WO1999028109A1 - Injection molding machine and injection molding method - Google Patents

Injection molding machine and injection molding method Download PDF

Info

Publication number
WO1999028109A1
WO1999028109A1 PCT/JP1998/005388 JP9805388W WO9928109A1 WO 1999028109 A1 WO1999028109 A1 WO 1999028109A1 JP 9805388 W JP9805388 W JP 9805388W WO 9928109 A1 WO9928109 A1 WO 9928109A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
pressure
injection molding
filling
molten
Prior art date
Application number
PCT/JP1998/005388
Other languages
French (fr)
Japanese (ja)
Inventor
Sumio Sato
Masashi Terayama
Kiichi Shimada
Yukio Yoshizawa
Original Assignee
Niigata Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co., Ltd. filed Critical Niigata Engineering Co., Ltd.
Priority to DE19882043T priority Critical patent/DE19882043T1/en
Publication of WO1999028109A1 publication Critical patent/WO1999028109A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • B29C45/54Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston and plasticising screw
    • B29C45/542Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston and plasticising screw using an accumulator between plasticising and injection unit, e.g. for a continuously operating plasticising screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • the present invention relates to an injection molding machine and an injection molding method, and more particularly to an injection molding machine and an injection molding method for performing molding by melting a molding material such as a synthetic resin material or a metal material and then injecting the molded material.
  • a molding material such as a synthetic resin material or a metal material
  • an injection molding machine is used as a method for obtaining a large number of articles made of molding materials such as synthetic resin materials (hereinafter referred to as resin) and metal materials (particularly light metal alloy materials) at low cost. Injection molding has been performed.
  • resin synthetic resin materials
  • metal materials particularly light metal alloy materials
  • this type of injection molding machine for example, an injection molding machine for synthetic resin
  • an injection molding machine for synthetic resin has an inline screw type injection molding machine that performs plasticization and injection with one screw, and a plasticization and injection It is broadly divided into pre-bra type injection molding machines that perform separate processes.
  • the resin By rotating the injection screw 5 in a hydraulic motor while applying back pressure to the retraction of the injection screw 5 by the injection cylinder 6, the resin is plasticized and the molten resin pools between the injection screw 5 and the nozzle 2. After metering and feeding to section T1, The screw 5 is advanced by the injection cylinder 6 so that the measured resin can be injected from the nozzle 2.
  • the check valve 4 separates from the valve seat 5a to the screw head 7 side to allow the resin to flow freely to the resin reservoir T1 and to allow the injection screw 5 to return.
  • the valve seat 5a To prevent the resin from flowing backward.
  • the resin pressure in the filling step is controlled by a pressure control valve (not shown) provided in the hydraulic circuit of the injection cylinder 6.
  • the injection molding machine 11 shown in this figure includes a plasticization measuring mechanism 12 for plasticizing and measuring synthetic resin, and an injection mechanism 13 for injecting the synthetic resin supplied from the plasticizing measuring mechanism 12. And are separated from each other.
  • the plasticizing measuring mechanism 12 is obtained by inserting a plasticizing screw 15 into a plasticizing section heating cylinder 14 so as to be rotatable around an axis.
  • the plasticized and measured resin is supplied to the injection mechanism 13 through the supply path 16 in a molten state.
  • the injection mechanism 13 includes a filling plunger 18 movably arranged in an axial direction in a filling heating cylinder 17 having a nozzle 23 and a filling plunger 18 via a filling ram 19.
  • a filling cylinder 20 that moves in the axial direction, a hydraulic sensor 21 that detects the oil pressure in the filling cylinder 20, and a hydraulic pressure that controls the operation of the filling ram 19 based on the detection result of the hydraulic sensor 21. It is roughly composed of electric control means 22.
  • a molten resin pool T 2 for storing the molten resin supplied from the plasticizing and measuring mechanism 12.
  • the resin in the plasticizing and measuring step, the resin is plasticized and measured by the rotation of the plasticizing screw 15 of the plasticizing and measuring mechanism 12, and the resin is supplied through the supply path 16.
  • the molten resin is stored in the molten resin reservoir T 2 of the injection mechanism 13 as molten resin. Then, in the injection step, the molten resin in the molten resin reservoir T 2 is injected from the nozzle 23 by the injection mechanism 13.
  • the hydraulic electric control means 22 controls the oil pressure in the filling cylinder 20 to move the filling plunger 18 forward in the axial direction via the filling ram 19.
  • the resin pressure of the molten resin in the molten resin reservoir T 2 increases, and the nozzle 2 3 Emitted from.
  • an injection molding machine for metal instead of the die casting molding method, as shown in Fig. 16, an in-line screw type that performs kneading, melting and injection with one screw is used.
  • a light metal alloy material often used as a metal a single metal element having a melting point of 700 ° C. or less or an alloy based on these metals is used.
  • Specific types include aluminum, magnesium, zinc, tin, lead, bismuth, cadmium, selenium, lithium, and many others.
  • aluminum, magnesium, zinc, tin, and bismuth are die cast or metal injection molded. It is used for business.
  • the hydraulic and electric control means 10 of the injection filling and pressure holding means 8 is connected to both the resin (or metal) filling step and the pressure holding step via the injection cylinder 6. Is controlling. Also, in an electric injection molding machine in which the injection screw 5 is driven by an electric drive source such as a servomotor, one system of electric motor controls both the filling process and the pressure holding process.
  • the speed control mode related to the filling process and the pressure control mode related to the pressure-holding process are switched in one operation, but it is difficult to perform the process switching, that is, the control mode switching smoothly. .
  • the pressure applied to the resin (or metal) became discontinuous.
  • the holding pressure switching position S1 which is a switching point between the filling process and the pressure holding process
  • a so-called surge pressure is generated due to an impact at the time of switching, and the resin pressure (or metal pressure) is abnormally high. I was in love.
  • the pressure of the resin (or metal pressure) charged in the mold also increases, and there is a problem that the molded product is cracked.
  • the injection screw 5 retreats due to the resin pressure (or the metal pressure) as the plasticization (or the melting) proceeds. For this reason, the effective length of the injection screw 5 into which the resin (or metal) is kneaded differs between the start of plasticization (or melting) and the end of plasticization (melting). Therefore, in the injection molding machine 1, the molten state of the molten resin (or molten metal) stored in the molten resin reservoir T1 is not constant, and a temperature gradient is generated, which causes a molding variation. I was
  • the check valve 4 provided at the tip of the injection screw 5 moves (opens and closes) by the pressure difference before and after the check valve 4, but the check screw 4 moves forward during the injection filling operation.
  • the robot may move following the screw head 7 while attached. In this case, in the injection molding machine 1, the backflow prevention is released.
  • the resin pressure (or metal pressure) and the filling pressure stored in the molten resin reservoir T1 fluctuate, which also contributes to molding irregularities. Had become.
  • the plasticizing and measuring mechanism 12 and the injection mechanism 13 are separated, and the check plunger 18 does not require a check valve at the end of the filling plunger 18.
  • the problems in the above-mentioned in-line screw type injection molding machine 1 The problems caused by the difference in the effective length of the injection screw 5 into which the resin is kneaded and the release of the backflow prevention during the injection filling operation are eliminated. Since the diameter of the filling plunger 18 can be arbitrarily set regardless of the diameter of the plasticizing screw 15, for example, by setting the diameter to a small diameter, it becomes possible to cope with medium and small-sized ultra-precision molding. I'm wearing
  • an object of the present invention is to provide an injection molding machine and an injection molding method that can smoothly switch from a filling step to a pressure holding step.
  • Another object of the present invention is to provide an injection molding machine and an injection molding method capable of making the molten state, the molten molding material pressure, and the molding material supply amount uniform in each molding cycle.
  • an injection member is inserted into a heating cylinder for injection having an injection nozzle so as to move in the axial direction, and the injection member is moved forward by the operation of an injection driving device, so that the injection member and the injection nozzle are connected to each other.
  • a pressing member that melts the molding material and supplies the molten molding material to the molding material reservoir of the heating tube for filling, and a pressing member.
  • the apparatus is characterized in that the apparatus further comprises a molten-molded material pressurizing and depressurizing device for moving a member to pressurize and decompress the molten molded material introduced into the molded-material reservoir of the heating tube for filling.
  • the molten molding material introduced into the molding material reservoir of the filling device is provided.
  • the pressure of the profile can be controlled in a timely manner by the pressurizing and depressurizing device of the molten molding material, and it can be ejected by the filling device.Therefore, no surge pressure is generated and smooth pressure switching characteristics can be obtained. . Further, as a result, in the injection molding machine of the present invention, it is possible to eliminate molding defects such as variable shots and the like, and to set optimal molding conditions without variation depending on the molded product.
  • the molten molding material pressurizing and depressurizing device includes: a heating and depressurizing heating cylinder, the inside of which is communicated with the molding material reservoir and the melting heating cylinder by a flow path; It is preferable to employ a configuration including a pushing plunger as a pushing member movably inserted in the cylinder in the axial direction thereof, and a pushing driving device connected to the pushing plunger to move the pushing plunger.
  • a pushing plunger as a pushing member movably inserted in the cylinder in the axial direction thereof, and a pushing driving device connected to the pushing plunger to move the pushing plunger.
  • a communication hole communicating with the flow path is provided in the heating tube for melting, and the press-in plunger of the pressurizing and depressurizing device for molten material opens and closes the opening of the communication hole to the flow path. It is preferable to adopt a configuration.
  • the molten molding material flows backward from the communication hole to the melting device. This can be prevented, and the pressure of the molding material is reliably transmitted to the molding material accumulation portion, so that the pressure of the molten molding material in the molding material accumulation portion can be controlled more reliably.
  • the present invention provides a method for introducing a molding material melted by a melting device into a molding material reservoir through a flow path, and injecting the formed molding material to a first preload equal to or higher than an injection set pressure. It is characterized by doing.
  • any of synthetic resin and metal can be used as the molding material.
  • FIG. 1 is a block diagram showing a control system according to the embodiment of the present invention.
  • FIG. 2 is a view showing an embodiment of the present invention, and is a front view in which a molten resin pressurizing and depressurizing device is disposed above a filling device.
  • FIG. 3 is a plan view showing an embodiment of the present invention.
  • FIG. 5 is a view showing an embodiment of the present invention, and is a cross-sectional view in which a backflow prevention mechanism is provided at a tip of a plasticizing screw.
  • FIG. 7 is a view showing an embodiment of the present invention, and is an enlarged view of a main part of a heating cylinder for heating and depressurizing and a heating cylinder for filling.
  • FIG. 11 is a flowchart showing an embodiment of the injection molding method of the present invention.
  • FIG. 12 is a flowchart showing an embodiment of the injection molding method of the present invention.
  • FIG. 13 is a view showing the operation of the embodiment of the present invention, and is a schematic configuration in which a pushing plunger opens a communication hole, and a filling plunger has completed suckback.
  • FIG. 14 is a diagram illustrating an example of an injection step when the injection molding method of the present invention is performed.
  • FIG. 15 is a diagram showing an embodiment of the present invention, and is a configuration diagram showing another embodiment of the stroke defining means in the filling device.
  • FIG. 17 is a schematic configuration diagram showing an example of a pre-bra type injection molding machine according to the related art.
  • FIG. 18 is a view showing an injection process of an injection molding machine according to a conventional technique.
  • reference numeral 24 denotes an injection molding machine.
  • the injection molding machine 24 is disposed on the non-operating side of the machine, and includes a plasticizing device (melting device) 25 that plasticizes and melts a solid synthetic resin (hereinafter, referred to as a resin), and operates the machine.
  • the plasticizing device 25 is provided with a plasticizing heating tube (melting heating tube) 28 for heating the resin supplied from a stove (not shown) and an inner hole of the plasticizing heating tube 28. It is composed of a plasticized screw (screw) 29 rotatably inserted around the axis, and a screw rotation hydraulic motor 30 for rotating the plasticized screw 29. I have.
  • the distal end of the plasticizing heating cylinder 28 is connected to a substantially intermediate portion of a later-described heating / depressurizing heating cylinder 55B of the molten resin pressurizing / depressurizing device 27 by a bolt or the like.
  • the rear end of the plasticizing heating cylinder 28 is supported by a holding table 25 B fixed on the base plate 42 A so as to be movable in the axial direction of the plasticizing heating cylinder 28. It is connected to the support member 25A.
  • the plasticizing device 25 has a horizontal state in the axial direction as a whole, and the leading end side is moved toward the operating side of the machine, and the rear end side is moved toward the non-operating side. It is arranged on the base plate 42A at an angle to the base plate.
  • the hydraulic motor 30 is fixed to a bearing box 25C integrally connected to the heating cylinder support member 25A with a connecting rod 25B, and is rotatably supported by the bearing box 25C.
  • the plasticizing screw 29 is rotated through an intermediate shaft 25D.
  • the screw head 31 at the tip of the plasticizing screw 29 is provided with a backflow prevention mechanism 32.
  • a communication hole 33 that opens to a plunger hole (flow path) 55 described later is provided.
  • the backflow prevention mechanism 32 prevents the resin in the communication hole 33 from flowing back to the base shaft 34 side of the plasticizing screw 29, and is formed by an inflow groove formed in the screw head 31.
  • the backflow prevention ring 37 is mounted on the small-diameter shaft portion 36 with a gap 38 between the base shaft 34.
  • the outer circumference of the backflow prevention ring 37 is movably fitted in the center axis direction of the plasticizing heating cylinder 28, and the inner circumference forms an inflow passage 39 with the small diameter shaft 36.
  • the diameter is set to be smaller than the outer diameter of the adjacent base shaft 34.
  • the inflow groove 35 is formed along the axial direction of the base shaft 34 so as to communicate the communication hole 33 and the inflow passage 39, and as shown in FIG. A plurality of them are arranged on the outer circumference at appropriate intervals around the axis.
  • the filling device 26 is supported by a pair of parallel rails 42 fixed to the base 40, and moves in a direction away from and approaching the fixed platen 41 erected on the base 40.
  • the main body 42B is fixed on the base plate 42A with the port 42D on the 42A.
  • the filling device 26 has a hydraulic pressure that connects the piston rod to the fixed platen 41. It is configured to be moved by the cylinder 26 A and move forward and backward with respect to the fixed board 41.
  • the filling device 26 has a central axis disposed horizontally along the advance / retreat direction, and supports the molten state of the resin supported on the front portion of the base plate 42A via the support member 42C.
  • the filling heating cylinder 43 to be maintained and a filling plunger (see FIG. 7) inserted into the inner hole of the filling heating cylinder 43 and movable in the center axis direction of the heating cylinder 43 for filling.
  • (Injection member) 44 and an injection drive device 45 for moving the filling plunger 44 in the central axis direction.
  • An injection nozzle 47 having an injection port 46 is detachably attached to the tip of the filling heating cylinder 43.
  • a molten resin reservoir (molded material reservoir) 4 8 in which molten resin is stored. are formed.
  • the injection nozzle 47 is provided with a pressure sensor 49 for detecting the resin pressure in the molten resin reservoir 48 facing the molten resin reservoir 48.
  • the filling heating cylinder 43 is formed so as to communicate with the tip of an introduction path 55 A of a heating / compression heating cylinder 55 B described later, and is plasticized by a plasticizing screw 29 to form the communication.
  • An introduction hole 48A is provided for introducing the resin supplied to the heating / compression heating cylinder 55B through the hole 33 into the molten resin reservoir 48.
  • the introduction hole 48A is However, it is arranged so that its axis is located in a vertical plane including the central axis of the filling heating cylinder 43.
  • the introduction hole 48 A and the introduction path 55 A constitute a resin flow path (flow path) that communicates the communication hole 33 of the plasticizing heating cylinder 28 with the molten resin reservoir 48. ing.
  • the injection drive device 45 constitutes a filling speed control means for controlling the speed of the resin injected from the injection nozzle 47 into the mold, and is provided with a filling plan via a filling ram 50.
  • the filling cylinder 51 for moving the jar 44 in the center axis direction, stroke defining means 52 for defining the movement stroke of the filling plunger 44, and as shown in FIG.
  • a directional control valve 58 for switching the forward or backward movement of the filling plunger 44, and a flow control valve 59 for controlling the moving speed of the filling plunger 44 by controlling the flow rate of the supplied hydraulic oil.
  • the hydraulic cylinder 26 A is attached to the lower part of the filling cylinder 51.
  • the filling plunger 44 is provided with a position sensor 60 for detecting the position of the filling plunger 44.
  • the stroke defining means 52 is formed by a support 42 E fixed to the rear upper surface of the base plate 42 A and a pair of parallel rails 52 A, 52 A provided on the upper surface of the support 42 A.
  • a movable table 54 movably supported in the direction of the center axis, and a charging cylinder 51 provided at a front end of the movable table 54 so as to protrude upward and provided in a main body portion 42B.
  • Metering-complete stop 54 a that abuts on the rear end of the stop rod 53, which is fixed to the drum 50 and protrudes rearward of the filling cylinder 51, restricts the amount of retraction of the stopper rod 53, and the support base 4.
  • the moving amount of the weighing stopper 54 A can be read by a scale ring 52 D provided on the screw shaft 52 B.
  • the stroke defining means 52 separates the stopper rod from the filling ram 50, and as shown in Fig. 15, a female screw fixed to the rear end of the filling cylinder 51 by providing a male screw on the stud rod 53A.
  • the stopper rod 53A projects the front end side into the filling cylinder 51 so that the front end faces the rear end surface of the filling ram 50, and by rotating itself, You may comprise so that movement adjustment may be carried out to a center-axis direction.
