WO1999048106A1 - Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium - Google Patents

Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium Download PDF

Info

Publication number
WO1999048106A1
WO1999048106A1 PCT/DE1999/000541 DE9900541W WO9948106A1 WO 1999048106 A1 WO1999048106 A1 WO 1999048106A1 DE 9900541 W DE9900541 W DE 9900541W WO 9948106 A1 WO9948106 A1 WO 9948106A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
nuclear power
feed water
power plant
gassing
Prior art date
Application number
PCT/DE1999/000541
Other languages
English (en)
French (fr)
Inventor
Anwer Puthawala
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59901938T priority Critical patent/DE59901938D1/de
Priority to JP2000537222A priority patent/JP3388579B2/ja
Priority to EP99916769A priority patent/EP1070324B1/de
Publication of WO1999048106A1 publication Critical patent/WO1999048106A1/de
Priority to US09/661,507 priority patent/US6968028B1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a nuclear power plant with a gassing device provided for a cooling medium.
  • a feedwater-steam cycle is usually provided in a nuclear power plant. This can serve as a cooling circuit for cooling the reactor core.
  • the cooling medium provided in the cooling circuit depends on the reactor type and can be water, in particular in the case of a pressurized water reactor or boiling water reactor.
  • gassing of the cooling medium with hydrogen is usually provided.
  • a volume control system is known for a pressurized water reactor which is suitable for feeding chemicals, in particular hydrogen, into the feed water-steam cycle of the nuclear reactor.
  • the hydrogen is introduced into a volume compensation container belonging to the volume control system.
  • the hydrogen entered is present in the volume compensation tank as part of a gas cushion above the liquid level of the cooling medium.
  • the hydrogen partial pressure in the gas cushion is adjusted according to the desired concentration of hydrogen in the cooling medium.
  • a nuclear reactor is known from DE 195 36 450 Cl, during the operation of which hydrogen is added to the coolant.
  • the hydrogen is added as a function of the hydrogen content of the coolant, which is measured continuously by means of a measuring device on the pressure side of a high-pressure pump.
  • the invention is therefore based on the object of specifying a nuclear power plant with a feedwater-steam cycle in which the gassing device provided for gassing the cooling medium with hydrogen has a particularly low maintenance and repair expenditure and in which a particularly homogeneous distribution of the hydrogen is guaranteed - is accomplished.
  • the feedwater-steam circuit comprises a condensate cleaning device and a feedwater pump upstream of the reactor pressure vessel and the feedwater-steam circuit includes
  • Has branch line in which a gassing device for fumigation of cooling medium with hydrogen is connected, the branch line branches off immediately after the condensate cleaning device from the feed water-steam circuit and opens directly in front of the feed water pump in the feed water-steam circuit.
  • “Immediate *” means that the branch point of the condensate cleaning device is connected downstream without the interposition of further (active) components or the junction point of the feed water pump, its intake manifold or, in the case of a plurality of feed water pumps connected in parallel, its common suction line without the interposition of further (active) components is connected upstream.
  • the invention is based on the consideration that the maintenance and repair work required for the gassing device can also be particularly high due to contamination of the cooling medium. In order to avoid such causes, contamination of the cooling medium should not be able to get into the fumigation device. For this reason, the gassing device should be arranged at a point in the cooling circuit at which the cooling medium has a particularly high purity. In addition, existing pressure conditions at certain points in the cooling circuit should be used in order to avoid the installation of additional components such as pumps.
  • a particularly homogeneous distribution of the hydrogen in the cooling medium should be ensured by a pump, which causes an increase in pressure in the cooling medium.
  • a pump that is provided in the feed water-steam cycle should be used for this.
  • the gassing device is preceded on the input side by a condensate cleaning system connected into the condensate line and on the output side by a feed water pump upstream of the reactor pressure vessel.
  • the gassing device expediently has an electrolysis device (electrolyzer) for decomposing water into hydrogen and oxygen.
  • electrolysis device electrolysis device
  • the electrolysis unit advantageously comprises a number of membrane electrolysis cells.
  • a membrane electrolysis cell of this type the principle of operation of a fuel cell, as is known, for example, from the article “Fuel Cells for Electrical Traction *, K. Straszer, VDI Reports, No. 912 (1992), p. 125 ff., Is reversed.
  • water is supplied to a membrane arranged between an anode and a cathode. By applying a supply voltage between the anode and the cathode, the water is electrolytically decomposed into hydrogen and oxygen.
  • Such a membrane electrolysis cell is characterized by a particularly compact design, so that an electrolysis unit with a number of membrane electrolysis cells can be accommodated in a particularly narrow space. Therefore, such an electrolysis unit can be connected into the feedwater-steam cycle particularly flexibly and adapted to the specific needs of the cooling circuit.
  • the gassing device is advantageously associated with a pressure control unit which maintains a lower pressure on the hydrogen side of the gassing device compared to the oxygen side of the gassing device. This particularly reliably prevents hydrogen from reaching the oxygen side through the membrane of the membrane electrolysis cells.
