WO1999053105A1 - Fabrication d'aciers inoxydables et d'aciers a fortes teneurs en elements d'alliage dans un four electrique comprenant deux zones distinctes - Google Patents

Fabrication d'aciers inoxydables et d'aciers a fortes teneurs en elements d'alliage dans un four electrique comprenant deux zones distinctes Download PDF

Info

Publication number
WO1999053105A1
WO1999053105A1 PCT/EP1999/001331 EP9901331W WO9953105A1 WO 1999053105 A1 WO1999053105 A1 WO 1999053105A1 EP 9901331 W EP9901331 W EP 9901331W WO 9953105 A1 WO9953105 A1 WO 9953105A1
Authority
WO
WIPO (PCT)
Prior art keywords
products
zone
melting
metallurgical treatment
treatment zone
Prior art date
Application number
PCT/EP1999/001331
Other languages
English (en)
Inventor
Jean-Luc Roth
Original Assignee
Paul Wurth S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth S.A. filed Critical Paul Wurth S.A.
Priority to AU27274/99A priority Critical patent/AU2727499A/en
Publication of WO1999053105A1 publication Critical patent/WO1999053105A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/567Manufacture of steel by other methods operating in a continuous way
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • F27B1/025Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey with fore-hearth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a process for producing stainless steels or steels with high contents of alloying elements from solid metallic products.
  • the object of the present invention is to provide a process for the production of stainless steels or steels with high contents of alloying elements from solid metal products in an electric furnace having a higher yield.
  • this objective is achieved by a process for the production of stainless steels or steels with high contents of alloying elements from solid metallic products in an electric furnace with two distinct zones, namely a zone a melting zone and a metallurgical treatment zone, which comprises the steps consisting in: a) continuously heating the solid metal products in the melting zone until the solid products melt, b) adding at least part of the products alloys in the melting zone, c) gradually transfer the molten products in the metallurgical treatment zone, d) decarburize the molten products in the metallurgical treatment zone until a final carbon content less than or equal to 1 % and preferably less than or equal to 0.6% by weight, e) pouring the molten metal.
  • the cast metal is then transferred to a converter and / or a vacuum degasser (VOD) and treated according to the traditional method.
  • VOD vacuum degasser
  • One of the advantages of this process is that it makes it possible to obtain a steel with a relatively low carbon content, the treatment times in the converter or the vacuum degasser are also shortened since the amount of carbon to be removed is less.
  • the increased productivity of the furnace affects the entire production line for stainless steels or steels with high contents of alloying elements.
  • the method according to the present invention makes it possible to refine the molten metal to a final content of less than or equal to 1% and preferably less than or equal to 0.6% in C because in the metallurgical treatment zone where decarburization is carried out, the temperatures are permanently at around 1700 ° C. Losses of alloying elements and in particular of chromium are not to be feared under these conditions. As the solid metal products are continuously melted and transferred as soon as they are melted in the metallurgical treatment zone, decarburization can be done in masked time, without lengthening the time between two castings.
  • the equipment ensuring the subsequent treatment can be used in a more rational way and their productivity can be increased accordingly.
  • the heating and melting of the solid products can be carried out using burners, plasma torches or using a combination of these means.
  • an energy supply in the metallurgical treatment zone during the initial phase of the process can be carried out using burners incorporated in the walls of this zone.
  • the content of alloying elements is checked and possibly adjusted before the casting of the molten metal from the metallurgical treatment zone.
  • the oxygen lance used for decarburization must be located at a predetermined distance from the surface of the bath in order to obtain an optimal yield from decarburization. For this reason, it is preferable to stop decarburization, i.e. oxygen insufflation during the pouring of the liquid metal.
  • the transfer of molten products from the melting zone to the metallurgical treatment zone can be interrupted during casting. This can be achieved by a removable barrier which is introduced between the two zones at the time of casting.
  • a certain quantity of molten metal is permanently maintained in the melting zone and in the metallurgical treatment zone. This foot of bath serves to reduce the wear of the refractory lining of the reactor.
  • a pre-refining of the molten products can be carried out in the melting zone by means of moderate oxygen flow rates respectively of a gas containing oxygen.
  • the carbon content of the steel can be reduced up to approximately 1.6%.
  • the thermal efficiency of the furnace can be increased if the gases released in the melting zone and in the metallurgical treatment zone during the refining of the molten products are transferred to the melting zone in order to heat the solid products in this zone. .
  • the solid products are preheated using hot reactor gases which are sucked through the reactor feed hopper.
  • Fig.1 a longitudinal section of an electric furnace for continuously melting solid products
  • Fig.2 a top view of the oven in Fig. 1.
  • Fig. 1 shows a section through a continuous fusion reactor 10 for the production of stainless steels or steels with a high content of alloying elements from solid metal products such as a mixture of scrap from mild steels, of stainless steel and various ferro-alloys.
  • a charge for producing conventional stainless steel with 18% chromium (Cr) and 8% nickel (Ni) consists of about 30% mild steel scrap, about 25% steel scrap stainless, approximately 25% FeCrC (approximate composition Cr 54%, Fe 35%, Si 4%), approximately 20% FeNi (approximate composition Fe 66%, Cr 1%, Ni 30%, Si 1, 5%, C 1, 5%) and about 0.5% in FeSi (approximate composition Fe 25%, Si 75%).