  • the molten resin pressurizing and depressurizing device 27 includes a heating and depressurizing heating cylinder 55B, a press-in plunger (pressing member) 56, and a pressurizing and depressurizing driving device 57 (pressing driving device). It has been.
  • the heating / depressurizing heating cylinder 55B has a plunger hole 55 and an introduction path 55A connecting the tip end thereof to the molten resin reservoir section 48, and has a tip end of the charging heating cylinder 43. It is detachably connected with a bolt or the like, and is disposed above the heating tube for filling 43 so as to be inclined so that the rear end side thereof is upward.
  • the push-in plunger 56 is inserted into the plunger hole 55 of the heating / decompression heating cylinder 55 B in the axial direction.
  • the pressurizing and depressurizing drive device 57 is connected to the pressurizing and depressurizing heating cylinder 55B via a cylindrical communication member, and drives the press-in plunger 56.
  • the pressurizing and depressurizing drive device 57 constitutes a resin pressure control means for controlling the pressure of the resin injected from the injection nozzle 47, and includes a pushing cylinder 61, a four-way support valve 62, It has.
  • a piston rod 61A is connected to the rear end of the pushing plunger 56 to move the pushing plunger 56 forward and backward in the axial direction.
  • the four-way support valve 62 is fixed to the upper part of the push-in cylinder 61, and supplies hydraulic oil to the push-in cylinder 61 to control the movement of the push-in plunger 56.
  • the pushing cylinder 61 is supported movably in the axial direction by a rail 61C provided on a support plate 61B.
  • the support plate 61B is supported by a support shaft 51B provided above the filling cylinder 51 so as to rotate in a vertical plane including the axis of the filling cylinder 51. That is, the molten resin pressurizing and depressurizing device 27 is arranged such that the axis of the push-in plunger 56 is positioned in the vertical plane as a whole.
  • the push-in plunger 56 is provided with a position sensor 63 for detecting the position of the push-in plunger 56.
  • the four-way servo valve 62 is configured to operate the push-in plunger 56 based on the detection result of the pressure sensor 49 via the control device 66.
  • the control device 66 has a display 67, an input device 68 for inputting various setting values, a resin pressure sensor amplifier 69, a position sensor 63, a memory 70, an electromagnetic flow control valve amplifier 71, and a servo valve amplifier. 72, Hydraulic motor for screw rotation 30 and directional control valve 58, CPU 73 for controlling these via various IZFs and AZDs, and injection timer controlled by CPU 73 to measure injection time (Not shown).
  • the directional switching valve 58, the flow control valve 59 and the four-way servo valve 62 are provided with a hydraulic pump 64 serving as a hydraulic drive source and an accumulator 6 for accumulating the hydraulic pressure supplied from the hydraulic pump 64.
  • the charging abnormal pressure P NC the holding pressure switching resin pressure P, the holding pressure switching charging plunger position Si, and the pressure charging switching resin pressure P are input in advance.
  • Pressure fill switching fill plunger — position S the first preload PSET1 and the second preload PSET2 which are the resin pressure (molding material pressure) of the plunger hole 55 before the filling operation, the pressure preservation pattern, the second preload PSET2, etc. are set and input. Via the memory 70.
  • the CPU 73 of the control device 66 which has received the position signal of the push plunger 56 detected by the position sensor 63 via the push plunger position sensor IZF 74 and the input I / F 75, sets and inputs in advance the input device 68.
  • the calculated value is compared with the set value of the closed position stored in the memory 70, and the calculation result is applied to the molten resin pressurizing and depressurizing device 27 via the DZA comparator 76 and the servo valve amplifier 72. It is sent to the four-way servo valve 62 of the pressure reducing drive device 57.
  • step S2 when the mold hoof is completed (step S2), the abnormal filling pressure P NG stored in the memory 70 is set (step S3), and the injection operation is started (step S4). Enter the process.
  • the injection timer starts counting the injection time.
  • the filling plunger 44 of the filling device 26 is moved forward by the injection driving device 45 in the direction of the central axis of the heating tube 43 for filling (step S5). That is, a signal from the CPU 73 is sent out via the output IZF 77, and the directional control valve 58 of the injection driving device 45 is excited to the SOL-a side, so that the signal is output from the hydraulic pump 64 or the accumulator 65.
  • the hydraulic oil accumulated in the cylinder is supplied to the rear rod side of the filling cylinder 51, and the filling plunger 44 moves forward in the above direction. You.
  • the resin in the molten resin reservoir 48 is injected from the injection port 46 of the injection nozzle 47.
  • the filling speed that is, the advance speed of the filling plunger 44
  • the filling speed is controlled by the CPU 73 based on the set value preset in the memory 70, through the control valve 78, the electromagnetic flow control valve amplifier 71, and the flow rate control. It is controlled by adjusting the opening of the valve 59.
  • the press-in plunger 56 is operated independently of the filling plunger 44 to perform filling based on a pressure reference. Are selectively available (Step S6).
  • step S7 As shown in FIG. 9, during the forward movement of the filling plunger 44, the position is always detected by the position sensor -60, and the detection result is read into the CPU 73 via the input IZF 81 (step S7).
  • the resin pressure in the molten resin reservoir 48 is also constantly detected by the pressure sensor 49, and the detection result is read by the CPU 73 via the resin pressure sensor amplifier 69 and the AZD converter 79 (step S8). .
  • the detected position of the charging plunger 44 is compared with a preset pressure-holding switching plunger position S (step S11), and the detected position reaches the pressure-holding switching charging plunger position. If not, the process returns to step S7, and when it is reached, the process is immediately switched to the pressure-holding process (C).
  • Step S12 The detected resin pressure is compared with a preset holding pressure switching resin pressure P (Step S12). If the detected resin pressure does not reach the holding pressure switching resin pressure, the process proceeds to Step S7. Returning, when it arrives, the process proceeds to step S11, where the detected position of the filling plunger 44 and the preset holding pressure switching filling plunger position S! Compare with.
  • Step S 13 and S14 the position of the filling plunger 44 and the resin pressure are constantly detected and read into the CPU 73.
  • pressure is compared with a preset filled abnormal pressure P NC (step S 1 5), it is switched immediately pressure-holding process when reached the filling abnormal pressure PN C (C).
  • the detected resin pressure does not reach the abnormal filling pressure, it is determined whether the pressure filling switching condition is selected at the filling plunger position or at the resin pressure. (Step S16), the mode is switched to pressure filling through a procedure according to the selection result.
  • the pressure in the plunger hole 55 decreases, and the resin pressure in the molten resin reservoir 48 communicating with the plunger hole 55 also decreases. Then, by controlling the movement of the pushing plunger 156, the resin pressure of the molten resin reservoir portion 48 can be feedback-controlled and maintained at the set value.
  • step S10 the process proceeds to step S10 while the filling by the filling plunger 44 is continued, and as described above, the pressure is switched to the pressure-holding step when the pressure-holding switching condition is satisfied.
  • Step S 19 the detected position is the pressure filling, the switching filling plunger position S. If not, the process returns to step S13, and if so, the resin pressure (resin reaction pressure) P 'at this time is detected (step S20). Then, the resin plunger P ′ is driven by the pressurizing / depressurizing driving device 57 to drive the plunger 56 in the same manner as described above, and is held by feedback control (step S 21). In this state, the process proceeds to step S10 while the filling by the filling plunger 44 is continued, and the pressure is switched to the pressure holding step when the pressure holding switching condition is satisfied. As shown in FIG.
  • the pressurizing and depressurizing drive device 57 drives the push-in plunger 56 based on the control of the CPU 73 so that the pressure-holding pattern is set in advance. It is driven (step S22) to perform the pressure holding control.
  • Step S23 the filling plunger 44 completes the forward movement by the filling ram 50 abutting on the forward end of the filling cylinder 51 and stopping as shown in FIG. 1 ( Step S23).
  • step S24A the pushing plunger 56 is moved backward (upward in FIG. 1) to release the pressure (step S24A). At this time, the hydraulic oil supplied to the pushing cylinder 61 is released to the tank 82.
  • the resin is plasticized and the measurement is started. That is, a signal from the CPU 73 is sent out via the output IZF 77, the screw rotating hydraulic motor 30 is operated, and the plasticizing screw 29 rotates (step S27). Due to the shearing of the resin due to the rotation of the resin and the heating from the plasticizing heating cylinder 28, the resin is plasticized and introduced into the plunger hole 5 ⁇ from the communication hole 33 in a molten state.
  • the backflow prevention ring 37 of the backflow prevention mechanism 32 is moved forward (left side in FIG. 5).
  • the inner peripheral portion of the backflow prevention ring 37 is formed to have a smaller diameter than the outer diameter of the base shaft 34, the resin that has passed through the communication hole 33 sequentially through the inflow groove 35 and the inflow passage 39 becomes the base shaft 34. Backflow to the side can be prevented.
  • the resin introduced into the plunger hole 55 is stored in the molten resin reservoir 48 in a molten state through the introduction path 55 5 and the introduction hole 48 8.
  • the filling plunger 44 retreats due to the resin pressure in the molten resin reservoir 48.
  • step S32 the operation shifts to the suck-back operation (step S32). That is, a signal from the CPU 73 is sent out via the output IZF 77, and the direction switching valve 58 of the injection drive device 45 is excited to the SOL-b side, so that the operating oil is filled with the filling cylinder 5 Supplied to the front rod side of 1, the filling plunger 4 4 moves backward.
  • the retreat speed (suck back speed) of the filling plunger 44 is controlled by the flow control valve 59.
  • step S33 When the position sensor 60 detects that the filling plunger 44 has reached the suckback completion position set in advance by the input device 68 (step S33), the retreat of the filling plunger 44 is stopped. The suckback is completed. At this time, the suck back completion position is set at a position where the filling ram 50 comes into contact with the weighing stopper 54 A of the stroke defining means 52 as shown in FIG. 4 The retracted position is always positioned in a fixed state.
  • the stop rod 53 of the filling ram 50 is completed.
  • the position where it comes into contact with the stopper 54 A that is, the suckback completion position, can be set arbitrarily.
  • Step S34 the pressure plunger 56 is driven by the pressurizing and depressurizing drive device 57 so that the plunger 56 approaches the plunger hole 55 to the molten resin reservoir 48 (lower side in Fig. 1).
  • Step S35 the pressure plunger 56 is driven by the pressurizing and depressurizing drive device 57 so that the plunger 56 approaches the plunger hole 55 to the molten resin reservoir 48 (lower side in Fig. 1).
  • the backflow prevention mechanism 32 prevents backflow of the molten resin.
  • the blockage of the communication hole 33 is detected by the position sensor 63.
  • step S36 the pushing plunger 56 further moves forward (step S36), and increases the resin pressure in the molten resin reservoir 48 through the plunger hole 55.
  • step S 37 when it detects that the resin pressure of the molten ⁇ reservoir 48, and led to the first preload P SET1 on the injection set pressure, pushing the plunger 56 is controlled to stop at that position and maintain that position (step S38).
  • the density of the molten resin in the molten resin pool 48 is increased by increasing the resin pressure, and the molten state becomes uniform.
  • the function of reducing the pre-filling holding pressure can be selectively set (step S39).
  • Step S40 the driving plunger 56 is driven by the pressurizing and depressurizing driving device 57 so that the plunger 56 separates the plunger hole 55 from the molten resin reservoir 48 (upper side in FIG. 1).
  • the resin pressure in the molten resin reservoir 48 is reduced through the plunger hole 55, the introduction path 55A, and the introduction hole 48A, and the detection result of the pressure sensor 49 is lower than the first preload PSET1 .
  • the push-in plunger 56 is controlled so as to stop the backward movement and to maintain the position (step S42).
  • the pressure filling switching plunger position S is set. From the pressure to the pressure holding switching filling plunger position S, the filling speed will decrease rapidly, preventing the occurrence of burrs and, if the pressure filling function is selected, during the filling process Since pressure-holding control can be performed at any time in the evening, optimum molding conditions can be set according to the molded product.
  • the resin pressure or the filling plunger position can be arbitrarily selected as the switching condition. Even in the pressure holding switching, only the filling plunger position or the filling plunger position and the resin pressure can be selected as the switching condition. Since both elements can be selected arbitrarily, various control methods can be selected according to the molded product to eliminate molding defects such as burrs and short shots.
  • step S6 of selecting the pressure filling function it is possible to cope by selecting the non-use in step S6 of selecting the pressure filling function, and it is possible to set a wide range of molding conditions.
  • the resin pressure control based on the pressure at the time of filling is directly detected by the pressure sensor 49 provided in the molten resin reservoir 48. Since the pressure is fed back to the four-way servo valve 62, a stable state with excellent responsiveness is achieved, and stable molding with high repetition accuracy is possible.
  • the pressure control mechanism is extremely high. Highly accurate pressure control performance can be obtained.
  • the advance limit is mechanically defined by the filling plunger 44 and the force filling cylinder 51, and at the same time the stroke completion means Since the retraction limit is mechanically defined by 4 A, the moving stroke is always constant, that is, the amount of resin injected every molding cycle is always constant, and stable molding can be achieved.
  • the stop stroke of the filling plunger 144 is adjusted by rotating the stopper rod 53 A to adjust the amount of screwing into the female screw member 51 A. Can be set arbitrarily and easily.
  • each of the screw rotation hydraulic motor 30, the injection drive device 45, and the pressurization / decompression drive device 57 is operated by a hydraulic drive source such as a hydraulic pump 64.
  • a hydraulic drive source such as a hydraulic pump 64.
  • at least one of them may be operated by a hydraulic pump and the other may be operated by an electric drive source such as a servomotor. In this case, forming with low noise can be realized.
  • the plasticizing device 25 is supported by the holding table 25 B so as to be movable in the axial direction of the plasticizing section heating cylinder 28, It is easy to attach / detach the pressure / decompression heating cylinder 55 B of the molten resin pressurization / decompression device 27 of the plasticizing section heating cylinder 28, and the connection between the heating / decompression heating cylinder 55 B and the plasticizing section heating cylinder 28. By releasing the connection and retreating the entire device, the inner hole of the heating / depressurizing heating cylinder 55B is opened, and the inner hole can be easily inspected and cleaned.
  • the molten resin pressurizing and depressurizing device 27 rotates on the filling device 26 in a vertical plane including the center line of the filling heating cylinder 43. Since the plunger 56 is supported freely and reciprocally in the axial direction of the plunger 56, the molten resin pressurizing and depressurizing device 27 can be easily attached to and detached from the filling device 26. Also, When the connection of the heating / depressurizing heating cylinder 55B to the filling heating cylinder 43 is released, and the entire apparatus is retracted and rotated upward, the plunger hole 55 of the heating / depressurizing heating cylinder 55B is opened. Since it is released, it can be easily inspected and cleaned.
  • the injection molding machine and the injection molding method according to the present invention are suitable for stably producing articles made of various synthetic resin materials or various metal materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The development of the techniques for smoothly carrying out a step switching operation for switching between a speed control mode involved with a charging step and a pressure control mode involved with a dwelling step, and for making uniform the molten state of a material to be molded, the pressure of the material and a feed rate thereof for every molding cycle has been demanded. An injection molding machine comprising; a melting unit (25) adapted to rotate a screw (29), melt a material to be molded, and supply the molten material to a material storage portion (48) of a charge-heating cylinder (43); a molten material pressurizing and depressurizing unit (27) adapted to move a pressure member (56) and pressurize and depressurize the molten material introduced into the material storage portion (48); and a charging unit (26) adapted to move an injection member (44) forward and inject the molten material, which has been introduced into the material storage portion (48), via an injection nozzle (47).

Description

明細書  Specification
射出成形機および射出成形方法  Injection molding machine and injection molding method
技術分野 Technical field
本発明は、 射出成形機および射出成形方法に係り、 特に、 合成樹脂材料や金属 材料等の成形材を溶融させた後に射出して成形を行う射出成形機および射出成形 方法に関するものである。 背景技術  The present invention relates to an injection molding machine and an injection molding method, and more particularly to an injection molding machine and an injection molding method for performing molding by melting a molding material such as a synthetic resin material or a metal material and then injecting the molded material. Background art
周知のように、 合成樹脂材料 (以下、 樹脂という) や金属材料 (特に、 軽金属 合金材料) 等の成形材から構成される物品を安価に、 かつ多量に得る方法として、 射出成形機を用いた射出成形が行われている。  As is well known, an injection molding machine is used as a method for obtaining a large number of articles made of molding materials such as synthetic resin materials (hereinafter referred to as resin) and metal materials (particularly light metal alloy materials) at low cost. Injection molding has been performed.
従来、 この種の射出成形機、 例えば合成樹脂用の射出成形機は、 その射出装置 の構造により、 一本のスクリュで可塑化と射出を行うインラインスクリュ式射出 成形機と、 可塑化と射出を別々のプロセスで行うプリブラ式射出成形機とに大別 されている。  Conventionally, this type of injection molding machine, for example, an injection molding machine for synthetic resin, has an inline screw type injection molding machine that performs plasticization and injection with one screw, and a plasticization and injection It is broadly divided into pre-bra type injection molding machines that perform separate processes.
図 1 6に、 従来技術によるインラインスクリュ式射出成形機の一例 (特開平 6 一 3 3 5 9 4号公報) を示す。 この図において、 符号 1は射出成形機である。 この射出成形機 1は、 ノズル 2を有する加熱筒 3内に、 先端のスクリュヘッド 7に逆流防止弁 4が設けられた射出スクリュ 5を軸方向に移動自在、 かつ軸線回 りに回転自在に挿入したものである。  Fig. 16 shows an example of an in-line screw injection molding machine according to the prior art (Japanese Patent Application Laid-Open No. Hei 6-35994). In this figure, reference numeral 1 denotes an injection molding machine. In the injection molding machine 1, an injection screw 5 provided with a check valve 4 at a screw head 7 at an end thereof is freely inserted in a heating cylinder 3 having a nozzle 2 so as to be movable in an axial direction and rotatable around an axis. It was done.
その射出スクリュ 5には、 該射出スクリュ 5による充填工程および保圧工程を 制御する射出充填 ·保圧手段 8が付設されている。 この射出充填 ·保圧手段 8は、 射出スクリュ 5を軸方向に移動させる射出シリンダ 6と、 射出スクリュ 5を回転 させる油圧モータ (図示せず) と、 射出シリンダ 6内の油圧を検知する油圧セン サ一 9と、 該油圧センサ一 9の検知結果に基づいて射出シリンダ 6の駆動を制御 する油圧電気制御手段 1 0とを備えた構成とされている。  The injection screw 5 is provided with an injection filling and pressure holding means 8 for controlling a filling step and a pressure holding step by the injection screw 5. The injection filling / holding means 8 includes an injection cylinder 6 for moving the injection screw 5 in the axial direction, a hydraulic motor (not shown) for rotating the injection screw 5, and a hydraulic sensor for detecting the oil pressure in the injection cylinder 6. A configuration is provided with a hydraulic control unit 10 that controls the driving of the injection cylinder 6 based on the detection result of the hydraulic pressure sensor 19.
そして、 射出シリンダ 6によって射出スクリュ 5の後退に背圧をかけながら射 出スクリュ 5を油圧モー夕で回転させることにより、 樹脂を可塑化して射出スク リュ 5とノズル 2との間の溶融樹脂溜まり部 T 1に計量して供給した後、 射出ス クリュ 5を射出シリンダ 6で前進させて計量された樹脂をノズル 2から射出でき るようになっている。 By rotating the injection screw 5 in a hydraulic motor while applying back pressure to the retraction of the injection screw 5 by the injection cylinder 6, the resin is plasticized and the molten resin pools between the injection screw 5 and the nozzle 2. After metering and feeding to section T1, The screw 5 is advanced by the injection cylinder 6 so that the measured resin can be injected from the nozzle 2.
また、 逆流防止弁 4は、 射出スクリュ 5の計量後退時に、 弁座 5 aからスクリ ュへッド 7側に離間して樹脂溜まり部 T 1への樹脂の流動を自由にして、 射出ス クリュ 5の射出移動時に、 弁座 5 aに移動 '密接して樹脂の逆流を防止する。 そ して、 充填工程における樹脂圧は、 射出シリンダ 6の油圧回路に設けられた圧力 制御弁 (図示せず) によって制御される。  When the injection screw 5 is retracted, the check valve 4 separates from the valve seat 5a to the screw head 7 side to allow the resin to flow freely to the resin reservoir T1 and to allow the injection screw 5 to return. During the injection movement of 5, move to the valve seat 5a 'to prevent the resin from flowing backward. The resin pressure in the filling step is controlled by a pressure control valve (not shown) provided in the hydraulic circuit of the injection cylinder 6.
一方、 従来技術によるプリブラ式射出成形機としては、 図 1 7に示すようなも のが提供されている。  On the other hand, as a conventional pre-bra type injection molding machine, the one shown in FIG. 17 is provided.
この図に示す射出成形機 1 1には、 合成樹脂を可塑化および計量する可塑化計 量機構 1 2と、 該可塑化計量機構 1 2から供給される合成樹脂を射出する射出機 構 1 3とが分離された状態で配設されている。 可塑化計量機構 1 2は、 可塑化部 加熱筒 1 4内に可塑化スクリュ 1 5を軸線回りに回転自在に挿入したものである。 ここで可塑化、 計量された樹脂は、 溶融状態で供給路 1 6を通じて射出機構 1 3 へ供給される。 射出機構 1 3は、 ノズル 2 3を有する充填用加熱筒 1 7内を軸方 向に移動自在に配置された充填プランジャー 1 8と、 該充填プランジャー 1 8を 充填ラム 1 9を介して軸方向に移動させる充填シリンダ 2 0と、 該充填シリンダ 2 0内の油圧を検知する油圧センサ一 2 1と、 該油圧センサー 2 1の検知結果に 基づいて充填ラム 1 9の作動を制御する油圧電気制御手段 2 2とから概略構成さ れている。 充填プランジャー 1 8の前方には、 可塑化計量機構 1 2から供給され る溶融樹脂を貯留する溶融榭脂溜まり部 T 2が設けられている。  The injection molding machine 11 shown in this figure includes a plasticization measuring mechanism 12 for plasticizing and measuring synthetic resin, and an injection mechanism 13 for injecting the synthetic resin supplied from the plasticizing measuring mechanism 12. And are separated from each other. The plasticizing measuring mechanism 12 is obtained by inserting a plasticizing screw 15 into a plasticizing section heating cylinder 14 so as to be rotatable around an axis. The plasticized and measured resin is supplied to the injection mechanism 13 through the supply path 16 in a molten state. The injection mechanism 13 includes a filling plunger 18 movably arranged in an axial direction in a filling heating cylinder 17 having a nozzle 23 and a filling plunger 18 via a filling ram 19. A filling cylinder 20 that moves in the axial direction, a hydraulic sensor 21 that detects the oil pressure in the filling cylinder 20, and a hydraulic pressure that controls the operation of the filling ram 19 based on the detection result of the hydraulic sensor 21. It is roughly composed of electric control means 22. In front of the filling plunger 18, there is provided a molten resin pool T 2 for storing the molten resin supplied from the plasticizing and measuring mechanism 12.
上記の構成の射出成形機 1 1によれば、 可塑化計量工程において、 可塑化計量 機構 1 2の可塑化スクリュ 1 5が回転することにより、 樹脂が可塑化および計量 され、 供給路 1 6を通じて溶融樹脂として射出機構 1 3の溶融樹脂溜まり部 T 2 に貯留される。 そして、 射出工程において、 射出機構 1 3により溶融樹脂溜まり 部 T 2の溶融樹脂がノズル 2 3から射出される。  According to the injection molding machine 11 configured as described above, in the plasticizing and measuring step, the resin is plasticized and measured by the rotation of the plasticizing screw 15 of the plasticizing and measuring mechanism 12, and the resin is supplied through the supply path 16. The molten resin is stored in the molten resin reservoir T 2 of the injection mechanism 13 as molten resin. Then, in the injection step, the molten resin in the molten resin reservoir T 2 is injected from the nozzle 23 by the injection mechanism 13.
即ち、 油圧電気制御手段 2 2が、 充填シリンダ 2 0内の油圧を制御することに より、 充填ラム 1 9を介して充填プランジャー 1 8を軸方向前方に移動させる。 これにより、 溶融樹脂溜まり部 T 2の溶融樹脂の樹脂圧が高まり、 ノズル 2 3 から射出される。 That is, the hydraulic electric control means 22 controls the oil pressure in the filling cylinder 20 to move the filling plunger 18 forward in the axial direction via the filling ram 19. As a result, the resin pressure of the molten resin in the molten resin reservoir T 2 increases, and the nozzle 2 3 Emitted from.
一方、 金属用の射出成形機としては、 ダイキャスト成形法に代わり、 図 1 6に 示したように、 一本のスクリュで混練溶融と射出を行うインラインスクリュ式の ものが用いられている。 金属として多く用いられる軽金属合金材料は、 融点が 7 0 0 °C以下の金属元素単体またはこれらの金属をベースにした合金が使用される。 具体的な種類としては、 アルミニウム、 マグネシウム、 亜鉛、 錫、 鉛、 ビスマス、 カドミウム、 セレン、 リチウム等多数あるが、 一般的にはアルミニウム、 マグネ シゥム、 亜鉛、 錫、 ビスマスがダイキャストや金属射出成形用として利用されて いる。  On the other hand, as an injection molding machine for metal, instead of the die casting molding method, as shown in Fig. 16, an in-line screw type that performs kneading, melting and injection with one screw is used. As a light metal alloy material often used as a metal, a single metal element having a melting point of 700 ° C. or less or an alloy based on these metals is used. Specific types include aluminum, magnesium, zinc, tin, lead, bismuth, cadmium, selenium, lithium, and many others.Generally, aluminum, magnesium, zinc, tin, and bismuth are die cast or metal injection molded. It is used for business.
しかしながら、 インラインスクリュ式の射出成形機 1においては、 射出充填 - 保圧手段 8の油圧電気制御手段 1 0が射出シリンダ 6を介して、 樹脂 (または金 属) の充填工程と保圧工程の両方を制御している。 また、 射出スクリュ 5を、 サ ーボモータ等の電動駆動源により駆動させる電動式の射出成形機においても、 一 系統の電動機が充填工程と保圧工程の両方を制御している。  However, in the in-line screw type injection molding machine 1, the hydraulic and electric control means 10 of the injection filling and pressure holding means 8 is connected to both the resin (or metal) filling step and the pressure holding step via the injection cylinder 6. Is controlling. Also, in an electric injection molding machine in which the injection screw 5 is driven by an electric drive source such as a servomotor, one system of electric motor controls both the filling process and the pressure holding process.
そのため、 一つのァクチユエ一夕で、 充填工程に係る速度制御モードと、 保圧 工程に係る圧力制御モードとを切り換えることになるが、 工程切換え、 即ち制御 モード切換えを円滑に行うことは困難である。 結果として、 図 1 8に示すように、 樹脂 (または金属) に加わる圧力が不連続になってしまっていた。 特に、 充填ェ 程と保圧工程の切換点である保圧切換位置 S 1においては、 切換えの際の衝撃に より、 いわゆるサージ圧が発生して、 樹脂圧 (または金属圧) が異常に高くなつ ていた。 これにより、 金型内に充填される樹脂圧 (または金属圧) も高くなり、 成形品に / リが発生するという不具合があった。  Therefore, the speed control mode related to the filling process and the pressure control mode related to the pressure-holding process are switched in one operation, but it is difficult to perform the process switching, that is, the control mode switching smoothly. . As a result, as shown in Fig. 18, the pressure applied to the resin (or metal) became discontinuous. In particular, at the holding pressure switching position S1, which is a switching point between the filling process and the pressure holding process, a so-called surge pressure is generated due to an impact at the time of switching, and the resin pressure (or metal pressure) is abnormally high. I was in love. As a result, the pressure of the resin (or metal pressure) charged in the mold also increases, and there is a problem that the molded product is cracked.
一方、 成形品にバリを発生させないために、 保圧切換位置 S 1を B方向、 即ち、 充填時間を短くする方向に調整移動したときには、 上記とは逆にショートショッ トが発生したり、 各種制御要素の動作の微妙な変動によりサージ圧のレベルや輪 郭が変化する。 そのため、 上記バリやショートショットが不規則に、 かつ、 混在 する形で発生して成形が安定しないという不具合があった。 成形が不安定状態に あるときは、 最適な成形条件を探し出すのが非常に困難である。 また、 適切な成 形条件幅も極めて狭いものとなり、 成形作業に従事する者にとっては、 大きな手 間となっていた。 On the other hand, when the holding pressure switching position S1 is adjusted and moved in the direction B, that is, in a direction to shorten the filling time, in order to prevent burrs from being generated on the molded product, a short-shot occurs in the opposite manner to the above, Subtle fluctuations in the operation of the control element change the surge pressure level and contour. As a result, the above-mentioned burrs and short shots occur irregularly and in a mixed manner, and the molding is not stable. When molding is in an unstable state, it is very difficult to find the optimal molding conditions. In addition, the range of suitable molding conditions is extremely narrow, and a large hand is required for those engaged in molding work. Was between.
また、 従来、 インラインスクリュ式射出成形機 1における圧力制御は、 射出ス クリュ 5の後端に設けられた射出シリンダ 6を介して行われているが、 この射出 シリンダ 6と溶融樹脂 (または溶融金属) との間には、 射出スクリュ 5を含めて 種々の部材が介在するため、 圧力制御を行ってもこれらの部材での圧力損失によ り、 溶融樹脂 (または溶融金属) に所望の圧力が伝達されるとは限らず、 このこ とが成形が安定して行われない状態 (成型ばらつき) を生ずる一因となっていた。 また、 樹脂 (または金属) の計量供給は、 射出スクリュ 5の軸方向の移動によ り行われている。 そして、 樹脂 (または金属) の供給量は、 その移動ストローク により設定される。 ところが、 この移動ストロークの始点および終点は、 機械的 に位置決めされていないので、 若千の位置変動が生じる。 結果として、 この射出 成形機 1では、 樹脂供給量に変動が生じることになり、 これも成形ばらつきの一 因となっていた。  Conventionally, pressure control in the in-line screw type injection molding machine 1 has been performed via an injection cylinder 6 provided at the rear end of the injection screw 5, and the injection cylinder 6 and the molten resin (or molten metal) are controlled. ), Various members including the injection screw 5 are interposed. Therefore, even if pressure control is performed, the desired pressure is applied to the molten resin (or molten metal) due to the pressure loss in these members. This was not always transmitted, and this was one of the causes of a state where molding was not performed stably (molding variation). The resin (or metal) is metered by moving the injection screw 5 in the axial direction. And the supply amount of resin (or metal) is set by the movement stroke. However, since the starting point and the ending point of this movement stroke are not mechanically positioned, a small amount of positional fluctuation occurs. As a result, in the injection molding machine 1, the resin supply amount fluctuates, which also causes the molding variation.
さらに、 樹脂の可塑化時 (または金属の混練溶融時) においては、 可塑化 (ま たは溶融化) が進むにつれて樹脂圧 (または金属圧) により射出スクリュ 5が後 退する。 そのため、 可塑化 (または溶融化) 開始時点と可塑化 (溶融化) 完了時 点とでは、 樹脂 (または金属) が混練される射出スクリュ 5の有効長さが異なる ことになる。 そのため、 射出成形機 1では、 溶融樹脂溜まり部 T 1に貯留される 溶融樹脂 (または溶融金属) の溶融状態が一定にならずに温度勾配が発生してし まい、 成形ばらつきの一因となっていた。  Further, at the time of plasticizing the resin (or at the time of kneading and melting the metal), the injection screw 5 retreats due to the resin pressure (or the metal pressure) as the plasticization (or the melting) proceeds. For this reason, the effective length of the injection screw 5 into which the resin (or metal) is kneaded differs between the start of plasticization (or melting) and the end of plasticization (melting). Therefore, in the injection molding machine 1, the molten state of the molten resin (or molten metal) stored in the molten resin reservoir T1 is not constant, and a temperature gradient is generated, which causes a molding variation. I was
また、 射出スクリュ 5の先端に設けられた逆流防止弁 4は、 該逆流防止弁 4の 前後の圧力差によって移動する (開閉する) 構造であるが、 射出充填動作時の射 出スクリュ 5の前進移動の際にも、 スクリュヘッド 7に付着した状態で追従して 移動することがある。 この場合、 射出成形機 1では、 逆流防止が解除されてしま レ 溶融樹脂溜まり部 T 1に貯留される樹脂圧 (または金属圧) および充填圧に 変動が生じ、 これも成形ばらつきの一因になっていた。  The check valve 4 provided at the tip of the injection screw 5 moves (opens and closes) by the pressure difference before and after the check valve 4, but the check screw 4 moves forward during the injection filling operation. During the movement, the robot may move following the screw head 7 while attached. In this case, in the injection molding machine 1, the backflow prevention is released. The resin pressure (or metal pressure) and the filling pressure stored in the molten resin reservoir T1 fluctuate, which also contributes to molding irregularities. Had become.
一方、 プリブラ式射出成形機 1 1においては、 可塑化計量機構 1 2と射出機構 1 3とが分離されており、 また、 充填プランジャー 1 8の先端に逆流防止弁を必 要としないため、 上記ィンラインスクリュ式射出成形機 1における不具合の内、 樹脂が混練される射出スクリュ 5の有効長さが異なること、 射出充填動作時に逆 流防止が解除されてしまうことによるものは解消される。 そして、 充填プランジ ャ一 1 8の直径を可塑化スクリュ 1 5の直径と関係なく任意に設定できるので、 例えば、 小径に設定することで、 中、 小物超精密成形に対応することが可能にな つている。 On the other hand, in the pre-bra type injection molding machine 11, the plasticizing and measuring mechanism 12 and the injection mechanism 13 are separated, and the check plunger 18 does not require a check valve at the end of the filling plunger 18. Among the defects in the above-mentioned in-line screw type injection molding machine 1, The problems caused by the difference in the effective length of the injection screw 5 into which the resin is kneaded and the release of the backflow prevention during the injection filling operation are eliminated. Since the diameter of the filling plunger 18 can be arbitrarily set regardless of the diameter of the plasticizing screw 15, for example, by setting the diameter to a small diameter, it becomes possible to cope with medium and small-sized ultra-precision molding. I'm wearing
ところが、 このプリブラ式射出成形機 1 1においても、 上記インラインスクリ ュ式射出成形機 1の不具合の内、 制御モード切換えを円滑に行うことの困難さ、 油圧モータと溶融樹脂との間の圧力損失、 樹脂供給量の変動に起因するものにつ いては、 完全に解決するに至っておらず、 特に、 制御モード切換え、 即ち充填ェ 程から保圧工程への最適な切換制御については、 プリブラ式においてもインライ ンスクリュ式と同様に構造的に難しいものであり、 その解決策が強く望まれてい た。  However, even with this pre-bra type injection molding machine 11, one of the disadvantages of the above-described in-line screw type injection molding machine 1 is that it is difficult to switch the control mode smoothly, and the pressure loss between the hydraulic motor and the molten resin. However, the problem caused by fluctuations in the resin supply has not yet been completely solved.In particular, the control mode switching, that is, the optimal switching control from the filling process to the pressure-holding process, has been described in the pre-bra system. Is also structurally difficult, as with the in-line screw type, and there has been a strong demand for a solution.
