present embodiment, the output inversion position of the comparator IC 3 is set to a position where the output of the thermopile 1 changes from the positive region to the negative region. It is also possible to set so as to have a hysteresis width as shown in FIG. That is, the output inversion position is set near 0 in the positive region and the negative region of the output of the thermopile 1 respectively. In this embodiment, the output at the time of the fourth time, as shown in FIG t 3 and 1 4 are reversed. Such a hysteresis width can be set as close as possible to the output 0 as much as possible by setting a constant of the shunt circuit using the comparator. By setting the output inversion position in this manner, the heating of the thermopile 1 proceeds, and a stable inverted output can be obtained even when the output becomes transiently unstable near 0. Therefore, a pulsating phenomenon that occurs near zero output can be prevented, so that the measurement accuracy can be further improved.
また本発明のさらなる他の実施の形態を図面を参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分について のみ説明する。  Still another embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those in the above-described embodiment will be omitted, and only different parts will be described.
第 5図は本発明の他の実施の形態にかかる放射温度計の温度測定回路を示すブ 口ック図である。  FIG. 5 is a block diagram showing a temperature measuring circuit of a radiation thermometer according to another embodiment of the present invention.
本実施の形態ではコンパレ一夕 I C 3を使用せず、 サーモパイル 1の出力とサ —ミス夕 4の出力はスィツチ回路 1 1を介して直接マイクロコンピュー夕 7によ り検知される。 スィツチ回路 1 1にはマイクロコンビユー夕 7からタイミング信 号が送られることにより、 マイクロコンピュー夕 7はサ一モパイル 1の出力信号 を処理するモードから、 サーミス夕 4の出力信号を処理するモ一ドへ切り替わる。 また、 マイクロコンビユー夕 7内部の演算処理は上述の実施の形態とは相違し ている。 すなわち、 本実施の形態では第 6図に示すようにマイクロコンピュータ 7は、 サ一モパイル 1の出力の正領域及び負領域にそれそれ設定された閾値のみ を検知する。 かかる閾値はサ一モパイル 1の出力の 0近傍に設定され、 閾値の絶 対値は等しくなるように設定されている。 In this embodiment, the output of the thermopile 1 and the output of the thermopile 4 are not directly connected to the microcomputer 7 through the switch circuit 11 without using the comparator IC 3. Is detected. The timing signal is sent from the microcombiner 7 to the switch circuit 11, so that the microcomputer 7 switches from the mode for processing the output signal of the thermopile 1 to the mode for processing the output signal of the thermistor 4. Switch to one. Also, the arithmetic processing inside the micro-computer 7 is different from that of the above-described embodiment. That is, in the present embodiment, as shown in FIG. 6, the microcomputer 7 detects only the thresholds set in the positive region and the negative region of the output of the thermopile 1 respectively. The threshold is set near zero of the output of the thermopile 1, and the absolute values of the thresholds are set to be equal.
以下、 本実施の形態にかかる放射温度計によりどのように測定対象の温度が測 定されるかを説明する。 なお、 サーモパイル 1 の加熱方法はほぼ上述した実施の 形態と同様である。  The following describes how the radiation thermometer according to the present embodiment measures the temperature of the measurement target. The method of heating the thermopile 1 is almost the same as in the above-described embodiment.
