WO1999031172A1 - Röntgenopake thermoplastische formmasse - Google Patents

Röntgenopake thermoplastische formmasse Download PDF

Info

Publication number
WO1999031172A1
WO1999031172A1 PCT/EP1998/007902 EP9807902W WO9931172A1 WO 1999031172 A1 WO1999031172 A1 WO 1999031172A1 EP 9807902 W EP9807902 W EP 9807902W WO 9931172 A1 WO9931172 A1 WO 9931172A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
styrene
molding composition
composition according
acrylonitrile
Prior art date
Application number
PCT/EP1998/007902
Other languages
English (en)
French (fr)
Inventor
Haakan Jonsson
Michael BÖDIGER
Heinrich Alberts
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to BR9813822-7A priority Critical patent/BR9813822A/pt
Priority to EP98962415A priority patent/EP1042395A1/de
Priority to JP2000539083A priority patent/JP2002508420A/ja
Priority to AU17589/99A priority patent/AU1758999A/en
Priority to KR1020007006584A priority patent/KR20010015878A/ko
Priority to CA002315176A priority patent/CA2315176A1/en
Publication of WO1999031172A1 publication Critical patent/WO1999031172A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the invention relates to a thermoplastic molding composition, and in particular to an X-ray-opaque, thermoplastic molding composition with excellent notched impact strength.
  • plastic parts in the human body e.g. swallowed plastic toys or plastic particles injected by accidents in the tissue as well as medical technology articles are becoming increasingly important.
  • OZ low atomic number
  • the effective atomic numbers of the plastics thus resemble those of water, so that the X-ray densities of conventional plastics and water are comparable.
  • the X-ray contrast is expected to be significantly improved compared to the unfilled polymer.
  • conventional fillers can significantly influence the mechanical properties of the polymers obtained.
  • the present invention is therefore based on the object of providing thermoplastic molding compositions which not only show good X-ray contrast, but also have excellent mechanical properties.
  • the BaSO 4 particles (B) have an average particle size of more than 100 nm and at most 3000 nm.
  • the BaSO 4 particles preferably have an average particle size between 150 and 2,000 nm, particularly preferably between 300 and 1,000 nm.
  • the molding compositions according to the invention have a particularly favorable combination of properties, namely excellent notched impact strength and high rigidity (modulus of elasticity).
  • Suitable vinyl polymers (A) are homopolymers or copolymers of one or more ethylenically unsaturated monomers containing vinyl groups. Suitable as monomers vinyl acetate, styrene, ⁇ - methyl styrene, ring-substituted styrenes, acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride, N-substituted maleimides, chloroprene, 1,3-butadiene, C, -C I8 alkyl acrylates and methacrylates. In particular, the following are possible:
  • (A2) rubber-containing vinyl polymers e.g. Graft polymers of vinyl monomers on a rubber or (A3) mixtures of (AI) and (A2)
  • graft polymers (A2) are preferably those in which (a) styrene or (b) methyl methacrylate or (c) a mixture of (i) styrene, ⁇ -methyl styrene, nucleus-substituted styrene, methyl methacrylate or a mixture thereof on a rubber and (ii ) Acrylonitrile, methacrylonitrile, maleic anhydride, N-substituted maleimides or a mixture thereof are graft-polymerized.
  • (c) 95 to 50% by weight (i) and 5 to 50% by weight (ii) are preferably used.
  • Suitable rubbers are all rubbers with glass transition temperatures ⁇ 10 ° C., preferably those which contain copolymerized butadiene. Examples are polybutadiene, styrene-butadiene
  • Copolymers acrylonitrile-butadiene copolymers, acrylate rubbers, optionally with built-in structural units derived from butadiene, acrylate rubbers which contain a crosslinked rubber such as polybutadiene or a copolymer of butadiene with an ethylenically unsaturated monomer such as styrene and / or acrylonitrile as the core.
  • Polybutadiene is preferred as the rubber.
  • the graft (co) polymers (A2) preferably contain 10 to 95% by weight, in particular 20 to 70% by weight of rubber and 90 to 5% by weight, in particular 80 to 30% by weight of graft (co) polymerized Monomers.
  • the rubbers are in these graft (co) polymers in the form of at least partially crosslinked particles with an average particle diameter (d 50 ) of 0.05 to 20 ⁇ m, preferably of 0.1 to 2 ⁇ m and particularly preferably of 0.1 to 0.8 ⁇ m before (determined by ultracentrifugation, see W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymer 250 (1972), pages 782 to 796).
  • the rubber-containing vinyl polymers (A2) comprise, for example, graft copolymers with rubber-elastic properties which are essentially obtainable from at least two of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate, C, -C 18 Alkyl acrylates and methacrylates.
  • graft copolymers with rubber-elastic properties which are essentially obtainable from at least two of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene, acrylonitrile, ethylene, propylene, vinyl acetate, C, -C 18 Alkyl acrylates and methacrylates.
  • Such polymers are described, for example, in "Methods of Organic Chemistry" (Houben-
  • Preferred polymers (A2) are partially crosslinked and have gel contents of over 20% by weight, preferably over 40% by weight, in particular over 60% by weight.
  • Preferred rubbery vinyl polymers (A2) are graft polymers of:
  • Preferred graft polymers (A2) are e.g. polybutadienes, butadiene / styrene copolymers and acrylic rubbers grafted with styrene and / or acrylonitrile and / or alkyl acrylates or methacrylates; i.e. Copolymers of the DE-OS
  • Particularly preferred graft polymers (A2) can be obtained by graft polymerization of
  • a mixture of 10 to 50 preferably 20 to 35% by weight, based on the mixture, of acrylonitrile, acrylic acid ester or methacrylic acid ester and 50 to 90, preferably 65 to 80% by weight, based on the mixture , Styrene (as graft (A2.1)
  • the gel fraction of the graft base b) is at least 40% by weight (in
  • the degree of grafting G is the weight ratio of grafted monomers to the graft base (dimensionless number).
  • Acrylic acid esters or methacrylic acid esters a) are esters of acrylic acid or methacrylic acid and monohydric alcohols with 1 to 18 carbon atoms.
  • the butadiene polymer b) may in addition to butadiene up to 50 wt .-%, based on b), of residues of other ethylenically unsaturated monomers such as styrene, acrylonitrile, C r C 4 alkyl esters or acrylic or methacrylic acid (such as methyl acrylate, ethyl acrylate,
  • Preferred vinyl polymers (AI) are copolymers of styrene, ⁇ -methylstyrene, core-substituted styrene or mixtures (ALI) on the one hand and on the other hand
  • Particularly preferred copolymers (AI) are those composed of (i) styrene, acrylonitrile and optionally methyl methacrylate, (ii) composed of ⁇ -methylstyrene, acrylonitrile and optionally methyl methacrylate and (iii) composed of styrene, ⁇ -methylstyrene, acrylonitrile and optionally methyl methacrylate.
  • styrene-acrylonitrile copolymers which can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the copolymers (AI) preferably have molecular weights M w (weight average, determined by light scattering or sedimentation) from 15,000 to 200,000.
  • AI particularly preferred copolymers
  • styrene and maleic anhydride which e.g. can be prepared from the corresponding monomers by continuous bulk or solution polymerization with incomplete conversions.
  • Their composition can be varied within wide limits. They preferably contain 5 to 25% by weight
  • these polymers can also contain nucleus-substituted styrenes, such as p-methylstyrene, vinyltoluene, 2,4-dimethylstyrene and other substituted styrenes, such as ⁇ -methylstyrene.
  • nucleus-substituted styrenes such as p-methylstyrene, vinyltoluene, 2,4-dimethylstyrene and other substituted styrenes, such as ⁇ -methylstyrene.
  • thermoplastic copolymers (AI) used according to the invention can be obtained from the monomers or similar monomers graft-polymerized onto the rubber to produce the graft copolymers (A2), in particular from styrene, ⁇ -methylstyrene, halostyrene, acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride, vinyl acetate, N-substituted Maleimides or mixtures thereof.
  • Copolymers of 98 to 50% by weight of styrene, ⁇ -methylstyrene, methyl methacrylate or mixtures thereof with 2 to 50% by weight of acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride or mixtures thereof are preferred.
  • Such copolymers (AI) are also formed as by-products in the graft copolymerization of corresponding monomers because the graft polymerization is not complete.
  • copolymers contained in the graft polymer (A2) it is customary to mix in separately prepared copolymers (AI). These do not have to be chemically identical to the ungrafted resin components present in the graft polymer (A2).
  • thermoplastic copolymers contain 20 to 40% by weight of acrylonitrile and 80 to 60% by weight of styrene or .alpha.-methylstyrene. These copolymers are known. They preferably have molecular weights of 15,000 to 200,000.
  • Any mixtures of the polymers (AI) and (A2) can also be used as vinyl polymer (A).
  • the polycondensates (C) of bifunctional reactive compounds are preferably polycarbonates and / or polyesters.
  • Preferred polycarbonates are those based on the diphenols of the formula (I)
  • wo ⁇ n A is a single bond, a C, -C 5 alkylene, a C 2 -C 5 alkylidene, a C 5 -C 6 cycloalkylidene, -O-, -SO-, -CO-, -S-, -SO 2 represents a C 6 -C 12 arylene radical which is condensed with further aromatic rings which may contain heteroatoms,
  • B is chlorine or bromine
  • p 1 or 0.
  • R 1 and R 2 independently of one another are hydrogen, halogen, preferably chlorine or
  • n is an integer from 4 to 7, preferably 4 or 5
  • R 3 and R 4 can be selected individually for each Z, independently of one another hydrogen or
  • Z means carbon, with the proviso that on at least one atom ZR 3 and R 4 simultaneously mean alkyl, preferably methyl.
  • Polycarbonates suitable according to the invention are both homopolycarbonates and copolycarbonates.
  • the polycondensate (C) can also be a mixture of the thermoplastic polycarbonates defined above.
  • Polycarbonates can be prepared in a known manner from diphenols with phosgene using the phase interface method or with phosgene using the homogeneous phase method, the so-called pyridine method, it being possible to adjust the molecular weight in a known manner by means of an appropriate amount of known chain terminators.
  • Suitable chain terminators are e.g. Phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols, such as 4- (1,3-tetramethylbutyl) phenol according to DE-OS 2 842 005 or monoalkylphenol or Dialkylphenol with a total of 8 to 20 carbon atoms in the alkyl substituents according to DE-A-35 06 472.2 such as 3,5-di-tert-butylphenol, p-iso-octylphenol, p-tert-octylphenol, p-dodecylphenol and 2- ( 3,5-dimethylheptyl) phenol and 4- (3,5-dimethylheptyl) phenol.
  • long-chain alkylphenols such as 4- (1,3-tetramethylbutyl) phenol according to DE-OS 2 842 005 or monoalkylphenol or
  • the amount of chain terminators is generally between 0.5 and 10 mol% based on the molar mass of the diphenols (I) used in each case.
  • the polycarbonates (C) used according to the invention have average molecular weights (M ⁇ , weight average, measured, for example, by ultracentrifugation or scattered light measurement) from 10,000 to 200,000, preferably from 20,000 to 80,000.
  • Suitable diphenols of formula (I) are e.g. Hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4th -hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane.
  • Preferred diphenols of the formula (I) are 2,2-bis (4-hydroxyphenyl) propane, 2,2-
  • Preferred diphenols of the formula (II) are l, l-bis- (4-hydroxyphenyl) -3,3-dimethylcyclohexane, l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and l, l-bis (4-hydroxyphenyl) -2,4,4-trimethyl-cyclopentane.
  • the polycarbonates (C) used according to the invention can be branched in a known manner, preferably by incorporating 0.05 to 2.0 mol%, based on the sum of the diphenols used, of three- or more than three-functional compounds, e.g. those with three or more than three phenolic groups.
  • preferred polycarbonates are the copolycarbonates of bisphenol A with up to 15 mol%, based on the molar sum
  • Aromatic polyesters can also be used as the polycondensate (C).
  • Preferred polyesters (C) are polyalkylene terephthalates. These are reaction products of aromatic dicarboxylic acids (or their reactive derivatives, e.g. ethyl esters or anhydrides) and aliphatic, cycloaliphatic or arylaliphatic diols and mixtures of such reaction products.
  • Preferred polyalkylene terephthalates can be obtained from terephthalic acid (or its reactive derivatives) and aliphatic or cycloaliphatic diols with 2 to 10
  • Preferred polyalkylene terephthalates contain 80 to 100, preferably 90 to 100 mol%, based on the dicarboxylic acid component, terephthalic acid residues and 80 to
  • residues of other aromatic dicarboxylic acids with 8 to 14 C atoms or aliphatic dicarboxylic acids with 4 to 12 C atoms are contained, such as residues of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4.4 '-Diphenyldicarboxylic acid, succinic, adipic, sebacic, azelaic or cyclohexanediacetic acid.
  • 0 to 20 mol% of other aliphatic diols with 3 to 12 C atoms or cycloaliphatic diols with 6 to 12 C atoms are contained, e.g. Residues of pentanediol-1,5, hexanediol-1,6, cyclohexanedimethanol-1,4, 3-methylpentanediol-1, 3 and -1,6, 2-ethylhexanediol-1, 3,
  • the polyalkylene terephthalates can be branched by incorporating relatively small amounts of trihydric or tetravalent alcohols or trihydric or tetravalent carboxylic acids, as are described in DE-OS 1 900 270 and US Pat. No. 3,692,744.
  • preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and propane and pentaerythritol. It is advisable not to use more than 1 mol% of the branching agent, based on the acid component.
  • Polyalkylene terephthalates which consist solely of terephthalic acid are particularly preferred
  • Preferred polyalkylene terephthalates are also copolyesters which are made from at least two of the diols mentioned above; are particularly preferred copolyesters
  • Poly (ethylene glycol / butanediol-1,4) terephthalates Poly (ethylene glycol / butanediol-1,4) terephthalates.
  • the various diol residues can be present in the copolyesters in the form of blocks or randomly distributed.
  • the polyalkylene terephthalates generally have an intrinsic viscosity of 0.4 to 1.4 dl / g, preferably 0.5 to 1.3 dl / g, in particular 0.6 to 1.2 dl / g, each measured in phenol / o -Dichlorobenzene (1: 1 parts by weight) at 25 ° C.
  • the BaSO 4 particles (B) used according to the invention have an average particle diameter d 50 of more than 100 nm, but at most 3,000 nm.
  • the mean particle diameter d 50 is defined as the diameter above and below which 50% by weight of the particles lie. It can be determined using ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid.Z. And Z. Polymer 250 (1972), 782-796).
  • the BaSO 4 particles (B) preferably have an average particle diameter between 200 and 2000 nm, particularly preferably between 300 and 1000 nm.
  • the barium sulfate can also be in the form of a masterbatch and can be incorporated into the thermoplastic molding composition.
  • the masterbatch is in solid (e.g. granules or powder) pasty or liquid form.
  • High (polymers) or low molecular weight substances e.g. waxes, oils
  • the vinyl polymers described as component A) are preferably used as the carrier substance.
  • Common additives such as pigments, waxes and oils can be added to the masterbatch.
  • the masterbatch contains 1-80% by weight, preferably 5 to 60% by weight, of barium sulfate, based on the total masterbatch.
  • Processes for producing masterbatch are, for example, in “Pigment and Additive Concentrates by Heini Grütter in” Mixing of Plastics ", VDI-Verlag
  • the carrier polymer is first melted and then the barium sulfate and any additives are metered in and dispersed in this homogeneous melt.
  • the molding compositions may contain conventional additives such as pigments, fillers, stabilizers, antistatic agents, lubricants, mold release agents and flame retardants, provided they do not reduce the impact strength.
  • the BaSO 4 particles (B) or the masterbatch can be converted into the thermoplastic molding composition (A) and, if appropriate, the polycondensate (C) are incorporated, for example by direct kneading or extruding the plastics (A) and, if appropriate, (C) and the BaSO 4 particles (B) and, if appropriate, the further auxiliaries.
  • Preferably 0.1 to 50, particularly preferably 0.1 to 30 and very particularly preferably 0.1 to 10% by weight of BaSO 4 are added to the polymer (A), optionally as a mixture with the polycondensate (C), and at elevated Mixed temperatures, e.g. 100 ° C to 280 ° C in conventional mixing units, kneaders, internal mixers, roller mills, screw machines or extruders.
  • the residence times in the mixing process can vary between 10 seconds and 30 minutes depending on the intensity of the mixing.
  • the molding compositions obtained in this way are then processed in the customary manner, e.g. further processed into molded parts by injection molding, in particular into toys or medical articles such as Catheters.
  • thermoplastic molding compositions are produced by kneading the components ABS, SAN, BaSO 4 and various customary additives (pigments, mold release agents, antistatic agents and lubricants) in a stamp kneader from
  • the molding materials thus produced are rolled (roll temperature 150 ° C), granulated and on an injection molding machine from Arburg with 75 t locking force sprayed to test specimens at 240 ° C melt temperature, 70 ° C mold temperature and an injection speed of 40 mm / s.
  • test specimens produced in this way are tested in accordance with the following standards:
  • the polymer composition of the polymers listed in the table is identical in each case and is as follows:
  • SAN is a thermoplastic resin made of 28% by weight acrylonitrile and 72% by weight styrene.
  • SAN can be made by emulsion polymerization (SAN latex) or bulk process. The viscosity of the SAN resin is determined by the
  • the L value of the SAN resin used is 60.
  • ABS graft polymer in powder form is produced by emulsion polymerization of styrene and acrylonitrile in the presence of an aqueous polybutadiene emulsion (polybutadiene base). Styrene and acrylonitrile are applied to the polybuta- grafted on dien particles. As is known, the grafting is not complete, so that in addition to grafted SAN, there is also free SAN in the ABS graft powder.
  • the particle size of the polybutadiene base is 0.4 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Thermoplastische Formmasse enthaltend (A) ein oder mehrere Vinylpolymerisate, (B) BaSO4-Partikel und (C) gegebenenfalls ein Polykondensat von bifunktionellen reaktiven Verbindungen, wobei die BaSO4-Partikel einen mittleren Partikeldurchmesser von mehr als 100 nm und höchstens 3 000 nm aufweisen. Weiter werden die Verwendung der Formmasse zur Herstellung von Spielwaren oder medizintechnischen Artikeln sowie aus der Formmasse hergestellte Formteile beschrieben.

Description

Röntgenopake thermoplastische Formmasse
Die Erfindung betrifft eine thermoplastische Formmasse, und insbesondere eine röntgenopake, thermoplastische Formmasse mit hervorragender Kerbschlagzähigkeit.
Der Nachweis von Kunststoffteilen im menschlichen Körper, z.B. verschlucktem Kunststoffspielzeug oder durch Unfälle im Gewebe einsprengten Kunststoffpartikeln sowie von medizintechnischen Artikeln gewinnt zunehmend an Bedeutung.
Eine Nachweismethode für Fremdkörper im menschlichen Organismus ist die
Röntgendiagnostik. Konventionelle Kunststoffe bestehen zum überwiegenden Anteil aus Elementen mit niedriger Ordnungszahl (OZ) wie Kohlenstoff (OZ = 6), Wasserstoff (OZ = 1), Sauerstoff (OZ = 8) und Stickstoff (OZ = 7). Die effektiven Ordnungszahlen der Kunststoffe ähneln damit denjenigen des Wassers, so daß die Röntgendichten von konventionellen Kunststoffen und Wasser vergleichbar sind.
Daher sind viele konventionelle Kunststoffe im lebenden Gewebe weitgehend röntgenstrahlentransparent.
Zur Erhöhung der Röntgendichte können Elemente mit höherer Ordnungszahl in den Kunststoffen dienen, z.B. Chlor (OZ = 17) im Polyvinylchlorid, Silizium (OZ = 14) in Silikonen und Fluor (OZ = 9) in Polyfluorcarbon. Von den üblichen Kunststoffen weist nur Polyvinylchlorid durch seine hohe Chlorkonzentration einen für die Röntgendiagnostik ausreichenden Kontrast auf (Fortschr. Röntgenstr. 128, 6 (1978) 758 bis 762).
Eine andere Möglichkeit zur Erhöhung der Röntgendichte von Kunststoffen ist der Einsatz von Füllstoffen wie Glasfasern (SiO2) oder Farbstoffen bzw. Pigmenten, die aus Elementen mit höherer Ordnungszahl bestehen, z.B. TiO2 (Ti: OZ = 22).
In der Medizin werden zum Sichtbarmachen körpereigener Strukturen mittels
Röntgendiagnostik Verbindungen eingesetzt, die Atome mit hoher Ordnungszahl enthalten (Röntgenkontrastmittel) wie BaSO4 (Ba: OZ = 56) oder organische lodverbindungen (Iod: OZ = 53).
Um verschiedene Kunststoffe, insbesondere solche ohne Elemente mit höherer Ordnungszahl (OZ >8) röntgenologisch effektiv abzubilden, kann man z.B. nachträglich BaSO4 einarbeiten. Zur Einarbeitung in Kunststoffe sind die vorstehend genannten organischen lodverbindungen im allgemeinen nicht geeignet, da die hohen Verarbeitungstemperaturen bei der Formung der Kunststoffteile diese Verbindungen zersetzen können.
Arbeitet man BaSO4 in Polymere ein, so wird erwartungsgemäß der Röntgenkontrast gegenüber dem ungefüllten Polymeren deutlich verbessert. Konventionelle Füllstoffe können jedoch die mechanischen Eigenschaften der erhaltenen Polymere deutlich beeinflussen.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, thermoplastische Formmassen bereitzustellen, die nicht nur einen guten Röntgenkontrast zeigen, sondern auch hervorragende mechanische Eigenschaften aufweisen.
Diese Aufgabe wird gelöst durch die Bereitstellung von thermoplastischen Formmassen, enthaltend
(A) ein oder mehrere Vinylpolymerisate
(B) BaSO4-Partikel und
(C) gegebenenfalls ein Polykondensat von bifunktionellen reaktiven Verbindungen,
die dadurch gekennzeichnet sind, daß die BaSO4-Partikel (B) eine mittlere Partikelgröße von mehr als 100 nm und höchstens 3000 nm aufweisen. Bevorzugt weisen die BaSO4-Partikel eine mittlere Teilchengröße zwischen 150 und 2 000 nm, besonders bevorzugt zwischen 300 und 1 000 nm auf.
Überraschenderweise zeigen die erfindungsgemäßen Formmassen eine besonders günstige Kombination von Eigenschaften, nämlich hervorragende Kerbschlagzähigkeit und hohe Steifigkeit (E-Modul).
Als Vinylpolymerisate (A) kommen in Frage Homopolymerisate oder Copolymerisate von einem oder mehreren Vinylgruppen-haltigen ethylenisch ungesättigten Monomeren. Als Monomere geeignet sind Vinylacetat, Styrol, α- Methylstyrol, kernsubstituierte Styrole, Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, N-substituierte Maleinimide, Chloropren, Butadien-1,3, C,-CI8-Alkylacrylate und -Methacrylate. Insbesondere kommen in Frage:
(AI) kautschukfreie Vinylpolymerisate,
(A2) kautschukhaltige Vinylpolymerisate, z.B. Pfropfpolymerisate von Vinylmonomeren auf einen Kautschuk oder (A3) Mischungen aus (AI) und (A2)
Pfropfpolymerisate (A2) sind erfindungsgemäß bevorzugt solche, in denen auf einen Kautschuk (a) Styrol oder (b) Methylmethacrylat oder (c) eine Mischung aus (i) Styrol, α-Methylstyrol, kernsubstituiertem Styrol, Methylmethacrylat oder einer Mischung daraus und (ii) Acrylnitril, Methacrylnitril, Maleinsäureanhydrid, N- substituierten Maleinimiden oder einer Mischung daraus pfropfpolymerisiert sind. Im Fall von (c) werden bevorzugt 95 bis 50 Gew.-% (i) und 5 bis 50 Gew.-% (ii) eingesetzt. Geeignete Kautschuke sind alle Kautschuke mit Glasübergangstemperaturen <10°C, vorzugsweise solche, die Butadien einpolymerisiert enthalten. Beispiele sind Polybutadien, Styrol-Butadien-
Copolymerisate, Acrylnitril-Butadien-Copolymerisate, Acrylatkautschuke, gegebenenfalls mit eingebauten vom Butadien abgeleiteten Struktureinheiten, Acrylatkautschuke, die einen vernetzten Kautschuk wie Polybutadien oder ein Copolymerisat von Butadien mit einem ethylenisch ungesättigten Monomer wie Styrol und/oder Acrylnitril als Kern enthalten. Polybutadien ist als Kautschuk bevorzugt.
Die Pfropf(co)polymerisate (A2) enthalten bevorzugt 10 bis 95 Gew.-%, insbesondere 20 bis 70 Gew.-% Kautschuk und 90 bis 5 Gew.-%, insbesondere 80 bis 30 Gew.-% pfropf(co)polymerisierte Monomere. Die Kautschuke liegen in diesen Pfropf(co)polymerisaten in Form wenigstens partiell vernetzter Teilchen eines mittleren Teilchendurchmessers (d50) von 0,05 bis 20 μm, bevorzugt von 0, 1 bis 2 μm und besonders bevorzugt von 0,1 bis 0,8 μm vor (ermittelt durch Ultrazentrifugation, siehe W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), Seiten 782 bis 796).
Die kautschukhaltigen Vinylpolymerisate (A2) umfassen z.B. Pfropfcopolymerisate mit kautschukelastischen Eigenschaften, die im wesentlichen aus mindestens zwei der folgenden Monomere erhältlich sind: Chloropren, Butadien- 1,3, Isopren, Styrol, Acrylnitril, Ethylen, Propylen, Vinylacetat, C,-C18-Alkylacrylate und -methacrylate. Solche Polymerisate sind z.B. in "Methoden der Organischen Chemie" (Houben-
Weyl), Bd. 14/1, Georg Thieme Verlag, Stuttgart, 1962, S. 393-406 und in C.B. Bucknall, "Toughened Plastics", Appl. Science Publishers, London 1977 beschrieben. Bevorzugte Polymerisate (A2) sind partiell vernetzt und weisen Gelgehalte von über 20 Gew.-%, vorzugsweise über 40 Gew.-%, insbesondere über 60 Gew.-% auf.
Bevorzugte kautschukartige Vinylpolymerisate (A2) sind Pfropfpolymerisate aus:
(A2.1) 5 bis 95, bevorzugt 30 bis 80 Gew.-Teilen einer Mischung aus (A2.1.1) 50 bis 95 Gew. -Teilen Styrol, α-Methylstyrol, halogen- oder methyl-kernsubstituierten Styrolen, Methylmethacrylat oder Mischungen dieser Verbindungen und
(A2.1.2) 5 bis 50 Gew.-Teilen Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, C,-C4-alkyl- bzw. phenyl- N-substituierten Maleinimiden oder Mischungen dieser Monomeren auf
(A2.2) 5 bis 95, bevorzugt 20 bis 70 Gew.-Teilen Kautschuk-Polymerisat mit einer Glasübergangstemperatur unter -10°C.
Bevorzugte Pfropfpolymerisate (A2) sind z.B. mit Styrol und/oder Acrylnitril und/oder Alkylacrylaten oder -Methacrylaten gepfropfte Polybutadiene, Butadien/- Styrol-Copolymerisate und Acrylkautschuke; d.h. Copolymerisate der in der DE-OS
16 94 173 (= US-PS 3 564 077) beschriebenen Art; mit Acryl- oder Methacryl- säurealkylestern, Vinylacetat, Acrylnitril, Styrol und/oder Alkylstyrolen gepfropfte Butadiene, Butadien/Styrol- oder Butadien/Acrylnitril-Copolymerisate, Polyisobutene oder Polyisoprene, wie sie in der DE-OS 23 48 377 (= US-PS 3 919 353) beschrieben sind.
Besonders bevorzugte Polymerisate (A2) sind ABS-Polymerisate, wie sie z.B. in der DE-OS 20 35 390 (=US-PS 3 644 574) und in der DE-OS 22 48 242 (= GB-PS 1 409 275) bechrieben sind.
Besonders bevorzugte Pfropfpolymerisate (A2) sind erhältlich durch Pfropfpolymerisation von
a) 10 bis 70, vorzugsweise 15 bis 50, insbesondere 20 bis 40 Gew.-%, bezogen auf das Pfropfpolymerisat (A2), von Acrylsäureestern oder Methacrylsäure- estern oder von 10 bis 70, vorzugsweise 15 bis 50, insbesondere 20 bis 40 Gew.-% eines Gemisches aus 10 bis 50, vorzugsweise 20 bis 35 Gew.-%, bezogen auf das Gemisch, Acrylnitril, Acrylsäureester oder Methacryl- säureester und 50 bis 90, vorzugsweise 65 bis 80 Gew.-%, bezogen auf das Gemisch, Styrol (als Pfropfauflage (A2.1) auf
b) 30 bis 90, vorzugsweise 50 bis 85, insbesondere 60 bis 80 Gew.-%, bezogen auf Pfropfpolymerisat (A2), eines Butadien-Polymerisats mit mindestens 50 Gew.-%, bezogen auf b), Butadienresten (als Pfropfgrundlage (A2.2),
wobei vorzugsweise der Gelanteil der Pfropfgrundlage b) mindestens 40 Gew.-% (in
Toluol gemessen), der Pfropfgrad G 0,15 bis 0,55 und der mittlere Teilchendurchmesser d50 des Pfropfpolymerisats (A2) 0,05 bis 2 μm, vorzugsweise 0, 1 bis 0,6 μm beträgt.
Der Pfropfgrad G ist das Gewichtsverhältnis von aufgepropften Pfropfmonomeren zur Pfropfgrundlage (dimensionslose Zahl).
Acrylsäureester bzw. Methacrylsäureester a) sind Ester der Acrylsäure oder Meth- acrylsäure und einwertiger Alkohole mit 1 bis 18 C-Atomen. Besonders bevorzugt sind Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat, n-Butylacrylat, t-
Butylacrylat und t-Butylmethacrylat.
Das Butadienpolymerisat b) kann neben Butadienresten bis zu 50 Gew.-%, bezogen auf b), Reste anderer ethylenisch ungesättigter Monomerer, wie Styrol, Acrylnitril, CrC4-Alkylester oder Acryl- oder Methacrylsäure (wie Methylacrylat, Ethylacrylat,
Methylmethacrylat, Ethylmethacrylat), Vinylester und/oder Vinylether enthalten. Bevorzugt ist Polybutadien.
Bevorzugte Vinylpolymerisate (AI) sind Copolymerisate aus einerseits Styrol, α- Methylstyrol, kernsubstituiertem Styrol oder Mischungen (ALI) und andererseits
Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, N-substituier- tem Maleinimid oder Mischungen davon (AI.2). Bevorzugt enthalten diese Copoly- merisate 50 bis 98 Gew.-% (ALI) und 50 bis 2 Gew.-% (AI.2).
Besonders bevorzugte Copolymerisate (AI) sind solche aus (i) Styrol, Acrylnitril und gegebenenfalls Methylmethacrylat, (ii) aus α-Methylstyrol, Acrylnitril und gegebenenfalls Methylmethacrylat sowie (iii) aus Styrol, α-Methylstyrol, Acrylnitril und gegebenenfalls Methylmethacrylat.
Die bekanntesten sind Styrol-Acrylnitril-Copolymerisate, die durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation hergestellt werden können.
Die Copolymerisate (AI) besitzen vorzugsweise Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) von 15 000 bis 200 000.
Weitere besonders bevorzugte Copolymerisate (AI) sind statistisch aufgebaute Copolymerisate aus Styrol und Maleinsäureanhydrid, die z.B. durch eine kontinuierliche Masse- oder Lösungspolymerisation bei unvollständigen Umsätzen aus den entsprechenden Monomeren hergestellt werden können. Ihre Zusammensetzung kann innerhalb weiter Grenzen variiert werden. Bevorzugt enthalten sie 5 bis 25 Gew.-%
Maleinsäureanhydrideinheiten.
Anstelle von Styrol können diese Polymerisate auch kernsubstituierte Styrole, wie p- Methylstyrol, Vinyltoluol, 2,4-Dimethylstyrol und andere substituierte Styrole, wie α-Methylstyrol, enthalten.
Die erfindungsgemäß eingesetzten thermoplastischen Copolymerisate (AI) können aus den zur Herstellung der Pfropfcopolymerisate (A2) verwendeten auf den Kautschuk pfropfpolymerisierten Monomeren oder ähnlichen Monomeren gewonnen werden, insbesondere aus Styrol, α-Methylstyrol, Halogenstyrol, Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, Vinylacetat, N-substituierten Maleinimiden oder Mischungen daraus. Bevorzugt sind Copolymerisate aus 98 bis 50 Gew.-% Styrol, α-Methylstyrol, Methylmethacrylat oder Mischungen daraus mit 2 bis 50 Gew.-% Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid oder Mischungen daraus.
Solche Copolymerisate (AI) entstehen auch bei der Pfropfcopolymerisation entsprechender Monomerer als Nebenprodukte, weil die Pfropfpolymerisation nicht vollständig ist. Es ist üblich, neben den im Pfropfpolymerisat (A2) enthaltenden Copolymeren noch getrennt hergestellte Copolymere (AI) zuzumischen. Diese müssen nicht mit den in dem Pfropφolymeren (A2) vorliegenden ungepfropften Harzanteilen chemisch identisch sein.
Besonders bevorzugte thermoplastische Copolymerisate (AI) enthalten 20 bis 40 Gew.-% Acrylnitril und 80 bis 60 Gew.-% Styrol oder α-Methylstyrol einpolymeri- siert. Diese Copolymerisate sind bekannt. Sie besitzen vorzugsweise Molekulargewichte von 15 000 bis 200 000.
Ebenfalls als Vinylpolymerisat (A) einsetzbar sind beliebige Gemische der Polymerisate (AI) und (A2).
Die Polykondensate (C) von bifunktionellen reaktiven Verbindungen sind bevorzugt Polycarbonate und/oder Polyester.
Bevorzugte Polycarbonate sind solche auf der Basis der Diphenole der Formel (I)
Figure imgf000010_0001
woπn A eine Einfachbindung, ein C,-C5-Alkylen, ein C2-C5-Alkyliden, ein C5-C6- Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2-, einen C6-C12-Arylenrest, der mit weiteren aromatischen gegebenenfalls Heteroatome enthaltenden Ringen kondensiert ist, darstellt,
B Chlor oder Brom ist
x 0, 1 oder 2 und
p 1 oder 0 ist.
und/oder alkylsubstituierte Dihydroxydiphenylcycloalkane der Formel (II)
Figure imgf000011_0001
wonn
R1 und R2 unabhängig voneinander Wasserstoff, Halogen, bevorzugt Chlor oder
Brom, -Cg-Alkyl, C5-C6-Cycloalkyl, C6-C10-Aryl, bevorzugt Phenyl und C7-C12-Aralkyl, bevorzugt Phenyl-C,-C4-Alkyl, insbesondere Benzyl,
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5, R3 und R4 für jedes Z individuell wählbar, unabhängig voneinander Wasserstoff oder
C,-C6-Alkyl und
Z Kohlenstoff bedeutet, mit der Maßgabe, daß an mindestens einem Atom Z R3 und R4 gleichzeitig Alkyl, vorzugsweise Methyl, bedeuten.
Erfindungsgemäß geeignete Polycarbonate sind sowohl Homopolycarbonate als auch Copolycarbonate.
Das Polykondensat (C) kann auch eine Mischung der vorstehend definierten thermoplastischen Polycarbonate sein.
Polycarbonate können in bekannter Weise aus Diphenolen mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Phosgen nach dem Verfahren in homogener Phase, dem sogenannten Pyridinverfahren, hergestellt werden, wobei das Molekulargewicht in bekannter Weise durch eine entsprechende Menge an bekannten Kettenabbrechern eingestellt werden kann.
Geeignete Kettenabbrecher sind z.B. Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(l,3-Tetramethyl- butyl)phenol gemäß DE-OS 2 842 005 oder Monoalkylphenol bzw. Dialkylphenol mit insgesamt 8 bis 20 Kohlenstoffatomen in den Alkylsubstituenten gemäß DE-A- 35 06 472.2 wie 3,5-Di-tert.-butylphenol, p-iso-Octylphenol, p-tert.-Octylphenol, p- Dodecylphenol und 2-(3,5-Dimethylheptyl)phenol und 4-(3,5-Dimethylheptyl)- phenol.
Die Menge an Kettenabbrechern beträgt im allgemeinen zwischen 0,5 und 10 Mol-% bezogen auf die Molmasse der jeweils eingesetzten Diphenole (I). Die erfindungsgemäß eingesetzten Polycarbonate (C) haben mittlere Molekulargewichte (M^,, Gewichtsmittel, gemessen z.B. durch Ultrazentrifugation oder Streulichtmessung) von 10 000 bis 200 000, vorzugsweise von 20 000 bis 80 000.
Geeignete Diphenole der Formel (I) sind z.B. Hydrochinon, Resorcin, 4,4'-Dihy- droxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)propan, 2,4-Bis-(4-hydroxyphenyl)-2- methylbutan, 1 , 1 -Bis-(4-hydroxyphenyl)cyclohexan, 2,2-Bis-(3 -chlor-4-hydroxy- phenyl)propan, 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)propan.
Bevorzugte Diphenole der Formel (I) sind 2,2-Bis-(4-hydroxyphenyl)propan, 2,2-
Bis-(3 ,5-dichlor-4-hydroxyphenyl)propan und 1 , 1 -Bis-(4-hydroxyphenyl)- cyclohexan.
Bevorzugte Diphenole der Formel (II) sind l,l-Bis-(4-hydroxyphenyl)-3,3-dimethyl- cyclohexan, l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und l,l-Bis-(4- hydroxyphenyl)-2,4,4-trimethyl-cyclopentan.
Die erfindungsgemäß verwendeten Polycarbonate (C) können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an drei- oder mehr als drei- funktionellen Verbindungen, z.B. solchen mit drei oder mehr als drei phenolischen Gruppen.
Bevorzugte Polycarbonate sind neben dem Bisphenol-A-Homopolycarbonat die Co- polycarbonate von Bisphenol A mit bis zu 15 Mol-%, bezogen auf die Molsumme an
Diphenolen, an 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)propan.
Als Polykondensat (C) können auch aromatische Polyester eingesetzt werden.
Bevorzugte Polyester (C) sind Polyalkylenterephthalate. Diese sind Reaktionsprodukte von aromatischen Dicarbonsäuren (oder ihren reaktiven Derivaten, z.B. Dirne- thylestern oder Anhydriden) und aliphatischen, cycloaliphatischen oder arylaliphati- schen Diolen und Mischungen solcher Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate lassen sich aus Terephthalsäure (oder ihren reaktiven Derivaten) und aliphatischen oder cycloaliphatischen Diolen mit 2 bis 10
Kohlenstoffatomen nach bekannten Methoden herstellen (Kunststoff-Handbuch, Band VIII, Seite 695 ff., Carl Hanser Verlag, München 1973).
Bevorzugte Polyalkylenterephthalate enthalten 80 bis 100, vorzugsweise 90 bis 100 Mol-%, bezogen auf die Dicarbonsäurekomponente, Terephthalsäurereste und 80 bis
100, vorzugsweise 90 bis 100 Mol-%, bezogen auf die Diolkomponente, Ethylenglykol und/oder Butandiol-l,4-Reste. Neben Terephthalsäureresten sind 0 bis 20 Mol-% Reste anderer aromatischer Dicarbonsäuren mit 8 bis 14 C- Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C- Atomen enthalten, wie Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbon- säure, Bernstein-, Adipin-, Sebacin-, Azelain- oder Cyclohexandiessigsäure. Neben Ethylenglykol- und/oder Butandiol-l,4-Resten sind 0 bis 20 Mol-% anderer aliphatischer Diole mit 3 bis 12 C- Atomen oder cycloaliphatischer Diole mit 6 bis 12 C-Atomen enthalten, z.B. Reste von Pentandiol-1,5, Hexandiol-1,6, Cyclohexandimethanol-1,4, 3-Methylpentandiol-l,3 und -1,6, 2-Ethylhexandiol-l,3,
2,2-Diethylpropandiol- 1,3, Hexandiol-2,5 , 1 ,4-Di(ß-hydroxyethoxyphenyl)propan, 2,4-Dihydroxy-l,l,3,3-tetramethylcyclobutan, 2,2-Bis-(3-ß-hydroxyethoxyphenyl)- propan und 2,2-Bis-(4-hydroxypropoxyphenyl)propan (DE-OS 2 407 647, 2 407 776, 2 715 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4- wertiger Alkohole oder 3- oder 4-basiger Carbonsäuren, wie sie in DE-OS 1 900 270 und US-PS 3 692 744 beschrieben sind, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Tri- methylolethan und -propan und Pentaerythrit. Es ist ratsam, nicht mehr als 1 Mol-% des Verzweigungsmittels, bezogen auf die Säurekomponente, zu verwenden.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure
(oder deren reaktionsfähigen Derivaten, z.B. deren Dialkylestern) und Ethandiol und/oder Butandiol-1,4 hergestellt worden sind, sowie deren Mischungen.
Bevorzugte Polyalkylenterephthalate sind auch Copolyester, die aus mindestens zwei der obengenannten Diole hergestellt sind; besonders bevorzugte Copolyester sind
Poly-(ethylenglykol/butandiol-l,4)-terephthalate. In den Copolyestern können die verschiedenen Diolreste in Form von Blöcken oder statistisch verteilt vorliegen.
Die Polyalkylenterephthalate besitzen im allgemeinen eine intrinsische Viskosität von 0,4 bis 1,4 dl/g, vorzugsweise 0,5 bis 1,3 dl/g, insbesondere 0,6 bis 1,2 dl/g, jeweils gemessen in Phenol/o-Dichlorbenzol (1 : 1 Gew. -Teile) bei 25°C.
Die erfindungsgemäß verwendeten BaSO4-Partikel (B) weisen einen mittleren Partikeldurchmesser d50 von mehr als 100 nm, aber höchstens 3 000 nm auf. Der mittlere Partikeldurchmesser d50 ist definiert als der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid.Z. und Z. Polymere 250 (1972), 782-796) bestimmt werden.
Beispielsweise können folgende kommerziell erhältlichen Handelsprodukte eingesetzt werden: Sachtoperse HP, Blanc fixe N, XR-HX (Fa. Sachtleben Chemie GmbH, Duisburg); Blanc fixe HD 80 (Solvay Barium Strontium GmbH, Hannover).
Bevorzugt weisen die BaSO4-Partikel (B) einen mittleren Teilchendurchmesser zwischen 200 und 2000 nm, besonders bevorzugt zwischen 300 und 1000 nm auf. Das Bariumsulfat kann weiterhin auch in Form eines Masterbatch vorliegen und in die thermoplastische Formmasse eingearbeitet werden.
Das Masterbatch liegt in fester (z.B. als Granulat oder Pulver) pastöser oder flüssiger Form vor. Als Trägersubstanz dienen im allgemeinen hoch- (Polymere) oder niedermolekulare Substanzen (z.B. Wachse, Öle). Vorzugsweise werden die als Komponente A) beschriebenen Vinylpolymerisate als Trägersubstanz verwendet. Dem Masterbatch können übliche Additive wie Pigmente, Wachse und Öle zugesetzt werden.
Im allgemeinen enthält das Masterbatch l-80 Gew.-%, vorzugsweise 5 bis 60 Gew.-% Bariumsulfat, bezogen auf das gesamte Masterbatch.
Verfahren zur Herstellung von Masterbatch sind beispielsweise im "Pigment- und Additivkonzentrate von Heini Grütter in "Mischen von Kunststoffen", VDI-Verlag
GmbH 1983, Düsseldorf beschrieben.
Im einstufigen Verfahren werden Träger, Bariumsulfat und gegebenenfalls Zusatzstoffe in üblicher Weise vermischt und anschließend compoundiert.
Im zweistufigen Verfahren wird Trägerpolymer zunächst aufgeschmolzen und in diese homogene Schmelze wird dann das Bariumsulfat und gegebenenfalls Zusatzstoffe eindosiert und dispergiert.
Neben den erfindungsgemäßen Komponenten können die Formmassen übliche Zusätze wie Pigmente, Füllstoffe, Stabilisatoren, Antistatika, Gleitmittel, Entformungs- mittel, Flammschutzmittel enthalten, sofern sie die Kerbschlagzähigkeit nicht reduzieren.
Die BaSO4-Partikel (B) bzw. das Masterbatch können nach üblichen Verfahren in die thermoplastische Formmasse (A) und gegebenenfalls das Polykondensat (C) eingearbeitet werden, beispielsweise durch direktes Kneten oder Extrudieren der Kunststoffe (A) und gegebenenfalls (C) und der BaSO4-Partikel (B) sowie gegebenenfalls der weiteren Hilfsmittel. Vorzugsweise werden 0,1 bis 50, besonders bevorzugt 0,1 bis 30 und ganz besonders bevorzugt 0,1 bis 10 Gew.-% BaSO4 zu dem Polymerisat (A), gegebenenfalls als Gemisch mit dem Polykondensat (C) gegeben und bei erhöhten Temperaturen gemischt, z.B. 100°C bis 280°C in üblichen Mischaggregaten, Knetern, Innenmischern, Walzenstühlen, Schneckenmaschinen oder Extrudern. Dabei können die Verweilzeiten beim Vermischungsprozeß je nach Intensität der Durchmischung zwischen 10 Sekunden und 30 Minuten variieren.
Die so erhaltenen Formmassen werden dann auf die übliche Art und Weise, z.B. durch Spritzgießen zu Formteilen weiter verarbeitet, insbesondere zu Spielwaren oder medizintechnischen Artikeln wie z.B. Kathetern.
Die folgenden Beispiele verdeutlichen die Erfindung weiter:
Beispiele
Die Herstellung der thermoplastischen Formmassen erfolgt durch Kneten der Bestandteile ABS, SAN, BaSO4 sowie verschiedener üblicher Additive (Pigmente, Entformungsmittel, Antistatika und Gleitmittel) in einem Stempelkneter der Fa.
Farelle bei 170-185°C, einer Drehzahl von 590 min"1 und einer Knetdauer von 3-5 min. Die so hergestellten Formmassen werden gewalzt (Walzentemperatur 150°C), granuliert und auf einer Spritzgußmaschine der Fa. Arburg mit 75 t Zuhaltekraft bei 240°C Massetemperatur, 70°C Werkzeugtemperatur und einer Einspritzge- schwindigkeit von 40 mm/s zu Prüfkörpern verspritzt.
Die Prüfung der so hergestellten Prüfkörper erfolgt nach folgenden Normen:
1. Schmelzindex (Volumen-Fließindex MVR) ISO 1133 2. Izod-Kerbschlagzähigkeit ISO 180/1A Flachstab 80x10x4 mm3
3. Zug-E Modul ISO 527 Schulterstab Nr.3; 170x10x4 mm3
Die Ergebnisse der Prüfung sind in der folgenden Tabelle dargestellt.
Die Polymerzusammensetzung der in der Tabelle aufgeführten Polymerisate ist jeweils identisch und lautet wie folgt:
SAN ist ein thermoplastisches Harz aus 28 Gew.-% Acrylnitril und 72 Gew.-% Styrol. SAN kann durch Emulsionspolymerisation (SAN-Latex) oder Masseverfahren hergestellt werden. Die Viskosität des SAN-Harzes wird durch den
L-Wert charakterisiert (L-Wert = ηspez/c bei c = 5 g/1 in DMF bei 25°C). Der L-Wert des eingesetzten SAN-Harzes ist 60.
ABS-Pfropφpolymerisat in Pulverform wird durch Emulsionspolymerisation von Styrol und Acrylnitril in Gegenwart einer wäßrigen Polybutadien-Emulsion (Poly- butadien-Grundlage) hergestellt. Dabei wird Styrol und Acrylnitril auf die Polybuta- dien-Teilchen aufgepfropft. Die Pfropfung ist bekanntermaßen nicht vollständig, so daß neben gepfropftem SAN auch freies SAN im ABS-Pfropφulver vorliegt. Das ABS-Pfropφolymerisat besteht aus 55 Gew.-% Polybutadien und 45 Gew.-% SAN (Styrol:Acrylnitril = 72 Gew.-%:28 Gew.-%). Die Partikelgröße der Polybutadien- grundlage beträgt 0,4 μm.
Tabelle
Figure imgf000019_0001

Claims

Patentansprttche;
1. Thermoplastische Formmasse, enthaltend
(A) ein oder mehrere Vinylpolymerisate,
(B) BaSO4-Partikel und
(C) gegebenenfalls ein Polykondensat von bifunktionellen reaktiven Verbindungen,
dadurch gekennzeichnet, daß die BaSO4-Partikel einen mittleren Partikeldurchmesser von mehr als 100 nm und höchstens 3000 nm aufweisen.
2. Formmasse nach Anspruch 1, dadurch gekennzeichnet, daß die BaSO4- Partikel einen mittleren Partikeldurchmesser zwischen 200 und 2 000 nm aufweisen.
3. Formmasse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Vinyl- polymerisat (A) ausgewählt wird aus
(AI) kautschukfreien Vinylpolymerisaten (A2) kautschukhaltigen Vinylpolymerisaten (A3) Mischungen aus (AI) und (A2).
4. Formmasse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die kautschukfreien Vinylpolymerisate (AI) ausgewählt werden aus Copoly- merisaten aus
(ALI) Styrol, α-Methylstyrol, kernsubstituiertem Styrol oder Mischungen daraus und (A1.2) Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, N-substituiertem Maleinimid oder Mischungen daraus.
5. Formmasse nach Anspruch 4, dadurch gekennzeichnet, daß das Copolymerisat (AI) 50 bis 98 Gew.-% (ALI) und 50 bis 2 Gew.-% (AI.2) enthält.
6. Formmasse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Copolymerisat (AI) ein Copolymerisat aus (i) Styrol, Acrylnitril und gegebenenfalls Methylmethacrylat, (ii) α-Methylstyrol, Acrylnitril und gegebenenfalls Methylmethacrylat oder (iii) Styrol, α-Methylstyrol, Acrylnitril und gebenenfalls Methylmethacrylat ist.
7. Formmasse nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die kautschukhaltigen Vinylpolymerisate (A2) Pfropfpolymerisate aus
(A2.1) 5 bis 95, bevorzugt 30 bis 80 Gew.-Teilen einer Mischung aus
(A2.1.1) 50 bis 95 Gew.-Teilen Styrol, α-Methylstyrol, halogen- oder methyl-kernsubstituierten Styrolen, Methylmethacrylat oder Mischungen dieser Verbindungen und
(A2.1.2) 5 bis 50 Gew.-Teilen Acrylnitril, Methacrylnitril, Methyl- methacrylat, Maleinsäureanhydrid, C,-C4-alkyl- bzw. phenyl-
N-substituierten Maleinimiden oder Mischungen dieser Verbindungen auf
(A2.2) 5 bis 95, bevorzugt 20 bis 70 Gew.-Teilen Kautschuk-Poly- merisat mit einer Glasübergangstemperatur unter - 10°C sind.
8. Formmasse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Pfropφolymerisat (A2) erhalten wird durch Pfropφolymerisation von
a) 10 bis 70, bezogen auf das Pfropφolymerisat (A2), von Acrylsäure- estern oder Methacrylsäureestern oder von 10 bis 70, vorzugsweise 15 bis 50, insbesondere 20 bis 40 Gew.-% eines Gemisches aus 10 bis 50, vorzugsweise 20 bis 35 Gew.-%, bezogen auf das Gemisch, Acrylnitril, Acrylsäureester oder Methacrylsäureester und 50 bis 90, vorzugsweise 65 bis 80 Gew.-%, bezogen auf das Gemisch, Styrol (als Pfropfauflage (A2.1)) auf
b) 30 bis 90, vorzugsweise 50 bis 85, insbesondere 60 bis 80 Gew.-%, bezogen auf Pfropφolymerisat (A2), eines Butadien-Polymerisats mit mindestens 50 Gew.-%, bezogen auf b), Butadienresten (als Pfropfgrundlage (A2.2)).
9. Formmasse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Polykondensat (C) ein Polycarbonat oder Polyester ist.
10. Formmasse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das das Bariumsulfat in Form eines Masterbatches vorliegt.
11. Verwendung einer Formmasse nach einem der Ansprüche 1 bis 10 zur
Herstellung von Formteilen.
12. Verwendung gemäß Anspruch 11 zur Herstellung von Spielwaren oder medizintechnischen Artikeln.
13. Formteile, hergestellt nach einem der Ansprüche 1 bis 10.
14. Spielwaren und medizintechnische Artikel gemäß Anspruch 13.
PCT/EP1998/007902 1997-12-17 1998-12-04 Röntgenopake thermoplastische formmasse WO1999031172A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR9813822-7A BR9813822A (pt) 1997-12-17 1998-12-04 Composição de moldagem termoplástica que é opaca ao raio-x
EP98962415A EP1042395A1 (de) 1997-12-17 1998-12-04 Röntgenopake thermoplastische formmasse
JP2000539083A JP2002508420A (ja) 1997-12-17 1998-12-04 X線に不透過性の熱可塑性成形用組成物
AU17589/99A AU1758999A (en) 1997-12-17 1998-12-04 X-ray opaque thermoplastic moulding compound
KR1020007006584A KR20010015878A (ko) 1997-12-17 1998-12-04 X-선 불투명 열가소성 성형 조성물
CA002315176A CA2315176A1 (en) 1997-12-17 1998-12-04 X-ray opaque thermoplastic moulding compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19756141A DE19756141A1 (de) 1997-12-17 1997-12-17 Röntgenopake thermoplastische Formmasse
DE19756141.1 1997-12-17