従って、 本発明は、 充填工程から保圧工程への切換えが円滑に行える射出成形 機および射出成形方法を提供することを目的とする。  Accordingly, an object of the present invention is to provide an injection molding machine and an injection molding method that can smoothly switch from a filling step to a pressure holding step.
また、 本発明は、 成形サイクル毎の溶融状態、 溶融成形材圧、 および成形材供 給量の均一化が可能になる射出成形機および射出成形方法を提供することを目的 としている。 . 発明の開示  Another object of the present invention is to provide an injection molding machine and an injection molding method capable of making the molten state, the molten molding material pressure, and the molding material supply amount uniform in each molding cycle. . DISCLOSURE OF THE INVENTION
本発明は、 射出ノズルを有する充填用加熱筒に射出部材がその軸方向に移動自 在に挿入されており、 射出用駆動装置の作動により射出部材を前進させて該射出 部材と前記射出ノズルとの間の成形材溜まり部に導入された溶融成形材を、 前記 射出ノズルから射出する充填装置と、 溶融用加熱筒にその軸線回りに回転自在に スクリュが挿入されており、 回転駆動装置の作動により該スクリュを回転させて、 成形材を溶融して前記充填用加熱筒の成形材溜まり部に溶融成形材を供給する溶 融装置と、 押圧部材を有し、 押圧駆動装置の作動により該押圧部材を移動させて 前記充填用加熱筒の成形材溜まり部に導入された前記溶融成形材を加圧減圧する 溶融成形材加圧減圧装置とを備えていることを特徴としている。  According to the present invention, an injection member is inserted into a heating cylinder for injection having an injection nozzle so as to move in the axial direction, and the injection member is moved forward by the operation of an injection driving device, so that the injection member and the injection nozzle are connected to each other. And a filling device for injecting the molten molding material introduced into the molding material reservoir between the injection nozzles, and a screw rotatably inserted around the axis of the heating cylinder for melting. And a pressing member that melts the molding material and supplies the molten molding material to the molding material reservoir of the heating tube for filling, and a pressing member. The apparatus is characterized in that the apparatus further comprises a molten-molded material pressurizing and depressurizing device for moving a member to pressurize and decompress the molten molded material introduced into the molded-material reservoir of the heating tube for filling.
本発明の射出成形機によれば、 充填装置の成形材溜まり部に導入された溶融成 形材を、 溶融成形材加圧減圧装置により適時に圧力制御して、 充填装置により射 出することができるので、 サージ圧が発生することはなく、 滑らかな圧力切換特 性を得ることができる。 また、 この結果、 本発明の射出成形機では、 バリゃショ 一トショット等の成形不良を解消することができると共に、 成形品に応じてばら つきのない最適な成形条件を設定することができる。 According to the injection molding machine of the present invention, the molten molding material introduced into the molding material reservoir of the filling device is provided. The pressure of the profile can be controlled in a timely manner by the pressurizing and depressurizing device of the molten molding material, and it can be ejected by the filling device.Therefore, no surge pressure is generated and smooth pressure switching characteristics can be obtained. . Further, as a result, in the injection molding machine of the present invention, it is possible to eliminate molding defects such as variable shots and the like, and to set optimal molding conditions without variation depending on the molded product.
また、 本発明の射出成形機では、 溶融成形材加圧減圧装置が、 内部が流路によ り成形材溜まり部および溶融用加熱筒内に連通する加減圧用加熱筒と、 加減圧用 加熱筒内にその軸方向に移動自在に挿入されている押圧部材としての押し込みプ ランジャーと、 押し込みプランジャーと連結され押し込みプランジャーを移動さ せる押圧駆動装置とを備える構成を採用することが好ましい。 このことによって、 本発明の射出成形機では、 押し込みプランジャーの移動を制御することで、 溶融 装置装置と充填装置の成形材溜まり部を連通する流路内の溶融成形材を介して、 成形材溜まり部内の溶融成形材の圧力を良好に制御できるので、 上記効果を一層 確実に得ることができる。  Further, in the injection molding machine of the present invention, the molten molding material pressurizing and depressurizing device includes: a heating and depressurizing heating cylinder, the inside of which is communicated with the molding material reservoir and the melting heating cylinder by a flow path; It is preferable to employ a configuration including a pushing plunger as a pushing member movably inserted in the cylinder in the axial direction thereof, and a pushing driving device connected to the pushing plunger to move the pushing plunger. Thus, in the injection molding machine of the present invention, by controlling the movement of the indenting plunger, the molding material is passed through the molten molding material in the flow path that connects the melting device device and the molding material reservoir of the filling device. Since the pressure of the molten molding material in the pool can be controlled well, the above-mentioned effects can be obtained more reliably.
さらに、 本発明の射出成形機では、 溶融用加熱筒に、 流路に連通する連通孔を 設け、 溶融成形材加圧減圧装置の押し込みブランジャ一がこの連通孔の流路への 開口を開閉する構成を採用することが好ましい。 このことによって本発明の射出 成形方法では、 充填時の成形材反抗圧によりプランジャー孔の先端側の成形材圧 が高まったときであっても、 溶融成形材が連通孔から溶融装置に逆流することを 防止でき、 成形材圧が確実に成形材溜まり部に伝わるので、 該成形材溜まり部内 の溶融成形材の圧力を一層確実に制御できる。  Further, in the injection molding machine of the present invention, a communication hole communicating with the flow path is provided in the heating tube for melting, and the press-in plunger of the pressurizing and depressurizing device for molten material opens and closes the opening of the communication hole to the flow path. It is preferable to adopt a configuration. As a result, in the injection molding method of the present invention, even when the molding material pressure at the tip end side of the plunger hole increases due to the molding material reaction pressure at the time of filling, the molten molding material flows backward from the communication hole to the melting device. This can be prevented, and the pressure of the molding material is reliably transmitted to the molding material accumulation portion, so that the pressure of the molten molding material in the molding material accumulation portion can be controlled more reliably.
また、 本発明は、 溶融装置により溶融した成形材を、 流路を通じて成形材溜ま り部に導入し、 該導入した成形材を射出用設定圧以上の第一の予圧に加圧した後 に射出することを特徴としている。  Further, the present invention provides a method for introducing a molding material melted by a melting device into a molding material reservoir through a flow path, and injecting the formed molding material to a first preload equal to or higher than an injection set pressure. It is characterized by doing.
本発明の射出成形方法によれば、 第一の予圧に加圧する工程で、 流路に導入さ れた成形材を射出用設定圧以上である第一の予圧に加圧することができ、 従って、 成形材溜まり部に貯留された成形材も設定圧以上に加圧することができる。 この ことによって本発明の射出成形方法では、 成形材溜まり部における溶融成形材の 密度が一定となり、 各成形サイクル毎に、 射出される溶融成形材の溶融状態がよ り均一化され、 安定した成形を維持することができる。 According to the injection molding method of the present invention, in the step of pressurizing to the first preload, the molding material introduced into the flow path can be pressurized to the first preload that is equal to or higher than the set pressure for injection. The molding material stored in the molding material reservoir can also be pressurized above a set pressure. As a result, in the injection molding method of the present invention, the density of the molten molding material in the molding material pool becomes constant, and the molten state of the injected molten molding material is improved in each molding cycle. This makes it possible to maintain stable molding.
また、 本発明の射出成形方法では、 第一の予圧に加圧された溶融成形材を、 第 一の予圧より低圧の第二の予圧に減圧した後に射出することが好ましい。 このこ とによつて本発明の射出成形方法では、 成形材溜まり部に貯留された成形材も第 二の予圧に減圧することができ、 射出ノズルの射出口から成形材漏れが発生する ことを防止できる。  In the injection molding method of the present invention, it is preferable to inject the molten molded material pressurized to the first preload after reducing the pressure to a second preload lower than the first preload. Accordingly, in the injection molding method of the present invention, the molding material stored in the molding material reservoir can also be reduced to the second preload, and leakage of the molding material from the injection port of the injection nozzle occurs. Can be prevented.
なお、 本発明では、 成形材として合成樹脂、 金属のいずれも適用可能である。 図面の簡単な説明  In the present invention, any of synthetic resin and metal can be used as the molding material. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態における制御系統を示すブロック図である。 図 2は、 本発明の実施の形態を示す図であって、 充填装置の上方に溶融樹脂 加圧減圧装置が配設された正面図である。  FIG. 1 is a block diagram showing a control system according to the embodiment of the present invention. FIG. 2 is a view showing an embodiment of the present invention, and is a front view in which a molten resin pressurizing and depressurizing device is disposed above a filling device.
図 3は、 本発明の実施の形態を示す平面図である。  FIG. 3 is a plan view showing an embodiment of the present invention.
図 4は、 本発明の実施の形態を示す左側面図である。  FIG. 4 is a left side view showing the embodiment of the present invention.
図 5は、 本発明の実施の形態を示す図であって、 可塑化スクリュの先端に逆 流防止機構が設けられた断面図である。  FIG. 5 is a view showing an embodiment of the present invention, and is a cross-sectional view in which a backflow prevention mechanism is provided at a tip of a plasticizing screw.
図 6は、 図 5における左側面図である。  FIG. 6 is a left side view of FIG.
図 7は、 本発明の実施の形態を示す図であって、 加減圧用加熱筒と充填用加 熱筒の要部の拡大図である。  FIG. 7 is a view showing an embodiment of the present invention, and is an enlarged view of a main part of a heating cylinder for heating and depressurizing and a heating cylinder for filling.
図 8は、 本発明の射出成形方法の実施の形態を示すフローチャート図である 図 9は、 本発明の射出成形方法の実施の形態を示すフローチヤ一ト図である 図 1 0は、 本発明の射出成形方法の実施の形態を示すフローチャート図であ る,  FIG. 8 is a flowchart showing an embodiment of the injection molding method of the present invention. FIG. 9 is a flowchart showing an embodiment of the injection molding method of the present invention. FIG. FIG. 2 is a flowchart showing an embodiment of an injection molding method,
図 1 1は、 本発明の射出成形方法の実施の形態を示すフローチャート図であ る (  FIG. 11 is a flowchart showing an embodiment of the injection molding method of the present invention (
図 1 2は、 本発明の射出成形方法の実施の形態を示すフローチャート図であ る'  FIG. 12 is a flowchart showing an embodiment of the injection molding method of the present invention.
図 1 3は、 本発明の実施の形態の作用を示す図であって、 押し込みプランジ ヤーが連通孔を開放し、 充填プランジャーがサックバック完了している概略構成 図である。 FIG. 13 is a view showing the operation of the embodiment of the present invention, and is a schematic configuration in which a pushing plunger opens a communication hole, and a filling plunger has completed suckback. FIG.
図 1 4は、 本発明の射出成形方法を実施した場合の射出工程の一例を示す図 である。  FIG. 14 is a diagram illustrating an example of an injection step when the injection molding method of the present invention is performed.
図 1 5は、 本発明の実施の形態を示す図であって、 充填装置におけるスト口 ーク規定手段の他の形態を示す構成図である。  FIG. 15 is a diagram showing an embodiment of the present invention, and is a configuration diagram showing another embodiment of the stroke defining means in the filling device.
図 1 6は、 従来技術によるインラインスクリュ式射出成形機の一例を示す概 略構成図である。  FIG. 16 is a schematic configuration diagram showing an example of a conventional in-line screw injection molding machine.
図 1 7は、 従来技術によるプリブラ式射出成形機の一例を示す概略構成図で ある。  FIG. 17 is a schematic configuration diagram showing an example of a pre-bra type injection molding machine according to the related art.
図 1 8は、 従来技術による射出成形機の射出工程を示す図である。 発明を実施するための最良の形態  FIG. 18 is a view showing an injection process of an injection molding machine according to a conventional technique. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の射出成形機および射出成形方法の実施の形態を、 図 1ないし図 1 5を参照して説明する。  Hereinafter, an embodiment of an injection molding machine and an injection molding method of the present invention will be described with reference to FIG. 1 to FIG.
ここでは、 成形材として合成樹脂を用い、 射出用駆動装置および加圧減圧用駆 動装置が油圧駆動源を有する場合の例を用いて説明する。  Here, description will be made using an example in which a synthetic resin is used as a molding material, and the injection drive device and the pressurization / decompression drive device have a hydraulic drive source.
これらの図において、 従来例として示した図 1 6および図 1 7と同一の構成要 素には同一符号を付し、 その詳細説明を省略する。  In these figures, the same components as those in FIGS. 16 and 17 shown as conventional examples are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 2、 図 3および図 4において、 符号 2 4は射出成形機である。  In FIGS. 2, 3 and 4, reference numeral 24 denotes an injection molding machine.
この射出成形機 2 4は、 機械の反操作側に配置されており、 固体の合成樹脂 (以下、 樹脂と称する) を可塑化して溶融する可塑化装置 (溶融装置) 2 5と、 機械の操作盤 (図示せず) が配設された操作側に配置されており、 可塑化装置 2 5により可塑化された樹脂を図示しない金型のキヤビティに充填させる充填装置 2 6と、 充填装置 2 6の上に配置された溶融樹脂加圧減圧装置 (溶融成形材加圧 減圧装置) 2 7とを備えている。  The injection molding machine 24 is disposed on the non-operating side of the machine, and includes a plasticizing device (melting device) 25 that plasticizes and melts a solid synthetic resin (hereinafter, referred to as a resin), and operates the machine. A filling device 26, which is arranged on the operation side where a panel (not shown) is provided, and in which the resin plasticized by the plasticizing device 25 is filled into a mold cavity (not shown), a filling device 26 And a molten resin pressurizing and depressurizing device (fused molding material depressurizing and depressurizing device) 27 which is disposed on the
可塑化装置 2 5は、 図示しないホツバから内部に供給された樹脂を加熱する可 塑化用加熱筒 (溶融用加熱筒) 2 8と、 該可塑化用加熱筒 2 8の内孔に、 その軸 線回りに回転自在に挿入された可塑化スクリュ (スクリュ) 2 9と、 該可塑化ス クリュ 2 9に回転駆動を与えるスクリュ回転用油圧モー夕 3 0とから構成されて いる。 そして、 可塑化用加熱筒 2 8の先端は、 溶融樹脂加圧減圧装置 2 7の後述 する加減圧用加熱筒 5 5 Bの略中間部にボルト等により連結されている。 また、 可塑化用加熱筒 2 8の後端は、 台板 4 2 Aの上に固定した保持台 2 5 Bに、 可塑 化用加熱筒 2 8の軸方向に移動可能に支持された加熱筒支持部材 2 5 Aに連結さ れている。 可塑化装置 2 5は、 全体として軸方向を水平状態にし、 かつ先端側を 機械の操作側の位置に寄せ、 後端側を反操作側の位置に寄せて、 平面視において 充填装置 2 6に対して斜めにして台板 4 2 Aの上に配置されている。 The plasticizing device 25 is provided with a plasticizing heating tube (melting heating tube) 28 for heating the resin supplied from a stove (not shown) and an inner hole of the plasticizing heating tube 28. It is composed of a plasticized screw (screw) 29 rotatably inserted around the axis, and a screw rotation hydraulic motor 30 for rotating the plasticized screw 29. I have. The distal end of the plasticizing heating cylinder 28 is connected to a substantially intermediate portion of a later-described heating / depressurizing heating cylinder 55B of the molten resin pressurizing / depressurizing device 27 by a bolt or the like. Further, the rear end of the plasticizing heating cylinder 28 is supported by a holding table 25 B fixed on the base plate 42 A so as to be movable in the axial direction of the plasticizing heating cylinder 28. It is connected to the support member 25A. The plasticizing device 25 has a horizontal state in the axial direction as a whole, and the leading end side is moved toward the operating side of the machine, and the rear end side is moved toward the non-operating side. It is arranged on the base plate 42A at an angle to the base plate.
油圧モー夕 3 0は、 加熱筒支持部材 2 5 Aに連結ロッド 2 5 Bで一体的に結合 された軸受箱 2 5 Cに固定されており、 軸受箱 2 5 Cに回転自在に支持されてい る中間軸 2 5 Dを介して可塑化スクリュ 2 9を回転させるようになつている。 図 5に示すように、 可塑化スクリュ 2 9の先端のスクリュへッド 3 1には逆流 防止機構 3 2が設けられている。 可塑化用加熱筒 2 8内のスクリュへッド 3 1の 前方には、 後述するプランジャー孔 (流路) 5 5に開口する連通孔 3 3が設けら れている。  The hydraulic motor 30 is fixed to a bearing box 25C integrally connected to the heating cylinder support member 25A with a connecting rod 25B, and is rotatably supported by the bearing box 25C. The plasticizing screw 29 is rotated through an intermediate shaft 25D. As shown in FIG. 5, the screw head 31 at the tip of the plasticizing screw 29 is provided with a backflow prevention mechanism 32. In front of the screw head 31 in the plasticizing heating cylinder 28, a communication hole 33 that opens to a plunger hole (flow path) 55 described later is provided.
逆流防止機構 3 2は、 連通孔 3 3の樹脂が可塑化スクリュ 2 9の基軸 3 4側へ 逆流することを防止するものであって、 スクリュヘッド 3 1に形成された流入溝 The backflow prevention mechanism 32 prevents the resin in the communication hole 33 from flowing back to the base shaft 34 side of the plasticizing screw 29, and is formed by an inflow groove formed in the screw head 31.