  • the oxygen generated in the electrolysis unit can advantageously be fed to an exhaust gas system. If the exhaust system is one that is assigned to the coolant circuit, the oxygen there can ensure a recombination of excess hydrogen.
  • the nuclear power plant has a reactor pressure vessel provided for boiling water.
  • the gassing device arranged on the feedwater-steam circuit enables the hydrogen to be supplied to the cooling medium to be produced in the immediate vicinity of its feed into the feedwater-steam circuit.
  • a particularly homogeneous distribution of the hydrogen generated in the gassing device is ensured by the feed water pump, which is in any case present in the feed water / steam circuit and which causes an increase in pressure in the cooling medium.
  • the gassing device takes up a particularly small amount of space and can be installed in the machine house with a particularly short assembly time in the case of compact construction (modules).
  • a particularly low maintenance and repair effort for the gassing device is ensured by the fact that only cleaned, condensed cooling medium is supplied to the gassing device.
  • FIG. 1 An embodiment of the invention is explained in more detail with reference to a drawing.
  • the figure schematically shows a nuclear power plant with a gassing device provided for a cooling medium.
  • the nuclear power plant system 2 which is designed as a boiling water reactor system, comprises a feedwater-steam circuit 4 with a condenser 6 as the cooling circuit.
  • a condenser 6 To clean the water or cooling medium K leaving the condenser 6, the condenser 6 is on the output side via a condensate line 8 into which a condensate pump 10 is switched, a condensate cleaning device 12 is connected downstream.
  • the condensate cleaning device 12 is connected to a feed water pump 20 via a line 14, into which a low-pressure preheater 16 and a feed water tank 18 are connected.
  • This is the starting tig is connected via a line 22, in which a high-pressure preheater 24 is connected, to a reactor pressure vessel 26 provided for boiling water.
  • Two circulation pumps 28 are provided for the circulation of the cooling medium K located in the reactor pressure vessel 26.
  • a high-pressure turbine 32 and a low-pressure turbine 34 are connected downstream of it via a line 30.
  • the low-pressure turbine 34 is connected on the output side to the condenser 6 via a line 36, so that a closed feed water-steam circuit 4 is created.
  • the feed water-steam circuit 4 has a branch line 38, to which a gassing device 40 is connected.
  • the gassing device 40 comprises an electrolysis unit 42 which is designed as a membrane electrolyzer. This comprises a number of membrane electrolysis cells 44, in which a membrane arranged between two electrodes acts as a solid electrolyte.
  • Such an electrolysis unit 42 is known for example from the publication WO 97/36827.
  • the gassing device 40 has a particularly low maintenance and repair effort, it is connected to the branch line 38, which branches off from the feed water / steam circuit 4 immediately after the condensate cleaning device 12 on the output side.
  • the gassing device 40 is directly connected to the feed water pump 20 via the branch line 38 on the output side.
  • the oxygen S generated by the gassing device 40 can be supplied to the condenser 6 via a partial line 52.
  • the condenser ⁇ is additionally connected via an exhaust line 7 device 54 connected to an exhaust system 56, which is connected to the environment for discharging exhaust gases A via a chimney 58.
  • the gassing device 40 comprises a pressure control unit 60. This ensures that, seen on the output side from the gassing device 40, in the sub-line 52 there is a comparatively higher pressure than in the branch line 38.
  • the pressure control unit 60 acts with suitable means, for example electrical or by means of throttle devices, on the partial line 52 and the branch line 38 downstream of the gassing device 40.
  • gassing of the water or cooling medium K with hydrogen W is provided to prevent radiolytic decomposition of the cooling medium K.
  • the cooling medium K leaving the condensate cleaning device 12 and having a purity of less than 1 ⁇ S / cm is fed to the gassing device 40 via the branch line 38.
  • the hydrogen W generated in the membrane electrolysis cells 44 is fed into the feed water steam circuit 4 on the input side in front of the feed water pump 20 for a particularly homogeneous distribution of the hydrogen W in the feed water steam circuit 4.
  • the oxygen S additionally generated in the gassing device 40 is fed via the line to the exhaust system in order to bring about a recombination of excess hydrogen W.
  • the nuclear power plant 2 which is designed as a boiling water reactor, has a gassing device 40 for gassing the cooling medium K in the feed water / steam circuit 4 with hydrogen W.
  • the cooling medium K supplied to the gassing device 40 has a particularly high purity particularly low maintenance and repair costs.
  • the feeding of the hydrogen W upstream of the feed water pump 20 ensures a particularly homogeneous distribution of the hydrogen W in the feed water / steam circuit 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Eine nukleare Kraftwerksanlage (2) mit einem eine Kondensatreinigungseinrichtung (12) und eine dem Reaktordruckbehälter (26) vorgeschaltete Speisewasserpumpe (20) umfassenden Speisewasser-Dampf-Kreislauf (4), der eine Zweigleitung (38) aufweist, in die eine Begasungsvorrichtung (40) zur Begasung von Kühlmedium (K) mit Wasserstoff (W) geschaltet ist, soll einen besonders geringen Wartungs- und Reparaturaufwand der Begasungsvorrichtung (40) und eine besonders homogene Verteilung des in der Begasungsvorrichtung (40) erzeugten Wasserstoffs (W) gewährleisten. Hierzu zweigt die Zweigleitung (38) unmittelbar nach der Kondensatreinigungseinrichtung (12) vom Speisewasser-Dampf-Kreislauf (4) ab und mündet unmittelbar vor der Speisewasserpumpe (20) in den Speisewasser-Dampf-Kreislauf (4).