  • the constituents and their proportions can change depending on availability and the steel that is to be obtained.
  • the reactor 10 is produced as an electric furnace, in which the energy necessary for melting is produced by an electric arc and by burners 12 mounted in the lower lateral part of the furnace 10.
  • the electric oven 10 comprises a hearth 14 made of a refractory material, surmounted by a tank 16 and a vault 18. At least one electrode 20 mounted on a mast (not shown) via an arm (not shown) ) is introduced into the oven 10 through an opening 22 made in the roof 18. The arm can slide on the mast so as to raise and lower the electrode 20.
  • the electric oven 10 comprises two separate zones.
  • the first zone called the fusion zone 24, is loaded, preferably continuously, with scrap metal 25 using a vertical hopper 26 arranged above the fusion zone 24.
  • the scrap 25 is melted using the electrodes 20 passing through the roof 18 of the furnace 10.
  • an additional supply of energy is made using the burners 12 in the side wall of the furnace 10.
  • liquid metal accumulates in the bottom 14 of the furnace 10 and when this reaches a certain level, it pours over a weir 27 in the second zone of the oven called metallurgical treatment zone 28.
  • the metallurgical treatment zone 28 can be produced so that it can be removed from the oven 10 and its content transferred to a converter or to a vacuum degasser.
  • the second zone 28 would therefore not only play a role in metallurgy but would also serve as a transport pocket.
  • the roof 18 of the oven 10 includes an opening or airlock 29 through which the alloys are introduced into the oven.
  • These alloys are generally heavy ferro-alloys with slow melting and can constitute from 30 to 50% of the total load of the furnace 10. These products fall directly into the foot of bath containing molten metal and start to melt as of their introduction in the oven 10.
  • the speed of melting of the blocks of alloying elements is no longer a limiting factor of the process. In fact, if the blocks of alloying elements melt more slowly than scrap, it suffices to add a certain excess in the melting zone. As it can be assumed that the melting rate of the blocks of alloying elements is constant, at least when they are submerged in liquid steel, it suffices to add a certain excess in order to obtain a predetermined concentration d alloying elements in the metallurgical treatment zone 28.
  • part of the total quantity of alloying elements required can be loaded into the melting zone 24, the remainder can be added to the metallurgical treatment zone 28 or even in the converter or in the vacuum degasser.
  • the melting speed is no longer a limiting factor of the process.
  • the liquid metal in the melting zone 24 is subjected to pre-refining operations by injection of moderate flow rates of approximately 5 m 3 / t of gas such as oxygen by means of a lance (not shown) in order to adjust the chemical composition of the liquid metal.
  • the carbon content of the steel can be reduced to approximately 1.6%.
  • Lime (CaO) is added mainly to the melting zone intermittently up to approximately 6% of the metal charge in order to form a slag there.
  • Various additives such as fluxes can also be added.
  • the slag contained in the metallurgical treatment zone 28 is held there by a slag barrier (not shown), possibly removable, installed between the two zones at the level of the weir 27. This barrier prevents the passage of slag from the melting zone 24 in the metallurgical treatment zone 28. The excess slag is discharged through the scouring door 38 fitted in the melting zone 24.
  • the liquid metal in the metallurgical treatment zone 28 is subjected to further decarburization by injection of high flow rates (25m 3 / min) of gases such as oxygen by means of a lance 32 to decrease the carbon content of the steel to around 0.6%.
  • a neutral gas argon
  • argon is injected into the liquid steel bath through one or more porous block (s) 40 through the bottom of the metallurgical treatment zone 28 in order to homogenize the bath and to ensure that decarburization takes place in the best conditions. The losses of alloying elements are thus minimized.
  • the liquid metal is poured from the metallurgical treatment zone 28 through a tap hole 30 while retaining a bottom of liquid metal in this zone.
  • This bath foot serves to reduce the wear of the refractory lining and thanks to it the oxygen blowing for decarburization can be resumed immediately after casting.
  • the taphole 30 can be arranged in the side wall of the metallurgical treatment zone 28 as well as in the bottom of this zone.
  • the metallurgical treatment zone 28 operates in discontinuous mode, it should be noted that the melting zone 24 operates continuously. The non-power times caused by the loading and pouring procedures in conventional ovens are therefore eliminated and the reduction in the usable power in the final period known as refining and overheating is no longer necessary.
  • scrap metal 25 is introduced into the furnace by the hopper 26 and it passes through the melting zone 24 and is then drawn off by the treatment zone metallurgical 28.
  • the gas flow passes through the furnace in the opposite direction.
  • the gases are injected or formed in the metallurgical treatment zone 28 and the melting zone 24 to be sucked in by the hopper 26.
  • the present process therefore makes it possible to obtain carbon contents which are much lower than those obtained by conventional methods and this while having comparable performance in terms of chromium and much better results in productivity and energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Procédé de production d'aciers inoxydables ou d'aciers à fortes teneurs en éléments d'alliages à partir de produits métalliques solides dans un four électrique à deux zones distinctes, à savoir une zone de fusion et une zone de traitement métallurgique, qui comprend les étapes suivantes: a) chauffer en continu les produits métalliques solides dans la zone de fusion jusqu'à la fusion des produits solides; b) ajouter du moins une partie des produits d'alliages dans la zone de fusion; c) transférer au fur et à mesure les produits fondus dans la zone de traitement métallurgique; d) décarburer les produits fondus dans la zone de traitement métallurgique jusqu'à une teneur en carbone finale inférieure ou égale 0.6% en poids; e) couler le métal fondu.