温度測定開始の命令が外部からマイクロコンビュー夕 7に伝達され温度測定が 開始ざれると、 サ一モパイル 1は急速に加熱される。 第 6図に示すように加熱は 時間 1 4まで、 すなわちサーモパイル 1の出力が負領域に設定された閾値に達する まで行われる。 このようにしてサ一モパイル 1の加熱が進み、 サ一モパイル 1の 出力が上記 2個の閾値になった時点でのサーモパイル 1の温度をサ一ミス夕 4か らの出力をもとにマイクロコンビユー夕 7が演算処理を行う。 上記 2個の閾値に 対応した温度の平均値を求めることで測定対象である鼓膜の温度が検出される。 検出された鼓膜の温度は液晶温度表示器により表示されることにより認知される。 なお、 上記絶対値の等しい閾値の対を複数設定することが可能である。 When a command to start temperature measurement is transmitted from the outside to the microcomputer 7 and temperature measurement is not started, the thermopile 1 is rapidly heated. Until the heating time 1 4 As shown in FIG. 6, that is carried out until a threshold output of the thermopile 1 is set to a negative region. In this way, the heating of the thermopile 1 proceeds, and the temperature of the thermopile 1 at the time when the output of the thermopile 1 reaches the above two thresholds is determined based on the output from the thermopile 4. Convenience store 7 performs the arithmetic processing. The temperature of the eardrum to be measured is detected by calculating the average value of the temperatures corresponding to the two thresholds. The detected temperature of the eardrum is recognized by being displayed on a liquid crystal temperature indicator. Note that a plurality of pairs of thresholds having the same absolute value can be set.
以上述べたように本実施の形態にかかる放射温度計はサーモパイル 1を加熱す る加熱手段と、 サーモパイル 1の出力の正領域での設定閾値及び負領域での設定 閾値に対するサーモパイル 1の出力を検出して測定対象の温度を求める演算手段 とを有することにより、 サ一モパイル 1の出力とは無関係にサ一モパイル 1を加 熱し、 また、 サ一モパイル 1の出力の正領域での設定閾値及び負領域での設定閾 値に対するサ一モパイル 1の出力から間接的にサ一モパイル 1の出力が 0の時点 でのサーモパイル 1の温度を検知することができるため、 サーモパイル 1の温度 をフィードバック制御する温度調節手段が必要ない。 従って、 本発明にかかる放 射温度計によれば、 測定精度の向上を図り、 かつ、 測定時間の短縮を図ることが できる。 また、 部品点数の少ない、 安価な放射温度計を提供することができる。 さらに本実施の形態において、 正領域及び負領域での設定閾値の絶対値が等し いものを一対とし、 設定閾値が異なる対を複数設定すれば、 簡易な演算手段で高 精度に対象温度を測定することができる。 すなわち、 正領域及び負領域での設定 閾値の絶対値を等しくすれば、 サーモパイル 1に関して周囲温度及び測定温度等 の測定環境の相違に起因する測定誤差の補正する演算手段は簡易なもので足りる。 また、 設定閾値が異なる対を複数設定することにより、 複数のデータから測定温 度の演算をすることができるため、 精度を向上させることができる。 As described above, the radiation thermometer according to the present embodiment detects the heating means for heating the thermopile 1 and the output of the thermopile 1 with respect to the set threshold in the positive region and the set threshold in the negative region of the output of the thermopile 1. Calculating means for calculating the temperature of the object to be measured, thereby heating the thermopile 1 irrespective of the output of the thermopile 1. The thermopile 1 temperature can be detected indirectly from the output of the thermopile 1 when the output of the thermopile 1 is 0 with respect to the set threshold value in the negative region. No need for temperature control means. Therefore, according to the radiation thermometer according to the present invention, the measurement accuracy can be improved and the measurement time can be reduced. it can. In addition, an inexpensive radiation thermometer with a small number of parts can be provided. Further, in the present embodiment, if the absolute values of the set threshold values in the positive region and the negative region are equal to each other, and a plurality of pairs having different set threshold values are set, the target temperature can be accurately calculated by a simple arithmetic unit. Can be measured. That is, if the absolute values of the set thresholds in the positive region and the negative region are made equal, a simple calculation means for correcting the measurement error caused by the difference in the measurement environment such as the ambient temperature and the measurement temperature with respect to the thermopile 1 is sufficient. Also, by setting a plurality of pairs having different set thresholds, the measurement temperature can be calculated from a plurality of data, so that the accuracy can be improved.