Description

Beschreibung
Nukleare Kraftwerksanlage mit einer Begasungsvorrichtung für ein Kuhlmedium
Die Erfindung betrifft eine nukleare Kraftwerksanlage mit einer für ein Kuhlmedium vorgesehenen Begasungsvorrichtung.
In einer nuklearen Kraftwerksanlage ist üblicherweise ein Speisewasser-Dampf-Kreislauf vorgesehen. Dieser kann als Kuhlkreislauf zur Kühlung des Reaktorkerns dienen. Das im Kuhlkreislauf vorgesehene Kuhlmedium hangt dabei vom Reaktortyp ab und kann insbesondere bei einem Druckwasserreaktor oder Siedewasserreaktor Wasser sein.
Um einer radiolytischen Zersetzung des im Speisewasser-Dampf- Kreislauf stromenden Kuhlmediums entgegenzuwirken, ist blicherweise eine Begasung des Kuhlmediums mit Wasserstoff vorgesehen. Zu diesem Zweck ist beispielsweise aus dem Buch „VGB-Kernkraftwerks-Seminar 1970*, insbesondere Seite 41, für einen Druckwasserreaktor ein Volumenregelsystem bekannt, das zum Einspeisen von Chemikalien, insbesondere von Wasserstoff, m den Speisewasser-Dampf-Kreislauf des Kernreaktors geeignet ist.
Bei dem bekannten System wird der Wasserstoff in einen zum Volumenregelsystem gehörenden Volumenausgleichsbehalter eingegeben. Im Volumenausgleichsbehalter liegt der eingegebene Wasserstoff als Bestandteil eines Gaspolsters über dem Flus- sigkeitspegel des Kuhlmediums vor. Der Wasserstoff-Par- tialdruck im Gaspolster wird dabei entsprechend der gewünschten Konzentration des Wasserstoffs im Kuhlmedium eingestellt.
Eine Weiterentwicklung des beschriebenen Systems ist aus der Patentschrift DE 19 60 22 13 bekannt. Die Wasserstoffbegasung des Kuhlmediums erfolgt bei dem m dieser Druckschrift beschriebenen Einspeisesystem durch einen am Speisewasser- Dampf-Kreislauf angeordneten Wasserstoffgenerator . Der Was¬ serstoffgenerator ist dabei eine Elektrolysevorrichtung, wie sie z.B. aus Hütte: „Die Grundlagen der Ingenieurwissenschaf- ten*, Springer (1996), Seite B167f, bekannt ist.
Weiterhin ist aus DE 195 36 450 Cl ein Kernreaktor bekannt, bei dessen Betrieb dem Kühlmittel Wasserstoff zugesetzt wird. Die Zugabe von Wasserstoff erfolgt dabei in Abhängigkeit vom Wasserstoffgehalt des Kühlmittels, der mittels einer Meßein- richtung auf der Druckseite einer Hochdruckpumpe kontinuierlich gemessen wird.
Diese Systeme weisen jedoch einen erheblichen Wartungs- und Reparaturaufwand auf. Außerdem treten im Speisewasser-Dampf- Kreislauf bestimmte Stellen mit einer erhöhten Konzentration des Wasserstoffs auf, da eine ausreichende Verteilung des Wasserstoffs im Kühlmedium nicht gewährleistet ist.
Der Erfindung liegt daher die Aufgabe zugrunde, eine nukleare Kraftwerksanlage mit einem Speisewasser-Dampf-Kreislauf anzugeben, bei der die für eine Begasung des Kühlmediums mit Wasserstoff vorgesehene Begasungsvorrichtung einen besonders geringen Wartungs- und Reparaturaufwand aufweist und bei der eine besonders homogene Verteilung des Wasserstoffs gewähr- leistet ist.
Diese Aufgabe wird erfindungsgemäß gelöst, indem der Speisewasser-Dampf-Kreislauf eine Kondensatreinigungseinrichtung und eine dem Reaktordruckbehälter vorgeschaltete Speisewas- serpumpe umfaßt und der Speisewasser-Dampf-Kreislauf eine
Zweigleitung aufweist, in die eine Begasungsvorrichtung zur Begasung von Kühlmedium mit Wasserstoff geschaltet ist, wobei die Zweigleitung unmittelbar nach der Kondensatreinigungseinrichtung vom Speisewasser-Dampf-Kreislauf abzweigt und unmit- telbar vor der Speisewasserpumpe in den Speisewasser-Dampf- Kreislauf mündet. Unter „unmittelbar* ist dabei zu verstehen, daß die Abzweigestelle der Kondensatreinigungseinrichtung ohne Zwischenschaltung weiterer (aktiver) Komponenten nachgeschaltet bzw. die Einmündungsstelle der Speisewasserpumpe, deren Ansaugstutzen oder, bei einer Mehrzahl parallel geschalteter Speisewasserpumpen, deren gemeinsamer Saugleitung ohne Zwischenschaltung weiterer (aktiver) Komponenten vorgeschaltet ist.
Die Erfindung geht dabei von der Überlegung aus, daß der für die Begasungsvorrichtung erforderliche Wartungs- und Reparaturaufwand auch aufgrund von Verunreinigungen des Kühlmediums besonders hoch sein kann. Um derartige Ursachen zu vermeiden, sollten Verunreinigungen des Kühlmediums nicht in die Bega- sungsvorrichtung gelangen können. Deswegen sollte die Bega- sungsvorrichtung an einer Stelle des Kühlkreislaufs angeordnet sein, bei der das Kühlmedium eine besonders hohe Reinheit aufweist. Außerdem sollten bestehende Druckverhältnisse an bestimmten Stellen des Kuhlkreislaufs ausgenutzt werden, um den Einbau zusätzlicher Komponenten wie beispielsweise Pum- pen, zu vermeiden.
Eine besonders homogene Verteilung des Wasserstoffs im Kühlmedium sollte durch eine Pumpe gewährleistet sein, die eine Druckerhöhung im Kühlmedium bewirkt. Um dabei den technischen Aufwand besonders gering zu halten, sollte hierfür eine ohnehin im Speisewasser-Dampf-Kreislauf vorgesehene Pumpe verwendet werden. Um die genannten Bedingungen gleichzeitig zu erfüllen, ist der Begasungsvorrichtung eingangsseitig eine in die Kondensatleitung geschaltete Kondensatreinigung vorge- schaltet und ausgangsseitig eine dem Reaktordruckbehälter vorgeschaltete Speisewasserpumpe nachgeschaltet.
Zweckmäßigerweise weist die Begasungsvorrichtung eine Elektrolysevorrichtung (Elektrolyseur) zur Zersetzung von Wasser in Wasserstoff und Sauerstoff auf. Durch Variation eines durch das Wasser geleiteten elektrischen Stromes ist dabei die Produktion des Wasserstoffes in besonders einfacher Weise steuerbar.
Die Elektrolyseeinheit umfaßt vorteilhafterweise eine Anzahl von Me branelektrolysezellen. Bei einer derartigen Membranelektrolysezelle wird das Funktionsprinzip einer Brennstoffzelle, wie sie beispielsweise aus dem Aufsatz „Brennstoffzellen für Elektrotraktion*, K. Straszer, VDI-Berichte, Nr. 912 (1992), S. 125 ff, bekannt ist, umgekehrt. Dazu wird einer zwischen einer Anode und einer Kathode angeordneten Membran Wasser zugeführt. Durch Anlegen einer Versorgungsspannung zwischen der Anode und der Kathode wird das Wasser elektrolytisch in Wasserstoff und Sauerstoff zersetzt. Eine derartige Membranelektrolysezelle zeichnet sich durch eine besonders kompakte Bauweise aus, so daß eine Elektrolyseeinheit mit einer Anzahl von Membranelektrolysezellen auf besonders engem Raum untergebracht sein kann. Daher kann eine derartige Elektrolyseeinheit besonders flexibel und an die spezifischen Bedürfnisse des Kühlkreislaufs angepaßt in den Speisewasser- Dampf-Kreislauf geschaltet sein.
Der Begasungsvorrichtung ist vorteilhafterweise eine Druck- Regeleinheit zugeordnet, die auf der Wasserstoff-Seite der Begasungsvorrichtung einen im Vergleich zur Sauerstoff-Seite der Begasungsvorrichtung niedrigeren Druck aufrechterhält. Damit ist besonders zuverlässig verhindert, daß Wasserstoff durch die Membrane der Membranelektrolysezellen auf die Sauerstoff-Seite gelangen kann.
Vorteilhafterweise ist der in der Elektrolyseeinheit erzeugte Sauerstoff einem Abgassystem zuführbar. Handelt es sich bei dem Abgassystem um eines, das dem Kühlmittelkreislauf zugeordnet ist, so kann der Sauerstoff dort eine Rekombination von überschüssigem Wasserstoff gewährleisten. In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist die nukleare Kraftwerksanlage einen für Siedewasser vorgesehenen Reaktordruckbehälter auf.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die am Speisewasser-Dampf-Kreislauf angeordnete Begasungsvorrichtung der dem Kühlmedium zuzuführende Wasserstoff in unmittelbarer Nähe seiner Einspeisung in den Speisewasser-Dampf-Kreislauf herstellbar ist. Eine beson- ders homogene Verteilung des in der Begasungsvorrichtung erzeugten Wasserstoffs ist dabei durch die ohnehin im Speisewasser-Dampf-Kreislauf vorhandene Speisewasserpumpe gewährleistet, die eine Druckerhöhung im Kühlmedium bewirkt. Somit weist die Begasungsvorrichtung einen besonders geringen Platzbedarf auf und kann bei Kompaktbauweise (Module) im Maschinenhaus mit besonders kurzer Montagezeit aufgestellt werden. Außerdem ist ein besonders geringer Wartungs- und Reparaturaufwand der Begasungsvorrichtung dadurch gewährleistet, daß der Begasungsvorrichtung ausschließlich gereinigtes kon- densiertes Kühlmedium zugeführt wird.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch eine nukleare Kraftwerksanlage mit einer für ein Kühlmedium vorgesehenen Begasungsvorrichtung.
Die als Siedewasserreaktor-Anlage ausgebildete nukleare Kraftwerksanlage 2 umfaßt als Kühlkreislauf einen Speisewasser-Dampf-Kreislauf 4 mit einem Kondensator 6. Zur Reinigung des den Kondensator 6 verlassenden Wasser oder Kühlmediums K ist dem Kondensator 6 ausgangsseitig über eine Kondensatleitung 8, in die eine Kondensatpumpe 10 geschaltet ist, eine Kondensatreinigungseinrichtung 12 nachgeschaltet. Im Speisewasser-Dampf-Kreislauf 4 ist die Kondensatreinigungseinrich- tung 12 über eine Leitung 14, in die ein Niederdruckvorwärmer 16 und ein Speisewasserbehälter 18 geschaltet sind, mit einer Speisewasserpumpe 20 verbunden. Diese ist ausgangssei- tig über eine Leitung 22, in die ein Hochdruckvorwarmer 24 geschaltet ist, mit einem für Siedewasser vorgesehenen Reak- tordruckbehalter 26 verbunden. Für die Umwälzung des sich im Reaktordruckbehalter 26 befindlichen Kuhlmediums K sind zwei Umwälzpumpen 28 vorgesehen. Zur arbeitsleistenden Entspannung des im Reaktordruckbehalter 26 entstandenen Dampfes des Kuhlmediums K ist diesem über eine Leitung 30 eine Hochdrucktur- bine 32 und eine Niederdruckturbine 34 nachgeschaltet. Die Niederdruckturbine 34 ist ausgangsseitig ber eine Leitung 36 an den Kondensator 6 angeschlossen, so daß ein geschlossener Speisewasser-Dampf-Kreislauf 4 entsteht.
Um einer radiolytischen Zersetzung des Kuhlmediums K im Reaktordruckbehalter 26 entgegenzuwirken, weist der Speisewasser- Dampf-Kreislauf 4 eine Zweigleitung 38 auf, m die eine Begasungsvorrichtung 40 geschaltet ist. Die Begasungsvorrichtung 40 umfaßt eine Elektrolyseemheit 42, die als Membran- elektrolyseur ausgebildet ist. Diese umfaßt eine Anzahl von Membranelektrolysezellen 44, bei denen eine zwischen zwei Elektroden angeordnete Membran als fester Elektrolyt wirkt.
Die Wasserstoffproduktion eines derartigen Elektrolyseurs ist durch Variation des zugefuhrten elektrischen Stromes besonders einfach kontrollierbar. Eine derartige Elektrolyseemheit 42 ist beispielsweise aus der Druckschrift WO 97/36827 bekannt.
Damit die Begasungsvorrichtung 40 einen besonders geringen Wartungs- und Reparaturaufwand aufweist, ist sie m die Zweigleitung 38 geschaltet, die ausgangsseitig unmittelbar nach der Kondensatreinigungseinrichtung 12 vom Speisewasser- Dampf-Kreislauf 4 abzweigt. Für eine besonders homogene Verteilung des in der Begasungsvorrichtung 40 erzeugten Wasserstoffs W ist die Begasungsvorrichtung 40 ausgangsseitig über die Zweigleitung 38 mit der Speisewasserpumpe 20 unmittelbar verbunden. Der m der Begasungsvorrichtung 40 erzeugte Sauerstoff S ist über eine Teilleitung 52 dem Kondensator 6 zufuhrbar. Der Kondensator β ist zusatzlich ber eine Abgaslei- 7 tung 54 an ein Abgassystem 56 angeschlossen, das zum Abführen von Abgasen A über einen Schornstein 58 mit der Umwelt verbunden ist.
Um zu vermeiden, daß durch die Membrane der Membranelektrolysezellen Wasserstoff W auf die Sauerstoff-Seite gelangen kann, umfaßt die Begasungsvorrichtung 40 eine Druck-Regeleinheit 60. Diese stellt sicher, daß, ausgangsseitig von der Be- gasungsvorrichtung 40 aus gesehen, in der Teilleitung 52 ein vergleichsweise höherer Druck als in der Zweigleitung 38 herrscht. Hierzu wirkt die Druck-Regeleinheit 60 mit geeigneten Mitteln, beispielsweise elektrische oder mittels Drosseleinrichtungen, auf die Teilleitung 52 und die der Begasungsvorrichtung 40 nachgeschaltete Zweigleitung 38 ein.
Beim Betrieb der nuklearen Kraftwerksanlage 2 ist zur Verhinderung einer radiolytischen Zersetzung des Kühlmediums K eine Begasung des Wassers oder Kühlmediums K mit Wasserstoff W vorgesehen. Hierfür wird die Kondensatreinigungseinrich- tung 12 verlassendes Kühlmedium K mit einer Reinheit von weniger als 1 μS/cm über die Zweigleitung 38 der Begasungsvor- richtung 40 zugeführt. Der in den Membranelektrolysezellen 44 erzeugte Wasserstoff W wird für eine besonders homogene Verteilung des Wasserstoffs W im Speisewasser-Dampf-Kreislauf 4 eingangsseitig vor der Speisewasserpumpe 20 in den Speisewasser-Dampf-Kreislauf 4 eingespeist. Der in der Begasungsvorrichtung 40 zusätzlich erzeugte Sauerstoff S wird über die Leitung dem Abgassystem zugeführt, um dort eine Rekombination von überschüssigem Wasserstoff W herbeizuführen.
Die als Siedewasserreaktor ausgebildete nukleare Kraftwerksanlage 2 weist zur Vermeidung von Korrosion ( "integranular stress corrosion cracking IGSCC) im Reaktor-Druckbehälter 276 eine Begasungsvorrichtung 40 zur Begasung des im Speisewas- ser-Dampf-Kreislauf 4 geführten Kühlmediums K mit Wasserstoff W auf. Durch die besonders hohe Reinheit des der Begasungsvorrichtung 40 zugeführten Kühlmediums K weist diese einen besonders geringen Wartungs- und Reparaturaufwand auf. Außerdem gewährleistet die Einspeisung des Wasserstoffs W vor der Speisewasserpumpe 20 eine besonders homogene Verteilung des Wasserstoffs W im Speisewasser-Dampf-Kreislauf 4.