Description

FABRICATION D 'ACIERS INOXIDABLES ET D 'AC IERS A FORTES TENEURS EN ELEMENTS D ' ALLIAGE DANS UN FOUR ELECTRIQUE COMPRENANT DEUX ZONES DISTINCTES
Introduction
La présente invention concerne un procédé de production d'aciers inoxydables ou d'aciers à fortes teneurs en éléments d'alliages à partir de produits métalliques solides.
Traditionnellement, les aciers inoxydables sont produits à l'aide d'un four électri- que dans lequel de la ferraille d'aciers doux, de la ferraille d'aciers inoxydables et des éléments d'alliages sont fondus ensemble. Une fois les aciers fondus, le four est mis en arrêt et les aciers sont coulées et décarburés dans des dégazeurs sous vide et/ou dans des convertisseurs. Une telle filière est décrite dans la revue "Steel Times International" de novembre 1991 pp. 12-16. La productivité de cette filière est limitée pour plusieurs raisons:
- les éléments d'alliages ajoutés ont des points de fusion élevés et mettent par conséquent beaucoup plus de temps à fondre que les ferrailles, ce qui allonge considérablement le temps entre deux coulées,
- la puissance électrique doit être interrompue à chaque couiée, - les aciers coulés contiennent encore un taux de carbone très élevé se situant entre 1 ,5 % et 2%, ainsi les traitements ultérieurs pour décarburer sont difficiles et nécessitent beaucoup de temps.
Objet de l'invention
L'objet de la présente invention est de proposer un procédé de production d'aciers inoxydables ou d'aciers à fortes teneurs en éléments d'alliages à partir de produits métalliques solides dans un four électrique présentant un rendement plus élevé. Description générale de l'invention
Conformément à l'invention, cet objectif est atteint par un procédé de production d'aciers inoxydables ou d'aciers à fortes teneurs en éléments d'alliages à partir de produits métalliques solides dans un four électrique à deux zones distinctes, à savoir une zone de fusion et une zone de traitement métallurgique, qui comprend les étapes consistant à: a) chauffer en continu les produits métalliques solides dans la zone de fusion jusqu'à la fusion des produits solides, b) ajouter du moins une partie des produits d'alliages dans la zone de fusion, c) transférer au fur et à mesure les produits fondus dans la zone de traitement métallurgique, d) décarburer les produits fondus dans la zone de traitement métallurgique jusqu'à une teneur en carbone finale inférieure ou égale à 1% et de préférence inférieure ou égale 0.6 % en poids, e) couler le métal fondu. Le métal coulé est ensuite transféré dans un convertisseur et/ou dans un dégazeur sous vide (VOD) et traité selon la méthode traditionnelle.
Ce procédé permet d'augmenter la productivité d'une ligne de production d'aciers inoxydables ou d'aciers à hautes teneurs en alliages. En effet, dans les procédés classiques, le métal coulé contient encore environ 1 ,5 % à 2% en poids de carbone, car il n'est possible de décarburer le métal sans avoir de pertes importantes au niveau des éléments d'alliages tels que le chrome que lorsque les températures dépassent 1600°C. Or, le chrome étant un élément d'alliage coûteux, on évite de décarburer le métal dans le four électrique. Si on attendait que le métal liquide ait atteint une température adéquate pour la décarburation, le temps entre deux coulées serait allongé considérablement et le rendement du four électrique diminuerait.
Un des avantages de ce procédé est qu'il permet d'obtenir un acier à teneur en carbone relativement faible, les temps de traitement dans le convertisseur ou le dégazeur sous vide sont également raccourcis vu que la quantité de carbone à enlever est moindre. Le gain de productivité du four se répercute sur toute la ligne de production d'aciers inoxydables ou d'aciers à teneurs élevées en éléments d'alliages. Le procédé selon la présente invention permet d'affiner le métal fondu jusqu'à une teneur finale inférieure ou égale à 1 % et de préférence inférieure ou égale 0.6 % en C car dans la zone de traitement métallurgique où la décarburation est réalisée, les températures se situent en permanence à environ 1700°C. Des pertes d'éléments d'alliages et notamment de chrome ne sont pas à craindre dans ces conditions. Comme les produits métalliques solides sont fondus en continu et transférés dès leur fusion dans la zone de traitement métallurgique, la décarburation peut se faire en temps masqué, sans rallonger le temps entre deux coulées.