Claims

請求の範囲 The scope of the claims
I . 測定対象から放射される赤外線をサ一モパイルにより検知して測定対象の温 度を測定する放射温度計において、 サーモパイルの出力の有無を検出する検出装 置を有することを特徴とする放射温度計。 I. A radiation thermometer that detects infrared radiation radiated from a measuring object by a thermopile and measures the temperature of the measuring object, characterized by having a detecting device for detecting the presence or absence of the output of the thermopile. Total.
2 . サ一モパイルの出力の有無を検出する検出装置が、 電圧比較器を有すること を特徴とする請求項 1に記載の放射温度計。  2. The radiation thermometer according to claim 1, wherein the detection device that detects the presence or absence of the output of the thermopile has a voltage comparator.
3 . 測定対象から放射される赤外線をサ一モパイルにより検知して測定対象の温 度を測定する放射温度計において、 サーモパイルの出力の有無を検出する検出装 置と、 サーモパイルを加熱する加熱装置とを有することを特徴とする放射温度計。 3. A radiation thermometer that measures the temperature of the measurement target by detecting infrared radiation emitted from the measurement target using a thermopile, and a detection device that detects the presence or absence of the output of the thermopile, and a heating device that heats the thermopile. A radiation thermometer comprising:
4 . サーモパイルの出力の有無を検出する検出装置が、 電圧比較器を有すること を特徴とする請求項 3に記載の放射温度計。 4. The radiation thermometer according to claim 3, wherein the detection device that detects the presence or absence of the output of the thermopile has a voltage comparator.
5 . サーモパイルを加熱する加熱装置が単位時間あたりの加熱量をほぼ一定とし てサ一モパイルを加熱する加熱装置であることを特徴とする請求項 3に記載の放 射温度計。  5. The radiation thermometer according to claim 3, wherein the heating device for heating the thermopile is a heating device for heating the thermopile with a heating amount per unit time being substantially constant.
6 . サーモパイルを加熱する加熱装置が単位時間あたりの加熱量をほぼ一定とし てサーモパイルを加熱する加熱装置であることを特徴とする請求項 4に記載の放 射温度計。  6. The radiation thermometer according to claim 4, wherein the heating device for heating the thermopile is a heating device for heating the thermopile with a heating amount per unit time being substantially constant.
7 . サーモパイルを加熱する加熱装置が温度測定中にオープンループ制御にて制 御される加熱装置であることを特徴とする請求項 3に記載の放射温度計。  7. The radiation thermometer according to claim 3, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
8 . サーモパイルを加熱する加熱装置が温度測定中にオープンループ制御にて制 御される加熱装置であることを特徴とする請求項 4に記載の放射温度計。  8. The radiation thermometer according to claim 4, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
9 . サーモパイルを加熱する加熱装置が温度測定中にオープンループ制御にて制 御される加熱装置であることを特徴とする請求項 5に記載の放射温度計。  9. The radiation thermometer according to claim 5, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
1 0 . サーモパイルを加熱する加熱装置が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 6に記載の放射温度計。  10. The radiation thermometer according to claim 6, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
I I . サーモパイルを加熱する加熱装置が温度測定開始以前にサ一モパイルを設 定温度まで加熱する加熱装置であることを特徴とする請求項 3乃至 1 0に記載の 放射温度計。 II. The heating device that heats the thermopile sets the thermopile before starting the temperature measurement. The radiation thermometer according to any one of claims 3 to 10, wherein the radiation thermometer is a heating device for heating to a constant temperature.
1 2 . 測定対象から放射される赤外線をサーモパイルにより検知して測定対象の 温度を測定する放射温度計において、 サーモパイルの出力が正領域から負領域へ 反転した時の反転出力を検出する検出装置を有することを特徴とする放射温度計。 1 2. In a radiation thermometer that measures the temperature of a measurement target by detecting infrared radiation radiated from the measurement target with a thermopile, a detection device that detects an inverted output when the output of the thermopile is inverted from a positive region to a negative region. A radiation thermometer comprising:
1 3 . サ一モパイルの出力が正領域から負領域へ反転した時の反転出力を検出す る検出装置が電圧比較器を有することを特徴とする請求項 1 2に記載の放射温度 計。 13. The radiation thermometer according to claim 12, wherein the detection device for detecting the inverted output when the output of the thermopile is inverted from the positive region to the negative region has a voltage comparator.
1 4 . 測定対象から放射される赤外線をサ一モパイルにより検知して測定対象の 温度を測定する放射温度計において、 サ一モパイルの出力が正領域から負領域へ 反転した時の反転出力を検出する検出装置と、 サ一モパイルを加熱する加熱装置 とを有することを特徴とする放射温度計。  1 4. In a radiation thermometer that measures the temperature of a measurement target by detecting infrared radiation emitted from the measurement target with a thermopile, the inverted output is detected when the output of the thermopile is inverted from the positive region to the negative region. A radiation thermometer, comprising: a detection device that performs heating; and a heating device that heats the thermopile.
1 5 . サーモパイルの出力が正領域から負領域へ反転した時の反転出力を検出す る検出装置が電圧比較器を有することを特徴とする請求項 1 4に記載の放射温度 計。  15. The radiation thermometer according to claim 14, wherein the detection device for detecting the inverted output when the output of the thermopile is inverted from the positive region to the negative region has a voltage comparator.
1 6 . サ一モパイルを加熱する加熱装置が単位時間あたりの加熱量をほぼ一定と してサーモパイルを加熱する加熱装置であることを特徴とする請求項 1 4に記載 の放射温度計。  16. The radiation thermometer according to claim 14, wherein the heating device for heating the thermopile is a heating device for heating the thermopile with a heating amount per unit time being substantially constant.
