WO1999048164A1 - Secondary battery and method for forming the same - Google Patents

Secondary battery and method for forming the same Download PDF

Info

Publication number
WO1999048164A1
WO1999048164A1 PCT/JP1998/001108 JP9801108W WO9948164A1 WO 1999048164 A1 WO1999048164 A1 WO 1999048164A1 JP 9801108 W JP9801108 W JP 9801108W WO 9948164 A1 WO9948164 A1 WO 9948164A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
adhesive
resin
negative electrode
positive electrode
Prior art date
Application number
PCT/JP1998/001108
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Yoshida
Michio Murai
Takayuki Inuzuka
Kouji Hamano
Hisashi Shiota
Shigeru Aihara
Daigo Takemura
Jun Aragane
Hiroaki Urushibata
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CH694766A priority Critical patent/CH483049A/en
Priority to CH694766D priority patent/CH694766A4/en
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1998/001108 priority patent/WO1999048164A1/en
Publication of WO1999048164A1 publication Critical patent/WO1999048164A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0002Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe
    • G04D3/0053Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for framework components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, particularly to a lithium ion battery. More specifically, the present invention relates to a high-performance secondary battery that can take any form such as a thin type, and a method for forming the secondary battery.
  • Background art
  • Lithium-ion batteries are secondary batteries that are expected to achieve the highest voltage and the highest energy density among batteries to date, and improvements are being actively made today.
  • the positive electrode is a plate-like electrode formed by applying an active material made of powder such as lithium cobalt oxide to a current collector, and the negative electrode is similarly made of a carbon-based material.
  • a plate-like electrode is used in which an active material made of powder is applied to a current collector.
  • lithium ions can move between the two electrodes and that an ion conductive layer having no electron conductivity exists.
  • a separator which is a porous film such as polyethylene, is filled with a nonaqueous electrolyte is used for the ion conductive layer.
  • a rigid housing made of metal or the like 1 It is used for holding a negative electrode 5 and a separator 4 containing an electrolytic solution and the like. Without the housing 1, it is difficult to maintain the bonding between the electrodes 3, 5 and the separator 4, and the bonding part peels off, deteriorating the battery characteristics. Due to the housing 1, the weight of the battery is increased, and it is difficult to form an arbitrary shape. Currently, research into batteries that do not require a housing 1 is being conducted to reduce the weight and thickness. One of the challenges in developing a battery that does not require a housing 1 is how to join the positive electrode 3, the negative electrode 5, and the separator 4 sandwiched between these electrodes, and maintain the state without applying external force. Can be maintained.
  • the long electrode, the separator When bonding the electrode to the separator, the long electrode, the separator may be wound or folded, or the cut electrode or the separator may be laminated. It is necessary to fix with a jig until the agent dries. Fixing with a jig is a cause of poor workability. If there is no need to fix the jig before and during drying, the productivity of the battery becomes extremely efficient. Therefore, a method of forming a battery that does not require a jig before and during drying is desired. Disclosure of the invention
  • the method for forming the first secondary battery according to the present invention comprises: a positive electrode, a negative electrode, and a separator.
  • a method for forming a secondary battery in which the electrolyte is impregnated with an electrolyte the adhesive resin and the adhesive plastic resin between the positive electrode and the separator and between the anode and the separator are used.
  • the method includes a step of partially overlapping and overlapping, and a step of deforming the plastic resin.
  • the positive electrode, the negative electrode and the separator are dried each time they are laminated, or the holding treatment is performed to maintain the state of the laminated state by partially laminating an adhesive plastic resin.
  • the method for forming a second secondary battery according to the present invention is the method for forming the first secondary battery, wherein the plastic resin is deformed by applying a pressure higher than the plastic resin can be plastically deformed. It is.
  • the plastic resin is plastically deformed by pressurization, so that the depth of the void formed between the positive electrode and the negative electrode and the separator, that is, the depth of the gap between the positive electrode and the negative electrode and the separator is increased.
  • the distance between the electrodes can be reduced, and the ionic conduction resistance between the positive and negative electrodes and the separator when the electrolyte is held in these gaps is sufficiently small, enabling use at high load rates.
  • the bonding area between the positive electrode and the negative electrode and the separation can be increased, and the strength of the battery can be increased.
  • the step of deforming the plastic resin by applying the pressure includes impregnating with an electrolytic solution. It will be done later.
  • the resin is impregnated with the electrolyte and the resin is plastically deformed while the electrolyte is present in the micropores of the positive electrode and the negative electrode, thereby preventing resin from entering the micropores and improving the battery performance. Drop can be prevented.
  • a fourth method for forming a secondary battery according to the present invention is the same as the first method for forming a secondary battery, wherein the deformation of the plastic resin is heated.
  • a thermoplastic resin can be used. By heating and flowing the thermoplastic resin to deform it, the length of the gap formed between the positive electrode and the negative electrode and the separation, that is, the distance between the positive electrode and the negative electrode and the separation, Can be reduced, and the ion conduction resistance between the positive electrode and the negative electrode and the separator when the electrolytic solution is held in the gap becomes sufficiently small, so that it can be used at a high load factor.
  • the adhesive strength is generated by the flow of the thermoplastic resin, not only the contact area between the resin and the separator or between the positive electrode and the negative electrode surface increases, but also the anchor formed by the resin penetrating into the fine pores on the surface. The effect is also obtained, and a practical secondary battery with high adhesive strength can be obtained.
  • the adhesive resin is an adhesive whose adhesive strength is increased by heating.
  • a sixth method of forming a secondary battery according to the present invention is the method of forming the fifth secondary battery, wherein the adhesive whose adhesive strength is increased by heating is a thermo-crosslinkable resin. is there.
  • the method for forming a seventh secondary battery according to the present invention is the method for forming a secondary battery according to the fifth aspect, wherein the adhesive whose adhesive strength is increased by the heating is an adhesive dissolved in a solvent. Things.
  • the adhesive force is improved by heat, the adhesive force is increased, and the heat resistance of the battery can be increased. As a result, the strength of the completed battery can be made large enough to withstand practical use.
  • An eighth method for forming a secondary battery according to the present invention includes a method for forming a secondary battery in which a positive electrode and a negative electrode are included in a constituent element, and the constituent element is impregnated with an electrolytic solution. And a step of partially overlapping a plastic resin having adhesiveness and an adhesive resin, and a step of deforming the plastic resin. According to this method, it is necessary to provide a holding jig for drying each superposition of the positive electrode and the negative electrode or for maintaining a superimposed state by partially laminating an adhesive plastic resin and laminating. Since the subsequent steps do not need to be performed sequentially, they can be performed collectively, and productivity is greatly improved due to simplification of manufacturing equipment.
  • the plastic resin is deformed by applying a pressure higher than the plastic resin can be plastically deformed. It is what you do. According to this method, the depth of the void formed between the positive electrode and the negative electrode, that is, the distance between the positive electrode and the negative electrode can be reduced by plastically deforming the plastic resin by applying pressure. However, when the electrolyte is held in the gap, the ionic conduction resistance between the positive electrode and the negative electrode becomes sufficiently small, enabling use at a high load factor and reducing the bonding area between the positive electrode and the negative electrode. By increasing the size, the strength of the battery can be increased.
  • the step of deforming the plastic resin by applying the pressure may include impregnating an electrolyte. It will be done later. According to this method, by impregnating the electrolyte and plastically deforming the resin while the electrolyte is present in the fine pores of the positive electrode and the negative electrode, the resin is prevented from penetrating into the fine pores, and the battery performance is reduced. Can be prevented.
  • the eleventh method for forming a secondary battery according to the present invention is the same as the eighth method for forming a secondary battery, except that the deformation of the plastic resin is heated. According to this method, a thermoplastic resin can be used.
  • the depth of the gap formed between the positive electrode and the negative electrode that is, the distance between the positive electrode and the negative electrode can be reduced.
  • the ionic conduction resistance between the positive electrode and the negative electrode when the electrolytic solution is held is sufficiently small, and it can be used at a high load factor.
  • the adhesive strength is exhibited by the flow of the thermoplastic resin, not only the contact area between the resin and the surface of the positive electrode and the negative electrode becomes large, but also the anchor effect caused by the resin penetrating into the fine pores on the surface. Thus, a practical secondary battery having high adhesive strength can be obtained.
  • the adhesive resin is an adhesive whose adhesive strength is increased by heating.
  • the adhesive whose adhesive strength is increased by heating is a thermo-crosslinkable resin. is there.
  • the method for forming a second rechargeable battery according to the first or second method is such that the adhesive whose adhesive strength increases by heating is an adhesive dissolved in a solvent. It is.
  • the adhesive strength is improved by heat, the adhesive strength is enhanced, and the heat resistance of the battery can be increased. It can be large enough to withstand the heat.
  • a first secondary battery according to the present invention includes a positive electrode formed by bonding a positive electrode active material layer to a positive electrode current collector; a negative electrode formed by bonding a negative electrode active material layer to a negative electrode current collector;
  • the above-mentioned active material layers and the above-mentioned respective active material layers are formed so as to form a gap communicating between the respective positive electrode active material layers and the above-mentioned negative electrode active material layer and between the above-mentioned respective active material layers and the above-mentioned separate layer.
  • It is provided with an electrode laminate having a plastic resin which is solid at room temperature, has a sticky surface, and is deformed by heating or pressing, and an adhesive resin, which are arranged between the separators. According to this, since it has a plastic resin which is solid at room temperature and has a sticky surface and is deformed by heating or pressing, and an adhesive resin, a high-performance secondary battery can be produced with high productivity. can get.
  • the area of the void is 30% to 90% of the total area of each facing surface where each active material layer faces the separator. %. According to this, the ionic conduction resistance between the positive electrode, the negative electrode, and the separator when the electrolyte is held in the gap formed between the positive electrode, the negative electrode, and the separator becomes sufficiently small, It can be used at a high load rate and has practically sufficient adhesive strength.
  • the adhesive resin is an adhesive whose adhesive strength is increased by heating.
  • a fourth secondary battery according to the present invention is the above-mentioned third secondary battery, wherein the adhesive whose adhesive strength is increased by heating is a thermo-crosslinkable resin.
  • the adhesive whose adhesive strength is increased by heating is an adhesive dissolved in a solvent.
  • the adhesive strength can be increased, the heat resistance of the battery can be increased, and the battery strength can be increased. It can be large enough to be practical.
  • a sixth secondary battery according to the present invention is the first secondary battery according to the first aspect, Of the present invention. According to this, a compact, stable secondary battery having a large battery capacity can be obtained.
  • a seventh secondary battery provides a positive electrode in which a positive electrode active material layer is joined to a positive electrode current collector; a negative electrode in which a negative electrode active material layer is joined to a negative electrode current collector; A plastic resin, which is solid at room temperature, has a sticky surface, and is deformed by heating or pressing, and an adhesive resin, which is disposed between the active material layers so as to form voids communicating between the layers.
  • An electrode laminate having the following. According to this, in a secondary battery having no separation, the same effect as the first secondary battery can be obtained.
  • An eighth secondary battery according to the present invention is the above-described seventh secondary battery, comprising a plurality of electrode laminates. According to this, a compact, stable secondary battery having a large battery capacity can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium ion battery according to an embodiment of the present invention
  • FIG. 2 is a sectional view showing an adhesive resin according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a coating method of the present invention.
  • FIG. 3 is a schematic sectional view showing a lithium ion battery according to an embodiment of the present invention.
  • FIGS. 4, 5 and 6 show the present invention.
  • FIG. 7 is a schematic sectional view showing a battery structure of a lithium ion secondary battery according to another embodiment
  • FIG. 7 is a schematic sectional view showing a conventional lithium ion secondary battery.
  • the present invention is applied to a battery having a structure in which an ion conductive layer is disposed between a positive electrode and a negative electrode and between the positive electrode and the negative electrode.
  • the following embodiment mainly includes a single electrode stack including a positive electrode, an ion conductive layer, and a negative electrode.
  • a layer electrode type battery will be described, the present invention is also applicable to a layered electrode type battery in which a single electrode laminate is stacked.
  • FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium-ion battery according to an embodiment of the present invention, that is, a structure of an electrode stack.
  • reference numeral 3 denotes a positive electrode active material layer 32
  • the positive electrode joined to the body 3 1, the negative electrode 5 joined to the negative electrode active material layer 5 2 on the negative electrode current collector 51, and the separator 4 arranged between the positive electrode 3 and the negative electrode 5.
  • Numeral 8 is partially arranged like a point, a line, or a lattice between opposing surfaces of the positive electrode active material layer 32 and the negative electrode active material layer 52 and the separator 4, and is solid and viscous at room temperature. It is a resin that has adhesive properties and deforms when heated or pressed. Numerals 6 are partially arranged in a point-like, linear, or lattice-like manner between the facing surfaces of the positive electrode active material layer 32 and the negative electrode active material layer 52 and the separator 4, and each active material layer 3 It is an adhesive resin that joins 2, 5, and 2 to Separee.
  • Reference numeral 7 denotes a void portion that communicates between the positive electrode active material layer 32 and the negative electrode active material layer 52 and the separator 4. The void 7, the separator 4, and the active material layers 32, 52 hold a non-aqueous electrolyte containing lithium ions.
  • a liquid in which the adhesive resin is dissolved in a solvent may be applied to the interface between the separator 4 and the active material layers 32, 52 to evaporate the solvent.
  • the solvent is evaporated and becomes porous due to volume shrinkage or crystallization of the resin.
  • the resin 8 and the adhesive resin 6 having at least a part of the surface having adhesiveness are interposed between the positive electrode 3 and the separator 4 and between the negative electrode 5 and the separator 4 and are superposed.
  • the positive electrode 3 and the separator 4 and the negative electrode 5 and the separator 4 are temporarily fixed with the adhesive force of the resin 8, and then the resin 8 and the resin 8 are applied as necessary by applying pressure, heating, or the like as described below.
  • the gap between the electrodes 3 and 5 and the separation 4 is reduced, and the depth of the gap 7 is set to a predetermined value.
  • the resin 8 and the adhesive resin 6 used in the present invention can be used as long as they do not dissolve in the electrolytic solution.
  • the area of the void 7 formed by the adhesive resin 6 is desirably 30% to 90% of the total area of each opposing surface where the active material layers 32, 52 and the separator 4 oppose each other, Most preferably, it is about 60%. If it is less than 30%, the electrical connection between the electrode active material layers 32 and 52 and the separator 4 becomes insufficient, and the ionic conduction resistance between the electrodes 3 and 5 increases. However, it becomes difficult to obtain sufficient battery characteristics. On the other hand, if it exceeds 90%, the adhesion between the electrodes 3, 5 and the separator 4 becomes insufficient, and peeling occurs.
  • the depth of the void 7 formed between the active material layers 32, 52 and the separator 41 is determined by the amount of the electrolyte.
  • the ionic conductivity in the case of about 10 _ 2 S / cm, which is usually used, if it is 30 ⁇ m or less, the distance between the active material layers 32 and 52 and the separator 4 Since the ionic conduction resistance of the battery becomes sufficiently small, and the battery can be used at a high load factor that is not inferior to a battery using a conventional outer can, it is preferable that the ion conductivity be 30 m or less.
  • the depth L of the void portion 7 is set to 10 / m or less, diffusion of the reactive species can be more easily promoted, and the ion conduction resistance can be further reduced. It is more desirable to adjust to. Furthermore, it is said that a diffusion layer of several meters exists on the surface of the active material 32, 52 where an electrode reaction occurs.By adjusting the depth L of the void 7 to less than this, lithium ions can be removed. It is most preferable that the depth L of the void 7 is set to several meters or less, since diffusion is considered to proceed most easily.
  • the adhesive resin 6 is arranged between the electrodes 3 and 5 and the separator 4 in a dotted, linear, or grid-like manner and closely adhered, so that the liquid electrolyte is provided between the electrodes 3 and 5 and the separator 4. Gap 7 that can hold Wear.
  • the ionic conduction resistance between the electrodes 3 and 5 can be reduced to the same level as a battery using a conventional outer can, and furthermore, the electrodes 3 and 5 and the separator 4 Since the gap between them is adhered, the electrodes 3, 5 and the separator 4 can be brought into close contact with each other without an outer can.
  • the adhesive resin 6 When the adhesive resin 6 is a liquid in which the adhesive resin is dissolved in a solvent, the adhesive resin 6 becomes porous due to volumetric shrinkage due to solvent evaporation or crystallization of the resin due to heating and drying. By holding the liquid electrolyte in the portion, the ionic conduction resistance between the electrodes 3 and 5 can be reduced.
  • the secondary battery configured as described above is formed, for example, by the following method.
  • the formation method of the present invention includes a step of applying the positive electrode active material layer 32 and the negative electrode active material layer 52 to the current collectors 31 and 51, respectively, and opposing the positive electrode active material layer 32 and the separator 4.
  • a step of deforming the resin 8 and the adhesive resin 6 to reduce the depth L of the gap 7 is provided.
  • the positive and negative electrode active material powders each of which is mixed with a binder resin to form a paste, and this paste is used to form the positive and negative electrode final bodies 31, 5, 1 Apply to it and dry.
  • any resin that does not dissolve in the electrolyte and does not cause an electrochemical reaction inside the battery can be used.
  • homopolymers or copolymers such as vinylidene fluoride, fluorinated ethylene, atalylonitrile, and ethylene oxide; Lenpropylene diamine rubber or the like can be used.
  • the active material in the positive electrode 3, for example, a composite oxide of lithium and a transition metal such as cobalt, nickel, manganese, a chalcogen compound containing lithium or a composite oxide thereof, and the above-described composite oxide, lithium Chalcogen compounds containing these or complex oxides thereof to which various elements are added in trace amounts are used, and those obtained by adding graphite as an electron conductor to these substances are used.
