WO1999037394A1 - Reacteur catalytique a plaques - Google Patents

Reacteur catalytique a plaques Download PDF

Info

Publication number
WO1999037394A1
WO1999037394A1 PCT/FR1999/000030 FR9900030W WO9937394A1 WO 1999037394 A1 WO1999037394 A1 WO 1999037394A1 FR 9900030 W FR9900030 W FR 9900030W WO 9937394 A1 WO9937394 A1 WO 9937394A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
series
manifold
catalytic reactor
main fluid
Prior art date
Application number
PCT/FR1999/000030
Other languages
English (en)
Inventor
William Levy
Dominique Sabin
Christine Girod
Original Assignee
Packinox
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Packinox filed Critical Packinox
Priority to EP99900512A priority Critical patent/EP1049534A1/fr
Publication of WO1999037394A1 publication Critical patent/WO1999037394A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • B01J2219/2464Independent temperature control in various sections of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2485Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2498Additional structures inserted in the channels, e.g. plates, catalyst holding meshes

Definitions

  • the present invention relates to a catalytic plate reactor intended in particular for the production of phthalic anhydride.
  • the main fluid circulates in these tubes inside which the reaction takes place and the cooling fluid circulates outside of said tubes, between them and the internal wall of the enclosure.
  • a catalytic plate reactor which comprises a bundle of plates delimiting a first circuit for circulation of a main fluid formed by at least two components and a second circuit for circulation of a secondary cooling fluid, the two fluids circulating against the current in the plate bundle.
  • the means of entry of each fluid into the corresponding circuits are formed by a multitude of small collectors.
  • the main fluid inlet manifolds are filled with catalyst and comprise at least one injection manifold for each component of said main fluid.
  • the invention aims to avoid these drawbacks by proposing a catalytic plate reactor having a low construction cost and a weight saving, while allowing a significant reduction in pressure losses and a better coefficient of heat exchange between the fluids.
  • the subject of the invention is therefore a catalytic plate reactor, of the type comprising a sealed enclosure of elongated shape and a bundle of plates arranged inside said sealed enclosure by providing with the latter a free space formed by a stack.
  • of metal plates provided with corrugations characterized in that the plates delimit between them: - a first series of channels forming a circulation circuit of a main fluid formed of at least two components, said channels communicating with means of inlet and outlet of the main fluid and containing a catalyst, - a second series of channels forming a circuit for circulation of a cooling fluid in a direction perpendicular to the direction of circulation of the main fluid and communicating with intake means and discharge of the coolant, - and a third series of channels forming a circuit for circulating a coolant ment in a direction perpendicular to the direction of circulation of the main fluid and opposite to the direction of circulation of the cooling fluid in the second series of channels, said channels of the third series communicating with the inlet and outlet means coolant and each channel of the first
  • the means for admitting the main fluid are formed by a conduit opening into the free space formed between the sealed enclosure and the bundle of plates and communicating with the inlet zones of the channels of the first series
  • the means for discharging the main fluid are formed by a manifold disposed inside the sealed enclosure and covering the outlet zones of the channels of the first series and by an outlet conduit connected to said manifold
  • the means for admitting the coolant into the second series of channels are formed by a manifold disposed inside the sealed enclosure and covering the inlet zones of these channels and by an inlet duct connected to said collector and the means for discharging this cooling fluid are formed by a collector disposed inside the sealed enclosure and covering the outlet zones of said channels and by an outlet duct connected to said collector,
  • the means for admitting the cooling fluid into the third series of channels are formed by a manifold disposed inside the sealed enclosure and covering the inlet zones of these channels and by an inlet duct connected to said collector and the means for discharging this cooling fluid are formed by a collector arranged inside the sealed enclosure and covering the outlet zones of said channels and by an outlet duct connected to said collector,
  • the channels of the first series comprise a central part filled with catalyst and connected to means for filling said central part and to means for discharging spent catalyst,
  • the catalyst filling means are formed by a manifold disposed at a first end of the central part of said channels of the first series and by an inlet conduit connected to said manifold and the discharge means are formed by a manifold disposed at a second end of said central portion opposite the first end and by an outlet conduit connected to said collector,
  • the catalyst is maintained in the channels of the first series by grids allowing the circulation of the main fluid in said catalyst, the sealed enclosure is provided with at least one rupture disc calibrated at a determined pressure,
  • the main fluid consists of a mixture of air and ortho-xylene to obtain phthalic anhydride after passage through the catalyst
  • the cooling fluid consists of a mixture of molten salts.
  • FIG. 1 is a schematic view partially in longitudinal section of a catalytic reactor according to the invention
  • Fig. 2 is a partial perspective view of one end of the bundle of plates of the catalytic reactor
  • - Fig.3 is a partial perspective view of the other end of the plate bundle of the catalytic reactor
  • Fig. 4 is a sectional view along line 4-4 of Fig. 2.
  • a catalytic plate reactor intended in particular for the production of phthalic anhydride by passing a mixture of air and ortho-xylene in given proportions over a catalyst.
  • the catalytic reactor comprises a sealed enclosure 1 of elongated shape and of circular section, for example. O 99/37394
  • This sealed enclosure 1 is preferably arranged vertically.
  • the bundle of plates 2 is formed by a stack of plates 4 parallel to each other and delimiting a multitude of channels 10 which extend longitudinally from one end to the other of the bundle of plates 2.
  • the plates for example made of stainless steel, are held together by suitable means and have edges with a smooth surface and a central part provided with corrugations, not shown, by which they are in contact with one another. and by which they delimit the channels 10.
  • the plates 4 delimit between them a first series of channels 10A forming a circulation circuit for a main fluid A consisting of at least two components which are for example air and ortho-xylene.
  • the channels 10A are distributed over one channel 10 out of two in the bundle of plates 2 and the fluid A circulates in these channels 10A transversely with respect to the longitudinal axis of said bundle of plates 2.
  • a side face of the bundle of plates 2 comprises inlet zones 12A of the main fluid A while the openings of one channel out of two are closed by the closure members 11 formed for example by tongues extending over the entire length of said lateral face of the bundle of plates 2.
  • the other lateral face of the bundle of plates 2 shown in FIG. 3 comprises outlet zones 13A of the main fluid A after passage through the channels 10A while one channel out of two is closed by closure members 11 formed by tongues extending over the entire length of said lateral face of the bundle of plates 2.
  • the plates 4 also delimit a second series of channels 10B forming a circuit for circulating a cooling fluid B in a direction perpendicular to the direction of circulation of the fluid A.
  • the channels 10B are distributed over one channel 10 out of three in the bundle of plates 2 and one of the end faces of this bundle of plates 2, shown in FIG. 2, comprises inlet zones 12B of the cooling fluid B, while the other lateral face of the bundle of plates 2, shown in FIG. 3, comprises outlet zones 13B of this cooling fluid.
  • the cooling fluid consists, for example, of a mixture of molten salts.
  • the plates 4 also delimit between them a third series of channels 10C forming a circuit for circulating a cooling fluid C in a direction perpendicular to the direction of circulation of the main fluid A in the channels 10A and opposite to the direction of circulation of the coolant B in the channels 10B.
  • the channels 10C are distributed over one channel 10 out of three in the bundle of plates 2 and one of the end faces of this bundle of plates 2, shown in FIG. 3, has inlet zones 12C for the cooling C, while the other end face of the plate bundle 2, represented in FIG. 2, has outlet zones
  • the cooling fluid C also consists of a mixture of molten salts.
  • each channel 10A of the first series for the circulation of the main fluid A is disposed between a channel 10B of the second series and a channel 10C of the third series for the circulation of fluids.
  • closure members 11 of the channels 10 of the lateral faces and of the end faces of the bundle of plates 2 are formed, for example by tongues welded to the edges of the corresponding plates 4 or by folded edges of the plates 4 and the ends are welded together.
  • the catalytic reactor also includes means for admitting and discharging the main fluid A into the channels 10A and respectively means for admitting and discharging the cooling fluid B in the channels 10B and means for admitting and d evacuation of the cooling fluid C in the channels 10C.
  • the means for admitting the main fluid A into the inlet zones 12A of the channels 10A are formed by a conduit 20 opening into the free space 3 formed between the sealed enclosure 1 and the bundle of plates 2 and communicating with the input zones 12A of the first series channels 10A.
  • the means for discharging the main fluid A after passing through the channels 10A are formed by a manifold 21 disposed inside the seal 1 and covering the outlet zones 13A from the channels 10A of the first series and by a conduit outlet 22 connected to said manifold.
  • the means for admitting the coolant B into the second series of channels 10B of the plate bundle 2 are formed by a manifold 23 disposed inside the sealed enclosure 1 covering the inlet zones 12B of these channels 10B and by an inlet conduit 24 connected to the manifold 23.
  • the means for discharging this cooling fluid B are formed by a manifold 25 disposed inside the sealed enclosure 1 and covering the outlet zones 13B of the channels 10B and by an outlet conduit 26 connected to this manifold 25 .
  • the means for admitting the coolant C into the third series of channels 10C of the bundle of plates 2 are formed by a manifold 27 disposed inside the sealed enclosure 1 and covering the inlet zones 12C of these channels 10C and by an inlet conduit 28 connected to said collector 27.
  • the means for discharging the cooling fluid C from the channels 10C are formed by a manifold 29 disposed inside the sealed enclosure 1 and covering the outlet zones 13C from the channels 10C and by an outlet conduit 30 connected to this collector 29.
  • the manifold 23 for admitting the coolant B into the channels 10B is situated opposite the manifold 27 for admitting the coolant C into the channels 10C and the manifold 25 for discharging the fluid B from the channels 10B is located opposite the manifold 29 for discharging the cooling fluid C from the channels 10C.
  • the channels 10A for circulation of the main fluid A contain particles 35 of catalyst so as to provoke the desired reaction during the passage. 99/37394
  • the catalyst particles 35 are arranged in the central part of the channels 10A and this central part is connected to filling means and to means for discharging the spent catalyst particles.
  • the catalyst particles 35 are held on each side of the central part of the channels 10A by a grid 36 which extends over the entire length of the plate bundle 2.
  • the grids 36 have meshes sufficiently fine to hold these catalyst particles 35 , while allowing the passage through these particles 35 of the main fluid A.
  • the means for filling catalyst particles 35 in the channels 10A are formed by a manifold 31 arranged on an end face of the bundle of plates 2 and preferably at the top of the reactor. catalytic and by a conduit 32 connected to said manifold 31.
  • the means for removing the catalyst particles 35 are formed by a manifold 33 disposed on the other end face of the bundle of plates 2 and preferably at the bottom of the catalytic reactor and by an outlet conduit 34 connected audit collector 33.
  • the production of phthalic anhydride presents risks of explosion at the level of the entry of the main fluid composed of air and ortho-xylene and the sealed enclosure is, therefore, provided with at least one disc of rupture 37 dimensioned amply according to the explosion conditions in order to contain the increase in pressure within given limits and for example less than 10 bars inside the sealed enclosure 1.
  • the main fluid A composed of a mixture air and ortho-xylene is introduced through the inlet conduit 20 inside the sealed enclosure 1 and enters the chambers 10 channels 10A through the inlet zones 12A formed on the lateral face of the bundle of plates 2.
  • This main fluid A therefore circulates inside the channels 10A, then passes through the catalyst particles 35 so as to obtain the desired reaction and the phthalic anhydride thus produced leaves the channels 10A through the outlet zones 13A formed on the other side face of the bundle of plates 2 and leaves the catalytic reactor via the manifold 21 and the outlet duct 22.
  • the cooling fluid B composed of a mixture of molten salts is injected into all of the channels 10B via the inlet conduit 24, the manifold 23 and the inlet zones 12B and spreads over the entire surface of these channels 10B, then leaves the catalytic reactor via the outlet zones 13B, the manifold 25 and the outlet duct 26.
  • the cooling fluid C composed of a mixture of molten salts is injected into the channels 10C of the plate bundle 2 through the inlet duct 28, the manifold 27 and the inlet areas 12C, then spreads over the entire surface of these channels 10C and leaves the catalytic reactor via the outlet zones 13C, the manifold 29 and the outlet conduit 30.
  • the main fluid A is cooled during its passage through the bundle of plates 2 by the coolants B and C which circulate on either side of the channels 10A intended for the circulation of the main fluid A.
  • each end face of the bundle of plates 2 has a trapezoidal shape in order to allow the center to install the collectors 31 and 33 O 99/37394

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

L'invention a pour objet un réacteur catalytique à plaques, du type comprenant une enceinte étanche (1) et un faisceau de plaques (2) disposé à l'intérieur de ladite enceinte étanche. Les plaques du faisceau de plaques (2) délimitent une première série de canaux formant un circuit de circulation d'un fluide principal A, une seconde série de canaux formant un circuit de circulation d'un fluide de refroidissement B dans une direction perpendiculaire à la direction de circulation du fluide principal A et une troisième série de canaux formant un circuit de circulation d'un fluide de refroidissement C dans une direction perpendiculaire à la direction de circulation du fluide principal A et opposée à la direction de circulation du fluide de refroidissement B dans la seconde série de canaux. Le réacteur catalytique est destiné à la production par exemple d'anhydride phtalique.

Description

99/37394
"Réacteur catalytique à plaques"
La présente invention a pour objet un réacteur catalytique à plaques destiné notamment à la production d'anhydride phtalique.
On sait que pour la production de certains flui- des, comme par exemple de l'anhydride phtalique, tout d'abord on mélange de l'air et de 1 ' ortho-xylène pour réaliser un fluide principal, puis on fait circuler ce fluide principal dans un réacteur catalytique en présence d'un catalyseur pour réaliser la réaction souhaitée. Compte tenu de la très forte réaction isothermique qui se produit lors du passage du fluide principal dans le catalyseur, cette réaction ne peut avoir lieu que dans des réacteurs refroidis par un fluide auxiliaire qui est le plus souvent constitué par un mélange de sels fondus. Jusqu'à présent, pour la production de ce genre de fluide, on utilise des réacteurs catalytiques formés par une enceinte étanche à l'intérieur de laquelle sont disposés des tubes parallèles remplis de catalyseur.
Le fluide principal circule dans ces tubes à l'intérieur desquels se produit la réaction et le fluide de refroidissement circule à l'extérieur desdits tubes, entre ceux-ci et la paroi interne de l'enceinte.
Le principal inconvénient de ces réacteurs tubu- laires réside dans leurs dimensions car, pour de grosses unités, le nombre de tubes devient rapidement très important et le diamètre de l'appareil excessif.
On connaît également un réacteur catalytique à plaques qui comprend un faisceau de plaques délimitant un premier circuit de circulation d'un fluide principal formé d'au moins deux composants et un second circuit de circulation d'un fluide secondaire de refroidissement, les deux fluides circulant à contre-courant dans le faisceau de plaques .
Les moyens d'entrée de chaque fluide dans les circuits correspondants sont formés par une multitude de petits collecteurs. Les collecteurs d'entrée du fluide principal sont remplis de catalyseur et comportent au moins une rampe d'injection pour chaque composant dudit fluide principal.
Mais, cette disposition est complexe et le coût d'un tel réacteur catalytique est élevé compte tenu du nombre de collecteurs et de rampes d'injection.
L'invention a pour but d'éviter ces inconvénients en proposant un réacteur catalytique à plaques présentant un faible coût de construction et un gain de poids, tout en permettant une réduction sensible des pertes de charge et un meilleur coefficient d'échange thermique entre les fluides.
L'invention a donc pour objet un réacteur catalytique à plaques, du type comprenant une enceinte étanche de forme allongée et un faisceau de plaques disposé à l'intérieur de ladite enceinte étanche en ménageant avec celle- ci un espace libre et formé par un empilement de plaques métalliques munies d'ondulations, caractérisé en ce que les plaques délimitent entre elles : - une première série de canaux formant un circuit de circulation d'un fluide principal formé d'au moins deux composants, lesdits canaux communiquant avec des moyens d'admission et d'évacuation du fluide principal et contenant un catalyseur, - une seconde série de canaux formant un circuit de circulation d'un fluide de refroidissement dans une direction perpendiculaire à la direction de circulation du fluide principal et communiquant avec des moyens d'admission et d'évacuation du fluide de refroidissement, - et une troisième série de canaux formant un circuit de circulation d'un fluide de refroidissement dans une direction perpendiculaire à la direction de circulation du fluide principal et opposée à la direction de circulation du fluide de refroidissement dans la seconde série de ca- naux, lesdits canaux de la troisième série communiquant avec les moyens d'admission et d'évacuation du fluide de refroidissement et chaque canal de la première série étant disposé 99/37394
entre les canaux respectivement de la seconde et de la troisième série.
Selon d'autres caractéristiques de l'invention : les moyens d'admission du fluide principal sont formés par un conduit débouchant dans l'espace libre ménagé entre l'enceinte étanche et le faisceau de plaques et communiquant avec les zones d'entrée des canaux de la première série, les moyens d'évacuation du fluide principal sont formés par un collecteur disposé à l'intérieur de l'enceinte étanche et couvrant les zones de sortie des canaux de la première série et par un conduit de sortie raccordé audit collecteur,