1 7 . サ一モパイルを加熱する加熱装置が単位時間あたりの加熱量をほぼ一定と してサ一モパイルを加熱する加熱装置であることを特徴とする請求項 1 5に記載 の放射温度計。  17. The radiation thermometer according to claim 15, wherein the heating device for heating the thermopile is a heating device for heating the thermopile with the heating amount per unit time being substantially constant.
1 8 . サ一モパイルを加熱する加熱装置が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 1 4に記載の放射温度計。 18. The radiation thermometer according to claim 14, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
1 9 . サ一モパイルを加熱する加熱装置が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 1 5に記載の放射温度計。19. The radiation thermometer according to claim 15, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
2 0 . サ一モパイルを加熱する加熱装置が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 1 6に記載の放射温度計。20. The radiation thermometer according to claim 16, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
2 1 . サーモパイルを加熱する加熱装置が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 1 7に記載の放射温度計。 21. The radiation thermometer according to claim 17, wherein the heating device for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
2 2 . サーモパイルを加熱する加熱装置が温度測定開始以前にサーモパイルを設 定温度まで加熱する加熱装置であることを特徴とする請求項 1 4乃至 2 1に記載 の放射温度計。 22. The radiation thermometer according to claim 14, wherein the heating device for heating the thermopile is a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
2 3 . 測定対象から放射される赤外線をサ一モパイルにより検知して測定対象の 温度を測定する放射温度計において、 サーモパイルを加熱する加熱手段と、 サ一 モパイルの出力の正領域での設定閾値及び負領域での設定閾値に対するサーモパ ィルの出力を検出して測定対象の温度を求める演算手段とを有することを特徴と する放射温度計。  2 3. In a radiation thermometer that measures the temperature of a measurement target by detecting infrared radiation radiated from the measurement target with a thermopile, a heating means for heating the thermopile, and a threshold set in the positive region of the output of the thermopile And a calculating means for detecting the output of the thermopile with respect to a set threshold value in a negative region to obtain the temperature of the object to be measured.
2 4 . 正領域及び負領域での設定閾値の絶対値が等しいものを一対とし、 設定閾 値が異なる対が複数設定されることを特徴とする請求項 2 3に記載の放射温度計。 2 5 . サーモパイルを加熱する加熱手段が単位時間あたりの加熱量をほぼ一定と してサ一モパイルを加熱する加熱装置であることを特徴とする請求項 2 3に記載 の放射温度計。  24. The radiation thermometer according to claim 23, wherein a pair having the same absolute value of the set threshold value in the positive region and the negative region is set as a pair, and a plurality of pairs having different set threshold values are set. 25. The radiation thermometer according to claim 23, wherein the heating means for heating the thermopile is a heating device for heating the thermopile with a heating amount per unit time being substantially constant.
2 6 . サーモパイルを加熱する加熱手段が単位時間あたりの加熱量をほぼ一定と してサーモパイルを加熱する加熱装置であることを特徴とする請求項 2 4に記載 の放射温度計。  26. The radiation thermometer according to claim 24, wherein the heating means for heating the thermopile is a heating device for heating the thermopile with a heating amount per unit time being substantially constant.
2 7 . サ一モパイルを加熱する加熱手段が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 2 3に記載の放射温度計。 27. The radiation thermometer according to claim 23, wherein the heating means for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
2 8 . サ一モパイルを加熱する加熱手段が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 2 4に記載の放射温度計。28. The radiation thermometer according to claim 24, wherein the heating means for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
2 9 . サ一モパイルを加熱する加熱手段が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 2 5に記載の放射温度計。29. The radiation thermometer according to claim 25, wherein the heating means for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
3 0 . サーモパイルを加熱する加熱手段が温度測定中にオープンループ制御にて 制御される加熱装置であることを特徴とする請求項 2 6に記載の放射温度計。30. The radiation thermometer according to claim 26, wherein the heating means for heating the thermopile is a heating device controlled by open loop control during temperature measurement.
3 1 . サ一モパイルを加熱する加熱手段が温度測定開始以前にサ一モパイルを設 定温度まで加熱する加熱装置であることを特徴とする請求項 2 3乃至 3 0に記載 の放射温度計。 31. The radiation thermometer according to claim 23, wherein the heating means for heating the thermopile is a heating device for heating the thermopile to a set temperature before the start of temperature measurement.
PCT/JP1998/002045 1998-05-08 1998-05-08 Radiation thermometer WO1999058940A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU72346/98A AU7234698A (en) 1998-05-08 1998-05-08 Radiation thermometer
PCT/JP1998/002045 WO1999058940A1 (en) 1998-05-08 1998-05-08 Radiation thermometer
JP55273299A JP3175775B2 (en) 1998-05-08 1998-05-08 Temperature measurement method of radiation thermometer and radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/002045 WO1999058940A1 (en) 1998-05-08 1998-05-08 Radiation thermometer