Publications (1)

Publication Number Publication Date
WO1999031172A1 true WO1999031172A1 (de) 1999-06-24

Family

ID=7852278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/007902 WO1999031172A1 (de) 1997-12-17 1998-12-04 Röntgenopake thermoplastische formmasse

Country Status (8)

Country Link
EP (1) EP1042395A1 (de)
JP (1) JP2002508420A (de)
KR (1) KR20010015878A (de)
AU (1) AU1758999A (de)
BR (1) BR9813822A (de)
CA (1) CA2315176A1 (de)
DE (1) DE19756141A1 (de)
WO (1) WO1999031172A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1581047A2 (de) * 2003-01-09 2005-10-05 T.F.H. Publications, Inc. Strahlenundurchlässiges kauspielzeug für tiere
CN100417320C (zh) * 2003-01-09 2008-09-10 T·F·H·发行公司 不透射线的动物咀嚼物
US8404338B2 (en) 2008-09-30 2013-03-26 Sabic Innovative Plastics Ip B.V. X-ray and/or metal detectable articles and method of making the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004303723A1 (en) * 2003-12-24 2005-07-07 Fonterra Co-Operative Group Limited Resilient compound for sealing device comprising detectable material such as barium sulfate
US20080142761A1 (en) * 2006-12-19 2008-06-19 General Electric Company Optically transparent, xray-opaque composition, methods of manufacture thereof and articles comprising the same
JP2013518616A (ja) * 2010-02-01 2013-05-23 マテル,インコーポレイテッド 人形および人形を形成するための組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184097A2 (de) * 1984-12-04 1986-06-11 Miles Inc. Reflexionsstandard
JPH01178540A (ja) * 1987-12-29 1989-07-14 Mitsubishi Cable Ind Ltd 医療用チューブ成形用組成物
EP0627457A2 (de) * 1989-10-20 1994-12-07 General Electric Company Formmassen
GB2285981A (en) * 1994-01-27 1995-08-02 Sheffield Orthodontic Lab Limi Polymer material for the production of medical artifacts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0184097A2 (de) * 1984-12-04 1986-06-11 Miles Inc. Reflexionsstandard
JPH01178540A (ja) * 1987-12-29 1989-07-14 Mitsubishi Cable Ind Ltd 医療用チューブ成形用組成物
EP0627457A2 (de) * 1989-10-20 1994-12-07 General Electric Company Formmassen
GB2285981A (en) * 1994-01-27 1995-08-02 Sheffield Orthodontic Lab Limi Polymer material for the production of medical artifacts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8934, Derwent World Patents Index; Class A18, AN 89-245374, XP002098965 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1581047A2 (de) * 2003-01-09 2005-10-05 T.F.H. Publications, Inc. Strahlenundurchlässiges kauspielzeug für tiere
EP1581047A4 (de) * 2003-01-09 2006-05-10 Tfh Publications Inc Strahlenundurchlässiges kauspielzeug für tiere
US7360504B2 (en) 2003-01-09 2008-04-22 T.F.H. Publications, Inc. Radiopaque animal chew
CN100417320C (zh) * 2003-01-09 2008-09-10 T·F·H·发行公司 不透射线的动物咀嚼物
US7452929B2 (en) 2003-01-09 2008-11-18 T.F.H. Publications, Inc. Radiopaque animal chew
US8404338B2 (en) 2008-09-30 2013-03-26 Sabic Innovative Plastics Ip B.V. X-ray and/or metal detectable articles and method of making the same

Also Published As

Publication number Publication date
JP2002508420A (ja) 2002-03-19
AU1758999A (en) 1999-07-05
KR20010015878A (ko) 2001-02-26
CA2315176A1 (en) 1999-06-24
DE19756141A1 (de) 1999-06-24
EP1042395A1 (de) 2000-10-11
BR9813822A (pt) 2000-10-10

Similar Documents

Publication Publication Date Title
EP0315868B1 (de) Verwendung von Redoxpfropfpolymerisaten zur Verbesserung der Benzinbeständigkeit von thermoplastischen, aromatischen Polycarbonat- und/oder Polyestercarbonat-Formmassen
EP1971641B1 (de) Polycarbonat-formmassen
EP2188327B1 (de) Verfahren zur herstellung schlagzähmodifizierter gefüllter polycarbonat-zusammensetzungen
EP1095097B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP0089540A1 (de) Polycarbonatabmischungen
EP2841501B1 (de) Pc/abs-zusammensetzungen mit guter thermischer und chemischer beständigkeit
EP0401629B1 (de) Hochwärmeformbeständige Polycarbonat/ABS-Mischungen
EP0783019B1 (de) Thermoplastische Massen mit verbessertem Röntgenkontrast
EP0114605B1 (de) Thermoplastische Formmassen
WO1999031172A1 (de) Röntgenopake thermoplastische formmasse
EP0570797B1 (de) Polycarbonat-ABS-Formmassen
WO2006111286A1 (de) Schlagzähmodifizierte polycarbonat- zusammensetzungen, verfahren zu ihrer herstellung und formkörper enthaltend diese zusammensetzungen
EP0585778B1 (de) Verfahren zur Herstellung von Pulvermischungen für matte Polycarbonat-Formmassen
EP0695785B1 (de) Mischungen aus Polycarbonat, phenolisch hydroxyfunktionellen verzweigten Dimerfettsäurepolyestern und gegebenenfalls Pfropfpolymerisat
WO2009121491A1 (de) Schlagzählmodifizierte polyalkylenterephthalat/polycarbonat-zusammensetzungen
EP0355614A2 (de) Schlagzähe thermoplastische Formmassen aus aromatischen Polyestercarbonaten und Polyalkylenterephthalaten
DE4419569A1 (de) Mineralisch gefüllte Formmassen auf Basis Polyalkylenterephthalat
EP1095098A1 (de) Flammwidrige polycarbonat/abs-formmassen
EP0445402B1 (de) Thermostabile Formmassen
DE19639821A1 (de) Polycarbonat-ABS-Mischungen mit feinteiligen Pfropfpolymerisaten
EP0499927B1 (de) Benzinbeständige Polycarbonat-Formmassen
DE4038590A1 (de) Poly(ester)carbonat/abs-formmassen mit hoher fliessnahtfestigkeit
DE3424554A1 (de) Polycarbonat und ein bestimmtes abs-harz enthaltende formmassen
EP0410239A1 (de) Polycarbonat-Formmassen
DE19520279A1 (de) Mischungen aus Polycarbonat, phenolisch hydroxyfunktionellen verzweigten Dimerfettsäurepolyestern und gegebenenfalls Pfropfpolymerisat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998962415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581054

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2315176

Country of ref document: CA

Ref country code: CA

Ref document number: 2315176

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020007006584

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998962415

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007006584

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998962415

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007006584

Country of ref document: KR