  • a composite oxide of lithium and a transition metal such as cobalt, nickel, manganese, a chalcogen compound containing lithium or a composite oxide thereof, and the above-described composite oxide
  • lithium Chalcogen compounds containing these or complex oxides thereof to which various elements are added in trace amounts are used, and those obtained by adding graphite as an electron conductor to these substances are used.
  • the present invention is not limited to this, and any other substance that can occlude and release lithium ions necessary for battery operation can be used.
  • these substances are used in the form of particles, and those having a particle size of 0.3 m to 20 m can be used, and particularly preferably 0.3 // m to 5 m belongs to.
  • Carbon fibers can also be used as the negative electrode active material 52. If the particle size is too small, the coverage area of the active material surface with the adhesive during bonding becomes too large, so that lithium ions are not efficiently doped or removed during charging and discharging, and the battery is not used. The characteristics are degraded. If the particle size is too large, it is not preferable because it is not easy to form a thin film and the packing density is reduced.
  • the current collectors 31 and 51 can be used as long as the metal is stable inside the battery, but aluminum is preferably used for the positive electrode 3 and copper is preferably used for the negative electrode 5. As the shape of the current collectors 31 and 51, foil, net, and expansive metal can be used, and foil is preferably used to obtain electrode smoothness.
  • a co-casting method is used, which is shown in FIG. 2 in a perspective view (a) and a side view (b).
  • a coating method of removing the molten resin 6 with a rotating roll 21 having dot-like depressions 21a and transferring the same to a sheet (eg, sheet-like separator 6) is applied.
  • a spray method, a roll method in which a molten resin is poured out from fine holes of a roll and applied, and the like are applicable, and are not particularly limited.
  • the resin 8 and the adhesive resin 6 may be applied by different application methods.
  • Separee 4 can be used as long as it has sufficient strength with an insulating porous membrane, mesh, non-woven cloth, etc., and is not particularly limited, but a porous material made of polypropylene, polyethylene, etc.
  • the use of a film is preferred from the viewpoint of ensuring adhesiveness and safety.
  • it is necessary to have a through-hole but the ratio of the through-hole to the entire area is preferably at least 10%, and more preferably at least 30%.
  • a process of applying a pressure to the superposed positive electrode 3, the separator 4, and the negative electrode 5 that is higher than the plastic deformation of the resin 8 and the adhesive resin 6 is performed. .
  • This pressure can be applied at any time after all overlays have been completed.
  • This process increases the contact area between the resin 8 and the adhesive resin 6 and the electrodes (positive electrode 3 and negative electrode 5) and the electrode 4, increases the adhesive strength, and ensures that the completed battery strength can withstand practical use. The effect is to make it sufficiently large.
  • This step is also necessary for controlling the thickness of the resin 8 and the adhesive resin 6 interposed between the electrodes 3 and 5.
  • Adhesion in this way eliminates the need for holding jigs to dry electrodes 3 and 5 and Separation 4 at the time of superposition, or to maintain the state of superposition, and plastic deformation of the resin.
  • the step of applying more pressure than can be performed can be performed collectively without the necessity of performing it sequentially, and the productivity is greatly improved by simplifying the manufacturing equipment.
  • a non-aqueous liquid electrolyte containing lithium ions used in conventional batteries can be used.
  • a solvent for the liquid electrolyte a single solvent of an ester solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and getyl carbonate, and a single solvent of an ether solvent such as dimethoxetane, jetoxetane, getyl ether, and dimethyl ether It is possible to use a mixture of two or more of the above-mentioned solvents of the same system or solvents of different systems.
  • the electrolyte salt used in the liquid electrolyte L i PF 6, L i A s F 6, L i C 10 4, L i BF 4, L i CF 3 S 0 3 ⁇ L i N (CF 3 S 0 2 ) 2 , L i C (CF a S 0 2 ) 3 , L i N (C 2 F 5 S 0 2 ) 2, etc. can be used.
  • the step of applying a pressure higher than the resin can be plastically deformed is performed before impregnation with the electrolytic solution. By doing so, the following effects can be obtained.
  • the plastic deformation of the resin increases the contact area with the electrode active material and the separator and enhances the adhesive strength.
  • the resin separates the porous pores of the electrode and the micropores of the electrode. It also has the undesired effect of degrading the closing battery performance.
  • impregnating the electrolyte and plastically deforming the resin while the electrolyte is present in the micropores of the electrode during separation it is possible to prevent the resin from penetrating into the micropores and prevent the battery performance from deteriorating. The effect is obtained.
  • the bonding may be performed by using a thermoplastic resin and heating the thermoplastic resin to a temperature higher than a temperature at which the thermoplastic resin is easily deformed.
  • the heating method is not limited to a hot plate, an oven, an infrared heater or the like. Since the adhesive force is developed by the flow of the thermoplastic resin, not only does the contact area between the resin and the surface of the separator 4 or the electrodes 3 and 5 increase, but also the anchors formed by the resin penetrating into the micropores on the surface. One effect is also obtained. If the viscosity of the thermoplastic resin is high, it may be desirable to apply pressure during heating, but this is not required.
  • thermoplastic resin has a melting point of 200 ° C. or lower, and any resin can be used as long as it is insoluble in the electrolytic solution. If the fluidity during heating is not suppressed, it can be used even if high melting point components, inorganic substances, etc. are mixed.
  • the heating period can be any time after all the superpositions have been completed. This step has the effect of sufficiently increasing the heat resistance of the completed battery.
  • the bonding may be performed by irradiating ultrasonic waves while applying pressure. Ultrasonic waves efficiently deform the resin and enable bonding even under low pressure or low bonding temperature. Irradiation of ultrasonic waves has an effect of selectively heating a portion where the thermoplastic resin is in contact with the electrode surface. For this reason, bonding is performed very efficiently.
  • the heat resistance of the battery can be increased by using an adhesive whose adhesive strength is increased by heat, such as an adhesive having a thermal crosslinking property, as the adhesive resin 6.
  • an adhesive having a thermal crosslinking property such as an adhesive having a thermal crosslinking property
  • the adhesive resin 6 an adhesive having a thermal crosslinking property
  • this type of adhesive include epoxy resins, thermosetting acrylic resins, phenolic resins, urethane resins, and others, such as amino, furan, and xylene resins, which are resistant to electrolytes. Anything can be used.
  • an adhesive whose adhesive strength is improved by heat, use a solution in which an adhesive resin is dissolved in a solvent, and increase the adhesive strength by evaporating the contained solvent. This makes it possible to bond at a low heating temperature.
  • the combined use of drying under reduced pressure can improve the adhesive strength at room temperature.
  • various types of solvent-soluble polymers can be used in addition to general rubber-based adhesives.
  • the separator 4 is provided between the positive electrode 3 and the negative electrode 5.
  • the secondary battery forming method of the present invention can be applied to a configuration not including the separator.
  • FIG. 4 a structure having a plurality of electrode laminates in which a positive electrode 3 and a negative electrode 5 are alternately arranged between a plurality of separated separators 4 is shown in FIGS. 5 and 6.
  • a positive electrode 3 and a negative electrode 5 are alternately arranged between the rolled strip-shaped separators 4 as shown in the figure, and a structure having a plurality of electrode laminates, and a folded strip-shaped separator 4 (not shown).
  • the method of forming the stacked electrode type battery shown in FIGS. 4 and 5 will be described in detail in the following examples.
  • a method of forming a lithium ion battery has been described.
  • the present invention can be applied to various secondary batteries by changing materials such as an active material and an electrolyte to exhibit an effect. This is a battery forming method.
  • a negative electrode active material paste was prepared by mixing and mixing 95% by weight of Mesophase Microphone Bead Bead Carbon (manufactured by Osaka Gas Co., Ltd.) and 5% by weight of polyvinylidene fluoride as a binder resin.
  • a negative electrode was formed on a current collector made of copper foil having a thickness of about 100 ⁇ m by a dough-blade method. The positive and negative electrodes were cut into 5 cm x 4 cm rectangles, and the cut positive and negative electrodes and the current collecting terminals (tabs) were attached.
  • a polybutene-polypropylene copolymer manufactured by Nitta Gelatin Co., Ltd., product number: H-6285, softening point 84 ° C
  • the copolymer was applied in the form of dots, and the applied amount was about 9 per m 2 .
  • Epoxy adhesive (manufactured by Sribond Co., Ltd., trade name: Slipbond 2071B) is applied to Separe Itesu (Celgard # 2400, manufactured by Hex Celanese) by spraying. did.
  • the separator to which the adhesive was applied was sandwiched between the positive electrode and the negative electrode to which the copolymer had been previously applied, and superposed, and a pressure of 20 g was applied per 1 cm 2 . Due to the adhesiveness of the hot melt adhesive, the positive electrode, the separator, and the negative electrode were bonded together, maintaining the bonded shape without the need for a jig. Thereafter, heating was performed for about 1 hour in an oven heated to 70 ° C. By this heating, the epoxy adhesive was cured.
  • the bonded electrode was inserted into a cylindrical aluminum laminating film, and an electrolyte was injected.
  • the electrolyte used was ethylene carbonate and 1,2-dimethoxetane as the solvent, and lithium hexafluorophosphate was used as the electrolyte.
  • the aluminum laminate film was sealed to complete the battery.
  • the battery characteristics of the battery thus manufactured were 68 Wh / kg at a current value of 1 C and 50 Wh / kg at a current value of 1.5 C in terms of weight energy density.
  • a 5 cm ⁇ 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used.
  • Polybutene-polypropylene copolymer manufactured by Nitta Gelatin Co., Ltd., product number: H-6825, softening point 84
  • Separe Itesu (Celgard # 2400, manufactured by Hex To Celanese) ° C) with a coater (CP3000, manufactured by MELTEX).
  • the copolymer was applied in the form of dots, and the applied amount was about 9 per m 2 .
  • an acrylic emulsion adhesive (manufactured by Showa Polymer Co., Ltd.) was partially applied by spraying onto the separator coated with the copolymer, and the separator was placed between the positive electrode and the negative electrode. The sandwich was overlapped and a pressure of 20 g / cm 2 was applied. The positive electrode, separator, and negative electrode were adhered by the hot-melt adhesive, and the adhesive shape was maintained without the need for a jig.
  • the aluminum laminate film was sealed to complete the battery.
  • Example 3 A positive electrode and a negative electrode with a current collecting terminal prepared in the same manner as in Example 1 were applied to SIS-Yube hot melt adhesive (AK-1, manufactured by Kanebo NSC Co., Ltd., with a softening point of about 100 ° C). Was applied with Ko overnight (CP3000, manufactured by MELTEX). Hot Tomeruto adhesive is applied in dots, the coating weight was about 1 0 g per lm 2.
  • a 10% N-methylpyrrolidone solution of polyvinylidene fluoride (Kureha Kagaku KF100) was applied by spraying to Separei (Celgard # 240, manufactured by Hex Celanese). This separator was sandwiched between the positive electrode and the negative electrode, and then superposed, and a pressure of 20 g was applied per cm 2 . The positive electrode, the separator, and the negative electrode were adhered to each other due to the adhesiveness of the hot melt adhesive, and the adhesive shape was maintained without the need for a jig.
  • the bonded electrode was inserted into a cylindrically processed aluminum laminate film, and an electrolyte was injected.
  • the electrolyte used was ethylene carbonate and 1,2-dimethoxetane as the solvent, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum laminate film was sealed to complete the battery.
  • the characteristics of the battery fabricated in this manner were 73 Wh / kg in terms of weight energy density.
  • a 5 cm x 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used.
  • the positive electrode was spray-coated with a SIS-type hot melt adhesive (AK-1, manufactured by Kanebo N.S.C., having a softening point of about 100 ° C).
  • the applied amount was about 15 g per m 2 .
  • the bonded electrode was inserted into a cylindrically processed aluminum laminate film, dried sufficiently, and then an electrolyte was injected.
  • electrolyte ethylene carbonate and 1,2-dimethoxyethane were used as a solvent, and lithium hexafluorophosphate was used as an electrolyte. After injecting the electrolyte, the aluminum laminate film was sealed to complete the battery.
  • the battery characteristics of the battery thus manufactured were 70 Wh / kg at a current value of 1 C and 50 Wh / kg at a current value of 1.5 C in terms of weight energy density.
  • a 5 cm ⁇ 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used.
  • a SIS type hot melt adhesive (AK-1, manufactured by Kanebo NSS Co., Ltd., having a softening point of about 100 ° C) was partially applied to the positive electrode by spraying. The applied amount was about 15 g per m 2 .
  • an epoxy adhesive manufactured by Three Bond Co., Ltd., trade name: Three Bond 207 B
  • Separei Chemicalgard # 240, manufactured by Hex Celanese
  • the electrolyte ethylene carbonate and 1,2-dimethoxyethane were used as solvents, and lithium hexafluorophosphate was used as the electrolyte.
  • the electrolyte solution crushed 2 0 g adhesive layer under pressure per 1 cm 2 at room temperature, to rather small space between the positive electrode and the negative electrode, as a result of Eject and down the excess electrolyte, the space Became about 10 m thick.
  • the battery was completed by sealing the aluminum laminate film.
  • a 5 cm x 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used.
  • Separe Itesu Hybrinese, Celgard # 240
  • a polybutene-polypropylene copolymer manufactured by Nitta Gelatin Co., Ltd., product number: H-6825, softening point 8) 4 ° C
  • CP300 manufactured by MELTEX
  • the copolymer was applied in the form of dots, and the amount applied was about 9 g / m 2 .
  • an acrylic adhesive (part of Showa Polymer Co., Ltd.) was partially applied by spraying to the separator coated with the copolymer, and the separator was sandwiched between the positive and negative electrodes. , 10 ° C Heated on plate for about 2 minutes. As a result, the positive electrode, the separator, and the negative electrode were bonded, and the bonded shape was maintained without the need for a jig.
  • the electrolyte used was ethylene carbonate and 1,2-dimethoxetane as the solvent, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum film was sealed to complete the battery.
  • the battery characteristics of the battery thus manufactured were 6 ⁇ Wh / kg at a current value of 1 C and 45 Wh / kg at a current value of 1.5 C in terms of weight energy density.
  • This example is a method for forming a lithium ion battery having the flat-plate laminated battery body shown in FIG.
  • a positive electrode and a negative electrode were prepared using the same materials and method as described in Example 1, the positive electrode, the negative electrode, and an epoxy-based adhesive (manufactured by Sribond Co., Ltd., trade name: Sribond 207) 1 B) was applied by spraying. Two rolls of 12 cm wide and 25 mm thick porous polypropylene sheet (made by Hext Co., Ltd., trade name: Celgard # 2400) were bundled in rolls as separator material. The product was taken out, and one side of each product was coated with an adhesive resin in the form of dots, using a product number: H-6825 (manufactured by Nigeru Gelatin Co., Ltd.) according to the Koiyu method.
  • the positively-fixed positive electrode or negative electrode
  • the adhesive resin is applied in the form of dots and a negative electrode (or positive electrode) is superimposed on this coated surface, and another positive electrode (or negative electrode) is applied.
  • the adhesive resin is temporarily fixed on the uncoated surface of the separator and the adhesive resin is applied in a dot-like manner to the uncoated surface of the separator by a coating method. Is the positive electrode). This step was repeated to form a plurality of electrode laminates in layers.
  • the positive electrode, the separator, and the negative electrode were adhered to each other due to the tackiness of the adhesive resin, and the adhesive shape was maintained without the need for a jig.
  • the battery body in which the plurality of electrode laminates were formed in a layer shape was heated and fused at 70 ° C. by a roll to bond the positive electrode and the negative electrode to the separator. By this heating, the epoxy adhesive was cured.
  • This embodiment relates to a method for forming a lithium ion secondary battery having the flat-plate wound battery structure shown in FIG.
  • the positive electrode and the negative electrode active material were applied to the long positive electrode and negative electrode current collectors in the same manner and in the same manner as described in Example 1 and dried to form the positive electrode 3 and the negative electrode 5.
  • An epoxy-based adhesive (trade name: Slip Bond 207B) manufactured by Sri Bond Co., Ltd. was applied to both surfaces of each negative electrode by spraying.
  • a porous polypropylene sheet with a width of 12 cm and a thickness of 25 m (made by Hext Co., Ltd., trade name: Celgard # 2400), which is bundled in a roll shape as a separator material
  • the product was taken out, and one side and one end of the other side were coated with an adhesive resin in the form of a dot, in the form of an adhesive resin, with the product number: H-62825 (manufactured by Nikko Gelatin Co., Ltd.).
  • the temperature of the adhesive resin is once lowered to room temperature, and one end of the separator is bent by a certain amount.
  • a single positive electrode (or negative electrode) is sandwiched between the two parts, and a negative electrode (or positive electrode) is placed on the application surface of the bent part so as to face this positive electrode (or negative electrode), and this negative electrode (or positive electrode) is separated. I caught in overnight.
  • the positive electrode (or the negative electrode) and the negative electrode (or the positive electrode) are alternately opposed to each other while applying the resin in the form of a dot on the surface opposite to the surface of the separator on which the resin has been previously applied. And rolled up Separete in an oval shape.
  • the battery body on the rolled-up ellipse is heated and fused at 70 ° C by a roll, and the positive electrode, the negative electrode and the separator are adhered to each other. I got a body.
  • the positive and negative electrode current collectors 31 and 51 of this flat laminated battery body were spot-welded to the positive and negative electrodes of the current collector tabs connected to the respective ends of the current collectors 31 and 51 to form the laminated battery body. Electrically connected in parallel.
  • This embodiment is directed to a method of forming a lithium ion secondary battery having the flat-plate wound laminated battery body shown in FIG. 6, which is different from Embodiment 8 above in that each electrode and separator are simultaneously wound. It is.
  • an epoxy-based adhesive manufactured by Three Bond Co., Ltd., trade name: Slip bond 207 1 B
  • a porous polypropylene sheet product name: Celgard # 2400, manufactured by Hext Co., Ltd.
  • a strip-shaped negative electrode (or positive electrode) was arranged so as to protrude by a certain amount from one side of the positive electrode (or negative electrode) with a separator. Bend the protruding negative electrode (or positive electrode) and wrap it around the positive electrode (or negative electrode) with separator, and then bond the positive electrode (or negative electrode) with separate separator, and then fold the negative electrode (or positive electrode). ) Were wrapped around each other, and the positive electrode (or negative electrode) with separator was wound in an elliptical shape so as to wrap the folded negative electrode (or positive electrode). Thereafter, the whole was fused with a heating roll to obtain a wound-type laminated structure battery body as shown in FIG.
  • the positive electrode and the negative electrode current collectors 31 and 51 of the wound laminated battery body are spot-welded to the positive electrode and the negative electrode by connecting current collecting tabs connected to the ends of the current collectors 31 and 51, respectively, so that the laminated battery body is electrically connected. Connected in parallel.
  • the adhesive resin is applied to the separation layer.
  • the active material layers 32 and 52 may be coated. Both may be applied. Industrial applicability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A method for forming secondary battery by which the positive and negative electrodes of a secondary battery which can be increased in energy density, reduced in shape, can be formed in an arbitrary shape, has an excellent charge-discharge characteristic, and can closely interlay a separator without using any solid enclosure nor increasing the resistance between the electrodes and the productivity of the battery can be improved. The method includes a process for putting a negative electrode (5) formed by sticking a negative electrode material layer (52) to a negative electrode assembly (51), a separator (4), and a positive electrode (3) formed by sticking a positive electrode material layer (32) to a positive electrode assembly (31) upon another in this order, by partially interposing a plastic resin (6) having a viscosity and an adhesive resin (8) between the electrodes (3 and 5) and the separator (4), and a process for deforming the resin (6). Since no holder is required, the productivity of the battery is improved.

Description

明 細 二次電池および二次電池の形成法 技術分野  Description Secondary battery and method of forming secondary battery
本発明は、 二次電池、 特にリチウムイオン電池に関するものである。 詳しくは、 薄型等の任意の形態をとり うる高性能の二次電池およびその 形成法に関するものである。 背景技術  The present invention relates to a secondary battery, particularly to a lithium ion battery. More specifically, the present invention relates to a high-performance secondary battery that can take any form such as a thin type, and a method for forming the secondary battery. Background art
携帯電子機器の小型 · 軽量化への要望は非常に大きい。 その実現は電 池の性能向上に大きく依存する。 これに対応すベく多様な電池の開発、 改良が進められてきた。 電池に要求されている特性は、 高電圧、 高エネ ルギ一密度、 安全性、 形状の任意性等がある。 リチウムイオン電池は、 これまでの電池の中でも、 もっとも高電圧かつ高エネルギー密度が実現 されることが期待される二次電池であり、 現在でもその改良が盛んに進 められている。  There is a great demand for smaller and lighter portable electronic devices. Its realization depends heavily on improved battery performance. In response, various batteries have been developed and improved. Characteristics required for batteries include high voltage, high energy density, safety, and arbitrary shape. Lithium-ion batteries are secondary batteries that are expected to achieve the highest voltage and the highest energy density among batteries to date, and improvements are being actively made today.
現在実用に供されているリチウムイオン電池においては、 正極にはリ チウムコバルト酸化物等の粉末からなる活物質を集電体に塗布し板状と した電極、 負極には同様に炭素系材料の粉末からなる活物質を集電体に 塗布し板状とした電極が用いられている。 これらの電極をリチウムィォ ン電池として機能させるためには、 両電極の間にリチウムィオンが移動 でき、 電子伝導性がないイオン伝導層が存在することが必要である。 一 般に、 このイオン伝導層にはポリエチレン等の多孔質フイルムであるセ パレータを非水系の電解液で満たしているものが用いられている。  In lithium-ion batteries currently in practical use, the positive electrode is a plate-like electrode formed by applying an active material made of powder such as lithium cobalt oxide to a current collector, and the negative electrode is similarly made of a carbon-based material. A plate-like electrode is used in which an active material made of powder is applied to a current collector. In order for these electrodes to function as a lithium ion battery, it is necessary that lithium ions can move between the two electrodes and that an ion conductive layer having no electron conductivity exists. Generally, a material in which a separator, which is a porous film such as polyethylene, is filled with a nonaqueous electrolyte is used for the ion conductive layer.
また、 第 7図に示すように、 金属等でできた剛直な筐体 1 力 、 正極 3、 負極 5および電解液等を含有するセパレータ 4を保持するために用いら れている。 筐体 1 がなければ電極 3、 5 とセパレータ 4間の接合を維持 することが困難であり、 接合部が剥離することにより電池特性が劣化し てしまう。 この筐体 1があるために、 電池の重量が重くなり、 また、 任 意形状の形成が困難になっている。 軽量化、 薄型化のため、 現在、 筐体 1 を必要としない電池の研究が行われている。 筐体 1の必要ない電池の 開発の課題の一つは、 どのようにして正極 3、 負極 5 とこれらの電極に 挟まれるセパレ一夕 4を接合し、 外部から力をかけなくてもその状態を 維持することができるかということである。 As shown in Fig. 7, a rigid housing made of metal or the like 1 It is used for holding a negative electrode 5 and a separator 4 containing an electrolytic solution and the like. Without the housing 1, it is difficult to maintain the bonding between the electrodes 3, 5 and the separator 4, and the bonding part peels off, deteriorating the battery characteristics. Due to the housing 1, the weight of the battery is increased, and it is difficult to form an arbitrary shape. Currently, research into batteries that do not require a housing 1 is being conducted to reduce the weight and thickness. One of the challenges in developing a battery that does not require a housing 1 is how to join the positive electrode 3, the negative electrode 5, and the separator 4 sandwiched between these electrodes, and maintain the state without applying external force. Can be maintained.
この接合に関する方法として、 可塑剤を混合した重合体から少なく と も一部分の可塑剤を電解液で置換することにより、 正極と負極に挟まれ るイオン伝導層を形成する方法が米国特許 5 , 4 6 0 , 9 0 4号に開示 されている。  As a method related to this bonding, a method of forming an ion conductive layer sandwiched between a positive electrode and a negative electrode by replacing at least a part of a plasticizer with a polymer from a polymer mixed with a plasticizer is disclosed in U.S. Pat. No. 60,904.
この米国特許 5, 4 6 0 , 9 0 4号に開示されている方法では、 ィォ ン伝導層を形成するために有機溶剤による処理が必要でぁリ、 この有機 溶剤の除去のための工程が必要である。 また、 有機溶剤処理設備が必要 であるので、 生産方法としては好ましくない。  In the method disclosed in US Pat. No. 5,460,904, a treatment with an organic solvent is required to form an ion conductive layer, and a step for removing the organic solvent is required. is necessary. Also, since an organic solvent treatment facility is required, it is not preferable as a production method.
電極とセパレ一夕を接着する場合、 長尺の電極、 セパレ一タを卷いた り、 折り重ねたりする方法、 切断した電極、 セパレ一タを重ね合わせて いく方法のいずれをとつても、 接着剤が乾燥するまで治具で固定して行 う必要がある。 治具による固定は作業性が悪くなる原因である。 乾燥前、 乾燥中の治具固定が不要になれば電池の生産性が極めて効率よくなるた め、 乾燥前、 乾燥中の治具が不要な電池の形成法が望まれる。 発明の開示  When bonding the electrode to the separator, the long electrode, the separator may be wound or folded, or the cut electrode or the separator may be laminated. It is necessary to fix with a jig until the agent dries. Fixing with a jig is a cause of poor workability. If there is no need to fix the jig before and during drying, the productivity of the battery becomes extremely efficient. Therefore, a method of forming a battery that does not require a jig before and during drying is desired. Disclosure of the invention
本発明に係る第 1の二次電池の形成法は、 正極、 負極およびセパレー 夕を構成要素に含み、 この構成要素に電解液を含浸した二次電池の形成 法において、 正極とセパレ一夕間および負極とセパレ一夕間に粘着性を 有する可塑性樹脂、 および接着性樹脂を部分的に介在させて重ね合わせ る工程と、 上記可塑性樹脂を変形させる工程とを備えたものである。 こ の方法によれば、 粘着性を有する可塑性樹脂を部分的に介在させて重ね 合わせることにより、 正極、 負極とセパレ一夕の重ね合わせ毎の乾燥、 あるいは重ね合わせの状態維持のための保持治具を必要とせず、 また、 可塑性樹脂を変形する工程は逐次的に行う必要が無く一括してできるの で、 製造設備の簡素化等によ り生産性が非常に良くなるとともに、 可塑 性樹脂を変形させる工程によって、 可塑性樹脂および接着性樹脂と正極 および負極ゃセパレ一夕との接触面積を大きく し、 接着力を増強させ、 完成した電池強度を実用に耐え得るように十分に大き くすることができ る。 The method for forming the first secondary battery according to the present invention comprises: a positive electrode, a negative electrode, and a separator. In a method for forming a secondary battery in which the electrolyte is impregnated with an electrolyte, the adhesive resin and the adhesive plastic resin between the positive electrode and the separator and between the anode and the separator are used. The method includes a step of partially overlapping and overlapping, and a step of deforming the plastic resin. According to this method, the positive electrode, the negative electrode and the separator are dried each time they are laminated, or the holding treatment is performed to maintain the state of the laminated state by partially laminating an adhesive plastic resin. No tools are required, and the process of deforming the plastic resin does not need to be performed sequentially, but can be performed collectively.Thus, productivity is greatly improved by simplifying manufacturing equipment, etc. Process to increase the contact area between the plastic resin and the adhesive resin and the positive electrode and the negative electrode, increase the adhesive strength, and make the completed battery strength large enough to withstand practical use. be able to.
本発明に係る第 2の二次電池の形成法は、 上記第 1の二次電池の形成 法において、 上記可塑性樹脂が塑性変形しうる以上の圧力を加えること によって上記可塑性樹脂の変形を行なうものである。 この方法によれば、 加圧により上記可塑性樹脂を塑性変形させることにより、 正極および負 極とセパレ一夕との間に形成される空隙部の深さすなわち正極および負 極とセパレ一夕との間の距離を小さ くすることができ、 この空隙部に電 解液を保持した場合の正極および負極とセパレ一夕との間のイオン伝導 抵抗は充分小さくなり、 高負荷率での使用が可能となるとともに、 正極 および負極とセパレ一夕との間の接着面積を大き く し、 電池の強度を高 くすることができる。  The method for forming a second secondary battery according to the present invention is the method for forming the first secondary battery, wherein the plastic resin is deformed by applying a pressure higher than the plastic resin can be plastically deformed. It is. According to this method, the plastic resin is plastically deformed by pressurization, so that the depth of the void formed between the positive electrode and the negative electrode and the separator, that is, the depth of the gap between the positive electrode and the negative electrode and the separator is increased. The distance between the electrodes can be reduced, and the ionic conduction resistance between the positive and negative electrodes and the separator when the electrolyte is held in these gaps is sufficiently small, enabling use at high load rates. In addition, the bonding area between the positive electrode and the negative electrode and the separation can be increased, and the strength of the battery can be increased.
本発明に係る第 3の二次電池の形成法は、 上記第 2の二次電池の形成 法において、 上記圧力を加えることによって上記可塑性樹脂の変形を行 なう工程が、 電解液を含浸した後に行われるものである。 この方法によ れば、 電解液を含浸し電解液がセパレー夕、 正極および負極の微細孔中 に存在している状態で樹脂を塑性変形させることにより、 微細孔への樹 脂の浸入を防ぎ、 電池性能の低下を防ぐことができる。 According to a third method of forming a secondary battery according to the present invention, in the method of forming a second secondary battery, the step of deforming the plastic resin by applying the pressure includes impregnating with an electrolytic solution. It will be done later. By this method In this case, the resin is impregnated with the electrolyte and the resin is plastically deformed while the electrolyte is present in the micropores of the positive electrode and the negative electrode, thereby preventing resin from entering the micropores and improving the battery performance. Drop can be prevented.
本発明に係る第 4の二次電池の形成法は、 上記第 1の二次電池の形成 法において、 上記可塑性樹脂の変形を加温することによって行なうもの である。 この方法によれば、 熱可塑性樹脂を使用することができる。 加 熱により上記熱可塑性樹脂を流動させて変形させることにより、 正極お よび負極とセパレ一夕との間に形成される空隙部の溁さすなわち正極お よび負極とセパレ一夕との間の距離を小さくすることができ、 この空隙 部に電解液を保持した場合の正極および負極とセパレー夕との間のィォ ン伝導 ¾抗は充分小さくなり、 高負荷率での使用が可能となる。 また、 熱可塑性樹脂の流動によって接着力を発現するため、 樹脂とセパレ一夕 または正極および負極表面との接触面積が大きくなるだけではなく、 表 面の微細孔へ樹脂が貫入して生ずるアンカ一効果も併せて得られ、 接着 強度が高い実用的な二次電池が得られる。  A fourth method for forming a secondary battery according to the present invention is the same as the first method for forming a secondary battery, wherein the deformation of the plastic resin is heated. According to this method, a thermoplastic resin can be used. By heating and flowing the thermoplastic resin to deform it, the length of the gap formed between the positive electrode and the negative electrode and the separation, that is, the distance between the positive electrode and the negative electrode and the separation, Can be reduced, and the ion conduction resistance between the positive electrode and the negative electrode and the separator when the electrolytic solution is held in the gap becomes sufficiently small, so that it can be used at a high load factor. In addition, since the adhesive strength is generated by the flow of the thermoplastic resin, not only the contact area between the resin and the separator or between the positive electrode and the negative electrode surface increases, but also the anchor formed by the resin penetrating into the fine pores on the surface. The effect is also obtained, and a practical secondary battery with high adhesive strength can be obtained.
本発明に係る第 5の二次電池の形成法は、 上記第 1の二次電池の形成 法において、 上記接着性樹脂が、 加熱により接着力が増す接着剤である ものであるものである。  In a fifth method of forming a secondary battery according to the present invention, in the method of forming the first secondary battery, the adhesive resin is an adhesive whose adhesive strength is increased by heating.
本発明に係る第 6の二次電池の形成法は、 上記第 5の二次電池の形成 法において、 上記加熱により接着力が増す接着剤が、 熱架橋性の樹脂で あるものであるものである。  A sixth method of forming a secondary battery according to the present invention is the method of forming the fifth secondary battery, wherein the adhesive whose adhesive strength is increased by heating is a thermo-crosslinkable resin. is there.
本発明に係る第 7の二次電池の形成法は、 上記第 5の二次電池の形成 法において、 上記加熱により接着力が増す接着剤が、 溶剤に溶解した接 着剤であるものであるものである。  The method for forming a seventh secondary battery according to the present invention is the method for forming a secondary battery according to the fifth aspect, wherein the adhesive whose adhesive strength is increased by the heating is an adhesive dissolved in a solvent. Things.
上記第 5、 第 6および第 7の二次電池の形成法によれば、 熱により接 着力が向上し、 接着力を増強させ、 電池の耐熱性を増大させることがで き、 完成した電池強度を実用に耐え得るように十分に大きくすることが できる。 According to the fifth, sixth, and seventh secondary battery forming methods, the adhesive force is improved by heat, the adhesive force is increased, and the heat resistance of the battery can be increased. As a result, the strength of the completed battery can be made large enough to withstand practical use.
本発明に係る第 8の二次電池の形成法は、 正極と負極を構成要素に含 み、 この構成要素に電解液を含浸した二次電池の形成法において、 正極 と負極との間に粘着性を有する可塑性樹脂、 および接着性樹脂を部分的 に介在させて重ね合わせる工程と、 上記可塑性樹脂を変形させる工程と を備えたものである。 この方法によれば、 粘着性を有する可塑性樹脂を 部分的に介在させて重ね合わせることにより、 正極と負極との重ね合わ せ毎の乾燥、 あるいは重ね合わせの状態維持のための保持治具を必要と しないので、 その後の工程は逐次的に行う必要が無く一括してでき、 製 造設備の簡素化等により生産性が非常に良くなる。  An eighth method for forming a secondary battery according to the present invention includes a method for forming a secondary battery in which a positive electrode and a negative electrode are included in a constituent element, and the constituent element is impregnated with an electrolytic solution. And a step of partially overlapping a plastic resin having adhesiveness and an adhesive resin, and a step of deforming the plastic resin. According to this method, it is necessary to provide a holding jig for drying each superposition of the positive electrode and the negative electrode or for maintaining a superimposed state by partially laminating an adhesive plastic resin and laminating. Since the subsequent steps do not need to be performed sequentially, they can be performed collectively, and productivity is greatly improved due to simplification of manufacturing equipment.
本発明に係る第 9の二次電池の形成法は、 上記第 8の二次電池の形成 法において、 上記可塑性樹脂が塑性変形しうる以上の圧力を加えること によつて上記可塑性樹脂の変形を行なうものである。 この方法によれば、 加圧により上記可塑性樹脂を塑性変形させることにより、 正極と負極と の間に形成される空隙部の深さすなわち正極と負極との間の距離を小さ くすることができ、 この空隙部に電解液を保持した場合の正極と負極と の間のイオン伝導抵抗は充分小さくなり、 高負荷率での使用が可能とな るとともに、 正極および負極との間の接着面積を大きく し、 電池の強度 を高くすることができる。  According to a ninth method for forming a secondary battery according to the present invention, in the method for forming an eighth secondary battery, the plastic resin is deformed by applying a pressure higher than the plastic resin can be plastically deformed. It is what you do. According to this method, the depth of the void formed between the positive electrode and the negative electrode, that is, the distance between the positive electrode and the negative electrode can be reduced by plastically deforming the plastic resin by applying pressure. However, when the electrolyte is held in the gap, the ionic conduction resistance between the positive electrode and the negative electrode becomes sufficiently small, enabling use at a high load factor and reducing the bonding area between the positive electrode and the negative electrode. By increasing the size, the strength of the battery can be increased.
本発明に係る第 1 0の二次電池の形成法は、 上記第 9の二次電池の形 成法において、 上記圧力を加えることによって上記可塑性樹脂の変形を 行なう工程が、 電解液を含浸した後に行われるものである。 この方法に よれば、 電解液を含浸し電解液が正極および負極の微細孔中に存在して いる状態で樹脂を塑性変形させることにより、 微細孔への樹脂の浸入を 防ぎ、 電池性能の低下を防ぐことができる。 本発明に係る第 1 1の二次電池の形成法は、 上記第 8の二次電池の形 成法において、 上記可塑性樹脂の変形を加温することによって行なうも のである。 この方法によれば、 熱可塑性樹脂を使用することができる。 加温により上記可塑性樹脂を流動させて変形させることにより、 正極と 負極との間に形成される空隙部の深さすなわち正極と負極との間の距離 を小さくすることができ、 この空隙部に電解液を保持した場合の正極と 負極との間のイオン伝導抵抗は充分小さくなり、 高負荷率での使用が可 能となる。 また、 熱可塑性樹脂の流動によって接着力を発現するため、 樹脂と正極および負極表面との接触面積が大きくなるだけではなく、 表 面の微細孔へ樹脂が貫入して生ずるアンカ一効果も併せて得られ、 接着 強度が高い実用的な二次電池が得られる。 In the method for forming a tenth secondary battery according to the present invention, in the method for forming a ninth secondary battery, the step of deforming the plastic resin by applying the pressure may include impregnating an electrolyte. It will be done later. According to this method, by impregnating the electrolyte and plastically deforming the resin while the electrolyte is present in the fine pores of the positive electrode and the negative electrode, the resin is prevented from penetrating into the fine pores, and the battery performance is reduced. Can be prevented. The eleventh method for forming a secondary battery according to the present invention is the same as the eighth method for forming a secondary battery, except that the deformation of the plastic resin is heated. According to this method, a thermoplastic resin can be used. By flowing and deforming the plastic resin by heating, the depth of the gap formed between the positive electrode and the negative electrode, that is, the distance between the positive electrode and the negative electrode can be reduced. The ionic conduction resistance between the positive electrode and the negative electrode when the electrolytic solution is held is sufficiently small, and it can be used at a high load factor. In addition, since the adhesive strength is exhibited by the flow of the thermoplastic resin, not only the contact area between the resin and the surface of the positive electrode and the negative electrode becomes large, but also the anchor effect caused by the resin penetrating into the fine pores on the surface. Thus, a practical secondary battery having high adhesive strength can be obtained.
本発明に係る第 1 2の二次電池の形成法は、 上記第 8の二次電池の形 成法において、 上記接着性樹脂が、 加熱により接着力が増す接着剤であ るものである。  According to a twenty-second method for forming a secondary battery according to the present invention, in the eighth method for forming a secondary battery, the adhesive resin is an adhesive whose adhesive strength is increased by heating.
本発明に係る第 1 3の二次電池の形成法は、 上記第 1 2の二次電池の 形成法において、 上記加熱により接着力が増す接着剤が、 熱架橋性の樹 脂であるものである。  According to a thirteenth method for forming a secondary battery according to the present invention, in the method for forming a second secondary battery, the adhesive whose adhesive strength is increased by heating is a thermo-crosslinkable resin. is there.
本発明に係る第 1 4の二次電池の形成法は、 上記第 1 2の二次電池の 形成法において、 上記加熱により接着力が増す接着剤が、 溶剤に溶解し た接着剤であるものである。  According to a fourteenth method for forming a secondary battery according to the present invention, the method for forming a second rechargeable battery according to the first or second method is such that the adhesive whose adhesive strength increases by heating is an adhesive dissolved in a solvent. It is.
上記第 1 2ないし第 1 4の二次電池の形成法によれば、 熱により接着 力が向上し、 接着力を増強させ、 電池の耐熱性を増大させることができ、 完成した電池強度を実用に耐え得るように十分に大きくすることができ る。  According to the above-described methods of forming the secondary batteries of the first to the fourteenth, the adhesive strength is improved by heat, the adhesive strength is enhanced, and the heat resistance of the battery can be increased. It can be large enough to withstand the heat.
本発明に係る第 1の二次電池は、 正極活物質層を正極集電体に接合し てなる正極と、 負極活物質層を負極集電体に接合してなる負極と、 上記 正極活物質層と上記負極活物質層の間に配置されるセパレ一夕と、 上記 各活物質層と上記セパレー夕との間を連通する空隙を形成するように上 記各活物質層と上記セパレー夕の間に配置された、 常温において固体で 表面が粘着性を有し加熱または加圧により変形する可塑性樹脂、 および 接着性樹脂を有する電極積層体を備えたものである。 これによれば、 常 温において固体で表面が粘着性を有し加熱または加圧によ り変形する可 塑性樹脂と、 接着性樹脂とを有するので、 高性能な二次電池が生産性よ く得られる。 A first secondary battery according to the present invention includes a positive electrode formed by bonding a positive electrode active material layer to a positive electrode current collector; a negative electrode formed by bonding a negative electrode active material layer to a negative electrode current collector; The above-mentioned active material layers and the above-mentioned respective active material layers are formed so as to form a gap communicating between the respective positive electrode active material layers and the above-mentioned negative electrode active material layer and between the above-mentioned respective active material layers and the above-mentioned separate layer. It is provided with an electrode laminate having a plastic resin which is solid at room temperature, has a sticky surface, and is deformed by heating or pressing, and an adhesive resin, which are arranged between the separators. According to this, since it has a plastic resin which is solid at room temperature and has a sticky surface and is deformed by heating or pressing, and an adhesive resin, a high-performance secondary battery can be produced with high productivity. can get.
本発明に係る第 2の二次電池は、 上記第 1の二次電池において、 空隙 部の面積が、 各活物質層とセパレー夕が対向する各対向面の全面積の 3 0 %ないし 9 0 %であるものである。 これによれば、 正極および負極と セパレ一夕との間に形成される空隙部に電解液を保持した場合の正極お よび負極とセパレ一夕との間のイオン伝導抵抗は充分小さ くなり、 高負 荷率での使用が可能となるとともに、 実用に耐える接着強度が得られる。 本発明に係る第 3の二次電池は、 上記第 1の二次電池において、 上記 接着性樹脂が、 加熱により接着力が増す接着剤であるものである。  In the second secondary battery according to the present invention, in the first secondary battery, the area of the void is 30% to 90% of the total area of each facing surface where each active material layer faces the separator. %. According to this, the ionic conduction resistance between the positive electrode, the negative electrode, and the separator when the electrolyte is held in the gap formed between the positive electrode, the negative electrode, and the separator becomes sufficiently small, It can be used at a high load rate and has practically sufficient adhesive strength. In a third secondary battery according to the present invention, in the first secondary battery, the adhesive resin is an adhesive whose adhesive strength is increased by heating.
本発明に係る第 4の二次電池は、 上記第 3の二次電池において、 上記 加熱により接着力が増す接着剤が、 熱架橋性の樹脂であるものである。 本発明に係る第 5の二次電池は、 上記第 3の二次電池において、 上記 加熱により接着力が増す接着剤が、 溶剤に溶解した接着剤であるもので ある。  A fourth secondary battery according to the present invention is the above-mentioned third secondary battery, wherein the adhesive whose adhesive strength is increased by heating is a thermo-crosslinkable resin. In a fifth secondary battery according to the present invention, in the third secondary battery, the adhesive whose adhesive strength is increased by heating is an adhesive dissolved in a solvent.
上記第 3ないし第 5の二次電池によれば、 加熱により接着力が向上す る接着剤を用いることによって、 接着力を増強させ、 電池の耐熱性を増 大させることができ、 電池強度を実用に耐え得るように十分に大き くす ることができる。  According to the third to fifth secondary batteries described above, by using an adhesive whose adhesive strength is improved by heating, the adhesive strength can be increased, the heat resistance of the battery can be increased, and the battery strength can be increased. It can be large enough to be practical.
本発明に係る第 6の二次電池は、 上記第 1の二次電池において、 複数 の電極積層体を備えたものである。 これによれば、 コンパク トで、 安定 し、 かつ大きな電池容量の二次電池を得ることができる。 A sixth secondary battery according to the present invention is the first secondary battery according to the first aspect, Of the present invention. According to this, a compact, stable secondary battery having a large battery capacity can be obtained.
本発明に係る第 7の二次電池は、 正極活物質層を正極集電体に接合し てなる正極と、 負極活物質層を負極集電体に接合してなる負極と、 上記 各活物質層の間を連通する空隙を形成するように上記各活物質層の間に 配置された、 常温において固体で表面が粘着性を有し加熱または加圧に より変形する可塑性樹脂、 および接着性樹脂を有する電極積層体を備え たものである。 これによれば、 セパレ一夕を有しない二次電池において、 上記第 1の二次電池と同様の効果が得られる。  A seventh secondary battery according to the present invention provides a positive electrode in which a positive electrode active material layer is joined to a positive electrode current collector; a negative electrode in which a negative electrode active material layer is joined to a negative electrode current collector; A plastic resin, which is solid at room temperature, has a sticky surface, and is deformed by heating or pressing, and an adhesive resin, which is disposed between the active material layers so as to form voids communicating between the layers. An electrode laminate having the following. According to this, in a secondary battery having no separation, the same effect as the first secondary battery can be obtained.
本発明に係る第 8の二次電池は、 上記第 7の二次電池において、 複数 の電極積層体を備えたものである。 これによれば、 コンパク トで、 安定 し、 かつ大きな電池容量の二次電池を得ることができる。 図面の簡単な説明  An eighth secondary battery according to the present invention is the above-described seventh secondary battery, comprising a plurality of electrode laminates. According to this, a compact, stable secondary battery having a large battery capacity can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施の形態によるリチウムイオン電池の電池構 造を示す断面模式図であり、 第 2図は、 本発明の一実施の形態に係るコ —夕法による接着性樹脂の塗布方法を示す模式図であり、 第 3図は、 本 発明の一実施の形態によるリチウムィオン電池を示す断面模式図であり、 第 4図、 第 5図および第 6図は、 本発明の他の実施の形態に係るリチウ ムイオン二次電池の電池構造を示す断面模式図であり、 第 7図は、 従来 のリチウムイオン二次電池を示す断面模式図である。 発明を実施するための最良の形態  FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium ion battery according to an embodiment of the present invention, and FIG. 2 is a sectional view showing an adhesive resin according to an embodiment of the present invention. FIG. 3 is a schematic view showing a coating method of the present invention. FIG. 3 is a schematic sectional view showing a lithium ion battery according to an embodiment of the present invention. FIGS. 4, 5 and 6 show the present invention. FIG. 7 is a schematic sectional view showing a battery structure of a lithium ion secondary battery according to another embodiment, and FIG. 7 is a schematic sectional view showing a conventional lithium ion secondary battery. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 正極および負極とこれら正極および負極との間にイオン伝 導層が配置される構造の電池に適用されるものである。 以下の実施の形 態は主に正極、 ィオン伝導層および負極の単一の電極積層体からなる単 層電極型電池について説明されるが、 単一の電極積層体を積み重ねた積 層電極型電池にも適用できる。 The present invention is applied to a battery having a structure in which an ion conductive layer is disposed between a positive electrode and a negative electrode and between the positive electrode and the negative electrode. The following embodiment mainly includes a single electrode stack including a positive electrode, an ion conductive layer, and a negative electrode. Although a layer electrode type battery will be described, the present invention is also applicable to a layered electrode type battery in which a single electrode laminate is stacked.
第 1図は、 本発明の一実施の形態による リチウムイオン電池の電池構 造、 即ち電極積層体の構造を示す断面模式図であり、 図において、 3は 正極活物質層 3 2を正極集電体 3 1 に接合してなる正極、 5は負極活物 質層 5 2 を負極集電体 5 1 に接合してなる負極、 4は正極 3 と負極 5の 間に配置されたセパレ一夕で、 リチウムイオンを含む非水系の電解液を 保有することによってイオン伝導層として機能するものである。 8は正 極活物質層 3 2および負極活物質層 5 2 とセパレ一夕 4 との対向面間に 点状、 線状、 または格子状のように部分的に配置され、 常温で固体で粘 着性を有し、 かつ加熱または加圧によって変形する樹脂である。 6は正 極活物質層 3 2および負極活物質層 5 2 とセパレ一夕 4 との対向面間に 点状、 線状、 または格子状のように部分的に配置され、 各活物質層 3 2、 5 2 とセパレ一夕 4 とを接合する接着性樹脂である。 7は正極活物質層 3 2および負極活物質層 5 2 とセパレ一夕 4 との間を連通する空隙部で ある。 この空隙部 7、 セパレ一タ 4、 および活物質層 3 2、 5 2にリチ ゥムイオンを含む非水系の電解液が保持される。  FIG. 1 is a schematic cross-sectional view showing a battery structure of a lithium-ion battery according to an embodiment of the present invention, that is, a structure of an electrode stack. In FIG. 1, reference numeral 3 denotes a positive electrode active material layer 32 The positive electrode joined to the body 3 1, the negative electrode 5 joined to the negative electrode active material layer 5 2 on the negative electrode current collector 51, and the separator 4 arranged between the positive electrode 3 and the negative electrode 5. By functioning as a non-aqueous electrolyte containing lithium ions, it functions as an ion conductive layer. Numeral 8 is partially arranged like a point, a line, or a lattice between opposing surfaces of the positive electrode active material layer 32 and the negative electrode active material layer 52 and the separator 4, and is solid and viscous at room temperature. It is a resin that has adhesive properties and deforms when heated or pressed. Numerals 6 are partially arranged in a point-like, linear, or lattice-like manner between the facing surfaces of the positive electrode active material layer 32 and the negative electrode active material layer 52 and the separator 4, and each active material layer 3 It is an adhesive resin that joins 2, 5, and 2 to Separee. Reference numeral 7 denotes a void portion that communicates between the positive electrode active material layer 32 and the negative electrode active material layer 52 and the separator 4. The void 7, the separator 4, and the active material layers 32, 52 hold a non-aqueous electrolyte containing lithium ions.
接着性樹脂 6は、 溶剤に接着性樹脂を溶解した液状のものをセパレー 夕 4と活物質層 3 2、 5 2 との界面に塗布し、 溶剤を蒸発させてもよい。 この場合、 溶剤が蒸発して体積収縮、 あるいは樹脂の結晶化等により多 孔性となる。  As the adhesive resin 6, a liquid in which the adhesive resin is dissolved in a solvent may be applied to the interface between the separator 4 and the active material layers 32, 52 to evaporate the solvent. In this case, the solvent is evaporated and becomes porous due to volume shrinkage or crystallization of the resin.
本発明の電池形成法は、 表面の少なく とも一部が粘着性を有する樹脂 8 と接着性樹脂 6 とを正極 3 とセパレー夕 4間、 負極 5 とセパレ一夕 4 間に介在させ、 重ね合わせることによって、 正極 3 とセパレ一夕 4およ び負極 5 とセパレ一夕 4を樹脂 8の粘着力で仮固定し、 さらに下記に示 す加圧、 加熱などの方法で樹脂 8 と必要に応じて接着性樹脂 6 とを変形 させて電極 3、 5 とセパレ一夕 4 との間隙を減少して間隙 7の深さを所 定の値にするものである。 本発明において用いる樹脂 8および接着性樹 脂 6は、 電解液に溶解しないものであれば使用可能である。 In the battery forming method of the present invention, the resin 8 and the adhesive resin 6 having at least a part of the surface having adhesiveness are interposed between the positive electrode 3 and the separator 4 and between the negative electrode 5 and the separator 4 and are superposed. As a result, the positive electrode 3 and the separator 4 and the negative electrode 5 and the separator 4 are temporarily fixed with the adhesive force of the resin 8, and then the resin 8 and the resin 8 are applied as necessary by applying pressure, heating, or the like as described below. To deform the adhesive resin 6 Then, the gap between the electrodes 3 and 5 and the separation 4 is reduced, and the depth of the gap 7 is set to a predetermined value. The resin 8 and the adhesive resin 6 used in the present invention can be used as long as they do not dissolve in the electrolytic solution.
接着性樹脂 6によって形成された空隙部 7の面積は、 活物質層 3 2、 5 2 とセパレータ 4とが対向する各対向面の全面積の 3 0 %乃至 9 0 % とすることが望ましく、 6 0 %程度にすることが最も望ましい。 3 0 % 未満では、 電極活物質層 3 2、 5 2 とセパレ一夕 4 との間の電気的な接 合が不充分になり、 電極間 3、 5のイオン伝導抵抗が大き くなるために、 充分な電池特性を得ることが困難になる。 また、 9 0 %を越えると、 電 極 3、 5 とセパレ一夕 4間の密着性が不充分になり、 剥離が起こる。 また、 活物質層 3 2、 5 2 とセパレ一夕 4の間に形成される空隙部 7 の深さすなわち活物質層 3 2、 5 2 とセパレータ 4の間の距離 Lは、 電 解液のイオン伝導度により異なるが、 通常使用される 1 0 _ 2 S / c m程 度の場合には、 3 0〃m以下であれば、 活物質層 3 2、 5 2 とセパレ一 夕 4 との間のイオン伝導抵抗は充分小さ くなり、 従来の外装缶を用いた 電池に劣らない高負荷率での使用が可能となるので、 3 0〃m以下とす るのが望ましい。 また、 空隙部 7の深さ Lを 1 0 / m以下にすることに より、 反応種の拡散がより容易に進みィオン伝導抵抗のより一層の低減 を図ることができるため、 1 0 / m以下に調整するのがより望ましい。 さらに、 電極反応の起こる活物質 3 2、 5 2の表面には、 数 mの拡散 層が存在すると言われており、 空隙部 7の深さ Lをこれ以下に調整する ことにより、 リチウムイオンの拡散が最も容易に進むと考えられること から、 空隙部 7の深さ Lを数 m以下にすることが最も望ましい。 The area of the void 7 formed by the adhesive resin 6 is desirably 30% to 90% of the total area of each opposing surface where the active material layers 32, 52 and the separator 4 oppose each other, Most preferably, it is about 60%. If it is less than 30%, the electrical connection between the electrode active material layers 32 and 52 and the separator 4 becomes insufficient, and the ionic conduction resistance between the electrodes 3 and 5 increases. However, it becomes difficult to obtain sufficient battery characteristics. On the other hand, if it exceeds 90%, the adhesion between the electrodes 3, 5 and the separator 4 becomes insufficient, and peeling occurs. In addition, the depth of the void 7 formed between the active material layers 32, 52 and the separator 41, that is, the distance L between the active material layers 32, 52 and the separator 4, is determined by the amount of the electrolyte. Although it depends on the ionic conductivity, in the case of about 10 _ 2 S / cm, which is usually used, if it is 30 μm or less, the distance between the active material layers 32 and 52 and the separator 4 Since the ionic conduction resistance of the battery becomes sufficiently small, and the battery can be used at a high load factor that is not inferior to a battery using a conventional outer can, it is preferable that the ion conductivity be 30 m or less. Further, by setting the depth L of the void portion 7 to 10 / m or less, diffusion of the reactive species can be more easily promoted, and the ion conduction resistance can be further reduced. It is more desirable to adjust to. Furthermore, it is said that a diffusion layer of several meters exists on the surface of the active material 32, 52 where an electrode reaction occurs.By adjusting the depth L of the void 7 to less than this, lithium ions can be removed. It is most preferable that the depth L of the void 7 is set to several meters or less, since diffusion is considered to proceed most easily.
また、 接着性樹脂 6を電極 3、 5 とセパレ一夕 4間に点状、 線状また は格子状に配置して密着させることにより、 電極 3、 5 とセパレ一夕 4 の間に液体電解質を保持することが可能な空隙部 7を形成することがで きる。 この空隙部 7に液体電解質を保持することにより、 電極 3、 5間 のイオン伝導抵抗を従来の外装缶を用いた電池程度にすることができ、 さらに、 電極 3、 5 とセパレ一タ 4 との間を接着しているので外装缶無 しに電極 3、 5 とセパレー夕 4を密着させることが可能となる。 Also, the adhesive resin 6 is arranged between the electrodes 3 and 5 and the separator 4 in a dotted, linear, or grid-like manner and closely adhered, so that the liquid electrolyte is provided between the electrodes 3 and 5 and the separator 4. Gap 7 that can hold Wear. By holding the liquid electrolyte in the gap 7, the ionic conduction resistance between the electrodes 3 and 5 can be reduced to the same level as a battery using a conventional outer can, and furthermore, the electrodes 3 and 5 and the separator 4 Since the gap between them is adhered, the electrodes 3, 5 and the separator 4 can be brought into close contact with each other without an outer can.
また、 接着性樹脂 6 として、 溶剤に接着性樹脂を溶解した液状のもの を用いた場合には、 加熱乾燥によって溶剤蒸発による体積収縮、 あるい は樹脂の結晶化等により多孔性となり、 この多孔部に液体電解質を保持 することにより、 電極 3、 5間のイオン伝導抵抗を小さ くすることがで きる。  When the adhesive resin 6 is a liquid in which the adhesive resin is dissolved in a solvent, the adhesive resin 6 becomes porous due to volumetric shrinkage due to solvent evaporation or crystallization of the resin due to heating and drying. By holding the liquid electrolyte in the portion, the ionic conduction resistance between the electrodes 3 and 5 can be reduced.
上記のように構成された二次電池は、 例えば以下の方法により形成さ れる。  The secondary battery configured as described above is formed, for example, by the following method.
本発明の形成法は、 正極活物質層 3 2、 負極活物質層 5 2 をそれそれ 集電体 3 1、 5 1 に塗着する工程、 正極活物質層 3 2 とセパレ一夕 4の 対向面の少なく とも一方および負極活物質層 5 2 とセパレ一夕 4の対向 面の少なく とも一方の面に樹脂 8および接着性樹脂 6を部分的に塗布す る工程、 セパレ一夕 4の各面に正極活物質層 3 2の対向面および負極活 物質層 5 2の対向面を重ね合わせることによって仮固定する工程、 活物 質層 3 2および 5 2 とセパレ一夕 4との間に介在する樹脂 8および接着 性樹脂 6を変形させて空隙部 7の深さ Lを減少させる工程を備えている。 活物質層 3 2、 5 2を形成するためには、 正極および負極活物質粉末 それそれをバイ ンダ樹脂と混合してペース ト状にし、 このペース トを正 極および負極終電体 3 1、 5 1それそれに塗布、 乾燥する。  The formation method of the present invention includes a step of applying the positive electrode active material layer 32 and the negative electrode active material layer 52 to the current collectors 31 and 51, respectively, and opposing the positive electrode active material layer 32 and the separator 4. A step of partially applying a resin 8 and an adhesive resin 6 to at least one of the surfaces and at least one of the opposing surfaces of the negative electrode active material layer 52 and the separator 4; each surface of the separator 4 Temporarily fixing the opposed surface of the positive electrode active material layer 32 and the opposed surface of the negative electrode active material layer 52 to each other, interposed between the active material layers 32 and 52 and the separator 4 A step of deforming the resin 8 and the adhesive resin 6 to reduce the depth L of the gap 7 is provided. In order to form the active material layers 32, 52, the positive and negative electrode active material powders, each of which is mixed with a binder resin to form a paste, and this paste is used to form the positive and negative electrode final bodies 31, 5, 1 Apply to it and dry.
活物質を電極化するために使用されるバイ ンダ一樹脂としては、 電解 液に溶解せず、 電池内部で電気化学反応を起こさないものであれば使用 可能である。 具体的には、 フッ化ビニリデン、 フッ化工チレン、 アタ リ ロニト リル、 エチレンォキシ ドなどの単独重合体または共重合体、 ェチ レンプロピレンジァミ ンゴムなどが使用可能である。 As the binder-resin used to convert the active material into an electrode, any resin that does not dissolve in the electrolyte and does not cause an electrochemical reaction inside the battery can be used. Specifically, homopolymers or copolymers such as vinylidene fluoride, fluorinated ethylene, atalylonitrile, and ethylene oxide; Lenpropylene diamine rubber or the like can be used.
活物質として、 正極 3においては、 例えば、 リチウムとコバルト、 二 ッケル、 マンガンなどの遷移金属との複合酸化物、 リチウムを含むカル コゲン化合物あるいはこれらの複合酸化物、 さらに上記の複合酸化物、 リチウムを含むカルコゲン化合物あるいはこれらの複合酸化物に種々の 元素を微量に添加したもの等が用いられ、 これらの物質に電子伝導体と して黒鉛が加えられたものが使用される。 また、 負極 5においては、 黒 鉛、 易黒鉛化炭素、 難黒鉛化炭素、 ポリアセン、 ポリアセチレンなどの 炭素系化合物、 ピレン、 ペリ レンなどのァセン構造を含む芳香族炭化水 素化合物が好ましく用いられるが、 これに限るものではなく、 電池動作 のために必要である リチウムイオンを吸蔵、 放出できる物質ならば他の ものでも使用可能である。 また、 これらの物質は粒子状のものが用いら れ、 粒径としては 0 . 3 m乃至 2 0〃mのものが使用可能であり、 特 に好ましくは 0 . 3 // m乃至 5〃mのものである。 また、 負極活物質 5 2 としては、 炭素繊維も使用することができる。 粒径が小さすぎる場合 には、 接着時の接着剤による活物質表面の被覆面積が大き くなりすぎ、 充放電時のリチウムイオンの ド一プ、 脱ド一ブが効率よく行われず、 電 池特性が低下してしまう。 粒径が大きすぎる場合、 薄膜化が容易でなく、 また、 充填密度が低下するため好ましくない。  As the active material, in the positive electrode 3, for example, a composite oxide of lithium and a transition metal such as cobalt, nickel, manganese, a chalcogen compound containing lithium or a composite oxide thereof, and the above-described composite oxide, lithium Chalcogen compounds containing these or complex oxides thereof to which various elements are added in trace amounts are used, and those obtained by adding graphite as an electron conductor to these substances are used. In the negative electrode 5, graphite, graphitizable carbon, non-graphitizable carbon, carbonaceous compounds such as polyacene and polyacetylene, and aromatic hydrocarbon compounds having an acene structure such as pyrene and perylene are preferably used. However, the present invention is not limited to this, and any other substance that can occlude and release lithium ions necessary for battery operation can be used. In addition, these substances are used in the form of particles, and those having a particle size of 0.3 m to 20 m can be used, and particularly preferably 0.3 // m to 5 m belongs to. Carbon fibers can also be used as the negative electrode active material 52. If the particle size is too small, the coverage area of the active material surface with the adhesive during bonding becomes too large, so that lithium ions are not efficiently doped or removed during charging and discharging, and the battery is not used. The characteristics are degraded. If the particle size is too large, it is not preferable because it is not easy to form a thin film and the packing density is reduced.
また、 集電体 3 1、 5 1は、 電池内部で安定な金属であれば使用可能 であるが、 正極 3ではアルミニウム、 負極 5では銅が好ましく使用され る。 集電体 3 1、 5 1の形状としては、 箔状、 網状、 ェクスパン ドメタ ルなどが使用可能であるが、 電極の平滑性を得るために箔状のものが好 ましく使用される。  The current collectors 31 and 51 can be used as long as the metal is stable inside the battery, but aluminum is preferably used for the positive electrode 3 and copper is preferably used for the negative electrode 5. As the shape of the current collectors 31 and 51, foil, net, and expansive metal can be used, and foil is preferably used to obtain electrode smoothness.
樹脂 8および接着性樹脂 6を部分的に塗布する手段としては、 例えば コ一夕法が用いられ、 これは、 第 2図に斜視図 ( a ) および側面図 (b ) で示すように、 溶融樹脂 6を点状の窪み 2 1 aを有する回転ロール 2 1 で搔き取り、 これをシー ト (例えばシー ト状セパレ一夕 6 ) に転写する 塗布法を適用する。 この他、 スプレー法、 溶融樹脂をロールの微細孔か ら注出させて塗布するロール法等が適用可能であり、 特に限定されるも のではない。 また、 樹脂 8 と接着性樹脂 6 とを別々の塗布方法により塗 布するようにしてもよい。 As a means for partially applying the resin 8 and the adhesive resin 6, for example, a co-casting method is used, which is shown in FIG. 2 in a perspective view (a) and a side view (b). As shown by, a coating method of removing the molten resin 6 with a rotating roll 21 having dot-like depressions 21a and transferring the same to a sheet (eg, sheet-like separator 6) is applied. In addition, a spray method, a roll method in which a molten resin is poured out from fine holes of a roll and applied, and the like are applicable, and are not particularly limited. Further, the resin 8 and the adhesive resin 6 may be applied by different application methods.
セパレ一夕 4は、 絶縁性の多孔膜、 網、 不繊布等で十分な強度があれ ばどのようなものでも使用可能であり、 特に限定するものではないが、 ポリプロピレン、 ポリエチレン等からなる多孔質膜の使用が接着性、 安 全性の確保の観点から好ましい。 イオン伝導性を確保するために、 貫通 孔を有する必要があるが、 貫通孔の全体の面積に対する比率は少なく と も 1 0 %、 好ましくは 3 0 %以上あることが望ましい。  Separee 4 can be used as long as it has sufficient strength with an insulating porous membrane, mesh, non-woven cloth, etc., and is not particularly limited, but a porous material made of polypropylene, polyethylene, etc. The use of a film is preferred from the viewpoint of ensuring adhesiveness and safety. In order to secure ion conductivity, it is necessary to have a through-hole, but the ratio of the through-hole to the entire area is preferably at least 10%, and more preferably at least 30%.
樹脂 8および接着性樹脂 6を変形させるためには、 重ね合わせた正極 3、 セパレー夕 4および負極 5に対して、 樹脂 8および接着性樹脂 6が 塑性変形しうる以上の圧力を加える工程を行う。 この圧力を加える工程 は、 すべての重ね合わせが終了した後であればいつでも良い。 この工程 は、 樹脂 8および接着性樹脂 6 と電極 (正極 3および負極 5 ) ゃセパレ —夕 4との接触面積を大き く し、 接着力を増強させ、 完成した電池強度 を実用に耐え得るように十分に大き くする効果がある。 また、 この工程 は電極 3、 5間に介在する樹脂 8および接着性樹脂 6の厚さを制御する ためにも必要である。  In order to deform the resin 8 and the adhesive resin 6, a process of applying a pressure to the superposed positive electrode 3, the separator 4, and the negative electrode 5 that is higher than the plastic deformation of the resin 8 and the adhesive resin 6 is performed. . This pressure can be applied at any time after all overlays have been completed. This process increases the contact area between the resin 8 and the adhesive resin 6 and the electrodes (positive electrode 3 and negative electrode 5) and the electrode 4, increases the adhesive strength, and ensures that the completed battery strength can withstand practical use. The effect is to make it sufficiently large. This step is also necessary for controlling the thickness of the resin 8 and the adhesive resin 6 interposed between the electrodes 3 and 5.
この方法で接着を行うことによって、 電極 3、 5 とセパレ一夕 4の重 ね合わせ毎の乾燥、 あるいは重ね合わせの状態維持のための保持治具を 必要としないこと、 および樹脂が塑性変形しうる以上の圧力を加えるェ 程は逐次的に行う必要が無く一括してできることであり、 製造設備の簡 素化等により生産性が非常に良くなる。 加圧 · 接着した後、 乾燥して形成し、 集電タブ 3 3、 5 3をスポッ ト 溶接等で接続した電極積層体 8を、 筒型に加工したアルミラミネ一トフ イルム 2 2に挿入し、 電解液を注入し、 アルミラミネ一トフイルム 2 2 を封口処理し、 単一の電極積層体を有するリチウムイオン電池を形成す る (第 3図参照) 。 Adhesion in this way eliminates the need for holding jigs to dry electrodes 3 and 5 and Separation 4 at the time of superposition, or to maintain the state of superposition, and plastic deformation of the resin. The step of applying more pressure than can be performed can be performed collectively without the necessity of performing it sequentially, and the productivity is greatly improved by simplifying the manufacturing equipment. After being pressed and bonded, formed by drying, the electrode laminated body 8 with the current collecting tabs 3 3 and 5 3 connected by spot welding or the like is inserted into a cylindrical aluminum laminating film 22. The electrolyte is injected, and the aluminum film 22 is sealed to form a lithium-ion battery having a single electrode stack (see FIG. 3).
イオン伝導体として用いる電解液に使用する液体電解質としては、 従 来の電池に使用されている リチウムイオンを含む非水系の液体電解質が 使用可能である。 具体的には、 液体電解質の溶剤として、 炭酸エチレン、 炭酸プロピレン、 炭酸ジメチル、 炭酸ジェチルなどのエステル系溶剤や ジメ トキシェタン、 ジェトキシェタン、 ジェチルェ一テル、 ジメチルェ —テルなどのェ一テル系溶剤の単独液、 および前述の同一系統の溶剤同 士あるいは異種系統の溶剤からなる 2種以上の混合液が使用可能である。 また液体電解質に使用する電解質塩は、 L i P F6、 L i A s F 6、 L i C 104、 L i B F 4 , L i C F 3 S 03^ L i N (C F3 S 02) 2, L i C ( C F a S 02) 3、 L i N ( C 2 F 5 S 02) 2などが使用可能である。 上記形成法では、 樹脂が塑性変形しうる以上の圧力を加える工程を電 解液を含浸する前に行なっているが、 この樹脂が塑性変形しうる以上の 圧力を加える工程を、 電解液を含浸した後に行うことによって、 次のよ うな効果が得られる。 樹脂が塑性変形することによって、 電極活物質、 セパレ一夕との接触面積が大き くなり接着力が増強されるのであるが、 この反面、 多孔質であるセパレー夕、 電極の微細孔を樹脂が塞ぎ電池性 能を低下させるという好ましくない影響も与える。 電解液を含浸し電解 液がセパレ一夕、 電極の微細孔中に存在している状態で樹脂を塑性変形 させることにより、 微細孔への樹脂の浸入を防ぎ、 電池性能の低下を防 ぐという効果が得られる。 As the liquid electrolyte used for the electrolyte used as the ion conductor, a non-aqueous liquid electrolyte containing lithium ions used in conventional batteries can be used. Specifically, as a solvent for the liquid electrolyte, a single solvent of an ester solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and getyl carbonate, and a single solvent of an ether solvent such as dimethoxetane, jetoxetane, getyl ether, and dimethyl ether It is possible to use a mixture of two or more of the above-mentioned solvents of the same system or solvents of different systems. The electrolyte salt used in the liquid electrolyte, L i PF 6, L i A s F 6, L i C 10 4, L i BF 4, L i CF 3 S 0 3 ^ L i N (CF 3 S 0 2 ) 2 , L i C (CF a S 0 2 ) 3 , L i N (C 2 F 5 S 0 2 ) 2, etc. can be used. In the above-described forming method, the step of applying a pressure higher than the resin can be plastically deformed is performed before impregnation with the electrolytic solution. By doing so, the following effects can be obtained. The plastic deformation of the resin increases the contact area with the electrode active material and the separator and enhances the adhesive strength. On the other hand, the resin separates the porous pores of the electrode and the micropores of the electrode. It also has the undesired effect of degrading the closing battery performance. By impregnating the electrolyte and plastically deforming the resin while the electrolyte is present in the micropores of the electrode during separation, it is possible to prevent the resin from penetrating into the micropores and prevent the battery performance from deteriorating. The effect is obtained.
樹脂 8および接着性樹脂 6が塑性変形しうる以上の圧力を加える代わ りに、 熱可塑性樹脂を用いてこの熱可塑性樹脂が容易に変形する温度以 上に加熱する工程で接着を行ってもよい。 この場合の加熱は、 ホッ トプ レート、 オーブン、 赤外線ヒータ等手法は選ばない。 熱可塑性樹脂の流 動によって接着力を発現するため、 樹脂とセパレ一夕 4または電極 3、 5表面との接触面積が大き くなるだけではなく、 表面の微細孔へ樹脂が 貫入して生ずるアンカ一効果も併せて得られる。 熱可塑性樹脂の粘度が 高い場合には、 加熱時に圧力を加える方が望ましい場合もあるが、 必須 ではない。 Instead of applying more pressure than resin 8 and adhesive resin 6 can plastically deform Alternatively, the bonding may be performed by using a thermoplastic resin and heating the thermoplastic resin to a temperature higher than a temperature at which the thermoplastic resin is easily deformed. In this case, the heating method is not limited to a hot plate, an oven, an infrared heater or the like. Since the adhesive force is developed by the flow of the thermoplastic resin, not only does the contact area between the resin and the surface of the separator 4 or the electrodes 3 and 5 increase, but also the anchors formed by the resin penetrating into the micropores on the surface. One effect is also obtained. If the viscosity of the thermoplastic resin is high, it may be desirable to apply pressure during heating, but this is not required.
熱可塑性樹脂は融点 2 0 0 °C以下のもので、 電解液に不溶のものであ ればどのようなものでも使用可能である。 加熱時の流動性を抑制しない ならば、 高融点成分、 無機物等が混入していても使用可能である。  The thermoplastic resin has a melting point of 200 ° C. or lower, and any resin can be used as long as it is insoluble in the electrolytic solution. If the fluidity during heating is not suppressed, it can be used even if high melting point components, inorganic substances, etc. are mixed.
加温時期は、 すべての重ね合わせが終了した後であればいつでも良い。 この工程は完成した電池の耐熱性を十分に大き くする効果がある。  The heating period can be any time after all the superpositions have been completed. This step has the effect of sufficiently increasing the heat resistance of the completed battery.
また、 圧力を加えながら超音波を照射して接着を行ってもよい。 超音 波によって、 樹脂の変形が効率よく起こ り、 圧力または接着時の温度が 低い状態でも接着が可能になる。 超音波を照射した場合には、 熱可塑性 樹脂が電極表面に接している部分が選択的に加熱される効果がある。 こ のため、 非常に効率よく接着が行われる。  The bonding may be performed by irradiating ultrasonic waves while applying pressure. Ultrasonic waves efficiently deform the resin and enable bonding even under low pressure or low bonding temperature. Irradiation of ultrasonic waves has an effect of selectively heating a portion where the thermoplastic resin is in contact with the electrode surface. For this reason, bonding is performed very efficiently.
接着性樹脂 6 として熱架橋性を有する接着剤のように、 熱により接着 力が向上する接着剤を併用することによって、 電池の耐熱性を増大させ ることができる。 使用できるこの種類の接着剤の例としては、 エポキシ 樹脂、 熱硬化型アク リル樹脂、 フエノール樹脂、 ウレタン樹脂、 その他、 ァミノ樹脂、 フラン樹脂、 キシレン樹脂等があり、 電解液に対して耐性 があるものであれば使用可能である。  The heat resistance of the battery can be increased by using an adhesive whose adhesive strength is increased by heat, such as an adhesive having a thermal crosslinking property, as the adhesive resin 6. Examples of this type of adhesive that can be used include epoxy resins, thermosetting acrylic resins, phenolic resins, urethane resins, and others, such as amino, furan, and xylene resins, which are resistant to electrolytes. Anything can be used.
また、 熱により接着力が向上する接着剤として、 溶剤に接着性樹脂を 溶解したものを使用し、 含有する溶剤を蒸発させることで接着力を増す ことによって、 加熱温度を低く抑えて接着することが可能になる。 減圧 乾燥などを併用することによって、 室温で接着力を向上することが可能 となる。 このような接着剤としては、 一般のゴム系の接着剤のほか多種 の溶剤可溶性のポリマーが使用可能である。 In addition, as an adhesive whose adhesive strength is improved by heat, use a solution in which an adhesive resin is dissolved in a solvent, and increase the adhesive strength by evaporating the contained solvent. This makes it possible to bond at a low heating temperature. The combined use of drying under reduced pressure can improve the adhesive strength at room temperature. As such an adhesive, various types of solvent-soluble polymers can be used in addition to general rubber-based adhesives.
以上に説明した構成においては、 正極 3 と負極 5の間にセパレ一夕 4 を有する構成のものであるが、 本発明の二次電池形成法は、 セパレー夕 を含まない構成にも適用できる。  In the configuration described above, the separator 4 is provided between the positive electrode 3 and the negative electrode 5. However, the secondary battery forming method of the present invention can be applied to a configuration not including the separator.
また、 上記実施の形態では、 単一の電極積層体からなる電池について 説明したが、 複数の電極積層体を有する積層電極型電池にも適用できる ものであり、 積層電極型電池とすることによって、 コンパク トで、 安定 し、 かつ大きな電池容量のリチウムイオン電池を得ることができる。 例 えば、 第 4図に示すような、 複数の切り離されたセパレ一タ 4間に正極 3 と負極 5を交互に配置した、 複数の電極積層体を有する構造、 第 5図 および第 6図に示すような巻き上げられ帯状のセパレ一夕 4間に正極 3 と負極 5を交互に配置した、 複数の電極積層体を有する構造の他、 図示 していないが折り畳まれた帯状のセパレー夕 4間に正極 3 と負極 5を交 互に配置した、 複数の電極積層体を有する構造によって積層電極型電池 が得られる。 第 4図、 第 5図おょぴ第 6図に示した積層電極型電池の形 成法については、 下記実施例において詳細に説明する。  Further, in the above-described embodiment, a battery including a single electrode stack has been described. However, the present invention can be applied to a stacked electrode battery having a plurality of electrode stacks. A compact, stable lithium ion battery with a large battery capacity can be obtained. For example, as shown in FIG. 4, a structure having a plurality of electrode laminates in which a positive electrode 3 and a negative electrode 5 are alternately arranged between a plurality of separated separators 4 is shown in FIGS. 5 and 6. A positive electrode 3 and a negative electrode 5 are alternately arranged between the rolled strip-shaped separators 4 as shown in the figure, and a structure having a plurality of electrode laminates, and a folded strip-shaped separator 4 (not shown). A structure having a plurality of electrode laminates in which the positive electrode 3 and the negative electrode 5 are arranged alternately provides a laminated electrode type battery. The method of forming the stacked electrode type battery shown in FIGS. 4 and 5 will be described in detail in the following examples.
また、 上記実施の形態では、 リチウムイオン電池の形成法について説 明したが、 本発明は、 活物質、 電解液等の材料を変えることによって、 各種二次電池に適用し効果を発揮する二次電池形成法である。  Further, in the above embodiment, a method of forming a lithium ion battery has been described. However, the present invention can be applied to various secondary batteries by changing materials such as an active material and an electrolyte to exhibit an effect. This is a battery forming method.
以下に実施例を示し、 本発明をさらに詳しく説明する力 勿論これら により本発明が限定されるものではない。  Examples are shown below, and the present invention is not limited by these.
実施例 1 . Example 1
L i C o 0 2を 8 7重量%、 黒鉛粉を 8重量%、 これらのバイ ンダ樹 脂としてポリフッ化ビ二リデンを 5重量%に調整し混合した正極活物質 ペース トを、 厚さ 2 0 /z mのアルミ箔からなる集電体上に ドク夕一ブレ ―ド法で厚さ約 1 0 0 mに塗布して正極を形成した。 L i C o 0 2 8 7 wt%, 8 wt% of graphite powder, these bi Sunda tree A positive electrode active material paste prepared by mixing and adjusting polyvinylidene fluoride to 5% by weight as a fat is placed on a current collector made of 20 / zm-thick aluminum foil to a thickness of approximately It was applied to a thickness of 100 m to form a positive electrode.
メソフェ一ズマイク口ビーズカーボン (大阪ガス (株) 製) を 9 5重 量%、 バイ ンダ樹脂としてポリフッ化ビニリデンを 5重量%に調整し混 合した負極活物質ペース トを、 厚さ 1 2〃mの銅箔からなる集電体上に ドク夕一ブレード法で厚さ約 1 0 0〃mに塗布して負極を形成した。 正極および負極を 5 c m X 4 c mの長方形に切断し、 切断した正極お よび負極それそれに集電用の端子 (タブ) を取り付けた。  A negative electrode active material paste was prepared by mixing and mixing 95% by weight of Mesophase Microphone Bead Bead Carbon (manufactured by Osaka Gas Co., Ltd.) and 5% by weight of polyvinylidene fluoride as a binder resin. A negative electrode was formed on a current collector made of copper foil having a thickness of about 100 μm by a dough-blade method. The positive and negative electrodes were cut into 5 cm x 4 cm rectangles, and the cut positive and negative electrodes and the current collecting terminals (tabs) were attached.
次に、 正極および負極にポリブテン一ポリプロピレン共重合体 (新田 ゼラチン (株) 製、 商品番号 : H— 6 8 2 5、 軟化点 8 4 °C ) をコ一タ ( M E L T E X社製、 C P 3 0 0 0 ) にて塗布した。 共重合体は点状に 塗布され、 塗布量は 1 m 2あたり約 9 であった。 Next, a polybutene-polypropylene copolymer (manufactured by Nitta Gelatin Co., Ltd., product number: H-6285, softening point 84 ° C) was coated on the positive and negative electrodes (MELTEX, CP 3 000). The copolymer was applied in the form of dots, and the applied amount was about 9 per m 2 .
セパレ一夕 (へキス トセラニーズ社製、 セルガード # 2 4 0 0 ) にェ ポキシ系接着剤 ( (株) スリ一ボン ド製、 商品名 : スリ一ポン ド 2 0 7 1 B ) をスプレーで塗布した。 この接着剤を塗布したセパレ一タを、 先に共重合体を塗布した正極と負極の間に挟んで重ね合わせ、 1 c m 2 あたり 2 0 gの圧力を加えた。 ホッ トメルト接着剤の粘着性により正極、 セパレ一夕、 負極は接着され、 治具の必要なく接着形状を維持した。 この後、 7 0 °Cに加熱したオーブン中で約 1時間加熱した。 この加熱 により、 エポキシ接着剤を硬化させた。 Epoxy adhesive (manufactured by Sribond Co., Ltd., trade name: Slipbond 2071B) is applied to Separe Itesu (Celgard # 2400, manufactured by Hex Celanese) by spraying. did. The separator to which the adhesive was applied was sandwiched between the positive electrode and the negative electrode to which the copolymer had been previously applied, and superposed, and a pressure of 20 g was applied per 1 cm 2 . Due to the adhesiveness of the hot melt adhesive, the positive electrode, the separator, and the negative electrode were bonded together, maintaining the bonded shape without the need for a jig. Thereafter, heating was performed for about 1 hour in an oven heated to 70 ° C. By this heating, the epoxy adhesive was cured.
この後、 接着した電極を筒型に加工したアルミラミネ一トフイルムに 挿入し、 電解液を注入した。 電解液には、 溶媒としてエチレン力一ボネ —トと 1 , 2—ジメ トキシェタンとを用い、 電解質として六フッ化リ ン 酸リチウムを用いた。 電解液を注入した後、 アルミラミネートフィルム を封口して電池を完成させた。 このようにして作製した電池の電池特性は、 重量エネルギー密度で、 電流値 1 Cにおいて 6 8 Wh/k g、 1. 5 Cにおいて 5 0 Wh/k g の値が得られた。 Thereafter, the bonded electrode was inserted into a cylindrical aluminum laminating film, and an electrolyte was injected. The electrolyte used was ethylene carbonate and 1,2-dimethoxetane as the solvent, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum laminate film was sealed to complete the battery. The battery characteristics of the battery thus manufactured were 68 Wh / kg at a current value of 1 C and 50 Wh / kg at a current value of 1.5 C in terms of weight energy density.
実施例 2. Example 2.
実施例 1 と同様に作製した集電端子のついた 5 cmx 4 cmの長方形 の電極を用いた。 セパレ一夕 (へキス トセラニーズ社製、 セルガード # 2 4 0 0 ) の両面に、 ポリブテン一ポリプロピレン共重合体 (新田ゼラ チン (株) 製、 商品番号 : H— 6 8 2 5、 軟化点 84 °C) をコ一タ (M E L T E X社製、 C P 3 0 0 0 ) にて塗布した。 共重合体は点状に塗布 され、 塗布量は 1 m2あたり約 9 であった。 A 5 cm × 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used. Polybutene-polypropylene copolymer (manufactured by Nitta Gelatin Co., Ltd., product number: H-6825, softening point 84) on both sides of Separe Itesu (Celgard # 2400, manufactured by Hex To Celanese) ° C) with a coater (CP3000, manufactured by MELTEX). The copolymer was applied in the form of dots, and the applied amount was about 9 per m 2 .
さらに、 共重合体を塗布したセパレ一夕に、 アクリルェマルジヨン系 接着剤 (昭和高分子 (株) 製) をスプレーで部分的に塗布し、 このセパ レ一夕を正極と負極の間に挟んでを重ね合わせ、 1 cm2あたり 2 0 g の圧力を加えた。 ホッ トメルト接着剤の粘着性により正極、 セパレー夕、 負極は接着され、 治具の必要なく接着形状を維持した。 Further, an acrylic emulsion adhesive (manufactured by Showa Polymer Co., Ltd.) was partially applied by spraying onto the separator coated with the copolymer, and the separator was placed between the positive electrode and the negative electrode. The sandwich was overlapped and a pressure of 20 g / cm 2 was applied. The positive electrode, separator, and negative electrode were adhered by the hot-melt adhesive, and the adhesive shape was maintained without the need for a jig.
この後、 7 0°Cに加熱したオーブン中で約 1時間加熱した。 この加熱 により、 アク リルェマルジヨン系接着剤による接着を完了した。  This was followed by heating in an oven heated to 70 ° C for about 1 hour. By this heating, the bonding with the acrylic adhesive was completed.
乾燥後、 筒型に加工したアルミラ ミネートフィルムに挿入し、 電解液 を注入した。 電解液には、 溶媒としてエチレンカーボネートと 1 , 2— ジメ トキシェタンとを用い、 電解質として六フッ化リ ン酸リチウムを用 いた。 電解液を注入した後、 アルミラ ミネートフィルムを封口して電池 を完成させた。  After drying, it was inserted into a cylindrically processed aluminum laminate film, and the electrolyte was injected. For the electrolyte, ethylene carbonate and 1,2-dimethoxetane were used as solvents, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum laminate film was sealed to complete the battery.
このようにして作製した電池の電池特性は、 重量エネルギー密度で、 電流値 1 Cにおいて 6 5 Wh/k g、 1. 5 Cにおいて 4 5 Wh/k g の値が得られた。  As for the battery characteristics of the battery thus manufactured, a value of 65 Wh / kg at a current value of 1 C and a value of 45 Wh / kg at a current value of 1.5 C were obtained in terms of weight energy density.
実施例 3. 実施例 1 と同様に作製した集電端子のついた正極および負極に、 S I S夕イブのホッ トメルト接着剤( AK— 1、カネボウ 'ェヌエスシー(株) 製、 軟化点は約 1 0 0°C) をコ一夕 (ME L T E X社製、 C P 3 0 0 0 ) にて塗布した。 ホッ トメルト接着剤は点状に塗布され、 塗布量は l m2 あたり約 1 0 gであった。 Example 3. A positive electrode and a negative electrode with a current collecting terminal prepared in the same manner as in Example 1 were applied to SIS-Yube hot melt adhesive (AK-1, manufactured by Kanebo NSC Co., Ltd., with a softening point of about 100 ° C). Was applied with Ko overnight (CP3000, manufactured by MELTEX). Hot Tomeruto adhesive is applied in dots, the coating weight was about 1 0 g per lm 2.
セパレ一夕 (へキス トセラニーズ社製セルガード # 2 4 0 0 ) にポリ フッ化ビニリデン (呉羽化学 K F 1 1 0 0) の 1 0 %N—メチルピロ リ ドン溶液をスプレーで塗布した。 このセパレータを正極と負極の間に挟 んで重ね合わせ、 1 c m2あたり 2 0 gの圧力を加えた。 ホッ トメル ト 接着剤の粘着性により正極、 セパレ一夕、 負極は接着され、 治具の必要 なく接着形状を維持した。 A 10% N-methylpyrrolidone solution of polyvinylidene fluoride (Kureha Kagaku KF100) was applied by spraying to Separei (Celgard # 240, manufactured by Hex Celanese). This separator was sandwiched between the positive electrode and the negative electrode, and then superposed, and a pressure of 20 g was applied per cm 2 . The positive electrode, the separator, and the negative electrode were adhered to each other due to the adhesiveness of the hot melt adhesive, and the adhesive shape was maintained without the need for a jig.
この後、 真空乾燥によ り 8時間乾燥した。 この乾燥により N—メチル ピロリ ドンは除去され、 ポリフッ化ビニリデンによる接着が完了した。 この後、 接着した電極を筒型に加工したアルミラミネートフィルムに 挿入し、 電解液を注入した。 電解液には、 溶媒としてエチレン力一ボネ —トと 1, 2—ジメ トキシェタンとを用い、 電解質として六フッ化リ ン 酸リチウムを用いた。 電解液を注入した後、 アルミラ ミネートフィルム を封口して電池を完成させた。  Then, it was dried for 8 hours by vacuum drying. By this drying, N-methylpyrrolidone was removed, and the bonding with polyvinylidene fluoride was completed. Thereafter, the bonded electrode was inserted into a cylindrically processed aluminum laminate film, and an electrolyte was injected. The electrolyte used was ethylene carbonate and 1,2-dimethoxetane as the solvent, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum laminate film was sealed to complete the battery.
このようにして作製した電池の特性は、 重量エネルギー密度で、 7 3 Wh/ k gが得られた。  The characteristics of the battery fabricated in this manner were 73 Wh / kg in terms of weight energy density.
実施例 4. Example 4.
実施例 1 と同様に作製した集電端子のついた 5 c mx 4 c mの長方形 の電極を用いた。 正極に、 S I Sタイプのホッ トメルト接着剤 ( AK— 1、 カネボウ . ェヌエスシ一 (株) 製、 軟化点は約 1 0 0°C) をスプレ —で部分的に塗布した。 塗布量は 1 m2あたり約 1 5 gであった。 A 5 cm x 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used. The positive electrode was spray-coated with a SIS-type hot melt adhesive (AK-1, manufactured by Kanebo N.S.C., having a softening point of about 100 ° C). The applied amount was about 15 g per m 2 .
次に、 セパレ一夕 (へキス トセラニーズ社製セルガード # 2 4 0 ◦ ) にポリフッ化ビニリデン (呉羽化学 K F 1 1 0 0 ) の 1 0 %N—メチル ピロリ ドン溶液をスプレーで塗布した。 このセパレ一夕を正極と負極の 間に挟んで重ね合わせた。 ホッ トメル ト接着剤の粘着性により正極と負 極は接着された。 正極と負極間はホッ トメルト接着剤が介在することに より約 4 5 ミクロンの厚さの空間ができた。 正極と負極は治具なしでも そのままの形状を維持できた。 Next, Separei overnight (Celgard # 240 ◦ from Hex To Celanese) Then, a 10% N-methylpyrrolidone solution of polyvinylidene fluoride (Kureha Chemical KF110) was applied by spraying. The separator was sandwiched between the positive electrode and the negative electrode, and superposed. The positive electrode and negative electrode were bonded by the adhesiveness of the hot melt adhesive. A space of about 45 microns thick was created between the positive and negative electrodes by the hot melt adhesive. The positive and negative electrodes could maintain their shapes without jigs.
乾燥後、 室温で 1 c m2あたり 1 0 gの圧力を加え接着剤層を押しつ ぶし、 正極と負極間の空間を小さ く した結果、 各空間の厚さは約 1 0〃 mになった。 After drying, rude One press adhesive layer under pressure at room temperature for 1 cm 2 per 1 0 g, a result of the rather small space between the positive electrode and the negative electrode, the thickness of each space becomes approximately 1 0〃 m .
この後、 接着した電極を筒型に加工したアルミラ ミネートフィルムに 挿入し、 十分乾燥した後、 電解液を注入した。  Thereafter, the bonded electrode was inserted into a cylindrically processed aluminum laminate film, dried sufficiently, and then an electrolyte was injected.
電解液には、 溶剤としてエチレンカーボネー トと 1 , 2—ジメ トキシ ェタンとを用い、 電解質として六フッ化リン酸リチウムを用いた。 電解 液を注入した後、 アルミラミネートフィルムを封口して電池を完成させ た。  For the electrolyte, ethylene carbonate and 1,2-dimethoxyethane were used as a solvent, and lithium hexafluorophosphate was used as an electrolyte. After injecting the electrolyte, the aluminum laminate film was sealed to complete the battery.
このようにして作製した電池の電池特性は、 重量エネルギー密度で、 電流値 1 Cにおいて 7 0 Wh/k g、 1. 5 Cにおいて 5 0Wh/k g が得られた。  The battery characteristics of the battery thus manufactured were 70 Wh / kg at a current value of 1 C and 50 Wh / kg at a current value of 1.5 C in terms of weight energy density.
実施例 5. Example 5.
実施例 1 と同様に作製した集電端子のついた 5 cmx 4 cmの長方形 の電極を用いた。 正極に、 S I Sタイプのホッ トメルト接着剤 (AK— 1、 カネボウ . ェヌエスシ一 (株) 製、 軟化点は約 1 0 0°C) をスプレ —で部分的に塗布した。 塗布量は 1 m2あたり約 1 5 gであった。 A 5 cm × 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used. A SIS type hot melt adhesive (AK-1, manufactured by Kanebo NSS Co., Ltd., having a softening point of about 100 ° C) was partially applied to the positive electrode by spraying. The applied amount was about 15 g per m 2 .
次に、 セパレ一夕 (へキス トセラニーズ社製セルガード # 2 4 0 0 ) にエポキシ系接着剤 ( (株) スリーボン ド製、 商品名 :スリ一ボン ド 2 0 7 1 B ) をスプレーで塗布した。 この接着剤を塗布したセパレ一夕を、 先にホッ トメルト接着剤を塗布した正極と負極の間に挟んで重ね合わせ た。 ホッ トメルト接着剤の粘着性により正極と負極は接着された。 正極 と負極間はホッ トメルト接着剤が介在することにより約 4 5〃mの厚さ の空間ができた。 正極と負極は治具なしでもそのままの形状を維持する ことができた。 Next, an epoxy adhesive (manufactured by Three Bond Co., Ltd., trade name: Three Bond 207 B) was applied to Separei (Celgard # 240, manufactured by Hex Celanese) by spraying. . Separation overnight with this adhesive applied They were sandwiched between the positive electrode and the negative electrode, which were previously coated with hot melt adhesive, and then overlapped. The positive electrode and the negative electrode were bonded by the adhesiveness of the hot melt adhesive. A space with a thickness of about 45 mm was created between the positive and negative electrodes by the hot melt adhesive. The positive and negative electrodes were able to maintain their shapes without jigs.
次に、 筒型に加工したアルミラ ミネートフィルムに挿入し、 十分乾燥 した後、 電解液を注入した。  Next, it was inserted into an aluminum laminate film processed into a cylindrical shape, dried sufficiently, and then an electrolyte was injected.
電解液には、 溶媒としてエチレンカーボネートと 1, 2 —ジメ トキシ ェタンとを用い、 電解質として六フッ化リン酸リチウムを用いた。 電解液を注入した後、 室温で 1 c m2あたり 2 0 gの圧力を加え接着 剤層を押しつぶし、 正極と負極間の空間を小さ く し、 余分な電解液を絞 り出した結果、 各空間の厚さは約 1 0 mになった。 アルミラミネー ト フィルムを封口して電池を完成させた。 For the electrolyte, ethylene carbonate and 1,2-dimethoxyethane were used as solvents, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte solution, crushed 2 0 g adhesive layer under pressure per 1 cm 2 at room temperature, to rather small space between the positive electrode and the negative electrode, as a result of Eject and down the excess electrolyte, the space Became about 10 m thick. The battery was completed by sealing the aluminum laminate film.
このようにして作製した電池の電池特性は、 重量エネルギー密度で、 電流値 1 Cにおいて 7 0 Wh/k g、 1 . 5 Cにおいて 6 4Wh/k g が得られた。  As for the battery characteristics of the battery thus manufactured, 70 Wh / kg at a current value of 1 C and 64 Wh / kg at a current value of 1.5 C were obtained in terms of weight energy density.
実施例 6. Example 6.
実施例 1 と同様に作製した集電端子のついた 5 c mx 4 c mの長方形 の電極を用いた。 セパレ一夕 (へキス トセラニーズ社製、 セルガード # 2 4 0 0 ) の両面に、 ポリブテン一ポリプロピレン共重合体 (新田ゼラ チン (株) 製、 商品番号 : H— 6 8 2 5、 軟化点 8 4°C) をコ一夕 (M E L T E X社製、 C P 3 0 0 0 ) にて塗布した。 共重合体は点状に塗布 され、 塗布量は 1 m2あたり約 9 gであった。 A 5 cm x 4 cm rectangular electrode with a current collecting terminal manufactured in the same manner as in Example 1 was used. On both sides of Separe Itesu (Hex Celanese, Celgard # 240), a polybutene-polypropylene copolymer (manufactured by Nitta Gelatin Co., Ltd., product number: H-6825, softening point 8) 4 ° C) was applied with a coating solution (CP300, manufactured by MELTEX). The copolymer was applied in the form of dots, and the amount applied was about 9 g / m 2 .
さらに、 共重合体を塗布したセパレー夕に、 アク リルェマルジヨン系 接着剤 (昭和高分子 (株) 製) をスプレーで部分的に塗布し、 このセパ レータを正極と負極の間に挟んでを重ね合わせ、 1 0 ◦ °cのホッ トプレ ート上で約 2分加熱した。 このことで正極、 セパレ一夕、 負極は接着さ れ、 治具の必要なく接着形状を維持した。 In addition, an acrylic adhesive (part of Showa Polymer Co., Ltd.) was partially applied by spraying to the separator coated with the copolymer, and the separator was sandwiched between the positive and negative electrodes. , 10 ° C Heated on plate for about 2 minutes. As a result, the positive electrode, the separator, and the negative electrode were bonded, and the bonded shape was maintained without the need for a jig.
この後、 7 0 °Cに加熱したオープン中で約 1時間加熱した。 この加熱 により、 アク リルェマルジョン系接着剤による接着を完了した。  Thereafter, heating was performed for about 1 hour in an open room heated to 70 ° C. By this heating, the bonding with the acrylic emulsion adhesive was completed.
乾燥後、 筒型に加工したアルミラ ミネ一トフイルムに挿入し、 電解液 を注入した。 電解液には、 溶媒としてエチレン力一ボネ一卜 と 1 , 2 — ジメ トキシェタンとを用い、 電解質として六フッ化リン酸リチウムを用 いた。 電解液を注入した後、 アルミラ ミネ一トフイルムを封口して電池 を完成させた。  After drying, it was inserted into a cylindrical aluminum film and injected with electrolyte. The electrolyte used was ethylene carbonate and 1,2-dimethoxetane as the solvent, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum film was sealed to complete the battery.
このようにして作製した電池の電池特性は、 重量エネルギー密度で、 電流値 1 Cにおいて 6 ◦ W h / k g、 1 . 5 Cにおいて 4 5 W h / k g の値が得られた。  The battery characteristics of the battery thus manufactured were 6 重量 Wh / kg at a current value of 1 C and 45 Wh / kg at a current value of 1.5 C in terms of weight energy density.
実施例 Ί . Example II.
本実施例は第 4図に示した平板状積層構造電池体を有する リチウムィ オン電池の形成法である。  This example is a method for forming a lithium ion battery having the flat-plate laminated battery body shown in FIG.
実施例 1記載と同様の材料および方法で、 正極および負極を作製した 後、 正極および負極それそれに、 エポキシ系接着剤 ( (株) スリ一ボン ド製、 商品名 : スリ一ボン ド 2 0 7 1 B ) をスプレーで塗布した。 セ パレ一タ材としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5〃mの多 孔性のポリプロピレンシート (へキス ト社製、 商品名 : セルガード # 2 4 0 0 ) 2枚を取り出し、 それそれの片面に接着性樹脂として、 商品番 号 : H— 6 8 2 5 (ニヅ夕ゼラチン (株) 製) をコ一夕法により点状に 塗着した。 次に、 2枚のセパレ一夕の塗着面に挟んで仮固定し、 このセ パレ一夕間に仮固定した正極 (または負極) を所定の大きさに打ち抜き、 セパレー夕の片面にコ一夕法で上記接着性樹脂を点状に塗着してこの塗 着面に負極 (または正極) を重ねあわせ、 さらに別の正極 (または負極) を仮固定したセパレー夕の塗着面を重ねあわせてこのセパレ一夕の未塗 布面にコ一タ法で上記接着性樹脂を点状に塗着し、この塗着面に負極(ま たは正極) を重ねあわせた。 この工程を繰り返して複数の電極積層体を 層状に形成した。 接着性樹脂の粘着性により正極、 セパレータ、 負極は 接着され、 治具の必要なく接着形状を維持した。 この複数の電極積層体 を層状に形成した電池体をロールにより、 7 0 °Cに加熱融着させ、 正極 および負極とセパレー夕を接着した。 この加熱により、 エポキシ接着剤 を硬化させた。 After a positive electrode and a negative electrode were prepared using the same materials and method as described in Example 1, the positive electrode, the negative electrode, and an epoxy-based adhesive (manufactured by Sribond Co., Ltd., trade name: Sribond 207) 1 B) was applied by spraying. Two rolls of 12 cm wide and 25 mm thick porous polypropylene sheet (made by Hext Co., Ltd., trade name: Celgard # 2400) were bundled in rolls as separator material. The product was taken out, and one side of each product was coated with an adhesive resin in the form of dots, using a product number: H-6825 (manufactured by Nigeru Gelatin Co., Ltd.) according to the Koiyu method. Next, it is temporarily fixed between the two coated surfaces of the separator, and the positively-fixed positive electrode (or negative electrode) is punched into a predetermined size during the separation, and the core is fixed to one side of the separator. In the evening method, the adhesive resin is applied in the form of dots and a negative electrode (or positive electrode) is superimposed on this coated surface, and another positive electrode (or negative electrode) is applied. The adhesive resin is temporarily fixed on the uncoated surface of the separator and the adhesive resin is applied in a dot-like manner to the uncoated surface of the separator by a coating method. Is the positive electrode). This step was repeated to form a plurality of electrode laminates in layers. The positive electrode, the separator, and the negative electrode were adhered to each other due to the tackiness of the adhesive resin, and the adhesive shape was maintained without the need for a jig. The battery body in which the plurality of electrode laminates were formed in a layer shape was heated and fused at 70 ° C. by a roll to bond the positive electrode and the negative electrode to the separator. By this heating, the epoxy adhesive was cured.
次に、 筒型に加工したアルミラミネートフィルムに挿入し、 電解液を 注入した。 電解液には、 溶媒としてエチレンカーボネート と 1, 2 —ジ メ トキシェタンとを用い、 電解質として六フッ化リ ン酸リチウムを用い た。 電解液を注入した後、 アルミラミネ一トフイルムを封口して電池を 完成させた。  Next, it was inserted into an aluminum laminated film processed into a cylindrical shape, and an electrolytic solution was injected. For the electrolyte, ethylene carbonate and 1,2-dimethoxetane were used as solvents, and lithium hexafluorophosphate was used as the electrolyte. After injecting the electrolyte, the aluminum film was sealed to complete the battery.
実施例 8 . Example 8
本実施例は第 5図に示した平板状巻型構造電池体を有するリチウムィ オン二次電池の形成法である。  This embodiment relates to a method for forming a lithium ion secondary battery having the flat-plate wound battery structure shown in FIG.
長尺の正極および負極集電体に、 実施例 1記載と同様の材料および方 法で、 正極および負極活物質をそれそれ塗布 , 乾燥し、 正極 3および負 極 5を作製した後、 正極および負極それぞれの両面に、 エポキシ系接着 剤 ( (株) スリ一ボン ド製、 商品名 : スリ一ボン ド 2 0 7 1 B ) をス ブレーで塗布した。 次に、 セパレ一タ材としてロール状に束ねられた幅 1 2 c m , 厚さ 2 5〃mの多孔性のポリプロピレンシ一ト (へキス ト社 製、 商品名 : セルガード # 2 4 0 0 ) を取り出し、 片面および反対面の 一端部の面に接着性樹脂として、 商品番号 : H— 6 8 2 5 (ニッ夕ゼラ チン (株) 製) をコ一夕で点状に塗布した。 次に、 接着性樹脂の温度を 室温に一旦降温してセパレ一夕の一端を一定量折り曲げ、 この折り曲げ 部に 1枚の正極 (または負極) を挟み、 この正極 (または負極) に対向 するように、 折り曲げ部の塗着面に負極 (または正極) を重ねあわせて、 この負極 (または正極) をセパレ一夕で巻き込んだ。 The positive electrode and the negative electrode active material were applied to the long positive electrode and negative electrode current collectors in the same manner and in the same manner as described in Example 1 and dried to form the positive electrode 3 and the negative electrode 5. An epoxy-based adhesive (trade name: Slip Bond 207B) manufactured by Sri Bond Co., Ltd. was applied to both surfaces of each negative electrode by spraying. Next, a porous polypropylene sheet with a width of 12 cm and a thickness of 25 m (made by Hext Co., Ltd., trade name: Celgard # 2400), which is bundled in a roll shape as a separator material The product was taken out, and one side and one end of the other side were coated with an adhesive resin in the form of a dot, in the form of an adhesive resin, with the product number: H-62825 (manufactured by Nikko Gelatin Co., Ltd.). Next, the temperature of the adhesive resin is once lowered to room temperature, and one end of the separator is bent by a certain amount. A single positive electrode (or negative electrode) is sandwiched between the two parts, and a negative electrode (or positive electrode) is placed on the application surface of the bent part so as to face this positive electrode (or negative electrode), and this negative electrode (or positive electrode) is separated. I caught in overnight.
次いで、 先に樹脂を塗着したセパレ一夕面の反対側の面に樹脂をコー 夕法により点状に塗着しつつ、 正極 (または負極) と負極 (または正極) を交互に対向するように重ねあわせつつ、 セパレ一夕を長円状に巻き込 んでいった。  Next, the positive electrode (or the negative electrode) and the negative electrode (or the positive electrode) are alternately opposed to each other while applying the resin in the form of a dot on the surface opposite to the surface of the separator on which the resin has been previously applied. And rolled up Separete in an oval shape.
次に、 巻き上げた長円上の電池体をロールにより、 7 0 °Cに加熱融着 させ、 正極および負極とセパレ一夕を接着して第 5図に示すような平板 状卷型積層構造電池体を得た。  Next, the battery body on the rolled-up ellipse is heated and fused at 70 ° C by a roll, and the positive electrode, the negative electrode and the separator are adhered to each other. I got a body.
この平板状積層構造電池体の正極および負極集電体 3 1、 5 1 それぞ れの端部に接続した集電タブを正極同士、 負極同士スポッ ト溶接するこ とにより、 積層構造電池体を電気的に並列に接続した。  The positive and negative electrode current collectors 31 and 51 of this flat laminated battery body were spot-welded to the positive and negative electrodes of the current collector tabs connected to the respective ends of the current collectors 31 and 51 to form the laminated battery body. Electrically connected in parallel.
続いて、 電極積層体内部に炭酸ェチレンと炭酸ジェチルを溶媒とし L i P F 6を溶質とする電解液を注入した。 電解液注入後に電池体をアル ミラミネ一トフイルムでパヅク し、 熱融着して封口処理を行うことによ り、 リチウムイオン二次電池が完成した。 Subsequently, an electrolytic solution containing Lethylene 6 and LiPF6 as a solute using Ethylene Carbonate and Getyl Carbonate as a solvent was injected into the inside of the electrode laminate. After the electrolyte was injected, the battery body was packed with aluminum film, heat-sealed, and sealed to complete a lithium-ion secondary battery.
実施例 9 . Embodiment 9.
上記実施例 8においてはセパレ一夕 4を巻き上げる例を示したが、 正 極 (または負極) を間に接合した帯状のセパレ一夕 4を折り畳み、 負極 (または正極) を張り合わせつつセパレ一タを折り畳む工程を繰り返し て平板状折畳み型積層構造電池体としてもよい。  In the above-mentioned Embodiment 8, an example in which the separator 4 is wound up is shown. However, the strip-shaped separator 4 in which the positive electrode (or the negative electrode) is joined is folded, and the separator is attached to the negative electrode (or the positive electrode). The folding step may be repeated to form a flat folded type laminated structure battery body.
実施例 1 0 . Example 10
本実施例は第 6図に示した平板状卷型積層構造電池体を有する リチウ ムイオン二次電池の形成法であり、 上記実施例 8 と異なり、 各電極およ びセパレ—夕を同時に巻き上げる例である。 実施例 8 と同様の材料および方法で、 長尺の正極および負極を作製し た後、 正極および負極それそれの両面に、 エポキシ系接着剤 ( (株) ス リ一ボン ド製、 商品名 : スリ一ボン ド 2 0 7 1 B ) をスプレーで塗布 した。 次に、 セパレ一タ材 4としてロール状に束ねられた幅 1 2 c m、 厚さ 2 5〃mの多孔性のポリプロピレンシート(へキス ト社製、商品名 : セルガード # 2 4 0 0 ) を 2個取り出し、 それそれ片面に接着性樹脂と して、 商品番号 : H— 6 8 2 5 (ニッ夕ゼラチン (株) 製) をコ一夕法 により点状に塗着した。 次に、 樹脂温度を室温に一旦降温して 1枚の正 極 (または負極) を 2枚のセパレ一夕の塗布面間に重ねあわせた。 この セパレ一夕付き正極 (または負極) の両側のセパレ一夕面にもコ一タ法 にて接着性樹脂を塗着した。 This embodiment is directed to a method of forming a lithium ion secondary battery having the flat-plate wound laminated battery body shown in FIG. 6, which is different from Embodiment 8 above in that each electrode and separator are simultaneously wound. It is. After preparing a long positive electrode and a negative electrode using the same material and method as in Example 8, an epoxy-based adhesive (manufactured by Three Bond Co., Ltd., trade name: Slip bond 207 1 B) was applied by spraying. Next, a porous polypropylene sheet (product name: Celgard # 2400, manufactured by Hext Co., Ltd.) having a width of 12 cm and a thickness of 25 mm, which was bundled in a roll shape as a separator material 4, was prepared. Two pieces were taken out, and each was coated on one side with an adhesive resin in the form of dots, using an article number: H-6825 (manufactured by Nikko Gelatin Co., Ltd.) by the co-overcoat method. Next, the temperature of the resin was once lowered to room temperature, and one positive electrode (or negative electrode) was overlapped between the coating surfaces of two separate separators. Adhesive resin was also applied to the separation surfaces on both sides of the positive electrode (or negative electrode) with the separation by a coating method.
次に、 帯状の負極 (または正極) をセパレ一夕付き正極 (または負極) の片側に一定量突出させて配置した。 突出した負極 (または正極) を折 り曲げてセパレ一夕付きの正極 (または負極) を包み込むようにして貼 り合わせ、 次いでセパレ一夕付きの正極 (または負極) を折り曲げて負 極(または正極) を包み込むようにして重ね合わせ、 折り曲げた負極(ま たは正極) を包み込むようにセパレ一タ付き正極 (または負極) を長円 状に巻いた。 この後、 加熱ロールで全体を融着させることにより、 第 6 図に示したような卷型積層構造電池体を得た。  Next, a strip-shaped negative electrode (or positive electrode) was arranged so as to protrude by a certain amount from one side of the positive electrode (or negative electrode) with a separator. Bend the protruding negative electrode (or positive electrode) and wrap it around the positive electrode (or negative electrode) with separator, and then bond the positive electrode (or negative electrode) with separate separator, and then fold the negative electrode (or positive electrode). ) Were wrapped around each other, and the positive electrode (or negative electrode) with separator was wound in an elliptical shape so as to wrap the folded negative electrode (or positive electrode). Thereafter, the whole was fused with a heating roll to obtain a wound-type laminated structure battery body as shown in FIG.
この卷型積層構造電池体の正極および負極集電体 3 1、 5 1それそれ の端部に接続した集電タブを正極同士、 負極同士スポッ ト溶接すること により、 積層構造電池体を電気旳に並列に接続した。  The positive electrode and the negative electrode current collectors 31 and 51 of the wound laminated battery body are spot-welded to the positive electrode and the negative electrode by connecting current collecting tabs connected to the ends of the current collectors 31 and 51, respectively, so that the laminated battery body is electrically connected. Connected in parallel.
続いて、 電極積層体内部に炭酸ェチレンと炭酸ジェチルを溶媒とし L i P F 6を溶質とする電解液を注入した。 電解液注入後に電池体をアル ミラ ミネートフィルムでパック し、 熱融着して封口処理を行うことによ り、 卷型積層構造電池体を有する薄型リチウムイオン二次電池が完成し た。 Subsequently, an electrolytic solution containing Lethylene 6 and LiPF6 as a solute using Ethylene Carbonate and Getyl Carbonate as a solvent was injected into the inside of the electrode laminate. After the electrolyte was injected, the battery body was packed with an aluminum laminate film, heat-sealed, and sealed to complete a thin lithium-ion secondary battery with a rolled-up laminated battery body. Was.
なお、 上記各実施例ではセパレー夕に接着性樹脂を塗着した場合につ いて説明したが、 活物質層 3 2、 5 2に塗着してもよく、 さらにセパレ —夕と活物質層の両方に塗着してもよい。 産業上の利用可能性  In each of the above embodiments, the case where the adhesive resin is applied to the separation layer has been described. However, the active material layers 32 and 52 may be coated. Both may be applied. Industrial applicability
携帯パソコン、 携帯電話等の携帯用電子機器に用いられ、 小型 · 軽量 化、 任意形状化が可能な高性能の二次電池の形成が簡素化され、 生産性 が向上する。  It is used in portable electronic devices such as mobile personal computers and mobile phones, and simplifies the formation of high-performance secondary batteries that can be made compact, lightweight, and arbitrarily shaped, improving productivity.