Publications (1)

Publication Number Publication Date
WO1999058940A1 true WO1999058940A1 (en) 1999-11-18

Family

ID=14208169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002045 WO1999058940A1 (en) 1998-05-08 1998-05-08 Radiation thermometer

Country Status (3)

Country Link
JP (1) JP3175775B2 (en)
AU (1) AU7234698A (en)
WO (1) WO1999058940A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273121A (en) * 1990-03-23 1991-12-04 Citizen Watch Co Ltd Radiation thermometer
JPH0528617B2 (en) * 1988-09-15 1993-04-26 Temupu Suteitsuku Corp
JP2588792B2 (en) * 1990-09-21 1997-03-12 山武ハネウエル株式会社 Method and apparatus for calculating thermal sensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528617B2 (en) * 1988-09-15 1993-04-26 Temupu Suteitsuku Corp
JPH03273121A (en) * 1990-03-23 1991-12-04 Citizen Watch Co Ltd Radiation thermometer
JP2588792B2 (en) * 1990-09-21 1997-03-12 山武ハネウエル株式会社 Method and apparatus for calculating thermal sensation

Also Published As

Publication number Publication date
JP3175775B2 (en) 2001-06-11
AU7234698A (en) 1999-11-29

Similar Documents

Publication Publication Date Title
EP0391128B1 (en) Infrared thermometry system and method
US6155712A (en) Radiation clinical thermometer
US6839651B2 (en) Probe tip thermal isolation and fast prediction algorithm
US20090154519A1 (en) Thermometer calibration
WO1999015866A1 (en) Radiation thermometer and method for adjusting the same
JP2006250883A (en) Ear clinical thermometer
JPH0228524A (en) Radiation clinical thermometer
JP3873528B2 (en) Radiation thermometer
JPH05115443A (en) System to perform determination and correction of temperature by biomedical thermometer
JPH0666639A (en) Infrared thermometer
JP4771193B2 (en) Ear thermometer temperature correction device
JP3040444B2 (en) Thermometer
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
WO1999058940A1 (en) Radiation thermometer
JPH03273121A (en) Radiation thermometer
JPH06142063A (en) Radiation clinical thermometer
JP3338456B2 (en) Radiation thermometer and method of measuring temperature of radiation thermometer
JP4621363B2 (en) Infrared thermometer
WO2000004353A1 (en) Radiation thermometer
JPH03251729A (en) Thermometric device
JPH0536056B2 (en)
JP2005334254A (en) Eardrum thermometer
JPH09126896A (en) Method for compensating temperature of thermopile
JP2001218742A (en) Infrared ray clinical thermometer
JP2003106905A (en) Electronic clinical thermometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09674401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA