WO1999044588A2 - Verfahren zur herstellung von festen, sphärischen formkörpern, enthaltend pharmazeutische wirkstoffe in einer bindemittelmatrix - Google Patents

Verfahren zur herstellung von festen, sphärischen formkörpern, enthaltend pharmazeutische wirkstoffe in einer bindemittelmatrix Download PDF

Info

Publication number
WO1999044588A2
WO1999044588A2 PCT/EP1999/001271 EP9901271W WO9944588A2 WO 1999044588 A2 WO1999044588 A2 WO 1999044588A2 EP 9901271 W EP9901271 W EP 9901271W WO 9944588 A2 WO9944588 A2 WO 9944588A2
Authority
WO
WIPO (PCT)
Prior art keywords
melt
matrix
pharmaceutical active
weight
auxiliary
Prior art date
Application number
PCT/EP1999/001271
Other languages
English (en)
French (fr)
Other versions
WO1999044588A3 (de
Inventor
Andreas Kleinke
Thomas Kessler
Jörg Rosenberg
Harald Krull
Gunther Berndl
Werner Maier
Jörg Breitenbach
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP99911718A priority Critical patent/EP1059914A2/de
Priority to CA002322629A priority patent/CA2322629A1/en
Publication of WO1999044588A2 publication Critical patent/WO1999044588A2/de
Publication of WO1999044588A3 publication Critical patent/WO1999044588A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient

Definitions

  • the present invention relates to a process for the production of solid, spherical shaped articles which contain at least one active pharmaceutical ingredient homogeneously dispersed in a binder matrix by mixing the ingredients to form a melt and subsequent shaping.
  • EP-A 240 904, EP-A 240 906 and EP-A 358105 that pharmaceutical active ingredients can be processed together with polymeric binders by melt extrusion to give various types of solid pharmaceutical forms.
  • the shaping is done by calendering or hot cutting with the help of rotating knives.
  • WO 93/25074 describes the manufacture of crop protection agents by extrusion and shaping using such a rotoformer.
  • the formulations available thereafter are cloudy, mostly soft powder granules.
  • the object of the present invention was to provide a process for the production of solid spherical dosage forms which also enables the processing of low-viscosity melts and which leads to dosage forms with good product properties.
  • a process for the production of solid, spherical shaped bodies which contains at least one active pharmaceutical ingredient homogeneously dispersed in an auxiliary matrix.
  • ten by mixing the ingredients into a melt with subsequent shaping, which is characterized in that at least one active pharmaceutical ingredient with at least one thermoplastically processable matrix auxiliary is processed to a homogeneous melt with a viscosity of less than 5000 mPas, and the melt with the aid a rotating perforated roller forms into drops, which are then solidified by cooling.
  • the process according to the invention is suitable for all active ingredients which do not decompose under the processing conditions.
  • the process according to the invention is suitable, for example, for formulating the following substances or their physiologically acceptable salts, it also being possible to produce the salts in situ in the extruder:
  • Acyclovir aminoglycosides, amphotericin B, azole antifungals, clotrimazole, itraconazole, sepraconazole, clindamycin,
  • Cephalosporins Cephalosporins, chloramphenicol, erythromycin, 5-fluorouracil, etoposide, fluctytosin, ganciclovir, griseofulvin, gyrase inhibitors, isoniacid, lincosamides, mebendazole, mefloquine, metanidazole, nitroimidazole, bionobiocimiminin, rbobi polimiminquin, novobiocimiminquin, platinum - navir, streptomycin, sulfonamides, tetracyclines, trimethoprim, vancomycin, zidovudine;
  • Anti-rheumatic drugs chloroquine, indomethacin, gold compounds, phenylbutazone, oxyphenylbutazone, penicillinamine; Hypnotics
  • Androgens antiandrogens, progestogens, glucocorticoids, estrogens, cortisol, dexamethasone, prednisolone, testosterone, adutinin, oxytocin, somatropin, insulin;
  • Vitamins C, B, A, D, folic acid
  • Solid solutions are familiar to the person skilled in the art (see Chiou and Riegelman, J. Pharm. Sei. JSJ 1281-1302 (1971)). In solid solutions of active pharmaceutical ingredients in polymers or other matrices, the active ingredient is molecularly dispersed in the matrix.
  • Preferred active ingredients are non-steroidal anti-inflammatory drugs, opioids and vitamins. Ibuprofen and tramadol hydrochloride are particularly preferred.
  • the amount of active ingredients in the overall preparation can vary within wide limits depending on the effectiveness, release rate and solubility.
  • the active substance content can be 0.1 to 90, preferably 5 to 70,% by weight, based on the entire preparation. The only condition is that the melts can be processed by the method according to the invention. 25
  • the active ingredient is homogeneously dispersed, preferably as a so-called “solid solution”, i.e. molecularly disperse, in an auxiliary matrix.
  • Suitable structural components for the auxiliary matrix can be polymeric or also low-molecular-weight binders, provided that they can be processed without thermoplastic decomposition and, together with the active ingredient and possibly other additives, result in solid forms which do not tend to cold flow.
  • Suitable polymeric matrix components are, for example:
  • N-vinylpyrrolidone such as polyvinylpyrrolidone (PVP), copolymers of N-vinylpyrrolidone
  • the K values are in the range from 10 to 100, preferably 12 to 70, in particular 12 to 35.
  • the K are -Values particularly preferred in the range of
  • Copolymers of vinyl acetate and crotonic acid, partially saponified polyvinyl acetate or polyvinyl alcohol are preferred.
  • Cellulose derivatives such as cellulose ethers, especially methyl cellulose, ethyl cellulose, hydroxyalkyl celluloses, especially hydroxypropyl cellulose, hydroxyalkyl alkyl celluloses, especially hydroxypropyl methyl cellulose and hydroxypropyl ethyl cellulose.
  • Cellulose esters such as cellulose phthalates, in particular cellulose sulfate phthalate and hydroxypropyl methyl cellulose phthalate, furthermore also mannans, in particular galactomannans.
  • polymeric binders are polymers based on acrylates or methacrylates, for example the polyacrylates and polymethacrylates known as Eurogitite types, copolymers of acrylic acid and methyl methacrylate or polyhydroxyalkyl acrylates or methacrylates.
  • Polylactides polyglycolides, polylactide-polyglycolides, polydioxanes, polyanhydrides, polystyrene sulfonates, polyacetates, polycaprolactones, poly (ortho) esters, polyamines, polyhydroxyalkanoates or alginates are also suitable.
  • Suitable matrix components can also be natural or semisynthetic binders such as starches, degraded starches, for example maltodextrin, and also gelatin, which, depending on requirements, can have a basic or acidic character, chitin or chitosan. Gelatins are preferred.
  • Low molecular weight binders are also suitable according to the invention as matrix auxiliaries, in particular sugar alcohols such as, for example, sorbitol, mannitol, xylitol or, particularly preferably, isomalt. Also preferred is trehalose, which has a cryoprotective effect.
  • Fats or waxes can also be used as binders -eiaag-e-.
  • binders -eiaag-e-.
  • polyethylene glycols or polypropylene glycols with molecular weights in the range from 300 to 100,000 are suitable as binders.
  • binders are the homo- and copolymers of N-vinylpyrrolidone, sugar alcohols and gelatin.
  • Binders are used, in particular also mixtures of thermoplastically processable polymers with sugar alcohols.
  • the binder must soften or melt in the total mixture of all components in the range from 40 to 180 ° C., preferably 60 to 130 ° C.
  • a solvent can also be added to the melt, which in addition to its dissolving properties can also have a softening effect in the melt.
  • Such solvents are above all monohydric or polyhydric alcohols or water or mixtures of alcohols and water. Preferred softening
  • Solvent is water. It may be advisable to add the plasticizing solvent in amounts of 0.5 to 30% by weight. By adding the solvent, the viscosity of the melt can be adjusted in a targeted manner and the tear behavior at the nozzle or nozzle plate can be influenced. When solidifying in the
  • melts are processed whose viscosity at 120 ° C. is less than 5000 mPas, preferably 1000 to 4000 mPas (measured with a rotary viscometer with shear rates in the range from 10
  • the molds produced by the process according to the invention can furthermore contain customary auxiliaries in the amounts customary for the applications mentioned.
  • auxiliaries are e.g. Fillers, lubricants, mold release agents, plasticizers, blowing agents, stabilizers, dyes, extenders, flow agents and mixtures thereof. In principle, however, these pharmaceutical auxiliaries must not
  • fillers are inorganic fillers such as the 35 oxides of magnesium, aluminum, silicon, titanium etc. in a concentration of 0.02 to 50, preferably from 0.20 to 20% by weight, based on the total weight of the pharmaceutical form.
  • lubricants are stearates of aluminum, calcium 40 and magnesium as well as talc and silicones in a concentration of 0.1 to 5, preferably 0.1 to 3% by weight, based on the total weight of the mold.
  • sodium carboxymethyl starch 45 or crospovidone can be used as decay accelerators.
  • Wetting agents such as sodium lauryl sulfate or sodium docusate can also be used.
  • plasticizers include low molecular weight poly (alkylene oxides), such as poly (ethylene glycols), poly (propylene glycols), poly (ethylene propylene glycols); organic low molecular weight plasticizers such as glycerol, pentaerythritol, glycerol monoacetate, diacetate or triacetate, propylene glycol, sodium diethyl sulfosuccinate etc., added in concentrations of 0.5 to 15, preferably 0.5 to 5% by weight, based on the Total weight of the dosage form.
  • dyes are known azo dyes, organic and inorganic pigments or colorants of natural origin.
  • Inorganic pigments are preferred in concentrations of 0.001 to 10, preferably 0.5 to 3% by weight, based on the total weight of the pharmaceutical form.
  • additives which improve the flow properties of the mixture or act as mold release agents, such as: animal or vegetable fats, preferably in their hydrogenated form, especially those which are solid at room temperature. These fats preferably have a melting point of 50 ° C or higher. Triglycerides of C 12 ", C 14 -, C 6 - and C ⁇ 8 -fatty acids are preferred. The same function can also be performed by waxes such as carnauba wax. These additives can be added alone without the addition of fillers or plasticizers.
  • These fats and Waxes can advantageously be admixed alone or together with mono- and / or diglycerides or phosphatides, especially lecithin
  • the mono- and diglycerides preferably derive from the Fet types described above, ie C i2 -, C 14 -, C ⁇ 6 - and .
  • C ⁇ S fatty acids the total amount of fats, waxes, mono- and diglycerides and / or lecithins is 0.1 to 30, preferably 0.1 to 50 wt -.% based on the total weight of the dosage form.
  • flow regulators e.g. Aerosils or talc are used.
  • Stabilizers can also be added, e.g. Antioxidants, light stabilizers, hydroperoxide destroyers, radical scavengers and stabilizers against microbial attack.
  • auxiliaries are, for example, pentaerythritol and pentaerythritol tetraacetate, polymers such as, for example, polyethylene or polypropylene oxides and their block copolymers (poloxamers), phosphatides such as lecithin, homo- and copolymers of Vinyl pyrrolidones, surfactants such as polyoxyethylene 40 stearate and citric and succinic acid, bile acids, sterols and others, as indicated, for example, by JL Ford, Pharm. Acta Helv. £ 1, 69-88 (1986).
  • the biologically active substance can be mixed with the auxiliaries in a manner known per se.
  • the components can first be mixed and then melted and homogenized. Particularly in the case of active substances which are thermolabile or sensitive to shear forces, it may be advisable to first melt and premix the auxiliary substances and then to mix in the active substance.
  • the melting and mixing takes place in a device which is customary for this purpose.
  • Devices such as those used in plastics technology are generally suitable as mixing and melting devices. Suitable devices are described, for example, in "Mixing in the manufacture and processing of plastics", H. Pahl, VDI-Verlag, 1986. Particularly suitable devices are extruders and dynamic and static mixers, as well as stirred tanks, single-shaft agitators with stripping devices, in particular so-called paste agitators , multi-shaft agitators, solid mixers and preferably mixing-kneading reactors, double-bowl kneaders (trough mixers), stamp kneaders (internal mixers) or rotor / stator systems.
  • Mixing and melting is particularly preferably carried out in a single or multi-screw extruder, in particular a twin-screw extruder, with kneading chambers also being connected upstream of this.
  • Mixing and melting can also take place in apparatuses in which the energy is supplied in the form of microwaves or ultrasound.
  • the mixing and melting device can be fed continuously or discontinuously in the usual manner.
  • Powdery components can be fed in freely, for example using a differential weigh feeder.
  • Plastic masses can be fed directly from an extruder, for example, or fed in via a gear pump.
  • Liquid components can be metered in using suitable pump units.
  • low-viscosity pastes or gels with a high dispersant content can also be supplied, water being preferably used as the dispersant.
  • the mixtures are preferably processed into melts at temperatures from 20 to 280 ° C., particularly preferably from 25 to 180 ° C.
  • the still thermoplastic melt is divided into drops using rotating perforated rolls, which are then solidified by cooling.
  • the plastic mixture is first extruded into a continuous strand using a suitable extrusion device. Any solvents and residual moisture that may be present can be drawn off during the extrusion by means of a vacuum pump.
  • the shape of the extrusion tool depends on the desired shape.
  • the melt is preferably extruded through round-hole nozzles, the plastic mixture being shaped as a strand with a circular cross section and discharged into the Rotoformer® or into an apparatus suitable for the production of pastilles.
  • the plastic melt is passed through rotating perforated rolls and broken down into drops in this way.
  • the device suitable for pastillation consists of a rotating, heatable roller with openings, which is surrounded by a screen jacket.
  • the roller and screen casing preferably move in opposite directions to one another.
  • the temperature of the extruder zones was (in ° C.): zone 1/80; Zone 2/110; Zone 3/150; Zone 4/150; Zone 6/150; Zone 7/150.
  • the speed of the screws was 70 rpm.
  • the throughput was 20 kg / h with a residence time of 1-2 minutes.
  • the melt emerging at the extruder head through a nozzle was fed into the roller of the Rotofor ers® (type 50.211, Sandvik Process Systems GmbH, Stuttgart) via a gear pump.
  • the Rotoformer consists of a rotating, heated roller that has a screen jacket, from the perforation of which the plastic extrudate was discharged onto a cooled conveyor belt.
  • the distance between that Sieve jacket and the cooling belt was 3 mm.
  • the cooling belt had a length of 4 m with a belt width of 400 mm.
  • the temperature of the roller was kept at 150 to 170 ° C, the belt temperature was set to 20 ° C by means of water cooling and the belt speed was 30 m / min.
  • Temperature of the extruder zones in ° C 20, 80, 120, 80, 80, 80 (nozzle)
  • Hydroxypropylmethylcellulose m.w. with a viscosity of 4000 mPa-s 14% by weight (Methocel® K4M, Colorcon Dow))