Comme les teneurs en carbone sont plus faibles au départ, les équipements assurant le traitement subséquent peuvent être utilisés d'une manière plus rationnelle et leur productivité peut être augmentée en conséquence.
De plus, comme de la ferraille est toujours présente autour des arcs électriques, la fusion de la ferraille est effectuée avec une meilleure efficacité thermique.
De par la fusion en continu, une certaine quantité de métal liquide est toujours conservée dans la zone de fusion et l'incorporation de la charge d'éléments d'alliages est fortement accélérée dans la mesure où celle-ci est chargée directement dans un bain de métal liquide. Les temps entre deux coulées successives peuvent être réduites à entre 40 et 50 minutes tandis que pour les procédés classiques les temps entre deux coulées sont de l'ordre de 80 minutes.
En plus de l'arc électrique, le chauffage et la fusion des produits solides peut être réalisé à l'aide de brûleurs, de torches à plasma ou à l'aide d'une combinaison de ces moyens.
Avantageusement, un apport d'énergie dans la zone de traitement métallurgique durant la phase initiale du procédé peut être réalisé à l'aide de brûleurs incorporés dans les parois de cette zone. Selon un mode de réalisation avantageux, la teneur en éléments d'alliage est contrôlée et éventuellement ajustée avant la coulée du métal fondu de la zone de traitement métallurgique.
La lance à oxygène utilisée pour la décarburation doit se situer à une distance prédéterminée de la surface du bain afin d'obtenir un rendement optimal de la décarburation. Pour cette raison, il est préférable d'arrêter la décarburation c.-à-d. l'insufflation d'oxygène lors de la coulée du métal liquide.
Afin d'éviter que la charge décarburée ne soit contaminée par du métal fondu à teneur en carbone plus élevée, le transfert de produits fondus de la zone de fusion vers la zone de traitement métallurgique peut être interrompu pendant la coulée. Ceci peut être réalisé par un barrage amovible qui est introduit entre les deux zones au moment de la coulée.
Une certaine quantité de métal fondu est maintenue en permanence dans la zone de fusion et dans la zone de traitement métallurgique. Ce pied de bain sert à réduire l'usure du revêtement réfractaire du réacteur.
Si nécessaire, un pré-affinage des produits fondus peut être réalisé dans la zone de fusion au moyen de débits modérés d'oxygène respectivement d'un gaz contenant de l'oxygène. Lors de telles opérations de pré-affinage, la teneur en carbone de l'acier peut être réduite jusqu'à environ 1 ,6 %. Le rendement thermique du four peut être augmenté si les gaz libérés dans la zone de fusion et dans la zone de traitement métallurgique lors de l'affinage des produits fondus sont transférés dans la zone de fusion afin de réchauffer les produits solides se trouvant dans cette zone.
Avant leur chargement, les produits solides sont préchauffés à l'aide de gaz chauds du réacteur qui sont aspirés à travers la trémie d'alimentation du réacteur.
Description à l'aide des figures
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, en référence aux dessins annexés. Celles ci montrent: Fig.1 : une coupe longitudinale d'un four électrique de fusion en continu de produits solides, Fig.2: une vue de dessus du four de la Fig. 1.
Sur les figures, les mêmes références désignent des éléments identiques ou similaires.