- les moyens d'admission du fluide de refroidis- sèment dans la seconde série de canaux sont formés par un collecteur disposé à l'intérieur de l'enceinte étanche et couvrant les zones d'entrée de ces canaux et par un conduit d'entrée raccordé audit collecteur et les moyens d'évacuation de ce fluide de refroidissement sont formés par un col- lecteur disposé à l'intérieur de l'enceinte étanche et couvrant les zones de sortie desdits canaux et par un conduit de sortie raccordé audit collecteur,
- les moyens d'admission du fluide de refroidissement dans la troisième série de canaux sont formés par un collecteur disposé à l'intérieur de l'enceinte étanche et couvrant les zones d'entrée de ces canaux et par un conduit d'entrée raccordé audit collecteur et les moyens d'évacuation de ce fluide de refroidissement sont formés par un collecteur disposé à l'intérieur de l'enceinte étanche et cou- vrant les zones de sortie desdits canaux et par un conduit de sortie raccordé audit collecteur,
- les canaux de la première série comportent une partie centrale remplie de catalyseur et reliée à des moyens de remplissage de ladite partie centrale et à des moyens d'évacuation du catalyseur usé,
- les moyens de remplissage de catalyseur sont formés par un collecteur disposé à une première extrémité de la partie centrale desdits canaux de la première série et par un conduit d'entrée raccordé audit collecteur et les moyens d'évacuation sont formés par un collecteur disposé à une seconde extrémité de ladite partie centrale opposée à la première extrémité et par un conduit de sortie raccordé audit collecteur,
- le catalyseur est maintenu dans les canaux de la première série par des grilles permettant la circulation du fluide principal dans ledit catalyseur, - l'enceinte étanche est pourvue d'au moins un disque de rupture taré à une pression déterminée,
- le fluide principal est constitué par un mélange d'air et d' ortho-xylène pour obtenir après passage dans le catalyseur de l'anhydride phtalique, - le fluide de refroidissement est constitué par un mélange de sels fondus.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple et faite en référence aux dessins annexés, sur lesquels : - la Fig. 1 est une vue schématique partiellement en coupe longitudinale d'un réacteur catalytique conforme à l'invention,
- la Fig. 2 est une vue en perspective partielle d'une extrémité du faisceau de plaques du réacteur catalyti- que ,
- la Fig.3 est une vue en perspective partielle de l'autre extrémité du faisceau de plaques du réacteur catalytique,
- la Fig. 4 est une vue en coupe selon la ligne 4-4 de la Fig.2.
Sur la Fig. 1, on a représenté un réacteur catalytique à plaques destiné notamment à la production d'anhydride phtalique par passage d'un mélange d'air et d' ortho- xylène dans des proportions données sur un catalyseur. Pour cela, le réacteur catalyti-que comprend une enceinte étanche 1 de forme allongée et de section par exemple circulaire. O 99/37394
Cette enceinte étanche 1 est de préférence disposée verticalement.
A l'intérieur de l'enceinte étanche 1 est placé un faisceau de plaques désigné dans son ensemble par la ré- férence 2 et de forme générale parallépipédique .
Ce faisceau de plaques 2 ménage avec l'enceinte 1 un espace libre 3.
Comme représenté sur les Figs .2 et 3, le faisceau de plaques 2 est formé par un empilement de plaques 4 parallèles les unes aux autres et délimitant une multitude de canaux 10 qui s'étendent longitudinalement d'une extrémité à 1 ' autre du faisceau de plaques 2.
De manière classique, les plaques 4 par exemple en acier inoxydable sont maintenues entre elles par des moyens appropriés et comportent des bords à surface lisse et une partie centrale munie d'ondulations, non représentées, par lesquelles elles sont en contact les unes sur les autres et par lesquelles elles délimitent les canaux 10.
Dans l'exemple de réalisation représenté sur les Figs. 2 et 3, les plaques 4 délimitent entre elles une première série de canaux 10A formant un circuit de circulation d'un fluide principal A constitué d'au moins deux composants qui sont par exemple de l'air et de 1 ' ortho-xylène.
Les canaux 10A sont répartis sur un canal 10 sur deux dans le faisceau de plaques 2 et le fluide A circule dans ces canaux 10A transversalement par rapport à l'axe longitudinal dudit faisceau de plaques 2.
A cet effet et comme représenté à la Fig. 2, une face latérale du faisceau de plaques 2 comporte des zones d'entrée 12A du fluide principale A tandis que les ouvertures d'un canal sur deux sont fermées par les organes d'obturation 11 formés par exemple par des languettes s ' étendant sur toute la longueur de ladite face latérale du faisceau de plaques 2. De même, l'autre face latérale du faisceau de plaques 2 représentée à la Fig. 3 comporte des zones de sortie 13A du fluide principal A après passage dans les canaux 10A tandis qu'un canal 10 sur deux est fermé par des organes d'obturation 11 formés par des languettes s ' étendant sur toute la longueur de ladite face latérale du faisceau de plaques 2. Les plaques 4 délimitent également une seconde série de canaux 10B formant un circuit de circulation d'un fluide de refroidissement B dans une direction perpendiculaire à la direction de circulation du fluide A.
Les canaux 10B sont répartis sur un canal 10 sur trois dans le faisceau de plaques 2 et l'une des faces d'extrémité de ce faisceau de plaques 2, représentée à la Fig. 2, comporte des zones d'entrée 12B du fluide de refroidissement B, tandis que l'autre face latérale du faisceau de plaques 2, représentée à la Fig.3, comporte des zones de sortie 13B de ce fluide de refroidissement.
Le fluide de refroidissement est constitué par exemple par un mélange de sels fondus .
Les plaques 4 délimitent aussi entre elles une troisième série de canaux 10C formant un circuit de circula- tion d'un fluide de refroidissement C dans une direction perpendiculaire à la direction de circulation du fluide principal A dans les canaux 10A et opposée à la direction de circulation du fluide de refroidissement B dans les canaux 10B. Les canaux 10C sont répartis sur un canal 10 sur trois dans le faisceau de plaques 2 et l'une des faces d'extrémité de ce faisceau de plaques 2, représentée à la Fig.3, comporte des zones d'entrée 12C du fluide de refroidissement C, tandis que l'autre face d'extrémité du faisceau de pla- ques 2, représentée à la Fig.2, comporte des zones de sortie
13C de ce fluide de refroidissement C.
Le fluide de refroidissement C est également constitué par un mélange de sels fondus.
Grâce à cette disposition, chaque canal 10A de la première série pour la circulation du fluide principal A est disposé entre un canal 10B de la seconde série et un canal 10C de la troisième série pour la circulation des flui- 99/37394
7
des de refroidissement ce qui permet d'obtenir un refroidissement optimal du fluide principal A.
Ainsi, sur une des faces d'extrémité du faisceau de plaques 2 (Fig.2) sont ménagées des zones d'entrée 12B du fluide de refroidissement B et des zones de sortie 13C du fluide de refroidissement C et sur l'autre de ces faces d'extrémité du faisceau de plaques 2 (Fig. 3) sont ménagées des zones de sortie 13B du fluide de refroidissement B et des zones d'entrée 12C du fluide de refroidissement C. Sur les faces d'extrémité du faisceau de plaque
2, les extrémités des canaux 10 situées entre les zones d'entrée 12B et les zones de sortie 13C ou les zones d'entrée 12C et les zones de sortie 13B de chaque fluide de refroidissement B et C sont fermées par des organes d'obtura- tion 11.
Les organes d'obturation 11 des canaux 10 des faces latérales et des faces d'extrémité du faisceau de plaques 2 sont formés, par exemple par des languettes soudées sur les bords des plaques 4 correspondantes ou par des bords rabattus des plaques 4 et dont les extrémités sont soudées entre elles.
Le réacteur catalytique comporte également des moyens d'admission et d'évacuation du fluide principal A dans les canaux 10A et respectivement des moyens d'admission et d'évacuation du fluide de refroidissement B dans les canaux 10B et des moyens d'admission et d'évacuation du fluide de refroidissement C dans les canaux 10C.
Ainsi que représenté à la Fig. 1, les moyens d'admission du fluide principal A dans les zones d'entrée 12A des canaux 10A sont formés par un conduit 20 débouchant dans l'espace libre 3 ménagé entre l'enceine étanche 1 et le faisceau de plaques 2 et communiquant avec les zones d'entrée 12A des canaux 10A de première série.
Le fluide principal A se répand à 1 ' intérieur de l'enceinte étanche 1 et la surpression ainsi engendrée maintient le faisceau de plaques 2 en compression. O 99/37394
Les moyens d'évacuation du fluide principal A après le passage dans les canaux 10A sont formés par un collecteur 21 disposé à l'intérieur de 1 ' étanche 1 et couvrant les zones de sortie 13A des canaux 10A de la première série et par un conduit de sortie 22 raccordé audit collecteur.
Les moyens d'admission du fluide de refroidissement B dans la seconde série de canaux 10B du faisceau de plaques 2 sont formés par un collecteur 23 disposé à l'intérieur de l'enceinte étanche 1 couvrant les zones d'entrée 12B de ces canaux 10B et par un conduit d'entrée 24 raccordé au collecteur 23.
Les moyens d'évacuation de ce fluide de refroidissement B sont formés par un collecteur 25 disposé à l'intérieur de 1 ' enceinte étanche 1 et couvrant les zones de sortie 13B des canaux 10B et par un conduit de sortie 26 raccordé à ce collecteur 25.
Les moyens d'admission du fluide de refroidissement C dans la troisième série de canaux 10C du faisceau de plaques 2 sont formés par un collecteur 27 disposé à 1 ' inté- rieur de l'enceinte étanche 1 et couvrant les zones d'entrée 12C de ces canaux 10C et par un conduit d'entrée 28 raccordé audit collecteur 27.
Enfin, les moyens d'évacuation du fluide de refroidissement C des canaux 10C sont formés par un collecteur 29 disposé à l'intérieur de l'enceinte étanche 1 et couvrant les zones de sortie 13C des canaux 10C et par un conduit de sortie 30 raccordé à ce collecteur 29.
Dans 1 ' exemple de réalisation représenté à la Fig. 1, le collecteur 23 d'admission du fluide de refroidis- sèment B dans les canaux 10B est situé en face du collecteur 27 d'admission du fluide de refroidissement C dans les canaux 10C et le collecteur 25 d'évacuation du fluide B des canaux 10B est situé en face du collecteur 29 d'évacuation du fluide de refroidissement C des canaux 10C. D'autre part, les canaux 10A de circulation du fluide principal A contiennent des particules 35 de catalyseur de façon à provo-quer la réaction désirée lors du pas- 99/37394
sage du fluide principal A composé d'air et d' ortho-oxylène pour recueillir par le collecteur 21 et le conduit de sortie 22 de l'anhydride phtalique.
De préférence et ainsi que représenté à la Fig.4, les particules 35 de catalyseur sont disposées dans la partie centrale des canaux 10A et cette partie centrale est reliée à des moyens de remplissage et à des moyens d'évacuation des particules de catalyseur usé.
Les particules 35 de catalyseur sont maintenues de chaque côté de la partie centrale des canaux 10A par une grille 36 qui s'étend sur toute la longueur du faisceau de plaques 2. Les grilles 36 ont des mailles suffisamment fines pour maintenir ces particules 35 de catalyseur, tout en permettant le passage dans ces particules 35 du fluide princi- pal A.
Comme représenté à la Fig.l, les moyens de remplissage de particules 35 de catalyseur dans les canaux 10A sont formées par un collecteur 31 disposé sur une face d'extrémité du faisceau de plaques 2 et de préférence à la par- tie haute du réacteur catalytique et par un conduit 32 raccordé audit collecteur 31.
Les moyens d'évacuation des particules 35 de catalyseur sont formés par un collecteur 33 disposé sur l'autre face d'extrémité du faisceau de plaques 2 et de préfé- rence à la partie basse du réacteur catalytique et par un conduit de sortie 34 raccordé audit collecteur 33.
La production d'anhydride phtalique présente des risques d'explosion au niveau de l'entrée du fluide principal composé d'air et d' ortho-xylène et l'enceinte étanche est, de ce fait, munie d'au moins un disque de rupture 37 dimensionné amplement en fonction des conditions d'explosion afin de contenir l'augmentation de pression dans des limites déterminées et par exemple inférieure à 10 bars à l'intérieur de 1 ' enceinte étanche 1. Le fluide principal A composé d'un mélange d'air et ortho-xylène est introduit par le conduit d'entrée 20 à 1 ' intérieur de 1 ' enceinte étanche 1 et pénètre dans les ca- 10 naux 10A par les zones d'entrée 12A ménagées sur la face latérale du faisceau de plaques 2.
Ce fluide principal A circule donc à l'intérieur des canaux 10A, puis traverse les particules 35 de cataly- seur de façon à obtenir la réaction souhaitée et l'anhydride phtalique ainsi produit sort des canaux 10A par les zones de sortie 13A ménagées sur l'autre face latérale du faisceau de plaques 2 et sort du réacteur catalytique par le collecteur 21 et le conduit de sortie 22. Simultanément à la circulation du fluide principal A, le fluide de refroidissement B composé d'un mélange de sels fondus est injecté dans l'ensemble des canaux 10B par le conduit d'entrée 24, le collecteur 23 et les zones d'entrée 12B et se répand sur toute la surface de ces canaux 10B, puis sort du réacteur catalytique par les zones de sortie 13B, le collecteur 25 et le conduit de sortie 26.
De même, le fluide de refroidissement C composé d'un mélange de sels fondus est injecté dans les canaux 10C du faisceau de plaques 2 par le conduit d'entrée 28, le collecteur 27 et les zones d'entrée 12C, puis se répand sur toute la surface de ces canaux 10C et sort du réacteur catalytique par les zones de sortie 13C, le collecteur 29 et le conduit de sortie 30.
Ainsi, le fluide principal A est refroidi lors de son passage dans le faisceau de plaques 2 par les fluides de refroidissement B et C qui circulent de part et d'autre des canaux 10A destinés à la circulation du fluide principal A.
Après un certain temps d'utilisation, les parti- cules 35 de catalyseur usé sont évacuées par gravité des canaux 10A par le collecteur 33 et le conduit de sortie 34 et de nouvelles particules 35 de catalyseur sont introduites dans ces canaux 10A par le collecteur 31 et le conduit d'entrée 32. De préférence, chaque face d'extrémité du faisceau de plaques 2 présente une forme trapézoïdale afin de permettre au centre l'installation des collecteurs 31 et 33 O 99/37394
11
d'écoulement des particules de catalyseur et sur les côtés l'installation des collecteurs 23 et 27 d'entrée des fluides de refroidissement et des collecteurs 25 et 29 de sortie de ces fluides de refroidissement. La circulation du fluide principal A et des fluides de refroidissement B et C à courant-croisé et la circulation des fluides B et C à contre-courant l'un par rapport à l'autre permet d'obtenir une réduction sensible des pertes de charge et un meilleur coefficient d'échange thermique entre les fluides.
Enfin, cette disposition présente l'avantage de réduire le coût de construction et d'obtenir un gain de poids .

Claims

12REVENDICATIONS
1. Réacteur catalytique à plaques, du type comprenant une enceinte étanche (1) de forme allongée et un faisceau de plaques (2) disposé à l'intérieur de ladite en- ceinte étanche (1) en ménageant avec celle-ci un espace libre (3) et formé par un empilement de plaques métalliques (4) munies d'ondulations, caractérisé en ce que les plaques (4) délimitent entre elles :
- une première série de canaux (10A) formant un circuit de circulation d'un fluide principal A formé d'au moins deux composants, lesdits canaux (10A) communiquant avec des moyens d'admission (20) et d'évacuation (21, 22) du fluide principal A et contenant un catalyseur (35),
- une seconde série de canaux (10B) formant un circuit- de circulation d'un fluide de refroidissement B dans une direction perpendiculaire à la direction de circulation du fluide principal A et communi-quant avec des moyens d'admission (23,24) et d'évacuation (25, 26) du fluide de refroidissement B, - une troisième série de canaux (10C) formant un circuit de circulation d'un fluide de refroidissement C dans une direction perpendiculaire à la direction de circulation du fluide principal A et opposée à la direction de circulation du fluide de refroidissement B dans la seconde série de canaux (10B) , lesdits canaux (10C) de la troisième série communiquant avec des moyens d'admission (27, 28) et d'évacuation (29, 30) du fluide de refroidissement C et chaque canal de la première série (10A) étant disposé entre les canaux (10B, 10C) respectivement de la seconde et de la troi- sième série.
2. Réacteur catalytique selon la revendication 1, caractérisé en ce que les moyens d'admission du fluide principal A sont formés par un conduit (20) débouchant dans l'espace libre (3) ménagé entre l'enceinte étanche (1) et le faisceau de plaques (2) et communiquant avec les zones d'entrée (12A) des canaux (10A) de la première série. 13
3. Réacteur catalytique selon la revendication 1, caractérisé en ce que les moyens d'évacuation du fluide principal A sont formés par un collecteur (21) disposé à l'intérieur de l'enceinte étanche (1) et couvrant les zones de sortie (13A) des canaux (10A) de la première série et par un conduit de sortie (22) raccordé audit collecteur (21).
4. Réacteur catalytique selon la revendication (1), caractérisé en ce que les moyens d'admission du fluide de refroidissement (B) dans la seconde série de canaux (10B) sont formés par un collecteur (23) disposé à l'intérieur de l'enceinte étanche (1) et couvrant les zones d'entrée (12B) de ces canaux (10B) et par un conduit d'entrée (24) raccordé audit réacteur et les moyens d'évacuation de ce fluide de refroidissement B sont formés par un collecteur (25) disposé à l'intérieur de l'enceinte étanche (1) et couvrant les zones de sortie (13B) desdits canaux (10B) et par un conduit de sortie (26) raccordé audit collecteur (25).
5. Réacteur catalytique selon la revendication 1, caractérisé en ce que les moyens d'admission du fluide de refroidissement C dans la troisième série de canaux (10C) sont formés par un collecteur (27) disposé à l'intérieur de l'enceinte étanche (1) et couvrant les zones d'entrée (12C) de ces canaux (10C) et par un conduit d'entrée (28) raccordé audit collecteur (27) et les moyens d'évacuation de ce fluide de refroidissement C sont formés par un collecteur
(29) disposé à l'intérieur de l'enceinte étanche (1) et couvrant les zones de sortie (13C) desdits canaux (10C) et par un conduit de sortie (30) raccordé audit collecteur (29) .
6. Réacteur catalytique selon la revendication 1, caractérisé en ce que les canaux (10A) de la première série comporte une partie centrale remplie de catalyseur (35) et reliée à des moyens de remplissage (31, 32) de ladite partie centrale et à des moyens d'évacuation (33, 34) du catalyseur (35) usé.
7. Réacteur catalytique selon la revendication
6, caractérisé en ce que les moyens de remplissage de catalyseur (35) sont formés par un collecteur (31) disposé à une 14
première extrémité de la partie centrale desdits canaux (10A) de la première série et par un conduit d'entrée (32) raccordé audit (31) et les moyens d'évacuation sont formés par un collecteur (33) disposé à une seconde extrémité de la partie centrale opposée à la première extrémité et par un conduit de sortie (34) raccordé audit collecteur (33).
8. Réacteur catalytique selon la revendication 1 ou 6, caractérisé en ce que le catalyseur (35) est maintenu dans les canaux (10A) de la première série par des grilles (36) permettant la circulation du fluide principal A dans ledit catalyseur (35).
9. Réacteur catalytique selon la revendication 1, caractérisé en ce que l'enceinte (1) et pourvue d'au moins un disque de rupture (37) taré à une pression détermi- née.
10. Réacteur catalyti-que selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide principal A est constitué par un mélange d'air et d'ortho-oxylène pour obtenir après passage dans le cataly- seur (35) d'anhydride phtalique.
11. Réacteur catalytique selon l'une des revendications 8 à 9, caractérisé en ce que le fluide de refroidissement B ou C est constitué par un mélange de sels fondus .
PCT/FR1999/000030 1998-01-22 1999-01-11 Reacteur catalytique a plaques WO1999037394A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99900512A EP1049534A1 (fr) 1998-01-22 1999-01-11 Reacteur catalytique a plaques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800672A FR2773726B1 (fr) 1998-01-22 1998-01-22 Reacteur catalytique a plaques notamment pour la production d'anhydride phtalique
FR98/00672 1998-01-22

Publications (1)

Publication Number Publication Date
WO1999037394A1 true WO1999037394A1 (fr) 1999-07-29

Family

ID=9522045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000030 WO1999037394A1 (fr) 1998-01-22 1999-01-11 Reacteur catalytique a plaques

Country Status (3)

Country Link
EP (1) EP1049534A1 (fr)
FR (1) FR2773726B1 (fr)
WO (1) WO1999037394A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE282467T1 (de) * 2000-01-25 2004-12-15 Meggitt Uk Ltd Chemischer reaktor mit wärmetauscher
US6921518B2 (en) 2000-01-25 2005-07-26 Meggitt (Uk) Limited Chemical reactor
FR2808320B1 (fr) * 2000-04-27 2002-09-06 Valeo Thermique Moteur Sa Echangeur de chaleur a haute pression pour circuit de climatisation, notamment de vehicule automobile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587731A (en) * 1968-07-22 1971-06-28 Phillips Petroleum Co Plural refrigerant tray type heat exchanger
FR2471569A1 (fr) * 1979-12-12 1981-06-19 Neo Tec Etude Applic Tech Echangeur thermique a toles empilees
JPS56166937A (en) * 1980-05-27 1981-12-22 Osaka Gas Co Ltd Reaction apparatus with plate type heat exchanger
US4721164A (en) * 1986-09-04 1988-01-26 Air Products And Chemicals, Inc. Method of heat exchange for variable-content nitrogen rejection units
US5324452A (en) * 1992-07-08 1994-06-28 Air Products And Chemicals, Inc. Integrated plate-fin heat exchange reformation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587731A (en) * 1968-07-22 1971-06-28 Phillips Petroleum Co Plural refrigerant tray type heat exchanger
FR2471569A1 (fr) * 1979-12-12 1981-06-19 Neo Tec Etude Applic Tech Echangeur thermique a toles empilees
JPS56166937A (en) * 1980-05-27 1981-12-22 Osaka Gas Co Ltd Reaction apparatus with plate type heat exchanger
US4721164A (en) * 1986-09-04 1988-01-26 Air Products And Chemicals, Inc. Method of heat exchange for variable-content nitrogen rejection units
US5324452A (en) * 1992-07-08 1994-06-28 Air Products And Chemicals, Inc. Integrated plate-fin heat exchange reformation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 054 (C - 097) 9 April 1982 (1982-04-09) *

Also Published As

Publication number Publication date
FR2773726A1 (fr) 1999-07-23
FR2773726B1 (fr) 2000-04-07
EP1049534A1 (fr) 2000-11-08

Similar Documents

Publication Publication Date Title
EP0912868B1 (fr) Installation d'echange thermique entre au moins trois fluides
FR2902507A1 (fr) Echangeur de chaleur
WO1994021979A1 (fr) Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif
FR2474671A1 (fr) Echangeur de chaleur a tubes et plaques
FR2896576A1 (fr) Installation d'echange thermique a faisceaux de plaques
EP1049534A1 (fr) Reacteur catalytique a plaques
WO2018100306A1 (fr) Dispositif de distribution d'un fluide réfrigérant à l'intérieur de tubes d'un échangeur de chaleur constitutif d'un circuit de fluide réfrigérant
FR3093557A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
EP3215801A1 (fr) Element d'echange de chaleur adapte pour un echange de chaleur entre un premier et un deuxieme fluide, un faisceau d'echange comprenant l'element d'echange de chaleur et un echangeur de chaleur comprenant le faisceau d'echange
EP0956489A1 (fr) Echangeur thermique a plaques
EP0189029B1 (fr) Condenseur à mélange, notamment pour l'exploitation de l'énergie thermique des mers
EP0553340B1 (fr) Echangeur a plaques
EP0279713B1 (fr) Procédé et appareil pour effectuer sous pression des réactions chimiques dans une zône réactionnelle multi-étagée avec conditionnements thermiques intermédiaires extérieurs
WO1997037176A1 (fr) Accumulateur de capacite frigorifique
EP0354892B1 (fr) Echangeur de chaleur entre un gaz et un fluide à pouvoir d'échange thermique élevé
EP0062577B1 (fr) Echangeur de chaleur comprenant une batterie de tubes
EP0865818B1 (fr) Réacteur catalytique à plaques
FR2548345A1 (fr) Echangeur de chaleur c
EP3394555A1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2001076730A1 (fr) Grille de maintien d'un catalyseur dans un faisceau de plaques d'un reacteur catalytique
FR2816043A1 (fr) Echangeur ou reacteur chimique notamment du type a calandre
WO2017072425A1 (fr) Faisceau d'échange thermique pour un échangeur de chaleur, tube adapte pour ledit faisceau d'échange et échangeur de chaleur comprenant ledit faisceau d'échange thermique et/ou ledit tube
BE1004276A6 (fr) Echangeur de chaleur entre un gaz et un fluide a pouvoir d'echange thermique eleve.
WO2018100298A1 (fr) Echangeur de chaleur constitutif d'un circuit de fluide réfrigérant
WO2000028270A1 (fr) Echangeur thermique a plaques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999900512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09600897

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999900512

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999900512

Country of ref document: EP