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Verfahren zur Herstellung von festen sphärischen Formkörpern, die mindestens einen pharmazeutischen Wirkstoff homogen in einer Hilfsstoffmatrix dispergiert enthalten, durch Vermischen der Inhaltsstoffe zu einer Schmelze und anschliessender Formgebung, dadurch gekennzeichnet, dass man mindestens einen pharmazeutischen Wirkstoff mit mindestens einem thermoplastisch verarbeitbaren Matrixhilfsstoff zu einer homogenen Schmelze mit einer Viskosität kleiner 5000 mPas verarbeitet, und die Schmelze mit Hilfe einer rotierenden Lochwalze zu Tropfen formt, welche anschliessend durch Abkühlen verfestigt werden.

Description

Verfahren zur Herstellung von festen, sphärischen Formkörpern, enthaltend pharmazeutische Wirkstoffe in einer Bindemittelmatrix
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von festen, sphärischen Formkörpern, die mindestens einen pharmazeutischen Wirkstoff homogen in einer Bindemittelmatrix disper- giert enthalten, durch Vermischen der Inhaltsstoffe zu einer Schmelze und anschliessender Formgebung.
Aus der EP-A 240 904, der EP-A 240 906 und der EP-A 358105 ist bekannt, dass pharmazeutische Wirkstoffe zusammen mit polymeren Bindemitteln durch Schmelzextrusion zu verschiedenartigen festen Arzneiformen verarbeitet werden können. Die Formgebung erfolgt dabei durch Kalandrierung oder Heissabschlag mit Hilfe rotierender Messer.
Allerdings eignen sich solche Formgebungsverfahren weniger zur Formgebung niederviskoser Schmelzen, wie sie zum Beispiel bei Formulierungen mit Zuckeralkoholen als Matrix erhalten werden. Solche niederviskosen Schmelzen weisen zusätzlich auch eine Neigung zur Klebrigkeit auf,was die Formgebung mittels der oben er- wähnten Verfahren ebenfalls erschwert.
Aus der EP-A 012 192 ist eine Vorrichtung zum Auspressen von fliessfähigen Massen bekannt, die vorzugsweise zum Granulieren eingesetzt werden kann. In dieser Vorrichtung wird die fliessfä- hige Masse mit Hilfe rotierender Lochzylinder zu Tropfen zerteilt. Entsprechende Vorrichtungen sind kommerziell unter dem Namen Rotoformer® (Firma Sandvik) erhältlich.
In der WO 93/25074 ist die Konfektionierung von Pflanzenschutz - mittein durch Extrusion und Formgebung mit Hilfe eines solchen Rotoformers beschrieben. Die danach erhältichen Formulierungen sind trübe, zumeist weiche Pulvergranulate.
Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung von festen sphärische Arzneiformen zur Verfügung zu stellen, das auch die Verarbeitung niedrigviskoser Schmelzen ermöglicht und zu Arzneiformen mit guten Produkteigenschaften führt.
Demgemäss wurde ein Verfahren zur Herstellung von festen, sphärischen Formkörpern gefunden, die mindestens einen pharmazeutischen Wirkstoff homogen in einer Hilfsstoffmatrix dispergiert enthal- ten, durch Vermischen der Inhaltsstoffe zu einer Schmelze mit an- schliessender Formgebung, welches dadurch gekennzeichnet ist, dass man man mindestens einen pharmazeutischen Wirkstoff mit mindestens einem thermoplastisch verarbeitbaren Matrixhilfsstoff zu einer homogenen Schmelze mit einer Viskosität kleiner 5000 mPas verarbeitet, und die Schmelze mit Hilfe einer rotierenden Lochwalze zu Tropfen formt, welche anschliessend durch Abkühlen verfestigt werden.
Das erfindungsgemässe Verfahren eignet sich für alle Wirkstoffe, die sich unter den Verarbeitungsbedingungen nicht zersetzen.
Das erfindungsgemäße Verfahren eignet sich beispielsweise zur Formulierung folgender Stoffe oder deren physiologisch akzepta- blen Salzen, wobei die Salze auch in situ im Extruder erzeugt werden können:
Antiinfektiva
Aciclovir, Aminoglykoside, Amphotericin B, Azol-Antimykotika, Clotrimazol, Itraconazol, Sepraconazol, Clindamycin,
Cephalosporine, Chloramphenicol, Erythromycin, 5-Fluoruracil, Etoposid, Fluctytosin, Ganciclovir, Griseofulvin, Gyrasehemm- stoffe, Isoniacid, Lincosamide, Mebendazol, Mefloquin, Metro- nidazol, Nitroimidazole, Novobiocin, Platinverbindungen, Polymyxin B, Praziquantel, Pyrimethamin, Rifamipicin, Saqui- navir, Streptomycin, Sulfonamide, Tetracycline, Trimethoprim, Vancomycin, Zidovudin;
Antipyretika, Analgetika, antiinflammatorische Mittel, Para- cetamol, Ibuprofen, Ketoprofen, Oxaprozin, Acetylsalicyl- säure, Morhpin, Oxaprozin, Propoxyphen, Phenylbutazon;
Antibiotika
Rifampicin, Griseofulvin, Chloramphenicol, Cycloserin, Eryt- hromycin, Penicilline wie Penicillin G, Streptomycin, Tetra- cyclin;
Antiepileptika Hydantoine, Carbamazepin;
Antitussiva und Antiasthmatika Diphenhydramin;
Antirheumatika Chloroquin, Indomethacin, Goldverbindungen, Phenylbutazon, Oxyphenylbutazon, Penicillinamin; Hypnotika
Barbiturate, Phenobarbital, Zolpidem, Dioxopiperidine, üreide;
- Psychopharmaka, Neuroleptika
Perazin, Promazin, Sulpirid, Thioridazin, Chlorpromazin, Meprobamat, Triflupromazin, Melperon, Clozapin, Risperdion, Reserpin;
- Tranquillantien;
Antidepressiva
Imipramin, Paroxetin, Viloxazin, Moclobemid;
- Psychotonika;
Psychomimetika;
Diuretika Kaliumcanrenoat, Schleifendiuretika, Furosemid, Hydrochloro- thiazid, Spironolacton, Thiazide, Triamteren;
Hormone
Androgene, Antiandrogene, Gestagene, Glucocorticoide, Oestro- gene, Cortisol, Dexamethason, Prednisolon, Testosteron, Adiu- retin, Oxytocin, Somatropin, Insulin;
Immunsuppresiva Ciclosporin;