La Fig. 1 montre une coupe d'un réacteur de fusion 10 en continu pour la production d'aciers inoxydables ou d'aciers à forte teneur en éléments d'alliages à partir de produits métalliques solides tels qu'un mélange de ferraille d'aciers doux, de ferrailles inoxydables et de différents ferro-alliages. Typiquement une charge pour produire un acier inoxydable classique à 18% en chrome (Cr) et à 8 % en nickel (Ni) se compose d'environ 30 % de ferraille d'aciers doux, d'environ 25% de ferraille d'aciers inoxydables, d'environ 25% de FeCrC (composition approximative Cr 54%, Fe 35%, Si 4%), d'environ 20 % de FeNi (composition approximative Fe 66%, Cr 1 %, Ni 30%, Si 1 ,5%, C 1 ,5%) et d'environ 0.5% en FeSi (composition approximative Fe 25%, Si 75%). Bien entendu, les constituants et leur proportions peuvent changer en fonction des disponibilités et de l'acier que l'on veut obtenir.
Le réacteur 10 est réalisé en tant que four électrique, dans lequel l'énergie nécessaire à la fusion est produite par un arc électrique et par des brûleurs 12 montés dans la partie latérale inférieure du four 10.
Le four électrique 10 comprend une sole 14 en un matériau réfractaire, surmontée d'une cuve 16 et d'une voûte 18. Au moins une électrode 20 montée sur un mât (non représenté) par l'intermédiaire d'un bras (non représenté) est introduite dans le four 10 à travers une ouverture 22 pratiquée dans la voûte 18. Le bras peut coulisser sur le mât de façon à faire monter et descendre l'électrode 20.
Le four électrique 10 comprend deux zone distinctes. La première zone, appelée zone de fusion 24, est chargée, de préférence en continu, par de la ferraille 25 à l'aide d'une trémie 26 verticale aménagée au-dessus de la zone de fusion 24. Dans cette zone de fusion 24, la ferraille 25 est fondue à l'aide des électrodes 20 traversant la voûte 18 du four 10. Pour augmenter la vitesse de fusion de la ferraille 25, un apport supplémentaire d'énergie est réalisé à l'aide des brûleurs 12 dans la paroi latérale du four 10.
Au fur et à mesure que la ferraille 25 fond, du métal liquide s'accumule dans la sole 14 du four 10 et lorsque celui-ci atteint un certain niveau, il se déverse au- dessus d'un déversoir 27 dans la deuxième zone du four appelée zone de traitement métallurgique 28.
La zone de traitement métallurgique 28 peut être réalisée de sorte que l'on puisse l'enlever du four 10 et transférer son contenu dans un convertisseur ou dans un dégazeur sous vide. La deuxième zone 28 ne jouerait dès lors pas seulement un rôle dans la métallurgie mais servirait également de poche de transport.
La voûte 18 du four 10 comprend une ouverture ou sas 29 par laquelle les alliages sont introduits dans le four. Ces alliages sont en général des ferro-alliages lourds à fusion lente et peuvent constituer de 30 et 50% de la charge totale du four 10. Ces produits tombent directement dans le pied de bain contenant du métal fondu et commencent à fondre dès leur introduction dans le four 10.
Comme la zone de fusion 24 fonctionne de manière continue, la vitesse de fusion des blocs d'éléments d'alliages n'est plus un facteur limitant du procédé. En effet, si les blocs d'éléments d'alliages fondent plus lentement que la ferraille, il suffit d'en rajouter un certain excès dans la zone de fusion. Comme on peut admettre que la vitesse de fusion des blocs d'éléments d'alliages est constante, du moins lorsqu'ils sont submergés dans l'acier liquide, il suffit d'en ajouter un certain excès afin d'obtenir une concentration prédéterminée d'éléments d'alliages dans la zone de traitement métallurgique 28.
Alternativement, on peut charger une partie de la quantité totale d'éléments d'alliages nécessaires dans la zone de fusion 24, le restant peut être ajouté dans la zone de traitement métallurgique 28 ou même dans le convertisseur ou dans le dégazeur sous vide.
Comme la zone de fusion fonctionne de manière continue, la vitesse de fusion n'est plus un facteur limitant du procédé. Dans la première phase du procédé, le métal liquide dans la zone de fusion 24 est soumis à des opérations de pré-affinage par injection de débits modérés d'environ 5 m3/t de gaz tels que de l'oxygène au moyen d'une lance (non représentée) afin d'ajuster la composition chimique du métal liquide. Lors de cette opération de pré- affinage, la teneur en carbone de l'acier peut être réduite jusqu'à environ 1 ,6 %.