Claims

Patentansprüche
1. Nukleare Kraftwerksanlage (2) mit einem eine Kondensatreinigungseinrichtung (12) und eine dem Reaktordruckbehäl- ter (26) vorgeschaltete Speisewasserpumpe (20) umfassenden Speisewasser-Dampf-Kreislauf (4), der eine Zweigleitung (38) aufweist, in die eine Begasungsvorrichtung (40) zur Begasung von Kühlmedium (K) mit Wasserstoff (W) geschaltet ist, wobei die Zweigleitung (38) unmittelbar nach der Kondensatreini- gungseinrichtung (12) vom Speisewasser-Dampf-Kreislauf (4) abzweigt und unmittelbar vor der Speisewasserpumpe (20) in den Speisewasser-Dampf-Kreislauf (4) mündet.
2. Nukleare Kraftwerksanlage (2) nach Anspruch 1, bei der die Begasungsvorrichtung (40) eine Elektrolyseeinheit (42) zur Zersetzung einer Teilmenge des dort geführten Wassers in Wasserstoff (W) und Sauerstoff (S) aufweist.
3. Nukleare Kraftwerksanlage (2) nach Anspruch 2, bei der die Elektrolyseeinheit (42) eine Anzahl von Membranelektrolysezellen (44) umfaßt.
4. Nukleare Kraftwerksanlage (2) nach einem der Ansprüche 1 bis 3, bei der die Begasungsvorrichtung (40) eine Druck-Regeleinheit (46) aufweist, die auf der Wasserstoff-Seite der Begasungsvorrichtung (40) einen im Vergleich zur Sauerstoff-Seite der Begasungsvorrichtung (40) niedrigeren Druck aufrecht erhält.
5. Nukleare Kraftwerksanlage (2) nach einem der Ansprüche 2 bis 4, bei der der in der Elektrolyseeinheit (42) erzeugte Sauerstoff (S) einem Abgassystem (56) zuführbar ist.
6. Nukleare Kraftwerksanlage (2) nach einem der Ansprüche 1 bis 5, 10 ie einen für Siedewasser vorgesehenen Reaktordruckbehalter (26) aufweist.
PCT/DE1999/000541 1998-03-13 1999-03-01 Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium WO1999048106A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59901938T DE59901938D1 (de) 1998-03-13 1999-03-01 Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium
JP2000537222A JP3388579B2 (ja) 1998-03-13 1999-03-01 冷却材への水素注入装置を備えた原子力設備
EP99916769A EP1070324B1 (de) 1998-03-13 1999-03-01 Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium
US09/661,507 US6968028B1 (en) 1998-03-13 2000-09-13 Nuclear power station having a gas-injection device for a coolant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19810963A DE19810963C1 (de) 1998-03-13 1998-03-13 Nukleare Kraftwerksanlage mit einer Begasungsvorrichtung für ein Kühlmedium
DE19810963.6 1998-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/661,507 Continuation US6968028B1 (en) 1998-03-13 2000-09-13 Nuclear power station having a gas-injection device for a coolant

Publications (1)

Publication Number Publication Date
WO1999048106A1 true WO1999048106A1 (de) 1999-09-23

Family

ID=7860803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000541 WO1999048106A1 (de) 1998-03-13 1999-03-01 Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium

Country Status (7)

Country Link
US (1) US6968028B1 (de)
EP (1) EP1070324B1 (de)
JP (1) JP3388579B2 (de)
DE (2) DE19810963C1 (de)
ES (1) ES2179642T3 (de)
TW (1) TW449752B (de)
WO (1) WO1999048106A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444301A (zh) * 2019-08-13 2019-11-12 中国核动力研究设计院 模拟超临界压力瞬变工况实验装置与实验方法
CN110783006A (zh) * 2019-11-20 2020-02-11 中国核动力研究设计院 一种除气试验装置及方法
CN113874956A (zh) * 2019-07-03 2021-12-31 法玛通股份有限公司 用于压水反应堆的氢化***和相应方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50303594D1 (de) * 2002-07-26 2006-07-06 Alstom Technology Ltd Verfahren zum betrieb eines kernkraftwerkes sowie vorrichtung zur durchführung des verfahrens
EP1873361A1 (de) * 2006-06-28 2008-01-02 Siemens Aktiengesellschaft Messvorrichtung für Reinheitsmessungen eines Medienkreislaufs eines Kraftwerks und Verfahren zum Betreiben der Messvorrichtung
US8404099B2 (en) * 2008-09-19 2013-03-26 David E. Fowler Electrolysis of spent fuel pool water for hydrogen generation
US9460818B2 (en) * 2012-03-21 2016-10-04 Ge-Hitachi Nuclear Energy Americas Llc Low pressure reactor safety systems and methods
RU2596162C2 (ru) * 2014-11-11 2016-08-27 Открытое Акционерное Общество "Акмэ-Инжиниринг" Способ и система управления вводом газа в теплоноситель и ядерная реакторная установка
CN106847349A (zh) * 2016-11-25 2017-06-13 深圳中广核工程设计有限公司 核电站一回路冷却剂高压加氢***
CN114057160A (zh) * 2021-12-17 2022-02-18 中国核动力研究设计院 一种在液态重金属冷却剂装置中制氢气的***及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105168C2 (de) * 1981-02-13 1984-11-29 Brown Boveri Reaktor GmbH, 6800 Mannheim Anordnung zur Versorgung des Hauptkühlmittels einer wassergekühlten Kernreaktoranlage mit Wasserstoff
JPS62150198A (ja) * 1985-12-25 1987-07-04 株式会社東芝 沸騰水型原子炉の水素ガス注入・回収装置
SE461818B (sv) * 1988-09-23 1990-03-26 Asea Atom Ab Saett att tillfoera vaetgas till reaktorvattnet under drift av en kokvattenreaktor
EP0426453A2 (de) * 1989-11-01 1991-05-08 Hitachi, Ltd. Sensor zur Kontrolle von Reaktorwasser und Methode zur Kontrolle der Chemie dieses Wassers
US5398269A (en) * 1992-03-19 1995-03-14 Hitachi, Ltd. Water quality control method and device for nuclear power plant, and nuclear power plant
US5467375A (en) * 1993-09-09 1995-11-14 Kabushiki Kaisha Toshiba Gas injection system of nuclear power plant and gas injection method therefor
DE19602213A1 (de) * 1996-01-23 1997-07-24 Siemens Ag Kernreaktor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2948297C2 (de) * 1978-06-27 1985-01-17 Kraftwerk Union AG, 4330 Mülheim Kernreaktor mit einem flüssigen Kühlmittel
DE2828153C3 (de) * 1978-06-27 1984-07-26 Kraftwerk Union AG, 4330 Mülheim Kernreaktor mit einem flüssigen Kühlmittel
JPH0631816B2 (ja) * 1986-10-03 1994-04-27 株式会社日立製作所 原子力プラントにおける冷却水中への放射性物質の溶出抑制方法及びその装置
JP2905705B2 (ja) * 1994-10-25 1999-06-14 神鋼パンテツク株式会社 原子炉水の酸素濃度制御装置
DE19536450C1 (de) * 1995-09-29 1996-11-21 Siemens Ag Kernreaktor mit einem flüssigen Kühlmittel
JP3979671B2 (ja) * 1996-03-28 2007-09-19 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング ガス注入装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105168C2 (de) * 1981-02-13 1984-11-29 Brown Boveri Reaktor GmbH, 6800 Mannheim Anordnung zur Versorgung des Hauptkühlmittels einer wassergekühlten Kernreaktoranlage mit Wasserstoff
JPS62150198A (ja) * 1985-12-25 1987-07-04 株式会社東芝 沸騰水型原子炉の水素ガス注入・回収装置
SE461818B (sv) * 1988-09-23 1990-03-26 Asea Atom Ab Saett att tillfoera vaetgas till reaktorvattnet under drift av en kokvattenreaktor
EP0426453A2 (de) * 1989-11-01 1991-05-08 Hitachi, Ltd. Sensor zur Kontrolle von Reaktorwasser und Methode zur Kontrolle der Chemie dieses Wassers
US5398269A (en) * 1992-03-19 1995-03-14 Hitachi, Ltd. Water quality control method and device for nuclear power plant, and nuclear power plant
US5467375A (en) * 1993-09-09 1995-11-14 Kabushiki Kaisha Toshiba Gas injection system of nuclear power plant and gas injection method therefor
DE19602213A1 (de) * 1996-01-23 1997-07-24 Siemens Ag Kernreaktor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8732, Derwent World Patents Index; AN 87-225150 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874956A (zh) * 2019-07-03 2021-12-31 法玛通股份有限公司 用于压水反应堆的氢化***和相应方法
CN110444301A (zh) * 2019-08-13 2019-11-12 中国核动力研究设计院 模拟超临界压力瞬变工况实验装置与实验方法
CN110444301B (zh) * 2019-08-13 2022-07-01 中国核动力研究设计院 模拟超临界压力瞬变工况实验装置与实验方法
CN110783006A (zh) * 2019-11-20 2020-02-11 中国核动力研究设计院 一种除气试验装置及方法
CN110783006B (zh) * 2019-11-20 2021-03-26 中国核动力研究设计院 一种除气试验装置及方法

Also Published As

Publication number Publication date
EP1070324A1 (de) 2001-01-24
DE19810963C1 (de) 1999-11-04
TW449752B (en) 2001-08-11
DE59901938D1 (de) 2002-08-08
JP3388579B2 (ja) 2003-03-24
JP2002507731A (ja) 2002-03-12
US6968028B1 (en) 2005-11-22
EP1070324B1 (de) 2002-07-03
ES2179642T3 (es) 2003-01-16

Similar Documents

Publication Publication Date Title
DE102005013519B4 (de) Nicht brennbare Abgasfreigabe für wasserstoffbetriebene Brennstoffzellen und Verfahren zum Ablassen von Anodenabgas
DE112005003296B4 (de) Dekontaminationsprozedur für einen Brennstoffzellenstromerzeuger
EP1070324B1 (de) Nukleare kraftwerksanlage mit einer begasungsvorrichtung für ein kühlmedium
DE19504632C2 (de) Elektrolyseur und Verfahren zur Elektrolyse eines fluiden Elektrolyts
EP3489389A1 (de) Elektrolyseeinheit und elektrolyseur
DE102017204177A1 (de) Verfahren zum Betreiben eines Elektrolysestacks, Elektrolysestack und Elektrolysesystem
EP1303028B1 (de) System zur Versorgung eines Generators mit Wasserstoff
EP3441452B1 (de) Energieerzeugungssystem mit einem heizkraftwerk und einer vergärungsanlage und verfahren zur energieerzeugung
EP4123052A1 (de) Verfahren zum betrieb einer elektrolyseanlage und elektrolyseanlage
DE102018213404A1 (de) Elektrolyseur und Verfahren zum Betreiben eines Elektrolyseurs
DE102015108763B4 (de) Brennstoffzelle mit Wasserdekontaminationseinrichtung
EP1240043A1 (de) Brennstoffzellenanlage für den antrieb eines fahrzeugs
DE102021100193A1 (de) Verfahren zur Dekarbonisierung eines Industriestandorts
DE102005052535B4 (de) Brennstoffzellen-Energieerzeugungssystem mit Desoxidationsbehälter
DE102021117828A1 (de) Verfahren und Vorrichtung zur Elektrolyse von Wasser oder einem Elektrolyten, bei der der Elektrolyt durch ionisiertes Gas (kaltes Plasma) aktiviert wird
EP3971324A1 (de) Verfahren zum betreiben einer elektrolyseanlage sowie elektrolyseanlage
EP1121329B1 (de) Aufbereitungssystem und verfahren zur verminderung des sauerstoffgehalts von in einem teilsystem einer technischen anlage geführten wasser
DE10209309A1 (de) Verfahren zur Inertisierung der Anoden von Brennstoffzellen
EP0889852B1 (de) Begasungsvorrichtung
DE19602213C2 (de) Kernreaktor mit einem Kühlkreis
WO2021197699A1 (de) Verfahren und vorrichtung zur synthese von ammoniak
DE2948297A1 (de) Kernreaktor mit einem fluessigen kuehlmittel
EP4124676A1 (de) Elektrolyseanlage mit einer mehrzahl von elektrolysezellen
DE102022204834A1 (de) Wasserelektrolyseur-System
DE3330012A1 (de) Siedewasserreaktor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999916769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09661507

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999916769

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999916769

Country of ref document: EP