3 5と、 スクリュヘッド 3 1および基軸 3 4の外径よりも小径に形成された小径 軸部 3 6と、 逆流防止リング 3 7とから構成されている。 35, a small-diameter shaft portion 36 formed smaller than the outer diameters of the screw head 31 and the base shaft 34, and a backflow prevention ring 37.
逆流防止リング 3 7は、 小径軸部 3 6に、 基軸 3 4との間に隙間 3 8を隔てて 装着されている。 逆流防止リング 3 7の外周部は、 可塑化用加熱筒 2 8の中心軸 方向に移動自在に嵌合して、 内周部は小径軸部 3 6との間に流入路 3 9を形成す るように、 かつ近接する基軸 3 4の外径よりも小径になるように設定されている。 また、 流入溝 3 5は、 連通孔 3 3と流入路 3 9とを連通するように、 基軸 3 4 の軸線方向に沿って形成されており、 図 6に示すように、 スクリュヘッド 3 1の 外周に、 軸線回りに適宜間隔をあけて複数配置されている。  The backflow prevention ring 37 is mounted on the small-diameter shaft portion 36 with a gap 38 between the base shaft 34. The outer circumference of the backflow prevention ring 37 is movably fitted in the center axis direction of the plasticizing heating cylinder 28, and the inner circumference forms an inflow passage 39 with the small diameter shaft 36. The diameter is set to be smaller than the outer diameter of the adjacent base shaft 34. Further, the inflow groove 35 is formed along the axial direction of the base shaft 34 so as to communicate the communication hole 33 and the inflow passage 39, and as shown in FIG. A plurality of them are arranged on the outer circumference at appropriate intervals around the axis.
充填装置 2 6は、 基台 4 0に固定された一対の平行なレール 4 2に支持され、 基台 4 0に立設された固定盤 4 1に対して、 離間、 接近する方向に移動する台板 The filling device 26 is supported by a pair of parallel rails 42 fixed to the base 40, and moves in a direction away from and approaching the fixed platen 41 erected on the base 40. Bed plate
4 2 Aの上に、 本体部 4 2 Bをポルト 4 2 Dで該台板 4 2 A上に固定して配置さ れている。 また、 充填装置 2 6は、 ピストンロッドを固定盤 4 1に連結した油圧 シリンダ 2 6 Aによって動かされて固定盤 4 1に対して進退移動するように構成 されている。 The main body 42B is fixed on the base plate 42A with the port 42D on the 42A. In addition, the filling device 26 has a hydraulic pressure that connects the piston rod to the fixed platen 41. It is configured to be moved by the cylinder 26 A and move forward and backward with respect to the fixed board 41.
さらに、 充填装置 2 6は、 中心軸が前記進退方向に沿って水平に配設され、 支 持部材 4 2 Cを介して台板 4 2 Aの前部に支持された、 樹脂の溶融状態を維持す る充填用加熱筒 4 3と、 図 7に示すように、 充填用加熱筒 4 3の内孔に挿入され、 該充填用加熱筒 4 3の中心軸方向に移動自在な充填プランジャー (射出部材) 4 4と、 該充填プランジャー 4 4を上記中心軸方向に移動させる射出用駆動装置 4 5とを備えている。  Further, the filling device 26 has a central axis disposed horizontally along the advance / retreat direction, and supports the molten state of the resin supported on the front portion of the base plate 42A via the support member 42C. The filling heating cylinder 43 to be maintained and a filling plunger (see FIG. 7) inserted into the inner hole of the filling heating cylinder 43 and movable in the center axis direction of the heating cylinder 43 for filling. (Injection member) 44 and an injection drive device 45 for moving the filling plunger 44 in the central axis direction.
充填用加熱筒 4 3の先端には、 射出口 4 6を有する射出ノズル 4 7が着脱自在 に取り付けられている。 この射出ノズル 4 7の内孔および充填用加熱筒 4 3の内 孔の充填プランジャー 4 4の前方には、 溶融状態の樹脂が貯留される溶融樹脂溜 まり部 (成形材溜まり部) 4 8が形成されている。  An injection nozzle 47 having an injection port 46 is detachably attached to the tip of the filling heating cylinder 43. In front of the filling plunger 44 in the inner hole of the injection nozzle 47 and the inner hole of the filling heating cylinder 43, a molten resin reservoir (molded material reservoir) 4 8 in which molten resin is stored. Are formed.
射出ノズル 4 7には、 溶融樹脂溜まり部 4 8に臨ませて、 該溶融樹脂溜まり部 4 8の樹脂圧を検出する圧力センサ一 4 9が取り付けられている。  The injection nozzle 47 is provided with a pressure sensor 49 for detecting the resin pressure in the molten resin reservoir 48 facing the molten resin reservoir 48.
また、 充填用加熱筒 4 3には、 後述の加減圧用加熱筒 5 5 Bの導入路 5 5 Aの 先端に連通するように形成され、 可塑化スクリュ 2 9により可塑化されて前記連 通孔 3 3を経て上記加減圧用加熱筒 5 5 Bに供給された樹脂を、 上記溶融樹脂溜 まり部 4 8に導入する導入孔 4 8 Aが設けられており、 この導入孔 4 8 Aは、 そ の軸線が充填用加熱筒 4 3の中心軸を含む鉛直面内に位置するように配設されて いる。 上記導入孔 4 8 Aと上記導入路 5 5 Aとにより、 可塑化用加熱筒 2 8の連 通孔 3 3を前記溶融樹脂溜まり部 4 8に連通する樹脂流路 (流路) を構成してい る。  The filling heating cylinder 43 is formed so as to communicate with the tip of an introduction path 55 A of a heating / compression heating cylinder 55 B described later, and is plasticized by a plasticizing screw 29 to form the communication. An introduction hole 48A is provided for introducing the resin supplied to the heating / compression heating cylinder 55B through the hole 33 into the molten resin reservoir 48.The introduction hole 48A is However, it is arranged so that its axis is located in a vertical plane including the central axis of the filling heating cylinder 43. The introduction hole 48 A and the introduction path 55 A constitute a resin flow path (flow path) that communicates the communication hole 33 of the plasticizing heating cylinder 28 with the molten resin reservoir 48. ing.
射出用駆動装置 4 5は、 射出ノズル 4 7から射出されて金型へ充填される樹脂 の速度を制御する充填速度制御手段を構成するものであって、 充填ラム 5 0を介 して充填プランジャー 4 4を上記中心軸方向に移動させる充填シリンダ 5 1と、 充填プランジャー 4 4の移動ストロークを規定するストローク規定手段 5 2と、 図 1に示すように、 充填シリンダ 5 1に給油して充填プランジャー 4 4の前進ま たは後退移動を切り換える方向切換弁 5 8と、 給油される作動油の流量を制御し て充填プランジャー 4 4の移動速度を制御する流量制御弁 5 9とを備えている。 なお、 充填シリンダ 5 1の下部には、 前記油圧シリンダ 2 6 Aが取り付られてい る。 また、 図 1に示すように、 充填プランジャ一 4 4には、 該充填プランジャー 4 4の位置を検出する位置センサー 6 0が設けられている。 The injection drive device 45 constitutes a filling speed control means for controlling the speed of the resin injected from the injection nozzle 47 into the mold, and is provided with a filling plan via a filling ram 50. The filling cylinder 51 for moving the jar 44 in the center axis direction, stroke defining means 52 for defining the movement stroke of the filling plunger 44, and as shown in FIG. A directional control valve 58 for switching the forward or backward movement of the filling plunger 44, and a flow control valve 59 for controlling the moving speed of the filling plunger 44 by controlling the flow rate of the supplied hydraulic oil. Have. The hydraulic cylinder 26 A is attached to the lower part of the filling cylinder 51. Further, as shown in FIG. 1, the filling plunger 44 is provided with a position sensor 60 for detecting the position of the filling plunger 44.
ストローク規定手段 5 2は、 台板 4 2 Aの後部上面に固定した支持台 4 2 Eと、 該支持台 4 2 Eの上面に設けた一対の平行なレール 5 2 A, 5 2 Aによって前記 中心軸方向に移動自在に支持されている可動台 5 4と、 該可動台 5 4の前端に上 方に突出して設けられており、 本体部 4 2 Bに設けた充填シリンダ 5 1の充填ラ ム 5 0に固着され、 充填シリンダ 5 1の後方に突出されたストツバロッド 5 3の 後端に当接し、 該ストッパロッド 5 3の後退量を規制する計量完了ストツバ 5 4 Aと、 前記支持台 4 2 Eに回転自在に支持され、 前記可動台 5 4に固定したナツ 卜に螺合されているネジ軸 5 2 Bと、 該ネジ軸 5 2 Bに固定したハンドル 5 2 C とを備えている。 ストローク規定手段 5 2は、 ハンドル 5 2 Cを回すとネジ軸 5 2 Bを介して可動台 5 4がレール 5 2 Aに沿って移動し、 可動台 5 4と共に計量 完了ストツバ 5 4 Aが前記中心軸方向に移動するように構成されている。  The stroke defining means 52 is formed by a support 42 E fixed to the rear upper surface of the base plate 42 A and a pair of parallel rails 52 A, 52 A provided on the upper surface of the support 42 A. A movable table 54 movably supported in the direction of the center axis, and a charging cylinder 51 provided at a front end of the movable table 54 so as to protrude upward and provided in a main body portion 42B. Metering-complete stop 54 a that abuts on the rear end of the stop rod 53, which is fixed to the drum 50 and protrudes rearward of the filling cylinder 51, restricts the amount of retraction of the stopper rod 53, and the support base 4. A screw shaft 52B rotatably supported by 2E and screwed to a nut fixed to the movable base 54, and a handle 52C fixed to the screw shaft 52B are provided. . When the handle 52 C is turned, the movable base 54 moves along the rail 52 A via the screw shaft 52 B, and the weighing stopper 54 A is moved together with the movable base 54. It is configured to move in the direction of the central axis.
計量完了ストツバ 5 4 Aの移動量は、 ネジ軸 5 2 Bに設けた目盛りリング 5 2 Dにより読み取ることができるような構成となっている。  The moving amount of the weighing stopper 54 A can be read by a scale ring 52 D provided on the screw shaft 52 B.
上記ストローク規定手段 5 2は、 充填ラム 5 0からストッパロッドを分離し、 図 1 5に示すように、 ストツバロッド 5 3 Aに雄ネジを設けて充填シリンダ 5 1 の後端部に固定した雌ネジ部材 5 1 Aに螺合させ、 ストツバロッド 5 3 Aが前端 側を充填シリンダ 5 1の内部に突出させて、 充填ラム 5 0の後端面に前端を対面 させるようにし、 自体を回転させることにより前記中心軸方向に移動調節される ように構成してもよい。  The stroke defining means 52 separates the stopper rod from the filling ram 50, and as shown in Fig. 15, a female screw fixed to the rear end of the filling cylinder 51 by providing a male screw on the stud rod 53A. By screwing it to the member 51A, the stopper rod 53A projects the front end side into the filling cylinder 51 so that the front end faces the rear end surface of the filling ram 50, and by rotating itself, You may comprise so that movement adjustment may be carried out to a center-axis direction.
溶融樹脂加圧減圧装置 2 7は、 加減圧用加熱筒 5 5 Bと、 押し込みプランジャ 一 (押圧部材) 5 6と、 加圧減圧用駆動装置 5 7 (押圧駆動装置) とを備えた構 成とされている。 加減圧用加熱筒 5 5 Bは、 プランジャー孔 5 5およびその先端 側を前記溶融樹脂溜まり部 4 8に連絡する導入路 5 5 Aを有し、 先端部を前記充 填用加熱筒 4 3にボルト等で取り外し可能に連結され、 かつ前記充填用加熱筒 4 3の上方に、 後端側が上になるように傾斜して配置されている。 押し込みプラン ジャー 5 6は、 上記加減圧用加熱筒 5 5 Bのプランジャー孔 5 5に、 その軸方向 に移動自在に嵌合されている。 加圧減圧用駆動装置 5 7は、 円筒状の連絡部材を 介して加減圧用加熱筒 5 5 Bに連結され、 押し込みプランジャー 5 6を駆動させ るものである。 The molten resin pressurizing and depressurizing device 27 includes a heating and depressurizing heating cylinder 55B, a press-in plunger (pressing member) 56, and a pressurizing and depressurizing driving device 57 (pressing driving device). It has been. The heating / depressurizing heating cylinder 55B has a plunger hole 55 and an introduction path 55A connecting the tip end thereof to the molten resin reservoir section 48, and has a tip end of the charging heating cylinder 43. It is detachably connected with a bolt or the like, and is disposed above the heating tube for filling 43 so as to be inclined so that the rear end side thereof is upward. The push-in plunger 56 is inserted into the plunger hole 55 of the heating / decompression heating cylinder 55 B in the axial direction. Are movably fitted to The pressurizing and depressurizing drive device 57 is connected to the pressurizing and depressurizing heating cylinder 55B via a cylindrical communication member, and drives the press-in plunger 56.
加圧減圧用駆動装置 5 7は、 射出ノズル 4 7から射出される樹脂の圧力を制御 する樹脂圧制御手段を構成するものであって、 押し込みシリンダ 6 1と 4方向サ —ポ弁 6 2とを備えている。 押し込みシリンダ 6 1は、 前記押し込みプランジャ 一 5 6の後端にピストンロッド 6 1 Aが連結されて該押し込みプランジャー 5 6 をその軸方向に進退移動させるものである。 4方向サ一ポ弁 6 2は、 押し込みシ リンダ 6 1の上部に固定され、 押し込みシリンダ 6 1に作動油を給油して押し込 みプランジャー 5 6の移動を制御するものである。  The pressurizing and depressurizing drive device 57 constitutes a resin pressure control means for controlling the pressure of the resin injected from the injection nozzle 47, and includes a pushing cylinder 61, a four-way support valve 62, It has. In the pushing cylinder 61, a piston rod 61A is connected to the rear end of the pushing plunger 56 to move the pushing plunger 56 forward and backward in the axial direction. The four-way support valve 62 is fixed to the upper part of the push-in cylinder 61, and supplies hydraulic oil to the push-in cylinder 61 to control the movement of the push-in plunger 56.
上記押し込みシリンダ 6 1は、 支持板 6 1 Bに設けたレール 6 1 Cにより、 軸 方向に移動可能に支持されている。 支持板 6 1 Bは、 充填シリンダ 5 1の上部に 設けた支軸 5 1 Bに、 充填シリンダ 5 1の軸線を含む鉛直面内で回動するように 支持されている。 即ち、 溶融樹脂加圧減圧装置 2 7は、 全体として押し込みブラ ンジャー 5 6の軸線が上記鉛直面内に位置するように配置されている。  The pushing cylinder 61 is supported movably in the axial direction by a rail 61C provided on a support plate 61B. The support plate 61B is supported by a support shaft 51B provided above the filling cylinder 51 so as to rotate in a vertical plane including the axis of the filling cylinder 51. That is, the molten resin pressurizing and depressurizing device 27 is arranged such that the axis of the push-in plunger 56 is positioned in the vertical plane as a whole.
また、 図 1に示すように、 押し込みプランジャー 5 6には、 該押し込みプラン ジャー 5 6の位置を検出する位置センサ一 6 3が設けられている。 4方向サ一ボ 弁 6 2は、 制御装置 6 6を介して、 圧力センサ一 4 9の検出結果に基づいて押し 込みプランジャ一 5 6を作動させる構成とされている。  Further, as shown in FIG. 1, the push-in plunger 56 is provided with a position sensor 63 for detecting the position of the push-in plunger 56. The four-way servo valve 62 is configured to operate the push-in plunger 56 based on the detection result of the pressure sensor 49 via the control device 66.
制御装置 6 6には、 表示器 6 7、 各種設定値を入力する入力器 6 8、 樹脂圧セ ンサーアンプ 6 9、 位置センサー 6 3、 メモリ 7 0、 電磁流量制御弁アンプ 7 1 、 サーボ弁アンプ 7 2、 スクリュ回転用油圧モータ 3 0、 および方向制御弁 5 8と 各種 I Z F、 AZDを介してこれらを制御する C P U 7 3と、 該 C P U 7 3に制 御されて射出時間を測定する射出タイマー (図示せず) とが設けられている。 また、 上記の方向切換弁 5 8、 流量制御弁 5 9および 4方向サーポ弁 6 2は、 油圧駆動源である油圧ポンプ 6 4と、 該油圧ポンプ 6 4から供給される油圧を蓄 圧するアキュムレータ 6 5から送り出された作動油の流量および流路方向を制御 して、 充填シリンダ 5 1、 押し込みシリンダ 6 1を作動させる構成とされている c 次に、 上記の構成とされた射出成形機の作用を以下に説明する。 まず、 予め入力器 68から、 充填異常圧 PNC、 保圧切換樹脂圧 P,、 保圧切換充 填プランジャー位置 Si、 圧力充填切換樹脂圧 P。、 圧力充填切換充填プランジャ —位置 S。、 保圧パターン、 充填動作前のプランジャー孔 55の樹脂圧 (成形材圧) である第一の予圧 PSET1および第二の予圧 PSET2等を設定入力して、 入力 I ZF 80、 CPU 73を介してメモリ 70へ記憶させておく。 The control device 66 has a display 67, an input device 68 for inputting various setting values, a resin pressure sensor amplifier 69, a position sensor 63, a memory 70, an electromagnetic flow control valve amplifier 71, and a servo valve amplifier. 72, Hydraulic motor for screw rotation 30 and directional control valve 58, CPU 73 for controlling these via various IZFs and AZDs, and injection timer controlled by CPU 73 to measure injection time (Not shown). The directional switching valve 58, the flow control valve 59 and the four-way servo valve 62 are provided with a hydraulic pump 64 serving as a hydraulic drive source and an accumulator 6 for accumulating the hydraulic pressure supplied from the hydraulic pump 64. 5 by controlling the flow rate and flow path direction of the hydraulic fluid fed, filling cylinder 5 1, then c is configured to operate the pushing cylinder 61, the action of the injection molding machine which is constructed above Will be described below. First, from the input device 68, the charging abnormal pressure P NC , the holding pressure switching resin pressure P, the holding pressure switching charging plunger position Si, and the pressure charging switching resin pressure P are input in advance. , Pressure fill switching fill plunger — position S. The first preload PSET1 and the second preload PSET2 which are the resin pressure (molding material pressure) of the plunger hole 55 before the filling operation, the pressure preservation pattern, the second preload PSET2, etc. are set and input. Via the memory 70.