Les gaz chauds libérés lors du pré-affinage des produits fondus sont aspirés par la trémie 26 alimentant le four 10 en ferraille 25. Une grande partie de l'énergie contenue dans ces gaz peut servir à chauffer la ferraille 25 dans la zone de fusion 24 ainsi que les produits solides contenus dans la trémie 26 de préchauffage. On se rapproche ici d'un echangeur thermique à contre-courant qui a une efficacité thermique optimale.
On ajoute de la chaux (CaO) principalement dans la zone de fusion de manière intermittente jusqu'à concurrence d'environ 6% de la charge métallique afin d'y former un laitier. Différents additifs comme p.ex. des fondants peuvent également y être ajoutés.
Le laitier contenu dans la zone de traitement métallurgique 28 y est maintenu par un barrage à laitier (non représenté), éventuellement amovible, installé entre les deux zones au niveau du déversoir 27. Ce barrage empêche le passage de laitier de la zone de fusion 24 dans la zone de traitement métallurgique 28. L'excédent de laitier est évacué par la porte de décrassage 38 aménagée dans la zone de fusion 24.
Dans la deuxième phase du procédé, le métal liquide dans la zone de traitement métallurgique 28 est soumis à une décarburation plus poussée par injection de débits élevés (25m3/min) de gaz tels que de l'oxygène au moyen d'une lance 32 afin diminuer la teneur en carbone de l'acier jusqu'à environ 0,6 %.
Pour garantir une bonne homogénéisation du bain de métal liquide, on injecte dans le bain d'acier liquide un gaz neutre (de l'argon) à travers un ou plusieurs bloc(s) poreux 40 par le fond de la zone de traitement métallurgique 28 afin d'homogénéiser la bain et de faire en sorte que la décarburation s'opère dans les meilleures conditions. Les pertes d'éléments d'alliages sont ainsi minimisées. 8
Pendant cette phase de décarburation, on peut réduire ou même fermer complètement l'arrivée de métal liquide en provenance de la zone de fusion 24 dans le but de limiter la quantité de métal non affinée dans la zone de traitement métallurgique 28 pendant la décarburation. Après la décarburation, le métal liquide est analysé en ce qui concerne sa température et sa teneur en éléments d'alliages et on peut, le cas échéant, ajuster les teneurs de ces éléments par ajouts de ferro-alliages à granulométrie fine dans la zone de traitement métallurgique 28.
Le métal liquide est coulé depuis la zone de traitement métallurgique 28 par un trou de coulée 30 tout en conservant un fond de métal liquide dans cette zone. Ce pied de bain sert à réduire l'usure du revêtement réfractaire et grâce à lui le soufflage d'oxygène pour la décarburation peut être repris immédiatement après la coulée.
Il est à noter que le trou de coulée 30 peut aussi bien être aménagé dans la paroi latérale de la zone de traitement métallurgique 28 que dans le fond de cette zone.
Bien que dans le réacteur décrit ci-dessus la zone de traitement métallurgique 28 fonctionne en mode discontinu, il est à noter que la zone de fusion 24 fonctionne de manière continue. Les temps hors puissance occasionnés par les procédures de chargement et de coulée dans les fours classiques sont donc supprimés et la baisse de la puissance utilisable dans la période finale dite d'affinage et de surchauffe n'est plus nécessaire.
Les flux de matières et les flux d'énergie du four peuvent se résumer de la manière suivante: de la ferraille 25 est introduite dans le four par la trémie 26 et elle traverse la zone de fusion 24 pour être ensuite soutirée par la zone de traitement métallurgique 28.
Le flux de gaz traverse le four en sens inverse. En effet, les gaz sont injectés ou formés dans la zone de traitement métallurgique 28 et la zone de fusion 24 pour être aspirés par la trémie 26.
Le présent procédé permet donc .d'obtenir des teneurs en carbone beaucoup plus basses que celles obtenues par les procédés classiques et ce tout en ayant des performances comparables pour ce qui est du chrome et des résultats bien meilleurs en productivité et en consommation énergétique.