Claims

請 求 の 範 囲 The scope of the claims
1 . 正極、 負極およびセパレ一夕を構成要素に含み、 この構成要素に電 解液を含浸した二次電池の形成法において、 正極とセパレー夕間および 負極とセパレ一夕間に粘着性を有する可塑性樹脂、 および接着性樹脂を 部分的に介在させて重ね合わせる工程と、 上記可塑性樹脂を変形させる 工程とを備えたことを特徴とする二次電池の形成法。 1. A positive electrode, a negative electrode and a separator are included in the constituent elements. In a method of forming a secondary battery in which the constituent elements are impregnated with an electrolytic solution, an adhesive is provided between the positive electrode and the separator and between the negative electrode and the separator. A method for forming a secondary battery, comprising: a step of partially overlapping a plastic resin and an adhesive resin to overlap each other; and a step of deforming the plastic resin.
2 . 上記可塑性樹脂が塑性変形しうる以上の圧力を加えることによって 上記可塑性樹脂の変形を行なうことを特徴とする請求の範囲第 1項記載 の二次電池の形成法。  2. The method for forming a secondary battery according to claim 1, wherein the plastic resin is deformed by applying a pressure higher than the plastic resin can be plastically deformed.
3 . 上記圧力を加えることによって上記可塑性樹脂の変形を行なう工程 力 s、 電解液を含浸した後に行われることを特徴とする請求の範囲第 2項 記載の二次電池の形成法。 3. Formation method of the secondary battery ranges second claim of claim, characterized in that it is performed after impregnating the step force s, electrolyte for performing deformation of the thermoplastic resin by the application of the pressure.
4 . 上記可塑性樹脂の変形を加温することによって行なうことを特徴と する請求の範囲第 1項記載の二次電池の形成法。  4. The method for forming a secondary battery according to claim 1, wherein the deformation of the plastic resin is performed by heating.
5 . 上記接着性樹脂が、 加熱により接着力が増す接着剤であるものであ ることを特徼とする請求の範囲第 1項記載の二次電池の形成方法。  5. The method for forming a secondary battery according to claim 1, wherein the adhesive resin is an adhesive whose adhesive strength is increased by heating.
6 . 上記加熱により接着力が増す接着剤が、 熱架橋性の樹脂であるもの であることを特徴とする請求の範囲第 5項記載の二次電池の形成方法。  6. The method for forming a secondary battery according to claim 5, wherein the adhesive whose adhesive strength increases by heating is a thermocrosslinkable resin.
7 . 上記加熱によ り接着力が増す接着剤が、 溶剤に溶解した接着剤であ ることを特徴とする請求の範囲第 5項記載の二次電池の形成方法。 7. The method for forming a secondary battery according to claim 5, wherein the adhesive whose adhesive strength is increased by the heating is an adhesive dissolved in a solvent.
8 . 正極と負極を構成要素に含み、 この構成要素に電解液を含浸した二 次電池の形成法において、 正極と負極との間に粘着性を有する可塑性樹 脂と接着性樹脂とを部分的に介在させて重ね合わせる工程と、 上記可塑 性樹脂を変形させる工程とを備えたことを特徴とする二次電池の形成法。 8. In the method of forming a secondary battery in which the positive electrode and the negative electrode are included in the constituent elements and the constituent elements are impregnated with the electrolytic solution, the adhesive plastic resin and the adhesive plastic resin having an adhesive property between the positive and negative electrodes are partially used. A method for forming a secondary battery, comprising: a step of superposing with interposing a resin; and a step of deforming the plastic resin.
9 . 上記可塑性樹脂が塑性変形しうる以上の圧力を加えることによって 上記可塑性樹脂の変形を行なうものであることを特徴とする請求の範囲 第 8項記載の二次電池の形成法。 9. By applying more pressure than the above plastic resin can plastically deform 9. The method for forming a secondary battery according to claim 8, wherein the plastic resin is deformed.
1 0 . 上記圧力を加えることによって上記可塑性樹脂の変形を行なうェ 程が、 電解液を含浸した後に行われることを特徴とする請求の範囲第 9 項記載の二次電池の形成法。  10. The method for forming a secondary battery according to claim 9, wherein the step of deforming the plastic resin by applying the pressure is performed after impregnation with an electrolytic solution.
1 1 . 上記可塑性樹脂の変形を加温することによって行なうことを特徴 とする請求の範囲第 8項記載の二次電池の形成法。  11. The method for forming a secondary battery according to claim 8, wherein the deformation of the plastic resin is performed by heating.
1 2 . 上記接着性樹脂が、 加熱により接着力が増す接着剤であるもので あることを特徴とする請求の範囲第 8項記載の二次電池の形成方法。  12. The method for forming a secondary battery according to claim 8, wherein the adhesive resin is an adhesive whose adhesive strength is increased by heating.
1 3 . 上記加熱により接着力が増す接着剤が、 熱架橋性の樹脂であるも のであることを特徴とする請求の範囲第 1 2項記載の二次電池の形成方 法。 13. The method for forming a secondary battery according to claim 12, wherein the adhesive whose adhesive strength increases by heating is a thermocrosslinkable resin.
1 4 . 上記加熱により接着力が増す接着剤が、 溶剤に溶解した接着剤で あるものであることを特徴とする請求の範囲第 1 2項記載の二次電池の 形成方法。  14. The method for forming a secondary battery according to claim 12, wherein the adhesive whose adhesive strength is increased by heating is an adhesive dissolved in a solvent.
1 5 . 正極活物質層を正極集電体に接合してなる正極と、 負極活物質層 を負極集電体に接合してなる負極と、 上記正極活物質層と上記負極活物 質層の間に配置されるセパレ一夕と、 上記各活物質層と上記セパレー夕 との間を連通する空隙を形成するように上記各活物質層と上記セパレー 夕の間に配置された、 常温において固体で表面が粘着性を有し加熱また は加圧により変形する可塑性樹脂、 および接着性樹脂を有する電極積層 体を備えたことを特徴とする二次電池。  15. A positive electrode formed by bonding the positive electrode active material layer to the positive electrode current collector, a negative electrode formed by bonding the negative electrode active material layer to the negative electrode current collector, the positive electrode active material layer, and the negative electrode active material layer. A solid at room temperature, which is disposed between the active material layers and the separator so as to form a gap communicating between the active material layers and the separator. A secondary battery comprising: an electrode laminate having a plastic resin having a sticky surface and deforming by heating or pressing, and an adhesive resin.
1 6 . 空隙部の面積が、 各活物質層とセパレ一夕が対向する各対向面の 全面積の 3 0 %ないし 9 ◦ %であるものであることを特徴とする請求の 範囲第 1 5項記載の二次電池。  16. The method according to claim 15, wherein the area of the void portion is 30% to 9 °% of the total area of each of the opposing surfaces of each active material layer and the separator. The secondary battery according to the item.
1 7 . 上記接着性樹脂が、 加熱により接着力が増す接着剤であるもので あることを特徴とする請求の範囲第 1 5項記載の二次電池。 1 7. The adhesive resin is an adhesive whose adhesive strength is increased by heating. 16. The secondary battery according to claim 15, wherein:
1 8 . 上記加熱により接着力が増す接着剤が、 熱架橋性の樹脂であるも のであることを特徴とする請求の範囲第 1 7項記載の二次電池。  18. The secondary battery according to claim 17, wherein the adhesive whose adhesive strength is increased by heating is a thermocrosslinkable resin.
1 9 . 上記加熱により接着力が増す接着剤が、 溶剤に溶解した接着剤で あるものであることを特徴とする請求の範囲第 1 7項記載の二次電池。 19. The secondary battery according to claim 17, wherein the adhesive whose adhesive strength is increased by heating is an adhesive dissolved in a solvent.
2 0 . 複数の電極積層体を有することを特徴とする請求の範囲第 1 5項 記載の二次電池。 20. The secondary battery according to claim 15, comprising a plurality of electrode laminates.
2 1 . 正極活物質層を正極集電体に接合してなる正極と、 負極活物質層 を負極集電体に接合してなる負極と、 上記各活物質層の間を連通する空 隙を形成するように上記各活物質層の間に配置された、 常温において固 体で表面が粘着性を有し加熱または加圧により変形する可塑性樹脂、 お よび接着性樹脂を有する電極積層体を備えたことを特徴とする二次電池。 2 1. A positive electrode formed by joining the positive electrode active material layer to the positive electrode current collector, a negative electrode formed by joining the negative electrode active material layer to the negative electrode current collector, and a gap communicating each of the above active material layers. An electrode laminate having a plastic resin which is solid at normal temperature and has a sticky surface and deforms by heating or pressing, and an adhesive resin, which are disposed between the respective active material layers so as to be formed. A secondary battery characterized in that:
2 2 . 複数の電極積層体を有することを特徴とする請求の範囲第 2 1項 記載の二次電池。 22. The secondary battery according to claim 21, comprising a plurality of electrode laminates.
PCT/JP1998/001108 1966-05-12 1998-03-17 Secondary battery and method for forming the same WO1999048164A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CH694766A CH483049A (en) 1966-05-12 1966-05-12 Machine for the manufacture of watch plates
CH694766D CH694766A4 (en) 1966-05-12 1966-05-12 Secondary battery and method for forming the same
PCT/JP1998/001108 WO1999048164A1 (en) 1966-05-12 1998-03-17 Secondary battery and method for forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH694766A CH483049A (en) 1966-05-12 1966-05-12 Machine for the manufacture of watch plates
PCT/JP1998/001108 WO1999048164A1 (en) 1966-05-12 1998-03-17 Secondary battery and method for forming the same

Publications (1)

Publication Number Publication Date
WO1999048164A1 true WO1999048164A1 (en) 1999-09-23

Family

ID=34862398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001108 WO1999048164A1 (en) 1966-05-12 1998-03-17 Secondary battery and method for forming the same

Country Status (2)

Country Link
CH (2) CH483049A (en)
WO (1) WO1999048164A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135289A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Secondary battery, and its manufacturing method
JP2011129497A (en) * 2009-12-15 2011-06-30 Samsung Sdi Co Ltd Secondary battery
KR101454996B1 (en) * 2012-03-07 2014-10-30 닛산 지도우샤 가부시키가이샤 Secondary battery
JP2015053118A (en) * 2013-09-05 2015-03-19 日立マクセル株式会社 Lithium ion secondary battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
JP2016535923A (en) * 2013-11-04 2016-11-17 エルジー・ケム・リミテッド Method for forming adhesive layer for secondary battery
JP2018055951A (en) * 2016-09-28 2018-04-05 日産自動車株式会社 Secondary battery
JP2018113122A (en) * 2017-01-10 2018-07-19 日産自動車株式会社 Method for manufacturing lithium ion secondary battery
EP3244475A4 (en) * 2015-09-02 2019-08-14 LG Chem, Ltd. Separation membrane comprising adhesive coating parts with different adhesion forces, and electrode assembly comprising same
WO2021161801A1 (en) * 2020-02-14 2021-08-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628471A (en) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd Air button cell
JPS6341864U (en) * 1986-09-03 1988-03-18
JPS63184560U (en) * 1987-05-19 1988-11-28
US5437692A (en) * 1994-11-02 1995-08-01 Dasgupta; Sankar Method for forming an electrode-electrolyte assembly
JPH09500485A (en) * 1993-11-30 1997-01-14 ベル コミュニケーションズ リサーチ,インコーポレイテッド Electrolyte activatable lithium-ion rechargeable battery cell and method of manufacturing the same
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628471A (en) * 1985-07-04 1987-01-16 Matsushita Electric Ind Co Ltd Air button cell
JPS6341864U (en) * 1986-09-03 1988-03-18
JPS63184560U (en) * 1987-05-19 1988-11-28
JPH09500485A (en) * 1993-11-30 1997-01-14 ベル コミュニケーションズ リサーチ,インコーポレイテッド Electrolyte activatable lithium-ion rechargeable battery cell and method of manufacturing the same
US5437692A (en) * 1994-11-02 1995-08-01 Dasgupta; Sankar Method for forming an electrode-electrolyte assembly
JPH09293518A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Thin film electrolyte and battery using this electrolyte

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135289A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Secondary battery, and its manufacturing method
JP2011129497A (en) * 2009-12-15 2011-06-30 Samsung Sdi Co Ltd Secondary battery
US8999559B2 (en) 2009-12-15 2015-04-07 Samsung Sdi Co., Ltd. Secondary battery
KR101454996B1 (en) * 2012-03-07 2014-10-30 닛산 지도우샤 가부시키가이샤 Secondary battery
JP2015053118A (en) * 2013-09-05 2015-03-19 日立マクセル株式会社 Lithium ion secondary battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
EP2916373B1 (en) * 2013-11-04 2019-03-13 LG Chem, Ltd. Method for forming adhesive layer for secondary battery
US10193120B2 (en) 2013-11-04 2019-01-29 Lg Chem, Ltd. Method for forming adhesion layer for secondary battery
JP2016535923A (en) * 2013-11-04 2016-11-17 エルジー・ケム・リミテッド Method for forming adhesive layer for secondary battery
EP3244475A4 (en) * 2015-09-02 2019-08-14 LG Chem, Ltd. Separation membrane comprising adhesive coating parts with different adhesion forces, and electrode assembly comprising same
US10476064B2 (en) 2015-09-02 2019-11-12 Lg Chem, Ltd. Separator comprising adhesive coating parts having different tack strengths and electrode assembly comprising the same
JP2018055951A (en) * 2016-09-28 2018-04-05 日産自動車株式会社 Secondary battery
JP2018113122A (en) * 2017-01-10 2018-07-19 日産自動車株式会社 Method for manufacturing lithium ion secondary battery
WO2021161801A1 (en) * 2020-02-14 2021-08-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CH483049A (en) 1969-08-29
CH694766A4 (en) 1969-08-29

Similar Documents

Publication Publication Date Title
KR100279071B1 (en) Lithium ion secondary battery
JP3225864B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP3303694B2 (en) Lithium ion secondary battery and method of manufacturing the same
WO1999048163A1 (en) Lithium ion battery and method for forming the same
EP0959513B1 (en) Lithium ion secondary battery and manufacture thereof
KR100397043B1 (en) Lithium ion secondary battery and manufacture thereof
JP3223824B2 (en) Lithium ion secondary battery
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
US6291102B1 (en) Lithium ion secondary battery
JP4008508B2 (en) Method for producing lithium ion secondary battery
WO2002071529A1 (en) Nonaqueous electrolyte secondary battery and its producing method
JPH10284055A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO1999031751A1 (en) Lithium ion secondary battery and its manufacture
US20010008726A1 (en) Adhesive for battery, battery using the same and method of fabricating a battery using the same
WO1999034469A1 (en) Lithium ion secondary battery
US6352797B1 (en) Lithium ion battery and method for forming the same
WO1999048164A1 (en) Secondary battery and method for forming the same
WO1999031750A1 (en) Adhesive for cells, a cell using the same and a process for producing cells
WO1999040645A1 (en) Lithium battery and method for manufacturing the same
WO1999033136A1 (en) Lithium ion secondary battery and its manufacture
WO1999026308A1 (en) Bonding agent for cells and cell using the same
KR20010005879A (en) Method for manufacturing lithium ion battery
KR100321264B1 (en) Lithium ion battery and method for forming the same
KR100329296B1 (en) Lithium ion battery and method for forming the same
KR100300530B1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000537272

Format of ref document f/p: F