続いて、 図 8ないし図 12に示すフローチャート図に従って説明する。  Next, description will be made with reference to the flowcharts shown in FIGS.
図 8に示すように、 運転がスタートすると図 1に示すように、 溶融樹脂加圧減 圧装置 27の押し込みプランジャー 56が連通孔 33を閉塞する位置に移動する と共に、 この位置に停止した状態が保持される (ステップ S 1) 。  As shown in FIG. 8, when the operation starts, as shown in FIG. 1, the plunger 56 of the molten resin pressurizing / reducing device 27 moves to the position where the communication hole 33 is closed, and stops at this position. Is held (step S1).
即ち、 位置センサー 63が検出した押し込みプランジャー 56の位置信号を、 押込プランジャ位置センサ一 IZF 74、 入力 I/F 75を介して受け取った制 御装置 66の CPU73は、 予め入力器 68により設定入力され、 メモリ 70に 記憶されている閉塞位置の設定値と比較演算し、 その演算結果を DZAコンパ一 夕 76、 サ一ボ弁アンプ 72を介して、 溶融榭脂加圧減圧装置 27の加圧減圧用 駆動装置 57の 4方向サーボ弁 62へ送出する。  That is, the CPU 73 of the control device 66 which has received the position signal of the push plunger 56 detected by the position sensor 63 via the push plunger position sensor IZF 74 and the input I / F 75, sets and inputs in advance the input device 68. The calculated value is compared with the set value of the closed position stored in the memory 70, and the calculation result is applied to the molten resin pressurizing and depressurizing device 27 via the DZA comparator 76 and the servo valve amplifier 72. It is sent to the four-way servo valve 62 of the pressure reducing drive device 57.
この結果、 油圧ポンプ 64およびアキュムレータ 65により給油された作動油 が、 4方向サーポ弁 62を経て、 押し込みシリンダ 61へ供給される。 これによ り、 押し込みプランジャー 56がプランジャー孔 55を移動して連通孔 33を閉 塞する位置で停止する。  As a result, the hydraulic oil supplied by the hydraulic pump 64 and the accumulator 65 is supplied to the pushing cylinder 61 via the four-way servo valve 62. As a result, the pushing plunger 56 moves at the plunger hole 55 and stops at the position where the communication hole 33 is closed.
そして、 型蹄が完了すると (ステップ S 2) 、 メモリ 70に記億されている充 填異常圧 PNGが設定され (ステップ S 3) 、 射出動作が開始される (ステップ S 4) ことにより充填工程に入る。 Then, when the mold hoof is completed (step S2), the abnormal filling pressure P NG stored in the memory 70 is set (step S3), and the injection operation is started (step S4). Enter the process.
このとき、 射出タイマーが射出時間のカウントを開始する。  At this time, the injection timer starts counting the injection time.
充填工程においては、 充填装置 26の充填プランジャー 44が射出用駆動装置 45により充填用加熱筒 43の中心軸方向に前進移動する (ステップ S 5) 。 即ち、 CPU73からの信号が出力 IZF 77を介して送出されて、 射出用駆 動装置 45の方向切換弁 58が SOL— a側に励磁されることにより、 油圧ボン プ 64からの、 またはアキュムレータ 65に蓄圧された作動油が充填シリンダ 5 1の後部ロッド側に供給されて、 充填プランジャー 44が上記方向に前進移動す る。 これにより、 図 7に示すように、 溶融樹脂溜まり部 48の樹脂は、 射出ノズ ル 47の射出口 46から射出される。 In the filling step, the filling plunger 44 of the filling device 26 is moved forward by the injection driving device 45 in the direction of the central axis of the heating tube 43 for filling (step S5). That is, a signal from the CPU 73 is sent out via the output IZF 77, and the directional control valve 58 of the injection driving device 45 is excited to the SOL-a side, so that the signal is output from the hydraulic pump 64 or the accumulator 65. The hydraulic oil accumulated in the cylinder is supplied to the rear rod side of the filling cylinder 51, and the filling plunger 44 moves forward in the above direction. You. As a result, as shown in FIG. 7, the resin in the molten resin reservoir 48 is injected from the injection port 46 of the injection nozzle 47.
このときの充填速度、 即ち充填プランジャ一 44の前進速度は、 CPU73が メモリ 70に予め設定されている設定値に基づき、 07八コンバ一夕78、 電磁 流量制御弁アンプ 7 1を介して流量制御弁 59の開度を調節することにより制御 される。 ここで、 本射出成形機 24においては、 この充填工程で、 押し込みブラ ンジャー 56を充填プランジャー 44とは独立に動作させて圧力基準による充填 を行う、 いわゆる圧力充填機能とこれを行わない機能とが選択的に使用可能にな つている (ステップ S 6) 。  At this time, the filling speed, that is, the advance speed of the filling plunger 44, is controlled by the CPU 73 based on the set value preset in the memory 70, through the control valve 78, the electromagnetic flow control valve amplifier 71, and the flow rate control. It is controlled by adjusting the opening of the valve 59. Here, in the injection molding machine 24, in this filling step, the press-in plunger 56 is operated independently of the filling plunger 44 to perform filling based on a pressure reference. Are selectively available (Step S6).
〈圧力充填機能を使用しない場合〉 (B)  <When not using the pressure filling function> (B)
図 9に示すように、 充填プランジャー 44の上記前進移動時には、 位置センサ -60によりその位置が常時検出され、 検出結果は入力 IZF 81を介して CP U73に読み込まれる (ステップ S 7) 。  As shown in FIG. 9, during the forward movement of the filling plunger 44, the position is always detected by the position sensor -60, and the detection result is read into the CPU 73 via the input IZF 81 (step S7).
また、 溶融樹脂溜まり部 48の樹脂圧も、 圧力センサー 49により常時検出さ れており、 検出結果は樹脂圧センサ一アンプ 69、 AZDコンバータ 79を介し て、 CPU 73に読み込まれる (ステップ S 8) 。  The resin pressure in the molten resin reservoir 48 is also constantly detected by the pressure sensor 49, and the detection result is read by the CPU 73 via the resin pressure sensor amplifier 69 and the AZD converter 79 (step S8). .
充填工程中において検出された樹脂圧が、 充填異常圧 PNGと比較され (ステツ プ S 9) 、 充填異常圧 P、:cに到った場合は直ちに後述する保圧工程に切り換えら れる (C) 。 The resin pressure detected during the filling process is compared with the abnormal filling pressure P NG (step S9), and when the abnormal filling pressure P,: c is reached, the process is immediately switched to the pressure holding process described later ( C).
また、 検出された樹脂圧が、 充填異常圧 PNGに到らない限り、 ステップ S 10 において保圧切換条件が、 充填プランジャー位置のみで行う場合と、 充填プラン ジャー位置および榭脂圧で行う場合とのいずれに選択されているかを判断され、 その判断結果に応じた手順を経て保圧工程に切り換えられる。 As long as the detected resin pressure does not reach the abnormal filling pressure P NG , in step S 10, the holding pressure switching condition is performed only at the filling plunger position and at the filling plunger position and the resin pressure. It is determined which one of the cases has been selected, and the process is switched to the pressure-holding step through a procedure according to the result of the determination.
「保圧切換条件を充填ブランジャ一位置のみで行う場合」  "When the holding pressure switching condition is performed only at one position of the filling plunger"
検出された充填プランジャー 44の位置と予め設定された保圧切換充填プラン ジャー位置 S,とを比較して (ステップ S 11) 、 検出された位置が保圧切換充填 プランジャー位置 に到っていないときはステップ S 7へ戻り、 到ったときには 直ちに保圧工程に切り換えられる (C) 。  The detected position of the charging plunger 44 is compared with a preset pressure-holding switching plunger position S (step S11), and the detected position reaches the pressure-holding switching charging plunger position. If not, the process returns to step S7, and when it is reached, the process is immediately switched to the pressure-holding process (C).
「保圧切換条件を充填プランジャー位置および樹脂圧で行う場合」 検出された樹脂圧と予め設定された保圧切換樹脂圧 P ,とを比較して (ステップ S 1 2 ) 、 検出された樹脂圧が保圧切換樹脂圧 に到らないときはステップ S 7 へ戻り、 到ったときにはステップ S 1 1へ移って、 検出された充填プランジャー 4 4の位置と予め設定された保圧切換充填プランジャー位置 S!との比較を行う。"When the pressure holding switching condition is performed with the filling plunger position and resin pressure" The detected resin pressure is compared with a preset holding pressure switching resin pressure P (Step S12). If the detected resin pressure does not reach the holding pressure switching resin pressure, the process proceeds to Step S7. Returning, when it arrives, the process proceeds to step S11, where the detected position of the filling plunger 44 and the preset holding pressure switching filling plunger position S! Compare with.
〈圧力充填機能を使用する場合〉 (A) <When using the pressure filling function> (A)
図 1 0に示すように、 上記と同様にステップ S 1 3 , S 1 4において、 充填プ ランジャー 4 4の位置および樹脂圧が常時検出され、 C P U 7 3に読み込まれた 後、 検出された樹脂圧が予め設定された充填異常圧 P N Cと比較され (ステップ S 1 5 ) 、 充填異常圧 P NCに到った場合は直ちに保圧工程に切り換えられる (C ) 。 また、 検出された樹脂圧が、 充填異常圧 に到らない限り、 圧力充填切換条 件が、 充填プランジャー位置で行う場合と、 樹脂圧で行う場合とのいずれに選択 されているかを判断され (ステップ S 1 6 ) 、 その選択結果に応じた手順を経て、 圧力充填に切り換えられる。 As shown in FIG. 10, in the same manner as above, in steps S13 and S14, the position of the filling plunger 44 and the resin pressure are constantly detected and read into the CPU 73. pressure is compared with a preset filled abnormal pressure P NC (step S 1 5), it is switched immediately pressure-holding process when reached the filling abnormal pressure PN C (C). In addition, as long as the detected resin pressure does not reach the abnormal filling pressure, it is determined whether the pressure filling switching condition is selected at the filling plunger position or at the resin pressure. (Step S16), the mode is switched to pressure filling through a procedure according to the selection result.
「圧力充填切換条件を樹脂圧で行う場合」  "When the pressure filling switching condition is performed with resin pressure"
検出された樹脂圧と予め設定された圧力充填切換樹脂圧 P。とを比較して (ステ ップ S 1 7 ) 、 検出された榭脂圧が圧力充填切換榭脂圧 P。に到らないときはステ ップ 1 3へ戻り、 到ったときには加圧減圧用駆動装置 5 7により押し込みプラン ジャー 5 6を駆動して圧力充填切換樹脂圧 P。を保持させる (ステップ S 1 8 ) 。 即ち、 検出された樹脂圧が圧力充填切換樹脂圧 P。を超えたときには、 上記 4方 向サーボ弁 6 3を作動させることにより、 加圧減圧用駆動装置 5 7を駆動させ、 プランジャー孔 5 5を移動する押し込みプランジャー 5 6を溶融樹脂溜まり部 4 8に対して離間させる。  The detected resin pressure and the preset pressure filling switching resin pressure P. (Step S 17), the detected oil pressure is the pressure filling switching oil pressure P. If not, the process returns to step 13. If it does, the pressure plunger 56 is driven by the pressurization / decompression driving device 57, and the pressure filling switching resin pressure P is reached. Is held (step S 18). That is, the detected resin pressure is the pressure filling switching resin pressure P. Is exceeded, the four-way servo valve 63 is actuated to drive the pressurizing / depressurizing drive device 57 to push the plunger 56 moving through the plunger hole 55 into the molten resin reservoir 4. Separate from 8.
これにより、 プランジャー孔 5 5の圧力が減少し、 このプランジャー孔 5 5に 連通する溶融樹脂溜まり部 4 8の樹脂圧も減少する。 そして、 押し込みプランジ ャ一5 6の移動を制御することで、 溶融樹脂溜まり部 4 8の榭脂圧をフィードバ ック制御して設定値に保持することができる。  As a result, the pressure in the plunger hole 55 decreases, and the resin pressure in the molten resin reservoir 48 communicating with the plunger hole 55 also decreases. Then, by controlling the movement of the pushing plunger 156, the resin pressure of the molten resin reservoir portion 48 can be feedback-controlled and maintained at the set value.
そして、 この状態で充填プランジャー 4 4による充填を継続しながら、 ステツ プ S 1 0へ移り、 前記のようにして、 保圧切換条件を満足した時点で保圧工程に 切り換えられる。 「圧力充填切換条件を充填ブランジャ一位置で行う場合」 In this state, the process proceeds to step S10 while the filling by the filling plunger 44 is continued, and as described above, the pressure is switched to the pressure-holding step when the pressure-holding switching condition is satisfied. "When the pressure filling switching condition is performed at one position of the filling plunger"
検出された充填プランジャー 4 4の位置と予め設定された圧力充填切換充填プ ランジャー位置 S。とを比較して (ステップ S 1 9 ) 、 検出された位置が圧力充填 切換充填プランジャー位置 S。に到っていないときはステップ S 1 3へ戻り、 到つ たときにはこのときの樹脂圧 (樹脂反抗圧) P ' を検出する (ステップ S 2 0 ) 。 そして、 この樹脂圧 P ' を、 上記と同様に加圧減圧用駆動装置 5 7により押し込 みプランジャー 5 6を駆動してフィードバック制御により保持させる (ステップ S 2 1 ) 。 この状態で充填プランジャー 4 4による充填を継続しながら、 ステツ プ S 1 0へ移り、 保圧切換条件を満足した時点で保圧工程に切り換えられる。 図 1 1に示すように、 保圧工程に移行すると、 予め設定された保圧パターンに なるように、 C P U 7 3の制御に基づいて加圧減圧用駆動装置 5 7が押し込みプ ランジャー 5 6を駆動させて (ステップ S 2 2 ) 、 保圧制御を行う。  Detected filling plunger 4 4 Position and preset pressure filling switching filling plunger position S. (Step S 19), the detected position is the pressure filling, the switching filling plunger position S. If not, the process returns to step S13, and if so, the resin pressure (resin reaction pressure) P 'at this time is detected (step S20). Then, the resin plunger P ′ is driven by the pressurizing / depressurizing driving device 57 to drive the plunger 56 in the same manner as described above, and is held by feedback control (step S 21). In this state, the process proceeds to step S10 while the filling by the filling plunger 44 is continued, and the pressure is switched to the pressure holding step when the pressure holding switching condition is satisfied. As shown in FIG. 11, when the process shifts to the pressure-holding step, the pressurizing and depressurizing drive device 57 drives the push-in plunger 56 based on the control of the CPU 73 so that the pressure-holding pattern is set in advance. It is driven (step S22) to perform the pressure holding control.
この保圧制御の間に、 充填プランジャー 4 4は、 図 1に示すように、 充填ラム 5 0が充填シリンダ 5 1の前進限に当接して停止することにより、 前進移動を完 了する (ステップ S 2 3 ) 。  During this pressure-holding control, the filling plunger 44 completes the forward movement by the filling ram 50 abutting on the forward end of the filling cylinder 51 and stopping as shown in FIG. 1 ( Step S23).
このとき、 保圧力に抗するに十分な、 高い圧力の作動油が充填シリンダ 5 1の 後部ロッド側に供給されたままであるため、 押し込みプランジャー 5 6による保 圧制御が行われて溶融樹脂溜まり部 4 8の樹脂圧が増加しても、 充填プランジャ —4 4がその圧力で後退してしまうことを防止できる。  At this time, since hydraulic oil at a high pressure sufficient to withstand the holding pressure is still supplied to the rear rod side of the filling cylinder 51, the holding pressure control by the pushing plunger 56 is performed and the molten resin pool Even if the resin pressure in the section 48 increases, the filling plunger -44 can be prevented from retreating at that pressure.
そして、 設定された保圧パターンを迪つて保圧制御が完了すると、 射出夕イマ 一が設定時間の計時を完了して射出動作が完了する (ステップ S 2 4 ) 。  Then, when the pressure holding control is completed for the set pressure holding pattern, the injection timing is completed for the set time, and the injection operation is completed (step S24).
続いて、 4方向サ一ポ弁 6 2を制御することにより、 押し込みプランジャー 5 6を後退 (図 1中、 上方へ) 移動させて圧抜きを行う (ステップ S 2 4 A) 。 このとき、 押し込みシリンダ 6 1に供給されていた作動油は、 タンク 8 2へ開 放される。  Subsequently, by controlling the four-way support valve 62, the pushing plunger 56 is moved backward (upward in FIG. 1) to release the pressure (step S24A). At this time, the hydraulic oil supplied to the pushing cylinder 61 is released to the tank 82.