Claims

10Revendications
1. Procédé de production d'aciers inoxydables ou d'aciers à fortes teneurs en éléments d'alliages à partir de produits métalliques solides dans un four électrique à deux zones distinctes, à savoir une zone de fusion et une zone de traitement métallurgique, qui comprend les étapes consistant à: a) chauffer en continu les produits métalliques solides dans la zone de fusion jusqu'à la fusion des produits solides, b) ajouter du moins une partie des produits d'alliages dans la zone de fusion, c) transférer au fur et à mesure les produits fondus dans la zone de traitement métallurgique, d) décarburer les produits fondus dans la zone de traitement métallurgique jusqu'à une teneur en carbone finale inférieure ou égale à 1 % et de préférence inférieure ou égale 0.6 % en poids, e) couler le métal fondu.
2. Procédé selon la revendication 1 , caractérisé en ce que le chauffage et la fusion des produits solides est réalisé accessoirement à l'aide de brûleurs et/ou de torches à plasma.
3. Procédé selon la revendication 1 ou 2, caractérisé par un apport d'énergie dans la zone de traitement métallurgique durant la phase initiale du pro- cédé.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le restant des éléments d'alliage est ajouté dans la zone de traitement métallurgique.
5. Procédé selon l'une quelconque des revendications précédentes, caracté- risé en ce que la teneur en éléments d'alliage est contrôlée et éventuellement ajustée avant la coulée du métal fondu de la zone de traitement métallurgique. 1 1
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la décarburation est arrêtée lors de la coulée du métal liquide.
7. Procédé selon la revendication 6, caractérisé en ce que l'on forme un laitier dans la zone de fusion et en ce que le laitier y est maintenu.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le transfert de produits fondus de la zone de fusion vers la zone de traitement métallurgique est interrompu pendant la coulée.
9. Procédé selon l'une des revendications précédentes, caractérisé par un pré-affinage des produits fondus dans la zone de fusion.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que les gaz libérés dans la zone de traitement métallurgique lors de l'affinage des produits fondus sont transférés dans la zone de fusion afin de réchauffer les produits solides se trouvant dans cette zone.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone de fusion est chargée en continu de produits solides.
12. Procédé selon l'une des revendications précédentes, caractérisé par un enfournement de fonte liquide dans le réacteur.
PCT/EP1999/001331 1998-04-08 1999-03-01 Fabrication d'aciers inoxydables et d'aciers a fortes teneurs en elements d'alliage dans un four electrique comprenant deux zones distinctes WO1999053105A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU27274/99A AU2727499A (en) 1998-04-08 1999-03-01 Method for making stainless steel and steel with high alloy addition content in an electric furnace comprising two separate zones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU90232A LU90232B1 (fr) 1998-04-08 1998-04-08 Procédé de fabrication d'aciers inoxydables et d'aciers à fortes teneurs en elements d'alliage
LU90232 1998-04-08

Publications (1)

Publication Number Publication Date
WO1999053105A1 true WO1999053105A1 (fr) 1999-10-21