Bronchodilatoren;
Muskelrelaxantien, Tranquillantien
Carisoprodol, Tetrazepam, Diazepam, Chlordiazepoxid;
Enzyme
Lipase, Phytase;
Gichtmittel Allopurinol, Colchicin;
Antikoagulatien Cumarine; Antiepileptika
Phenotoin, Phenobarbital, Primidon, Valproinsäure, Carbamaze- pin;
- Antihistaminika
Chlorphenoxamin, Dimenhyrinat;
Antimimetika;
- Antihyperttonika, Antiarryhythmika
Lidocain, Procainamid, Chinidin, Calciumanatagonisten, Glyce- roltrinitrat, Isosorbiddinitrat, Isosorbid-5 -mononitrat, Pen- taerythrityltetranitrat, Nifedipine, Diltiazem, Felodipin, Verapamil, Reserpin, Minoxidil, Reserpin, Captopril, Enlana- pril, Lisinopril;
Sympathomimetika
Norfenefrin, Oxedrin, Midodrin, Phenylephrin, Isoprenalin, Salbutamol, Clenbutorol, Ephedrin, Tyramin, Isoprenalin, ß-Blocker wie Alprenolol, Metoprolol, Bisoprolol;
Antidiabetika
Biguanide, Sulfonyharnstoffe, Carbutamid, Tolbutamid, Gli- benclamid, Metformin, Acarbose, Troglitazon;
Eisenpräparationen;
Vitamine
Vitamin C, B, A, D, Folsäure;
ACE-Hemmer
Captopril, Ramipril, Enalapril;
Anabolika;
Iod-Verbindungen;
Röntgenkontrastmittel;
- ZNS -aktive Verbindungen;
Antiparkinsonmitte1
Biperiden, Benzatropin, Amantadin, opioide Analgetika, Barbi- turate, Bezodiazepine, Disulfiram, Lithiumsalze, Theophyllin, Valproinat, Neuroleptika; Zytostatika;
Antispasmolytika;
5 - Vasodilatoren
Naftidrofuryl, Pentoxifyllin.
Es können auch Zubereitungen der biologisch aktiven Stoffe in Form "fester Lösungen" erhalten werden. Der Begriff "feste Lösun- 10 gen" ist dem Fachmann geläufig (s. Chiou und Riegelman, J. Pharm. Sei. jSJ 1281-1302 (1971)). In festen Lösungen von pharmazeutischen Wirkstoffen in Polymeren oder anderen Matrices liegt der Wirkstoff molekulardispers in der Matrix vor.
5 Bevorzugte Wirkstoffe sind nichtsteroidale Antirheumatica, Opioide und Vitamine. Besonders bevorzugt sind Ibuprofen und Tramadol -Hydrochlorid.
Die Menge an Wirkstoffen in der Gesamtzubereitung kann je nach 0 Wirksamkeit, Freisetzungsgeschwindigkeit und Löslichkeit in weiten Grenzen variieren. So kann der Wirkstoffgehalt 0.1 bis 90, vorzugsweise 5 bis 70 Gew.- , bezogen auf die gesamte Zubereitung betragen. Die einzige Bedingung ist, dass die Schmelzen nach dem erfindungsgemässen Verfahren verarbeitbar sind. 25
Der Wirkstoff liegt homogen dispergiert, vorzugsweise als sogenannte "feste Lösung", d.h. molekulardispers, in einer Hilfsstoffmatrix vor.
30 Geeignete Aufbaukomponenten für die Hilfsstoffmatrix können polymere oder auch niedermolekulare Bindemittel sein, soweit sie thermoplastisch zersetzungsfrei verarbeitbar sind und zusammen mit dem Wirkstoff und gegebenenfalls weiteren Additiven nicht zu kaltem Fluss neigende feste Formen ergeben.
35
Geeignete polymere Matrixkomponenten sind beispielsweise:
Homo- oder Copolymerisate des N-Vinylpyrrolidons wie Poly- vinylpyrrolidon (PVP) , Copolymerisate des N-Vinylpyrrolidons
40 mit Vinylestern, insbesondere mit Vinylacetat, oder auch mit Vinylpropionat. Die K-Werte (nach H. Fikentscher, Cellulose- Chemie 13 (1932), Seiten 58 -64 und 71 bis 74) liegen im Bereich von 10 bis 100, vorzugsweise 12 bis 70, insbesondere 12 bis 35. Für PVP liegen die K-Werte besonders bevorzugt im Bereich von
45 10 bis 40. Copolymerisate von Vinylacetat und Crotonsäure, teilverseiftes Polyvinylacetat oder Polyvinylalkohol .
Cellulosederivate wie beispielsweise Celluloseether, insbesondere Methylcellulose, Ethylcellulose, Hydroxyalkylcellulosen, insbesondere Hydroxypropylcellulose, Hydroxyalkyl-Alkylcellulosen, insbesondere Hydroxypropyl-Methylcellulose und Hydroxypropyl- Ethylcellulose .
Celluloseester wie Cellulosephtalate, insbesondere Celluloseace- tatphthalat und Hydroxypropylmethylcellulosephthalat, weiterhin auch Mannane, insbesondere Galactomannane.
Weiterhin eignen sich als polymere Bindemittel auch Polymere auf Basis von Acrylaten oder Methacrylate, beispielsweise die als Eu- dragit-Typen bekannten Polyacrylate und Polymethacrylate, Copolymerisate von Acrylsäure und Methylmethacrylat oder Polyhydroxyal - kyl-Acrylate oder -Methacrylate.
Ebenso eignen sich auch Polylactide, Polyglykolide, Polylactid- polyglykolide, Polydioxane, Polyanhydride, Polystyrolsulfonate, Polyacetate, Polycaprolactone, Poly(ortho) ester, Polyamine, Poly- hydroxyalkanoate oder Alginate.
Geeignete Matrixkomponenten können auch natürliche oder halbsynthetische Bindemittel wie Stärken, abgebaute Stärken beispielsweise Maltodextrin, weiterhin auch Gelatine,welche je nach Anforderungen basischen oder sauren Charakter aufweisen kann, Chitin oder Chitosan sein. Bevorzugt sind Gelatinen.
Auch niedermolekulare Bindemittel eignen sich erfindungsgemäss als Matrixhilfsstoffe, insbesondere Zuckeralkohole wie beispielsweise Sorbit, Mannit, Xylit oder ,besonders bevorzugt, Isomalt. Ebenfalls bevorzugt ist auch Trehalose, die eine kryoprotektive Wirkung entfaltet.
Weiterhin können auch Fette oder Wachse als Bindemittel -eiaag-e- setzt werden. So eignen sich beispielsweise Polyethylenglykole oder Polypropylenglykole mit Molekulargewichten im Bereich von 300 bis 100000 als Bindemittel.
Besonders bevorzugte Bindemittel sind die Homo- und Copolymere des N-Vinylpyrrolidons , Zuckeralkohole und Gelatine.
Es können selbstverständlich auch Mischungen der genannten
Bindemittel eingesetzt werden, insbesondere auch Mischungen von thermoplastisch verarbeitbaren Polymeren mit Zuckeralkoholen. Das Bindemittel muss in der Gesamtmischung aller Komponenten im Bereich von 40 bis 180°C, vorzugsweise 60 bis 130°C erweichen oder schmelzen.
5 Dabei kann der Schmelze auch ein Lösungsmittel zugesetzt werden, das neben seinen Lösungseigenschaften auch eine weichmachende Wirkung in der Schmelze entfalten kann. Derartige Lösungsmittel sind vor allem ein- oder mehrwertige Alkohole oder Wasser oder Mischungen von Alkoholen und Wasser. Bevorzugtes weichmachendes
10 Lösungsmittel ist Wasser. Es kann sich empfehlen, das weichmachende Lösungsmittel in Mengen von 0,5 bis 30 Gew.-% zuzugeben. Durch Zugabe des Lösungsmittels kann gezielt die Viskosität der Schmelze eingestellt und damit das Abrissverhalten an der Düse oder Düsenplatte beeinflusst werden. Bei der Verfestigung in dem
15 kalten flüssigen Medium, die eine Gefriertrocknung darstellt, lässt sich das Lösungsmittel wieder entfernen. Erfindungsgemäss werden Schmelzen verarbeitet deren Viskosität bei 120°C kleiner als 5000 mPas, bevorzugt 1000 bis 4000 mPas beträgt (gemessen mit einem Rotationsviskosimeter mit Scherraten im Bereich von 10 -
20 100°/s) .
Die nach dem erfindungsgemässen Verfahren hergestellten Formen können weiterhin für die genannten Anwendungen übliche Hilfs- stoffe in den hierfür üblichen Mengen enthalten.
25
Pharmahilfsstoffe sind z.B. Füllstoffe, Schmiermittel, Formentrennmittel, Weichmacher, Treibmittel, Stabilisatoren, Farbstoffe, Streckmittel, Fließmittel sowie deren Mischungen. Grundsätzlich jedoch dürfen diesen Pharmahilfsstoffe nicht den
30 erfindungsgemäßen Gedanken einer sich in den Verdauungssäften mit einer Gelschicht umgebenden, sukzessive auflösenden bzw. wenigstens erodierenden, zerfallenden Arzneiform einschränken.
Beispiele für Füllstoffe sind anorganische Füllstoffe wie die 35 Oxide von Magnesium, Aluminium, Silizium, Titan etc. in einer Konzentration von 0,02 bis 50, vorzugsweise von 0,20 bis 20 Gew. -% bezogen auf das Gesamtgewicht der Arzneiform.
Beispiele für Schmiermittel sind Stearate von Aluminium, Calcium 40 und Magnesium sowie Talkum und Silicone in einer Konzentration von 0,1 bis 5, vorzugsweise von 0,1 bis 3 Gew.-% bezogen auf das Gesamtgewicht der Form.
Als Zerfallsbeschleuniger können z.B. Natriumcarboxymethylstärke 45 oder Crospovidon eingesetzt werden. Auch Benetzungsmittel wie Natriumlaurylsulfat oder Natriumdocusat sein einsetzbar. Beispiele für Weichmacher beinhalten niedermolekulare Poly (alkylenoxide) , wie z.B. Poly (ethylenglycole) , Poly (propylen- glycole) , Poly (ethylenpropylenglycole) ; organische Weichmacher mit niederem Molekulargewicht wie Glycerin, Pentaerythrit, Glyce- rinmonoacetat, Diacetat oder Triacetat, Propylenglycol, Natrium- diethylsulfosuccinat etc., zugefügt in Konzentrationen von 0,5 bis 15, vorzugsweise von 0,5 bis 5 Gew. -% bezogen auf das Gesamtgewicht der Arzneiform.
Beispiele für Farbstoffe sind bekannte Azofarbstoffe, organische und anorganische Pigmente oder Farbmittel natürlicher Herkunft.
Anorganische Pigmente sind bevorzugt in Konzentrationen von 0,001 bis 10, vorzugsweise von 0,5 bis 3 Gew. -% bezogen auf das Gesamt - gewicht der Arzneiform.
Darüberhinaus können noch andere Additive zugefügt werden, die die Fließeigenschaften der Mischung verbessern oder als Formtrennmittel wirken, wie z.B: tierische oder pflanzliche Fette, bevorzugt in ihrer hydrierten Form, besonders solche, die bei Raumtemperatur fest sind. Diese Fette haben vorzugsweise einen Schmelzpunkt von 50°C oder höher. Bevorzugt sind Triglyceride der C12"' C14-, Ci6- und Cχ8-Fettsäuren. Die gleiche Funktion können auch Wachse wie z.B. Carnaubawachs erfüllen. Diese Additive kön- nen alleine ohne Zusatz von Füllstoffen oder Weichmachern zugesetzt werden. Diese Fette und Wachse können vorteilhaft allein oder zusammen mit Mono- und/oder Diglyceriden oder Phosphatiden, besonders Lecithin beigemischt werden. Die Mono- und Diglyceride stammen vorzugsweise von den oben beschriebenen Fet -Typen ab, d.h. Ci2-, C14-, Cχ6- und CχS -Fettsäuren. Die Gesamtmenge an Fetten, Wachsen, Mono- und Diglyceriden und/oder Lecithinen beträgt 0,1 bis 30, vorzugsweise 0,1 bis 50 Gew. -% bezogen auf das Gesamtgewicht der Arzneiform.
Als Fließregulierungsmittel können z.B. Aerosile oder Talkum Verwendung finden.
Ferner können auch Stabilisatoren zugefügt werden, wie z.B. Anti- oxidantien, Lichtstabilisatoren, Hydroperoxid-Vernichter, Radikalfänger und Stabilisatoren gegen mikrobiellen Befall.
Unter Hilfsstoffen im Sinne der Erfindung sind auch Substanzen zur Herstellung einer festen Lösung mit dem pharmazeutischen Wirkstoff zu verstehen. Diese Hilfsstoffe sind beispielsweise Pentaerythrit und Pentaerythrit- tetraacetat, Polymere wie z.B. Polyethylen- bzw. Polypropylenoxide und deren Blockcopolymere (Poloxamere) , Phosphatide wie Lecithin, Homo- und Copolymere des Vinylpyrrolidons, Tenside wie Polyoxyethylen-40-stearat sowie Zitronen- und Bernsteinsäure, Gallensäuren, Sterine und andere, wie z.B. bei J.L. Ford, Pharm. Acta Helv. £1, 69-88 (1986) angegeben.
Als pharmazeutische Hilfsstoffe gelten auch Zusätze von Basen oder Säuren zur Steuerung der Löslichkeit eines Wirkstoffes (s. z.B. K. Thoma et al., Pharm. Ind. 51, 98-101 (1989)).
Das Vermischen der biologisch aktiven Substanz mit den Hilfs- stoffen kann auf an sich bekannte Weise erfolgen. Die Komponenten können zuerst vermischt und dann aufgescmolzen und homogenisiert werden. Insbesondere bei thermolabilen oder gegen Scherkräfte empfindlichen Wirkstoffen kann es sich aber empfehlen, zuerst die Hilfsstoffe aufzuschmelzen und vorzumischen und dann den Wirkstoff einzumischen.
Das Aufschmelzen und Mischen erfolgt in einer für diesen Zweck üblichen Vorrichtung. Als Misch- und Schmelzapparate sind allge- mein solche Vorrichtungen geeignet wie sie in der Kunststoff - technologie eingesetzt werden. Geeignete Vorrichtungen sind beispielsweise beschrieben in "Mischen beim Herstellen und Verarbeiten von Kunststoffen", H. Pahl, VDI-Verlag, 1986. Besonders geeignete Vorrichtungen sind Extruder und dynamische und stati- sehe Mischer, sowie Rührkessel, einwellige Rührwerke mit Abstreifvorrichtungen, insbesondere sogenannte Pastenrührwerke, mehrwellige Rührwerke, Feststoffmischer sowie vorzugsweise Misch- Knetreaktoren, Doppelmuldenkneter (Trogmischer) , Stempelkneter (Innenmischer) oder Rotor/Stator-Systeme. Besonders bevorzugt erfolgt das Mischen und Schmelzen in einem Ein- oder Mehr- schneckenextruder, insbesondere einem DoppelSchneckenextruder, wobei diesem auch Knetkammern vorgeschaltet sein können. Das Durchmischen und Aufschmelzen kann auch in solchen Apparaturen erfolgen, in denen die Energie in Form von Mikrowellen oder Ultraschall zugeführt wird.
Das Beschicken der Misch- und Schmelzvorrichtung kann kontinuierlich oder diskontinuierlich in üblicher Weise erfolgen. Pulver - förmige Komponenten können im freien Zulauf, z.B. über eine Differentialdosierwaage eingeführt werden. Plastische Massen können beispielsweise direkt aus einem Extruder eingespeist oder über eine Zahnradpumpe zugespeist werden. Flüssige Komponenten können über geeignete Pumpenaggregate zudosiert werden. Erfin- dungsgemäss können auch niedrig viskose Pasten oder Gele mit einem hohen Dispersionsmittelgehalt zugeführt werden, wobei als Dispersionsmittel bevorzugt Wasser verwendet wird. Die Verarbeitung der Mischungen zu Schmelzen erfolgt vorzugsweise bei Temperaturen von 20 bis 280°C, besonders bevorzugt von 25 bis 180°C.
Zur Formgebung wird die noch thermoplastische Schmelze mit Hilfe von rotierenden Lochwalzen zu Tropfen zerteilt, die anschliessend durch Abkühlen verfestigt werden.
Erfindungsgemäss wird das plastische Gemisch zunächst unter Verwendung einer geeigneten Extrusionsvorrichtung zu einem fortlaufenden Strang extrudiert. Dabei können gegebenenfalls vorhandene Lösungsmittel und Restfeuchte mittels einer Vakuumpumpe während der Extrusion abgezogen werden. Die Form des Extrusionswerk- zeuges richtet sich nach der gewünschten Form. Vorzugsweise wird die Schmelze durch Rundlochdüsen extrudiert, wobei das plastische Gemisch als Strang mit kreisförmigem Querschnitt ausgeformt und in den Rotoformer® oder in eine analoge zur Herstellung von Pastillen geeignete Vorrichtung ausgetragen wird.
Die plastische Schmelze wird dabei durch rotierende Lochwalzen geleitet und auf diese Weise zu Tropfen zerteilt.
Insbesondere besteht die zur Pastillierung geeignete Vorrichtung aus einer rotierenden, beheizbaren Walze mit Öffnungen, die von einem Siebmantel umgeben ist. Walze und Siebmantel bewegen sich vorzugsweise gegenläufig zueinander.
Im folgenden wird das erfindungsgemässe Verfahren anhand von Beispielen erläutert.
Allgemeine Durchführung
Die in den Beispielen jeweils angegebenen Mengen an Wirkstoff und Matrixhilfsstoffen wurden in einem gleichlaufenden, dichtkämmen- den Doppelschneckenextruder (ZSK 40 der Firma Werner &
Pfleiderer, Stuttgart) vermischt. Die Temperatur der Extruder- zonen betrug (in °C) : Zone 1/80; Zone 2/110; Zone 3/150; Zone 4/150; Zone 6/150; Zone 7/150. Die Drehzahl der Schnecken betrug 70 U/min. Der Durchsatz lag bei 20 kg/h bei Verweilzeiten von 1-2 min. Die am Extruderkopf durch eine Düse austretende Schmelze wurde über eine Zahnradpumpe in die Walze des Rotofor ers® (Typ 50.211, Sandvik Process Systems GmbH, Stuttgart) eingetragen. Der Rotoformer besteht aus einer rotierenden, beheizten Walze, die einen Siebmantel besitzt, aus dessen Perforierung das noch pla- stische Extrudat auf ein gekühltes Förderband ausgetragen wurde. Der Siebmantel wies 3720 Löcher (d=lmm) auf, das Fassungsvermögen der Walze beträgt etwa 2 kg Schmelze. Der Abstand zwischen dem Siebmantel und dem Kühlband betrug 3 mm. Das Kühlband hatte eine Länge von 4 m bei einer Bandbreite von 400 mm. Die Temperatur der Walze wurde bei 150 bis 170°C gehalten, die Bandtemperatur wurde mittels Wasserkühlung auf 20°C eingestellt und die Bandgeschwin- digkeit lag bei 30 m/min.
Beispiel 1
Ibuprofen 50 Gew.-% PVP K30 50 Gew.-%
Beispiel 2
Ibuprofen 40 Gew.-% PVP K30 55 Gew.-%
Copolyvidone 5 Gew.-%
Beispiel 3
Ibuprofen 26 Gew.-%
Isomalt 74 Gew.-%
(Palatinit®)
Temperatur der Extruderzonen: in °C 20, 80, 120, 80, 80, 80 (Düse)
Beispiel 4
Tramadol Hydrochlorid 20 Gew.- Isomalt 80 Gew.-%
Beispiel 5
Ibuprofen 20 Gew.-% Na-Ibuprofenat 44 Gew.-%
PVP K30 22 Gew.-%
Hydroxypropylmethylcellulose m.w. mit einer Viskosität von 4000 mPa-s 14 Gew.-% (Methocel® K4M, Fa. Colorcon Dow))

Claims

Patentansprüche
1. Verfahren zur Herstellung von festen sphärischen Formkörpern, die mindestens einen pharmazeutischen Wirkstoff homogen in einer Hilfsstoffmatrix dispergiert enthalten, durch Vermischen der Inhaltsstoffe zu einer Schmelze und ansehliessender Formgebung, dadurch gekennzeichnet, daß man mindestens einen pharmazeutischen Wirkstoff mit mindestens einem thermopla- stisch verarbeitbaren Matrixhilfsstoff zu einer homogenen
Schmelze mit einer Viskosität kleiner 5000 mPas verarbeitet, und die Schmelze mit Hilfe einer rotierenden Lochwalze zu Tropfen formt, welche anschliessend durch Abkühlen verfestigt werden.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Matrixhilfsstoffe Zuckeralkohole eingesetzt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Matrixhilfsstoff Isomalt einsetzt.
PCT/EP1999/001271 1998-03-05 1999-02-26 Verfahren zur herstellung von festen, sphärischen formkörpern, enthaltend pharmazeutische wirkstoffe in einer bindemittelmatrix WO1999044588A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99911718A EP1059914A2 (de) 1998-03-05 1999-02-26 Verfahren zur herstellung von festen, sphärischen formkörpern, enthaltend pharmazeutische wirkstoffe in einer bindemittelmatrix
CA002322629A CA2322629A1 (en) 1998-03-05 1999-02-26 Method for producing solid, spherical forms containing pharmaceutical active agents in a binder matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998109242 DE19809242A1 (de) 1998-03-05 1998-03-05 Verfahren zur Herstellung von festen, sphärischen Formkörpern, enthaltend pharmazeutische Wirkstoffe in einer Bindemittelmatrix
DE19809242.3 1998-03-05

Publications (2)

Publication Number Publication Date
WO1999044588A2 true WO1999044588A2 (de) 1999-09-10
WO1999044588A3 WO1999044588A3 (de) 1999-10-28

Family

ID=7859688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001271 WO1999044588A2 (de) 1998-03-05 1999-02-26 Verfahren zur herstellung von festen, sphärischen formkörpern, enthaltend pharmazeutische wirkstoffe in einer bindemittelmatrix

Country Status (4)

Country Link
EP (1) EP1059914A2 (de)
CA (1) CA2322629A1 (de)
DE (1) DE19809242A1 (de)
WO (1) WO1999044588A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254028A1 (en) * 2004-08-12 2007-11-01 Reckitt Benckiser Healthcare (Uk) Limited Granules Comprising a Nsaid and a Sugar Alcohol Made by Melt Extrusion
US20100179182A1 (en) * 2003-02-03 2010-07-15 Rama Ali Abu Shmeis Pharmaceutical formulation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943501A1 (de) * 1999-09-10 2001-03-15 Basf Ag Unterwassergranulation wirkstoffhaltiger Schmelzen
US20010036959A1 (en) * 2000-04-03 2001-11-01 Gabel Rolf Dieter Carvedilol-hydrophilic solutions
GB0113841D0 (en) * 2001-06-07 2001-08-01 Boots Co Plc Therapeutic agents
DE102007061408A1 (de) 2007-12-11 2009-06-18 Sandvik Materials Technology Deutschland Gmbh Verfahren und Tropfenformer zum Herstellen von Pastillen sowie Verfahren zum Herstellen eines schwefelhaltigen Düngers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139920A1 (de) * 1981-10-08 1983-04-28 Nittner, Erich, Dr., 8280 Kreuzlingen "mittel in granulatform auf basis von polysaccharid-gummen, verfahren zu seiner herstellung und verwendung"
US5013498A (en) * 1988-04-23 1991-05-07 Santrade Ltd. Method and apparatus for producing pastilles
WO1993025074A1 (en) * 1992-06-16 1993-12-23 E.I. Du Pont De Nemours And Company Water-dispersible granular agricultural compositions
EP0582186A1 (de) * 1992-08-04 1994-02-09 MERZ + CO. GmbH & Co. Verfahren zur Herstellung von festen Arzneiformkörpern mit protrahierter 2-Stufen-Freisetzung
WO1997012603A1 (de) * 1995-09-29 1997-04-10 Basf Aktiengesellschaft Feste arzneiformen, erhältlich durch extrusion einer isomalt enthaltenden polymer-wirkstoff-schmelze
EP0922462A2 (de) * 1997-12-01 1999-06-16 Basf Aktiengesellschaft Verfahren zur Herstellung von festen Dosierungsformen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139920A1 (de) * 1981-10-08 1983-04-28 Nittner, Erich, Dr., 8280 Kreuzlingen "mittel in granulatform auf basis von polysaccharid-gummen, verfahren zu seiner herstellung und verwendung"
US5013498A (en) * 1988-04-23 1991-05-07 Santrade Ltd. Method and apparatus for producing pastilles
WO1993025074A1 (en) * 1992-06-16 1993-12-23 E.I. Du Pont De Nemours And Company Water-dispersible granular agricultural compositions
EP0582186A1 (de) * 1992-08-04 1994-02-09 MERZ + CO. GmbH & Co. Verfahren zur Herstellung von festen Arzneiformkörpern mit protrahierter 2-Stufen-Freisetzung
WO1997012603A1 (de) * 1995-09-29 1997-04-10 Basf Aktiengesellschaft Feste arzneiformen, erhältlich durch extrusion einer isomalt enthaltenden polymer-wirkstoff-schmelze
EP0922462A2 (de) * 1997-12-01 1999-06-16 Basf Aktiengesellschaft Verfahren zur Herstellung von festen Dosierungsformen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHAK J.A.: "Pelletizing, prilling or pastillating" PROC.-INST. BRIQUET. AGGLOM. , BIENN. CONF., Bd. 2, 1991, Seiten 143-149, XP002113494 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179182A1 (en) * 2003-02-03 2010-07-15 Rama Ali Abu Shmeis Pharmaceutical formulation
US20070254028A1 (en) * 2004-08-12 2007-11-01 Reckitt Benckiser Healthcare (Uk) Limited Granules Comprising a Nsaid and a Sugar Alcohol Made by Melt Extrusion

Also Published As

Publication number Publication date
DE19809242A1 (de) 1999-09-09
WO1999044588A3 (de) 1999-10-28
EP1059914A2 (de) 2000-12-20
CA2322629A1 (en) 1999-09-10

Similar Documents

Publication Publication Date Title
EP0988106B1 (de) Verfahren zur herstellung kleinteiliger zubereitungen biologisch aktiver stoffe
EP0864324B1 (de) Verfahren zur Herstellung von festen Kombinationsarzneiformen
EP0930875B1 (de) Verfahren zur herstellung fester pharmazeutischer formen durch extrudierung
EP0864326B1 (de) Mehrphasige wirkstoffhaltige Zubereitungsformen
EP0993828B1 (de) Verfahren zur Herstellung von beschichteten festen Dosierungsformen
EP1033975B1 (de) Verfahren zur herstellung von lösungsmittelfreien nicht-kristallinen biologisch aktiven substanzen
DE19913692A1 (de) Mechanisch stabile pharmazeutische Darreichungsformen, enthaltend flüssige oder halbfeste oberflächenaktive Substanzen
WO2000024382A2 (de) Verfahren zur herstellung von festen, sphärischen formen, enthaltend eine biologisch aktive substanz
EP1107739B1 (de) Verfahren zur herstellung von festen dosierungsformen
DE10046541A1 (de) Mechanisch stabile darreichungsformen, enthaltend Ubichinone
WO1995028147A1 (de) Retard-matrixpellets und verfahren zu ihrer herstellung
DE19843904A1 (de) Feste Dosierungsform mit polymerem Bindemittel
DE19929361A1 (de) Mechanisch stabile pharmazeutische Darreichungsformen, enthaltend flüssige oder halbfeste oberflächenaktive Substanzen
EP1083196B1 (de) Unterwassergranulation wirkstoffhaltiger Schmelzen
EP2463327A2 (de) Verfahren zur herstellung von granulaten, enthaltend mindestens eine wasserlösliche komponente
EP1059914A2 (de) Verfahren zur herstellung von festen, sphärischen formkörpern, enthaltend pharmazeutische wirkstoffe in einer bindemittelmatrix
DE19753299A1 (de) Verfahren zur Herstellung von festen Dosierungsformen
WO1997015291A1 (de) Verfahren zur herstellung von festen arzneiformen
WO2008080773A1 (de) Verfahren zur herstellung von festen dosierungsformen enthaltend pfropfcopolymere
DE19637479A1 (de) Verfahren zur Herstellung fester pharmazeutischer Formen
EP0998919A2 (de) Feste Dosierungsform mit copolymerem Bindemittel
DE19539360A1 (de) Verfahren zur Herstellung von festen Arzneiformen
DE19734011A1 (de) Verfahren zur Herstellung fester pharmazeutischer Formen
DE19539362A1 (de) Verfahren zur Herstellung von festen Arzneiformen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): BR CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): BR CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999911718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09623177

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2322629

Country of ref document: CA

Ref country code: CA

Ref document number: 2322629

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999911718

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999911718

Country of ref document: EP