これにより、 プランジャー孔 5 5は減圧され、 樹脂流路を介して溶融樹脂溜ま り部 4 8の樹脂圧も減圧される。  As a result, the pressure in the plunger hole 55 is reduced, and the resin pressure in the molten resin reservoir 48 is also reduced through the resin flow path.
また、 充填シリンダ 5 1においても、 方向切換弁 5 8が S O L— b側に励磁さ れることにより、 ヘッド側に供給されていた作動油がタンク 8 3へ開放されて圧 抜きが行われる (ステップ S 2 5 ) 。 Also, in the filling cylinder 51, when the directional valve 58 is excited to the SOL-b side, the operating oil supplied to the head side is released to the tank 83 and the pressure is released. An extraction is performed (step S25).
圧抜きが完了した後、 加圧減圧用駆動装置 5 7の駆動により、 押し込みプラン ジャー 5 6が、 図 1 3に示すように、 連通孔 3 3のプランジャー孔 5 5に連通す る開口を開放する位置に移動して (ステップ S 2 6 ) 、 この原点とされる位置に 停止した状態が保持される。  After the depressurization is completed, the driving device 57 for pressurizing and depressurizing causes the push-in plunger 56 to open the opening communicating with the plunger hole 55 of the communication hole 33 as shown in FIG. After moving to the open position (step S26), the stopped state is maintained at this origin position.
そして、 可塑化装置 2 5の作動により、 樹脂が可塑化されて計量が開始される。 即ち、 C P U 7 3からの信号が出力 I Z F 7 7を介して送出されてスクリュ回 転用油圧モー夕 3 0が作動し、 可塑化スクリュ 2 9が回転する (ステップ S 2 7 ) 可塑化スクリュ 2 9の回転による樹脂への剪断と可塑化用加熱筒 2 8からの加 熱により、 樹脂は可塑化され溶融した状態で連通孔 3 3からプランジャー孔 5 δ へ導入される。  Then, by the operation of the plasticizing device 25, the resin is plasticized and the measurement is started. That is, a signal from the CPU 73 is sent out via the output IZF 77, the screw rotating hydraulic motor 30 is operated, and the plasticizing screw 29 rotates (step S27). Due to the shearing of the resin due to the rotation of the resin and the heating from the plasticizing heating cylinder 28, the resin is plasticized and introduced into the plunger hole 5δ from the communication hole 33 in a molten state.
このとき、 可塑化スクリュ 2 9の基軸 3 4側は、 連通孔 3 3側に対して樹脂圧 が高いため、 逆流防止機構 3 2の逆流防止リング 3 7が前方 (図 5中左側) に移 動してスクリュヘッド 3 1に当接し、 逆流防止リング 3 7と基軸 3 4との間に隙 間 3 8を形成する。  At this time, since the resin pressure of the base shaft 34 side of the plasticizing screw 29 is higher than that of the communication hole 33 side, the backflow prevention ring 37 of the backflow prevention mechanism 32 is moved forward (left side in FIG. 5). The backflow prevention ring 37 and the base shaft 34 to form a gap 38.
これにより、 可塑化された樹脂は、 隙間 3 8、 流入路 3 9、 流入溝 3 5を順次 経由して連通孔 3 3へ到ることができる。  Thereby, the plasticized resin can reach the communication hole 33 via the gap 38, the inflow path 39, and the inflow groove 35 in this order.
一方、 押し込みプランジャー 5 6による保圧制御工程で、 プランジャー孔 5 5 および連通孔 3 3の樹脂圧が高くなつた場合、 樹脂圧により逆流防止リング 3 7 が後方 (図 5中右側) に移動して基軸 3 4に当接する。  On the other hand, when the resin pressure in the plunger hole 55 and the communication hole 33 increases in the pressure-holding control process using the pushing plunger 56, the backflow prevention ring 37 moves rearward (right side in FIG. 5) due to the resin pressure. It moves and contacts the base shaft 34.
逆流防止リング 3 7の内周部は、 基軸 3 4の外径よりも小径に形成されている ので、 連通孔 3 3から流入溝 3 5、 流入路 3 9を順次経た樹脂が、 基軸 3 4側へ 逆流することを防止できる。  Since the inner peripheral portion of the backflow prevention ring 37 is formed to have a smaller diameter than the outer diameter of the base shaft 34, the resin that has passed through the communication hole 33 sequentially through the inflow groove 35 and the inflow passage 39 becomes the base shaft 34. Backflow to the side can be prevented.
プランジャー孔 5 5へ導入された樹脂は、 導入路 5 5 Αおよび導入孔 4 8 Αを 経て溶融状態で溶融樹脂溜まり部 4 8に貯留される。 この溶融樹脂溜まり部 4 8 の樹脂圧により、 充填プランジャー 4 4は後退する。  The resin introduced into the plunger hole 55 is stored in the molten resin reservoir 48 in a molten state through the introduction path 55 5 and the introduction hole 48 8. The filling plunger 44 retreats due to the resin pressure in the molten resin reservoir 48.
一方、 充填プランジャー 4 4には、 方向切換弁 5 8から充填シリンダ 5 1の後 部ロッド側に作動油が供給されることにより、 この樹脂に対して一定の圧力、 い わゆる背圧が掛けられ、 この背圧を制御されながら後退する (ステップ S 2 8 ) 。 そして、 溶融樹脂溜まり部 4 8への樹脂供給が進み、 位置センサ— 6 0により 充填プランジャー 4 4が予め入力器 6 8により設定された供給完了位置に到達し たことを検知すると (ステップ S 2 9 ) 、 スクリュ回転用油圧モータ 3 0を介し て可塑化スクリュ 2 9が回転を停止する (ステップ S 3 0 ) と共に、 背圧制御が 停止して (ステップ S 3 1 ) 、 計量が完了する。 (D) On the other hand, by supplying hydraulic oil to the filling plunger 44 from the directional valve 58 to the rear rod side of the filling cylinder 51, a constant pressure, so-called back pressure, is applied to this resin. The back pressure is controlled and the back pressure is reduced (step S28). Then, the supply of the resin to the molten resin reservoir section 48 proceeds, and when it is detected by the position sensor 60 that the filling plunger 44 has reached the supply completion position set in advance by the input device 68 (Step S). 29), the plasticizing screw 29 stops rotating via the screw rotation hydraulic motor 30 (step S30), and the back pressure control stops (step S31), and the weighing is completed. . (D)
溶融樹脂の供給が完了すると、 直ちにサックバック動作に移行する (ステップ S 3 2 ) 。 即ち、 C P U 7 3からの信号が出力 I Z F 7 7を介して送出されて、 射出用駆動装置 4 5の方向切換弁 5 8が S O L— b側に励磁されることにより、 作動油が充填シリンダ 5 1の前部ロッド側に供給されて、 充填プランジャー 4 4 が後退移動する。  As soon as the supply of the molten resin is completed, the operation shifts to the suck-back operation (step S32). That is, a signal from the CPU 73 is sent out via the output IZF 77, and the direction switching valve 58 of the injection drive device 45 is excited to the SOL-b side, so that the operating oil is filled with the filling cylinder 5 Supplied to the front rod side of 1, the filling plunger 4 4 moves backward.
このときの充填プランジャー 4 4の後退速度 (サックバック速度) は、 流量制 御弁 5 9により制御される。  At this time, the retreat speed (suck back speed) of the filling plunger 44 is controlled by the flow control valve 59.
そして、 位置センサー 6 0により、 充填プランジャー 4 4が予め入力器 6 8に より設定したサックバック完了位置に到達したことを検知すると (ステップ S 3 3 ) 、 充填プランジャー 4 4の後退が停止されてサックバックが完了する。 このとき、 サックバック完了位置は、 図 1 3に示すように、 充填ラム 5 0がス トローク規定手段 5 2の計量完了ストツバ 5 4 Aに当接する位置で設定されてい るため、 充填プランジャー 4 4の後退した位置は、 常に一定の状態で位置決めさ れる。  When the position sensor 60 detects that the filling plunger 44 has reached the suckback completion position set in advance by the input device 68 (step S33), the retreat of the filling plunger 44 is stopped. The suckback is completed. At this time, the suck back completion position is set at a position where the filling ram 50 comes into contact with the weighing stopper 54 A of the stroke defining means 52 as shown in FIG. 4 The retracted position is always positioned in a fixed state.
また、 図 2に示す計量完了ストッパ 5 4 Aを、 ノ、ンドル 5 2 Cでネジ軸 5 2 B を回して可動台 5 4を移動させることにより、 充填ラム 5 0のストツパロッド 5 3が計量完了ストツバ 5 4 Aに当接する位置、 即ちサックバック完了位置を任意 に設定することができる。  Also, by moving the movable platform 54 by turning the screw shaft 52 B with the weighing stopper 54 A shown in Fig. 2 and the knob 52 D, the stop rod 53 of the filling ram 50 is completed. The position where it comes into contact with the stopper 54 A, that is, the suckback completion position, can be set arbitrarily.
サックバック (計量) が完了すると、 加圧減圧用駆動装置 5 7の駆動により、 押し込みプランジャー 5 6がプランジャー孔 5 5を溶融樹脂溜まり部 4 8に接近 する方向 (図 1中下側) に前進して (ステップ S 3 4 ) 、 連通孔 3 3のプランジ ャ一孔 5 5への開口を閉塞する予め設定した所定の位置まで移動する (ステップ S 3 5 ) 。  When the suck-back (weighing) is completed, the pressure plunger 56 is driven by the pressurizing and depressurizing drive device 57 so that the plunger 56 approaches the plunger hole 55 to the molten resin reservoir 48 (lower side in Fig. 1). (Step S34), and moves to a preset predetermined position for closing the opening of the communication hole 33 to the plunger hole 55 (Step S35).
この移動の際、 プランジャー孔 5 5の樹脂圧が高まり、 連通孔 3 3においても 樹脂圧が高くなるが、 上記逆流防止機構 32により、 溶融樹脂の逆流が阻止され る。 この連通孔 33の閉塞は、 位置センサー 63によって検出される。 During this movement, the resin pressure in the plunger hole 55 increases and the communication hole 33 also Although the resin pressure increases, the backflow prevention mechanism 32 prevents backflow of the molten resin. The blockage of the communication hole 33 is detected by the position sensor 63.
連通孔 33の閉塞後、 押し込みプランジャー 56が、 さらに前進移動して (ス テツプ S 36) 、 プランジャー孔 55を介して溶融樹脂溜まり部 48の樹脂圧を 高める。  After the communication hole 33 is closed, the pushing plunger 56 further moves forward (step S36), and increases the resin pressure in the molten resin reservoir 48 through the plunger hole 55.
そして、 圧力センサ一 49が、 溶融榭脂溜まり部 48の樹脂圧を、 射出用設定 圧以上の第一の予圧 PSET1に到ったことを検出したときに (ステップ S 37) 、 押し込みプランジャー 56は、 その位置に停止すると共に、 その位置を保持する ように制御される (ステップ S 38) 。 The pressure sensor-49, (step S 37) when it detects that the resin pressure of the molten榭脂reservoir 48, and led to the first preload P SET1 on the injection set pressure, pushing the plunger 56 is controlled to stop at that position and maintain that position (step S38).
このとき、 溶融樹脂溜まり部 48の溶融樹脂は、 その樹脂圧が高まることで密 度が一定になり、 溶融状態が均一になる。  At this time, the density of the molten resin in the molten resin pool 48 is increased by increasing the resin pressure, and the molten state becomes uniform.
一方、 射出口が射出時にのみ開放されるシャツトオフノズル型の射出ノズルに おいては、 溶融樹脂溜まり部 48の樹脂圧が高くても、 ノズルから樹脂が漏れる ことはないが、 本実施の形態の射出成形機 24においては、 常時射出口が開放し ているオープンノズル型の射出ノズルを使用しているので、 充填前の樹脂圧が第 一の予圧 P s ET!のままに保持された状態では射出ノズル 47の射出口 46から樹 脂漏れが発生してしまう。 On the other hand, in a shirt-off nozzle type injection nozzle in which the injection port is opened only at the time of injection, even if the resin pressure in the molten resin reservoir 48 is high, the resin does not leak from the nozzle. Since the injection molding machine 24 uses an open nozzle type injection nozzle whose injection port is always open, the resin pressure before filling is the first preload P s ET ! In the state where it is kept as it is, resin leakage occurs from the injection port 46 of the injection nozzle 47.
そこで、 この充填前保持圧を減圧する機能が選択的に設定可能となっている (ステップ S 39) 。  Therefore, the function of reducing the pre-filling holding pressure can be selectively set (step S39).
この機能を選択すると、 まず、 加圧減圧用駆動装置 57の駆動により、 押し込 みプランジャー 56が、 プランジャー孔 55を溶融樹脂溜まり部 48に対して離 間する方向 (図 1中上側) に後退移動する (ステップ S 40) 。  When this function is selected, first, the driving plunger 56 is driven by the pressurizing and depressurizing driving device 57 so that the plunger 56 separates the plunger hole 55 from the molten resin reservoir 48 (upper side in FIG. 1). (Step S40).
これにより、 プランジャー孔 55、 導入路 55A、 導入孔 48 Aを介して溶融 樹脂溜まり部 48の樹脂圧が減圧され、 圧力センサ一 49の検出結果が第一の予 圧 PSET1より低圧の第二の予圧 PSET2に到ったときに (ステップ S 41) 、 押し 込みプランジャー 56が後退移動を停止すると共に、 その位置を保持するように 制御される (ステップ S 42) 。 As a result, the resin pressure in the molten resin reservoir 48 is reduced through the plunger hole 55, the introduction path 55A, and the introduction hole 48A, and the detection result of the pressure sensor 49 is lower than the first preload PSET1 . When the second preload PSET2 is reached (step S41 ), the push-in plunger 56 is controlled so as to stop the backward movement and to maintain the position (step S42).
かくして、 射出ノズル 47の射出口 46から樹脂漏れが発生しない樹脂圧に予 圧されて、 充填工程への待機状態となる。 本実施の形態の射出成形機および射出成形方法では、 充填プランジャー 4 4に よる充填動作中に溶融樹脂加圧減圧装置 2 7が溶融樹脂への圧力制御を開始して、 そのまま保圧工程での圧力制御を行うため、 例えば、 圧力充填切換を圧力充填切 換充填プランジャー位置 S。で行い、 このときの樹脂圧 P ' を維持しながら保圧切 換充填プランジャー位置 S ,で保圧切換を行ったときには、 図 1 4に示すように、 保圧切換位置でサージ圧が発生することはなく、 滑らかな圧力切換特性を得るこ とができる。 Thus, the resin pressure from the injection port 46 of the injection nozzle 47 is set to a value that does not cause resin leakage, and a standby state for the filling process is established. In the injection molding machine and the injection molding method according to the present embodiment, during the filling operation by the filling plunger 44, the molten resin pressurizing and depressurizing device 27 starts pressure control on the molten resin, and in the pressure holding step as it is. To control the pressure, for example, switch the pressure filling to the pressure plunger position plunger position S. When the holding pressure is switched at the holding pressure switching filling plunger position S while maintaining the resin pressure P 'at this time, as shown in FIG. 14, a surge pressure is generated at the holding pressure switching position. Therefore, smooth pressure switching characteristics can be obtained.
また、 本実施の形態の射出成形機および射出成形方法では、 サージ圧が発生し ないので、 圧力充填切換充填プランジャー位置 S。から保圧切換充填プランジャー 位置 S ,へ到る間に、 充填速度が急速に低下することになり、 バリの発生を防止す ることができると共に、 圧力充填機能を選択した場合、 充填工程中のどの夕イミ ングでも保圧制御を行えるため、 成形品に応じて最適な成形条件を設定すること ができる。  Further, in the injection molding machine and the injection molding method of the present embodiment, since no surge pressure is generated, the pressure filling switching plunger position S is set. From the pressure to the pressure holding switching filling plunger position S, the filling speed will decrease rapidly, preventing the occurrence of burrs and, if the pressure filling function is selected, during the filling process Since pressure-holding control can be performed at any time in the evening, optimum molding conditions can be set according to the molded product.
この圧力充填切換においては、 切換条件として樹脂圧または充填プランジャー 位置を任意に選択することができ、 保圧切換においても、 切換条件として充填プ ランジャー位置のみか充填プランジャー位置と樹脂圧との両要素かを任意に選択 することができるため、 成形品に応じて多様な制御方法を選択してバリやショー トショット等の成形不良を解消することができる。  In this pressure filling switching, the resin pressure or the filling plunger position can be arbitrarily selected as the switching condition. Even in the pressure holding switching, only the filling plunger position or the filling plunger position and the resin pressure can be selected as the switching condition. Since both elements can be selected arbitrarily, various control methods can be selected according to the molded product to eliminate molding defects such as burrs and short shots.
一方、 圧力基準の充填制御を行う必要が無い場合は、 圧力充填機能を選択する ステップ S 6で不使用を選択することで対応可能であり、 成形条件幅を広く設定 することが可能である。  On the other hand, when it is not necessary to perform the pressure-based filling control, it is possible to cope by selecting the non-use in step S6 of selecting the pressure filling function, and it is possible to set a wide range of molding conditions.