Family

ID=19731746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001331 WO1999053105A1 (fr) 1998-04-08 1999-03-01 Fabrication d'aciers inoxydables et d'aciers a fortes teneurs en elements d'alliage dans un four electrique comprenant deux zones distinctes

Country Status (3)

Country Link
AU (1) AU2727499A (fr)
LU (1) LU90232B1 (fr)
WO (1) WO1999053105A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1508296A1 (de) * 1966-10-27 1969-05-29 Ver Deutsche Metallwerke Ag Verfahren zum Einschmelzen von Stahlabfaellen,die Basisgehalte an Cr,CrNi und CrNiMo aufweisen
DE2155589A1 (de) * 1970-11-09 1972-05-10 Armco Steel Corp Verfahren zur Herstellung einer geschmolzenen Eisenlegierung
EP0240485A1 (fr) * 1986-03-17 1987-10-07 VOEST-ALPINE Industrieanlagenbau GmbH Installation pour la fabrication d'acier de ferraille
EP0721990A1 (fr) * 1995-01-16 1996-07-17 KCT Technologie GmbH Procédé pour la production d'aciers alliés
DE19621143A1 (de) * 1996-01-31 1997-08-07 Mannesmann Ag Verfahren zur Erzeugung nichtrostender Stähle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1508296A1 (de) * 1966-10-27 1969-05-29 Ver Deutsche Metallwerke Ag Verfahren zum Einschmelzen von Stahlabfaellen,die Basisgehalte an Cr,CrNi und CrNiMo aufweisen
DE2155589A1 (de) * 1970-11-09 1972-05-10 Armco Steel Corp Verfahren zur Herstellung einer geschmolzenen Eisenlegierung
EP0240485A1 (fr) * 1986-03-17 1987-10-07 VOEST-ALPINE Industrieanlagenbau GmbH Installation pour la fabrication d'acier de ferraille
EP0721990A1 (fr) * 1995-01-16 1996-07-17 KCT Technologie GmbH Procédé pour la production d'aciers alliés
DE19621143A1 (de) * 1996-01-31 1997-08-07 Mannesmann Ag Verfahren zur Erzeugung nichtrostender Stähle

Also Published As

Publication number Publication date
LU90232B1 (fr) 1999-10-11
AU2727499A (en) 1999-11-01

Similar Documents

Publication Publication Date Title
RU2405046C1 (ru) Способ выплавки, раскисления, легирования и обработки стали
BE1006838A3 (fr) Convertisseur et procede pour la purification de matieres non ferreuses.
RU2539890C1 (ru) Способ выплавки стали в электродуговой печи и электродуговая печь
EP1029089B1 (fr) Procede pour la fusion en continu de produits metalliques solides
WO1999053105A1 (fr) Fabrication d'aciers inoxydables et d'aciers a fortes teneurs en elements d'alliage dans un four electrique comprenant deux zones distinctes
EP0909334B1 (fr) Procede de fabrication d'acier dans un four electrique avec enfournement de fonte liquide
RU2266337C1 (ru) Способ выплавки стали в дуговой сталеплавильной печи
FR2537261A1 (fr) Procede et dispositif pour l'utilisation d'un four a arc a courant continu
RU2312901C1 (ru) Способ выплавки рельсовой стали
RU2437941C1 (ru) Способ выплавки стали в дуговой сталеплавильной печи с повышенным расходом жидкого чугуна
RU2260625C1 (ru) Способ выплавки стали в мартеновской печи
RU2384627C1 (ru) Способ выплавки стали в дуговой электросталеплавильной печи
RU2266965C1 (ru) Способ выплавки стали в мартеновской печи
BE1010710A3 (fr) Procede de production d'acier a partir d'eponges de fer.
RU2319751C2 (ru) Способ раскисления и легирования металлических расплавов
SU1361181A1 (ru) Способ производства стали
RU2142516C1 (ru) Способ выплавки чугуна в дуговой электропечи
SU939575A1 (ru) Способ получени комплексного сплава "марганец-алюминий
RU2346990C2 (ru) Способ выплавки стали в кислородном конвертере с верхней продувкой
BE546861A (fr)
US1110208A (en) Process of electrically treating, melting, and refining metals.
BE468316A (fr)
RU2304621C2 (ru) Способ производства стали в дуговых печах
RU2328534C1 (ru) Способ выплавки рельсовой стали
BE667147A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA