WO1999048718A1 - Fuel reservoir - Google Patents

Fuel reservoir Download PDF

Info

Publication number
WO1999048718A1
WO1999048718A1 PCT/JP1998/003885 JP9803885W WO9948718A1 WO 1999048718 A1 WO1999048718 A1 WO 1999048718A1 JP 9803885 W JP9803885 W JP 9803885W WO 9948718 A1 WO9948718 A1 WO 9948718A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
chamber
level
pressure
storage device
Prior art date
Application number
PCT/JP1998/003885
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Hyodo
Takaaki Itoh
Tooru Kidokoro
Takashi Ishikawa
Masahide Kobayashi
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP07955498A external-priority patent/JP3438575B2/en
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CA002301030A priority Critical patent/CA2301030C/en
Priority to BR9811369-0A priority patent/BR9811369A/en
Priority to AU88882/98A priority patent/AU737184B2/en
Publication of WO1999048718A1 publication Critical patent/WO1999048718A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03519Valve arrangements in the vent line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/077Fuel tanks with means modifying or controlling distribution or motion of fuel, e.g. to prevent noise, surge, splash or fuel starvation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03236Fuel tanks characterised by special filters, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03453Arrangements or special measures related to fuel tanks or fuel handling for fixing or mounting parts of the fuel tank together
    • B60K2015/03467Arrangements or special measures related to fuel tanks or fuel handling for fixing or mounting parts of the fuel tank together by clip or snap fit fittings

Definitions

  • the present invention relates to a fuel storage device, and more particularly to a fuel tank connected to an internal combustion engine.
  • the fuel reservoir or fuel tank should communicate with the outside air so that the fuel level can move up and down within the fuel tank.
  • evaporated fuel is generated in the space formed above the fuel level. For this reason, there is a problem that fuel vapor is released from the fuel tank to the outside air.
  • the fuel tank communicates with the outside air through a charcoal canister for temporarily absorbing the evaporated fuel. If the amount of fuel vapor generated in the fuel tank is large, the charcoal canister must also be large.
  • Japanese Patent Laid-Open Publication No. Sho 64-1646 / 26 has an inflatable airbag, which expands or contracts in accordance with a change in the fuel level. Also disclosed is a fuel tank in which a space is not formed above the fuel level in the fuel tank.
  • the inside of the fuel tank does not communicate with the outside air. For this reason, if a space has already been formed above the fuel level, that space will not be excluded when the airbag expands. For this reason, the evaporated fuel may be generated in the space above the fuel level.
  • a fuel storage device for storing fuel, comprising: a wall for dividing an internal space of the fuel storage device into a fuel chamber and an air chamber; A discharge passage that opens into a space formed above the fuel level in the fuel chamber, a shutoff valve that normally shuts off the discharge passage, and the shutoff valve is open.
  • Gas discharge means for discharging gas from the space through the discharge passage, and the shutoff so as to discharge the gas from the space when the amount of the gas is larger than a predetermined amount.
  • Control means for controlling the gas release means and the shut-off valve so as to open the valve and operate the gas release means, wherein the control means makes the amount of the gas smaller than the predetermined amount. Stop the release of the gas when low Fuel accumulating device to stop the operation of the closing and and the gas discharge means is provided his urchin the shut-off valve.
  • a fuel liquid level detecting means for detecting the height of the fuel liquid level in the fuel chamber, and the control means is provided with the fuel detected by the fuel liquid level detecting means.
  • the control means is provided with the fuel detected by the fuel liquid level detecting means.
  • a fuel liquid level height increasing means for increasing the height of the fuel liquid level, and the gas discharging means is provided when the amount of the gas is larger than the predetermined amount.
  • the fuel level raising means is controlled to raise the level of the fuel level so as to release the gas from the space.
  • the fuel level raising means supplies the fuel to the fuel chamber in order to raise the level of the fuel level.
  • the means for increasing the fuel level increases the height of the fuel level. Deform the wall to raise its height.
  • the fuel level raising means increases the pressure in the air chamber to deform the wall.
  • the fuel level raising means increases the pressure in the air chamber to a pressure lower than the pressure of the fuel supplied to the fuel chamber.
  • the fuel level raising means reduces the pressure in the air chamber when the supply of fuel to the fuel chamber is stopped.
  • the fuel level raising means introduces a negative pressure into the space to deform the wall.
  • the fuel liquid level raising means includes a fuel pump for discharging fuel and generating a negative pressure by the discharged fuel, and the fuel pump is provided in the space through the discharge passage. , The negative pressure is introduced.
  • the fuel level raising means returns a part of the fuel discharged by the fuel pump into the fuel chamber to generate a negative pressure.
  • the fuel pump is housed in a pump chamber connected to the fuel chamber, and the fuel level raising means is configured to generate a negative pressure of the fuel discharged by the fuel pump to generate a negative pressure.
  • a part is returned to the pump chamber, and a negative pressure is introduced into a space formed above the fuel level in the pump chamber.
  • the discharge passage is connected to an intake system of an internal combustion engine, and the fuel level raising means reduces the negative pressure in the intake system to the fuel liquid through the discharge passage. It is introduced into the space formed above the surface.
  • the discharge passage is connected to the intake system via a canister for adsorbing the evaporated fuel, and the canister has a predetermined negative pressure inside the canister. Open to atmosphere when A valve is provided to open the canister and communicate with the atmosphere.
  • the fuel level raising means increases the level of the fuel level when the state of the internal combustion engine is a state capable of receiving the evaporated fuel.
  • FIG. 1 is a sectional view of a fuel storage device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the fuel storage device along the line II-II of FIG. 1.
  • FIG. 3 is a cross-sectional view of the fuel storage device immediately after the supply of fuel to the fuel chamber is stopped.
  • Fig. 4 is a sectional view of the fuel storage device when the fuel in the fuel chamber is reduced.
  • FIG. 5 is a sectional view of a fuel storage device according to a second embodiment of the present invention.
  • FIG. 6 is a flowchart of the evaporative fuel removal processing according to the second embodiment of the present invention.
  • FIG. 7 is a sectional view of a fuel storage device according to a third embodiment of the present invention.
  • FIG. 8 is a flowchart of the evaporative fuel removal processing according to the third embodiment of the present invention.
  • FIG. 9 is a sectional view of a fuel storage device according to a fourth embodiment of the present invention.
  • FIG. 10 is a flow chart of the evaporative fuel removal processing according to the fourth embodiment of the present invention.
  • FIG. 11 is a sectional view of a fuel storage device according to a fifth embodiment of the present invention.
  • FIG. 12 is a flowchart of the evaporative fuel removal processing according to the fifth embodiment of the present invention.
  • FIG. 13 is a sectional view of a fuel storage device according to a sixth embodiment of the present invention.
  • FIG. 14 is a sectional view of a fuel storage device according to a seventh embodiment of the present invention.
  • FIG. 15 is a flowchart of the evaporative fuel removal processing according to the seventh embodiment of the present invention.
  • FIG. 16 is a sectional view of a fuel storage device according to an eighth embodiment of the present invention.
  • FIG. 17 is a flowchart of the evaporative fuel removal processing according to the eighth embodiment of the present invention.
  • FIG. 18 is a sectional view of a fuel storage device according to a ninth embodiment of the present invention.
  • FIG. 19 is a flowchart of the evaporative fuel removal processing according to the ninth embodiment of the present invention.
  • FIG. 20 is a sectional view of a fuel storage device according to a tenth embodiment of the present invention.
  • FIG. 21 is a flowchart of the evaporative fuel removal processing according to the tenth embodiment of the present invention.
  • FIG. 22 is a flowchart of the evaporative fuel removal processing according to the tenth embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of the fuel storage device of the eleventh embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of the fuel storage device of the twelfth embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of the fuel storage device of the thirteenth embodiment.
  • FIG. 26 is a part of a flowchart of the evaporative fuel removal processing of the thirteenth embodiment of the present invention.
  • FIG. 27 is a part of a flowchart of the evaporative fuel removal processing according to the thirteenth embodiment of the present invention.
  • FIG. 28 is a partial sectional view of a fuel storage device according to a fourteenth embodiment of the present invention.
  • FIG. 29 is a perspective view of a fuel storage device according to a fourteenth embodiment of the present invention.
  • FIG. 30 is a perspective view of a fuel container in a state of being enlarged.
  • FIG. 31 is a perspective view of the fuel container in a smaller state.
  • FIG. 32 is a partial sectional view of a fuel pump device according to a fourteenth embodiment of the present invention.
  • FIG. 33 is a partial cross-sectional view of the fuel pump device taken along the line XXXIII-XXXIII of FIG.
  • FIG. 34 is a partial sectional view of another fuel pump device different from the fourteenth embodiment of the present invention.
  • FIG. 35 is a partial sectional view of the fuel pump device according to the fifteenth embodiment of the present invention.
  • FIG. 36 is a partial cross-sectional view of the fuel pump device taken along the line XXVI-XXVI in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fuel storage device is mounted on a vehicle, for example, for storing fuel to be supplied to an internal combustion engine.
  • a fuel storage device can also be used simply to store fuel over a period of time.
  • the fuel tank 1 of the fuel storage device has an upper part 2 and a lower part 3 made of a material such as metal or synthetic resin.
  • the upper part 2 and the lower part 3 are hermetically connected to each other at their peripheral flange parts 2a and 3a.
  • a separating wall or separation membrane 5 is arranged in the interior space 4 defined by the upper part 2 and the lower part 3.
  • the separating wall 5 divides the internal space 4 into an air chamber 6 above the separating wall 5 and a fuel chamber 7 below the separating wall 5.
  • Separation wall 5 is made of a flexible and vapor-impermeable material such as polyethylene or nylon.
  • the separating wall 5 is attached to the fixed part 8 at its peripheral part 5a. That is, the separation wall 5 is airtightly attached to the inner wall surface of the fuel tank 1.
  • the peripheral part 5 a of the separating wall 5 is sandwiched between the peripheral flanges 2 a and 3 a of the upper part 2 and the lower part 3.
  • the separating wall 5 is provided with an annular fold portion 5b which is arranged substantially concentrically and is equally spaced from each other. Therefore, the separation wall 5 has a corrugated portion defined by the annular fold portion 5b.
  • the separation wall 5 can be bent at the fold 5b. Therefore, the central portion 5 c of the separation wall 5 can move up and down in the fuel tank 1. That is, the separation wall 5 is deformed at the fold 5b so that the center 5c can move up and down.
  • An oil supply pipe 13 is connected to the lower part 3 in an airtight manner, and the oil supply pipe 13 opens to the internal space of the fuel chamber 7.
  • a lid 14 for closing the oil supply pipe 13 is detachably attached to the upper opening 13 a of the oil supply pipe 13.
  • the sealing member 15 that comes into contact with the outer peripheral surface of the lid 14 when the lid 14 is attached to the upper opening 13a, and the fuel chamber 7 A seal member 16 that comes into contact with the outer peripheral surface of the lubricating nozzle when the lubricating nozzle is inserted into the lubricating pipe 13 to fill with oil, and the lubricating pipe 13 is normally shut off by spring bias.
  • Fuel vapor shutoff valve 17 is provided.
  • a check valve 10 is provided in the lower opening 13 b of the oil supply pipe 13.
  • the check valve 10 is opened by the pressure of the fuel supplied from the fuel nozzle and is closed by the pressure of the fuel in the fuel chamber 7.
  • a fuel pump chamber 18 is connected to the fuel chamber 7.
  • the fuel pump chamber 18 is defined by the lower part 3 and projects outwardly from the peripheral flange part 2 a of the upper part 2.
  • a fuel pump 19, a pressure regulator 20, and a fuel filter 21 are arranged in the fuel pump chamber 18.
  • the pressure of the fuel discharged by the fuel pump 19 is adjusted by a pressure regulator 20, and thereafter, the fuel is supplied to a fuel injection valve (not shown) via a fuel supply pipe 22.
  • fuel is supplied from a fuel distribution pipe for distributing fuel from the fuel supply pipe 22 to each fuel injection valve. There is no need to provide a fuel return path back to Tank 1.
  • the fuel that is heated near the cylinder head of the internal combustion engine and contains the evaporated fuel is not returned to the fuel chamber 7. Therefore, the generation of fuel vapor in the fuel chamber 7 is prevented. Further, since the fuel pump 19 is disposed in the fuel tank 1, the noise generated from the fuel pump 19 is prevented from being transmitted from the fuel tank 1 to the outside of the fuel tank 1.
  • the fuel chamber 7 is connected to a fuel supply pipe 13 via a circulation pipe 23.
  • the circulation pipe 23 releases air from the fuel chamber 7 to the fuel pipe 13 when fuel is supplied into the fuel chamber 7 through the fuel pipe 13. Therefore, the supply of fuel into the fuel chamber 7 is facilitated.
  • the first shut-off valve is installed in the opening of the circulation pipe 23 opening into the internal space of the fuel chamber 7.
  • the first shutoff valve 30 is attached.
  • the first shutoff valve 30 is closed by the fuel that has reached the first shutoff valve 30. Therefore, when the first shutoff valve 30 is closed, the pressure in the oil supply pipe 13 adjacent to the opening of the circulation pipe 23 opening into the internal space of the oil supply pipe 13 decreases.
  • the upper space 18a in the fuel pump chamber 18 communicates with the internal space of the fuel supply pipe 13 via the fuel vapor discharge pipe 24.
  • the fuel vapor discharge pipe 24 is connected to an upper wall portion defining a fuel pump chamber 18. Evaporated fuel discharge pipe 24 releases air from the fuel chamber 7 to the lined oil pipe 13 when the fuel is supplied into the fuel chamber 7 through the lined oil pipe 13. Therefore, it becomes easier to supply the fuel to the fuel chamber 7.
  • a second shutoff valve 31 is attached to the opening of the fuel vapor discharge pipe 24 opening into the internal space of the fuel pump chamber 18.
  • the second shut-off valve 31 is closed by the fuel that has reached the second shut-off valve 31. Therefore, when the second shutoff valve 31 is closed, the pressure in the fuel supply pipe 13 adjacent to the opening of the fuel vapor discharge pipe 24 opening into the internal space of the fuel supply pipe 13 decreases.
  • the opening of the evaporative fuel discharge pipe 24 opening to the internal space of the fuel supply pipe 13 is located above the opening of the circulation pipe 23 opening to the internal space of the fuel supply pipe 13.
  • the fuel supply pipe 13 is connected to a charcoal canister 26 via a first evaporated fuel purge pipe 25.
  • the opening of the first vaporized fuel purge pipe 25 opening in the internal space of the fuel supply pipe 13 is located at the same height as the opening of the evaporated fuel discharge pipe 24 opening in the internal space of the fuel supply pipe 13.
  • the charcoal varnish 26 is provided with activated carbon 26a for absorbing evaporated fuel.
  • the charcoal varnish 26 opens to the outside air via an atmosphere release pipe 28.
  • the charcoal canister 26 is connected to an intake passage (not shown) of the internal combustion engine via a second evaporative fuel purge pipe 27.
  • the evaporative fuel generated in the fuel chamber 7, the fuel supply pipe 13 and the fuel pump chamber 18 passes through the circulation pipe 23, the evaporative fuel discharge pipe 24 and the first evaporative fuel purge pipe 25 and the char canister 2 6 and adsorbed on activated carbon 26a. This prevents the fuel vapor from being released to the outside air.
  • the evaporative fuel adsorbed on the activated carbon 26a is purged into the intake passage via the second evaporative fuel purge pipe 27 based on the operating state of the internal combustion engine such as the engine load. For example, when the vehicle with the fuel tank 1 turns, the separating wall 5 is moved by the movement of the fuel in the fuel chamber 7. Therefore, a large load such as stress is generated on the separation wall 5. As shown in FIG.
  • the inner wall surface of the side wall 3b of the lower part 3 is inclined inward from the fixed part 8 to the bottom wall 3c of the lower part 3.
  • the shape of the inner wall surface of the side wall 3b matches the shape of the corrugated portion defined by the fold portion 5b when the central portion 5c is located in the lower region in the fuel chamber 7. Therefore, regardless of the position of the central portion 5c of the separation wall 5 in the fuel chamber 7, the movement of the corrugated portion of the separation wall 5 in the horizontal and vertical directions and the movement of the separation wall 5 itself are prevented.
  • An annular protrusion 29 is formed on the inner wall surface of the side wall 3 b of the lower portion 3.
  • the protrusion 29 protrudes inward from the side wall 3b so that the side wall 3b has a step.
  • the corrugated portion including the fold portion 5b makes smooth contact with the protrusion 29. Therefore, the movement of the corrugated portion of the separation wall 5 in the horizontal and vertical directions and the movement of the separation wall 5 itself are prevented.
  • the protrusion 29 is formed on the side wall 3b from the fixed portion 8 to the bottom wall 3c such that a recess is formed between the adjacent protrusions 29. Since the recess holds the fold portion 5b, the movement of the corrugated portion of the separation wall 5 in the horizontal and vertical directions and the movement of the separation wall 5 itself are further prevented, as described above. The generation of a large stress in the slab prevents the separation wall 5 from being damaged.
  • the protrusion 29 reduces the volume of space formed between the fuel level and the separation wall 5, the amount of fuel vapor generated in the fuel chamber 7 is reduced.
  • the protrusion 29 strengthens the lower part 3 so that it is not necessary to provide a reinforcing member to strengthen the lower part 3.
  • the inner wall of the upper part 2 of the fuel tank 1 is biased or elastic. Then, a spring 32 is attached.
  • the spring 32 extends downward from the inner wall surface of the upper part 2. The spring 32 comes into contact with the central portion 5c of the separating wall 5 when the central portion 5c of the separating wall 5 rises. Therefore, collision with the inner wall surface of the upper part 2 by the separation wall 5 is prevented.
  • the air chamber 6 communicates with the outside air via a pipe 33 opening to the atmosphere.
  • the pipe 33 is connected to the upper part of the fuel tank 1.
  • the pipe 33 releases the air from the air chamber 6 to the outside air when the central part 5 c of the separation wall 5 rises. Therefore, the central portion 5c easily rises when fuel is supplied into the fuel chamber 7.
  • the pipe 33 introduces air from the outside air into the air chamber 6 when the central portion 5c of the separation wall 5 descends. Therefore, when the fuel in the fuel chamber 7 is used during the operation of the internal combustion engine, the central portion 5c is easily lowered.
  • the fuel is supplied into the fuel chamber 7 when there is a space above the fuel level in the fuel chamber 7.
  • the height of the fuel level rises. Therefore, the evaporated fuel in the space above the fuel level is discharged to the fuel supply pipe 13 via the circulation pipe 23 and the evaporated fuel discharge pipe 24.
  • the fuel chamber 7 When the fuel level reaches the first shutoff valve 30 and the second shutoff valve 31, that is, when the fuel vapor in the space above the fuel level is completely removed from the space, the fuel chamber 7 is sealed. . Then, the supply of fuel into the fuel chamber 7 is stopped. Once the fuel chamber 7 is sealed, the sealed state of the fuel chamber 7 is maintained so that no space is formed above the fuel level in the fuel chamber 7. Therefore, the generation of fuel vapor in the fuel chamber 7 is prevented.
  • the supply of fuel into the fuel chamber 7 is It corresponds to a means for discharging gas from the formed space or a means for increasing the height of the fuel liquid level.
  • Figure 1 shows a fuel tank 1 containing evaporated fuel.
  • a lined oil nozzle (not shown) is inserted into the upper opening 13 a of the oil supply pipe 13.
  • the refueling nozzle piles on the spring bias to open the evaporative fuel shutoff valve 17, and then the outer peripheral surface of the lined oil nozzle comes into contact with the seal member 16. Therefore, when the refueling nozzle is inserted into the refueling pipe 13, the fuel vapor is prevented from flowing out of the upper opening 13 a to the outside air.
  • the first shut-off valve 30 is closed by the fuel in the fuel chamber 7 to shut off the circulation pipe 23 when the fuel level reaches the first shut-off valve 30. Thereafter, the upward movement of the central portion 5 c of the separation wall 5 is limited by the spring 32. Thereafter, as shown in FIG. 3, when the fuel level reaches the second shut-off valve 31, the fuel chamber is shut off to shut off the fuel vapor discharge pipe 24. The second shut-off valve 31 is closed by the fuel in 7. In this way, the fuel vapor in the space above the fuel level is completely eliminated from the fuel chamber 7 and the fuel tank 1.
  • the pressure in the oil supply pipe 13 decreases when the first shutoff valve 30 and the second shutoff valve 31 are closed.
  • the pressure sensor of the refueling nozzle detects that the reduced pressure is lower than a predetermined pressure
  • the supply of the fuel into the fuel chamber 7 is stopped.
  • the pressure of the fuel in the fuel chamber 7 becomes higher than the pressure of the fuel in the fuel supply pipe 13. Therefore, the check valve 10 is closed by the fuel in the fuel chamber 7. Therefore, the fuel chamber 7 is completely sealed in a state where the fuel vapor does not exist in the fuel chamber 7.
  • the refueling nozzle is pulled out from the upper opening 13a of the refueling pipe 13 and then the fuel vapor shutoff valve 17 is closed by the spring bias. Finally, the lid 14 is attached to the upper opening 13 a of the fuel supply pipe 13.
  • the operation of the fuel tank 1 during operation of the internal combustion engine of the first embodiment will be described.
  • the amount of fuel in the fuel chamber 7 decreases. Accordingly, the height of the fuel level in the fuel chamber 7 decreases, and the central portion 5c of the separation wall 5 descends. As shown in FIG. 4, the separation wall 5 projects downward into the fuel chamber 7. When the separation wall 5 is lowered, no space is formed above the fuel level because the fuel chamber 7 is sealed. Therefore, once the evaporative fuel removal processing is executed, generation of evaporative fuel in the fuel chamber 7 is prevented. For this reason, it is only necessary to provide a small charcoal canister in the fuel storage device, or it is not necessary to provide a charcoal canister.
  • the first shutoff valve 30 and the second shutoff valve 31 are opened. Therefore, a space is formed above the fuel level in the fuel chamber 7, and the space is formed when the internal combustion engine is operating. Evaporated fuel may be generated within the interval. Therefore, in the second embodiment, the evaporated fuel is eliminated by a method other than supplying the fuel into the fuel chamber 7.
  • an air pump 35 is connected to the air chamber 6 via a first connection pipe 34 instead of the air pipe 33 of the first embodiment.
  • the air pump 35 functions to increase the pressure in the air chamber 6.
  • the first connection pipe 34 is connected to the release valve 37 via the second connection pipe 36.
  • the release valve 37 opens, and the pressure in the air chamber 6 decreases. Note that the predetermined pressure is lower than the pressure at which the separation wall 5 is damaged.
  • a small hole 39 is formed in the diaphragm 38 of the release valve 37.
  • the small hole 39 communicates the second connection pipe 36 with the outside air regardless of whether the release valve 37 is opened or closed.
  • the diameter of the small hole 39 is set so as not to prevent the air pump 35 from increasing the pressure in the air chamber 6.
  • a level switch 57 is attached to the upper wall of the fuel pump chamber 18 at the highest position in the fuel tank 1.
  • the level switch 57 outputs a voltage when the fuel level reaches the level switch 57, that is, when the fuel level reaches the highest position in the fuel tank 1.
  • the fuel storage device includes an electronic control device 40.
  • the electronic control unit 40 is a digital computer, and includes a CPU (microprocessor) 42, RAM (random access memory) 43, and ROM (read-only memory) 4 4, B-RAM (backup RAM) 45, an input port 46, and an output port 47, which are interconnected by a bidirectional bus 41.
  • level switch 5 When the fuel level reaches level switch 57, level switch 5 The voltage generated in 7 is input to the input port 46 via the corresponding AD converter 48. The voltage indicating the opening or closing of the release valve 37 is input to the input port 46 via the corresponding AD converter 48. Output port 47 is connected to air pump 35 via drive circuit 49.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the first embodiment. Therefore, description of the configuration other than the above is omitted.
  • the release valve 37 it is determined whether or not the release valve 37 is open.
  • the release valve 37 is closed, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be performed.
  • the level switch 57 it is determined whether or not the level switch 57 is operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
  • the air pump 35 When the release valve 37 is closed and the level switch 57 is not operated, the air pump 35 is operated to increase the pressure in the air chamber 6. Thus, the central part 5c of the separating wall 5 moves downward toward the bottom wall 3c of the lower part 3. For this reason, the height of the fuel level that forms the space increases.
  • the fuel vapor is discharged from the fuel chamber 7 to the fuel supply pipe 13 via the circulation pipe 23 and the fuel vapor discharge pipe 24.
  • the air pump 35 is stopped.
  • the air pump 35 corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level.
  • the means for detecting the fuel level corresponds to the means for detecting the fuel level.
  • step S210 it is determined whether or not the level switch 57 is operated (ON).
  • the level switch 57 it is determined that the evaporative fuel elimination process cannot be executed, the process proceeds to step S212, the air pump 35 is stopped, and the process ends.
  • the level switch 57 is not operated (OFF)
  • step S214 it is determined whether or not the release valve 37 is opened.
  • the release valve 37 is open, it is determined that the evaporative fuel elimination process cannot be executed, and the process proceeds to step S212, where the air pump 35 is stopped and the process ends.
  • the release valve 37 is closed, it is determined that the evaporative fuel removal processing should be performed, and the process proceeds to step S216 to remove the evaporative fuel from the fuel chamber 7 by the air pump. Activate 3 5 to increase the pressure in the air chamber 6 and end the process.
  • the evaporated fuel in order to completely discharge the evaporated fuel from the fuel tank, it is necessary to supply fuel to the fuel tank until the fuel tank is full of fuel. Therefore, if the supply of fuel into the fuel chamber 7 is stopped before the fuel tank becomes full of fuel, the evaporated fuel is not completely removed from the fuel chamber 7. Therefore, in the third embodiment, even when the supply of fuel to the fuel chamber is stopped before the fuel chamber becomes full of fuel, the evaporated fuel is completely removed from the fuel chamber.
  • the fuel tank 1 has a cap lid orb switch 50.
  • the orb switch 50 is connected to a cap lid (not shown) for covering the lid 14.
  • Ovenus switch 50 is activated to output a voltage when the cap lid is opened, and keeps outputting the voltage until the cap lid is closed. Therefore, the current supply of fuel is detected by detecting the voltage at the Ovenus switch 50. You can judge that it is done.
  • the voltage generated in the orb switch 50 is input to the input port 46 via the corresponding AD converter 48.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the second embodiment. Therefore, description of the configuration other than the above is omitted.
  • the release valve 37 it is determined whether or not the release valve 37 is open.
  • the release valve 37 is closed, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be performed.
  • cap lid orb switch 50 it is determined whether or not the cap lid orb switch 50 is operated and whether or not the level switch 57 is operated.
  • the orb switch 50 is activated and the level switch 57 is not activated, it is determined that the evaporative fuel removal processing should be executed.o
  • the opening of the cap lid is permitted, and the fuel in the fuel chamber 7 is opened. Start supplying.
  • the air pump 35 operates to increase the pressure in the air chamber 6. Is done. Accordingly, the central portion 5c of the separation wall 5 descends. Therefore, the fuel vapor above the fuel level is discharged from the fuel tank 1 to the lined oil pipe 13 via the circulation pipe 23 and the fuel vapor discharge pipe 24.
  • the level switch 57 corresponds to a means for releasing gas or a means for increasing the height of the fuel level, and the level switch 57 corresponds to a means for detecting the level of the fuel level.
  • the height of the fuel level is raised to a higher position. Therefore, the amount of fuel to be supplied to increase the fuel level to the highest level in the fuel chamber 7 is smaller than the fuel amount of the first embodiment. Therefore, according to the third embodiment, the evaporated fuel can be completely removed from the fuel chamber 7 even when the supply of the fuel into the fuel chamber 7 is stopped before the fuel chamber becomes full of the fuel.
  • the fueling nozzle when the fueling nozzle detects that the height of the fuel in the fueling pipe 13 exceeds a predetermined height, the fueling nozzle used to supply the fuel into the fuel chamber is detected. Quill shuts off fuel supply
  • the predetermined height is lower than the opening of the circulation pipe 23 opening into the internal space of the oil supply pipe 13.
  • step S310 it is determined whether or not the cap lid orb switch 50 is operated (0N). When the orb switch 50 is operated, the process proceeds to step S312. On the other hand, when the open switch 50 is not operated (OFF), the process proceeds to step S318, in which the air pump 35 is stopped, and the process ends.
  • step S312 it is determined whether or not the level switch 57 is operated (0N). When the level switch 57 is operated, it is determined that the evaporative fuel removal processing does not need to be performed, and the process proceeds to step S314 to stop the air pump 35, and the process proceeds to step S31. Proceed to step 6 to permit opening of the cap lid and end the process. on the other hand, When the level switch 57 is not operated (OFF), the process proceeds to step S320.
  • step S320 it is determined whether or not the release valve 37 is open.
  • the release valve 37 it is determined that the evaporative fuel elimination process cannot be executed, and the process proceeds to step S314 to stop the air pump 35, and proceeds to step S316 to cap. Allow the lid to open and end the process.
  • the release valve 37 is closed, it is determined that the evaporative fuel elimination process can be executed, and the process proceeds to step S322 to operate the air pump 35 to increase the pressure in the air chamber 6. , End the process
  • the air pump 35 and the release valve 37 are used to execute the evaporative fuel removal processing. Therefore, the configuration of the fuel storage device becomes complicated, and the manufacturing cost of the fuel storage device increases. Therefore, in the fourth embodiment, the fuel vapor elimination process is executed with a simpler configuration.
  • the fuel storage device of the fourth embodiment will be described.
  • the air pump 35, the release valve 37, the first connection pipe 34, and the second connection pipe 36 of the second embodiment are eliminated, and the atmosphere pipe 33 is removed. It is connected to the upper part 2 of the fuel tank 1.
  • the chocolate canister 26 of the second embodiment is omitted, and the electromagnetic valve 51 is connected to the first evaporated fuel purge pipe 25 and the second evaporated fuel purge pipe 27.
  • the fuel supply pipe 13 is connected to the intake passage 52 via the first evaporated fuel purge pipe 25, the second evaporated fuel purge pipe 27 and the solenoid valve 51.
  • the solenoid valve 51 cuts off the communication between the oil supply pipe 13 and the intake passage 52.
  • the fuel storage device includes a temperature sensor 55 that generates a voltage corresponding to the temperature of the cooling water for cooling the internal space. Temperature sensor 5 5 Connected to input port 46 via corresponding AD converter 48. The output port 47 is connected to the solenoid valve 51 via a drive circuit 49.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the second embodiment. Therefore, description of the configuration other than the above is omitted.
  • the cooling water temperature is higher than a predetermined temperature (for example, 70 ° C.).
  • the predetermined temperature is higher than the temperature of the cooling water when the cooling water cools the internal combustion engine in the steady operation state.
  • the operating state of the internal combustion engine is a state in which the fuel vapor removal processing can be executed.
  • the level switch 57 it is determined whether or not the level switch 57 is operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
  • the solenoid valve 51 When the operation state of the internal combustion engine is a state in which the evaporative fuel elimination process can be executed, and the evaporative fuel elimination process is to be executed, the solenoid valve 51 is opened, and the negative pressure in the intake passage 52 enters the fuel chamber 7. be introduced.
  • the introduced negative pressure discharges the fuel vapor from the fuel chamber 7, descends at the central portion 5 c of the separation wall 5, and increases the fuel level.
  • the electromagnetic valve 51 When the operating state of the internal combustion engine is not in a state in which the evaporative fuel elimination process can be executed, or when there is no need to execute the evaporative fuel elimination process, the electromagnetic valve 51 is closed.
  • the evaporated fuel can be removed from the fuel chamber by the fuel storage device having a simple configuration without the air pump and the release valve.
  • purging of the fuel vapor from the fuel chamber to the intake passage is performed by a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level.
  • the level switch 57 corresponds to the means for detecting the fuel level.
  • the evaporative fuel removal processing may be controlled based on the engine speed, the engine load, the amount of air introduced into the combustion chamber of the internal combustion engine, or the combustion state in the combustion chamber. For example, when the engine speed, the engine load or the amount of air introduced into the combustion chamber of the internal combustion engine is lower than a predetermined value, or when the combustion state is a stratified combustion state, the evaporated fuel elimination process is stopped. .
  • step S410 it is determined whether or not the level switch 57 is operated (ON).
  • the level switch 57 it is determined that the evaporative fuel elimination process does not need to be performed, and the process proceeds to step S412 to close the solenoid valve 51 and end the process.
  • the level switch 57 is not operated (OFF)
  • the process proceeds to step S414.
  • step S414 it is determined whether the temperature T of the cooling water is higher than a predetermined temperature T0 (T0).
  • T a predetermined temperature
  • T0 a predetermined temperature
  • T ⁇ T it is determined that the operating state of the internal combustion engine is in a state in which the evaporative fuel removal processing can be executed, and the process proceeds to step S 4 16 to open the solenoid valve 51 and end the processing.
  • T ⁇ T it is determined that the operating state of the internal combustion engine is not in a state in which the evaporative fuel elimination process can be executed, and the process proceeds to step S 4 12 to close the solenoid valve 51, and the process ends. I do.
  • the charcoal canister when a charcoal canister should be provided in the fuel storage device, the charcoal canister is provided in the first evaporative fuel purge pipe 25 between the lined oil pipe 13 and the electromagnetic valve 51. Provided.
  • the solenoid valve 51 opens, the pressure inside the charcoal canister is prevented from becoming excessively low when the solenoid valve 51 opens, and the solenoid valve 51 closes. Sometimes it communicates with the outside air to prevent the pressure in the fuel chamber 7 from becoming excessively high. Therefore, when the fuel storage device of the fourth embodiment includes a charcoal canister, the negative pressure is not introduced into the fuel chamber 7 because the charcoal canister communicates with the outside air. Evaporated fuel inside is not excluded. Therefore, in the fifth embodiment, even when the fuel storage device includes a charcoal canister, a negative pressure is introduced into the fuel chamber 7.
  • a fuel canister 26 is provided in a first evaporative fuel purge pipe 25 between an oil supply pipe 13 and a solenoid valve 51.
  • the charcoal canister 26 communicates with the outside air through an atmosphere release pipe 28.
  • the air release pipe 28 is provided with a control valve 58 for shutting off the air release pipe 28.
  • the control valve 58 includes a positive pressure valve and a negative pressure valve. Further, the control valve 58 is opened at a predetermined positive pressure to reduce the pressure in the chamber canister 26, and is opened at a predetermined negative pressure to open the chamber. Raise the pressure in Lucyanister 26.
  • the predetermined positive pressure is the pressure that the fuel tank 1, the charcoal canister 26, their associated components and the separating wall 5 can withstand, or the evaporative fuel is the fuel tank 1, It is below the pressure at which it does not flow out of the Yakor Canister 26 or related components.
  • the predetermined negative pressure is higher than the pressure that the fuel tank 1, the chocolate tank 26, related components and the separation wall 5 can withstand.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the fourth embodiment. Therefore, description of the configuration other than the above is omitted.
  • whether the temperature of the cooling water is higher than a predetermined temperature It is determined whether or not it is.
  • the temperature of the cooling water is higher than a predetermined temperature, it is determined that the temperature of the cooling water is a temperature at which the evaporative fuel removal processing can be executed.
  • the predetermined temperature is higher than the temperature of the cooling water when cooling the internal combustion engine in which the cooling water is in a steady operation state.
  • the level switch 57 it is determined whether or not the level switch 57 is operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
  • the negative pressure in the intake passage 52 is reduced through the second evaporative fuel purge pipe 27 to the charcoal canister 2.
  • Solenoid valve 51 is opened for introduction to 6.
  • a negative pressure is introduced into the charcoal canister 26
  • the pressure in the charcoal canister 26 is lower than a predetermined positive pressure and higher than a predetermined negative pressure by the action of the control valve 58.
  • the control valve 58 opens, and a negative pressure lower than the predetermined negative pressure is introduced into the fuel chamber 7.
  • the negative pressure in the intake passage 52 is introduced into the fuel chamber 7 via the first evaporated fuel purge pipe 25, the circulation pipe 23, and the evaporated fuel discharge pipe 24.
  • the negative pressure in the intake passage is introduced into the fuel chamber 7 in order to eliminate the evaporated fuel above the fuel level.
  • purging of fuel vapor from the fuel chamber to the intake passage corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level.
  • the level switch 57 corresponds to a means for detecting the fuel level.
  • the temperature of the cooling water is not a temperature at which the evaporative fuel removal processing can be performed.
  • step S510 it is determined whether or not the level switch 57 is operated (ON). When the level switch 57 is operated, it is determined that it is not necessary to execute the evaporative fuel removal processing, and the process proceeds to step S514 to close the solenoid valve 51 and end the processing. On the other hand, when the level switch 57 is not operated (0 FF), it is determined that the evaporative fuel elimination process should be performed, and the process proceeds to step S 516.
  • step S516 it is determined whether the temperature T of the cooling water is higher than a predetermined temperature T0 (T> T0).
  • T> T0 the temperature of the cooling water is not the temperature at which the evaporative fuel removal processing can be executed, and the process proceeds to step S514, where the solenoid valve 51 is closed and the processing ends.
  • T ⁇ TO the temperature of the cooling water is a temperature at which the evaporative fuel elimination process can be executed, and the process proceeds to step S518 to open the solenoid valve 51 to introduce a negative pressure into the fuel chamber 7. The process is terminated and the process is terminated.
  • the pressure in the air chamber 6 is maintained at the pressure at which the release valve 37 opens when the air pump is operated. After the air pump 35 is stopped, the pressure in the air chamber 6 is released through the small hole 39 of the release valve 37, and is maintained at the atmospheric pressure.
  • the small holes 39 are small enough to prevent the pressure inside the air chamber 6 from suddenly dropping and to prevent the air pump 35 from increasing the pressure inside the air chamber 6. It takes some time for the pressure to be fully released. Therefore, if the pressure in the air chamber 6 is too high, fuel cannot flow into the fuel chamber 7 through the fueling nozzle. Therefore, in the sixth embodiment, even after the pressure in the air chamber 6 increases, fuel can flow into the fuel chamber 7 through the refueling nozzle.
  • the second release valve 59 is connected to the second connection pipe 36 as shown in FIG.
  • the second release valve 59 is opened to release the pressure in the air chamber 6 when the pressure in the air chamber 6 is higher than a second predetermined pressure.
  • the second predetermined pressure is lower than the pressure of the fuel when the fuel was supplied by the refueling nozzle.
  • the amount of air released from the second release valve 59 is less than the amount of air discharged by the air pump 35 and the amount of air flowing out through the small hole 39 of the release valve 37. Many.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the third embodiment. Therefore, description of the configuration other than the above is omitted.
  • the evaporative fuel removal process of the sixth embodiment is executed in the same manner as in the third embodiment. Further, similarly to the third embodiment, the air pump 35 is stopped when the level switch 57 is operated or when the release valve 37 is opened.
  • the pressure in the air chamber 6 is higher than the second predetermined pressure after the air pump 35 is stopped. Therefore, the pressure in the air chamber 6 becomes lower than the fuel pressure when the fuel is supplied by the fueling nozzle earlier than in the third embodiment. Therefore, fuel can flow into the fuel chamber 7 through the fueling nozzle.
  • the rate of increase of the pressure in the air chamber is determined when the pressure is in a range between the opening pressure of the second release valve 59 and the opening pressure of the release valve 37. Is lower than the rate of increase of the pressure in the air chamber.
  • the flowchart of the sixth embodiment is the flowchart of the third embodiment. Is the same as Therefore, description is omitted.
  • the pressure in the air chamber 6 when the pressure in the air chamber 6 is higher than the second predetermined pressure, the pressure in the air chamber 6 is increased while the pressure in the air chamber 6 is released by the second release valve 59. Increased by pump 35. Therefore, the rate of increase in the pressure in the air chamber 6 in the sixth embodiment is lower than the rate of increase in the pressure in the air chamber 6 in the third embodiment without the second release valve. For this reason, in the sixth embodiment, the time from when the orb switch 50 is operated forcibly until the opening of the cap lid is permitted is longer than the time in the third embodiment.
  • the fuel can flow into the fuel chamber 7 through the fuel nozzle and the rate of increase in the pressure in the air chamber is reduced in the sixth embodiment.
  • the rate of increase of the pressure in the air chamber at
  • a fuel storage device according to a seventh embodiment of the present invention will be described.
  • a solenoid valve 60 is connected to the second connection pipe 36 instead of the release valve 37 and the second release valve 59 as shown in FIG.
  • the solenoid valve 60 is connected to the output pump 47 via a corresponding drive circuit 49 and is controlled by the electronic control unit 40.
  • the solenoid valve 60 shuts off the communication between the air chamber 6 and the outside air.
  • a pressure sensor 61 for detecting the pressure in the air chamber 6 is attached to the upper part 2 of the fuel tank 1.
  • the pressure sensor 61 is connected to the input port 46 via the corresponding AD converter 48.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the sixth embodiment. Therefore, description of the configuration other than the above is omitted.
  • the seventh embodiment it is determined whether the pressure in the air chamber 6 is lower than a predetermined maximum pressure.
  • the predetermined maximum pressure is lower than the pressure which is damaged by the pressure in the separation wall 5 ⁇ the air chamber 6.
  • the pressure is lower than the predetermined maximum pressure, it is determined that the state of the internal combustion engine and the fuel tank 1 is in a state where the evaporative fuel removal processing can be executed.
  • the cap lid orb switch 50 and the level switch 57 are operated.
  • the cap lid orb switch 50 is activated and the level switch 57 is not activated, it is determined that the evaporative fuel removal processing should be executed ⁇ "0.
  • the seventh embodiment it is determined whether the pressure in the air chamber 6 is lower than a second predetermined pressure.
  • the second predetermined pressure is lower than the pressure of the fuel when the fuel was supplied by the refueling nozzle.
  • the pressure in the air chamber 6 is lower than the second predetermined pressure, it is determined that the pressure in the air chamber 6 is a pressure that allows the opening of the cap lid.
  • the state of the internal combustion engine and the fuel tank 1 is a state in which the evaporative fuel elimination process can be executed.
  • the solenoid valve 60 is closed, the air pump 35 is operated, and the air The pressure in chamber 6 is increased. Therefore, the fuel vapor above the fuel level is discharged from the fuel chamber 7 through the circulation pipe 23 and the fuel vapor discharge pipe 24.
  • the rate of increase in the pressure in the air chamber 6 is higher than the rate of increase in the pressure in the air chamber in the sixth embodiment.
  • the air pump 35 When it is not necessary to execute the evaporative fuel removal processing, the air pump 35 is stopped, the solenoid valve 60 is opened, and the pressure in the air chamber 6 is made lower than the second predetermined pressure, and the air pump 35 is stopped.
  • the air pump 35 When the internal combustion engine and the fuel tank 1 are not in a state in which the evaporative fuel removal processing can be executed, the air pump 35 is stopped and the solenoid valve 60 is turned on. The valve is opened to lower the pressure in the air chamber 6 below a predetermined maximum pressure.
  • the air pump 35 is used to release gas or fuel from a space formed above the fuel level.
  • the level switch 57 corresponds to a means for detecting the height of the fuel level, and the level switch 57 corresponds to a means for detecting the level of the fuel level.
  • step S71 it is determined whether or not the cap lid orb switch 50 is operated (ON). When the orb switch 50 is operated, the process proceeds to step S712. On the other hand, when the open switch 50 is not operated (OFF), that is, when the supply of the fuel into the fuel chamber 7 is completed, the process proceeds to step S722, in which the electromagnetic valve 60 is closed and the air is released. The pressure in the chamber 6 is maintained relatively high, the flow proceeds to step S724, the air pump 35 is stopped, the flow proceeds to step S726, the refueling flag is reset, and the processing ends.
  • the lined oil flag is set when the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing cannot be performed, and is reset when the supply of fuel into the fuel chamber is completed.
  • step S712 it is determined whether or not the level switch 57 is operated ( ⁇ N). When the level switch 57 is operated, it is determined that it is not necessary to execute the evaporative fuel removal processing.Then, the process proceeds to step S 742, the air pump 35 is stopped, and the step S 7 4 is performed. Proceeding to step 4, the solenoid valve 60 is opened to maintain the pressure in the air chamber 6 below the second predetermined pressure, and proceeding to step S7 46 to permit the cap lid to be opened And ends the processing.
  • step S712 the level switch 57 is activated in step S712. If not (OFF), it is determined that the evaporative fuel removal processing should be executed, and the flow advances to step S714.
  • step S714 it is determined whether the pressure P in the air chamber 6 is lower than a predetermined maximum pressure Pmax (P-Pmax).
  • P-Pmax a predetermined maximum pressure
  • P ⁇ P max the pressure in the air chamber 6 is higher than the predetermined maximum pressure, so it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed. Proceeding to 28, the lined oil flag is set, and proceeding to step S730, the solenoid valve 60 is opened to reduce the pressure in the air chamber 6, and then proceeding to step S732.
  • step S716 it is determined whether or not the oil flag has been reset.
  • the refueling flag is reset, it is determined that the pressure in the air chamber 6 is at a pressure at which the evaporative fuel elimination process can be executed, and the process proceeds to step S 718 to open the solenoid valve 60. Proceeding to S720, the air pump 35 is operated, and the process ends.
  • step S732 it is determined whether or not the pressure P in the air chamber 6 is lower than a second predetermined pressure P2 (P ⁇ P2).
  • P ⁇ P2 a second predetermined pressure at which the supply of fuel into the fuel chamber 7 is permitted
  • the process proceeds to step S734 to close the solenoid valve 60.
  • the air pump 35 is operated to maintain the pressure in the air chamber 6 relatively high during the supply of fuel into the fuel chamber 7, and then proceeding to step S738. Permits to open the lid and ends the process.
  • the inclination of the degree of increase in the pressure in the air chamber is made smaller than the inclination when the fuel moves largely in the fuel chamber.
  • an electromagnetic valve 60 is connected to the second connection pipe 36 instead of the release valve 37 of the second embodiment as shown in FIG.
  • the solenoid valve 60 is connected to an output port 47 via a corresponding drive circuit 49, and is controlled by an electronic control unit 40.
  • the solenoid valve 60 shuts off the communication between the air chamber 6 and the outside air.
  • a pressure sensor 61 for detecting the pressure in the air chamber 6 is provided in the upper part 2 of the fuel tank 1.
  • the pressure sensor 61 is connected to the input port 46 via the corresponding AD converter 48.
  • a fuel level gauge 62 for detecting the amount of fuel in the fuel chamber 7 by detecting the position of the separation wall 5 is provided in the upper part 2 of the fuel tank 1.
  • the fuel level gauge 62 is connected to the input port 46 via a corresponding AD converter 48.
  • the fuel storage device includes a temperature sensor 55 for generating a voltage corresponding to the temperature of the cooling water for cooling the internal combustion engine.
  • the temperature sensor 55 is connected to the input port 46 via the corresponding AD converter 48.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the second embodiment. Therefore, description of the configuration other than the above is omitted.
  • the evaporative fuel removal processing according to the eighth embodiment it is determined whether the temperature of the cooling water is higher than the predetermined temperature and the fuel amount in the fuel chamber 7 is higher than the predetermined fuel amount.
  • the predetermined temperature is higher than the temperature of the cooling water when the cooling water cools the internal combustion engine in the steady operation state, and the predetermined fuel amount is the height of the fuel level when the separation wall 5 is lowered. More than enough to rise to the highest position in fuel chamber 7.
  • the evaporative fuel elimination processing is executed, that is, the solenoid valve 60 is closed.
  • the valve is operated, and the air pump 35 is operated to increase the pressure in the air chamber 6. Accordingly, the central portion 5c of the separation wall 5 descends, and the fuel vapor is removed from the space above the fuel level in the fuel chamber 7.
  • the evaporative fuel elimination process is executed, and the rate of increase of the pressure in the air chamber 6 is determined based on the pressure in the air chamber 6 detected by the pressure sensor 61. It is determined whether or not the pressure is higher than the pressure rise rate at which the fuel may move significantly.
  • the air pump 35 When the rate of increase in pressure in the air chamber 6 is greater than the rate of pressure increase in which fuel may move significantly in the fuel chamber 7, the air pump 35 is stopped. On the other hand, the rate of pressure increase in the air chamber 6 When the pressure rise rate that can be moved is smaller, the air pump is activated by 3 5 powers. Therefore, the rate of increase in the pressure in the air chamber 6 is maintained smaller than the rate of pressure increase in which the fuel may move significantly in the fuel chamber 7, and the movement of the fuel in the fuel chamber 7 is prevented.
  • the evaporative fuel elimination processing is stopped, that is, the air pump 35 is stopped. Then, the solenoid valve 60 is opened.
  • the air pump 35 corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level
  • the level switch 57 or The fuel level gauge 62 corresponds to a means for detecting the fuel level.
  • step S810 it is determined whether the temperature T of the cooling water is higher than a predetermined temperature T O (T> T 0).
  • the predetermined temperature is a temperature at which purging of the fuel vapor into the intake passage 52 is permitted. If ⁇ > ⁇ 0, it is determined that the temperature of the cooling water is a temperature at which the purge of the fuel vapor into the intake passage 52 can be permitted, and the process proceeds to step S812.
  • the temperature of the cooling water is a temperature at which the purge of the evaporated fuel into the intake passage 52 cannot be permitted, and the process proceeds to step S840, in which the solenoid valve 60 is opened, Proceeding to step S842, the air pump 35 is stopped, and the process ends.
  • step S812 it is determined whether or not the level switch 57 is not operated (OFF). When the level switches 57 are not operated, it is determined that the evaporative fuel removal processing should be performed. Go to 8 1 4 On the other hand, when the level switch 57 is operated (ON), it is determined that it is not necessary to execute the evaporative fuel removal processing, and the process proceeds to step S840, in which the solenoid valve 60 is opened, and the step S840 is performed. Proceeding to S842, the air pump 35 is stopped, and the process ends.
  • step S814 it is determined whether the fuel amount F in the fuel chamber 7 is larger than a predetermined fuel amount F0 (F> F0).
  • the predetermined amount of fuel is greater than the amount of fuel sufficient to raise the level of the fuel level to the highest level in the fuel chamber 7 when the separation wall 5 descends.
  • step S814 the process proceeds to step S840, in which the solenoid valve 60 is opened, the process proceeds to step S842, the air pump 35 is stopped, and the process ends. I do.
  • step S816 it is determined whether or not the solenoid valve 60 is closed.
  • the process proceeds to step S8 18 to add a predetermined pressure ⁇ to the previous target pressure, thereby calculating the current target pressure Pn. Proceed to 2 4.
  • step S 8 16 the process proceeds to step S 8 36, the solenoid valve 60 is closed, and the process proceeds to step S 8 38 to set the pressure.
  • the pressure in the air chamber 6 detected by the sensor 61 is input to the target pressure Pn as an initial target pressure, and the process ends.
  • step S820 it is determined whether the target pressure Pn is higher than the maximum pressure Pmax (Pn> Pmax). The maximum pressure is lower than the pressure at which the separation wall 5 may be damaged by the pressure in the air chamber 6. If Pn> Pmax in step S820, the process proceeds to step S822, where the maximum pressure Pmax is input to the target pressure, and the pressure in the air chamber 6 is limited to the maximum pressure. Go to 8 2 4.
  • step S8284 it is determined whether or not the pressure P in the air chamber 6 is lower than the maximum pressure Pmax (P and Pmax).
  • P ⁇ Pmax it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S826.
  • P ⁇ Pmax it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel elimination process cannot be performed, and the process proceeds to step S832 to open the solenoid valve 60. Proceeding to step S834, the air pump 35 is stopped, and the process ends.
  • step S8226 it is determined whether the pressure P in the air chamber 6 is lower than the target pressure Pn (P ⁇ Pn).
  • P ⁇ Pn it is determined that the rate of increase in the pressure in the air chamber 6 is smaller than the rate of increase in which the fuel may move significantly in the fuel chamber, and the process proceeds to step S828, where the solenoid valve 60 is activated. The valve is closed, the flow proceeds to step S830, the air pump 35 is operated, and the process ends.
  • step S826 it is determined that the rate of increase in the pressure in the air chamber 6 is larger than the rate of increase in which fuel may move greatly in the fuel chamber 7, and Proceed to 8 3 4 to stop the air pump 35 and end the process.
  • the evaporated fuel released from the fuel chamber is introduced into the intake passage. Therefore, the air-fuel ratio of the air-fuel mixture is reduced by the introduced fuel vapor, that is, the air-fuel ratio is not maintained at the desired predetermined air-fuel ratio. Therefore, in the ninth embodiment, when the released fuel vapor is introduced into the intake passage, the air-fuel ratio is maintained at a desired predetermined air-fuel ratio.
  • the fuel storage device includes an air-fuel ratio sensor 63 that generates a voltage corresponding to the air-fuel ratio in the intake passage.
  • the air-fuel ratio sensor 63 has an oxygen sensor or a linear sensor that generates a voltage corresponding to the oxygen concentration in the exhaust gas.
  • the air-fuel ratio sensor 63 is connected to the input port 46 via the corresponding AD converter 48.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the eighth embodiment. Therefore, description of the configuration other than the above is omitted.
  • the pressure in the air chamber 6 is predetermined. It is determined whether the pressure is lower than the set pressure.
  • the predetermined temperature is higher than the temperature of the cooling water when the cooling water cools the internal combustion engine in a steady operation state, and the predetermined fuel amount is the highest in the fuel chamber 7 when the separation wall 5 is lowered.
  • the predetermined pressure is lower than the pressure at which the separation wall may be damaged by the pressure in the air chamber 6 which is more than the amount of fuel sufficient to raise the fuel level to the height o
  • the internal combustion engine When the temperature of the cooling water is higher than the predetermined temperature, the amount of fuel in the fuel chamber 7 is higher than the predetermined amount of fuel, and the pressure in the air chamber 6 is lower than the predetermined pressure, the internal combustion engine and It is determined that the state of fuel tank 1 is in a state where purge of evaporated fuel can be permitted.
  • the level switch 57 it is determined whether or not the level switch 57 is not operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
  • the air-fuel ratio detected by the air-fuel ratio sensor 63 is larger than a predetermined air-fuel ratio.
  • the predetermined air-fuel ratio is a desired air-fuel ratio. If the detected air-fuel ratio is larger than the predetermined air-fuel ratio, it is determined that the air-fuel ratio is an air-fuel ratio that allows the evaporative fuel removal processing to be continuously performed.
  • the state of the internal combustion engine and the fuel tank 1 is a state in which the fuel vapor can be purged, the fuel vapor elimination processing should be performed, and the air-fuel ratio permits the fuel fuel elimination processing to be continuously performed.
  • the evaporative fuel removal processing is executed, that is, the solenoid valve 60 is closed, the air pump 35 is operated, and the pressure in the air chamber 6 is increased. Therefore, the central portion 5c of the separation wall 5 descends, and the fuel vapor is removed from the space in the fuel chamber 7 above the fuel level.
  • the air-fuel ratio is set at the air-fuel ratio at which the evaporative fuel elimination process can be continued. If not, the fuel vapor elimination process is stopped, that is, the air pump 35 is stopped.
  • the amount of evaporative fuel introduced into the intake passage is controlled so that the air-fuel ratio is maintained at a desired predetermined air-fuel ratio.
  • the fuel vapor removal processing is stopped, that is, the air pump 35 is stopped. Stopped.
  • the purging of the fuel vapor into the intake passage corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the level of the fuel level
  • the gauge 62 corresponds to a means for detecting the fuel level.
  • steps S910, 912, and 914 of the flowchart correspond to steps S810, 812, and 814 of FIG. 17, respectively. Therefore, the explanation of these steps is omitted. I do.
  • step S916 If F> F0 in step S914, the process proceeds to step S916. On the other hand, when F ⁇ F0, the process proceeds to step S922, in which the solenoid valve 60 is opened, the process proceeds to step S926, the air pump 35 is stopped, and the process ends.
  • step S916 it is determined whether the pressure P in the air chamber 6 is lower than the maximum pressure Pmax (P ⁇ Pmax).
  • P ⁇ PmaX it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S ⁇ b> 918.
  • P ⁇ Pmax it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S9224 to open the solenoid valve 60, and Proceed to 9 26 to stop the air pump 35 and end the process.
  • Step S918 it is determined whether or not the air-fuel ratio AF is larger than a desired predetermined air-fuel ratio A F0 (A F> A F 0).
  • a F a desired predetermined air-fuel ratio
  • AF> AF0 it is determined that the air-fuel ratio is an air-fuel ratio that allows the evaporative fuel elimination process to continue to be executed. Then, the process proceeds to step S920, the solenoid valve 60 is closed, and the air pump 35 operates. And the process ends.
  • the supply of the fuel to the fuel chamber is executed when the pressure in the air chamber is maintained at an increased state. Therefore, when the supply of fuel to the fuel chamber is stopped, the increased pressure in the air chamber causes the fuel in the fuel chamber to flow back to the fuel supply pipe. Therefore, in the tenth embodiment, the backflow of the fuel in the fuel chamber to the fuel supply pipe is prevented.
  • a fuel storage device according to a tenth embodiment of the present invention will be described.
  • a fuel level gauge 62 for detecting the amount of fuel in the fuel chamber by detecting the position of the separation wall 5 is provided in the upper part 2 of the fuel tank 1.
  • Can be The fuel level gauge 62 is of a pendulum type, and one end of the pendulum is disposed in the central portion 5c of the separation wall 5, and a voltage is generated according to the angle of the pendulum (that is, the position of the fuel level). The generated voltage is input to the input port 46 via the corresponding AD converter 48.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the seventh embodiment. Therefore, description of the configuration other than the above is omitted.
  • the evaporated fuel elimination processing similar to the evaporated fuel elimination processing in the seventh embodiment is executed. Therefore, the description of the fuel vapor elimination process until the opening of the cap lid is permitted is omitted.
  • the supply of fuel to the fuel chamber 7 is executed until the inside of the fuel chamber 7 becomes full of fuel after the cap lid is opened.
  • the electromagnetic valve 60 when a predetermined time has elapsed, the electromagnetic valve 60 is opened, and the pressure in the air chamber 6 decreases.
  • the predetermined time is the time from when the fuel chamber 7 is detected to be fueled until the fuel supply to the fuel chamber 7 is stopped.
  • the air pump 35 or the fuel level gauge 62 corresponds to a means for discharging gas from a space formed above the fuel level or a means for raising the level of the fuel level.
  • level switch 57 corresponds to a means for detecting the height of the fuel level.
  • step S1010 of FIG. 21 it is determined whether or not the cap cover orb switch 50 is operated (ON). When the orbnas switch 50 is operated, the flow proceeds to step S101. On the other hand, when the orb switch 50 is not operated (OFF), it is determined that the supply of fuel into the fuel chamber 7 should not be performed, and the process proceeds to step S 1 500 in FIG. To set the end flag, proceed to step S1052, stop the air pump 35, proceed to step S1054, open the solenoid valve 60, and proceed to step S105. Proceed to. The end flag is set when the cap lid is closed, and is reset when a first lined oil flag, a second oil supply flag, and a counter flag, which will be described later, are reset.
  • step S101 of FIG. 21 it is determined whether or not the level switch 57 is operated (0N).
  • the level switch 57 it is determined that it is not necessary to execute the evaporative fuel removal processing, and the process proceeds to step S1024, where the second refueling flag is set, and the process proceeds to step S104.
  • the air pump 35 is stopped, proceeding to step S1028, opening the solenoid valve 60, proceeding to step S1030, and opening the cap lid. Is permitted, and the fuel supply into the fuel chamber 7 is executed.
  • the second refueling flag is set when the level switch 57 is not operated, and reset when the cap lid is closed.
  • step S101 it is determined whether the pressure P in the air chamber 6 is lower than the maximum pressure Pmax (P ⁇ Pmax). The maximum pressure is lower than the pressure at which the separation wall 5 may be damaged by the pressure in the air chamber 6.
  • P ⁇ P max it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S106.
  • step S102 it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S102, where the first refueling flag is set, and Proceed to S1026 to stop the air pump 35, proceed to step S1028 to open the solenoid valve 60, and proceed to step S1030 to open the cap lid. Strongly permitted, proceed to step S1032.
  • the first lined oil flag is set when the pressure in the air chamber 6 is higher than the maximum pressure, and reset when the cap lid is closed.
  • step S106 it is determined whether the first lined oil flag is reset or not.
  • the first refueling flag it is determined that the pressure in the air chamber 6 has not reached the maximum pressure, and the evaporative fuel removal processing is executed, that is, the process proceeds to step S108.
  • the solenoid valve 60 is closed, the process proceeds to step S102, the air pump 35 is operated, the pressure in the air chamber 6 is increased, and the process ends.
  • step S106 when the first lined oil flag is set in step S106, it is determined that the evaporative fuel removal processing should not be performed even if the pressure in the air chamber 6 is lower than the maximum pressure. Proceed to 1026 to stop the air pump 35, proceed to step S1028, open the solenoid valve 60, and proceed to step S1030 to open the cap lid. Is permitted, and the process proceeds to Step S1032.
  • step S1032 it is determined whether the counter flag is reset or not.
  • the counter flag is used when fuel chamber 7 is filled with fuel. Set at a certain time and reset when the cap lid is closed. When the counter flag is reset, it is determined that the fuel chamber 7 has not become exhausted with fuel, and the flow proceeds to step S1034. On the other hand, when the counter flag is set, it is determined that the fuel chamber 7 is full of fuel, and the flow proceeds to step S1042.
  • step S1034 it is determined whether the fuel chamber 7 is full of fuel.
  • the flow proceeds to step S1036 to reset the count, the flow proceeds to step S1038, the power counter flag is set, and the processing is terminated.
  • step S104 it is determined whether or not the second refueling flag is set. .
  • the second refueling flag it is determined that there is no need to execute the evaporative fuel removal processing, and the processing ends.
  • the second refueling flag is reset, it is determined that the evaporative fuel removal processing should be performed, and the flow proceeds to step S1044.
  • step S1042 it is determined whether the count t is smaller than a predetermined count t0 (t ⁇ t0).
  • the predetermined power point is a period between when it is detected that the fuel chamber 7 is full of fuel and when the supply of fuel to the fuel chamber 7 is stopped. If t ⁇ t0, the flow advances to step S1043 to count up the count, and the flow advances to step S1044.
  • step S1042 it is determined that the supply of fuel to the fuel chamber 7 has been stopped, and the process proceeds to step S1505, where the end flag is set, and step S1 Proceeding to 052, the air pump 35 is stopped, proceeding to step S1054, opening the solenoid valve 60 force, and proceeding to step S1056.
  • step S1044 it is determined whether or not the pressure P in the air chamber 6 is lower than a second predetermined pressure P2 (P ⁇ P2). The second predetermined pressure is lower than the fuel pressure when the fuel was supplied by the refueling nozzle.
  • step S1046 the pressure in the air chamber 6 is a pressure at which fuel supply into the fuel chamber 7 can be permitted. Proceeding to step S104, the air pump 35 is operated, and the process ends.
  • step S1044 it is determined that the pressure in the air chamber 6 is a pressure that does not permit the supply of fuel into the fuel chamber 7, and the process proceeds to step S1052. Then, the air pump 35 is stopped, the flow proceeds to step S1054, the solenoid valve 60 is opened, and the flow proceeds to step S1056.
  • step S1056 it is determined whether or not the end flag has been set.
  • the end flag it is determined that the supply of fuel into the fuel chamber 7 has been completed, and the flow proceeds to step S1058, where the first lined oil flag is reset, and the flow proceeds to step S1. Proceeding to 0600, the second refueling flag is reset, proceeding to step S1062, resetting the counter flag, proceeding to step S1064, resetting the end flag, and processing To end.
  • step S1056 it is determined that the supply of fuel into the fuel chamber 7 has been completed, and the process ends.
  • the fuel pump 19 is disposed in the fuel tank. Since the shape of the fuel pump 19 is not simple, the separation wall 5 cannot contact the fuel level around the fuel pump 19. Therefore, a space is formed around the fuel pump 19 between the separation wall 5 and the fuel level. Therefore, in the eleventh embodiment, around the fuel pump 19 No space is formed between the separation wall 5 and the fuel level.
  • the fuel pump 19 is disposed outside the fuel tank 1 as shown in FIG.
  • the fuel pump 19 is connected to the fuel filter 21 via a fuel pump pipe 19a.
  • the fuel pump pipe 19 a extends through the lower part 3 below the lower opening of the lined oil pipe 13.
  • the fuel filter 21 is disposed in the fuel chamber 7.
  • the pressure regulator 20 is arranged downstream of the fuel pump 19.
  • a fuel return passage 64 extends from the pressure regulator 20 into the fuel chamber 7.
  • the fuel return passage 64 functions to return excess fuel into the fuel chamber 7.
  • the fuel storage device does not have a pump chamber, the fuel vapor discharge pipe is eliminated.
  • the level switch 57 is located in the lower part 3 adjacent to the fixed part 8.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the fourth embodiment. Therefore, description of the configuration other than the above is omitted.
  • the purging of the fuel vapor into the intake passage corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level, and a level switch.
  • H57 corresponds to the means for detecting the fuel level.
  • the lower opening of the fuel supply pipe 13 is located above the highest position in the fuel chamber 7. In this case, the fuel in the lined oil pipe 13 is completely eliminated.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the first embodiment. Therefore, description of the configuration other than the above is omitted.
  • the supply of fuel to the fuel chamber corresponds to means for discharging gas from a space formed above the fuel level or means for increasing the height of the fuel level.
  • the air chamber 6 is connected to the air pump 35 via a first connection pipe 34 instead of the atmosphere pipe 33.
  • the first connection pipe 34 is connected to the solenoid valve 60 via the second connection pipe 36 .
  • the solenoid valve 60 is connected to the output port 47 via the corresponding drive circuit 49.
  • the solenoid valve 60 is controlled by an electronic control unit 40.
  • a pressure sensor 61 for detecting the pressure in the air chamber 6 is attached to the upper part 2 of the fuel tank 1.
  • the pressure sensor 61 is connected to the input port 46 via the corresponding AD converter 48.
  • a fuel level gauge 62 for detecting the amount of fuel in the fuel chamber 7 by detecting the position of the separation wall 5 is attached to the upper part of the fuel tank 1.
  • the fuel level gauge 62 is connected to the input port 46 via the corresponding AD converter 48.
  • the configuration other than the above is the same as the configuration of the fuel storage device of the twelfth embodiment. Therefore, description of the configuration other than the above is omitted.
  • the evaporative fuel removal processing is executed in the same manner as in the tenth embodiment until the opening of the cap lid is permitted. Therefore, the description of the fuel vapor elimination process until the opening of the cap lid is permitted is omitted.
  • the supply of fuel into the fuel chamber 7 is executed until the fuel chamber 7 becomes full of fuel.
  • the solenoid valve 60 is opened to reduce the pressure in the air chamber 6 when a predetermined time has elapsed.
  • the predetermined time is the time from when the fuel chamber 7 is detected to be full of fuel to immediately after the supply of fuel into the fuel chamber 7 is stopped.
  • the air pump 35 is formed above the fuel level. It corresponds to the means for releasing gas from the space or the means for raising the level of the fuel level.
  • the level switch 57 or the fuel level gauge 62 detects the level of the fuel level. Means.
  • steps S 1 3 4 2 are excluded except for steps S 1 3 4 2. This corresponds to steps up to 60. Therefore, the description of these steps is omitted.
  • step S1342 it is determined whether or not the count t is smaller than a predetermined count t1 (t ⁇ t1).
  • the predetermined count is the time from when it is detected that the fuel chamber 7 is busy with the fuel until immediately after the supply of the fuel into the fuel chamber 7 is stopped.
  • t is less than t1
  • the flow proceeds to step S1343, where the count is increased by a strong force, and the flow proceeds to step S1344.
  • step S1350 the end flag is set, and the flow proceeds to step S1352.
  • step S1354 the solenoid valve 60 is opened, and the flow proceeds to step S1356.
  • the air pump is operated or the solenoid valve 60 is opened based on the opening of the relief valve, the pressure in the air chamber 6 or the level switch 57.
  • the air pump may be operated based on the position of the separation wall 5, or the solenoid valve 60 may be opened.
  • the fuel storage device includes a fuel tank main body 140 as shown in FIG.
  • the fuel tank body 140 has a generally bowl-shaped It has an upper part 9 1 and a lower part 9 2.
  • the upper part 91 and the lower part 92 are connected to each other at the flange parts 91a, 92a of these parts.
  • a fuel container 94 forming a fuel chamber 93 for storing and storing fuel is accommodated in the fuel tank body 140.
  • the fuel container 94 has a deformable but rigid rectangular upper wall 95, a deformable but rigid rectangular lower wall 96, and a deformable but rigid wall. As shown in FIG. 29, a strip-shaped wall or connecting wall 97 connecting the peripheral portion 95a of the upper wall 95 to the peripheral portion 96a of the lower wall 96 is provided.
  • the upper wall 95 and the lower wall 96 are arranged so that the upper wall 95 and the lower wall 96 bulge or expand outward when the amount of fuel in the fuel container 94 increases. Deform. Due to the deformation of the upper wall 95 and the lower wall 96, the connecting wall 97 is curved inward. Therefore, the capacity of the fuel container 94 increases.
  • the upper wall 95 and the lower wall 96 are so formed that the upper wall 95 and the lower wall 96 expand inward. Deform to. The deformation of the upper wall 95 and the lower wall 96 causes the connecting wall 97 to curve inward. Therefore, the volume of the fuel container 94 decreases.
  • the rigidity of the connecting wall 97 is larger than the rigidity of the upper wall 95 and the lower wall 96.
  • a fuel passage opening 98 is formed at the center of the lower wall 96 of the fuel container 94.
  • the center part of the lower part 92 of the flint tank body 140 is in contact with A tube opening 9 9 is formed.
  • the fuel container 94 is disposed on the fuel tank body 140 such that the fuel passage opening 98 is aligned with the connection pipe opening 99, and is located outside the fuel container 94 and the fuel tank body 14 Inside 0, an air chamber 110 is formed.
  • the fuel level sensor 1 11 for detecting the position or movement of the upper wall 95 of the fuel container 94 for calculating the amount of fuel in the fuel container 94 is an upper part of the fuel tank body 140. 1 Installed on the inner surface.
  • an air passage opening 112 is formed in the upper part 91 of the fuel tank body 140.
  • the volume of the fuel container 94 decreases or increases, the volume of the air chamber 110 increases or decreases. At this time, air flows into or out of the air chamber 110 through the air passage opening 112. Therefore, the fuel container 94 easily deforms.
  • a filter 113 for preventing other substances except air from flowing into the air chamber 110 is inserted into the air passage opening 112.
  • One end of a fuel pipe 114 for introducing fuel into the fuel container 94 and extracting fuel from the fuel container 94 is connected to the fuel passage opening 98 of the fuel container 94 and the fuel tank body 114. It is inserted into the connection pipe opening 99 of the lower part 92 of 0 and connected.
  • the other end of the fuel pipe 114 is connected to the lower end of the fuel supply pipe 115 for supplying fuel to the fuel container 94 and the fuel introduction pipe for introducing fuel from the fuel container 94 to the fuel pump device 117. Connected to one end of 1 17. The other end of the fuel introduction pipe 1 17 is connected to the fuel pump device 1 16.
  • the fuel pump device 116 draws the fuel in the fuel container 94 and supplies the fuel to a fuel injection valve (not shown) of the internal combustion engine.
  • a pump evaporative fuel pipe 1 18 for discharging the evaporative fuel from the fuel pump device 1 i 6 is connected to the fuel pump device 1 16.
  • Pump evaporative fuel pipe 1 The other end of 18 is connected to the oil supply pipe 1 15 adjacent to the upper opening of the lined oil pipe 1 15.
  • a fuel feed pipe 120 for sending the fuel from the fuel pump device 116 to the fuel injection valve is connected to the fuel pump device 116.
  • One end of a fuel vapor pipe 150 for discharging the fuel vapor from the fuel container 94 is connected to an upper wall 95 of the fuel container 94.
  • the other end of the container fuel vapor pipe 150 is connected to a fuel pump device 116.
  • an evaporative fuel pipe shutoff valve or a container sealing valve 149 is provided at one end of the evaporative fuel pipe 150.
  • the evaporative fuel pipe shut-off valve 149 is provided with a float 151, the density of which is lower than the density of the fuel.
  • the opening of the evaporative fuel pipe 150 opened inside the fuel container 94 corresponds to the discharge passage opening in the space above the fuel liquid level, and the evaporative fuel shutoff valve 1449 shuts off the above discharge passage. Corresponding to the shut-off valve.
  • One end of the fuel vapor pipe 121 for discharging the fuel vapor near the upper opening 111 is connected to the fuel supply pipe 115 at the upper opening on the other end side of the pump fuel fuel pipe 118.
  • the other end of the fuel vapor pipe 122 is connected to a charcoal canister 122 for absorbing the fuel vapor and temporarily holding the fuel vapor.
  • Activated carbon 123 for adsorbing the evaporative fuel is placed in the charcoal canister 122.
  • the interior space of the charcoal canister 122 is divided by activated carbon 123. Therefore, an evaporative fuel chamber 124 is formed on one side of the activated carbon 123, and an air chamber 125 is formed on the other side of the active end 123.
  • the other end of the evaporative fuel pipe 1 2 1 is connected to an evaporative fuel chamber 1 2 4 in a charcoal canister 1 2.
  • the evaporative fuel chamber 124 allows the evaporative fuel adsorbed on the activated carbon 123 to be discharged from the charcoal canister 122 to the intake passage 127 of the internal combustion engine.
  • One end of the feed pipe 1 26 is connected.
  • the other end of the canister evaporative fuel pipe 1 2 6 is connected to the surge tank 1 2 8 formed in the intake passage 1 2 7, and the canister evaporative fuel pipe 1 1 6 is opened in the canister evaporative fuel pipe 1 2 6.
  • An evaporative fuel amount control valve 1 29 for closing and closing is provided.
  • the evaporative fuel amount control valve 12 9 is controlled by a control device (not shown).
  • One end of an air pipe 130 for introducing air into the air chamber 125 of the chamber 122 is connected to the air chamber 125.
  • the other end of the air pipe 130 is connected to an air cleaner 13 1 provided in the intake passage 127.
  • the air pipe 130 is provided with a shut-off valve 132 for opening and closing the air pipe 130.
  • the shutoff valves 13 and 2 are controlled by a control device (not shown).
  • a throttle valve 133 for controlling the amount of air supplied to the engine body 180 of the internal combustion engine is provided in the intake passage 127.
  • the fuel vapor control valve 129 is opened.
  • the evaporative fuel amount control valve 12 9 is normally closed. Therefore, when the evaporative fuel amount control valve 12 9 is opened, the negative pressure in the surge tank 1 28 is introduced into the charcoal canister 1 2 2 via the canister evaporative fuel pipe 1 26.
  • the air in the air cleaner 13 1 is introduced into the charcoal canister 122 via the air pipe 130. For this reason, the evaporated fuel in the charcoal canister 122 is introduced into the intake passage 127.
  • the evaporative fuel amount control valve 129 controls the operating state of the internal combustion engine to control the amount of evaporative fuel to be introduced into the intake passage 127 so as to obtain a desired predetermined air-fuel ratio. Is controlled based on the Therefore, the fuel vapor control valve 12 9 should be discharged into the intake passage 127.
  • the shut-off valve 132 corresponds to a means for controlling the amount of evaporative fuel, and the shutoff valve 132 corresponds to a means for controlling the introduction of air into the charcoal canister 122.
  • the evaporated fuel amount control valve 1 29 and the shutoff valve 1 32 2 are closed, and the fuel system is sealed. Then, when a pressure increase in the fuel system toward the atmospheric pressure is detected by a pressure sensor (not shown), it is determined that the fuel system has a leak. Therefore, the evaporated fuel amount control valve 12 9 and the shutoff valve 13 2 correspond to a means for detecting fuel leakage.
  • the fuel pump device 1 16 has a pump chamber 15 3 defined by a housing 15 2.
  • the pump chamber 153 is divided into a pump chamber part 155 and a sub-tank chamber 156 by a pump chamber separation wall 154.
  • the pump chamber separation wall 154 is a vertical wall 154a extending almost vertically downward from the inner surface of the upper wall of the housing 152, and the housing 154 is a housing above the inner surface of the lower wall of the housing 152.
  • a horizontal wall 1 54 b extending horizontally to the inner surface of the side wall 1 52.
  • the one end of the pump evaporative fuel pipe 1 18 for discharging the evaporative fuel from the pump chamber portion 1 55 is connected to the upper wall of the housing 15 2.
  • the opening at one end of the pump evaporative fuel pipe 1 18 opens in the pump chamber section 15 5 adjacent to the upper wall of the housing 15 2.
  • a fuel pump 157 for supplying fuel from the sub-tank chamber 156 to the fuel injector via the fuel feed pipe 120 is arranged in the sub-tank chamber 156. Is placed.
  • a first fuel filter 157 for filtering the fuel drawn into the fuel pump 157 is connected to a lower wall of the fuel pump 157.
  • a pressure regulator 159 for adjusting the pressure of the fuel discharged by the fuel pump 157 is provided in the fuel feed pipe 120 in the sub-tank chamber 156. Is done.
  • the upper end of the fuel return pipe 161 which is used to return a part of the fuel discharged by the fuel pump 157, to the sub-tank chamber 156, is connected to the pressure regulator 1595. .
  • a fuel feed pipe 120 between the pressure regulator 159 and the fuel pump 157 has a second fuel filter for filtering the fuel discharged from the fuel pump 157.
  • Ruta 160 is provided.
  • the lower end 16 2 of the fuel return pipe 16 1 is oriented substantially horizontally, and is tapered so that the diameter of the end 16 2 becomes smaller as the end 16 2 advances toward the opening. ing.
  • the lower end portion 162 is a negative pressure generating housing for generating a negative pressure by returning or recirculating a part of the fuel discharged by the fuel pump 157 into the sub tank chamber 156. Housed in 6 3.
  • the negative pressure generating housing 163 is provided with a fuel discharge pipe 1664 in the form of a trunk, and the fuel discharge pipe 1664 is provided with a fuel discharge pipe as the fuel discharge pipe 1664 advances to its opening. Tapered so that the diameter of 164 becomes larger.
  • the fuel discharge pipe 16 4 is aligned with the lower tip 16 2. Further, the lower end of the fuel vapor pipe 150 is accommodated in the negative pressure generating housing 163.
  • the container evaporative fuel pipe 150 in the sub-tank chamber i56 has a sub-tank chamber negative pressure introduction pipe 165 for introducing a negative pressure into the sub-tank chamber 156.
  • the sub-tank negative pressure introduction pipe 165 opens into the internal space of the sub-fuel chamber 156 in the upper region of the sub-tank i56.
  • the diameter of the auxiliary tank chamber negative pressure introduction pipe 165 is smaller than the diameter of the container evaporative fuel pipe 150.
  • a vertical annular wall 167 extending vertically downward from the horizontal wall 154b of the pump chamber separation wall 154 is disposed on the horizontal wall 154b.
  • the vertical annular wall 167 forms a fuel intake passage 166 for introducing fuel into the auxiliary tank chamber 156.
  • the position of the upper opening of the fuel intake passage 166 is lower than the position of the bottom wall of the fuel introduction pipe 117.
  • a horizontal annular wall 168 extending horizontally from the vertical annular wall 167 toward the fuel discharge pipe 164 is disposed at a lower end of the vertical annular wall 167.
  • the horizontal annular wall 168 forms a fuel passage 169 through which the fuel discharged from the fuel discharge pipe 164 passes.
  • Separation walls 170 having a mesh structure for separating gas from fuel are provided on the vertical annular wall 167 and the pump chamber part 155.
  • the separating wall 170 extends upward from the bottom surface of the horizontal annular wall 168 to the internal space of the fuel intake passage 166. Therefore, the partition wall 170 crosses the fuel passage 169.
  • the partition wall 170 extends through the vertical annular wall 167 to the interior space of the pump chamber part 155.
  • the side surface of the separation wall 170 in the vertical annular wall 167 extends to the inner surface of the vertical annular wall 167.
  • the separating wall 170 therefore divides the fuel intake passage 166 into two parts.
  • the separation wall 1 ⁇ 0 extends beyond the horizontal wall 154b to the interior space of the pump chamber portion 155.
  • the upper end of the separation wall 170 in the pump chamber part 150 is located higher than the opening of the fuel introduction pipe 117.
  • the side surface of the separation wall 170 in the pump chamber part 150 is connected to the inner surface of the cylindrical wall of the housing 152.
  • the bottom end of the separation wall 170 in the pump chamber part 150 is connected to the horizontal wall 154b.
  • the remaining fuel having a predetermined pressure is supplied to the fuel injection valve via the fuel feed pipe 120.
  • the fuel returned to the auxiliary tank chamber 156 via the fuel injection valve return pipe 161 is discharged from the lower end portion 162 to the negative pressure generating housing 163.
  • the bench flow effect of the tapered lower end portion 162 increases the flow velocity of the fuel flowing out from the lower end portion 162.
  • the fuel with the increased flow velocity flows into the fuel passage 169 via the fuel discharge pipe 164.
  • a negative pressure is generated in the negative pressure generation housing 163 when the fuel is discharged from the lower tip portion 162 to the fuel discharge pipe 1664 and the fuel flow rate is increased. Therefore, the fuel return pipe 16 1 and the negative pressure generating housing 16 3 correspond to a means for generating a negative pressure.
  • the negative pressure generated in the negative pressure generating housing 16 3 is introduced into the space above the fuel level in the container 94 through the container evaporative fuel pipe 150, and the container evaporative fuel pipe 150 It is introduced into the space above the fuel level in the sub-tank chamber 156 via the tank negative pressure introduction pipe 165. Therefore, the container evaporative fuel pipe 150 and the auxiliary tank negative pressure introducing pipe 165 correspond to a means or a passage for introducing a negative pressure.
  • the diameter of the container evaporative fuel pipe 150 is larger than the diameter of the auxiliary tank negative pressure introducing pipe 165. Therefore, the negative pressure is preferentially introduced into the fuel container 94, and the gas containing the fuel vapor and the air is discharged from the fuel container 94.
  • the sub-tank negative pressure introduction pipe corresponds to a means for preferentially promoting the release of gas from the fuel container 94.
  • a negative pressure is introduced into the fuel container 94, evaporative fuel and air are released from the fuel container 94 to the negative pressure generating housing 163, and as a result, the level of the fuel level in the fuel container 94 is increased. Is raised to the highest position in the fuel chamber 93. Therefore, the fuel pump 157 corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level.
  • the fuel container 94 remains gas-free as long as the fuel pump 157 is operated. Is done. Further, when the fuel container 94 is maintained in a harmless condition, the top surface of the fuel container 94 indicates the exact amount of fuel in the fuel container 94. Therefore, in the fourteenth embodiment, the amount of fuel in the fuel container 94 can be accurately detected.
  • the fuel vapor shutoff valve 14 9 shuts off the fuel vapor pipe 150 of the container. Therefore, the evaporative fuel shut-off valve 14 9 is connected to the fuel container 94. This corresponds to a means for stopping the introduction of the negative pressure. Further, the evaporated fuel shutoff valve 149 corresponds to a means for preventing fuel from leaking from the fuel container 94.
  • negative pressure is introduced only into the space above the fuel level in the sub tank chamber 156.
  • the fuel vapor and air are released from the space to the negative pressure generating housing 163.
  • the introduced negative pressure increases the fuel level in the sub-tank chamber 156, and from the pump chamber part 155 to the sub-tank chamber 156 via the fuel intake passage 166. Fuel is introduced. Therefore, the height of the fuel level in the sub-tank chamber 156 is maintained at a predetermined height as long as fuel exists in the pump chamber portion 155.
  • the fuel return pipe 16 1 and the negative pressure generating housing 16 3 correspond to a means for preventing fuel from dying.
  • Evaporated fuel and air released from the space above the fuel level in the fuel container 94 and the sub-tank chamber 156 are contained in the fuel in the negative pressure generating housing 163.
  • the fuel containing the evaporated fuel and the air is discharged to the fuel passage 169 through the fuel discharge pipe 164.
  • the fuel discharged into the fuel passage 166 passes through the lower opening of the fuel intake passage 166.
  • the fuel vapor and the air contained in the fuel move upward due to the low density.
  • the fuel vapor and the air are discharged from the sub-tank chamber 156 to the pump chamber part 155 through one of the fuel intake passages 166 divided by the partition wall 170.
  • the fuel intake passage It functions both as a fuel introduction passage for introducing the fuel into the sub-tank chamber 156 and an evaporative fuel discharge passage for discharging the evaporative fuel from the sub-tank chamber 156. Therefore, it is not necessary to provide another fuel vapor discharge passage in addition to the fuel intake passage 166.
  • the fuel intake passage 166 functions as a fuel introduction passage and an evaporative fuel discharge passage, so that the size of the fuel pump device can be reduced.
  • the separating wall 170 corresponds to a means for separating gas from fuel.
  • the fuel passage 169 is directly connected to the fuel intake passage 166, and is substantially perpendicular to the fuel intake passage 166. Therefore, the fuel vapor and the air easily rise and are separated from the fuel. Accordingly, the fuel passage 169 and the fuel intake passage 166 correspond to a means for separating or discharging gas from the fuel.
  • the evaporative fuel discharged into the pump chamber i 55 is introduced into the charcoal canister 122 through the pump evaporative fuel pipe 118.
  • the lower opening of the pump evaporative fuel pipe 1 18 opens into the internal space of the pump chamber section 1 55 adjacent to the upper wall of the housing 1 52. Therefore, the evaporated fuel in the pump chamber part 155 is introduced into the charcoal canister 122 until the fuel amount in the pump chamber part 155 is reduced.
  • the fuel in the sub-tank chamber 156 is heated by the fuel pump 157. Therefore, the temperature of the fuel in sub-tank chamber 156 is higher than the temperature of the fuel in pump chamber i55. If the higher temperature fuel mixes with the lower temperature fuel in the pump chamber portion 155, A large amount of evaporative fuel may be generated. In addition, temporary tank room 1
  • the fuel passage 16 is a fuel intake passage 1.
  • the fuel passage 169 and the fuel intake passage 166 correspond to a means for preventing the outflow of the fuel, a means for preventing the generation of the evaporated fuel, or a means for preventing the exhaustion of the fuel.
  • the fuel in the fuel container 94 is pumped into the pump chamber via the fuel introduction pipe 117. Introduced within 5. A part of the fuel introduced into the pump chamber part 155 through the fuel introduction pipe 117 passes through the separation wall 170. Therefore, the fuel vapor contained in the fuel in the fuel container 94 is separated in the pump chamber part 155.
  • the fuel introduction pipe 117 is arranged at a position lower than the bottom wall of the fuel container 94. Therefore, the fuel in the fuel container 94 is completely introduced into the pump chamber part 155.
  • the upper opening of the fuel intake passage 166 is located at a position lower than the bottom surface of the fuel inlet pipe 117. Therefore, the fuel in the pump chamber part 155 is completely introduced into the sub tank chamber 156. For this reason, even if the amount of fuel in the fuel container 94 becomes small, the fuel in the fuel container 94 will be in a sub-tank due to the height difference between the fuel container 94 and the fuel introduction pipe 117. Introduced into room 156.
  • the fuel level in the pump chamber section 15 5 or the fuel intake passage 16 6 May even reach the lower end.
  • the fuel height exceeds the lowest end of the fuel intake passage 166 and exceeds the lowest position of the uppermost end of the fuel intake passage 166 the secondary tank 1
  • the fuel in 56 flows into the pump chamber part 15 5.
  • the flow of fuel from the auxiliary tank chamber 156 to the pump chamber section 155 may cause generation of fuel vapor in the pump chamber section 155.
  • the first fuel filter 158 The surrounding fuel may run out.
  • the vertical annular wall 167 is relatively large and extends downward from the horizontal wall 154b. This prevents the height of the fuel level from exceeding the lowermost end of the fuel intake passage 166 and exceeding the lowest position of the uppermost end of the fuel intake passage 166. Is prevented. Therefore, the vertical annular wall 167 corresponds to a means for preventing fuel from flowing out or a means for preventing generation of fuel vapor.
  • the effect of preventing the fuel from flowing out depends on the length or size of the fuel intake passage 166 (or the positional relationship between the uppermost end and the lowermost end of the fuel intake passage 166). And the angle of inclination of the fuel level in the fuel intake passage 166 with respect to the horizontal direction. That is, the effect of preventing the fuel from flowing out is obtained irrespective of the position of the fuel intake passage 166. Therefore, the number of selectable fuel intake passages 16 6 increases.
  • the fuel passage is facing downward and is connected to the fuel intake passage. Therefore, the fuel The fuel discharged from the excess passage flows downward in the fuel intake passage. This causes the fuel to stay for a long time below the fuel intake passage.
  • the fuel pump device 116 when the fuel is supplied into the fuel container 94 via the fuel supply pipe 115, the fuel is introduced into the fuel pump device 116 via the fuel introduction pipe 116. .
  • the fuel introduced into the fuel pump device 116 flows into the auxiliary tank room 156. Therefore, the fuel level in the auxiliary tank 156 rises.
  • the internal space of the fuel container 94 communicates directly with the internal space of the sub-tank 156 via the sub-tank negative pressure inlet pipe 165. Therefore, there is a possibility that the fuel vapor and the air flow back to the fuel container 94 through the container fuel pipe 150. In the fifteenth embodiment, the backflow of gas from the sub tank chamber 156 to the fuel container 94 at the time of refueling is prevented.
  • the sub-tank chamber negative pressure introduction pipe 165 is not provided in the container evaporation fuel pipe 150.
  • a sub-tank negative pressure introduction pipe 173 is provided independently of the container evaporative fuel pipe 150.
  • the upper opening of the sub-tank negative pressure introducing pipe 173 opens into the internal space of the sub-tank chamber 156 in the upper region of the sub-tank chamber 156.
  • the lower opening of the sub-tank negative pressure introduction pipe 173 opens into the internal space of the negative pressure generating housing 163.
  • the diameter of the lower opening of the auxiliary tank negative pressure introduction pipe 173 is smaller than the diameter of the container evaporative fuel pipe 150.
  • the configuration other than the above is the same as the configuration of the fuel pump device of the fourteenth embodiment. Therefore, description of the configuration other than the above is omitted.
  • the operation other than the above is the same as the operation of the fuel pump device of the fourteenth embodiment. Therefore, description of the operation other than the above is omitted.
  • a sensor for detecting gas containing evaporated fuel in the space above the fuel level in the fuel chamber may be used instead of the level switch. Further, the shutoff valve is opened or closed based on the amount of gas in the fuel chamber or the volume of the space formed above the fuel level instead of the highest level of the fuel level. The evaporative fuel removal processing may be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

A fuel reservoir for storing a fuel, provided with a wall which divides the inner space of the reservoir into a fuel chamber and an air chamber and is variable in shape depending upon the amount of fuel in the fuel chamber, a discharge passage opened to a space formed above a fuel liquid surface in the fuel chamber, and a shut-off valve for normally shutting off the discharge passage. When the shut-off valve is opened, a gas is discharged from the space through the discharge passage. If the amount of the gas is greater than a predetermined amount, the shut-off valve is opened so as to discharge the gas out of the space. On the other hand, if the amount of the gas is less than the predetermined amount, the shut-off valve is closed to stop discharge of the gas.

Description

明 細 書 燃料貯留装置 技術分野  Description Fuel storage device Technical field
本発明は燃料貯留装置に関し、 特に内燃機関に接続される燃料夕 ンクに関する。 背景技術  The present invention relates to a fuel storage device, and more particularly to a fuel tank connected to an internal combustion engine. Background art
燃料貯留装置または燃料タ ンクは燃料液面が燃料タ ンク内で上下 動できるように外気と連通すべきである。 と ころが燃料タ ンクでは 燃料液面上方に形成された空間に蒸発燃料が発生する。 このため燃 料タ ンクから外気へ蒸発燃料が放出するという問題が生じる。  The fuel reservoir or fuel tank should communicate with the outside air so that the fuel level can move up and down within the fuel tank. However, in the fuel tank, evaporated fuel is generated in the space formed above the fuel level. For this reason, there is a problem that fuel vapor is released from the fuel tank to the outside air.
従来技術では燃料タ ンクは蒸発燃料を一時的に吸着させるための チヤ コールキヤニスタを介して外気と連通する。 燃料タ ンク内で発 生する蒸発燃料量が多いとチヤ コールキヤニスタ も大き く なければ ならない。 この問題を解決するために特開昭 6 4 — 1 6 4 2 6号公 報は膨張可能なエアバッ グを具備し、 このエアバッ グが燃料液面の 高さの変化に応じて膨張または縮小し、 燃料タ ンク内で燃料液面上 方に空間が形成されるこ とを防止した燃料タ ンクを開示している。  In the prior art, the fuel tank communicates with the outside air through a charcoal canister for temporarily absorbing the evaporated fuel. If the amount of fuel vapor generated in the fuel tank is large, the charcoal canister must also be large. In order to solve this problem, Japanese Patent Laid-Open Publication No. Sho 64-1646 / 26 has an inflatable airbag, which expands or contracts in accordance with a change in the fuel level. Also disclosed is a fuel tank in which a space is not formed above the fuel level in the fuel tank.
しかしながら上記公報に開示されている燃料タ ンクでは燃料タ ン ク内部が外気と連通していない。 このため燃料液面上方に既に空間 が形成されているとエアバッ グが膨張したときにその空間は排除さ れない。 このため蒸発燃料が燃料液面上方の空間内に発生する可能 性がある。  However, in the fuel tank disclosed in the above publication, the inside of the fuel tank does not communicate with the outside air. For this reason, if a space has already been formed above the fuel level, that space will not be excluded when the airbag expands. For this reason, the evaporated fuel may be generated in the space above the fuel level.
したがって本発明の目的は燃料貯留装置から燃料液面上方の空間 および蒸発燃料を排除することにある。 発明の開示 Accordingly, it is an object of the present invention to eliminate the space above the fuel level and the evaporated fuel from the fuel storage device. Disclosure of the invention
本発明によれば、 燃料を貯留するための燃料貯留装置であって、 該燃料貯留装置の内部空間を燃料室と空気室とに分割する壁を具備 し、 該壁は前記燃料室内の燃料量に応じて変形可能であり、 前記燃 料室内の燃料液面上方に形成された空間に開口する放出通路と、 該 放出通路を通常は遮断する遮断弁と、 該遮断弁が開弁しているとき に前記放出通路を介して前記空間から気体を放出するための気体放 出手段と、 前記気体の量が予め定められた量より多いときに前記空 間から前記気体を放出するように前記遮断弁を開弁し且つ前記気体 放出手段を作動するようにこれら気体放出手段および遮断弁を制御 するための制御手段とを具備し、 該制御手段は前記気体の量が前記 予め定められた量より少ないときには前記気体の放出を停止するよ うに前記遮断弁を閉弁し且つ前記気体放出手段の作動を停止する燃 料貯留装置が提供される。  According to the present invention, there is provided a fuel storage device for storing fuel, comprising: a wall for dividing an internal space of the fuel storage device into a fuel chamber and an air chamber; A discharge passage that opens into a space formed above the fuel level in the fuel chamber, a shutoff valve that normally shuts off the discharge passage, and the shutoff valve is open. Gas discharge means for discharging gas from the space through the discharge passage, and the shutoff so as to discharge the gas from the space when the amount of the gas is larger than a predetermined amount. Control means for controlling the gas release means and the shut-off valve so as to open the valve and operate the gas release means, wherein the control means makes the amount of the gas smaller than the predetermined amount. Stop the release of the gas when low Fuel accumulating device to stop the operation of the closing and and the gas discharge means is provided his urchin the shut-off valve.
さ らに本発明によれば前記燃料室内の燃料液面の高さを検出する ための燃料液面高さ検出手段を備え、 前記制御手段は該燃料液面高 さ検出手段により検出された燃料液面の高さが予め定められた高さ より低いときには前記気体の量が前記予め定められた量より多いと 判断する。  Further, according to the present invention, there is provided a fuel liquid level detecting means for detecting the height of the fuel liquid level in the fuel chamber, and the control means is provided with the fuel detected by the fuel liquid level detecting means. When the height of the liquid level is lower than the predetermined height, it is determined that the amount of the gas is larger than the predetermined amount.
さ らに本発明によれば前記燃料液面の高さを上昇するための燃料 液面高さ上昇手段を備え、 前記気体放出手段は前記気体の量が前記 予め定められた量より多いときに前記気体を前記空間から放出する ように前記燃料液面の高さを上昇するように前記燃料液面高さ上昇 手段を制御する。  Further, according to the present invention, there is provided a fuel liquid level height increasing means for increasing the height of the fuel liquid level, and the gas discharging means is provided when the amount of the gas is larger than the predetermined amount. The fuel level raising means is controlled to raise the level of the fuel level so as to release the gas from the space.
さ らに本発明によれば前記燃料液面高さ上昇手段は燃料液面の高 さを上昇するために前記燃料室に燃料を供給する。  Further, according to the present invention, the fuel level raising means supplies the fuel to the fuel chamber in order to raise the level of the fuel level.
さ らに本発明によれば前記燃料液面高さ上昇手段は燃料液面の高 さを上昇するために前記壁を変形する。 Further, according to the present invention, the means for increasing the fuel level increases the height of the fuel level. Deform the wall to raise its height.
さ らに本発明によれば前記燃料液面高さ上昇手段は前記壁を変形 するために前記空気室内の圧力を上昇する。  Further, according to the present invention, the fuel level raising means increases the pressure in the air chamber to deform the wall.
さ らに本発明によれば前記燃料液面高さ上昇手段は前記燃料室に 燃料が供給されたときに該燃料室に供給された燃料の圧力より低い 圧力まで前記空気室内の圧力を上昇する。  Further, according to the present invention, when the fuel is supplied to the fuel chamber, the fuel level raising means increases the pressure in the air chamber to a pressure lower than the pressure of the fuel supplied to the fuel chamber. .
さ らに本発明によれば前記燃料液面高さ上昇手段は前記燃料室へ の燃料の供給が停止したときに前記空気室内の圧力を低下する。  Furthermore, according to the present invention, the fuel level raising means reduces the pressure in the air chamber when the supply of fuel to the fuel chamber is stopped.
さ らに本発明によれば前記燃料液面高さ上昇手段は前記壁を変形 するために前記空間内に負圧を導入する。  Furthermore, according to the present invention, the fuel level raising means introduces a negative pressure into the space to deform the wall.
さ らに本発明によれば前記燃料液面高さ上昇手段は燃料を吐出し て該吐出された燃料により負圧を発生するための燃料ポンプを具備 し、 前記放出通路を介して前記空間内に前記負圧を導入する。  Further, according to the present invention, the fuel liquid level raising means includes a fuel pump for discharging fuel and generating a negative pressure by the discharged fuel, and the fuel pump is provided in the space through the discharge passage. , The negative pressure is introduced.
さ らに本発明によれば前記燃料液面高さ上昇手段は負圧を発生す るために前記燃料ポンプにより吐出された燃料の一部を前記燃料室 内に戻す。  Further, according to the present invention, the fuel level raising means returns a part of the fuel discharged by the fuel pump into the fuel chamber to generate a negative pressure.
さ らに本発明によれば前記燃料ポンプは前記燃料室に接続された ポンプ室に収容され、 前記燃料液面高さ上昇手段は負圧を発生する ために前記燃料ポンプにより吐出された燃料の一部を前記ポンプ室 に戻し、 該ポンプ室内の燃料液面上方に形成された空間内に負圧を 導入する。  Further, according to the present invention, the fuel pump is housed in a pump chamber connected to the fuel chamber, and the fuel level raising means is configured to generate a negative pressure of the fuel discharged by the fuel pump to generate a negative pressure. A part is returned to the pump chamber, and a negative pressure is introduced into a space formed above the fuel level in the pump chamber.
さ らに本発明によれば前記放出通路は内燃機関の吸気系に接続さ れ、 前記燃料液面高さ上昇手段は前記吸気系内の負圧を前記放出通' 路を介して前記燃料液面上方に形成された空間内へ導入する。  Further, according to the present invention, the discharge passage is connected to an intake system of an internal combustion engine, and the fuel level raising means reduces the negative pressure in the intake system to the fuel liquid through the discharge passage. It is introduced into the space formed above the surface.
さ らに本発明によれば前記放出通路は蒸発燃料を吸着するための キ ヤ ニスタを介して前記吸気系に接続され、 該キヤ ニスタは該キ ヤ ニスタ内の圧力が予め定められた負圧以下であるときに大気へと開 口 して前記キ ヤ ニスタを大気と連通させる弁を具備する。 Further, according to the present invention, the discharge passage is connected to the intake system via a canister for adsorbing the evaporated fuel, and the canister has a predetermined negative pressure inside the canister. Open to atmosphere when A valve is provided to open the canister and communicate with the atmosphere.
さ らに本発明によれば前記燃料液面高さ上昇手段は前記内燃機関 の状態が蒸発燃料を受容できる状態であるときに燃料液面の高さを 上昇する。  Further, according to the present invention, the fuel level raising means increases the level of the fuel level when the state of the internal combustion engine is a state capable of receiving the evaporated fuel.
以下、 添付図面を参照した本発明の好適実施形態の説明により本 発明を十分に理解するこ とができる。 図面の簡単な説明  Hereinafter, the present invention can be fully understood by describing preferred embodiments of the present invention with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の第一実施形態の燃料貯留装置の断面図である。 図 2 は図 1 の線 I I 一 I I に沿った燃料貯留装置の断面図である 図 3 は燃料室内への燃料の供給が停止した直後の燃料貯留装置の 断面図である。  FIG. 1 is a sectional view of a fuel storage device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the fuel storage device along the line II-II of FIG. 1. FIG. 3 is a cross-sectional view of the fuel storage device immediately after the supply of fuel to the fuel chamber is stopped.
図 4 は燃料室内の燃料が減少したときの燃料貯留装置の断面図で ある。  Fig. 4 is a sectional view of the fuel storage device when the fuel in the fuel chamber is reduced.
図 5 は本発明の第二実施形態の燃料貯留装置の断面図である。 図 6 は本発明の第二実施形態の蒸発燃料排除処理のフ ロ ーチ ヤ一 トである。  FIG. 5 is a sectional view of a fuel storage device according to a second embodiment of the present invention. FIG. 6 is a flowchart of the evaporative fuel removal processing according to the second embodiment of the present invention.
図 7 は本発明の第三実施形態の燃料貯留装置の断面図である。 図 8 は本発明の第三実施形態の蒸発燃料排除処理のフ ロ ーチ ヤ一 トである。  FIG. 7 is a sectional view of a fuel storage device according to a third embodiment of the present invention. FIG. 8 is a flowchart of the evaporative fuel removal processing according to the third embodiment of the present invention.
図 9 は本発明の第四実施形態の燃料貯留装置の断面図である。 図 1 0 は本発明の第四実施形態の蒸発燃料排除処理のフ ロ ーチ ヤ 一卜である。  FIG. 9 is a sectional view of a fuel storage device according to a fourth embodiment of the present invention. FIG. 10 is a flow chart of the evaporative fuel removal processing according to the fourth embodiment of the present invention.
図 1 1 は本発明の第五実施形態の燃料貯留装置の断面図である。 図 1 2 は本発明の第五実施形態の蒸発燃料排除処理のフ ロ ーチヤ 一トである。 図 1 3 は本発明の第六実施形態の燃料貯留装置の断面図である。 図 1 4 は本発明の第七実施形態の燃料貯留装置の断面図である。 図 1 5 は本発明の第七実施形態の蒸発燃料排除処理のフ ロ ーチ ヤ 一トである。 FIG. 11 is a sectional view of a fuel storage device according to a fifth embodiment of the present invention. FIG. 12 is a flowchart of the evaporative fuel removal processing according to the fifth embodiment of the present invention. FIG. 13 is a sectional view of a fuel storage device according to a sixth embodiment of the present invention. FIG. 14 is a sectional view of a fuel storage device according to a seventh embodiment of the present invention. FIG. 15 is a flowchart of the evaporative fuel removal processing according to the seventh embodiment of the present invention.
図 1 6 は本発明の第八実施形態の燃料貯留装置の断面図である。 図 1 7 は本発明の第八実施形態の蒸発燃料排除処理のフローチヤ 一トである。  FIG. 16 is a sectional view of a fuel storage device according to an eighth embodiment of the present invention. FIG. 17 is a flowchart of the evaporative fuel removal processing according to the eighth embodiment of the present invention.
図 1 8 は本発明の第九実施形態の燃料貯留装置の断面図である。 図 1 9 は本発明の第九実施形態の蒸発燃料排除処理のフローチヤ - トである。  FIG. 18 is a sectional view of a fuel storage device according to a ninth embodiment of the present invention. FIG. 19 is a flowchart of the evaporative fuel removal processing according to the ninth embodiment of the present invention.
図 2 0 は本発明の第十実施形態の燃料貯留装置の断面図である。 図 2 1 は本発明の第十実施形態の蒸発燃料排除処理のフローチヤ 一トである。  FIG. 20 is a sectional view of a fuel storage device according to a tenth embodiment of the present invention. FIG. 21 is a flowchart of the evaporative fuel removal processing according to the tenth embodiment of the present invention.
図 2 2 は本発明の第十実施形態の蒸発燃料排除処理のフ ロ ーチ ヤ 一トである。  FIG. 22 is a flowchart of the evaporative fuel removal processing according to the tenth embodiment of the present invention.
図 2 3 は本発明の第十一実施形態の燃料貯留装置の断面図である 図 2 4 は本発明の第十二実施形態の燃料貯留装置の断面図である 図 2 5 は本発明の第十三実施形態の燃料貯留装置の断面図である 図 2 6 は本発明の第十三実施形態の蒸発燃料排除処理のフ ローチ ャ一 トの一部である。  FIG. 23 is a cross-sectional view of the fuel storage device of the eleventh embodiment of the present invention. FIG. 24 is a cross-sectional view of the fuel storage device of the twelfth embodiment of the present invention. FIG. 26 is a cross-sectional view of the fuel storage device of the thirteenth embodiment. FIG. 26 is a part of a flowchart of the evaporative fuel removal processing of the thirteenth embodiment of the present invention.
図 2 7 は本発明の第十三実施形態の蒸発燃料排除処理のフ ローチ ヤー トの一部である。  FIG. 27 is a part of a flowchart of the evaporative fuel removal processing according to the thirteenth embodiment of the present invention.
図 2 8 は本発明の第十四実施形態の燃料貯留装置の部分断面図で のる。 図 2 9 は本発明の第十四実施形態の燃料貯留装置の斜視図である 図 3 0 は大き く なつた状態にある燃料容器の斜視図である。 FIG. 28 is a partial sectional view of a fuel storage device according to a fourteenth embodiment of the present invention. FIG. 29 is a perspective view of a fuel storage device according to a fourteenth embodiment of the present invention. FIG. 30 is a perspective view of a fuel container in a state of being enlarged.
図 3 1 は小さ く なつた状態にある燃料容器の斜視図である。  FIG. 31 is a perspective view of the fuel container in a smaller state.
図 3 2 は本発明の第十四実施形態の燃料ポンプ装置の部分断面図 しある。  FIG. 32 is a partial sectional view of a fuel pump device according to a fourteenth embodiment of the present invention.
図 3 3 は図 3 2 の線 X X X I I I - X X X I I I に沿った燃料ポ ンプ装置の部分断面図である。  FIG. 33 is a partial cross-sectional view of the fuel pump device taken along the line XXXIII-XXXIII of FIG.
図 3 4 は本発明の第十四実施形態とは異なる他の燃料ポンプ装置 の部分断面図である。  FIG. 34 is a partial sectional view of another fuel pump device different from the fourteenth embodiment of the present invention.
図 3 5 は本発明の第十五実施形態の燃料ポンプ装置の部分断面図 である。  FIG. 35 is a partial sectional view of the fuel pump device according to the fifteenth embodiment of the present invention.
図 3 6 は図 3 5 の線 X X X V I - X X X V I に沿った燃料ポンプ 装置の部分断面図である。 発明を実施するための最良の形態  FIG. 36 is a partial cross-sectional view of the fuel pump device taken along the line XXVI-XXVI in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第一実施形態の燃料貯留装置を説明する。 燃料貯 留装置は例えば内燃機関に供給すべき燃料を貯留するために乗り物 に取り付けられる。 しかしながら単に或る期間にわたり燃料を貯留 するために燃料貯留装置 用いること もできる。  Hereinafter, the fuel storage device according to the first embodiment of the present invention will be described. The fuel storage device is mounted on a vehicle, for example, for storing fuel to be supplied to an internal combustion engine. However, a fuel storage device can also be used simply to store fuel over a period of time.
図 1 に示したように燃料貯留装置の燃料タ ンク 1 は金属や合成樹 脂のような材料からなる上方部分 2 および下方部分 3 を具備する。 上方部分 2および下方部分 3 はその周辺フ ラ ンジ部分 2 aおよび 3 aにおいて互いに気密に接続される。  As shown in FIG. 1, the fuel tank 1 of the fuel storage device has an upper part 2 and a lower part 3 made of a material such as metal or synthetic resin. The upper part 2 and the lower part 3 are hermetically connected to each other at their peripheral flange parts 2a and 3a.
上方部分 2 と下方部分 3 とにより画成された内部空間 4 内には分 離壁または分離膜 5 が配置される。 分離壁 5 は内部空間 4 を分離壁 5上方の空気室 6 と分離壁 5下方の燃料室 7 とに分割する。 分離壁 5 はポ リ エチ レ ンやナイ ロ ンのような可撓性を有し且つ蒸発燃料不 透過性を有する材料から作製される。 分離壁 5 はその周縁部分 5 a において固定部分 8 に取り付けられる。 すなわち分離壁 5 は燃料タ ンク 1 の内壁面に気密に取り付けられる。 分離壁 5 の周縁部分 5 a は上方部分 2 および下方部分 3 の周辺フ ラ ンジ 2 aおよび 3 a の間 に挟まれる。 In the interior space 4 defined by the upper part 2 and the lower part 3, a separating wall or separation membrane 5 is arranged. The separating wall 5 divides the internal space 4 into an air chamber 6 above the separating wall 5 and a fuel chamber 7 below the separating wall 5. Separation wall 5 is made of a flexible and vapor-impermeable material such as polyethylene or nylon. The separating wall 5 is attached to the fixed part 8 at its peripheral part 5a. That is, the separation wall 5 is airtightly attached to the inner wall surface of the fuel tank 1. The peripheral part 5 a of the separating wall 5 is sandwiched between the peripheral flanges 2 a and 3 a of the upper part 2 and the lower part 3.
分離壁 5 は概ね同心状に配置され且つ互いに等間隔を開けた環状 の折り 目部分 5 bを具備する。 したがつて分離壁 5 は環状の折り 目 部分 5 b によ り画成される波形部分を有する。 分離壁 5 は折り 目部 分 5 bにおいて屈曲可能である。 このため分離壁 5の中央部分 5 c は燃料タ ンク 1 内で上下動可能である。 すなわち分離壁 5 は中央部 分 5 cが上下動可能なように折り 目部分 5 bにおいて変形する。 下方部分 3 には給油管 1 3が気密に接続され、 給油管 1 3 は燃料 室 7 の内部空間へと開口する。 給油管 1 3 の上方開口 1 3 aには給 油管 1 3 を閉鎖するための蓋 1 4が取り外し可能に取り付けられる 。 上方開口 1 3 aに隣接した給油管 1 3 内には蓋 1 4が上方開口 1 3 aに取り付けられたときに蓋 1 4 の外周面と接触するシール部材 1 5 と、 燃料室 7 を燃料で充塡するために給油ノ ズルが給油管 1 3 内に挿入されたときに給油ノ ズルの外周面と接触する シール部材 1 6 と、 ばね付勢力により通常は給油管 1 3 を遮断している蒸発燃料 遮断弁 1 7 とが設けられる。  The separating wall 5 is provided with an annular fold portion 5b which is arranged substantially concentrically and is equally spaced from each other. Therefore, the separation wall 5 has a corrugated portion defined by the annular fold portion 5b. The separation wall 5 can be bent at the fold 5b. Therefore, the central portion 5 c of the separation wall 5 can move up and down in the fuel tank 1. That is, the separation wall 5 is deformed at the fold 5b so that the center 5c can move up and down. An oil supply pipe 13 is connected to the lower part 3 in an airtight manner, and the oil supply pipe 13 opens to the internal space of the fuel chamber 7. A lid 14 for closing the oil supply pipe 13 is detachably attached to the upper opening 13 a of the oil supply pipe 13. In the fuel supply pipe 13 adjacent to the upper opening 13a, the sealing member 15 that comes into contact with the outer peripheral surface of the lid 14 when the lid 14 is attached to the upper opening 13a, and the fuel chamber 7 A seal member 16 that comes into contact with the outer peripheral surface of the lubricating nozzle when the lubricating nozzle is inserted into the lubricating pipe 13 to fill with oil, and the lubricating pipe 13 is normally shut off by spring bias. Fuel vapor shutoff valve 17 is provided.
一方、 給油管 1 3 の下方開口 1 3 b には逆止弁 1 0が設けられる 。 逆止弁 1 0 は給油ノ ズルから供給された燃料の圧力により開口せ しめられ、 燃料室 7 内の燃料の圧力により閉鎖せしめられる。  On the other hand, a check valve 10 is provided in the lower opening 13 b of the oil supply pipe 13. The check valve 10 is opened by the pressure of the fuel supplied from the fuel nozzle and is closed by the pressure of the fuel in the fuel chamber 7.
燃料室 7 には燃料ポンプ室 1 8が接続される。 燃料ポンプ室 1 8 は下方部分 3 により画成され、 上方部分 2 の周辺フ ラ ンジ部分 2 a から外方へ向かって突出する。 燃料ポンプ室 1 8 内には燃料ポンプ 1 9 と、 圧力レギユ レ一夕 2 0 と、 燃料フ ィ ルタ 2 1 とが配置される。 燃料ポンプ 1 9 により吐 出された燃料の圧力は圧力レギユ レ一夕 2 0 により調整され、 その 後、 燃料は燃料供給管 2 2 を介して燃料噴射弁 (図示せず) に供給 される。 圧力 レギユ レ一タ 2 0が燃料室 7 に接続された燃料ポンプ 室 1 8 に燃料を戻すため、 燃料を燃料供給管 2 2 から各燃料噴射弁 に分配するための燃料分配管から燃料を燃料タ ンク 1 へ戻す燃料戻 し通路を提供する必要はない。 したがって内燃機関のシ リ ンダへッ ド近く で加熱されて蒸発燃料を含んでいる燃料が燃料室 7 に戻され ることはない。 このため燃料室 7 内での蒸発燃料の発生が防止され る。 さ らに燃料ポンプ 1 9 は燃料タ ンク 1 内に配置されているため 燃料ポンプ 1 9 から発生した騒音が燃料タ ンク 1 から燃料タ ンク 1 の外部へ伝達することが防止される。 A fuel pump chamber 18 is connected to the fuel chamber 7. The fuel pump chamber 18 is defined by the lower part 3 and projects outwardly from the peripheral flange part 2 a of the upper part 2. A fuel pump 19, a pressure regulator 20, and a fuel filter 21 are arranged in the fuel pump chamber 18. The pressure of the fuel discharged by the fuel pump 19 is adjusted by a pressure regulator 20, and thereafter, the fuel is supplied to a fuel injection valve (not shown) via a fuel supply pipe 22. In order for the pressure regulator 20 to return fuel to the fuel pump chamber 18 connected to the fuel chamber 7, fuel is supplied from a fuel distribution pipe for distributing fuel from the fuel supply pipe 22 to each fuel injection valve. There is no need to provide a fuel return path back to Tank 1. Therefore, the fuel that is heated near the cylinder head of the internal combustion engine and contains the evaporated fuel is not returned to the fuel chamber 7. Therefore, the generation of fuel vapor in the fuel chamber 7 is prevented. Further, since the fuel pump 19 is disposed in the fuel tank 1, the noise generated from the fuel pump 19 is prevented from being transmitted from the fuel tank 1 to the outside of the fuel tank 1.
燃料室 7 は循環管 2 3 を介して給油管 1 3 に接続される。 循環管 The fuel chamber 7 is connected to a fuel supply pipe 13 via a circulation pipe 23. Circulation tube
2 3 は下方部分 3 に接続され、 給油管 1 3 の下方開口 1 3 b上方で あって固定部分 8 の直ぐ下方において燃料室 7 の内部空間に開口す る。 循環管 2 3 は燃料が給油管 1 3 を介して燃料室 7 内へ供給され たときに燃料室 7 から給油管 1 3 へ空気を解放する。 したがって燃 料室 7 内への燃料の供給がし易く なる。 2 3 is connected to the lower portion 3, and opens into the internal space of the fuel chamber 7 above the lower opening 13 b of the fuel supply pipe 13 and immediately below the fixed portion 8. The circulation pipe 23 releases air from the fuel chamber 7 to the fuel pipe 13 when fuel is supplied into the fuel chamber 7 through the fuel pipe 13. Therefore, the supply of fuel into the fuel chamber 7 is facilitated.
燃料室 7 の内部空間に開口する循環管 2 3 の開口には第一遮断弁 The first shut-off valve is installed in the opening of the circulation pipe 23 opening into the internal space of the fuel chamber 7.
3 0が取り付けられる。 第一遮断弁 3 0 は該第一遮断弁 3 0 に到達 した燃料により閉弁せしめられる。 したがって第一遮断弁 3 0が閉 弁されたときには給油管 1 3 の内部空間に開口する循環管 2 3 の開 口に隣接した給油管 1 3 内の圧力は低下する。 30 is attached. The first shutoff valve 30 is closed by the fuel that has reached the first shutoff valve 30. Therefore, when the first shutoff valve 30 is closed, the pressure in the oil supply pipe 13 adjacent to the opening of the circulation pipe 23 opening into the internal space of the oil supply pipe 13 decreases.
燃料ポンプ室 1 8 内の上方空間 1 8 aは蒸発燃料放出管 2 4 を介 して給油管 1 3 の内部空間と連通する。 蒸発燃料放出管 2 4 は燃料 ポンプ室 1 8 を画成する上方壁部分に接続される。 蒸発燃料放出管 2 4 は燃料が袷油管 1 3 を介して燃料室 7 内に供給されたときに燃 枓室 7 から袷油管 1 3 へ空気を解放する。 したがって燃料室 7への 燃料の供給がし易く なる。 The upper space 18a in the fuel pump chamber 18 communicates with the internal space of the fuel supply pipe 13 via the fuel vapor discharge pipe 24. The fuel vapor discharge pipe 24 is connected to an upper wall portion defining a fuel pump chamber 18. Evaporated fuel discharge pipe 24 releases air from the fuel chamber 7 to the lined oil pipe 13 when the fuel is supplied into the fuel chamber 7 through the lined oil pipe 13. Therefore, it becomes easier to supply the fuel to the fuel chamber 7.
燃料ポンプ室 1 8 の内部空間に開口する蒸発燃料放出管 2 4 の開 口には第二遮断弁 3 1 が取り付けられる。 第二遮断弁 3 1 は該第二 遮断弁 3 1 に達した燃料により閉弁せしめられる。 したがって第二 遮断弁 3 1 が閉弁せしめられたとき、 給油管 1 3 の内部空間に開口 する蒸発燃料放出管 2 4 の開口に隣接した給油管 1 3 内の圧力が低 下する。 給油管 1 3 の内部空間に開口する蒸発燃料放出管 2 4 の開 口は給油管 1 3 の内部空間に開口する循環管 2 3 の開口上方に位置 する。  A second shutoff valve 31 is attached to the opening of the fuel vapor discharge pipe 24 opening into the internal space of the fuel pump chamber 18. The second shut-off valve 31 is closed by the fuel that has reached the second shut-off valve 31. Therefore, when the second shutoff valve 31 is closed, the pressure in the fuel supply pipe 13 adjacent to the opening of the fuel vapor discharge pipe 24 opening into the internal space of the fuel supply pipe 13 decreases. The opening of the evaporative fuel discharge pipe 24 opening to the internal space of the fuel supply pipe 13 is located above the opening of the circulation pipe 23 opening to the internal space of the fuel supply pipe 13.
給油管 1 3 は第一蒸発燃料パージ管 2 5 を介してチヤ コールキヤ ニスタ 2 6 に接続される。 給油管 1 3 の内部空間に開口する第一蒸 発燃料パージ管 2 5 の開口は給油管 1 3 の内部空間に開口する蒸発 燃料放出管 2 4の開口と同じ高さに位置する。  The fuel supply pipe 13 is connected to a charcoal canister 26 via a first evaporated fuel purge pipe 25. The opening of the first vaporized fuel purge pipe 25 opening in the internal space of the fuel supply pipe 13 is located at the same height as the opening of the evaporated fuel discharge pipe 24 opening in the internal space of the fuel supply pipe 13.
チヤコールキヤニス夕 2 6 は蒸発燃料を吸着するための活性炭 2 6 aを具備する。 チ ヤ コールキヤニス夕 2 6 は大気解放管 2 8 を介 して外気に開口する。 さ らにチヤ コールキヤニスタ 2 6 は第二蒸発 燃料パージ管 2 7 を介して内燃機関の吸気通路 (図示せず) に接続 される。  The charcoal varnish 26 is provided with activated carbon 26a for absorbing evaporated fuel. The charcoal varnish 26 opens to the outside air via an atmosphere release pipe 28. Further, the charcoal canister 26 is connected to an intake passage (not shown) of the internal combustion engine via a second evaporative fuel purge pipe 27.
燃料室 7、 給油管 1 3 および燃料ポンプ室 1 8 内で発生した蒸発 燃料は循環管 2 3 、 蒸発燃料放出管 2 4 および第一蒸発燃料パージ 管 2 5 を介してチ ヤ コールキヤニスタ 2 6 内に導入され、 活性炭 2 6 aに吸着する。 こ う して外気へと蒸発燃料が放出されるこ とが防 止される。 活性炭 2 6 a に吸着されている蒸発燃料は機関負荷のよ うな内燃機関の運転状態に基づいて第二蒸発燃料パージ管 2 7 を介 して吸気通路にパー ジされる。 例えば燃料タ ンク 1 を備えた乗り物が旋回したとき分離壁 5 は燃 料室 7 内の燃料の動きにより動かされる。 したがって応力のような 大きな負荷が分離壁 5 に発生する。 図 2 に示したように第一実施形 態では下方部分 3 の側壁 3 bの内壁面は固定部分 8から下方部分 3 の底壁 3 c まで内方へと傾斜している。 側壁 3 bの内壁面の形状は 中央部分 5 cが燃料室 7 内の下方領域に位置するときに折り 目部分 5 bにより画成される波形部分の形状に一致する。 このため燃料室 7 内における分離壁 5 の中央部分 5 cの位置に係わらず、 分離壁 5 の波形部分の水平方向および鉛直方向への動きと分離壁 5 自体の動 きとが防止される。 The evaporative fuel generated in the fuel chamber 7, the fuel supply pipe 13 and the fuel pump chamber 18 passes through the circulation pipe 23, the evaporative fuel discharge pipe 24 and the first evaporative fuel purge pipe 25 and the char canister 2 6 and adsorbed on activated carbon 26a. This prevents the fuel vapor from being released to the outside air. The evaporative fuel adsorbed on the activated carbon 26a is purged into the intake passage via the second evaporative fuel purge pipe 27 based on the operating state of the internal combustion engine such as the engine load. For example, when the vehicle with the fuel tank 1 turns, the separating wall 5 is moved by the movement of the fuel in the fuel chamber 7. Therefore, a large load such as stress is generated on the separation wall 5. As shown in FIG. 2, in the first embodiment, the inner wall surface of the side wall 3b of the lower part 3 is inclined inward from the fixed part 8 to the bottom wall 3c of the lower part 3. The shape of the inner wall surface of the side wall 3b matches the shape of the corrugated portion defined by the fold portion 5b when the central portion 5c is located in the lower region in the fuel chamber 7. Therefore, regardless of the position of the central portion 5c of the separation wall 5 in the fuel chamber 7, the movement of the corrugated portion of the separation wall 5 in the horizontal and vertical directions and the movement of the separation wall 5 itself are prevented.
下方部分 3 の側壁 3 bの内壁面には環状の突出部 2 9が形成され る。 突出部 2 9 は側壁 3 bが段を有するように側壁 3 bから内方へ 突出する。 折り 目部分 5 bを含む波形部分は突出部 2 9 と滑らかに 接触する。 したがって分離壁 5 の波形部分の水平方向および鉛直方 向における動きと分離壁 5 自体の動きとが防止される。  An annular protrusion 29 is formed on the inner wall surface of the side wall 3 b of the lower portion 3. The protrusion 29 protrudes inward from the side wall 3b so that the side wall 3b has a step. The corrugated portion including the fold portion 5b makes smooth contact with the protrusion 29. Therefore, the movement of the corrugated portion of the separation wall 5 in the horizontal and vertical directions and the movement of the separation wall 5 itself are prevented.
突出部 2 9 は隣接する突出部 2 9 の間に凹部が形成されるように 固定部分 8 から底壁 3 c まで側壁 3 bに形成される。 凹部は折り 目 部分 5 bを保持するため、 分離壁 5 の波形部分の水平方向および鉛 直方向における動きと、 分離壁 5 自体の動きとがさ らに防止される 上述のように分離壁 5 における大きな応力の発生が防止されるた め分離壁 5 の損傷が回避される。  The protrusion 29 is formed on the side wall 3b from the fixed portion 8 to the bottom wall 3c such that a recess is formed between the adjacent protrusions 29. Since the recess holds the fold portion 5b, the movement of the corrugated portion of the separation wall 5 in the horizontal and vertical directions and the movement of the separation wall 5 itself are further prevented, as described above. The generation of a large stress in the slab prevents the separation wall 5 from being damaged.
さ らに突出部 2 9 は燃料液面と分離壁 5 との間に形成される空間 容積を小さ く するので燃料室 7 内で発生する蒸発燃料量が少な く な る。 さ らに突出部 2 9 は下方部分 3 を強化するので下方部分 3 を強 化するために強化部材を提供する必要はない。  Further, since the protrusion 29 reduces the volume of space formed between the fuel level and the separation wall 5, the amount of fuel vapor generated in the fuel chamber 7 is reduced. In addition, the protrusion 29 strengthens the lower part 3 so that it is not necessary to provide a reinforcing member to strengthen the lower part 3.
燃料タ ンク 1 の上方部分 2 の内壁面には付勢手段または弾性手段 と してばね 3 2が取り付けられる。 ばね 3 2 は上方部分 2の内壁面 から下方へ延びる。 ばね 3 2 は分離壁 5 の中央部分 5 cが上昇した ときに分離壁 5の中央部分 5 c に当接する。 したがって分離壁 5力く 上方部分 2 の内壁面に衝突することが防止される。 The inner wall of the upper part 2 of the fuel tank 1 is biased or elastic. Then, a spring 32 is attached. The spring 32 extends downward from the inner wall surface of the upper part 2. The spring 32 comes into contact with the central portion 5c of the separating wall 5 when the central portion 5c of the separating wall 5 rises. Therefore, collision with the inner wall surface of the upper part 2 by the separation wall 5 is prevented.
空気室 6 は大気に開口する管 3 3 を介して外気と連通する。 管 3 3 は燃料タ ンク 1 の上方部分に接続される。 管 3 3 は分離壁 5の中 央部分 5 cが上昇したときに空気を空気室 6 から外気へ解放する。 したがって中央部分 5 c は燃料が燃料室 7 内に供給されたときに容 易に上昇する。 一方、 管 3 3 は分離壁 5 の中央部分 5 cが下降した ときに空気を外気から空気室 6 内へ導入する。 したがって内燃機関 の運転中に燃料室 7 内の燃料が用いられたときに中央部分 5 cが容 易に下降する。  The air chamber 6 communicates with the outside air via a pipe 33 opening to the atmosphere. The pipe 33 is connected to the upper part of the fuel tank 1. The pipe 33 releases the air from the air chamber 6 to the outside air when the central part 5 c of the separation wall 5 rises. Therefore, the central portion 5c easily rises when fuel is supplied into the fuel chamber 7. On the other hand, the pipe 33 introduces air from the outside air into the air chamber 6 when the central portion 5c of the separation wall 5 descends. Therefore, when the fuel in the fuel chamber 7 is used during the operation of the internal combustion engine, the central portion 5c is easily lowered.
以下、 燃料室 7 内の燃料液面上方の空間、 すなわち燃料室内の燃 料液面と分離壁 5 との間の空間から蒸発燃料を排除する本発明の第 一実施形態の処理 (以下、 蒸発燃料排除処理) を説明する。  Hereinafter, the processing according to the first embodiment of the present invention for removing evaporated fuel from the space above the fuel level in the fuel chamber 7, that is, the space between the fuel level in the fuel chamber and the separation wall 5 (hereinafter, referred to as evaporation) The fuel removal process will be described.
第一実施形態では燃料室 7 内の燃料液面上方に空間が存在すると ' き燃料を燃料室 7 内に供給する。 燃料を燃料室 7 内に供給すること で燃料液面の高さが上昇する。 したがって燃料液面上方の空間内の 蒸発燃料が循環管 2 3 および蒸発燃料放出管 2 4 を介して給油管 1 3 へと放出される。  In the first embodiment, the fuel is supplied into the fuel chamber 7 when there is a space above the fuel level in the fuel chamber 7. By supplying the fuel into the fuel chamber 7, the height of the fuel level rises. Therefore, the evaporated fuel in the space above the fuel level is discharged to the fuel supply pipe 13 via the circulation pipe 23 and the evaporated fuel discharge pipe 24.
燃料液面が第一遮断弁 3 0 および第二遮断弁 3 1 に達したとき、 すなわち燃料液面上方の空間の蒸発燃料が完全に該空間から排除さ れたとき燃料室 7 は密閉される。 それから燃料室 7 内への燃料の供 給が停止される。 いったん燃料室 7 が密閉されると燃料室 7 内の燃 料液面上方に空間が形成されないように燃料室 7 の密閉状態が維持 される。 したがつて燃料室 7 内における蒸発燃料の発生が防止され る。 第一実施形態では燃料室 7 内への燃料の供給が燃料液面上方に 形成された空間から気体を放出するための手段または燃料液面の高 さを上昇する手段に相当する。 When the fuel level reaches the first shutoff valve 30 and the second shutoff valve 31, that is, when the fuel vapor in the space above the fuel level is completely removed from the space, the fuel chamber 7 is sealed. . Then, the supply of fuel into the fuel chamber 7 is stopped. Once the fuel chamber 7 is sealed, the sealed state of the fuel chamber 7 is maintained so that no space is formed above the fuel level in the fuel chamber 7. Therefore, the generation of fuel vapor in the fuel chamber 7 is prevented. In the first embodiment, the supply of fuel into the fuel chamber 7 is It corresponds to a means for discharging gas from the formed space or a means for increasing the height of the fuel liquid level.
以下、 図面を参照して第一実施形態の蒸発燃料排除処理を説明す る。  Hereinafter, the fuel vapor removal processing of the first embodiment will be described with reference to the drawings.
図 1 は蒸発燃料を含んだ燃料タ ンク 1 を示している。 燃料室 7 内 への燃料の供給が開始される前に袷油管 1 3の上方開口 1 3 aから 蓋 1 4が取り外される。 蓋 1 4が取り外されると蒸発燃料遮断弁 1 7が閉弁する。 したがって蒸発燃料が上方開口 1 3 aから外気へと 流出することが防止される。  Figure 1 shows a fuel tank 1 containing evaporated fuel. Before the fuel supply into the fuel chamber 7 is started, the lid 14 is removed from the upper opening 13 a of the lined oil pipe 13. When the lid 14 is removed, the fuel vapor shutoff valve 17 closes. Therefore, the fuel vapor is prevented from flowing out of the upper opening 13a to the outside air.
次に給油管 1 3 の上方開口 1 3 aに袷油ノ ズル (図示せず) が揷 入される。 給油ノ ズルはばね付勢力に杭して蒸発燃料遮断弁 1 7 を 開弁し、 それから袷油ノ ズルの外周面がシール部材 1 6 と接触する 。 したがって給油ノ ズルが給油管 1 3 内に挿入されたときに蒸発燃 料が上方開口 1 3 aから外気に流出することが防止される。  Next, a lined oil nozzle (not shown) is inserted into the upper opening 13 a of the oil supply pipe 13. The refueling nozzle piles on the spring bias to open the evaporative fuel shutoff valve 17, and then the outer peripheral surface of the lined oil nozzle comes into contact with the seal member 16. Therefore, when the refueling nozzle is inserted into the refueling pipe 13, the fuel vapor is prevented from flowing out of the upper opening 13 a to the outside air.
次に給油ノ ズルから燃料室 7 内へ給油管 1 3 を介して燃料が供給 される。 燃料室 7 内の燃料量が多く なると燃料室 7 内の燃料液面の 高さが上昇する。 したがって分離壁 5が上昇する。  Next, fuel is supplied from the refueling nozzle to the fuel chamber 7 via the refueling pipe 13. As the amount of fuel in the fuel chamber 7 increases, the height of the fuel level in the fuel chamber 7 increases. Therefore, the separation wall 5 rises.
燃料液面の高さが上昇したとき燃料液面上方の空間内の蒸発燃料 は燃料室 7 から循環管 2 3および蒸発燃料放出 2 4 を介して給油管 1 3へと放出される。 燃料液面の高さが上昇するとき分離壁 5 は燃 料液面と接触した状態に維持される。 したがつて燃料が供給された ときに燃料室 7 内で発生する蒸発燃料の量は少な く維持される。 第一遮断弁 3 0 は燃料液面が第一遮断弁 3 0 に到達したときに循 環管 2 3 を遮断するために燃料室 7 内の燃料により閉弁せしめられ る。 その後、 分離壁 5 の中央部分 5 cの上方への動き力くばね 3 2 に より制限される。 図 3 に示したようにその後、 燃料液面が第二遮断 弁 3 1 に達したときに蒸発燃料放出管 2 4 を遮断するために燃料室 7 内の燃料により第二遮断弁 3 1 が閉弁せしめられる。 こう して燃 料液面上方の空間内の蒸発燃料が燃料室 7 および燃料タ ンク 1 から 完全に排除される。 When the fuel level rises, the fuel vapor in the space above the fuel level is discharged from the fuel chamber 7 to the fuel supply pipe 13 via the circulation pipe 23 and the fuel vapor release 24. When the fuel level rises, the separation wall 5 is kept in contact with the fuel level. Therefore, the amount of fuel vapor generated in the fuel chamber 7 when the fuel is supplied is kept small. The first shut-off valve 30 is closed by the fuel in the fuel chamber 7 to shut off the circulation pipe 23 when the fuel level reaches the first shut-off valve 30. Thereafter, the upward movement of the central portion 5 c of the separation wall 5 is limited by the spring 32. Thereafter, as shown in FIG. 3, when the fuel level reaches the second shut-off valve 31, the fuel chamber is shut off to shut off the fuel vapor discharge pipe 24. The second shut-off valve 31 is closed by the fuel in 7. In this way, the fuel vapor in the space above the fuel level is completely eliminated from the fuel chamber 7 and the fuel tank 1.
給油管 1 3 内の圧力は第一遮断弁 3 0 および第二遮断弁 3 1 が閉 弁されたときに低下する。 給油ノズルの圧力センサがこの低下した 圧力が予め定められた圧力より低いことを検出 したとき、 燃料室 7 内への燃料の供給が停止される。 それから燃料室 7 内の燃料の圧力 が給油管 1 3 内の燃料の圧力より高く なる。 したがって逆止弁 1 0 は燃料室 7 内の燃料により閉弁せしめられる。 このため燃料室 7 は 燃料室 7 内に蒸発燃料が存在しない状態で完全に密閉される。  The pressure in the oil supply pipe 13 decreases when the first shutoff valve 30 and the second shutoff valve 31 are closed. When the pressure sensor of the refueling nozzle detects that the reduced pressure is lower than a predetermined pressure, the supply of the fuel into the fuel chamber 7 is stopped. Then, the pressure of the fuel in the fuel chamber 7 becomes higher than the pressure of the fuel in the fuel supply pipe 13. Therefore, the check valve 10 is closed by the fuel in the fuel chamber 7. Therefore, the fuel chamber 7 is completely sealed in a state where the fuel vapor does not exist in the fuel chamber 7.
次に給油ノ ズルが給油管 1 3 の上方開口 1 3 aから引き出され、 それから蒸発燃料遮断弁 1 7 がばね付勢力により閉弁せしめられる 。 最後に蓋 1 4 が給油管 1 3 の上方開口 1 3 a に取り付けられる。 以下、 第一実施形態の内燃機関の運転中における燃料タ ンク 1 の 作動を説明する。  Next, the refueling nozzle is pulled out from the upper opening 13a of the refueling pipe 13 and then the fuel vapor shutoff valve 17 is closed by the spring bias. Finally, the lid 14 is attached to the upper opening 13 a of the fuel supply pipe 13. Hereinafter, the operation of the fuel tank 1 during operation of the internal combustion engine of the first embodiment will be described.
内燃機関の運転中、 燃料室 7 内の燃料量が少な く なる。 したがつ て燃料室 7 内の燃料液面の高さが低く なり、 分離壁 5 の中央部分 5 cが下降する。 図 4 に示したように分離壁 5 が燃料室 7 内へと下方 へ突出する。 分離壁 5 が下降したとき、 燃料室 7 が密閉されている ので燃料液面上方に空間は形成されない。 したがっていったん蒸発 燃料排除処理が実行されると燃料室 7 内における蒸発燃料の発生が 防止される。 このため燃料貯留装置に小さなチャ コ一ルキヤニスタ のみを設ければよく 、 或いはチヤ コールキ ヤニス夕を設ける必要が なく なる。  During the operation of the internal combustion engine, the amount of fuel in the fuel chamber 7 decreases. Accordingly, the height of the fuel level in the fuel chamber 7 decreases, and the central portion 5c of the separation wall 5 descends. As shown in FIG. 4, the separation wall 5 projects downward into the fuel chamber 7. When the separation wall 5 is lowered, no space is formed above the fuel level because the fuel chamber 7 is sealed. Therefore, once the evaporative fuel removal processing is executed, generation of evaporative fuel in the fuel chamber 7 is prevented. For this reason, it is only necessary to provide a small charcoal canister in the fuel storage device, or it is not necessary to provide a charcoal canister.
第一実施形態では燃料が燃料室 7 内で動いたとき第一遮断弁 3 0 および第二遮断弁 3 1 は開弁する。 したがって燃料室 7 内の燃料液 面上方に空間が形成され、 内燃機関が運転されているときにその空 間内で蒸発燃料が発生する可能性がある。 したがって第二実施形態 では燃料室 7 内へ燃料を供給すること以外の方法により蒸発燃料を 排除する。 In the first embodiment, when the fuel moves in the fuel chamber 7, the first shutoff valve 30 and the second shutoff valve 31 are opened. Therefore, a space is formed above the fuel level in the fuel chamber 7, and the space is formed when the internal combustion engine is operating. Evaporated fuel may be generated within the interval. Therefore, in the second embodiment, the evaporated fuel is eliminated by a method other than supplying the fuel into the fuel chamber 7.
以下、 本発明の第二実施形態の燃料貯留装置を説明する。  Hereinafter, a fuel storage device according to a second embodiment of the present invention will be described.
第二実施形態では図 5 に示したように第一実施形態の大気管 3 3 の代わりに空気ポンプ 3 5が第一接続管 3 4 を介して空気室 6 に接 続される。 空気ポ ンプ 3 5 は空気室 6 内の圧力を上昇する機能をす る  In the second embodiment, as shown in FIG. 5, an air pump 35 is connected to the air chamber 6 via a first connection pipe 34 instead of the air pipe 33 of the first embodiment. The air pump 35 functions to increase the pressure in the air chamber 6.
第一接続管 3 4 は第二接続管 3 6 を介して解放弁 3 7 に接続され る。 空気室 6 内の圧力が予め定められた圧力より高く なると解放弁 3 7が開弁し、 空気室 6 内の圧力が低下する。 なお上記予め定めら れた圧力は分離壁 5 を損傷してしま う圧力より低い。  The first connection pipe 34 is connected to the release valve 37 via the second connection pipe 36. When the pressure in the air chamber 6 becomes higher than a predetermined pressure, the release valve 37 opens, and the pressure in the air chamber 6 decreases. Note that the predetermined pressure is lower than the pressure at which the separation wall 5 is damaged.
解放弁 3 7 のダイアフ ラム 3 8 には小孔 3 9 が形成される。 小孔 3 9 は解放弁 3 7 の開弁または閉弁に係わらず第二接続管 3 6 を外 気と連通する。 小孔 3 9 の直径は空気ポンプ 3 5 が空気室 6 内の圧 力を上昇するこ とを妨げないような直径とされる。  A small hole 39 is formed in the diaphragm 38 of the release valve 37. The small hole 39 communicates the second connection pipe 36 with the outside air regardless of whether the release valve 37 is opened or closed. The diameter of the small hole 39 is set so as not to prevent the air pump 35 from increasing the pressure in the air chamber 6.
燃料タ ンク 1 内の最も高い位置において燃料ポンプ室 1 8 の上方 壁に レベルスィ ッ チ 5 7 が取り付けられる。 レベルスィ ッ チ 5 7 は 燃料液面がレベルスィ ッ チ 5 7 に達したとき、 すなわち燃料液面が 燃料タ ンク 1 内の最も高い位置に到達したときに電圧を出力する。 燃料貯留装置は電子制御装置 4 0 を具備する。 電子制御装置 4 0 はデジタルコ ン ピュータであり、 C P U (マイ ク ロプロセ ッ サ) 4 2 と、 R A M (ラ ンダムア クセスメ モ リ ) 4 3 と、 R O M ( リ ー ド オ ン リ メ モ リ ) 4 4 と、 B — R A M (バッ ク ア ッ プ R A M ) 4 5 と 、 入力ポー ト 4 6 と、 出力ポー ト 4 7 とを具備 し、 これらは双方向 バス 4 1 により相互接続されている。  A level switch 57 is attached to the upper wall of the fuel pump chamber 18 at the highest position in the fuel tank 1. The level switch 57 outputs a voltage when the fuel level reaches the level switch 57, that is, when the fuel level reaches the highest position in the fuel tank 1. The fuel storage device includes an electronic control device 40. The electronic control unit 40 is a digital computer, and includes a CPU (microprocessor) 42, RAM (random access memory) 43, and ROM (read-only memory) 4 4, B-RAM (backup RAM) 45, an input port 46, and an output port 47, which are interconnected by a bidirectional bus 41.
燃料液面がレベルスィ ツ チ 5 7 に達 したと きに レベルスィ ツ チ 5 7 内で生じる電圧は対応する A D変換器 4 8 を介して入力ポー ト 4 6 に入力される。 解放弁 3 7 の開弁または閉弁を示す電圧は対応す る A D変換器 4 8 を介して入力ポー ト 4 6 に入力される。 出力ポー ト 4 7 は駆動回路 4 9 を介して空気ポンプ 3 5 に接続される。 When the fuel level reaches level switch 57, level switch 5 The voltage generated in 7 is input to the input port 46 via the corresponding AD converter 48. The voltage indicating the opening or closing of the release valve 37 is input to the input port 46 via the corresponding AD converter 48. Output port 47 is connected to air pump 35 via drive circuit 49.
上記以外の構成は第一実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the first embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第二実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporated fuel elimination process of the second embodiment will be described.
第二実施形態では解放弁 3 7が開弁しているか否かが判別される 。 解放弁 3 7が閉弁しているときには空気室 6 内の圧力が蒸発燃料 排除処理を実行できる圧力であると判断する。  In the second embodiment, it is determined whether or not the release valve 37 is open. When the release valve 37 is closed, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be performed.
さ らに第二実施形態ではレベルスィ ツチ 5 7が作動されているか 否かが判別される。 レベルスィ ッチ 5 7が作動されていないときに は蒸発燃料排除処理を実行すべきであると判断する。  Further, in the second embodiment, it is determined whether or not the level switch 57 is operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
解放弁 3 7 が閉弁され且つレベルスィ ッチ 5 7が作動されていな いときには空気室 6 内の圧力を上昇するために空気ポンプ 3 5が作 動される。 したがって分離壁 5 の中央部分 5 cが下方部分 3 の底壁 3 c に向かって下方へと動く 。 このため空間を形成している燃料液 面の高さが上昇する。 蒸発燃料は循環管 2 3 および蒸発燃料放出管 2 4 を介して燃料室 7 から給油管 1 3 に放出される。  When the release valve 37 is closed and the level switch 57 is not operated, the air pump 35 is operated to increase the pressure in the air chamber 6. Thus, the central part 5c of the separating wall 5 moves downward toward the bottom wall 3c of the lower part 3. For this reason, the height of the fuel level that forms the space increases. The fuel vapor is discharged from the fuel chamber 7 to the fuel supply pipe 13 via the circulation pipe 23 and the fuel vapor discharge pipe 24.
空気室 6 内の圧力が蒸発燃料排除処理を実行できる圧力ではない と判断されたときには空気ポンプ 3 5が停止される。  When it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be performed, the air pump 35 is stopped.
第二実施形態では空気ポンプ 3 5 は燃料液面上方に形成された空 間から気体を放出するための手段または燃料液面の高さを上昇する ための手段に相当し、 レベルスィ ッチ 5 7 は燃料液面を検出するた めの手段に相当する。  In the second embodiment, the air pump 35 corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level. Corresponds to the means for detecting the fuel level.
以下、 図 6のフ ローチ ヤ 一 トを参照して第二実施形態の蒸発燃料 排除処理を説明する。 ステップ S 2 1 0 においてレベルスィ ッチ 5 7 が作動されている ( O N ) か否かが判別される。 レベルスィ ッチ 5 7が作動されてい ると きには蒸発燃料排除処理を実行できないと判断し、 ステップ S 2 1 2 に進んで空気ポ ンプ 3 5 を停止し、 処理を終了する。 一方、 レベルスィ ッチ 5 7が作動されていない ( O F F ) ときには蒸発燃 料排除処理を実行できると判断し、 ステップ S 2 1 4 に進む。 Hereinafter, the fuel vapor elimination process of the second embodiment will be described with reference to the flowchart of FIG. In step S210, it is determined whether or not the level switch 57 is operated (ON). When the level switch 57 is operated, it is determined that the evaporative fuel elimination process cannot be executed, the process proceeds to step S212, the air pump 35 is stopped, and the process ends. On the other hand, when the level switch 57 is not operated (OFF), it is determined that the evaporative fuel removal processing can be executed, and the process proceeds to step S2114.
ステップ S 2 1 4 では解放弁 3 7が開弁されているか否かが判別 される。 解放弁 3 7 が開弁されているときには蒸発燃料排除処理を 実行できないと判断し、 ステップ S 2 1 2 に進んで空気ポンプ 3 5 を停止し、 処理を終了する。 一方、 解放弁 3 7 が閉弁しているとき には蒸発燃料排除処理を実行すべきと判断し、 ステ ッ プ S 2 1 6 に 進んで蒸発燃料を燃料室 7 から排除するために空気ポンプ 3 5 を作 動し、 空気室 6 内の圧力を増大し、 処理を終了する。  In step S214, it is determined whether or not the release valve 37 is opened. When the release valve 37 is open, it is determined that the evaporative fuel elimination process cannot be executed, and the process proceeds to step S212, where the air pump 35 is stopped and the process ends. On the other hand, when the release valve 37 is closed, it is determined that the evaporative fuel removal processing should be performed, and the process proceeds to step S216 to remove the evaporative fuel from the fuel chamber 7 by the air pump. Activate 3 5 to increase the pressure in the air chamber 6 and end the process.
と ころで第一実施形態では蒸発燃料を燃料タ ンクから完全に排出 するためには燃料タ ンクが燃料でいっぱいになるまで燃料夕 ンク に 燃料を供給する必要がある。 したがって燃料タ ンクが燃料でいっぱ いになる前に燃料室 7 内への燃料の供給が停止すると蒸発燃料が燃 料室 7 から完全には排除されない。 そこで第三実施形態では燃料室 が燃料でいつぱいになる前に燃料室内への燃料の供給が停止された ときでも蒸発燃料を燃料室から完全に排除する。  However, in the first embodiment, in order to completely discharge the evaporated fuel from the fuel tank, it is necessary to supply fuel to the fuel tank until the fuel tank is full of fuel. Therefore, if the supply of fuel into the fuel chamber 7 is stopped before the fuel tank becomes full of fuel, the evaporated fuel is not completely removed from the fuel chamber 7. Therefore, in the third embodiment, even when the supply of fuel to the fuel chamber is stopped before the fuel chamber becomes full of fuel, the evaporated fuel is completely removed from the fuel chamber.
以下、 本発明の第三実施形態の燃料貯留装置を説明する。  Hereinafter, a fuel storage device according to a third embodiment of the present invention will be described.
第三実施形態では図 7 に示したように燃料夕 ンク 1 はキャ ップ蓋 オーブナスィ ッチ 5 0 を具備する。 オーブナスィ ッ チ 5 0 は蓋 1 4 を覆うためのキャ ップ蓋 (図示せず) に接続される。 オーブナスィ ツチ 5 0 はキャ ップ蓋が開かれたときに電圧を出力するように作動 され、 キャ ップ蓋が閉じ られるまで電圧を出力 し続ける。 したがつ てオーブナスィ ツチ 5 0 での電圧を検出する こ とで燃料が現在供給 されていると判断できる。 オーブナスィ ッチ 5 0 内で生じた電圧は 対応する A D変換器 4 8 を介して入力ポー ト 4 6 に入力される。 上記以外の構成は第二実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。 In the third embodiment, as shown in FIG. 7, the fuel tank 1 has a cap lid orb switch 50. The orb switch 50 is connected to a cap lid (not shown) for covering the lid 14. Ovenus switch 50 is activated to output a voltage when the cap lid is opened, and keeps outputting the voltage until the cap lid is closed. Therefore, the current supply of fuel is detected by detecting the voltage at the Ovenus switch 50. You can judge that it is done. The voltage generated in the orb switch 50 is input to the input port 46 via the corresponding AD converter 48. The configuration other than the above is the same as the configuration of the fuel storage device of the second embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第三実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporative fuel removal processing of the third embodiment will be described.
第三実施形態では解放弁 3 7 が開弁しているか否かが判別される 。 解放弁 3 7 が閉弁しているときには空気室 6 内の圧力が蒸発燃料 排除処理を実行できる圧力であると判断する。  In the third embodiment, it is determined whether or not the release valve 37 is open. When the release valve 37 is closed, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be performed.
さ らにキヤ ップ蓋オーブナスィ ツチ 5 0が作動されているか否か 及びレベルスィ ツチ 5 7が作動されていないか否かが判別される。 オーブナスィ ッチ 5 0が作動されており且つレベルスィ ッチ 5 7力く 作動されていないときには蒸発燃料排除処理を実行すべきと判断す o  Further, it is determined whether or not the cap lid orb switch 50 is operated and whether or not the level switch 57 is operated. When the orb switch 50 is activated and the level switch 57 is not activated, it is determined that the evaporative fuel removal processing should be executed.o
空気室 6 内の圧力が蒸発燃料排除処理を実行できる状態ではなく 、 且つ蒸発燃料排除処理を実行する必要がないときには、 キャ ップ 蓋を開く こ とが許可され、 燃料室 7 内への燃料の供給を開始する。 一方、 空気室 6 内の圧力が蒸発燃料排除処理を実行できる状態で あり、 且つ蒸発燃料排除処理を実行すべきであるときには、 空気室 6 内の圧力を上昇するために空気ポンプ 3 5が作動される。 したが つて分離壁 5 の中央部分 5 cが下降する。 このため燃料液面上方の 蒸発燃料が循環管 2 3 および蒸発燃料放出管 2 4 を介して燃料タ ン ク 1 から袷油管 1 3 に放出される。  When the pressure in the air chamber 6 is not in a state where the evaporative fuel elimination process can be executed and the evaporative fuel elimination process does not need to be executed, the opening of the cap lid is permitted, and the fuel in the fuel chamber 7 is opened. Start supplying. On the other hand, when the pressure in the air chamber 6 is in a state in which the evaporative fuel elimination process can be performed and the evaporative fuel elimination process should be performed, the air pump 35 operates to increase the pressure in the air chamber 6. Is done. Accordingly, the central portion 5c of the separation wall 5 descends. Therefore, the fuel vapor above the fuel level is discharged from the fuel tank 1 to the lined oil pipe 13 via the circulation pipe 23 and the fuel vapor discharge pipe 24.
その後、 空気室 6 内の圧力が蒸発燃料排除処理を実行できない状 態となつたとき、 または蒸発燃料排除処理を実行する必要がなく な つたと きには、 空気ポンプが停止され、 キャ ップ蓋を開けること力 許可され、 燃料室 7 内への燃料の供給が開始される。  Thereafter, when the pressure in the air chamber 6 becomes incapable of executing the evaporative fuel removal processing, or when it becomes unnecessary to perform the evaporative fuel removal processing, the air pump is stopped and the cap is stopped. The power to open the lid is permitted, and the supply of fuel into the fuel chamber 7 is started.
したがって空気ポンプ 3 5 は燃料液面上方に形成された空間から 気体を放出するための手段または燃料液面の高さを上昇するための 手段に相当 し、 レベルスィ ッ チ 5 7 は燃料液面の高さを検出するた めの手段に相当する。 Therefore, the air pump 35 comes out of the space formed above the fuel level. The level switch 57 corresponds to a means for releasing gas or a means for increasing the height of the fuel level, and the level switch 57 corresponds to a means for detecting the level of the fuel level.
第三実施形態によれば燃料室 7 内への燃料の供給が開始されたと き燃料液面の高さがより高い位置まで上昇せしめられている。 した がって燃料室 7 内における最も高い高さまで燃料液面の高さを上昇 するために供給すべき燃料の量は第一実施形態の燃料量より少ない 。 このため第三実施形態によれば燃料室が燃料でいつぱいになる前 に燃料室 7 内への燃料の供給が停止したときでも蒸発燃料を燃料室 7 から完全に排除することができる。  According to the third embodiment, when the supply of the fuel into the fuel chamber 7 is started, the height of the fuel level is raised to a higher position. Therefore, the amount of fuel to be supplied to increase the fuel level to the highest level in the fuel chamber 7 is smaller than the fuel amount of the first embodiment. Therefore, according to the third embodiment, the evaporated fuel can be completely removed from the fuel chamber 7 even when the supply of the fuel into the fuel chamber 7 is stopped before the fuel chamber becomes full of the fuel.
なお第三実施形態では給油管 1 3 内の燃料の高さが予め定められ た高さを越えたことを給油ノズルが検出 したとき、 燃料室内へ燃料 を供給するのに用いられている給油ノ ズルは燃料の供給を停止する In the third embodiment, when the fueling nozzle detects that the height of the fuel in the fueling pipe 13 exceeds a predetermined height, the fueling nozzle used to supply the fuel into the fuel chamber is detected. Quill shuts off fuel supply
。 また予め定められた高さは給油管 1 3 の内部空間へ開口する循環 管 2 3 の開口より低い。 . Also, the predetermined height is lower than the opening of the circulation pipe 23 opening into the internal space of the oil supply pipe 13.
以下、 図 8 のフ ローチヤ一トを参照して第三実施形態の蒸発燃料 排除処理を説明する。  Hereinafter, the fuel vapor removal processing of the third embodiment will be described with reference to the flowchart of FIG.
ステップ S 3 1 0 においてキャ ップ蓋オーブナスィ ッチ 5 0が作 動されている ( 0 N ) か否かが判別される。 オーブナスィ ッチ 5 0 が作動されているときにはステップ S 3 1 2 に進む。 一方、 ォ一プ ナスイ ッチ 5 0 が作動されていない ( O F F ) ときにはステップ S 3 1 8 に進んで空気ポンプ 3 5が停止され、 処理を終了する。  In step S310, it is determined whether or not the cap lid orb switch 50 is operated (0N). When the orb switch 50 is operated, the process proceeds to step S312. On the other hand, when the open switch 50 is not operated (OFF), the process proceeds to step S318, in which the air pump 35 is stopped, and the process ends.
ステップ S 3 1 2ではレベルスィ ッチ 5 7 が作動されている (0 N ) か否かが判別される。 レベルスィ ッチ 5 7が作動されていると きには、 蒸発燃料排除処理を実行する必要はないと判断し、 ステツ プ S 3 1 4 に進んで空気ポンプ 3 5 を停止し、 ステップ S 3 1 6 に 進んでキャ ップ蓋を開けることを許可し、 処理を終了する。 一方、 レベルスィ ッチ 5 7が作動されていない ( O F F ) ときにはステツ プ S 3 2 0 に進む。 In step S312, it is determined whether or not the level switch 57 is operated (0N). When the level switch 57 is operated, it is determined that the evaporative fuel removal processing does not need to be performed, and the process proceeds to step S314 to stop the air pump 35, and the process proceeds to step S31. Proceed to step 6 to permit opening of the cap lid and end the process. on the other hand, When the level switch 57 is not operated (OFF), the process proceeds to step S320.
ステップ S 3 2 0では解放弁 3 7が開弁しているか否かが判別さ れる。 解放弁 3 7 が開弁しているときには蒸発燃料排除処理を実行 できないと判断し、 ステップ S 3 1 4 に進んで空気ポンプ 3 5 を停 止し、 ステップ S 3 1 6 に進んでキャ ップ蓋を開けることを許可し 、 処理を終了する。 一方、 解放弁 3 7が閉弁しているときには蒸発 燃料排除処理を実行できると判断し、 ステップ S 3 2 2 に進んで空 気ポンプ 3 5 を作動し、 空気室 6 内の圧力を上昇し、 処理を終了す る  In step S320, it is determined whether or not the release valve 37 is open. When the release valve 37 is open, it is determined that the evaporative fuel elimination process cannot be executed, and the process proceeds to step S314 to stop the air pump 35, and proceeds to step S316 to cap. Allow the lid to open and end the process. On the other hand, when the release valve 37 is closed, it is determined that the evaporative fuel elimination process can be executed, and the process proceeds to step S322 to operate the air pump 35 to increase the pressure in the air chamber 6. , End the process
ところで第二実施形態では蒸発燃料排除処理を実行するために空 気ポンプ 3 5 および解放弁 3 7が用いられる。 したがって燃料貯留 装置の構成が複雑となり、 燃料貯留装置の製造費用が高く なる。 そ こで第四実施形態では蒸発燃料排除処理をより簡単な構成で実行す 以下、 第四実施形態の燃料貯留装置を説明する。  By the way, in the second embodiment, the air pump 35 and the release valve 37 are used to execute the evaporative fuel removal processing. Therefore, the configuration of the fuel storage device becomes complicated, and the manufacturing cost of the fuel storage device increases. Therefore, in the fourth embodiment, the fuel vapor elimination process is executed with a simpler configuration. Hereinafter, the fuel storage device of the fourth embodiment will be described.
第四実施形態では図 9 に示したように第二実施形態の空気ポンプ 3 5 、 解放弁 3 7 、 第一接続管 3 4 および第二接続管 3 6が排除さ れ、 大気管 3 3が燃料タ ンク 1 の上方部分 2 に接続されている。 第二実施形態のチャ コ一ルキヤニスタ 2 6 は排除されており、 電 磁弁 5 1 が第一蒸発燃料パージ管 2 5 および第二蒸発燃料パージ管 2 7 に接続されている。 給油管 1 3 は第一蒸発燃料パージ管 2 5、 第二蒸発燃料パージ管 2 7 および電磁弁 5 1 を介して吸気通路 5 2 に接続される。 電磁弁 5 1 は給油管 1 3 と吸気通路 5 2 との間の連 通状態を遮断する。  In the fourth embodiment, as shown in FIG. 9, the air pump 35, the release valve 37, the first connection pipe 34, and the second connection pipe 36 of the second embodiment are eliminated, and the atmosphere pipe 33 is removed. It is connected to the upper part 2 of the fuel tank 1. The chocolate canister 26 of the second embodiment is omitted, and the electromagnetic valve 51 is connected to the first evaporated fuel purge pipe 25 and the second evaporated fuel purge pipe 27. The fuel supply pipe 13 is connected to the intake passage 52 via the first evaporated fuel purge pipe 25, the second evaporated fuel purge pipe 27 and the solenoid valve 51. The solenoid valve 51 cuts off the communication between the oil supply pipe 13 and the intake passage 52.
燃料貯留装置は内部空間を冷却するための冷却水の温度に対応す る電圧を発生する温度セ ンサ 5 5 を具備する。 温度セ ンサ 5 5 は対 応する A D変換器 4 8 を介して入力ポー ト 4 6 に接铳される。 出力 ポー ト 4 7 は駆動回路 4 9 を介して電磁弁 5 1 に接続される。 The fuel storage device includes a temperature sensor 55 that generates a voltage corresponding to the temperature of the cooling water for cooling the internal space. Temperature sensor 5 5 Connected to input port 46 via corresponding AD converter 48. The output port 47 is connected to the solenoid valve 51 via a drive circuit 49.
上記以外の構成は第二実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the second embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第四実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporated fuel elimination process of the fourth embodiment will be described.
第四実施形態では冷却水温度が予め定められた温度 (例えば 7 0 ° C ) よ り高いか否かが判別される。 予め定められた温度は冷却水 が定常運転状態の内燃機関を冷却したときの冷却水の温度より高い 。 冷却水の温度が予め定められた温度より高いとき、 内燃機関の運 転状態は蒸発燃料排除処理を実行できる状態である。  In the fourth embodiment, it is determined whether or not the cooling water temperature is higher than a predetermined temperature (for example, 70 ° C.). The predetermined temperature is higher than the temperature of the cooling water when the cooling water cools the internal combustion engine in the steady operation state. When the temperature of the cooling water is higher than a predetermined temperature, the operating state of the internal combustion engine is a state in which the fuel vapor removal processing can be executed.
さ らに第四実施形態ではレベルスィ ツチ 5 7 が作動されているか 否かが判別される。 レベルスィ ツチ 5 7が作動されていないときに は蒸発燃料排除処理を実行すべきと判断する。  Further, in the fourth embodiment, it is determined whether or not the level switch 57 is operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
内燃機関の運転状態が蒸発燃料排除処理を実行できる状態であり 、 蒸発燃料排除処理を実行すべきときには、 電磁弁 5 1 が開弁され 、 吸気通路 5 2 内の負圧が燃料室 7 内へ導入される。 導入された負 圧は燃料室 7 から蒸発燃料を排出 し、 分離壁 5 の中央部分 5 cを下 降し、 燃料液面の高さを上昇する。  When the operation state of the internal combustion engine is a state in which the evaporative fuel elimination process can be executed, and the evaporative fuel elimination process is to be executed, the solenoid valve 51 is opened, and the negative pressure in the intake passage 52 enters the fuel chamber 7. be introduced. The introduced negative pressure discharges the fuel vapor from the fuel chamber 7, descends at the central portion 5 c of the separation wall 5, and increases the fuel level.
内燃機関の運転状態が蒸発燃料排除処理を実行できる状態でない とき、 または蒸発燃料排除処理を実行する必要がないときには電磁 弁 5 1 が閉弁される。  When the operating state of the internal combustion engine is not in a state in which the evaporative fuel elimination process can be executed, or when there is no need to execute the evaporative fuel elimination process, the electromagnetic valve 51 is closed.
したがって第四実施形態によれば空気ポンプおよび解放弁がない 簡単な構成の燃料貯留装置により蒸発燃料を燃料室から排除するこ とができる。 なお第四実施形態では燃料室から吸気通路への蒸発燃 料のパージが燃料液面上方に形成された空間から気体を排出するた めの手段または燃料液面の高さを上昇するための手段に相当 し、 レ ベルスィ ツチ 5 7 が燃料液面の高さを検出するための手段に相当す る o Therefore, according to the fourth embodiment, the evaporated fuel can be removed from the fuel chamber by the fuel storage device having a simple configuration without the air pump and the release valve. In the fourth embodiment, purging of the fuel vapor from the fuel chamber to the intake passage is performed by a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level. And the level switch 57 corresponds to the means for detecting the fuel level. O
さ らに第四実施形態において機関回転数、 機関負荷、 内燃機関の 燃焼室に導入される空気の量、 または燃焼室内の燃焼状態に基づい て蒸発燃料排除処理を制御してもよい。 例えば機関回転数、 機関負 荷または内燃機関の燃焼室に導入される空気の量が予め定められた 値より低いとき、 または燃焼状態が成層燃焼状態であるときには蒸 発燃料排除処理が停止される。  Further, in the fourth embodiment, the evaporative fuel removal processing may be controlled based on the engine speed, the engine load, the amount of air introduced into the combustion chamber of the internal combustion engine, or the combustion state in the combustion chamber. For example, when the engine speed, the engine load or the amount of air introduced into the combustion chamber of the internal combustion engine is lower than a predetermined value, or when the combustion state is a stratified combustion state, the evaporated fuel elimination process is stopped. .
以下、 図 1 0のフ ローチヤ一 卜を参照して第四実施形態の蒸発燃 料排除処理を説明する。  Hereinafter, the fuel vapor removal processing according to the fourth embodiment will be described with reference to the flowchart of FIG. 10.
ステップ S 4 1 0 においてレベルスィ ッチ 5 7が作動されている ( O N ) か否かが判別される。 レベルスィ ッチ 5 7 が作動されてい るときには蒸発燃料排除処理を実行する必要がないと判断し、 ステ ップ S 4 1 2 に進んで電磁弁 5 1 を閉弁し、 処理を終了する。 一方 、 レベルスィ ッチ 5 7 が作動されていない ( O F F ) ときにはステ ップ S 4 1 4 に進む。  In step S410, it is determined whether or not the level switch 57 is operated (ON). When the level switch 57 is operated, it is determined that the evaporative fuel elimination process does not need to be performed, and the process proceeds to step S412 to close the solenoid valve 51 and end the process. On the other hand, when the level switch 57 is not operated (OFF), the process proceeds to step S414.
ステップ S 4 1 4では冷却水の温度 Tが予め定められた温度 T 0 より高い (丁〉 T 0 ) か否かが判別される。 T〉 T 0 であるときに は内燃機関の運転状態が蒸発燃料排除処理を実行できる状態にある と判断し、 ステップ S 4 1 6 に進んで電磁弁 5 1 を開弁し、 処理を 終了する。 一方、 T≤ T 0 であるときには内燃機関の運転状態が蒸 発燃料排除処理を実行できる状態にないと判断し、 ステップ S 4 1 2 に進んで電磁弁 5 1 を閉弁し、 処理を終了する。  In step S414, it is determined whether the temperature T of the cooling water is higher than a predetermined temperature T0 (T0). When T> T 0, it is determined that the operating state of the internal combustion engine is in a state in which the evaporative fuel removal processing can be executed, and the process proceeds to step S 4 16 to open the solenoid valve 51 and end the processing. . On the other hand, when T≤T 0, it is determined that the operating state of the internal combustion engine is not in a state in which the evaporative fuel elimination process can be executed, and the process proceeds to step S 4 12 to close the solenoid valve 51, and the process ends. I do.
ところで第四実施形態ではチ ャ コ一ルキヤニスタを燃料貯留装置 に設けるべきである場合、 チヤ コールキヤニスタは袷油管 1 3 と電 磁弁 5 1 との間の第一蒸発燃料パージ管 2 5 に設けられる。 チ ャ コ —ルキヤニス夕 は電磁弁 5 1 が開弁したと き にチ ヤ コールキ ヤニス タ内の圧力が過剰に低く なるこ とを回避し、 電磁弁 5 1 が閉弁した ときに燃料室 7 内の圧力が過剰に高く なることを回避するために外 気と連通する。 したがって第四実施形態の燃料貯留装置がチ ャ コ一 ルキヤニスタを具備する場合、 チ ャ コ一ルキヤニス夕が外気と連通 しているため、 負圧が燃料室 7 内に導入されず、 燃料室 7 内の蒸発 燃料が排除されない。 そこで第五実施形態では燃料貯留装置がチ ヤ コールキ ヤ ニスタを具備する場合でも負圧が燃料室 7 内に導入され るよつ にする。 By the way, in the fourth embodiment, when a charcoal canister should be provided in the fuel storage device, the charcoal canister is provided in the first evaporative fuel purge pipe 25 between the lined oil pipe 13 and the electromagnetic valve 51. Provided. When the solenoid valve 51 opens, the pressure inside the charcoal canister is prevented from becoming excessively low when the solenoid valve 51 opens, and the solenoid valve 51 closes. Sometimes it communicates with the outside air to prevent the pressure in the fuel chamber 7 from becoming excessively high. Therefore, when the fuel storage device of the fourth embodiment includes a charcoal canister, the negative pressure is not introduced into the fuel chamber 7 because the charcoal canister communicates with the outside air. Evaporated fuel inside is not excluded. Therefore, in the fifth embodiment, even when the fuel storage device includes a charcoal canister, a negative pressure is introduced into the fuel chamber 7.
以下、 本発明の第五実施形態の燃料貯留装置を説明する。  Hereinafter, a fuel storage device according to a fifth embodiment of the present invention will be described.
第五実施形態では図 1 1 に示したように給油管 1 3 と電磁弁 5 1 との間の第一蒸発燃料パージ管 2 5 にチ ャ コ一ルキヤニスタ 2 6力く 設けられる。 チ ヤ コールキ ヤニスタ 2 6 は大気解放管 2 8 を介して 外気と連通する。  In the fifth embodiment, as shown in FIG. 11, a fuel canister 26 is provided in a first evaporative fuel purge pipe 25 between an oil supply pipe 13 and a solenoid valve 51. The charcoal canister 26 communicates with the outside air through an atmosphere release pipe 28.
大気解放管 2 8 には大気解放管 2 8 を遮断するための制御弁 5 8 が設けられる。 制御弁 5 8 は正圧弁および負圧弁により構成される 。 さ らに制御弁 5 8 は予め定められた正圧で開弁してチ ャ コ 一ルキ ヤ ニスタ 2 6 内の圧力を低下し、 予め定められた負圧で開弁してチ ヤ コ 一ルキヤ ニスタ 2 6 内の圧力を上昇する。 予め定められた正圧 は燃料タ ンク 1 、 チ ヤ コールキ ヤニスタ 2 6 、 これらに関連する構 成部品、 および分離壁 5が耐える こ とができる圧力、 または蒸発燃 料が燃料タ ンク 1 、 チ ヤコールキヤニスタ 2 6 またはこれらに関連 する構成部品から流出しない圧力より低い。 また予め定められた負 圧は燃料タ ンク 1 、 チャ コ一ルキヤ ニス夕 2 6 、 これらに関連する 構成部品、 および分離壁 5が耐えられる圧力より高い。  The air release pipe 28 is provided with a control valve 58 for shutting off the air release pipe 28. The control valve 58 includes a positive pressure valve and a negative pressure valve. Further, the control valve 58 is opened at a predetermined positive pressure to reduce the pressure in the chamber canister 26, and is opened at a predetermined negative pressure to open the chamber. Raise the pressure in Lucyanister 26. The predetermined positive pressure is the pressure that the fuel tank 1, the charcoal canister 26, their associated components and the separating wall 5 can withstand, or the evaporative fuel is the fuel tank 1, It is below the pressure at which it does not flow out of the Yakor Canister 26 or related components. The predetermined negative pressure is higher than the pressure that the fuel tank 1, the chocolate tank 26, related components and the separation wall 5 can withstand.
上記以外の構成は第四実施形態の燃料貯留装置の構成と同 じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the fourth embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第五実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporative fuel removal processing of the fifth embodiment will be described.
第五実施形態では冷却水の温度が予め定められた温度より高いか 否かが判別される。 冷却水の温度が予め定められた温度より高いと きには、 冷却水の温度が蒸発燃料排除処理を実行できる温度である と判断する。 予め定められた温度は冷却水が定常運転状態にある内 燃機関を冷却したときの冷却水の温度より高い。 In the fifth embodiment, whether the temperature of the cooling water is higher than a predetermined temperature It is determined whether or not it is. When the temperature of the cooling water is higher than a predetermined temperature, it is determined that the temperature of the cooling water is a temperature at which the evaporative fuel removal processing can be executed. The predetermined temperature is higher than the temperature of the cooling water when cooling the internal combustion engine in which the cooling water is in a steady operation state.
さ らに第五実施形態ではレベルスィ ツチ 5 7 が作動されているか 否かが判別される。 レベルスィ ッチ 5 7が作動されていないときに は蒸発燃料排除処理を実行すべきと判断する。  Further, in the fifth embodiment, it is determined whether or not the level switch 57 is operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
冷却水の温度が蒸発燃料排除処理を実行できる温度であり、 蒸発 燃料排除処理を実行すべきときには、 吸気通路 5 2 内の負圧を第二 蒸発燃料パージ管 2 7 を介してチヤ コールキ ヤニスタ 2 6 に導入す るために電磁弁 5 1 が開弁される。 負圧がチ ヤ コールキヤニスタ 2 6 に導入されたとき、 制御弁 5 8 の作用によりチヤ コールキヤニス タ 2 6 内の圧力は予め定められた正圧より低く且つ予め定められた 負圧より高い。 もちろんチヤコールキヤニスタ 2 6 内の圧力が予め 定められた負圧より低く なつたときには、 制御弁 5 8が開弁し、 予 め定められた負圧よ り低い負圧が燃料室 7 に導入されることはなく 、 すなわち予め定められた負圧よ り高い負圧だけが燃料室 7 に導入 される。 したがって吸気通路 5 2 内の負圧が第一蒸発燃料パージ管 2 5、 循環管 2 3 および蒸発燃料放出管 2 4 を介して燃料室 7 内に 導入される。 このため第五実施形態によればチヤ コ一ルキヤニス夕 を備えた燃料タ ンクにおいても、 燃料液面上方の蒸発燃料を排除す るために吸気通路内の負圧が燃料室 7 内に導入される。  When the temperature of the cooling water is a temperature at which the evaporative fuel elimination process can be executed, and the evaporative fuel elimination process is to be executed, the negative pressure in the intake passage 52 is reduced through the second evaporative fuel purge pipe 27 to the charcoal canister 2. Solenoid valve 51 is opened for introduction to 6. When a negative pressure is introduced into the charcoal canister 26, the pressure in the charcoal canister 26 is lower than a predetermined positive pressure and higher than a predetermined negative pressure by the action of the control valve 58. Of course, when the pressure in the charcoal canister 26 becomes lower than the predetermined negative pressure, the control valve 58 opens, and a negative pressure lower than the predetermined negative pressure is introduced into the fuel chamber 7. That is, only negative pressure higher than a predetermined negative pressure is introduced into the fuel chamber 7. Therefore, the negative pressure in the intake passage 52 is introduced into the fuel chamber 7 via the first evaporated fuel purge pipe 25, the circulation pipe 23, and the evaporated fuel discharge pipe 24. For this reason, according to the fifth embodiment, even in the fuel tank provided with the fuel tank, the negative pressure in the intake passage is introduced into the fuel chamber 7 in order to eliminate the evaporated fuel above the fuel level. You.
第五実施形態では燃料室から吸気通路への蒸発燃料のパージが燃 料液面上方に形成される空間から気体を放出するための手段または 燃料液面の高さを上昇するための手段に相当 し、 レベルスィ ツチ 5 7 は燃料液面の高さを検出するための手段に相当する。  In the fifth embodiment, purging of fuel vapor from the fuel chamber to the intake passage corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level. The level switch 57 corresponds to a means for detecting the fuel level.
なお冷却水の温度が蒸発燃料排除処理を実行できる温度ではない 、 または蒸発燃料排除処理を実行する必要がないと判断したときに は、 電磁弁 5 1 は閉弁せしめられる。 Note that the temperature of the cooling water is not a temperature at which the evaporative fuel removal processing can be performed. When it is determined that there is no need to execute the evaporative fuel removal processing, the solenoid valve 51 is closed.
以下、 図 1 2 のフ ローチ ャー トを参照して第五実施形態の蒸発燃 料排除処理を説明する。  Hereinafter, the evaporative fuel removal process of the fifth embodiment will be described with reference to the flowchart of FIG.
ステ ッ プ S 5 1 0 においてレベルスィ ッ チ 5 7 が作動されている ( O N ) か否かが判別される。 レベルスィ ツチ 5 7が作動されてい るときには蒸発燃料排除処理を実行する必要はないと判断し、 ステ ップ S 5 1 4 に進んで電磁弁 5 1 を閉弁し、 処理を終了する。 一方 、 レベルスィ ッチ 5 7が作動されていない (0 F F ) ときには蒸発 燃料排除処理を実行すべきであると判断し、 ステップ S 5 1 6 に進 む。  In step S510, it is determined whether or not the level switch 57 is operated (ON). When the level switch 57 is operated, it is determined that it is not necessary to execute the evaporative fuel removal processing, and the process proceeds to step S514 to close the solenoid valve 51 and end the processing. On the other hand, when the level switch 57 is not operated (0 FF), it is determined that the evaporative fuel elimination process should be performed, and the process proceeds to step S 516.
ステップ S 5 1 6では冷却水の温度 Tが予め定められた温度 T 0 より高い ( T〉 T 0 ) か否かが判別される。 T〉 T 0であるときに は冷却水の温度が蒸発燃料排除処理を実行できる温度ではなく 、 ス テツプ S 5 1 4 に進んで電磁弁 5 1 が閉弁され、 処理を終了する。 一方、 T≤ T Oであるときには冷却水の温度が蒸発燃料排除処理を 実行できる温度であり、 ステップ S 5 1 8 に進んで燃料室 7 内に負 圧を導入するために電磁弁 5 1 が開弁され、 処理を終了する。  In step S516, it is determined whether the temperature T of the cooling water is higher than a predetermined temperature T0 (T> T0). When T> T0, the temperature of the cooling water is not the temperature at which the evaporative fuel removal processing can be executed, and the process proceeds to step S514, where the solenoid valve 51 is closed and the processing ends. On the other hand, when T≤TO, the temperature of the cooling water is a temperature at which the evaporative fuel elimination process can be executed, and the process proceeds to step S518 to open the solenoid valve 51 to introduce a negative pressure into the fuel chamber 7. The process is terminated and the process is terminated.
ところで第三実施形態では空気室 6 内の圧力は空気ポンプが作動 されたときに解放弁 3 7が開弁する圧力に維持される。 空気ポンプ 3 5 が停止された後、 空気室 6 内の圧力が解放弁 3 7 の小孔 3 9 を 通って解放され、 大気圧に維持される。  By the way, in the third embodiment, the pressure in the air chamber 6 is maintained at the pressure at which the release valve 37 opens when the air pump is operated. After the air pump 35 is stopped, the pressure in the air chamber 6 is released through the small hole 39 of the release valve 37, and is maintained at the atmospheric pressure.
小孔 3 9 は空気室 6 内の圧力が突然低下することを防ぎ、 且つ空 気ポンプ 3 5 による空気室 6 内の圧力の上昇を妨げないよう に小さ いため小孔 3 9 により空気室 6 内の圧力が十分に解放されるまでに はある程度の時間がかかる。 したがって空気室 6 内の圧力が高すぎ る場合には燃料が給油ノ ズルを通って燃料室 7 内に流入できない。 そこで第六実施形態では空気室 6 内の圧力が上昇した後でさえも燃 料が給油ノ ズルを通って燃料室 7 に流入できるようにする。 The small holes 39 are small enough to prevent the pressure inside the air chamber 6 from suddenly dropping and to prevent the air pump 35 from increasing the pressure inside the air chamber 6. It takes some time for the pressure to be fully released. Therefore, if the pressure in the air chamber 6 is too high, fuel cannot flow into the fuel chamber 7 through the fueling nozzle. Therefore, in the sixth embodiment, even after the pressure in the air chamber 6 increases, fuel can flow into the fuel chamber 7 through the refueling nozzle.
以下、 第六実施形態の燃料貯留装置を説明する。  Hereinafter, the fuel storage device of the sixth embodiment will be described.
第六実施形態では図 1 3 に示したよう に第二解放弁 5 9が第二接 続管 3 6 に接続される。 第二解放弁 5 9 は空気室 6 内の圧力が第二 の予め定められた圧力より高いときに空気室 6 内の圧力を解放する ために開弁される。 第二の予め定められた圧力は燃料が給油ノ ズル により供給されたときの燃料の圧力より低い。 第二解放弁 5 9から 解放された空気の量は空気ポンプ 3 5 により吐出された空気の量よ り少な く 、 且つ解放弁 3 7 の小孔 3 9 と通って流出する空気の量よ り多い。  In the sixth embodiment, the second release valve 59 is connected to the second connection pipe 36 as shown in FIG. The second release valve 59 is opened to release the pressure in the air chamber 6 when the pressure in the air chamber 6 is higher than a second predetermined pressure. The second predetermined pressure is lower than the pressure of the fuel when the fuel was supplied by the refueling nozzle. The amount of air released from the second release valve 59 is less than the amount of air discharged by the air pump 35 and the amount of air flowing out through the small hole 39 of the release valve 37. Many.
上記以外の構成は第三実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the third embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第六実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporated fuel elimination process of the sixth embodiment will be described.
第六実施形態の蒸発燃料排除処理は第三実施形態と同様にして実 行される。 また第三実施形態と同様に空気ポンプ 3 5 はレベルスィ ツチ 5 7 が作動されているとき又は解放弁 3 7が開弁されていると きには停止される。  The evaporative fuel removal process of the sixth embodiment is executed in the same manner as in the third embodiment. Further, similarly to the third embodiment, the air pump 35 is stopped when the level switch 57 is operated or when the release valve 37 is opened.
第六実施形態では空気室 6 内の圧力は空気ポンプ 3 5が停止され た後における第二の予め定められた圧力より高い。 したがって空気 室 6 内の圧力は第三実施形態より も早期に燃料が給油ノ ズルにより 供給されたときの燃料の圧力より低く なる。 このため燃料が給油ノ ズルを通って燃料室 7 内に流入できる。  In the sixth embodiment, the pressure in the air chamber 6 is higher than the second predetermined pressure after the air pump 35 is stopped. Therefore, the pressure in the air chamber 6 becomes lower than the fuel pressure when the fuel is supplied by the fueling nozzle earlier than in the third embodiment. Therefore, fuel can flow into the fuel chamber 7 through the fueling nozzle.
さ らに第六実施形態では空気室内の圧力の上昇率は圧力が第二解 放弁 5 9 の開弁圧と解放弁 3 7 の開弁圧との間の範囲にあるとき第 三実施形態における空気室内の圧力の上昇率より低い。  Furthermore, in the sixth embodiment, the rate of increase of the pressure in the air chamber is determined when the pressure is in a range between the opening pressure of the second release valve 59 and the opening pressure of the release valve 37. Is lower than the rate of increase of the pressure in the air chamber.
第六実施形態のフロ ーチヤ 一 トは第三実施形態のフ ロ ーチ ャー ト と同じである。 したがって説明は省略する。 The flowchart of the sixth embodiment is the flowchart of the third embodiment. Is the same as Therefore, description is omitted.
ところで第六実施形態では空気室 6 内の圧力が第二の予め定めら れた圧力より高いときには空気室 6 内の圧力は空気室 6 内の圧力が 第二解放弁 5 9 により解放されながら空気ポンプ 3 5 により増大さ れる。 したがって第六実施形態での空気室 6 内の圧力の上昇率は第 二解放弁を具備していない第三実施形態での空気室 6 内の圧力の上 昇率より低い。 このため第六実施形態ではオーブナスィ ッチ 5 0力く 作動されたときからキヤ ップ蓋を開く こ とが許可されるまでの時間 は第三実施形態における時間より長い。 そこで第七実施形態では空 気室 6 内の圧力が増大された後においても燃料が給油ノ ズルを通つ て燃料室 7 内に流入でき、 且つ空気室内の圧力の上昇率が第六実施 形態における空気室内の圧力の上昇率より大き く なるようにする。 以下、 本発明の第七実施形態の燃料貯留装置を説明する。  By the way, in the sixth embodiment, when the pressure in the air chamber 6 is higher than the second predetermined pressure, the pressure in the air chamber 6 is increased while the pressure in the air chamber 6 is released by the second release valve 59. Increased by pump 35. Therefore, the rate of increase in the pressure in the air chamber 6 in the sixth embodiment is lower than the rate of increase in the pressure in the air chamber 6 in the third embodiment without the second release valve. For this reason, in the sixth embodiment, the time from when the orb switch 50 is operated forcibly until the opening of the cap lid is permitted is longer than the time in the third embodiment. Therefore, in the seventh embodiment, even after the pressure in the air chamber 6 is increased, the fuel can flow into the fuel chamber 7 through the fuel nozzle and the rate of increase in the pressure in the air chamber is reduced in the sixth embodiment. The rate of increase of the pressure in the air chamber at Hereinafter, a fuel storage device according to a seventh embodiment of the present invention will be described.
第七実施形態では図 1 4 に示したように解放弁 3 7および第二解 放弁 5 9 の代わりに電磁弁 6 0が第二接続管 3 6 に接続される。 電 磁弁 6 0 は対応する駆動回路 4 9 を介して出力ポンプ 4 7 に接続さ れ、 電子制御装置 4 0 により制御される。 電磁弁 6 0 は空気室 6 と 外気との間の連通状態を遮断する。  In the seventh embodiment, a solenoid valve 60 is connected to the second connection pipe 36 instead of the release valve 37 and the second release valve 59 as shown in FIG. The solenoid valve 60 is connected to the output pump 47 via a corresponding drive circuit 49 and is controlled by the electronic control unit 40. The solenoid valve 60 shuts off the communication between the air chamber 6 and the outside air.
空気室 6 内の圧力を検出するための圧力センサ 6 1 が燃料タ ンク 1 の上方部分 2 に取り付けられる。 圧力セ ンサ 6 1 は対応する A D 変換器 4 8 を介して入力ポー ト 4 6 に接続される。  A pressure sensor 61 for detecting the pressure in the air chamber 6 is attached to the upper part 2 of the fuel tank 1. The pressure sensor 61 is connected to the input port 46 via the corresponding AD converter 48.
上記以外の構成は第六実施形態の燃料貯留装置の構成と同 じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the sixth embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第七実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporated fuel elimination process of the seventh embodiment will be described.
第七実施形態では空気室 6 内の圧力が予め定められた最大圧力よ り低いか否かが判別される。 予め定められた最大圧力は分離壁 5 力《 空気室 6 内の圧力により損傷を受ける圧力より低い。 空気室 6 内の 圧力が予め定められた最大圧力より低いときには、 内燃機関および 燃料タ ンク 1 の状態が蒸発燃料排除処理を実行できる状態にあると 判断する。 In the seventh embodiment, it is determined whether the pressure in the air chamber 6 is lower than a predetermined maximum pressure. The predetermined maximum pressure is lower than the pressure which is damaged by the pressure in the separation wall 5 <the air chamber 6. In air chamber 6 When the pressure is lower than the predetermined maximum pressure, it is determined that the state of the internal combustion engine and the fuel tank 1 is in a state where the evaporative fuel removal processing can be executed.
さ らに第七実施形態ではキャ ップ蓋オーブナスィ ッチ 5 0 と レべ ルスイ ッチ 5 7 とが作動されているか否かが判別される。 キャ ップ 蓋オーブナスィ ッチ 5 0 が作動されており且つレベルスィ ッチ 5 7 が作動されていないときには、 蒸発燃料排除処理を実行すべきと判 断 ^" 0。  Further, in the seventh embodiment, it is determined whether or not the cap lid orb switch 50 and the level switch 57 are operated. When the cap lid orb switch 50 is activated and the level switch 57 is not activated, it is determined that the evaporative fuel removal processing should be executed ^ "0.
さ らに第七実施形態では空気室 6 内の圧力が第二の予め定められ た圧力より低いか否かが判別される。 第二の予め定められた圧力は 燃料が給油ノ ズルにより供給されたときの燃料の圧力より低い。 空 気室 6 内の圧力が第二の予め定められた圧力より低いときには、 空 気室 6 内の圧力がキヤ ップ蓋を開く ことを許可できる圧力であると 判断する。  Furthermore, in the seventh embodiment, it is determined whether the pressure in the air chamber 6 is lower than a second predetermined pressure. The second predetermined pressure is lower than the pressure of the fuel when the fuel was supplied by the refueling nozzle. When the pressure in the air chamber 6 is lower than the second predetermined pressure, it is determined that the pressure in the air chamber 6 is a pressure that allows the opening of the cap lid.
内燃機関および燃料タ ンク 1 の状態が蒸発燃料排除処理を実行で きる状態であり、 蒸発燃料排除処理を実行すべきときには、 電磁弁 6 0が閉弁され、 空気ポンプ 3 5が作動され、 空気室 6 内の圧力が 上昇される。 したがって燃料液面上方の蒸発燃料が循環管 2 3およ び蒸発燃料放出管 2 4 を介して燃料室 7から放出される。 第七実施 形態では空気室 6 内の圧力の上昇率は第六実施形態での空気室内の 圧力の上昇率より高い。  The state of the internal combustion engine and the fuel tank 1 is a state in which the evaporative fuel elimination process can be executed. When the evaporative fuel elimination process is to be executed, the solenoid valve 60 is closed, the air pump 35 is operated, and the air The pressure in chamber 6 is increased. Therefore, the fuel vapor above the fuel level is discharged from the fuel chamber 7 through the circulation pipe 23 and the fuel vapor discharge pipe 24. In the seventh embodiment, the rate of increase in the pressure in the air chamber 6 is higher than the rate of increase in the pressure in the air chamber in the sixth embodiment.
蒸発燃料排除処理を実行する必要がないときには、 空気ポンプ 3 5が停止され、 電磁弁 6 0が開弁されて空気室 6 内の圧力を第二の 予め定められた圧力より低く し、 キャ ップ蓋を開く こ とを許可する 内燃機関および燃料タ ンク 1 の状態が蒸発燃料排除処理を実行で きる状態ではないとき、 空気ポンプ 3 5が停止され、 電磁弁 6 0力く 開弁されて空気室 6 内の圧力を予め定められた最大圧力より低くす 第七実施形態では空気ポンプ 3 5 が燃料液面上方に形成された空 間から気体を放出するための手段または燃料液面の高さを上昇する ための手段に相当 し、 レベルスィ ッ チ 5 7 は燃料液面の高さを検出 するための手段に相当する。 When it is not necessary to execute the evaporative fuel removal processing, the air pump 35 is stopped, the solenoid valve 60 is opened, and the pressure in the air chamber 6 is made lower than the second predetermined pressure, and the air pump 35 is stopped. When the internal combustion engine and the fuel tank 1 are not in a state in which the evaporative fuel removal processing can be executed, the air pump 35 is stopped and the solenoid valve 60 is turned on. The valve is opened to lower the pressure in the air chamber 6 below a predetermined maximum pressure.In the seventh embodiment, the air pump 35 is used to release gas or fuel from a space formed above the fuel level. The level switch 57 corresponds to a means for detecting the height of the fuel level, and the level switch 57 corresponds to a means for detecting the level of the fuel level.
以下、 図 1 5 のフ ローチ ャー トを参照して第七実施形態の蒸発燃 料排除処理を説明する。  Hereinafter, the evaporative fuel removal process of the seventh embodiment will be described with reference to the flowchart of FIG.
スィ ッチ 7 1 0 ではキャ ップ蓋オーブナスィ ッチ 5 0が作動され ている ( O N ) か否かが判別される。 オーブナスィ ッチ 5 0が作動 されているときにはステップ S 7 1 2 に進む。 一方、 ォ一プナスィ ツチ 5 0が作動されていない (O F F ) とき、 すなわち燃料室 7 内 への燃料の供給が終了したときにはステップ S 7 2 2 に進んで電磁 弁 6 0が閉弁されて空気室 6 内の圧力を比較的高く維持し、 ステツ プ S 7 2 4 に進んで空気ポンプ 3 5が停止され、 ステップ S 7 2 6 に進んで給油フラグがリ セッ 卜され、 処理を終了する。 袷油フラグ は空気室 6 内の圧力が蒸発燃料排除処理を実行できない圧力である ときにセッ 卜され、 燃料室内への燃料の供給が終了したときにリ セ ッ 卜される。  In the switch 71, it is determined whether or not the cap lid orb switch 50 is operated (ON). When the orb switch 50 is operated, the process proceeds to step S712. On the other hand, when the open switch 50 is not operated (OFF), that is, when the supply of the fuel into the fuel chamber 7 is completed, the process proceeds to step S722, in which the electromagnetic valve 60 is closed and the air is released. The pressure in the chamber 6 is maintained relatively high, the flow proceeds to step S724, the air pump 35 is stopped, the flow proceeds to step S726, the refueling flag is reset, and the processing ends. The lined oil flag is set when the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing cannot be performed, and is reset when the supply of fuel into the fuel chamber is completed.
ステップ S 7 1 2ではレベルスィ ッチ 5 7 が作動されている (〇 N ) か否かが判別される。 レベルスィ ッチ 5 7が作動されていると きには蒸発燃料排除処理を実行する必要がないと判断し、 ステ ッ プ S 7 4 2 に進んで空気ポンプ 3 5 が停止され、 ステップ S 7 4 4 に 進んで電磁弁 6 0が開弁されて空気室 6 内の圧力を第二の予め定め られた圧力より低く維持し、 ステップ S 7 4 6 に進んでキヤ ップ蓋 を開けることを許可し、 処理を終了する。  In step S712, it is determined whether or not the level switch 57 is operated (〇N). When the level switch 57 is operated, it is determined that it is not necessary to execute the evaporative fuel removal processing.Then, the process proceeds to step S 742, the air pump 35 is stopped, and the step S 7 4 is performed. Proceeding to step 4, the solenoid valve 60 is opened to maintain the pressure in the air chamber 6 below the second predetermined pressure, and proceeding to step S7 46 to permit the cap lid to be opened And ends the processing.
—方、 ステ ッ プ S 7 1 2 において レベルスィ ッ チ 5 7 が作動され ていない (O F F ) ときには蒸発燃料排除処理を実行すべきと判断 し、 ステップ S 7 1 4 に進む。 On the other hand, the level switch 57 is activated in step S712. If not (OFF), it is determined that the evaporative fuel removal processing should be executed, and the flow advances to step S714.
ステップ S 7 1 4では空気室 6 内の圧力 Pが予め定められた最大 圧力 P m a xより低い ( Pく P m a x ) か否かが判別される。 P < P m a xであるときには空気室 6 内の圧力がすでに予め定められた 最大圧力より高いので空気室 6 内の圧力が蒸発燃料排除処理を実行 できる圧力ではないと判断し、 ステ ップ S 7 2 8 に進んで袷油フラ グをセッ 卜 し、 ステップ S 7 3 0 に進んで電磁弁 6 0 を開弁して空 気室 6 内の圧力を低下し、 ステップ S 7 3 2 に進む。  In step S714, it is determined whether the pressure P in the air chamber 6 is lower than a predetermined maximum pressure Pmax (P-Pmax). When P <P max, the pressure in the air chamber 6 is higher than the predetermined maximum pressure, so it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed. Proceeding to 28, the lined oil flag is set, and proceeding to step S730, the solenoid valve 60 is opened to reduce the pressure in the air chamber 6, and then proceeding to step S732.
ステップ S 7 1 6では耠油フラグがリ セッ トされているか否かが 判別される。 給油フラグがリセッ 卜されているときには空気室 6 内 の圧力が蒸発燃料排除処理を実行できる圧力にあると判断し、 ステ ップ S 7 1 8 に進んで電磁弁 6 0が開弁され、 ステップ S 7 2 0 に 進んで空気ポンプ 3 5が作動され、 処理を終了する。  In step S716, it is determined whether or not the oil flag has been reset. When the refueling flag is reset, it is determined that the pressure in the air chamber 6 is at a pressure at which the evaporative fuel elimination process can be executed, and the process proceeds to step S 718 to open the solenoid valve 60. Proceeding to S720, the air pump 35 is operated, and the process ends.
—方、 給油フラグがセッ トされているときには空気室 6 内の圧力 が蒸発燃料排除処理を実行できる圧力ではないと判断し、 ステップ S 7 3 2 に進む。  On the other hand, when the refueling flag is set, it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed, and the flow proceeds to step S732.
ステップ S 7 3 2では空気室 6 内の圧力 Pが第二の予め定められ た圧力 P 2 より低い ( P < P 2 ) か否かが判別される。 P < P 2 で あるときには空気室 6 内の圧力が燃料室 7 内への燃料の供給を許可 できる圧力であると判断し、 ステップ S 7 3 4 に進んで電磁弁 6 0 が閉弁され、 ステップ S 7 3 6 に進んで空気ポンプ 3 5が作動され て燃料室 7 内への燃料の供給中に空気室 6 内の圧力を比較的高く維 持し、 ステップ S 7 3 8 に進んでキャ ップ蓋を開く ことを許可し、 処理を終了する。  In step S732, it is determined whether or not the pressure P in the air chamber 6 is lower than a second predetermined pressure P2 (P <P2). When P <P2, it is determined that the pressure in the air chamber 6 is a pressure at which the supply of fuel into the fuel chamber 7 is permitted, and the process proceeds to step S734 to close the solenoid valve 60. Proceeding to step S736, the air pump 35 is operated to maintain the pressure in the air chamber 6 relatively high during the supply of fuel into the fuel chamber 7, and then proceeding to step S738. Permits to open the lid and ends the process.
—方、 P ≥ P 2であるときには空気室 6 内の圧力が燃料室 7 への 燃料の供給を許可できる圧力にないと判断し、 ステップ S 7 3 9 に 進んで空気ポンプ 3 5 を停止し、 ステップ S 7 4 0 に進んで電磁弁 6 0 を開弁し、 処理を終了する。 On the other hand, if P ≥ P2, it is determined that the pressure in the air chamber 6 is not at a pressure that allows the supply of fuel to the fuel chamber 7, and Proceed to stop the air pump 35, proceed to Step S740, open the solenoid valve 60, and end the process.
ところで第二実施形態では空気室内の圧力の上昇率が高いときに は燃料が燃料室内で動く。 したがって第一遮断弁および第二遮断弁 が開弁し、 燃料が循環管および蒸発燃料放出管内に流入する可能性 がある。 そこで第八実施形態では空気室内の圧力の上昇度合いの傾 きを燃料が燃料室内で大き く動く ときの傾きより小さ く する。  By the way, in the second embodiment, when the rate of increase of the pressure in the air chamber is high, the fuel moves in the fuel chamber. Therefore, the first shut-off valve and the second shut-off valve are opened, and there is a possibility that fuel flows into the circulation pipe and the fuel vapor discharge pipe. Therefore, in the eighth embodiment, the inclination of the degree of increase in the pressure in the air chamber is made smaller than the inclination when the fuel moves largely in the fuel chamber.
以下、 第八実施形態の燃料貯留装置を説明する。  Hereinafter, the fuel storage device of the eighth embodiment will be described.
第八実施形態では図 1 6 に示したように第二実施形態の解放弁 3 7 の代わり に電磁弁 6 0が第二接続管 3 6 に接続されている。 電磁 弁 6 0 は対応する駆動回路 4 9 を介して出力ポー ト 4 7 に接続され 、 電子制御装置 4 0 により制御される。 電磁弁 6 0 は空気室 6 と外 気との間の連通状態を遮断する。  In the eighth embodiment, an electromagnetic valve 60 is connected to the second connection pipe 36 instead of the release valve 37 of the second embodiment as shown in FIG. The solenoid valve 60 is connected to an output port 47 via a corresponding drive circuit 49, and is controlled by an electronic control unit 40. The solenoid valve 60 shuts off the communication between the air chamber 6 and the outside air.
空気室 6 内の圧力を検出するための圧力センサ 6 1 が燃料タ ンク 1 の上方部分 2 に設けられる。 圧力センサ 6 1 は対応する A D変換 器 4 8 を介して入力ポ一 ト 4 6 に接続される。  A pressure sensor 61 for detecting the pressure in the air chamber 6 is provided in the upper part 2 of the fuel tank 1. The pressure sensor 61 is connected to the input port 46 via the corresponding AD converter 48.
分離壁 5 の位置を検出することにより燃料室 7 内の燃料量を検出 するための燃料レベルゲージ 6 2が燃料タ ンク 1 の上方部分 2 に設 けられる。 燃料レベルゲ一ジ 6 2 は対応する A D変換器 4 8 を介し て入力ポー ト 4 6 に接続される。  A fuel level gauge 62 for detecting the amount of fuel in the fuel chamber 7 by detecting the position of the separation wall 5 is provided in the upper part 2 of the fuel tank 1. The fuel level gauge 62 is connected to the input port 46 via a corresponding AD converter 48.
燃料貯留装置は内燃機関を冷却するための冷却水の温度に対応す る電圧を発生するための温度センサ 5 5 を具備する。 温度センサ 5 5 は対応する A D変換器 4 8 を介して入力ポ一 ト 4 6 に接続される 上記以外の構成は第二実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The fuel storage device includes a temperature sensor 55 for generating a voltage corresponding to the temperature of the cooling water for cooling the internal combustion engine. The temperature sensor 55 is connected to the input port 46 via the corresponding AD converter 48. The configuration other than the above is the same as the configuration of the fuel storage device of the second embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第八実施形態の蒸発燃料排除処理を説明する。 第八実施形態では冷却水の温度が予め定められた温度より高く且 つ燃料室 7 内の燃料量が予め定められた燃料量より多いか否かが判 別される。 予め定められた温度は定常運転状態にある内燃機関を冷 却水が冷却したときの冷却水の温度より高く 、 予め定められた燃料 量は分離壁 5が下降したときに燃料液面の高さを燃料室 7 内の最も 高い位置まで上昇するのに十分な量より多い。 Hereinafter, the evaporative fuel removal processing according to the eighth embodiment will be described. In the eighth embodiment, it is determined whether the temperature of the cooling water is higher than the predetermined temperature and the fuel amount in the fuel chamber 7 is higher than the predetermined fuel amount. The predetermined temperature is higher than the temperature of the cooling water when the cooling water cools the internal combustion engine in the steady operation state, and the predetermined fuel amount is the height of the fuel level when the separation wall 5 is lowered. More than enough to rise to the highest position in fuel chamber 7.
冷却水温度が予め定められた温度より高く且つ燃料室 7 内の燃料 量が予め定められた燃料量より多いときには、 内燃機関および燃料 タ ンク 1 の状態が蒸発燃料排除処理を実行できる状態であると判断 する。  When the cooling water temperature is higher than the predetermined temperature and the fuel amount in the fuel chamber 7 is higher than the predetermined fuel amount, the state of the internal combustion engine and the fuel tank 1 are in a state where the evaporative fuel removal processing can be executed. Judge.
さ らに第八実施形態ではレベルスィ ツチ 5 7が作動されていない か否かが判別される。  Further, in the eighth embodiment, it is determined whether the level switch 57 is not operated.
レベルスィ ッチ 5 7 が作動されていないときには蒸発燃料排除処 理を実行すべきと判断する。  When the level switches 57 are not operated, it is determined that the evaporative fuel removal processing should be executed.
内燃機関および燃料タ ンク 1 の状態が蒸発燃料排除処理を実行で きる状態であり且つ蒸発燃料排除処理を実行すべきであるときには 、 蒸発燃料排除処理が実行される、 すなわち電磁弁 6 0が閉弁され 、 空気ポンプ 3 5が作動されて空気室 6 内の圧力を増大する。 した がって分離壁 5 の中央部分 5 cが下降し、 燃料室 7 内の燃料液面上 方の空間から蒸発燃料が排除される。  When the state of the internal combustion engine and the fuel tank 1 is in a state where the evaporative fuel elimination processing can be executed and the evaporative fuel elimination processing should be executed, the evaporative fuel elimination processing is executed, that is, the solenoid valve 60 is closed. The valve is operated, and the air pump 35 is operated to increase the pressure in the air chamber 6. Accordingly, the central portion 5c of the separation wall 5 descends, and the fuel vapor is removed from the space above the fuel level in the fuel chamber 7.
さ らに第八実施形態では蒸発燃料排除処理が実行されると共に、 圧力セ ンサ 6 1 により検出された空気室 6 内の圧力に基づいて空気 室 6 内の圧力の上昇率が燃料室 7 内で燃料が大き く 動く 可能性のあ る圧力上昇率より大きいか否かが判別される。  Further, in the eighth embodiment, the evaporative fuel elimination process is executed, and the rate of increase of the pressure in the air chamber 6 is determined based on the pressure in the air chamber 6 detected by the pressure sensor 61. It is determined whether or not the pressure is higher than the pressure rise rate at which the fuel may move significantly.
空気室 6 内の圧力の上昇率が燃料が燃料室 7 内で大き く動く 可能 性のある圧力上昇率より大きいと きには空気ポンプ 3 5が停止され る。 一方、 空気室 6 内の圧力の上昇率が燃料が燃料室 7 内で大き く 動く可能性のある圧力上昇率より小さいときには空気ポンプ 3 5力く 作動される。 したがって空気室 6 内の圧力の上昇率は燃料が燃料室 7 内で大き く動く可能性のある圧力上昇率より小さ く維持され、 燃 料室 7 内での燃料の動きが防止される。 When the rate of increase in pressure in the air chamber 6 is greater than the rate of pressure increase in which fuel may move significantly in the fuel chamber 7, the air pump 35 is stopped. On the other hand, the rate of pressure increase in the air chamber 6 When the pressure rise rate that can be moved is smaller, the air pump is activated by 3 5 powers. Therefore, the rate of increase in the pressure in the air chamber 6 is maintained smaller than the rate of pressure increase in which the fuel may move significantly in the fuel chamber 7, and the movement of the fuel in the fuel chamber 7 is prevented.
内燃機関および燃料タ ンクの状態が蒸発燃料排除処理を実行でき る状態でないとき、 または蒸発燃料排除処理を実行する必要がない ときには、 蒸発燃料排除処理が停止される、 すなわち空気ポンプ 3 5が停止され、 電磁弁 6 0が開弁される。  When the state of the internal combustion engine and the fuel tank is not in a state where the evaporative fuel elimination processing can be executed, or when it is not necessary to execute the evaporative fuel elimination processing, the evaporative fuel elimination processing is stopped, that is, the air pump 35 is stopped. Then, the solenoid valve 60 is opened.
第八実施形態では空気ポンプ 3 5が燃料液面上方に形成された空 間から気体を放出するための手段または燃料液面の高さを上昇する ための手段に相当し、 レベルスィ ツチ 5 7 または燃料レベルゲージ 6 2が燃料液面の高さを検出するための手段に相当する。  In the eighth embodiment, the air pump 35 corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level, and the level switch 57 or The fuel level gauge 62 corresponds to a means for detecting the fuel level.
以下、 図 1 7 のフローチ ャー トを参照して第八実施形態の蒸発燃 料排除処理を説明する。  Hereinafter, the fuel vapor removal processing of the eighth embodiment will be described with reference to the flowchart of FIG.
ステップ S 8 1 0 において、 冷却水の温度 Tが予め定められた温 度 T O より高い (T > T 0 ) か否かが判別される。 予め定められた 温度は吸気通路 5 2 への蒸発燃料のパージが許可される温度である 。 Τ > Τ 0であるときには冷却水の温度が吸気通路 5 2 への蒸発燃 料のパージを許可できる温度であると判断し、 ステップ S 8 1 2 に 進む。  In step S810, it is determined whether the temperature T of the cooling water is higher than a predetermined temperature T O (T> T 0). The predetermined temperature is a temperature at which purging of the fuel vapor into the intake passage 52 is permitted. If Τ> Τ0, it is determined that the temperature of the cooling water is a temperature at which the purge of the fuel vapor into the intake passage 52 can be permitted, and the process proceeds to step S812.
一方、 Τ≤ Τ 0であるときには冷却水の温度が吸気通路 5 2への 蒸発燃料のパージを許可できない温度であり、 ステ ップ S 8 4 0へ 進んで電磁弁 6 0が開弁され、 ステップ S 8 4 2 に進んで空気ボン プ 3 5が停止され、 処理を終了する。  On the other hand, when Τ≤Τ0, the temperature of the cooling water is a temperature at which the purge of the evaporated fuel into the intake passage 52 cannot be permitted, and the process proceeds to step S840, in which the solenoid valve 60 is opened, Proceeding to step S842, the air pump 35 is stopped, and the process ends.
ステ ッ プ S 8 1 2ではレベルスィ ッ チ 5 7が作動されていない ( O F F ) か否かが判別される。 レベルスィ ッ チ 5 7 が作動されてい ないときには蒸発燃料排除処理を実行すべきと判断し、 ステ ップ S 8 1 4 に進む。 一方、 レベルスィ ッ チ 5 7 が作動されている ( O N ) ときには蒸発燃料排除処理を実行する必要がないと判断し、 ステ ップ S 8 4 0 に進んで電磁弁 6 0 が開弁され、 ステップ S 8 4 2 に 進んで空気ポンプ 3 5が停止され、 処理を終了する。 In step S812, it is determined whether or not the level switch 57 is not operated (OFF). When the level switches 57 are not operated, it is determined that the evaporative fuel removal processing should be performed. Go to 8 1 4 On the other hand, when the level switch 57 is operated (ON), it is determined that it is not necessary to execute the evaporative fuel removal processing, and the process proceeds to step S840, in which the solenoid valve 60 is opened, and the step S840 is performed. Proceeding to S842, the air pump 35 is stopped, and the process ends.
ステップ S 8 1 4では燃料室 7 内の燃料量 Fが予め定められた燃 料量 F 0 より多い ( F 〉 F 0 ) か否かが判別される。 予め定められ た燃料量は分離壁 5が下降したときに燃料液面の高さを燃料室 7 内 で最も高い高さまで上昇するのに十分な燃料量より大きい。  In step S814, it is determined whether the fuel amount F in the fuel chamber 7 is larger than a predetermined fuel amount F0 (F> F0). The predetermined amount of fuel is greater than the amount of fuel sufficient to raise the level of the fuel level to the highest level in the fuel chamber 7 when the separation wall 5 descends.
一方、 ステップ S 8 1 4 において F F 0であるときにはステツ プ S 8 4 0 に進んで電磁弁 6 0が開弁され、 ステップ S 8 4 2 に進 んで空気ポンプ 3 5が停止され、 処理を終了する。  On the other hand, if it is FF 0 in step S814, the process proceeds to step S840, in which the solenoid valve 60 is opened, the process proceeds to step S842, the air pump 35 is stopped, and the process ends. I do.
ステップ S 8 1 6では電磁弁 6 0が閉弁されているか否かが判別 される。 電磁弁 6 0が閉弁されているときにはステップ S 8 1 8 に 進んで予め定められた圧力 Δ Ρを前回の目標圧力に加えることによ り今回の目標圧力 P nが計算され、 ステップ S 8 2 4 に進む。  In step S816, it is determined whether or not the solenoid valve 60 is closed. When the solenoid valve 60 is closed, the process proceeds to step S8 18 to add a predetermined pressure ΔΡ to the previous target pressure, thereby calculating the current target pressure Pn. Proceed to 2 4.
—方、 ステ ップ S 8 1 6 において電磁弁 6 0が開弁しているとき にはステップ S 8 3 6 に進んで電磁弁 6 0 が閉弁され、 ステップ S 8 3 8 に進んで圧力センサ 6 1 により検出された空気室 6 内の圧力 が初期目標圧力と して目標圧力 P nに入力され、 処理を終了する。  On the other hand, if the solenoid valve 60 is open in step S 8 16, the process proceeds to step S 8 36, the solenoid valve 60 is closed, and the process proceeds to step S 8 38 to set the pressure. The pressure in the air chamber 6 detected by the sensor 61 is input to the target pressure Pn as an initial target pressure, and the process ends.
ステップ S 8 2 0では目標圧力 P nが最大圧力 P m a xより高い ( P n 〉 P m a X ) か否かが判別される。 最大圧力は分離壁 5が空 気室 6 内の圧力により損傷する可能性がある圧力より低い。 ステツ プ S 8 2 0 において P n 〉 P m a xである ときにはステップ S 8 2 2 に進んで最大圧力 P m a Xが目標圧力に入力され、 空気室 6 内の 圧力が最大圧力に制限され、 ステップ S 8 2 4 に進む。  In step S820, it is determined whether the target pressure Pn is higher than the maximum pressure Pmax (Pn> Pmax). The maximum pressure is lower than the pressure at which the separation wall 5 may be damaged by the pressure in the air chamber 6. If Pn> Pmax in step S820, the process proceeds to step S822, where the maximum pressure Pmax is input to the target pressure, and the pressure in the air chamber 6 is limited to the maximum pressure. Go to 8 2 4.
—方、 ステップ S 8 2 0 において P n ≤ P m a xであるときには ステップ S 8 2 4 に進む。 ステ ッ プ S 8 2 4では空気室 6 内の圧力 Pが最大圧力 P m a xよ り低い ( P く P m a x ) か否かが判別される。 P < P m a xである ときには空気室 6 内の圧力が蒸発燃料排除処理を実行できる圧力で あると判断し、 ステップ S 8 2 6 に進む。 一方、 P≥ P m a xであ るときには空気室 6 内の圧力が蒸発燃料排除処理を実行できない圧 力であると判断し、 ステップ S 8 3 2 に進んで電磁弁 6 0が開弁さ れ、 ステ ッ プ S 8 3 4 に進んで空気ポンプ 3 5 が停止され、 処理を 終了する。 On the other hand, if Pn≤Pmax in step S820, the process proceeds to step S824. In step S8284, it is determined whether or not the pressure P in the air chamber 6 is lower than the maximum pressure Pmax (P and Pmax). When P <Pmax, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S826. On the other hand, when P≥Pmax, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel elimination process cannot be performed, and the process proceeds to step S832 to open the solenoid valve 60. Proceeding to step S834, the air pump 35 is stopped, and the process ends.
ステップ S 8 2 6では空気室 6 内の圧力 Pが目標圧力 P nより低 い ( P く P n ) か否かが判別される。 P < P nであるときには空気 室 6 内の圧力の上昇率が燃料が燃料室内で大き く 動く 可能性のある 上昇率より小さいと判断し、 ステップ S 8 2 8 に進んで電磁弁 6 0 が閉弁され、 ステップ S 8 3 0 に進んで空気ポンプ 3 5が作動され 、 処理を終了する。  In step S8226, it is determined whether the pressure P in the air chamber 6 is lower than the target pressure Pn (P <Pn). When P <Pn, it is determined that the rate of increase in the pressure in the air chamber 6 is smaller than the rate of increase in which the fuel may move significantly in the fuel chamber, and the process proceeds to step S828, where the solenoid valve 60 is activated. The valve is closed, the flow proceeds to step S830, the air pump 35 is operated, and the process ends.
—方、 ステップ S 8 2 6 において P≥ P nであるときには空気室 6 内の圧力の上昇率が燃料が燃料室 7 内で大き く 動く 可能性がある 上昇率より大きいと判断し、 ステップ S 8 3 4 に進んで空気ポンプ 3 5が停止され、 処理を終了する。  On the other hand, when P≥Pn in step S826, it is determined that the rate of increase in the pressure in the air chamber 6 is larger than the rate of increase in which fuel may move greatly in the fuel chamber 7, and Proceed to 8 3 4 to stop the air pump 35 and end the process.
ところで第八実施形態では燃料室から放出された蒸発燃料は吸気 通路に導入される。 したがって混合気の空燃比が導入された蒸発燃 料により小さ く なる、 すなわち空燃比が所望の予め定められた空燃 比に維持されない。 そこで第九実施形態では放出された蒸発燃料が 吸気通路内に導入されたときに空燃比を所望の予め定められた空燃 比に維持する。  Incidentally, in the eighth embodiment, the evaporated fuel released from the fuel chamber is introduced into the intake passage. Therefore, the air-fuel ratio of the air-fuel mixture is reduced by the introduced fuel vapor, that is, the air-fuel ratio is not maintained at the desired predetermined air-fuel ratio. Therefore, in the ninth embodiment, when the released fuel vapor is introduced into the intake passage, the air-fuel ratio is maintained at a desired predetermined air-fuel ratio.
以下、 本発明の第九実施形態の燃料貯留装置を説明する。  Hereinafter, a fuel storage device according to a ninth embodiment of the present invention will be described.
第九実施形態では図 1 8 に示したように燃料貯留装置は吸気通路 内の空燃比に対応する電圧を発生する空燃比セ ンサ 6 3 を具備する 。 空燃比セ ンサ 6 3 は排気ガス内の酸素濃度に対応した電圧を発生 する酸素セ ンサまたは リニアセ ンサを具備する。 空燃比センサ 6 3 は対応する A D変換器 4 8 を介して入力ポー ト 4 6 に接続される。 上記以外の構成は第八実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。 In the ninth embodiment, as shown in FIG. 18, the fuel storage device includes an air-fuel ratio sensor 63 that generates a voltage corresponding to the air-fuel ratio in the intake passage. . The air-fuel ratio sensor 63 has an oxygen sensor or a linear sensor that generates a voltage corresponding to the oxygen concentration in the exhaust gas. The air-fuel ratio sensor 63 is connected to the input port 46 via the corresponding AD converter 48. The configuration other than the above is the same as the configuration of the fuel storage device of the eighth embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第九実施形態の燃料貯留装置を説明する。  Hereinafter, the fuel storage device of the ninth embodiment will be described.
第九実施形態では冷却水の温度が予め定められた温度より高いか 否か、 燃料室 7 内の燃料量が予め定められた燃料量より多いか否か 、 空気室 6 内の圧力が予め定められた圧力より低いか否かが判別さ れる。 予め定められた温度は定常運転状態の内燃機関を冷却水が冷 却したときの冷却水の温度より高く 、 予め定められた燃料量は分離 壁 5 が下降したときに燃料室 7 内の最も高い高さまで燃料液面の高 さを上昇するのに十分な燃料量より多く 、 予め定められた圧力は空 気室 6 内の圧力により分離壁が損傷する可能性のある圧力より低い o  In the ninth embodiment, whether the temperature of the cooling water is higher than a predetermined temperature, whether the fuel amount in the fuel chamber 7 is higher than the predetermined fuel amount, the pressure in the air chamber 6 is predetermined. It is determined whether the pressure is lower than the set pressure. The predetermined temperature is higher than the temperature of the cooling water when the cooling water cools the internal combustion engine in a steady operation state, and the predetermined fuel amount is the highest in the fuel chamber 7 when the separation wall 5 is lowered. The predetermined pressure is lower than the pressure at which the separation wall may be damaged by the pressure in the air chamber 6 which is more than the amount of fuel sufficient to raise the fuel level to the height o
冷却水の温度が予め定められた温度より高く 、 燃料室 7 内の燃料 量が予め定められた燃料量より多く 、 且つ空気室 6 内の圧力が予め 定められた圧力より低いときには、 内燃機関および燃料タ ンク 1 の 状態が蒸発燃料のパージを許可できる状態にあると判断する。  When the temperature of the cooling water is higher than the predetermined temperature, the amount of fuel in the fuel chamber 7 is higher than the predetermined amount of fuel, and the pressure in the air chamber 6 is lower than the predetermined pressure, the internal combustion engine and It is determined that the state of fuel tank 1 is in a state where purge of evaporated fuel can be permitted.
さ らに第九実施形態ではレベルスィ ッ チ 5 7が作動されていない か否かが判別される。 レベルスィ ツチ 5 7 が作動されていないとき には蒸発燃料排除処理を実行すべきと判断する。  Further, in the ninth embodiment, it is determined whether or not the level switch 57 is not operated. When the level switch 57 is not operated, it is determined that the evaporative fuel removal processing should be executed.
さ らに第九実施形態では空燃比セ ンサ 6 3 により検出された空燃 比が予め定められた空燃比より大きいか否かが判別される。 予め定 められた空燃比は所望の空燃比である。 検出された空燃比が予め定 められた空燃比よ り大きいときには空燃比が蒸発燃料排除処理を実 行し続けられる空燃比であると判断する。 内燃機関および燃料タ ンク 1 の状態が蒸発燃料のパージを実行で きる状態であり、 蒸発燃料排除処理を実行すべきであり、 且つ空燃 比が蒸発燃料排除処理を実行し続けることを許可する空燃比である ときには蒸発燃料排除処理が実行される、 すなわち電磁弁 6 0が閉 弁され、 空気ポンプ 3 5が作動されて空気室 6 内の圧力が上昇され る。 したがって分離壁 5 の中央部分 5 cが下降し、 燃料室 7 内の燃 料液面上方の空間から蒸発燃料が排除される。 Further, in the ninth embodiment, it is determined whether the air-fuel ratio detected by the air-fuel ratio sensor 63 is larger than a predetermined air-fuel ratio. The predetermined air-fuel ratio is a desired air-fuel ratio. If the detected air-fuel ratio is larger than the predetermined air-fuel ratio, it is determined that the air-fuel ratio is an air-fuel ratio that allows the evaporative fuel removal processing to be continuously performed. The state of the internal combustion engine and the fuel tank 1 is a state in which the fuel vapor can be purged, the fuel vapor elimination processing should be performed, and the air-fuel ratio permits the fuel fuel elimination processing to be continuously performed. When the air-fuel ratio is attained, the evaporative fuel removal processing is executed, that is, the solenoid valve 60 is closed, the air pump 35 is operated, and the pressure in the air chamber 6 is increased. Therefore, the central portion 5c of the separation wall 5 descends, and the fuel vapor is removed from the space in the fuel chamber 7 above the fuel level.
内燃機関および燃料タ ンクの状態が蒸発燃料のパージを許可でき る状態であり且つ蒸発燃料排除処理を実行すべきときであっても、 空燃比が蒸発燃料排除処理を実行し続けられる空燃比ではないとき には、 蒸発燃料排除処理が停止される、 すなわち空気ポンプ 3 5力 停止される。  Even when the state of the internal combustion engine and the fuel tank is in a state in which the purge of the evaporated fuel can be permitted, and the evaporative fuel exclusion process should be executed, the air-fuel ratio is set at the air-fuel ratio at which the evaporative fuel elimination process can be continued. If not, the fuel vapor elimination process is stopped, that is, the air pump 35 is stopped.
したがって第九実施形態では空燃比が所望の予め定められた空燃 比に維持されるように吸気通路に導入される蒸発燃料の量が制御さ れ 。  Therefore, in the ninth embodiment, the amount of evaporative fuel introduced into the intake passage is controlled so that the air-fuel ratio is maintained at a desired predetermined air-fuel ratio.
もちろん内燃機関および燃料タ ンク 1 の状態が蒸発燃料をパージ できない状態であるとき、 または蒸発燃料排除処理を実行する必要 がないときには、 蒸発燃料排除処理が停止される、 すなわち空気ポ ンプ 3 5 が停止される。  Of course, when the state of the internal combustion engine and the fuel tank 1 is in a state in which the fuel vapor cannot be purged, or when it is not necessary to execute the fuel vapor removal processing, the fuel vapor removal processing is stopped, that is, the air pump 35 is stopped. Stopped.
第九実施形態では吸気通路への蒸発燃料のパージが燃料液面上方 に形成された空間から気体を排出するための手段または燃料液面の 高さを上昇するための手段に相当 し、 燃料レベルゲージ 6 2 が燃料 液面の高さを検出するための手段に相当する。  In the ninth embodiment, the purging of the fuel vapor into the intake passage corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the level of the fuel level, and The gauge 62 corresponds to a means for detecting the fuel level.
以下、 図 1 9 のフ ローチ ャ ー トを参照して第九実施形態の蒸発燃 料排除処理を説明する。 なおフ ローチ ャ ー トのステ ッ プ S 9 1 0、 9 1 2および 9 1 4 は図 1 7 のステップ S 8 1 0 、 8 1 2および 8 1 4 にそれぞれ一致する。 したがってこれらステップの説明は省略 する。 Hereinafter, the evaporative fuel elimination process of the ninth embodiment will be described with reference to the flowchart of FIG. Note that steps S910, 912, and 914 of the flowchart correspond to steps S810, 812, and 814 of FIG. 17, respectively. Therefore, the explanation of these steps is omitted. I do.
ステップ S 9 1 4 において F 〉 F 0 であるときにはステップ S 9 1 6 に進む。 一方、 F ≤ F 0であるときにはステップ S 9 2 4 に進 んで電磁弁 6 0が開弁され、 ステップ S 9 2 6 に進んで空気ポンブ 3 5が停止され、 処理を終了する。  If F> F0 in step S914, the process proceeds to step S916. On the other hand, when F ≤ F0, the process proceeds to step S922, in which the solenoid valve 60 is opened, the process proceeds to step S926, the air pump 35 is stopped, and the process ends.
ステップ S 9 1 6では空気室 6 内の圧力 Pが最大圧力 P m a xよ り低い ( P < P m a X ) か否かが判別される。 P < P m a Xである ときには空気室 6 内の圧力が蒸発燃料排除処理を実行できる圧力で あると判断し、 ステップ S 9 1 8 に進む。 一方、 P ≥ P m a xであ るときには空気室 6 内の圧力が蒸発燃料排除処理を実行できる圧力 ではないと判断し、 ステップ S 9 2 4 に進んで電磁弁 6 0 を開弁し 、 ステップ S 9 2 6 に進んで空気ポンプ 3 5が停止され、 処理を終 了する。  In step S916, it is determined whether the pressure P in the air chamber 6 is lower than the maximum pressure Pmax (P <Pmax). When P <PmaX, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S <b> 918. On the other hand, when P ≥ Pmax, it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S9224 to open the solenoid valve 60, and Proceed to 9 26 to stop the air pump 35 and end the process.
ステップ S 9 1 8では空燃比 A Fが所望の予め定められた空燃比 A F 0 より大きい ( A F > A F 0 ) か否かが判別される。 A F〉 A F 0であるときには空燃比が蒸発燃料排除処理を実行し続けられる 空燃比であると判断し、 ステップ S 9 2 0 に進んで電磁弁 6 0が閉 弁され、 空気ポンプ 3 5 が作動され、 処理を終了する。  In Step S918, it is determined whether or not the air-fuel ratio AF is larger than a desired predetermined air-fuel ratio A F0 (A F> A F 0). When AF> AF 0, it is determined that the air-fuel ratio is an air-fuel ratio that allows the evaporative fuel elimination process to continue to be executed.Then, the process proceeds to step S920, the solenoid valve 60 is closed, and the air pump 35 operates. And the process ends.
一方、 A F ≤ A F 0 であるときには空燃比が蒸発燃料排除処理を 実行し続けられる空燃比ではないと判断し、 ステップ S 9 2 6 に進 んで空気ポンプ 3 5が停止され、 処理を終了する。  On the other hand, when A F ≤A F 0, it is determined that the air-fuel ratio is not the air-fuel ratio that allows the evaporative fuel elimination process to continue to be executed.
ところで第三実施形態および第七実施形態では空気室内の圧力が 上昇した状態に維持されているときに燃料室への燃料の供給が実行 される。 したがって燃料室への燃料の供給が停止したときに空気室 の上昇した圧力が燃料室内の燃料を給油管に逆流させてしま う。 そ こで第十実施形態では燃料室内の燃料の給油管への逆流を防止する 以下、 本発明の第十実施形態の燃料貯留装置を説明する。 By the way, in the third embodiment and the seventh embodiment, the supply of the fuel to the fuel chamber is executed when the pressure in the air chamber is maintained at an increased state. Therefore, when the supply of fuel to the fuel chamber is stopped, the increased pressure in the air chamber causes the fuel in the fuel chamber to flow back to the fuel supply pipe. Therefore, in the tenth embodiment, the backflow of the fuel in the fuel chamber to the fuel supply pipe is prevented. Hereinafter, a fuel storage device according to a tenth embodiment of the present invention will be described.
第十実施形態では図 2 0 に示したよう に分離壁 5 の位置を検出す ることにより燃料室内の燃料量を検出するための燃料レベルゲージ 6 2 が燃料タ ンク 1 の上方部分 2 に設けられる。 燃料レベルゲージ 6 2 は振り子式であり、 振り子の一端が分離壁 5 の中央部分 5 c に 配置され、 振り子の角度 (すなわち燃料液面の位置) に応じて電圧 が発生される。 発生した電圧は対応する A D変換器 4 8 を介して入 力ポー ト 4 6 に入力される。  In the tenth embodiment, as shown in FIG. 20, a fuel level gauge 62 for detecting the amount of fuel in the fuel chamber by detecting the position of the separation wall 5 is provided in the upper part 2 of the fuel tank 1. Can be The fuel level gauge 62 is of a pendulum type, and one end of the pendulum is disposed in the central portion 5c of the separation wall 5, and a voltage is generated according to the angle of the pendulum (that is, the position of the fuel level). The generated voltage is input to the input port 46 via the corresponding AD converter 48.
上記以外の構成は第七実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the seventh embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第十実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the fuel vapor elimination process according to the tenth embodiment will be described.
キャ ップ蓋を開く ことが許可されるまでは第七実施形態での蒸発 燃料排除処理と同様の蒸発燃料排除処理が実行される。 したがって キャ ップ蓋を開く ことが許可されるまでの蒸発燃料排除処理の説明 は省略する。  Until the opening of the cap lid is permitted, the evaporated fuel elimination processing similar to the evaporated fuel elimination processing in the seventh embodiment is executed. Therefore, the description of the fuel vapor elimination process until the opening of the cap lid is permitted is omitted.
第十実施形態ではキヤ ップ蓋が開かれた後に燃料室 7 内が燃料で いつぱいになるまで燃料室 7 への燃料の供給が実行される。  In the tenth embodiment, the supply of fuel to the fuel chamber 7 is executed until the inside of the fuel chamber 7 becomes full of fuel after the cap lid is opened.
さ らに第十実施形態では予め定められた時間が経過したときに電 磁弁 6 0 が開弁され、 空気室 6 内の圧力が低下する。 予め定められ た時間は燃料室 7が燃料でいつばいであるこ とを検出してから燃料 室 7への燃料の供給が停止されるまでの時間である。  Further, in the tenth embodiment, when a predetermined time has elapsed, the electromagnetic valve 60 is opened, and the pressure in the air chamber 6 decreases. The predetermined time is the time from when the fuel chamber 7 is detected to be fueled until the fuel supply to the fuel chamber 7 is stopped.
したがって第十実施形態では燃料室 7 への燃料の供給が停止され たときに空気室 6 内の圧力が低下せしめられる。 このため燃料が給 油管内に逆流することが防止される。  Therefore, in the tenth embodiment, when the supply of the fuel to the fuel chamber 7 is stopped, the pressure in the air chamber 6 is reduced. This prevents the fuel from flowing back into the fuel supply pipe.
第九実施形態では空気ポンプ 3 5 または燃料レベルゲージ 6 2力く 燃料液面上方に形成された空間から気体を放出するための手段また は燃料液面の高さを上昇するための手段に相当 し、 レベルスィ ツチ 5 7が燃料液面の高さを検出するための手段に相当する。 In the ninth embodiment, the air pump 35 or the fuel level gauge 62 corresponds to a means for discharging gas from a space formed above the fuel level or a means for raising the level of the fuel level. And level switch 57 corresponds to a means for detecting the height of the fuel level.
以下、 図 2 1 および図 2 2 のフ ローチャー トを参照して第十実施 形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporative fuel removal processing of the tenth embodiment will be described with reference to the flowcharts of FIGS. 21 and 22.
図 2 1 のステップ S 1 0 1 0 においてキャ ップ蓋オーブナスイ ツ チ 5 0が作動されている ( O N ) か否かが判別される。 オーブナス イ ッチ 5 0が作動されているときにはステップ S 1 0 1 2 に進む。 一方、 オーブナスィ ッチ 5 0 が作動されていない ( O F F ) ときに は燃料室 7 内への燃料の供袷を実行すべきではないと判断し、 図 2 2のステップ S 1 0 5 0 に進んで終了フラグがセッ 卜され、 ステツ プ S 1 0 5 2 に進んで空気ポンプ 3 5が停止され、 ステップ S 1 0 5 4 に進んで電磁弁 6 0 が開弁され、 ステップ S 1 0 5 6 に進む。 終了フラグはキャ ップ蓋が閉じられたときにセッ 卜され、 後述する 第一袷油フラグ、 第二給油フラグおよびカウ ンタフラグがリ セッ ト されたときにリセッ 卜される。  In step S1010 of FIG. 21, it is determined whether or not the cap cover orb switch 50 is operated (ON). When the orbnas switch 50 is operated, the flow proceeds to step S101. On the other hand, when the orb switch 50 is not operated (OFF), it is determined that the supply of fuel into the fuel chamber 7 should not be performed, and the process proceeds to step S 1 500 in FIG. To set the end flag, proceed to step S1052, stop the air pump 35, proceed to step S1054, open the solenoid valve 60, and proceed to step S105. Proceed to. The end flag is set when the cap lid is closed, and is reset when a first lined oil flag, a second oil supply flag, and a counter flag, which will be described later, are reset.
図 2 1 のステップ S 1 0 1 2ではレベルスィ ッチ 5 7 が作動され ている ( 0 N ) か否かが判別される。 レベルスィ ッ チ 5 7が作動さ れているときには蒸発燃料排除処理を実行する必要はないと判断し 、 ステ ッ プ S 1 0 2 4 に進んで第二給油フラ グがセッ 卜され、 ステ ップ S 1 0 2 6 に進んで空気ポンプ 3 5が停止され、 ステップ S 1 0 2 8 に進んで電磁弁 6 0が開弁され、 ステップ S 1 0 3 0 に進ん でキャ ップ蓋を開く こ とが許可され、 燃料室 7 内への燃料の供給が 実行される。 第二給油フラ グはレベルスィ ッチ 5 7 が作動されてい ないときにセッ 卜され、 キャ ッ プ蓋が閉じられたと き にリ セッ 卜さ れる。  In step S101 of FIG. 21, it is determined whether or not the level switch 57 is operated (0N). When the level switch 57 is operated, it is determined that it is not necessary to execute the evaporative fuel removal processing, and the process proceeds to step S1024, where the second refueling flag is set, and the process proceeds to step S104. Proceeding to S1026, the air pump 35 is stopped, proceeding to step S1028, opening the solenoid valve 60, proceeding to step S1030, and opening the cap lid. Is permitted, and the fuel supply into the fuel chamber 7 is executed. The second refueling flag is set when the level switch 57 is not operated, and reset when the cap lid is closed.
一方、 ステップ S 1 0 1 2 においてレベルスィ ッ チ 5 7 が作動さ れていない (O F F ) ときには蒸発燃料排除処理を実行すべき と判 断し、 ステップ S 1 0 1 4 に進む。 ステップ S 1 0 1 4 では空気室 6 内の圧力 Pが最大圧力 P m a x より低い ( P < P m a x ) か否かが判別される。 最大圧力は空気室 6 内の圧力により分離壁 5が損傷する可能性がある圧力より低い。 P < P m a xであるときには空気室 6 内の圧力が蒸発燃料排除処理 を実行できる圧力であると判断し、 ステップ S 1 0 1 6 に進む。 一 方、 P ≥ P m a xであるときには空気室 6 の圧力が蒸発燃料排除処 理を実行できる圧力ではないと判断し、 ステップ S 1 0 2 2 に進ん で第一給油フラグがセッ 卜され、 ステップ S 1 0 2 6 に進んで空気 ポンプ 3 5が停止され、 ステップ S 1 0 2 8 に進んで電磁弁 6 0力く 開弁され、 ステップ S 1 0 3 0 に進んでキャ ップ蓋を開けるこ と力く 許可され、 ステップ S 1 0 3 2 に進む。 第一袷油フラグは空気室 6 内の圧力が最大圧力より高いときにセッ 卜され、 キャ ップ蓋が閉じ られたときにリ セッ 卜される。 On the other hand, when the level switch 57 is not operated (OFF) in step S101, it is determined that the evaporative fuel removal processing should be executed, and the process proceeds to step S101. In step S1014, it is determined whether the pressure P in the air chamber 6 is lower than the maximum pressure Pmax (P <Pmax). The maximum pressure is lower than the pressure at which the separation wall 5 may be damaged by the pressure in the air chamber 6. When P <P max, it is determined that the pressure in the air chamber 6 is a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S106. On the other hand, when P ≥ Pmax, it is determined that the pressure in the air chamber 6 is not a pressure at which the evaporative fuel removal processing can be executed, and the process proceeds to step S102, where the first refueling flag is set, and Proceed to S1026 to stop the air pump 35, proceed to step S1028 to open the solenoid valve 60, and proceed to step S1030 to open the cap lid. Strongly permitted, proceed to step S1032. The first lined oil flag is set when the pressure in the air chamber 6 is higher than the maximum pressure, and reset when the cap lid is closed.
ステップ S 1 0 1 6 では第一袷油フラグがリ セッ 卜されている力、 否かが判別される。 第一給油フラグがリ セッ 卜されているときには 空気室 6 内の圧力が最大圧力になっていないと判断し、 蒸発燃料排 除処理を実行する、 すなわちステ ップ S 1 0 1 8 に進んで電磁弁 6 0 が閉弁され、 ステップ S 1 0 2 0 に進んで空気ポンプ 3 5が作動 され、 空気室 6 内の圧力が上昇され、 処理を終了する。  In step S106, it is determined whether the first lined oil flag is reset or not. When the first refueling flag is reset, it is determined that the pressure in the air chamber 6 has not reached the maximum pressure, and the evaporative fuel removal processing is executed, that is, the process proceeds to step S108. The solenoid valve 60 is closed, the process proceeds to step S102, the air pump 35 is operated, the pressure in the air chamber 6 is increased, and the process ends.
一方、 ステップ S 1 0 1 6 において第一袷油フラグがセッ 卜され ているときには空気室 6 内の圧力が最大圧力より低い場合でも蒸発 燃料排除処理を実行すべきではないと判断し、 ステップ S 1 0 2 6 に進んで空気ポンプ 3 5が停止され、 ステップ S 1 0 2 8 に進んで 電磁弁 6 0が開弁され、 ステップ S 1 0 3 0 に進んでキャ ップ蓋を 開けるこ とが許可され、 ステップ S 1 0 3 2 に進む。  On the other hand, when the first lined oil flag is set in step S106, it is determined that the evaporative fuel removal processing should not be performed even if the pressure in the air chamber 6 is lower than the maximum pressure. Proceed to 1026 to stop the air pump 35, proceed to step S1028, open the solenoid valve 60, and proceed to step S1030 to open the cap lid. Is permitted, and the process proceeds to Step S1032.
ステ ップ S 1 0 3 2ではカウ ンタフラグがリ セッ 卜 されている力、 否かが判別される。 カ ウ ンタ フ ラ グは燃料室 7 が燃料でいつぱいで あるときにセッ 卜され、 キャ ップ蓋が閉じられたときにリセッ 卜さ れる。 カウ ンタフラグがリセッ 卜されているときには燃料室 7 は燃 料でいつぱいになっていないと判断し、 ステップ S 1 0 3 4 に進む 。 一方、 カウ ンタフラグがセッ トされているときには燃料室 7が燃 料でいっぱいであると判断し、 ステップ S 1 0 4 2 に進む。 In step S1032, it is determined whether the counter flag is reset or not. The counter flag is used when fuel chamber 7 is filled with fuel. Set at a certain time and reset when the cap lid is closed. When the counter flag is reset, it is determined that the fuel chamber 7 has not become exhausted with fuel, and the flow proceeds to step S1034. On the other hand, when the counter flag is set, it is determined that the fuel chamber 7 is full of fuel, and the flow proceeds to step S1042.
ステップ S 1 0 3 4では燃料室 7が燃料でいっぱいか否かが判別 される。 燃料室 7 が燃料でいっぱいのときにはステップ S 1 0 3 6 に進んでカウ ン トがリセッ 卜され、 ステップ S 1 0 3 8 に進んで力 ゥ ンタフラグがセッ 卜され、 処理を終了する。 一方、 燃料室 7が燃 料でいつぱいではないときには図 2 2のステップ S 1 0 4 0 に進む ステップ S 1 0 4 0では第二給油フラ グがセッ 卜されているか否 かが判別される。 第二給油フラグがセッ 卜 されているときには蒸発 燃料排除処理を実行する必要はないと判断し、 処理を終了する。 一 方、 第二給油フラグがリセッ 卜されているときには蒸発燃料排除処 理を実行すべきであると判断し、 ステップ S 1 0 4 4 に進む。  In step S1034, it is determined whether the fuel chamber 7 is full of fuel. When the fuel chamber 7 is full of fuel, the flow proceeds to step S1036 to reset the count, the flow proceeds to step S1038, the power counter flag is set, and the processing is terminated. On the other hand, when the fuel chamber 7 is not busy with fuel, the process proceeds to step S104 in FIG. 22.In step S104, it is determined whether or not the second refueling flag is set. . When the second refueling flag is set, it is determined that there is no need to execute the evaporative fuel removal processing, and the processing ends. On the other hand, when the second refueling flag is reset, it is determined that the evaporative fuel removal processing should be performed, and the flow proceeds to step S1044.
ステップ S 1 0 4 2ではカウ ン ト tが予め定められたカウ ン ト t 0 より小さい ( t < t 0 ) か否かが判別される。 予め定められた力 ゥ ン トは燃料室 7 が燃料でいつぱいであるこ とが検出された時と燃 料室 7 への燃料の供給が停止された時との間の期間である。 t く t 0であるときにはステップ S 1 0 4 3 に進んでカウ ン トがカウ ン ト アップされ、 ステップ S 1 0 4 4 に進む。  In step S1042, it is determined whether the count t is smaller than a predetermined count t0 (t <t0). The predetermined power point is a period between when it is detected that the fuel chamber 7 is full of fuel and when the supply of fuel to the fuel chamber 7 is stopped. If t <t0, the flow advances to step S1043 to count up the count, and the flow advances to step S1044.
一方、 ステップ S 1 0 4 2 において t ≥ t 0 であるときには燃料 室 7 への燃料の供給が停止されたと判断し、 ステップ S 1 0 5 0 に 進んで終了フラグがセッ 卜され、 ステップ S 1 0 5 2 に進んで空気 ポンプ 3 5が停止され、 ステップ S 1 0 5 4 に進んで電磁弁 6 0力く 開弁され、 ステップ S 1 0 5 6 に進む。 ステップ S 1 0 4 4 では空気室 6 内の圧力 Pが第二の予め定めら れた圧力 P 2 より低い ( P < P 2 ) か否かが判別される。 第二の予 め定められた圧力は燃料が給油ノ ズルにより供給されたときの燃料 の圧力より低い。 P < P 2であるときには空気室 6 内の圧力が燃料 室 7 内への燃料の供給を許可できる圧力であると判断し、 ステップ S 1 0 4 6 に進んで電磁弁 6 0が閉弁され、 ステップ S 1 0 4 8 に 進んで空気ポンプ 3 5が作動され、 処理を終了する。 On the other hand, if t ≥ t0 in step S1042, it is determined that the supply of fuel to the fuel chamber 7 has been stopped, and the process proceeds to step S1505, where the end flag is set, and step S1 Proceeding to 052, the air pump 35 is stopped, proceeding to step S1054, opening the solenoid valve 60 force, and proceeding to step S1056. In step S1044, it is determined whether or not the pressure P in the air chamber 6 is lower than a second predetermined pressure P2 (P <P2). The second predetermined pressure is lower than the fuel pressure when the fuel was supplied by the refueling nozzle. When P <P2, it is determined that the pressure in the air chamber 6 is a pressure at which fuel supply into the fuel chamber 7 can be permitted, and the process proceeds to step S1046 to close the solenoid valve 60. Proceeding to step S104, the air pump 35 is operated, and the process ends.
一方、 ステップ S 1 0 4 4 において P ≥ P 2であるときには空気 室 6 内の圧力が燃料室 7 内への燃料の供給を許可できない圧力であ ると判断し、 ステップ S 1 0 5 2 に進んで空気ポンプ 3 5が停止さ れ、 ステップ S 1 0 5 4 に進んで電磁弁 6 0 が開弁され、 ステップ S 1 0 5 6 に進む。  On the other hand, when P ≥ P2 in step S1044, it is determined that the pressure in the air chamber 6 is a pressure that does not permit the supply of fuel into the fuel chamber 7, and the process proceeds to step S1052. Then, the air pump 35 is stopped, the flow proceeds to step S1054, the solenoid valve 60 is opened, and the flow proceeds to step S1056.
ステップ S 1 0 5 6 では終了フラグがセッ 卜されているか否かが 判別される。 終了フラグがセッ 卜されているときには燃料室 7 内へ の燃料の供給が終了していると判断し、 ステップ S 1 0 5 8 に進ん で第一袷油フラグがリ セッ 卜され、 ステップ S 1 0 6 0 に進んで第 二給油フラグがリ セッ 卜され、 ステップ S 1 0 6 2 に進んでカウ ン タフラグがリセッ 卜され、 ステップ S 1 0 6 4 に進んで終了フラグ がリセッ 卜され、 処理を終了する。  In step S1056, it is determined whether or not the end flag has been set. When the end flag has been set, it is determined that the supply of fuel into the fuel chamber 7 has been completed, and the flow proceeds to step S1058, where the first lined oil flag is reset, and the flow proceeds to step S1. Proceeding to 0600, the second refueling flag is reset, proceeding to step S1062, resetting the counter flag, proceeding to step S1064, resetting the end flag, and processing To end.
一方、 ステップ S 1 0 5 6 において終了フラグがリ セッ 卜されて いるときには燃料室 7 内への燃料の供給が終了していると判断し、 処理を終了する。  On the other hand, if the end flag has been reset in step S1056, it is determined that the supply of fuel into the fuel chamber 7 has been completed, and the process ends.
ところで第一実施形態から第十実施形態では燃料ポンプ 1 9が燃 料タ ンク内に配置される。 燃料ポンプ 1 9 の形状はシンプルではな いため、 分離壁 5 は燃料ボンプ 1 9 周りの燃料液面と接触できない 。 したがって燃料ポンプ 1 9 周りで分離壁 5 と燃料液面との間に空 間が形成される。 そこで第十一実施形態では燃料ポンプ 1 9 周りで 分離壁 5 と燃料液面との間に空間が形成されないようにする。 Incidentally, in the first to tenth embodiments, the fuel pump 19 is disposed in the fuel tank. Since the shape of the fuel pump 19 is not simple, the separation wall 5 cannot contact the fuel level around the fuel pump 19. Therefore, a space is formed around the fuel pump 19 between the separation wall 5 and the fuel level. Therefore, in the eleventh embodiment, around the fuel pump 19 No space is formed between the separation wall 5 and the fuel level.
以下、 本発明の第十一実施形態の燃料貯留装置を説明する。  Hereinafter, a fuel storage device according to an eleventh embodiment of the present invention will be described.
第十一実施形態では図 2 3 に示したように燃料ポンプ 1 9 は燃料 タ ンク 1 の外側に配置される。 燃料ポ ンプ 1 9 は燃料ポンプ管 1 9 aを介して燃料フ ィ ルタ 2 1 に接続される。 燃料ポンプ管 1 9 aは 袷油管 1 3 の下方開口の下側で下方部分 3 を通って延びる。 燃料フ ィ ルタ 2 1 は燃料室 7 内に配置される。  In the eleventh embodiment, the fuel pump 19 is disposed outside the fuel tank 1 as shown in FIG. The fuel pump 19 is connected to the fuel filter 21 via a fuel pump pipe 19a. The fuel pump pipe 19 a extends through the lower part 3 below the lower opening of the lined oil pipe 13. The fuel filter 21 is disposed in the fuel chamber 7.
圧力レギユ レ一タ 2 0 は燃料ポンプ 1 9 の下流側に配置される。 燃料戻し通路 6 4が圧力レギユ レータ 2 0から燃料室 7 内まで延び る。 燃料戻し通路 6 4 は余分な燃料を燃料室 7 内へ戻す働きをする 第十一実施形態では燃料貯留装置はポンプ室を具備していないの で蒸発燃料放出管は排除されている。 レベルスィ ッ チ 5 7 は固定部 分 8 に隣接して下方部分 3 に配置される。  The pressure regulator 20 is arranged downstream of the fuel pump 19. A fuel return passage 64 extends from the pressure regulator 20 into the fuel chamber 7. The fuel return passage 64 functions to return excess fuel into the fuel chamber 7. In the eleventh embodiment, since the fuel storage device does not have a pump chamber, the fuel vapor discharge pipe is eliminated. The level switch 57 is located in the lower part 3 adjacent to the fixed part 8.
上記以外の構成は第四実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the fourth embodiment. Therefore, description of the configuration other than the above is omitted.
したがって第十一実施形態によれば燃料タ ンク 1 内の形状がより シ ンプルであるので分離壁 5 と燃料液面との間には空間は形成され ない。  Therefore, according to the eleventh embodiment, since the shape in the fuel tank 1 is simpler, no space is formed between the separation wall 5 and the fuel liquid level.
第十一実施形態では吸気通路への蒸発燃料のパージが燃料液面上 方に形成された空間から気体を放出する手段または燃料液面の高さ を上昇するための手段に相当 し、 レベルスィ ッチ 5 7 が燃料液面の 高さを検出するための手段に相当する。  In the eleventh embodiment, the purging of the fuel vapor into the intake passage corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level, and a level switch. H57 corresponds to the means for detecting the fuel level.
もちろん第十一実施形態を上記他の実施形態に適用するこ と も可 能である。  Of course, the eleventh embodiment can be applied to the other embodiments.
ところで第一実施形態では燃料室 7 内への燃料の供給が終了 した 後に給油管 1 3 内の燃料から蒸発燃料が発生する。 そこで第十二実 施形態では袷油管 1 3 内の燃料からの蒸発燃料の発生を防止する。 第十二実施形態では図 2 4 に示したよう に給油管 1 3 の下方開口 は固定部分 8 に設けられる。 給油管 1 3 はその下方開口の上方に配 ιΑ し o o By the way, in the first embodiment, after the supply of the fuel into the fuel chamber 7 is completed, fuel vapor is generated from the fuel in the fuel supply pipe 13. So the twelfth In this embodiment, the generation of fuel vapor from the fuel in the lined oil pipe 13 is prevented. In the twelfth embodiment, the lower opening of the oil supply pipe 13 is provided in the fixed part 8 as shown in FIG. Refueling pipe 13 is located above its lower opening oo
好ま し く は給油管 1 3 の下方開口は燃料室 7 内の最も高い位置の 上方に配置される。 この場合、 袷油管 1 3 内の燃料は完全に排除さ れる。  Preferably, the lower opening of the fuel supply pipe 13 is located above the highest position in the fuel chamber 7. In this case, the fuel in the lined oil pipe 13 is completely eliminated.
上記以外の構成は第一実施形態の燃料貯留装置の構成と同じであ る。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the first embodiment. Therefore, description of the configuration other than the above is omitted.
したがって第十二実施形態では燃料室 7 内の燃料が少なく なると 給油管 1 3 内の燃料がその重みにより燃料室 7 内に流入する。 この ため給油管 1 3 内の燃料からの蒸発燃料の発生が防止される。  Therefore, in the twelfth embodiment, when the fuel in the fuel chamber 7 decreases, the fuel in the fuel supply pipe 13 flows into the fuel chamber 7 due to its weight. Therefore, the generation of fuel vapor from the fuel in the fuel supply pipe 13 is prevented.
第十二実施形態では燃料室への燃料の供給が燃料液面上方に形成 された空間から気体を放出するための手段または燃料液面の高さを 上昇するための手段に相当する。  In the twelfth embodiment, the supply of fuel to the fuel chamber corresponds to means for discharging gas from a space formed above the fuel level or means for increasing the height of the fuel level.
もちろん第十二実施形態を上記他の実施形態に適用することも可 能である。  Of course, the twelfth embodiment can be applied to the other embodiments.
ところで第十二実施形態では燃料室 7 内の燃料が少な く なると給 油管 1 3 内の燃料が燃料室 7 内に流入する。 したがって給油管 1 3 内の燃料が完全に燃料室 7 内に流入するまでにある程度の時間がか かる。 このため給油管 1 3 内の燃料全てが燃料室 7 内に流入するま えに給油管 1 3 内の燃料から蒸発燃料が発生する可能性がある。 そ こで第十三実施形態では給油管 1 3 内の燃料からの蒸発燃料の発生 をさ らに防止する。  By the way, in the twelfth embodiment, when the fuel in the fuel chamber 7 decreases, the fuel in the fuel supply pipe 13 flows into the fuel chamber 7. Therefore, it takes some time for the fuel in the fuel supply pipe 13 to completely flow into the fuel chamber 7. Therefore, there is a possibility that the fuel in the fuel supply pipe 13 will generate fuel vapor before all the fuel in the fuel supply pipe 13 flows into the fuel chamber 7. Therefore, in the thirteenth embodiment, the generation of fuel vapor from the fuel in the fuel supply pipe 13 is further prevented.
第十三実施形態では図 2 5 に示したよ うに空気室 6 は大気管 3 3 の代わりに第一接続管 3 4 を介して空気ポンプ 3 5 に接続される。 第一接続管 3 4 は第二接続管 3 6 を介して電磁弁 6 0 に接続される 。 電磁弁 6 0 は対応する駆動回路 4 9 を介して出力ポー ト 4 7 に接 続される。 電磁弁 6 0 は電子制御装置 4 0 により制御される。 In the thirteenth embodiment, as shown in FIG. 25, the air chamber 6 is connected to the air pump 35 via a first connection pipe 34 instead of the atmosphere pipe 33. The first connection pipe 34 is connected to the solenoid valve 60 via the second connection pipe 36 . The solenoid valve 60 is connected to the output port 47 via the corresponding drive circuit 49. The solenoid valve 60 is controlled by an electronic control unit 40.
燃料タ ンク 1 の上方部分 2 には空気室 6 内の圧力を検出するため の圧力セ ンサ 6 1 が取り付けられる。 圧力セ ンサ 6 1 は対応する A D変換器 4 8 を介して入力ポー ト 4 6 に接続される。  A pressure sensor 61 for detecting the pressure in the air chamber 6 is attached to the upper part 2 of the fuel tank 1. The pressure sensor 61 is connected to the input port 46 via the corresponding AD converter 48.
また燃料タ ンク 1 の上方部分には分離壁 5 の位置を検出すること により燃料室 7 内の燃料量を検出するための燃料レベルゲージ 6 2 が取り付けられる。 燃料レベルゲージ 6 2 が対応する A D変換器 4 8 を介して入力ポー ト 4 6 に接続される。  A fuel level gauge 62 for detecting the amount of fuel in the fuel chamber 7 by detecting the position of the separation wall 5 is attached to the upper part of the fuel tank 1. The fuel level gauge 62 is connected to the input port 46 via the corresponding AD converter 48.
上記以外の構成は第十二実施形態の燃料貯留装置の構成を同じで ある。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel storage device of the twelfth embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 第十三実施形態の蒸発燃料排除処理を説明する。  Hereinafter, the evaporative fuel removal processing of the thirteenth embodiment will be described.
蒸発燃料排除処理はキャ ップ蓋を開く こ とが許可されるまでは第 十実施形態と同様にして実行される。 したがってキャ ップ蓋を開く ことが許可されるまでの蒸発燃料排除処理の説明は省略する。  The evaporative fuel removal processing is executed in the same manner as in the tenth embodiment until the opening of the cap lid is permitted. Therefore, the description of the fuel vapor elimination process until the opening of the cap lid is permitted is omitted.
第十三実施形態ではキヤ ップ蓋が開かれた後、 燃料室 7が燃料で いつぱいになるまで燃料室 7 内への燃料の供給が実行される。  In the thirteenth embodiment, after the cap lid is opened, the supply of fuel into the fuel chamber 7 is executed until the fuel chamber 7 becomes full of fuel.
さ らに第十三実施形態では予め定められた時間が経過したときに 空気室 6 内の圧力を低下するために電磁弁 6 0 が開かれる。 こ こで の予め定められた時間は燃料室 7 が燃料でいっぱいであるこ とを検 出してから燃料室 7 内への燃料の供給を停止した直後までの時間で ある o  Further, in the thirteenth embodiment, the solenoid valve 60 is opened to reduce the pressure in the air chamber 6 when a predetermined time has elapsed. The predetermined time here is the time from when the fuel chamber 7 is detected to be full of fuel to immediately after the supply of fuel into the fuel chamber 7 is stopped.o
したがって第十三実施形態では燃料室 7 内への燃料の供給が停止 されたときに空気室 6 内の圧力が低下せしめられる。 このため給油 管 1 3 内の燃料が燃料室 7 内に流入し、 給油管 1 3 内での蒸発燃料 の発生がさ らに防止される。  Therefore, in the thirteenth embodiment, when the supply of fuel into the fuel chamber 7 is stopped, the pressure in the air chamber 6 is reduced. For this reason, the fuel in the fuel supply pipe 13 flows into the fuel chamber 7, and the generation of fuel vapor in the fuel supply pipe 13 is further prevented.
第十三実施形態では空気ポンプ 3 5 が燃料液面上方に形成された 空間から気体を放出するための手段または燃料液面の高さを上昇す るための手段に相当し、 レベルスィ ッチ 5 7 または燃料レベルゲ一 ジ 6 2が燃料液面の高さを検出するための手段に相当する。 In the thirteenth embodiment, the air pump 35 is formed above the fuel level. It corresponds to the means for releasing gas from the space or the means for raising the level of the fuel level.The level switch 57 or the fuel level gauge 62 detects the level of the fuel level. Means.
以下、 図 2 6および図 2 7 のフローチ ヤ一トを参照して第十三実 施形態の蒸発燃料排除処理を説明する。 なおフローチ ヤ一トにおい てステップ S 1 3 4 2 を除く ステップ S 1 3 1 0 カヽら 1 3 6 0 まで のステップはそれぞれ図 2 1 および図 2 2 のステップ S 1 0 1 0カヽ ら 1 0 6 0 までのステップに相当する。 したがってこれらステップ の説明は省略する。  Hereinafter, the fuel vapor removal processing of the thirteenth embodiment will be described with reference to the flowcharts of FIGS. 26 and 27. In the flow chart, steps S 1 3 4 2 are excluded except for steps S 1 3 4 2. This corresponds to steps up to 60. Therefore, the description of these steps is omitted.
ステップ S 1 3 4 2ではカウ ン ト tが予め定められたカウ ン ト t 1 より小さい ( t < t 1 ) か否かが判別される。 こ こで予め定めら れたカウ ン トは燃料室 7 が燃料でいつばいであるこ とが検出されて から燃料室 7 内への燃料の供給が停止された直後までの時間である 。 t く t 1 であるときにはステップ S 1 3 4 3 に進んでカウ ン ト力く カウ ン トアップされ、 ステップ S 1 3 4 4 に進む。  In step S1342, it is determined whether or not the count t is smaller than a predetermined count t1 (t <t1). Here, the predetermined count is the time from when it is detected that the fuel chamber 7 is busy with the fuel until immediately after the supply of the fuel into the fuel chamber 7 is stopped. When t is less than t1, the flow proceeds to step S1343, where the count is increased by a strong force, and the flow proceeds to step S1344.
一方、 t ≥ t 1 であるときには、 燃料室 7 内への燃料の供給が停 止されたと判断し、 ステップ S 1 3 5 0 に進んで終了フラグがセッ 卜され、 ステップ S 1 3 5 2 に進んで空気ポンプ 3 5が停止され、 ステップ S 1 3 5 4 に進んで電磁弁 6 0が開弁され、 ステップ S 1 3 5 6 に進む。  On the other hand, when t ≥ t1, it is determined that the supply of fuel into the fuel chamber 7 has been stopped, the flow proceeds to step S1350, the end flag is set, and the flow proceeds to step S1352. Then, the air pump 35 is stopped, the flow proceeds to step S1354, the solenoid valve 60 is opened, and the flow proceeds to step S1356.
上記実施形態ではリ リ ーフ弁の開弁、 空気室 6 内の圧力またはレ ベルスイ ッチ 5 7 に基づいて空気ポンプが作動され又は電磁弁 6 0 が開弁される。 しかしながら分離壁 5 の位置に基づいて空気ポンプ を作動したり、 電磁弁 6 0 を開弁したり してもよい。  In the above embodiment, the air pump is operated or the solenoid valve 60 is opened based on the opening of the relief valve, the pressure in the air chamber 6 or the level switch 57. However, the air pump may be operated based on the position of the separation wall 5, or the solenoid valve 60 may be opened.
以下、 第十四実施形態の燃料貯留装置を説明する。  Hereinafter, the fuel storage device of the fourteenth embodiment will be described.
第十四実施形態では図 2 8 に示したように燃料貯留装置は燃料タ ンク本体 1 4 0 を具備する。 燃料タ ンク本体 1 4 0 は概ね碗形状の 上方部分 9 1 と下方部分 9 2 とを具備する。 これら上方部分 9 1 お よび下方部分 9 2 はこれら部分のフ ラ ンジ部分 9 1 a 、 9 2 aにお いて互いに接続される。 In the fourteenth embodiment, the fuel storage device includes a fuel tank main body 140 as shown in FIG. The fuel tank body 140 has a generally bowl-shaped It has an upper part 9 1 and a lower part 9 2. The upper part 91 and the lower part 92 are connected to each other at the flange parts 91a, 92a of these parts.
燃料を貯留し保存するための燃料室 9 3 を形成する燃料容器 9 4 が燃料タ ンク本体 1 4 0 内に収容される。 燃料容器 9 4 は変形可能 であるが剛性を有する長方形の上方壁 9 5 と、 変形可能であるが剛 性を有する長方形の下方壁 9 6 と、 変形可能であるが剛性を有し且 つ図 2 9 に示したよ う に上方壁 9 5 の周縁部 9 5 aを下方壁 9 6 の 周縁部 9 6 aに接続する帯状壁または接続壁 9 7 とを具備する。  A fuel container 94 forming a fuel chamber 93 for storing and storing fuel is accommodated in the fuel tank body 140. The fuel container 94 has a deformable but rigid rectangular upper wall 95, a deformable but rigid rectangular lower wall 96, and a deformable but rigid wall. As shown in FIG. 29, a strip-shaped wall or connecting wall 97 connecting the peripheral portion 95a of the upper wall 95 to the peripheral portion 96a of the lower wall 96 is provided.
図 3 0 に示したように上方壁 9 5 および下方壁 9 6 は燃料容器 9 4 内の燃料量が増大したときにこれら上方壁 9 5 および下方壁 9 6 が外方へ膨らむ又は拡がるように変形する。 上方壁 9 5 および下方 壁 9 6 の変形により接続壁 9 7 は内方へ湾曲する。 したがって燃料 容器 9 4 の容積が増大する。  As shown in FIG. 30, the upper wall 95 and the lower wall 96 are arranged so that the upper wall 95 and the lower wall 96 bulge or expand outward when the amount of fuel in the fuel container 94 increases. Deform. Due to the deformation of the upper wall 95 and the lower wall 96, the connecting wall 97 is curved inward. Therefore, the capacity of the fuel container 94 increases.
一方、 燃料容器 9 4 内の燃料量が減少したときには外方へ湾曲し ている上方壁 9 5および下方壁 9 6 と内方へ湾曲している接続壁 9 7 とが図 2 9 に示したこれらの元の形状に戻る。 したがって燃料容 器 9 4 の容積が減少する。  On the other hand, when the amount of fuel in the fuel container 94 decreases, the outwardly curved upper wall 95 and lower wall 96 and the inwardly curved connecting wall 97 are shown in Figure 29. Return to their original shape. Therefore, the volume of the fuel container 94 decreases.
図 3 1 に示したように燃料容器 9 4 内の燃料量がさ らに減少した ときには上方壁 9 5および下方壁 9 6 はこれら上方壁 9 5 および下 方壁 9 6が内方へ膨らむように変形する。 これら上方壁 9 5 および 下方壁 9 6の変形により接続壁 9 7 が内方へ湾曲する。 したがって 燃料容器 9 4 の容積が減少する。  As shown in Fig. 31, when the amount of fuel in the fuel container 94 further decreases, the upper wall 95 and the lower wall 96 are so formed that the upper wall 95 and the lower wall 96 expand inward. Deform to. The deformation of the upper wall 95 and the lower wall 96 causes the connecting wall 97 to curve inward. Therefore, the volume of the fuel container 94 decreases.
なお接続壁 9 7 の剛性は上方壁 9 5 および下方壁 9 6 の剛性より 大きい。  The rigidity of the connecting wall 97 is larger than the rigidity of the upper wall 95 and the lower wall 96.
燃料容器 9 4 の下方壁 9 6 の中央部分には燃料通過開口 9 8が形 成される。 燧料タ ンク本体 1 4 0 の下方部分 9 2 の中央部分には接 続管開口 9 9 が形成される。 燃料容器 9 4 は燃料通過開口 9 8が接 続管開口 9 9 と整列するように燃料タ ン ク本体 1 4 0 に配置される 燃料容器 9 4 の外側であって燃料タ ン ク本体 1 4 0 の内側には空 気室 1 1 0 が形成される。 燃料容器 9 4 内の燃料量を算出するため に燃料容器 9 4 の上方壁 9 5 の位置または移動量を検出するための 燃料レベルセ ンサ 1 1 1 が燃料タ ンク本体 1 4 0 の上方部分 9 1 の 内面に取り付けられる。 A fuel passage opening 98 is formed at the center of the lower wall 96 of the fuel container 94. The center part of the lower part 92 of the flint tank body 140 is in contact with A tube opening 9 9 is formed. The fuel container 94 is disposed on the fuel tank body 140 such that the fuel passage opening 98 is aligned with the connection pipe opening 99, and is located outside the fuel container 94 and the fuel tank body 14 Inside 0, an air chamber 110 is formed. The fuel level sensor 1 11 for detecting the position or movement of the upper wall 95 of the fuel container 94 for calculating the amount of fuel in the fuel container 94 is an upper part of the fuel tank body 140. 1 Installed on the inner surface.
さ らに燃料タ ンク本体 1 4 0 の上方部分 9 1 には空気通過開口 1 1 2が形成される。 燃料容器 9 4 の容積が減少または増大したとき に空気室 1 1 0 の容積が増大または減少する。 このとき空気が空気 通過開口 1 1 2 を介して空気室 1 1 0 内の流入または空気室 1 1 0 から流出する。 したがって燃料容器 9 4 が変形し易い。  Further, an air passage opening 112 is formed in the upper part 91 of the fuel tank body 140. When the volume of the fuel container 94 decreases or increases, the volume of the air chamber 110 increases or decreases. At this time, air flows into or out of the air chamber 110 through the air passage opening 112. Therefore, the fuel container 94 easily deforms.
空気を除く他の物質が空気室 1 1 0 内へ流入することを防止する ためのフ ィ ルタ 1 1 3が空気通過開口 1 1 2 内に挿入される。  A filter 113 for preventing other substances except air from flowing into the air chamber 110 is inserted into the air passage opening 112.
燃料容器 9 4 内へ燃料を導入し、 燃料容器 9 4 から燃料を引き出 すための燃料管 1 1 4 の一端が燃料容器 9 4 の燃料通過開口 9 8 お よび燃料タ ン ク本体 1 4 0 の下方部分 9 2 の接続管開口 9 9 に挿入 され、 接続される。  One end of a fuel pipe 114 for introducing fuel into the fuel container 94 and extracting fuel from the fuel container 94 is connected to the fuel passage opening 98 of the fuel container 94 and the fuel tank body 114. It is inserted into the connection pipe opening 99 of the lower part 92 of 0 and connected.
燃料管 1 1 4 の他端は燃料容器 9 4 に燃料を供給するための給油 管 1 1 5 の下方端と燃料容器 9 4 から燃料ポンプ装置 1 1 7 に燃料 を導入するための燃料導入管 1 1 7 の一端に接続される。 燃料導入 管 1 1 7 の他端は燃料ポンプ装置 1 1 6 に接続される。  The other end of the fuel pipe 114 is connected to the lower end of the fuel supply pipe 115 for supplying fuel to the fuel container 94 and the fuel introduction pipe for introducing fuel from the fuel container 94 to the fuel pump device 117. Connected to one end of 1 17. The other end of the fuel introduction pipe 1 17 is connected to the fuel pump device 1 16.
燃料ポンプ装置 1 1 6 は燃料容器 9 4 内の燃料を引き入れ、 その 燃料を内燃機関の燃料噴射弁 (図示せず) に供給する。 蒸発燃料を 燃料ポンプ装置 1 i 6 から放出するためのポンプ蒸発燃料管 1 1 8 の一端が燃料ポンプ装置 1 1 6 に接続される。 ポンプ蒸発燃料管 1 1 8の他端は袷油管 1 1 5 の上方開口に隣接して給油管 1 1 5 に接 続される。 さ らに燃料を燃料ポンプ装置 1 1 6から燃料噴射弁へ送 るための燃料送り管 1 2 0 が燃料ポンプ装置 1 1 6 に接続される。 蒸発燃料を燃料容器 9 4 から放出するための容器蒸発燃料管 1 5 0 の一端が燃料容器 9 4 の上方壁 9 5 に接続される。 容器蒸発燃料 管 1 5 0 の他端は燃料ポ ンプ装置 1 1 6 に接続される。 さ らに容器 蒸発燃料管 1 5 0 の一端には蒸発燃料管遮断弁または容器密閉弁 1 4 9が配設される。 The fuel pump device 116 draws the fuel in the fuel container 94 and supplies the fuel to a fuel injection valve (not shown) of the internal combustion engine. One end of a pump evaporative fuel pipe 1 18 for discharging the evaporative fuel from the fuel pump device 1 i 6 is connected to the fuel pump device 1 16. Pump evaporative fuel pipe 1 The other end of 18 is connected to the oil supply pipe 1 15 adjacent to the upper opening of the lined oil pipe 1 15. Further, a fuel feed pipe 120 for sending the fuel from the fuel pump device 116 to the fuel injection valve is connected to the fuel pump device 116. One end of a fuel vapor pipe 150 for discharging the fuel vapor from the fuel container 94 is connected to an upper wall 95 of the fuel container 94. The other end of the container fuel vapor pipe 150 is connected to a fuel pump device 116. Further, an evaporative fuel pipe shutoff valve or a container sealing valve 149 is provided at one end of the evaporative fuel pipe 150.
蒸発燃料管遮断弁 1 4 9 はフロー 卜 1 5 1 を具備し、 その密度は 燃料の密度より小さい。  The evaporative fuel pipe shut-off valve 149 is provided with a float 151, the density of which is lower than the density of the fuel.
燃料容器 9 4 の内部に開口 した容器蒸発燃料管 1 5 0 の開口は燃 料液面上方の空間に開口する放出通路に対応し、 蒸発燃料遮断弁 1 4 9 は上記放出通路を遮断するための遮断弁に対応する。  The opening of the evaporative fuel pipe 150 opened inside the fuel container 94 corresponds to the discharge passage opening in the space above the fuel liquid level, and the evaporative fuel shutoff valve 1449 shuts off the above discharge passage. Corresponding to the shut-off valve.
上方開口 1 1 9近く の蒸発燃料を放出するための蒸発燃料管 1 2 1 の一端がポンプ蒸発燃料管 1 1 8の上記他端側の上方開口におい て給油管 1 1 5 に接続される。 蒸発燃料管 1 2 1 の他端は蒸発燃料 を吸着し、 その蒸発燃料を一時的に保持するためのチ ヤ コールキヤ ニスタ 1 2 2 に接続される。  One end of the fuel vapor pipe 121 for discharging the fuel vapor near the upper opening 111 is connected to the fuel supply pipe 115 at the upper opening on the other end side of the pump fuel fuel pipe 118. The other end of the fuel vapor pipe 122 is connected to a charcoal canister 122 for absorbing the fuel vapor and temporarily holding the fuel vapor.
蒸発燃料を吸着するための活性炭 1 2 3 がチ ヤ コールキヤニスタ 1 2 2 内に配置される。 チ ヤ コールキヤニスタ 1 2 2 の内部空間は 活性炭 1 2 3 により分割される。 したがって活性炭 1 2 3 の一方の 側には蒸発燃料室 1 2 4 が形成され、 活性端 1 2 3 の他方の側には 空気室 1 2 5が形成される。  Activated carbon 123 for adsorbing the evaporative fuel is placed in the charcoal canister 122. The interior space of the charcoal canister 122 is divided by activated carbon 123. Therefore, an evaporative fuel chamber 124 is formed on one side of the activated carbon 123, and an air chamber 125 is formed on the other side of the active end 123.
蒸発燃料管 1 2 1 の上記他端はチヤ コールキヤニス夕 1 2 2 内の 蒸発燃料室 1 2 4 に接続される。 さ らに蒸発燃料室 1 2 4 には活性 炭 1 2 3 に吸着されている蒸発燃料をチ ヤ コールキ ヤニスタ 1 2 2 から内燃機関の吸気通路 1 2 7 に放出するためのキ ヤニスタ蒸発燃 料管 1 2 6 の一端が接続される。 キヤニスタ蒸発燃料管 1 2 6 の他 端は吸気通路 1 2 7 内に形成されたサージタ ンク 1 2 8 に接続され キヤニス夕蒸発燃料管 1 2 6 内にはキ ヤニスタ蒸発燃料管 1 1 6 を開けたり閉めたりするための蒸発燃料量制御弁 1 2 9が配設され る。 蒸発燃料量制御弁 1 2 9 は制御装置 (図示せず) によ り制御さ れる。 空気室 1 2 5 には空気をチ ャ コ一ルキヤニス夕 1 2 2 の空気 室 1 2 5 に導入するための空気管 1 3 0 の一端が接続される。 空気 管 1 3 0 の他端は吸気通路 1 2 7 内に配設されたエアク リ ーナ 1 3 1 に接続される。 空気管 1 3 0 にはこの空気管 1 3 0 を開けたり閉 めたりするための遮断弁 1 3 2が配設される。 遮断弁 1 3 2 は制御 装置 (図示せず) により制御される。 吸気通路 1 2 7 内には内燃機 関の機関本体 1 8 0 に供給される空気量を制御するためのスロ ッ ト ル弁 1 3 3が配設される。 The other end of the evaporative fuel pipe 1 2 1 is connected to an evaporative fuel chamber 1 2 4 in a charcoal canister 1 2. In addition, the evaporative fuel chamber 124 allows the evaporative fuel adsorbed on the activated carbon 123 to be discharged from the charcoal canister 122 to the intake passage 127 of the internal combustion engine. One end of the feed pipe 1 26 is connected. The other end of the canister evaporative fuel pipe 1 2 6 is connected to the surge tank 1 2 8 formed in the intake passage 1 2 7, and the canister evaporative fuel pipe 1 1 6 is opened in the canister evaporative fuel pipe 1 2 6. An evaporative fuel amount control valve 1 29 for closing and closing is provided. The evaporative fuel amount control valve 12 9 is controlled by a control device (not shown). One end of an air pipe 130 for introducing air into the air chamber 125 of the chamber 122 is connected to the air chamber 125. The other end of the air pipe 130 is connected to an air cleaner 13 1 provided in the intake passage 127. The air pipe 130 is provided with a shut-off valve 132 for opening and closing the air pipe 130. The shutoff valves 13 and 2 are controlled by a control device (not shown). A throttle valve 133 for controlling the amount of air supplied to the engine body 180 of the internal combustion engine is provided in the intake passage 127.
第十四実施形態ではチャ コールキヤニスタ 1 2 2 内の蒸発燃料が 吸気通路 1 2 7 内に導入されるべきときに蒸発燃料量制御弁 1 2 9 が開弁される。 蒸発燃料量制御弁 1 2 9 は通常は閉弁されている。 したがつて蒸発燃料量制御弁 1 2 9 が開弁されたとき、 サージタ ン ク 1 2 8 内の負圧がキ ヤニスタ蒸発燃料管 1 2 6 を介してチ ャ コ 一 ルキヤニスタ 1 2 2 内に導入され、 エアク リ ーナ 1 3 1 内の空気が 空気管 1 3 0 を介してチ ヤ コールキヤニスタ 1 2 2 に導入される。 このためチ ヤ コールキヤニスタ 1 2 2 内の蒸発燃料が吸気通路 1 2 7 に導入される。  In the fourteenth embodiment, when the fuel vapor in the charcoal canister 122 is to be introduced into the intake passage 127, the fuel vapor control valve 129 is opened. The evaporative fuel amount control valve 12 9 is normally closed. Therefore, when the evaporative fuel amount control valve 12 9 is opened, the negative pressure in the surge tank 1 28 is introduced into the charcoal canister 1 2 2 via the canister evaporative fuel pipe 1 26. The air in the air cleaner 13 1 is introduced into the charcoal canister 122 via the air pipe 130. For this reason, the evaporated fuel in the charcoal canister 122 is introduced into the intake passage 127.
さ らに蒸発燃料量制御弁 1 2 9 は所望の予め定められた空燃比が 得られるよう に吸気通路 1 2 7 内に導入されるべき蒸発燃料の量を 制御するために内燃機関の運転状態に基づいて制御される。 したが つて蒸発燃料量制御弁 1 2 9 は吸気通路 1 2 7 内へ放出されるべき 蒸発燃料の量を制御するための手段に相当 し、 遮断弁 1 3 2 はチヤ コールキヤニスタ 1 2 2 内への空気の導入を制御するための手段に 相当する。 Further, the evaporative fuel amount control valve 129 controls the operating state of the internal combustion engine to control the amount of evaporative fuel to be introduced into the intake passage 127 so as to obtain a desired predetermined air-fuel ratio. Is controlled based on the Therefore, the fuel vapor control valve 12 9 should be discharged into the intake passage 127. The shut-off valve 132 corresponds to a means for controlling the amount of evaporative fuel, and the shutoff valve 132 corresponds to a means for controlling the introduction of air into the charcoal canister 122.
第十四実施形態ではチ ヤ コールキヤニスタ 1 2 2 と連通する燃料 系内の漏れを検出すべきとき、 負圧がチヤ コールキヤニス夕 1 2 2 から燃料タ ンク本体 1 4 0 まで延びる燃料系に導入され、 その後、 蒸発燃料量制御弁 1 2 9 と遮断弁 1 2 3 2 とが閉弁され、 上記燃料 系が密閉される。 それから大気圧に向かう燃料系内の圧力の上昇が 圧力センサ (図示せず) により検出されたとき、 燃料系に漏れ部分 があると判断する。 したがって蒸発燃料量制御弁 1 2 9 および遮断 弁 1 3 2 は燃料漏れを検出するための手段に相当する。  In the fourteenth embodiment, when a leak in the fuel system communicating with the charcoal canister 122 should be detected, a negative pressure is applied to the fuel system extending from the charcoal canister 122 to the fuel tank body 140. After that, the evaporated fuel amount control valve 1 29 and the shutoff valve 1 32 2 are closed, and the fuel system is sealed. Then, when a pressure increase in the fuel system toward the atmospheric pressure is detected by a pressure sensor (not shown), it is determined that the fuel system has a leak. Therefore, the evaporated fuel amount control valve 12 9 and the shutoff valve 13 2 correspond to a means for detecting fuel leakage.
以下、 本発明の第十四実施形態の燃料ポンプ装置を詳細に説明す る。  Hereinafter, the fuel pump device according to the fourteenth embodiment of the present invention will be described in detail.
第十四実施形態では図 3 2 に示したように燃料ポンプ装置 1 1 6 はハウ ジング 1 5 2 により画成されたポンプ室 1 5 3 を具備する。 ポンプ室 1 5 3 はポンプ室分離壁 1 5 4 により ポンプ室部分 1 5 5 と副タ ンク室 1 5 6 とに分割される。  In the fourteenth embodiment, as shown in FIG. 32, the fuel pump device 1 16 has a pump chamber 15 3 defined by a housing 15 2. The pump chamber 153 is divided into a pump chamber part 155 and a sub-tank chamber 156 by a pump chamber separation wall 154.
ポンプ室分離壁 1 5 4 はハウ ジング 1 5 2 の上方壁の内面から概 ね鉛直方向下方へ延びる鉛直壁 1 5 4 a と、 ハウ ジ ング 1 5 2の下 方壁の内面上方でハウ ジング 1 5 2 の側壁の内面まで水平に延びる 水平壁 1 5 4 b とを具備する。  The pump chamber separation wall 154 is a vertical wall 154a extending almost vertically downward from the inner surface of the upper wall of the housing 152, and the housing 154 is a housing above the inner surface of the lower wall of the housing 152. A horizontal wall 1 54 b extending horizontally to the inner surface of the side wall 1 52.
ポンプ室部分 1 5 5 から蒸発燃料を放出するためのポンプ蒸発燃 料管 1 1 8の上記一端がハウ ジング 1 5 2 の上方壁に接続される。 ポンプ蒸発燃料管 1 1 8 の一端の開口はポンプ室部分 1 5 5 内にお いてハウ ジング 1 5 2 の上壁に隣接して開口する。  The one end of the pump evaporative fuel pipe 1 18 for discharging the evaporative fuel from the pump chamber portion 1 55 is connected to the upper wall of the housing 15 2. The opening at one end of the pump evaporative fuel pipe 1 18 opens in the pump chamber section 15 5 adjacent to the upper wall of the housing 15 2.
燃料送り管 1 2 0 を介して副タ ンク室 1 5 6 から燃料噴射弁まで 燃料を供給するための燃料ポンプ 1 5 7が副タ ン ク室 1 5 6 内に配 置される。 燃料ポンプ 1 5 7 の下方壁には燃料ポンプ 1 5 7 内に引 き入れられる燃料を濾過するための第一燃料フ ィ ルタ 1 5 7が接続 される。 さ らに副タ ンク室 1 5 6 内の燃料送り管 1 2 0 には燃料ポ ンプ 1 5 7 により吐出される燃料の圧力を調節するための圧力レギ ユ レ一タ 1 5 9 が配設される。 A fuel pump 157 for supplying fuel from the sub-tank chamber 156 to the fuel injector via the fuel feed pipe 120 is arranged in the sub-tank chamber 156. Is placed. A first fuel filter 157 for filtering the fuel drawn into the fuel pump 157 is connected to a lower wall of the fuel pump 157. Further, a pressure regulator 159 for adjusting the pressure of the fuel discharged by the fuel pump 157 is provided in the fuel feed pipe 120 in the sub-tank chamber 156. Is done.
圧力レギユ レ一夕 1 5 9 には燃料ポンプ 1 5 7 により吐出された 燃料の一部を副タ ンク室 1 5 6 に戻すための燃料戻し管 1 6 1 の上 方端部が接続される。 さ らに圧力レギユ レ一タ 1 5 9 と燃料ポンプ 1 5 7 との間の燃料送り管 1 2 0 には燃料ポンプ 1 5 7から吐出さ れた燃料を濾過するための第二燃料フ ィ ルタ 1 6 0が配設される。 燃料戻し管 1 6 1 の下方先端部分 1 6 2 は概ね水平方向を向いて おり、 先端部 1 6 2がその開口へ進むにつれて先端部分 1 6 2 の直 径が小さ く なるように先細り となっている。 下方先端部分 1 6 2 は 燃料ポンプ 1 5 7 により吐出された燃料の一部を副タ ンク室 1 5 6 内に戻す又は再循環するこ とにより負圧を発生するための負圧発生 ハウジング 1 6 3 内に収容される。 負圧発生ハウ ジング 1 6 3 は ト ラ ンぺッ ト形状の燃料放出管 1 6 4 を具備し、 燃料放出管 1 6 4 は 燃料放出管 1 6 4 がその開口へと進むにつれて燃料放出管 1 6 4 の 直径が大き く なるようにテー パが付けられている。  The upper end of the fuel return pipe 161, which is used to return a part of the fuel discharged by the fuel pump 157, to the sub-tank chamber 156, is connected to the pressure regulator 1595. . In addition, a fuel feed pipe 120 between the pressure regulator 159 and the fuel pump 157 has a second fuel filter for filtering the fuel discharged from the fuel pump 157. Ruta 160 is provided. The lower end 16 2 of the fuel return pipe 16 1 is oriented substantially horizontally, and is tapered so that the diameter of the end 16 2 becomes smaller as the end 16 2 advances toward the opening. ing. The lower end portion 162 is a negative pressure generating housing for generating a negative pressure by returning or recirculating a part of the fuel discharged by the fuel pump 157 into the sub tank chamber 156. Housed in 6 3. The negative pressure generating housing 163 is provided with a fuel discharge pipe 1664 in the form of a trunk, and the fuel discharge pipe 1664 is provided with a fuel discharge pipe as the fuel discharge pipe 1664 advances to its opening. Tapered so that the diameter of 164 becomes larger.
燃料放出管 1 6 4 は下方先端部分 1 6 2 と整列する。 さ らに負圧 発生ハウ ジ ング 1 6 3 内には容器蒸発燃料管 1 5 0 の下方端が収容 される。  The fuel discharge pipe 16 4 is aligned with the lower tip 16 2. Further, the lower end of the fuel vapor pipe 150 is accommodated in the negative pressure generating housing 163.
副タ ンク室 i 5 6 内の容器蒸発燃料管 1 5 0 は負圧を副タ ンク室 1 5 6 内に導入するための副タ ン ク室負圧導入管 1 6 5 を具備する 。 副タ ンク室負圧導入管 1 6 5 は副タ ンク室 i 5 6 内の上方領域で 副燃料室 1 5 6 の内部空間へ開口する。 さ らに副タ ンク室負圧導入 管 1 6 5 の直径は容器蒸発燃料管 1 5 0 の直径より小さい。 ポンプ室分離壁 1 5 4 の水平壁 1 5 4 bから鉛直方向下方へと延 びる鉛直環状壁 1 6 7が水平壁 1 5 4 bに配設される。 鉛直環状壁 1 6 7 は燃料を副タ ンク室 1 5 6 内に導入するための燃料取入れ通 路 1 6 6 を形成する。 燃料取入れ通路 1 6 6 の上方開口の位置は燃 料導入管 1 1 7 の底壁面の位置より低い。 The container evaporative fuel pipe 150 in the sub-tank chamber i56 has a sub-tank chamber negative pressure introduction pipe 165 for introducing a negative pressure into the sub-tank chamber 156. The sub-tank negative pressure introduction pipe 165 opens into the internal space of the sub-fuel chamber 156 in the upper region of the sub-tank i56. In addition, the diameter of the auxiliary tank chamber negative pressure introduction pipe 165 is smaller than the diameter of the container evaporative fuel pipe 150. A vertical annular wall 167 extending vertically downward from the horizontal wall 154b of the pump chamber separation wall 154 is disposed on the horizontal wall 154b. The vertical annular wall 167 forms a fuel intake passage 166 for introducing fuel into the auxiliary tank chamber 156. The position of the upper opening of the fuel intake passage 166 is lower than the position of the bottom wall of the fuel introduction pipe 117.
鉛直環状壁 1 6 7から燃料放出管 1 6 4 へ向かって水平に延びる 水平環状壁 1 6 8が鉛直環状壁 1 6 7 の下方端部に配設される。 水 平環状壁 1 6 8 は燃料放出管 1 6 4 から放出された燃料を通すため の燃料通過通路 1 6 9 を形成する。  A horizontal annular wall 168 extending horizontally from the vertical annular wall 167 toward the fuel discharge pipe 164 is disposed at a lower end of the vertical annular wall 167. The horizontal annular wall 168 forms a fuel passage 169 through which the fuel discharged from the fuel discharge pipe 164 passes.
燃料から気体を分離するためのメ ッ シュ構造を有する分離壁 1 7 0が鉛直環状壁 1 6 7 およびポンプ室部分 1 5 5 に配設される。 分 離壁 1 7 0 は水平環状壁 1 6 8 の底面から燃料取入れ通路 1 6 6 の 内部空間まで上方へと延びる。 したがって分離壁 1 7 0 は燃料通過 通路 1 6 9 を横断する。  Separation walls 170 having a mesh structure for separating gas from fuel are provided on the vertical annular wall 167 and the pump chamber part 155. The separating wall 170 extends upward from the bottom surface of the horizontal annular wall 168 to the internal space of the fuel intake passage 166. Therefore, the partition wall 170 crosses the fuel passage 169.
さ らに分離壁 1 7 0 は鉛直環状壁 1 6 7 を通ってポンプ室部分 1 5 5 の内部空間へと延びる。 鉛直環状壁 1 6 7 内における分離壁 1 7 0の側面は鉛直環状壁 1 6 7の内面へと延びる。 したがって分離 壁 1 7 0 は燃料取入れ通路 1 6 6 を二つの部分に分割する。  Furthermore, the partition wall 170 extends through the vertical annular wall 167 to the interior space of the pump chamber part 155. The side surface of the separation wall 170 in the vertical annular wall 167 extends to the inner surface of the vertical annular wall 167. The separating wall 170 therefore divides the fuel intake passage 166 into two parts.
さ らに分離壁 1 Ί 0 は水平壁 1 5 4 bを越えてポンプ室部分 1 5 5の内部空間まで延びる。 ポンプ室部分 1 5 5 内の分離壁 1 7 0 の 上方端は燃料導入管 1 1 7 の開口より高い位置に位置する。  Further, the separation wall 1Ί0 extends beyond the horizontal wall 154b to the interior space of the pump chamber portion 155. The upper end of the separation wall 170 in the pump chamber part 150 is located higher than the opening of the fuel introduction pipe 117.
さ らにポンプ室部分 1 5 5 内における分離壁 1 7 0 の側面はハウ ジング 1 5 2 の円筒壁の内面に接続される。 ポンプ室部分 1 5 5 内 における分離壁 1 7 0 の底端部は水平壁 1 5 4 bに接続される。 以下、 本発明の第十四実施形態の燃料ポンプ装置の作動を説明す 丈然料ポンプ 1 5 7が作動されて燃料容器 9 4 内の燃料が燃料噴射 弁に供袷されるとき、 副タ ンク室 1 5 6 内の燃料は第一燃料フ ィ ル タ 1 5 8 を介して燃料ポンプ 1 5 7 内に引き入れられる。 燃料噴射 弁ポンプ 1 5 7 内に引き入れられた燃料は第二燃料フ ィ ルタ 1 6 0 を介して圧力レギユ レ一夕 1 5 9 に供給される。 圧力レギユ レ一タ 1 5 9 内において燃料の圧力が予め定められた圧力より高いと きに は、 燃料の一部が燃料戻し管 1 6 1 を介して副タ ンク室 1 5 6 に戻 される。 したがって圧力レギユ レ一タ 1 5 9 および燃料戻し管 1 6 1 は燃料を再循環するための手段に相当する。 こ う して燃料圧が予 め定められた圧力に維持される。 Further, the side surface of the separation wall 170 in the pump chamber part 150 is connected to the inner surface of the cylindrical wall of the housing 152. The bottom end of the separation wall 170 in the pump chamber part 150 is connected to the horizontal wall 154b. Hereinafter, the operation of the fuel pump device according to the fourteenth embodiment of the present invention will be described. When the fuel is supplied to the valve, the fuel in the sub-tank chamber 156 is drawn into the fuel pump 157 through the first fuel filter 158. The fuel drawn into the fuel injection valve pump 157 is supplied to the pressure regulator 159 via the second fuel filter 160. When the fuel pressure is higher than a predetermined pressure in the pressure regulator 1559, a part of the fuel is returned to the sub-tank chamber 156 via the fuel return pipe 161. You. The pressure regulator 159 and the fuel return pipe 161 therefore represent a means for recirculating fuel. In this way, the fuel pressure is maintained at the predetermined pressure.
予め定められた圧力を有する残りの燃料が燃料送り管 1 2 0 を介 して燃料噴射弁に供給される。  The remaining fuel having a predetermined pressure is supplied to the fuel injection valve via the fuel feed pipe 120.
燃料噴射弁戻し管 1 6 1 を介して副タ ンク室 1 5 6 に戻された燃 料は下方先端部分 1 6 2 から負圧発生ハウ ジ ング 1 6 3へと放出さ れる。 テーパとされた下方先端部分 1 6 2 のベンチヱ リ効果により 下方先端部分 1 6 2から流出する燃料の流速が増大される。 増大し た流速の燃料は燃料放出管 1 6 4 を介して燃料通過通路 1 6 9 に流 入する。  The fuel returned to the auxiliary tank chamber 156 via the fuel injection valve return pipe 161 is discharged from the lower end portion 162 to the negative pressure generating housing 163. The bench flow effect of the tapered lower end portion 162 increases the flow velocity of the fuel flowing out from the lower end portion 162. The fuel with the increased flow velocity flows into the fuel passage 169 via the fuel discharge pipe 164.
燃料が下方先端部分 1 6 2 から燃料放出管 1 6 4 へと放出されて 燃料の流速が増大されたとき、 負圧発生ハウ ジ ング 1 6 3 内に負圧 が発生する。 したがって燃料戻し管 1 6 1 および負圧発生ハウ ジ ン グ 1 6 3 は負圧を発生するための手段に相当する。  A negative pressure is generated in the negative pressure generation housing 163 when the fuel is discharged from the lower tip portion 162 to the fuel discharge pipe 1664 and the fuel flow rate is increased. Therefore, the fuel return pipe 16 1 and the negative pressure generating housing 16 3 correspond to a means for generating a negative pressure.
負圧発生ハウジング 1 6 3 内で発生した負圧は容器蒸発燃料管 1 5 0 を介して容器 9 4 内の燃料液面上方の空間内に導入され、 また 容器蒸発燃料管 1 5 0 および副タ ンク負圧導入管 1 6 5 を介して副 タ ンク室 1 5 6 内の燃料液面上方の空間内に導入される。 したがつ て容器蒸発燃料管 1 5 0 および副タ ンク負圧導入管 1 6 5 は負圧を 導入するための手段または通路に相当する。 第十四実施形態では容器蒸発燃料管 1 5 0 の直径は副タ ンク負圧 導入管 1 6 5 の直径より大きい。 したがって負圧は優先的に燃料容 器 9 4 内に導入されて蒸発燃料および空気を含む気体が燃料容器 9 4から放出される。 このため副タ ンク負圧導入管は優先的に燃料容 器 9 4 から気体を放出することを促進するための手段に相当する。 負圧が燃料容器 9 4 内に導入されたとき、 蒸発燃料および空気は 燃料容器 9 4 から負圧発生ハウジング 1 6 3 に放出され、 その結果 、 燃料容器 9 4 内の燃料液面の高さが燃料室 9 3 内の最も高い位置 に上昇せしめられる。 したがって燃料ポンプ 1 5 7 は燃料液面上方 に形成された空間から気体を放出するための手段または燃料液面の 高さを上昇するための手段に相当する。 The negative pressure generated in the negative pressure generating housing 16 3 is introduced into the space above the fuel level in the container 94 through the container evaporative fuel pipe 150, and the container evaporative fuel pipe 150 It is introduced into the space above the fuel level in the sub-tank chamber 156 via the tank negative pressure introduction pipe 165. Therefore, the container evaporative fuel pipe 150 and the auxiliary tank negative pressure introducing pipe 165 correspond to a means or a passage for introducing a negative pressure. In the fourteenth embodiment, the diameter of the container evaporative fuel pipe 150 is larger than the diameter of the auxiliary tank negative pressure introducing pipe 165. Therefore, the negative pressure is preferentially introduced into the fuel container 94, and the gas containing the fuel vapor and the air is discharged from the fuel container 94. Therefore, the sub-tank negative pressure introduction pipe corresponds to a means for preferentially promoting the release of gas from the fuel container 94. When a negative pressure is introduced into the fuel container 94, evaporative fuel and air are released from the fuel container 94 to the negative pressure generating housing 163, and as a result, the level of the fuel level in the fuel container 94 is increased. Is raised to the highest position in the fuel chamber 93. Therefore, the fuel pump 157 corresponds to a means for discharging gas from a space formed above the fuel level or a means for increasing the height of the fuel level.
第十四実施形態では蒸発燃料または空気のような気体がいったん 燃料容器 9 4 から完全に排出されると、 燃料容器 9 4 は燃料ポンプ 1 5 7が作動されている限り気体のない状態に維持される。 さ らに 燃料容器 9 4 が危害が存在しない状態に維持されているとき、 燃料 容器 9 4 の上面は燃料容器 9 4 内の正確な燃料量を示している。 し たがって第十四実施形態では燃料容器 9 4 内の燃料量を正確に検出 することができる。  In the fourteenth embodiment, once a gas such as evaporative fuel or air is completely discharged from the fuel container 94, the fuel container 94 remains gas-free as long as the fuel pump 157 is operated. Is done. Further, when the fuel container 94 is maintained in a harmless condition, the top surface of the fuel container 94 indicates the exact amount of fuel in the fuel container 94. Therefore, in the fourteenth embodiment, the amount of fuel in the fuel container 94 can be accurately detected.
蒸発燃料および空気が燃料容器 9 4 から排除された後に負圧が燃 料容器 9 4 内に導入され続けると、 燃料が燃料容器 9 4 から容器蒸 発燃料管 1 5 0 に漏れる可能性がある。 したがって蒸発燃料および 空気が燃料容器 9 4 から排除されたときには燃料容器 9 4 内への負 圧の導入を停止すべきである。  If negative pressure continues to be introduced into the fuel container 94 after the evaporative fuel and air are removed from the fuel container 94, fuel may leak from the fuel container 94 to the container steam line 150 . Therefore, the introduction of the negative pressure into the fuel container 94 should be stopped when the fuel vapor and the air are removed from the fuel container 94.
第十四実施形態では蒸発燃料および空気が燃料容器 9 4 から完全 に排除され、 燃料容器 9 4 内の燃料液面の高さが蒸発燃料遮断弁 1 4 9 に達したとき、 蒸発燃料遮断弁 1 4 9 は容器蒸発燃料管 1 5 0 を遮断する。 したがって蒸発燃料遮断弁 1 4 9 は燃料容器 9 4 への 負圧の導入を停止するための手段に相当する。 さ らに蒸発燃料遮断 弁 1 4 9 は燃料容器 9 4 からの燃料の漏れを防止するための手段に 相当する。 In the fourteenth embodiment, when the fuel vapor and the air are completely removed from the fuel container 94 and the fuel level in the fuel container 94 reaches the fuel vapor shutoff valve 14 9, the fuel vapor shutoff valve 14 9 shuts off the fuel vapor pipe 150 of the container. Therefore, the evaporative fuel shut-off valve 14 9 is connected to the fuel container 94. This corresponds to a means for stopping the introduction of the negative pressure. Further, the evaporated fuel shutoff valve 149 corresponds to a means for preventing fuel from leaking from the fuel container 94.
蒸発燃料遮断弁 1 4 9が容器蒸発燃料管 1 5 0 を遮断した後は副 タ ンク室 1 5 6 内の燃料液面上方の空間にのみ負圧が導入される。 負圧が副タ ンク室 1 5 6 内の燃料液面上方の空間に導入されたと き、 蒸発燃料および空気が上記空間から負圧発生ハウ ジング 1 6 3 に放出される。 導入された負圧が副タ ンク室 1 5 6 内の燃料液面の 高さを上昇し、 燃料取入れ通路 1 6 6 を介してポンプ室部分 1 5 5 から副タ ンク室 1 5 6 内へ燃料が導入される。 したがって副タ ンク 室 1 5 6 内の燃料液面の高さはポンプ室部分 1 5 5 内に燃料が存在 する限り予め定められた高さに維持される。 このため燃料ポンプ装 置 1 1 6が傾き、 副タ ンク室 1 5 6 内の燃料液面が傾いたときに、 燃料ポンプ 1 5 7 内へ燃料を引き入れるときに通過する第一燃料フ ィルタ 1 5 8周りに燃料が存在しない状態が回避される。 したがつ て燃料戻し管 1 6 1 および負圧発生ハウ ジング 1 6 3 は燃料の枯渴 を防止するための手段に相当する。  After the evaporative fuel shutoff valve 149 shuts off the container evaporative fuel pipe 150, negative pressure is introduced only into the space above the fuel level in the sub tank chamber 156. When the negative pressure is introduced into the space above the fuel level in the sub-tank chamber 156, the fuel vapor and air are released from the space to the negative pressure generating housing 163. The introduced negative pressure increases the fuel level in the sub-tank chamber 156, and from the pump chamber part 155 to the sub-tank chamber 156 via the fuel intake passage 166. Fuel is introduced. Therefore, the height of the fuel level in the sub-tank chamber 156 is maintained at a predetermined height as long as fuel exists in the pump chamber portion 155. For this reason, when the fuel pump device 116 is tilted and the fuel level in the sub-tank chamber 156 is tilted, the first fuel filter 1 that passes when drawing fuel into the fuel pump 157 is drawn. 5 No fuel around the 8 is avoided. Therefore, the fuel return pipe 16 1 and the negative pressure generating housing 16 3 correspond to a means for preventing fuel from dying.
燃料容器 9 4 および副タ ンク室 1 5 6 内の燃料液面上方の空間か ら放出された蒸発燃料および空気は負圧発生ハウ ジング 1 6 3 内の 燃料に含まれている。 蒸発燃料および空気を含む燃料は燃料放出管 1 6 4 を介して燃料通過通路 1 6 9 に放出される。 燃料通過通路 1 6 9 に放出された燃料は燃料取入れ通路 1 6 6 の下方開口を通過す る。 このとき燃料内に含まれている蒸発燃料および空気はその小さ い密度のために上方へ移動する。 それから蒸発燃料および空気が分 離壁 1 7 0 により分割された燃料取入れ通路 1 6 6 の部分の一方を 介してポンプ室部分 1 5 5 に副タ ンク室 1 5 6 から放出される。 上述したように第十四実施形態では燃料取入れ通路 1 6 6 は燃料 を副タ ンク室 1 5 6 に導入するための燃料導入通路と副タ ンク室 1 5 6から蒸発燃料を放出するための蒸発燃料放出通路との両方の機 能をする。 したがって燃料取入れ通路 1 6 6 に加えて他の蒸発燃料 放出通路を提供する必要はない。 このように燃料取入れ通路 1 6 6 が燃料導入通路および蒸発燃料放出通路と して機能するので燃料ポ ンプ装置を小型化することが可能である。 Evaporated fuel and air released from the space above the fuel level in the fuel container 94 and the sub-tank chamber 156 are contained in the fuel in the negative pressure generating housing 163. The fuel containing the evaporated fuel and the air is discharged to the fuel passage 169 through the fuel discharge pipe 164. The fuel discharged into the fuel passage 166 passes through the lower opening of the fuel intake passage 166. At this time, the fuel vapor and the air contained in the fuel move upward due to the low density. Then, the fuel vapor and the air are discharged from the sub-tank chamber 156 to the pump chamber part 155 through one of the fuel intake passages 166 divided by the partition wall 170. As described above, in the fourteenth embodiment, the fuel intake passage It functions both as a fuel introduction passage for introducing the fuel into the sub-tank chamber 156 and an evaporative fuel discharge passage for discharging the evaporative fuel from the sub-tank chamber 156. Therefore, it is not necessary to provide another fuel vapor discharge passage in addition to the fuel intake passage 166. As described above, the fuel intake passage 166 functions as a fuel introduction passage and an evaporative fuel discharge passage, so that the size of the fuel pump device can be reduced.
さ らに第十四実施形態では燃料通過通路 1 6 9 へ放出された燃料 が燃料取入れ通路 1 6 6 の下方開口下を流れるとき、 燃料は分離壁 1 7 0 を通過する。 このため分離壁 1 7 0 により蒸発燃料および空 気が燃料から分離され、 燃料取入れ通路 1 6 6 を介してポンプ室部 分 1 5 5 に放出される。 したがって分離壁 1 7 0 は燃料から気体を 分離するための手段に相当する。  Further, in the fourteenth embodiment, when the fuel discharged to the fuel passage 169 flows below the lower opening of the fuel intake passage 166, the fuel passes through the separation wall 170. Therefore, the fuel vapor and the air are separated from the fuel by the separating wall 170 and discharged to the pump chamber part 155 through the fuel intake passage 166. Therefore, the separating wall 170 corresponds to a means for separating gas from fuel.
さ らに第十四実施形態では燃料通過通路 1 6 9 は燃料取入れ通路 1 6 6 に直接接続され、 燃料取入れ通路 1 6 6 に対して概ね垂直で ある。 このため蒸発燃料および空気が容易に上昇して燃料から分離 される。 したがって燃料通過通路 1 6 9 および燃料取入れ通路 1 6 6 は燃料から気体を分離または放出するための手段に相当する。 ポンプ室部分 i 5 5 に放出された蒸発燃料はポンプ蒸発燃料管 1 1 8 を介してチヤ コールキヤニスタ 1 2 2 内に導入される。 ポンプ 蒸発燃料管 1 1 8の下方開口はハウ ジング 1 5 2 の上方壁に隣接し てポンプ室部分 1 5 5 の内部空間に開口する。 したがってポンプ室 部分 1 5 5 内の蒸発燃料はポンプ室部分 1 5 5 内の燃料量が少なく なるまでチャコ一ルキヤ ニ スタ 1 2 2 内に導入される。  Further, in the fourteenth embodiment, the fuel passage 169 is directly connected to the fuel intake passage 166, and is substantially perpendicular to the fuel intake passage 166. Therefore, the fuel vapor and the air easily rise and are separated from the fuel. Accordingly, the fuel passage 169 and the fuel intake passage 166 correspond to a means for separating or discharging gas from the fuel. The evaporative fuel discharged into the pump chamber i 55 is introduced into the charcoal canister 122 through the pump evaporative fuel pipe 118. The lower opening of the pump evaporative fuel pipe 1 18 opens into the internal space of the pump chamber section 1 55 adjacent to the upper wall of the housing 1 52. Therefore, the evaporated fuel in the pump chamber part 155 is introduced into the charcoal canister 122 until the fuel amount in the pump chamber part 155 is reduced.
副タ ンク室 1 5 6 内の燃料は燃料ポンプ 1 5 7 によ り加熱される 。 したがって副タ ンク室 1 5 6 内の燃料の温度はポンプ室部分 i 5 5 内の燃料の温度より高い。 仮に比較的高い温度を有する燃料がポ ンプ室部分 1 5 5 内の比較的低い温度を有する燃料と混合すると、 多量の蒸発燃料が発生する可能性がある。 さ らに仮に副タ ンク室 1The fuel in the sub-tank chamber 156 is heated by the fuel pump 157. Therefore, the temperature of the fuel in sub-tank chamber 156 is higher than the temperature of the fuel in pump chamber i55. If the higher temperature fuel mixes with the lower temperature fuel in the pump chamber portion 155, A large amount of evaporative fuel may be generated. In addition, temporary tank room 1
5 6 内の燃料量が非常に少ないときに燃料が副タ ンク室 1 5 6から 出てポンプ室部分 1 5 5 内に流入すると、 第一燃料フィルタ 1 5 8 周りの燃料が枯渴する可能性がある。 したがって副タ ンク室 1 5 6 からポンプ室部分 1 5 5 への燃料の流れを防止すべきである。 If the fuel exits the sub-tank chamber 156 and enters the pump chamber part 155 when the amount of fuel in the 556 is extremely low, the fuel around the first fuel filter 158 may die. There is. Therefore, the flow of fuel from sub-tank chamber 156 to pump chamber part 155 should be prevented.
第十四実施形態によれば燃料通過通路 1 6 9が燃料取入れ通路 1 According to the fourteenth embodiment, the fuel passage 16 is a fuel intake passage 1.
6 6 に対して概ね垂直である。 このため燃料通過通路 1 6 9からポ ンプ室部分 1 5 5 への燃料の流れが防止される。 したがって燃料通 過通路 1 6 9および燃料取入れ通路 1 6 6 は燃料の流出を防止する ための手段、 蒸発燃料の発生を防止する手段または燃料の枯渴を防 止するための手段に相当する。 It is approximately perpendicular to 6 6. Therefore, the flow of fuel from the fuel passage 169 to the pump chamber portion 155 is prevented. Therefore, the fuel passage 169 and the fuel intake passage 166 correspond to a means for preventing the outflow of the fuel, a means for preventing the generation of the evaporated fuel, or a means for preventing the exhaustion of the fuel.
副タ ンク室 1 5 6 内の燃料が燃料ポンプ装置 1 1 6 により燃料噴 射弁に供給されると、 燃料容器 9 4 内の燃料が燃料導入管 1 1 7 を 介してポンプ室部分 1 5 5 内に導入される。 燃料導入管 1 1 7 を介 してポンプ室部分 1 5 5 に導入された燃料の一部は分離壁 1 7 0を 通過する。 したがって燃料容器 9 4 内の燃料に含まれている蒸発燃 料がポンプ室部分 1 5 5 において分離される。  When the fuel in the sub-tank chamber 156 is supplied to the fuel injection valve by the fuel pump device 116, the fuel in the fuel container 94 is pumped into the pump chamber via the fuel introduction pipe 117. Introduced within 5. A part of the fuel introduced into the pump chamber part 155 through the fuel introduction pipe 117 passes through the separation wall 170. Therefore, the fuel vapor contained in the fuel in the fuel container 94 is separated in the pump chamber part 155.
第十四実施形態では燃料導入管 1 1 7 は燃料容器 9 4 の底壁より 低い位置に配置される。 したがって燃料容器 9 4 内の燃料はポンプ 室部分 1 5 5 に完全に導入される。 また燃料取入れ通路 1 6 6の上 方開口は燃料導入管 1 1 7 の管壁の底面より低い位置に配置される 。 したがってポンプ室部分 1 5 5 内の燃料が副タ ンク室 1 5 6 内へ 完全に導入される。 このため仮に燃料容器 9 4 内の燃料量が少なく なっても、 燃料容器 9 4 と燃料導入管 1 1 7 との間の高さの差によ り燃料容器 9 4 内の燃料は副タ ンク室 1 5 6 内に導入される。  In the fourteenth embodiment, the fuel introduction pipe 117 is arranged at a position lower than the bottom wall of the fuel container 94. Therefore, the fuel in the fuel container 94 is completely introduced into the pump chamber part 155. The upper opening of the fuel intake passage 166 is located at a position lower than the bottom surface of the fuel inlet pipe 117. Therefore, the fuel in the pump chamber part 155 is completely introduced into the sub tank chamber 156. For this reason, even if the amount of fuel in the fuel container 94 becomes small, the fuel in the fuel container 94 will be in a sub-tank due to the height difference between the fuel container 94 and the fuel introduction pipe 117. Introduced into room 156.
燃料タ ンク装置 1 1 6 が傾斜したとき、 ポンプ室部分 1 5 5 また は燃料取入れ通路 1 6 6 内の燃料液面が燃料取入れ通路 1 6 6 の最 も低い位置の端部に達する可能性がある。 燃料の高さが燃料取入れ 通路 1 6 6 の最も低い位置の端部を越え、 且つ燃料取入れ通路 1 6 6 の最も上方の位置の端部の最も低い位置を越えたとき、 副タ ンク 室 1 5 6 内の燃料がポンプ室部分 1 5 5 に流入する。 上述したよう に副タ ンク室 1 5 6 からポンプ室部分 1 5 5 への燃料の流れはボン プ室部分 1 5 5 内における蒸発燃料の発生を招く 可能性がある。 さ らに仮にサブタ ンク室 1 5 6 内の燃料量が非常に少ないときに燃料 が副タ ンク室 1 5 6 からポンプ室部分 1 5 5 内へ流出すると、 第一 燃料フ ィ ルタ 1 5 8周りの燃料が枯渴する可能性がある。 When the fuel tank device 1 16 tilts, the fuel level in the pump chamber section 15 5 or the fuel intake passage 16 6 May even reach the lower end. When the fuel height exceeds the lowest end of the fuel intake passage 166 and exceeds the lowest position of the uppermost end of the fuel intake passage 166, the secondary tank 1 The fuel in 56 flows into the pump chamber part 15 5. As described above, the flow of fuel from the auxiliary tank chamber 156 to the pump chamber section 155 may cause generation of fuel vapor in the pump chamber section 155. Further, if fuel flows from the sub-tank chamber 156 into the pump chamber part 155 when the fuel amount in the sub-tank chamber 156 is extremely small, the first fuel filter 158 The surrounding fuel may run out.
第十四実施形態では鉛直環状壁 1 6 7が比較的大き く水平壁 1 5 4 bから下方へ延びる。 このため燃料液面の高さが燃料取入れ通路 1 6 6 の最も下方の端部を越えるこ とが防止され、 且つ燃料取入れ 通路 1 6 6 の最も上方の端部の最も低い位置を越えるこ とが防止さ れる。 したがって鉛直環状壁 1 6 7 は燃料が流出するこ とを防止す るための手段または蒸発燃料が発生することを防止するための手段 に相当する。  In the fourteenth embodiment, the vertical annular wall 167 is relatively large and extends downward from the horizontal wall 154b. This prevents the height of the fuel level from exceeding the lowermost end of the fuel intake passage 166 and exceeding the lowest position of the uppermost end of the fuel intake passage 166. Is prevented. Therefore, the vertical annular wall 167 corresponds to a means for preventing fuel from flowing out or a means for preventing generation of fuel vapor.
さ らに燃料が流出することを防止する効果は燃料取入れ通路 1 6 6 の長さ或いは大きさ (又は燃料取入れ通路 1 6 6 の最も上方の端 部と最も下方の端部との位置関係) と、 燃料取入れ通路 1 6 6 内の 燃料液面の水平方向に対する傾斜角度とにのみ依存する。 すなわち 燃料が流出することを防止する効果は燃料取入れ通路 1 6 6 の位置 とは関係なく 得られる。 したがって選択可能な燃料取入れ通路 1 6 6 の位置が多く なる。  Further, the effect of preventing the fuel from flowing out depends on the length or size of the fuel intake passage 166 (or the positional relationship between the uppermost end and the lowermost end of the fuel intake passage 166). And the angle of inclination of the fuel level in the fuel intake passage 166 with respect to the horizontal direction. That is, the effect of preventing the fuel from flowing out is obtained irrespective of the position of the fuel intake passage 166. Therefore, the number of selectable fuel intake passages 16 6 increases.
さ らに燃料通過通路から放出された燃料からの気体の分離を促進 するために、 燃料が燃料取入れ通路の下側で長時間滞留するこ とが 望ま しい。 図 3 4 に示した他の実施形態によれば燃料通過通路は下 方を向いており、 燃料取入れ通路に接続される。 したがって燃料通 過通路から放出された燃料は燃料取入れ通路内で下方へ流れる。 こ のため燃料が燃料取入れ通路の下側で長時間滞留する。 Further, it is desirable that the fuel stays for a long time below the fuel intake passage to promote the separation of gas from the fuel discharged from the fuel passage. According to another embodiment shown in FIG. 34, the fuel passage is facing downward and is connected to the fuel intake passage. Therefore, the fuel The fuel discharged from the excess passage flows downward in the fuel intake passage. This causes the fuel to stay for a long time below the fuel intake passage.
以下、 本発明の第十五実施形態の燃料ポンプ装置を説明する。 第十四実施形態では燃料が給油管 1 1 5 を介して燃料容器 9 4内 に供給されたときに燃料が燃料導入管 1 1 7 を介して燃料ポンプ装 置 1 1 6 内に導入される。 燃料ポンプ装置 1 1 6 内に導入された燃 料は副タ ンク室 1 5 6 内に流入する。 したがって副タ ンク室 1 5 6 内の燃料液面の高さが上昇する。  Hereinafter, a fuel pump device according to a fifteenth embodiment of the present invention will be described. In the fourteenth embodiment, when the fuel is supplied into the fuel container 94 via the fuel supply pipe 115, the fuel is introduced into the fuel pump device 116 via the fuel introduction pipe 116. . The fuel introduced into the fuel pump device 116 flows into the auxiliary tank room 156. Therefore, the fuel level in the auxiliary tank 156 rises.
第十四実施形態では燃料容器 9 4 の内部空間は副タ ンク室負圧導 入管 1 6 5 を介して副タ ンク室 1 5 6の内部空間に直接連通する。 したがって蒸発燃料および空気は容器蒸発燃料管 1 5 0 を介して燃 料容器 9 4 に逆流する可能性がある。 第十五実施形態では給油時に おける副タ ンク室 1 5 6から燃料容器 9 4 への気体の逆流を防止す る。  In the fourteenth embodiment, the internal space of the fuel container 94 communicates directly with the internal space of the sub-tank 156 via the sub-tank negative pressure inlet pipe 165. Therefore, there is a possibility that the fuel vapor and the air flow back to the fuel container 94 through the container fuel pipe 150. In the fifteenth embodiment, the backflow of gas from the sub tank chamber 156 to the fuel container 94 at the time of refueling is prevented.
第十五実施形態では図 3 5および図 3 6 に示したように容器蒸発 燃料管 1 5 0 内に副タ ンク室負圧導入管 1 6 5 は配設されていない 。 副タ ンク室 1 5 6 内には容器蒸発燃料管 1 5 0 から独立して副タ ンク室負圧導入管 1 7 3が配設される。 副タ ンク室負圧導入管 1 7 3の上方開口は副タ ンク室 1 5 6 内の上方領域において副タ ンク室 1 5 6の内部空間に開口する。 一方、 副タ ンク室負圧導入管 1 7 3 の下方開口は負圧発生ハウ ジング 1 6 3 の内部空間に開口する。 副 タ ンク室負圧導入管 1 7 3の下方開口の直径は容器蒸発燃料管 1 5 0の直径より小さい。  In the fifteenth embodiment, as shown in FIGS. 35 and 36, the sub-tank chamber negative pressure introduction pipe 165 is not provided in the container evaporation fuel pipe 150. In the sub-tank chamber 156, a sub-tank negative pressure introduction pipe 173 is provided independently of the container evaporative fuel pipe 150. The upper opening of the sub-tank negative pressure introducing pipe 173 opens into the internal space of the sub-tank chamber 156 in the upper region of the sub-tank chamber 156. On the other hand, the lower opening of the sub-tank negative pressure introduction pipe 173 opens into the internal space of the negative pressure generating housing 163. The diameter of the lower opening of the auxiliary tank negative pressure introduction pipe 173 is smaller than the diameter of the container evaporative fuel pipe 150.
上記以外の構成は第十四実施形態の燃料ポンプ装置の構成を同じ である。 したがって上記以外の構成の説明は省略する。  The configuration other than the above is the same as the configuration of the fuel pump device of the fourteenth embodiment. Therefore, description of the configuration other than the above is omitted.
以下、 本発明の第十五実施形態の燃料ポンプ装置の作動を説明す Hereinafter, the operation of the fuel pump device according to the fifteenth embodiment of the present invention will be described.
^ o 袷油管 1 1 5 を介して燃料が燃料容器 9 4 内に導入されたとき、 燃料は副タ ンク室 1 5 6 内に導入される。 したがって副タンク室 1 5 6 内の燃料液面の高さが上昇する。 第十五実施形態では副タ ンク 室 1 5 6 内の燃料液面上方の空間は燃料容器 9 4 の内部空間と直接 は連通していない。 このため給油時に副タ ンク室 1 5 6から燃料容 器 9 4 へ蒸発燃料および空気が逆流するこ とが防止される。 したが つて燃料ポンプ 1 5 7 が作動されるまえにおいて燃料容器 9 4 内の 蒸発燃料および空気の量が少なく維持される。 このため燃料ポンプ 1 5 7が作動されたときに蒸発燃料および空気が燃料容器 9 4 から 素早く排除される。 ^ o When the fuel is introduced into the fuel container 94 via the lined oil pipe 115, the fuel is introduced into the sub-tank chamber 156. Therefore, the fuel level in the sub tank chamber 156 rises. In the fifteenth embodiment, the space above the fuel level in the sub-tank chamber 156 is not directly connected to the internal space of the fuel container 94. Therefore, the backflow of the fuel vapor and the air from the auxiliary tank chamber 156 to the fuel container 94 during refueling is prevented. Therefore, before the fuel pump 157 is operated, the amounts of the evaporated fuel and the air in the fuel container 94 are kept small. Therefore, when the fuel pump 157 is operated, the fuel vapor and the air are quickly removed from the fuel container 94.
上記以外の作動は第十四実施形態の燃料ポンプ装置の作動と同じ である。 したがって上記以外の作動の説明は省略する。  The operation other than the above is the same as the operation of the fuel pump device of the fourteenth embodiment. Therefore, description of the operation other than the above is omitted.
上記実施形態においてレベルスィ ッ チの代わりに燃料室内の燃料 液面上方の空間内の蒸発燃料を含む気体を検出するためのセ ンサを 用いていもよい。 さ らに燃料液面の最も高い高さの代わりに燃料室 内の気体の量または燃料液面上方に形成された空間の容積に基づい て上記遮断弁を開弁したり閉弁したり して蒸発燃料排除処理を制御 してもよい。  In the above embodiment, a sensor for detecting gas containing evaporated fuel in the space above the fuel level in the fuel chamber may be used instead of the level switch. Further, the shutoff valve is opened or closed based on the amount of gas in the fuel chamber or the volume of the space formed above the fuel level instead of the highest level of the fuel level. The evaporative fuel removal processing may be controlled.
燃料液面の高さが予め定められた高さより高いか否か、 または燃 料室内の気体の量が予め定められた量より多いか否かに基づいて蒸 発燃料排除処理を制御してもよい。 もちろん上記実施形態において レベルセンサが作動されていないときには燃料室内に気体が存在す ると判断する。  Even if the evaporative fuel removal process is controlled based on whether the fuel level is higher than a predetermined height or whether the amount of gas in the fuel chamber is higher than a predetermined amount, Good. Of course, in the above embodiment, when the level sensor is not operated, it is determined that gas exists in the fuel chamber.
例示の目的で選択した特定の実施形態を参照して本発明を説明し たが、 当業者には本発明の基本思想および範囲内で種々の変更が可 能であることは明らかである。  Although the present invention has been described with reference to particular embodiments selected for purposes of illustration, it will be apparent to those skilled in the art that various modifications may be made within the spirit and scope of the invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃料を貯留するための燃料貯留装置であって、 該燃料貯留装 置の内部空間を燃料室と空気室とに分割する壁を具備し、 該壁は前 記燃料室内の燃料量に応じて変形可能であり、 前記燃料室内の燃料 液面上方に形成された空間に開口する放出通路と、 該放出通路を通 常は遮断する遮断弁と、 該遮断弁が開弁しているときに前記放出通 路を介して前記空間から気体を放出するための気体放出手段と、 前 記気体の量が予め定められた量より多いときに前記空間から前記気 体を放出するように前記遮断弁を開弁し且つ前記気体放出手段を作 動するようにこれら気体放出手段および遮断弁を制御するための制 御手段とを具備し、 該制御手段は前記気体の量が前記予め定められ た量より少ないときには前記気体の放出を停止するよう に前記遮断 弁を閉弁し且つ前記気体放出手段の作動を停止する燃料貯留装置。 1. A fuel storage device for storing fuel, comprising a wall that divides an internal space of the fuel storage device into a fuel chamber and an air chamber, the wall corresponding to the fuel amount in the fuel chamber. A discharge passage that opens into a space formed above the fuel level in the fuel chamber, a shutoff valve that normally shuts off the discharge passage, and when the shutoff valve is open. Gas discharge means for discharging gas from the space via the discharge passage, and the shut-off valve for discharging the gas from the space when the amount of the gas is larger than a predetermined amount. Control means for controlling the gas release means and the shut-off valve so as to open the valve and operate the gas release means, wherein the control means controls the gas amount to the predetermined amount. When less, the shielding is stopped so as to stop the release of the gas. A fuel storage device that closes a valve and stops the operation of the gas discharging means.
2 . 前記燃料室内の燃料液面の高さを検出するための燃料液面高 さ検出手段を備え、 前記制御手段は該燃料液面高さ検出手段により 検出された燃料液面の高さが予め定められた高さより低いときには 前記気体の量が前記予め定められた量より多いと判断する請求項 1 に記載の燃料貯留装置。  2. A fuel level detecting means for detecting the level of the fuel level in the fuel chamber, wherein the control means controls the level of the fuel level detected by the level detecting means. The fuel storage device according to claim 1, wherein when the height is lower than a predetermined height, it is determined that the amount of the gas is larger than the predetermined amount.
3 . 前記燃料液面の高さを上昇するための燃料液面高さ上昇手段 を備え、 前記気体放出手段は前記気体の量が前記予め定められた量 より多いときに前記気体を前記空間から放出するよう に前記燃料液 面の高さを上昇するように前記燃料液面高さ上昇手段を制御する請 求項 1 に記載の燃料貯留装置。  3. A fuel liquid level height increasing means for increasing the height of the fuel liquid level, wherein the gas releasing means removes the gas from the space when the amount of the gas is larger than the predetermined amount. 3. The fuel storage device according to claim 1, wherein the fuel level raising means is controlled so as to raise the level of the fuel level so as to release the fuel.
4 . 前記燃料液面高さ上昇手段は燃料液面の高さを上昇するため に前記燃料室に燃料を供給する請求項 3 に記載の燃料貯留装置。  4. The fuel storage device according to claim 3, wherein the fuel level raising means supplies the fuel to the fuel chamber in order to raise the level of the fuel level.
5 . 前記燃料液面高さ上昇手段は燃料液面の高さを上昇するため に前記壁を変形する請求項 3 に記載の燃料貯留装置。 5. The fuel level raising means is for raising the level of the fuel level. 4. The fuel storage device according to claim 3, wherein the wall is deformed.
6 . 前記燃料液面高さ上昇手段は前記壁を変形するために前記空 気室内の圧力を上昇する請求項 5 に記載の燃料貯留装置。  6. The fuel storage device according to claim 5, wherein the fuel level raising means increases the pressure in the air chamber to deform the wall.
7 . 前記燃料液面高さ上昇手段は前記燃料室に燃料が供袷された ときに該燃料室に供給された燃料の圧力より低い圧力まで前記空気 室内の圧力を上昇する請求項 6 に記載の燃料貯留装置。  7. The fuel level raising means according to claim 6, wherein the fuel level height increasing means increases the pressure in the air chamber to a pressure lower than the pressure of the fuel supplied to the fuel chamber when the fuel is filled in the fuel chamber. Fuel storage device.
8 . 前記燃料液面高さ上昇手段は前記燃料室への燃料の供給が停 止したときに前記空気室内の圧力を低下する請求項 6 に記載の燃料 貯留装置。  8. The fuel storage device according to claim 6, wherein the fuel level height increasing means decreases the pressure in the air chamber when supply of fuel to the fuel chamber is stopped.
9 . 前記燃料液面高さ上昇手段は前記壁を変形するために前記空 間内に負圧を導入する請求項 5 に記載の燃料貯留装置。  9. The fuel storage device according to claim 5, wherein the fuel level raising means introduces a negative pressure into the space to deform the wall.
1 0 . 前記燃料液面高さ上昇手段は燃料を吐出 して該吐出された 燃料により負圧を発生するための燃料ポンプを具備し、 前記放出通 路を介して前記空間内に前記負圧を導入する請求項 9 に記載の燃料 貯留装置。  10. The fuel level raising means includes a fuel pump for discharging fuel and generating a negative pressure by the discharged fuel, and the negative pressure is injected into the space through the discharge passage. 10. The fuel storage device according to claim 9, wherein the fuel storage device is introduced.
1 1 . 前記燃料液面高さ上昇手段は負圧を発生するために前記燃 料ポンプにより吐出された燃料の一部を前記燃料室内に戻す請求項 1 0 に記載の燃料貯留装置。  11. The fuel storage device according to claim 10, wherein the fuel level raising means returns a part of the fuel discharged by the fuel pump into the fuel chamber to generate a negative pressure.
1 2 . 前記燃料ポンプは前記燃料室に接続されたポンプ室に収容 され、 前記燃料液面高さ上昇手段は負圧を発生するために前記燃料 ポンプにより吐出された燃料の一部を前記ポンプ室に戻し、 該ポン プ室内の燃料液面上方に形成された空間内に負圧を導入する請求項 1 0 に記載の燃料貯留装置。  12. The fuel pump is housed in a pump chamber connected to the fuel chamber, and the fuel level raising means removes part of the fuel discharged by the fuel pump to generate a negative pressure. The fuel storage device according to claim 10, wherein the fuel storage device is returned to the chamber, and a negative pressure is introduced into a space formed above a fuel level in the pump chamber.
1 3 . 前記放出通路は内燃機関の吸気系に接続され、 前記燃料液 面高さ上昇手段は前記吸気系内の負圧を前記放出通路を介して前記 燃料液面上方に形成された空間内へ導入する請求項 9 に記載の燃料 貯留装置。 13. The discharge passage is connected to an intake system of an internal combustion engine, and the fuel level raising means reduces the negative pressure in the intake system through the discharge passage into a space formed above the fuel level. The fuel storage device according to claim 9, which is introduced into a fuel storage device.
1 4 . 前記放出通路は蒸発燃料を吸着するためのキ ヤニスタを介 して前記吸気系に接続され、 該キヤ ニスタは該キ ヤ ニスタ内の圧力 が予め定められた負圧以下であるときに大気へと開口 して前記キ ヤ ニスタを大気と連通させる弁を具備する請求項 1 3 に記載の燃料貯 留装置。 14. The discharge passage is connected to the intake system via a canister for adsorbing the evaporated fuel, and the canister is connected when the pressure in the canister is equal to or lower than a predetermined negative pressure. 14. The fuel storage device according to claim 13, further comprising a valve that opens to the atmosphere to communicate the canister with the atmosphere.
1 5 . 前記燃料液面高さ上昇手段は前記内燃機関の状態が蒸発燃 料を受容できる状態であるときに燃料液面の高さを上昇する請求項 1 3 に記載の燃料貯留装置。  15. The fuel storage device according to claim 13, wherein the fuel level height increasing means increases the level of the fuel level when the state of the internal combustion engine is a state capable of receiving the evaporated fuel.
PCT/JP1998/003885 1998-03-26 1998-08-31 Fuel reservoir WO1999048718A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002301030A CA2301030C (en) 1998-03-26 1998-08-31 Fuel reservoir
BR9811369-0A BR9811369A (en) 1998-03-26 1998-08-31 Fuel reserve device
AU88882/98A AU737184B2 (en) 1998-03-26 1998-08-31 A fuel reserving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP07955498A JP3438575B2 (en) 1997-04-30 1998-03-26 Fuel storage device
JP10/79554 1998-03-26

Publications (1)

Publication Number Publication Date
WO1999048718A1 true WO1999048718A1 (en) 1999-09-30

Family

ID=13693238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003885 WO1999048718A1 (en) 1998-03-26 1998-08-31 Fuel reservoir

Country Status (9)

Country Link
KR (1) KR100372627B1 (en)
CN (1) CN1272083A (en)
AU (1) AU737184B2 (en)
BR (1) BR9811369A (en)
CA (1) CA2301030C (en)
ID (1) ID24168A (en)
RU (1) RU2181326C2 (en)
TW (1) TW420643B (en)
WO (1) WO1999048718A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100522681C (en) * 2004-05-13 2009-08-05 因勒纪汽车***研究公司 Fuel system
WO2011048468A1 (en) * 2009-10-20 2011-04-28 Eaton Corporation Method of packaging a membrane for use in a venting valve

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530418B1 (en) * 2001-05-04 2005-11-22 현대중공업 주식회사 Automatic stripping system and method for Cargo oil pump
DE102008005522A1 (en) * 2008-01-23 2009-07-30 Robert Bosch Gmbh Device for holding a delivery unit
NL1036706C2 (en) * 2009-03-13 2010-09-14 Erik Jeroen Eenkhoorn INFLATABLE ELEMENT FOR USE IN THE INSIDE OF A FUEL HOLDER OF A VEHICLE, VESSEL OR AIRCRAFT.
JP2011079493A (en) * 2009-10-09 2011-04-21 Toyota Motor Corp Fuel tank
CN102072210A (en) * 2010-11-15 2011-05-25 中国船舶重工集团公司第七一○研究所 Anti-surge oil tank
DE102010055316B4 (en) 2010-12-21 2016-09-08 Audi Ag Device for venting and ventilating a fuel tank
EP2562023B1 (en) 2011-08-25 2014-06-18 Inergy Automotive Systems Research (Société Anonyme) Method for checking the pressure of a hybrid vehicle fuel system
JP5673864B2 (en) * 2012-02-02 2015-02-18 トヨタ自動車株式会社 Fuel supply device
JP6311656B2 (en) * 2015-06-16 2018-04-18 トヨタ自動車株式会社 Fuel tank structure
CN105460118B (en) * 2015-12-05 2018-08-10 重庆市成吉思机械制造有限公司 Motorcycle gas-filled anti-shake fuel tank
DE102017116881A1 (en) 2017-07-26 2019-01-31 Kautex Textron Gmbh & Co. Kg Operating fluid tank with expansion tank to compensate for pressure fluctuations in the operating fluid tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170568A (en) * 1994-10-21 1996-07-02 Toyota Motor Corp Fuel storage device for vehicle
JPH08197969A (en) * 1995-01-30 1996-08-06 Toyota Motor Corp Fuel storage device for vehicle
JPH09203359A (en) * 1995-11-20 1997-08-05 Toyota Motor Corp Fuel storage device for automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170568A (en) * 1994-10-21 1996-07-02 Toyota Motor Corp Fuel storage device for vehicle
JPH08197969A (en) * 1995-01-30 1996-08-06 Toyota Motor Corp Fuel storage device for vehicle
JPH09203359A (en) * 1995-11-20 1997-08-05 Toyota Motor Corp Fuel storage device for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100522681C (en) * 2004-05-13 2009-08-05 因勒纪汽车***研究公司 Fuel system
WO2011048468A1 (en) * 2009-10-20 2011-04-28 Eaton Corporation Method of packaging a membrane for use in a venting valve

Also Published As

Publication number Publication date
RU2181326C2 (en) 2002-04-20
TW420643B (en) 2001-02-01
CA2301030A1 (en) 1999-09-30
BR9811369A (en) 2000-08-22
AU8888298A (en) 1999-10-18
AU737184B2 (en) 2001-08-09
CA2301030C (en) 2003-08-19
KR100372627B1 (en) 2003-02-15
ID24168A (en) 2000-07-13
KR20010023220A (en) 2001-03-26
CN1272083A (en) 2000-11-01

Similar Documents

Publication Publication Date Title
JP3438575B2 (en) Fuel storage device
WO1999048718A1 (en) Fuel reservoir
US5722374A (en) Fuel storing device for an automobile
US7438059B2 (en) Evaporative emission control system and method for small engines
EP0982490B1 (en) Fuel vapor control apparatus
US6067967A (en) Fuel reserving device
JP3518087B2 (en) Vehicle fuel storage device
US20140053814A1 (en) Diesel fuel pump module
US11085407B2 (en) Fuel supply module and control system
JP3362540B2 (en) Vehicle fuel storage device
JP3395553B2 (en) Vehicle fuel tank
JPH10193991A (en) Fuel tank
WO2017163661A1 (en) Fuel tank venting control valve
US6439417B1 (en) Fuel tank and vehicle equipped with the same
US20120006839A1 (en) Fuel tank vent system
JP2003286917A (en) Fuel storing device
JP2001349255A (en) Flexible seal of liquid level operable control valve
JP3434201B2 (en) Fuel tank
JPH10184477A (en) Fuel tank
JPH11263133A (en) Fuel tank
JPH08197968A (en) Fuel storage device for vehicle
JP2005227288A (en) Fuel storing device
JP6173897B2 (en) Fuel supply device
MXPA00002293A (en) Fuel reservoir
JPH10196479A (en) Fuel tank

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98809643.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID KR MX RU

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 88882/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2301030

Country of ref document: CA

Ref document number: 2301030

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007001849

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/002293

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1020007001849

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 88882/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007001849

Country of ref document: KR