さらに、 本実施の形態の射出成形機および射出成形方法では、 充填時における 圧力基準の樹脂圧制御が、 溶融樹脂溜まり部 4 8に設けた圧力センサ一 4 9によ つて直接検出される榭脂圧を 4方向サーポ弁 6 2にフィードバックして行われる ため、 応答性に優れた安定した状態になり、 繰り返し精度の高い安定成形が可能 となる。  Further, in the injection molding machine and the injection molding method of the present embodiment, the resin pressure control based on the pressure at the time of filling is directly detected by the pressure sensor 49 provided in the molten resin reservoir 48. Since the pressure is fed back to the four-way servo valve 62, a stable state with excellent responsiveness is achieved, and stable molding with high repetition accuracy is possible.
そして、 本実施の形態の射出成形機および射出成形方法では、 保圧制御時にお いても、 従来のように、 射出シリンダに設けられた油圧センサ一を用いた圧力制 御機構に比べると、 極めて高精度の圧力制御性能を得ることができる。 また、 本実施の形態の射出成形機および射出成形方法では、 充填プランジャー 4 4力 充填シリンダ 5 1によりその前進限が機械的に規定されるとともに、 ス トローク規定手段 5 2の計量完了ストツバ 5 4 Aによりその後退限が機械的に規 定されるので、 移動ストロークが常に一定になり、 即ち、 成形サイクル毎に射出 される樹脂量が常に一定になり、 安定した成形を図ることができる。 Further, in the injection molding machine and the injection molding method of the present embodiment, even during the pressure-holding control, as compared with a conventional pressure control mechanism using a hydraulic sensor provided in an injection cylinder, the pressure control mechanism is extremely high. Highly accurate pressure control performance can be obtained. Further, in the injection molding machine and the injection molding method of the present embodiment, the advance limit is mechanically defined by the filling plunger 44 and the force filling cylinder 51, and at the same time the stroke completion means Since the retraction limit is mechanically defined by 4 A, the moving stroke is always constant, that is, the amount of resin injected every molding cycle is always constant, and stable molding can be achieved.
さらに、 本実施の形態の射出成形機および射出成形方法では、 計量完了ストッ パ 5 4 Aが、 図 2、 図 3に示す実施の形態ではハンドル 5 2 Cでネジ軸 5 2 Bを 回して可動台 5 4を移動させることにより、 ストツパロッド 5 3の軸方向の移動 量を調節することができるので、 この移動量調節により、 充填プランジャー 4 4 の移動ストロークを任意に設定することができる。  Furthermore, in the injection molding machine and the injection molding method of the present embodiment, the metering complete stopper 54 A is movable by turning the screw shaft 52 B with the handle 52 C in the embodiment shown in FIGS. The amount of movement of the stopper rod 53 in the axial direction can be adjusted by moving the table 54, so that the movement stroke of the filling plunger 44 can be arbitrarily set by adjusting the amount of movement.
また、 図 1 5に示す本発明の実施の形態では、 ストツパロッド 5 3 Aを回転さ せて雌ネジ部材 5 1 Aに対する螺入量を調節することにより、 この充填プランジ ャ一 4 4の移動ストロークを任意に、 且つ容易に設定することができる。  Further, in the embodiment of the present invention shown in FIG. 15, the stop stroke of the filling plunger 144 is adjusted by rotating the stopper rod 53 A to adjust the amount of screwing into the female screw member 51 A. Can be set arbitrarily and easily.
加えて、 本実施の形態の射出成形機および射出成形方法では、 射出前に押し込 みプランジャー 5 6によりプランジャー孔 5 5等を介して溶融樹脂溜まり部 4 8 の榭脂を第一の予圧 P S E T 1に加圧する工程を設けてあるので、 溶融樹脂の溶融状 態がより均一化され、 安定した成形を維持することができる。 In addition, in the injection molding machine and the injection molding method according to the present embodiment, the resin in the molten resin reservoir 48 through the plunger hole 55 and the like is pushed by the plunger 56 before injection. Since a step of applying pressure to the preload PSET 1 is provided, the molten state of the molten resin is made more uniform, and stable molding can be maintained.
また、 オープンノズル型の射出ノズルを使用する射出成形機においては、 上記 第一の予圧 P s E T iの樹脂圧のままでは、 射出ノズル 4 7の射出口 4 6から樹脂漏 れが発生するが、 本実施の形態の射出成形機および射出成形方法では、 第一の予 圧 P S E T 1より低圧の第二の予圧 P S E T 2に減圧する工程を選択することにより、 こ の樹脂漏れの発生を防止することができる。 Further, in an injection molding machine that uses an injection nozzle of an open nozzle type, the remains in the resin pressure of the first preload P s ET i, but leakage may resin is generated from the injection port 4 6 of the injection nozzle 4 7 in the injection molding machine and injection molding method of this embodiment, by selecting the step of vacuum than the first preload P SET 1 to the second preload PSET 2 low pressure, prevent resin leakage of this can do.
一方、 本実施の形態の射出成形機および射出成形方法では、 押し込みプランジ ヤー 5 6が連通孔 3 3の開口を閉塞する構成なので、 充填時の樹脂反抗圧により プランジャー孔 5 5の後端側の樹脂圧が高まっても、 溶融樹脂が連通孔 3 3を通 つて可塑化スクリュ 2 9へ逆流することを防止できる。  On the other hand, in the injection molding machine and the injection molding method of the present embodiment, since the push-in plunger 56 closes the opening of the communication hole 33, the rear end side of the plunger hole 55 due to the resin reaction pressure at the time of filling. Even if the resin pressure increases, it is possible to prevent the molten resin from flowing back to the plasticizing screw 29 through the communication hole 33.
また、 この押し込みプランジャー 5 6が連通孔 3 3を閉塞する移動途中で樹脂 が連通孔 3 3から逆流した場合においても、 逆流防止機構 3 2により基軸 3 4側 へ逆流することを防止できる。 さらに、 本実施の形態の射出成形機および射出成形方法では、 充填用加熱筒 4 3の中心軸を含む鉛直面内において、 充填装置 2 6の上方に溶融樹脂加圧減圧装 置 2 7が配設され、 可塑化装置 2 5がこれらの装置に対して機械の反操作側に配 設されるため、 操作側の空間が占有されることなく、 コンパクトな装置を構成す ることができる。 Further, even if the resin flows backward from the communication hole 33 while the pushing plunger 56 closes the communication hole 33, the backflow prevention mechanism 32 can prevent the resin from flowing back to the base shaft 34 side. Further, in the injection molding machine and the injection molding method of the present embodiment, the molten resin pressurizing and depressurizing device 27 is disposed above the filling device 26 in the vertical plane including the central axis of the filling heating cylinder 43. Since the plasticizing device 25 is provided on the non-operating side of the machine with respect to these devices, a compact device can be configured without occupying the space on the operating side.
なお、 上記実施の形態において、 スクリュ回転用油圧モー夕 3 0、 射出用駆動 装置 4 5および加圧減圧用駆動装置 5 7のいずれもが油圧ポンプ 6 4等の油圧駆 動源により作動する構成としたが、 これらの内少なくとも一つが油圧ポンプによ り他がサ一ボモー夕等の電動駆動源により作動する構成としてもよく、 この場合、 騒音の小さい成形を実現することができる。  It should be noted that in the above embodiment, each of the screw rotation hydraulic motor 30, the injection drive device 45, and the pressurization / decompression drive device 57 is operated by a hydraulic drive source such as a hydraulic pump 64. However, at least one of them may be operated by a hydraulic pump and the other may be operated by an electric drive source such as a servomotor. In this case, forming with low noise can be realized.
さらに、 上記実施の形態の射出成形機および射出成形方法では、 全駆動装置 3 0, 4 5, 5 7が上記電動駆動源により作動する構成であってもよく、 この場合、 一層、 高精度の成形を実現することができる。  Further, in the injection molding machine and the injection molding method of the above embodiment, all the driving devices 30, 45, and 57 may be operated by the electric driving source. Molding can be realized.
この電動駆動源を使用する場合には、 充填プランジャー 4 3、 押し込みプラン ジャー 5 6の軸線方向の移動のために、 ネジとナツ卜により回転運動を直線運動 に変換する従来周知の運動変換機構が採用される。  When this electric drive source is used, a conventionally well-known motion conversion mechanism that converts a rotary motion into a linear motion by using a screw and a nut to move the filling plunger 43 and the pushing plunger 56 in the axial direction. Is adopted.
また、 シャットオフノズルを使用する場合においては、 第二の予圧に減圧する ことは必要ではないが、 成形を安定させるために第二の予圧を設定して、 この圧 力に減圧しても何ら問題はない。  When a shut-off nozzle is used, it is not necessary to reduce the pressure to the second preload. However, even if the second preload is set to stabilize molding and the pressure is reduced to this pressure, there is no problem. No problem.
また、 本実施の形態の射出成形機および射出成形方法では、 可塑化装置 2 5が 保持台 2 5 Bにより可塑化部加熱筒 2 8の軸方向に移動自在に支持されているの で、 可塑化部加熱筒 2 8の溶融樹脂加圧減圧装置 2 7の加減圧用加熱筒 5 5 Bに 対する着脱が容易であり、 加減圧用加熱筒 5 5 Bと可塑化部加熱筒 2 8との連結 を解いて装置全体を後退させることにより、 加減圧用加熱筒 5 5 Bの内孔を開放 させて、 内孔の点検、 清掃を容易に行うことができる。  In addition, in the injection molding machine and the injection molding method of the present embodiment, the plasticizing device 25 is supported by the holding table 25 B so as to be movable in the axial direction of the plasticizing section heating cylinder 28, It is easy to attach / detach the pressure / decompression heating cylinder 55 B of the molten resin pressurization / decompression device 27 of the plasticizing section heating cylinder 28, and the connection between the heating / decompression heating cylinder 55 B and the plasticizing section heating cylinder 28. By releasing the connection and retreating the entire device, the inner hole of the heating / depressurizing heating cylinder 55B is opened, and the inner hole can be easily inspected and cleaned.
また、 本実施の形態の射出成形機および射出成形方法では、 溶融樹脂加圧減圧 装置 2 7が充填装置 2 6の上に、 充填用加熱筒 4 3の中心線を含む鉛直面内で回 動自在に、 かつ押し込みプランジャー 5 6の軸方向に進退自在に支持されている ので、 溶融榭脂加圧減圧装置 2 7の充填装置 2 6への着脱が容易である。 また、 加減圧用加熱筒 5 5 Bの充填用加熱筒 4 3に対する連結を解いて、 装置全体を後 退させて上に回転させると、 該加減圧用加熱筒 5 5 Bのプランジャー孔 5 5が開 放されるので、 その点検、 清掃等を容易に行うこともできる。 In addition, in the injection molding machine and the injection molding method of the present embodiment, the molten resin pressurizing and depressurizing device 27 rotates on the filling device 26 in a vertical plane including the center line of the filling heating cylinder 43. Since the plunger 56 is supported freely and reciprocally in the axial direction of the plunger 56, the molten resin pressurizing and depressurizing device 27 can be easily attached to and detached from the filling device 26. Also, When the connection of the heating / depressurizing heating cylinder 55B to the filling heating cylinder 43 is released, and the entire apparatus is retracted and rotated upward, the plunger hole 55 of the heating / depressurizing heating cylinder 55B is opened. Since it is released, it can be easily inspected and cleaned.
なお、 上記実施の形態において、 成形材を合成樹脂として説明したが、 成形材 が軽金属合金材料 (例えば、 アルミニウム、 マグネシウム、 亜鉛、 錫、 鉛、 ビス マス、 カドミウム、 セレン、 リチウム等) 等の金属であっても、 成形材を合成樹 脂とした上記実施の形態と同様の作用 ·効果を得ることができる。 この場合、 図 1に示した樹脂圧センサーアンプを溶融金属圧センサーアンプとし、 他の図にお いても樹脂の圧力とした部分を溶融金属の圧力とする。  In the above embodiment, the molding material is described as a synthetic resin. However, the molding material is a metal such as a light metal alloy material (for example, aluminum, magnesium, zinc, tin, lead, bismuth, cadmium, selenium, lithium, etc.). Even in this case, the same operation and effect as those of the above-described embodiment in which the molding material is a synthetic resin can be obtained. In this case, the resin pressure sensor amplifier shown in FIG. 1 is used as the molten metal pressure sensor amplifier, and in other figures, the resin pressure portion is used as the molten metal pressure.
産業上の利用可能性 Industrial applicability
以上のように、 本発明にかかる射出成形機および射出成形方法は、 各種合成榭 脂材または各種金属材料からなる物品を安定して製造するのに適している。  As described above, the injection molding machine and the injection molding method according to the present invention are suitable for stably producing articles made of various synthetic resin materials or various metal materials.

Claims

請求の範囲 The scope of the claims
1. 射出ノズル (47) を有する充填用加熱筒 (43) に射出部材 (44) がその軸方向に移動自在に挿入されており、 射出用駆動装置 (45) の作動によ り射出部材 (44) を前進させて該射出部材 (44) と前記射出ノズル (47) との間の成形材溜まり部 (48) に導入された溶融成形材を、 前記射出ノズル (47) から射出する充填装置 (26) と、 1. An injection member (44) is inserted movably in the axial direction into a filling heating cylinder (43) having an injection nozzle (47), and the injection member (44) is actuated by an injection drive device (45). A filling device for injecting the molten molding material introduced into the molding material reservoir (48) between the injection member (44) and the injection nozzle (47) by moving the injection nozzle (44) forward from the injection nozzle (47); (26) and
溶融用加熱筒 (28) にその軸線回りに回転自在にスクリュ (29) が挿入さ れており、  A screw (29) is inserted into the melting tube (28) so that it can rotate around its axis.
回転駆動装置 (30) の作動により該スクリュ (29) を回転させて、 成形材 を溶融して前記充填用加熱筒 (43) の成形材溜まり部 (48) に溶融成形材を 供給する溶融装置 (25) と、  A melting device that rotates the screw (29) by the operation of the rotation drive device (30) to melt the molding material and supply the molten molding material to the molding material storage part (48) of the heating tube for filling (43). (25) and
押圧部材 (56) を有し、 押圧駆動装置 (57) の作動により該押圧部材 (5 6) を移動させて前記充填用加熱筒 (43) の成形材溜まり部 (48) に導入さ れた前記溶融成形材を加圧減圧する溶融成形材加圧減圧装置 (27) とを備えて いることを特徴とする射出成形機 (24) 。  It has a pressing member (56), and the pressing member (56) is moved by the operation of the pressing drive device (57) to be introduced into the molding material reservoir (48) of the heating tube for filling (43). An injection molding machine (24), comprising: a pressurizing and depressurizing device (27) for pressurizing and depressurizing the molten molding material.
2. 前記成形材が合成樹脂であることを特徴とする請求の範囲第 1項記載の 射出成形機 (24) 。  2. The injection molding machine according to claim 1, wherein the molding material is a synthetic resin.
3. 前記溶融成形材加圧減圧装置 (27) は、 内部が流路により前記成形材 溜まり部 (48) と前記溶融用加熱筒 (28) 内に連通する加減圧用加熱筒 (5 5 B) と、  3. The pressurizing and depressurizing device for molten material (27) is a heating and depressurizing heating cylinder (55 B ) When,
該加減圧用加熱筒 (55B) 内にその軸方向に移動自在に挿入されている前記 押圧部材としての押し込みプランジャー (56) と、  A pushing plunger (56) as the pressing member inserted into the heating / compression heating cylinder (55B) movably in its axial direction;
該押し込みプランジャー (56) と連結され、 該押し込みプランジャー (56) を移動させる押圧駆動装置 (57) とを備えていることを特徴とする請求の範囲 第 2項記載の射出成形機 (24) 。  3. An injection molding machine (24) according to claim 2, further comprising a pressing drive (57) connected to said pushing plunger (56) and moving said pushing plunger (56). ).
4. 前記射出用駆動装置 (45) と押圧駆動装置 (57) とは、 それぞれ油 圧駆動源 (64) に接続されて作動する油圧シリンダ、 またはそれぞれ電動駆動 源に接続されて作動する運動変換機構を備えていることを特徴とする請求の範囲 第 3項記載の射出成形機 (24) 。 4. The injection drive device (45) and the press drive device (57) are each connected to a hydraulic drive source (64) and operated by a hydraulic cylinder, or each is connected to an electric drive source and operated by a motion converter. Claims characterized by comprising a mechanism Injection molding machine according to item 3, (24).
5. 前記射出用駆動装置 (45) と押圧駆動装置 (57) とは、 いずれか一 方が油圧駆動源 (64) に接続されて作動する油圧シリンダを備え、 他方が電動 駆動源に接続されて作動する運動変換機構を備えていることを特徴とする請求の 範囲第 3項記載の射出成形機 (24) 。  5. One of the injection drive device (45) and the press drive device (57) includes a hydraulic cylinder that operates by being connected to a hydraulic drive source (64), and the other is connected to an electric drive source. The injection molding machine (24) according to claim 3, further comprising a motion conversion mechanism that operates.
6. 前記溶融用加熱筒 (28) には、 その内部を前記流路に連通する連通孔 (33) が設けられ、 前記溶融成形材加圧減圧装置 (27) の押し込みプランジ ヤー (56) が前記連通孔 (33) の流路への開口を開閉する構成とされている ことを特徴とする請求の範囲第 4項記載の射出成形機 (24) 。  6. The melting heating cylinder (28) is provided with a communication hole (33) for communicating the inside thereof with the flow path, and a pressing plunger (56) of the molten molding material pressurizing and depressurizing device (27) is provided. The injection molding machine (24) according to claim 4, wherein an opening to the flow path of the communication hole (33) is configured to be opened and closed.
7. 前記充填装置 (26) の成形材溜まり部 (48) に、 該成形材溜まり部 (48) の樹脂圧を検出する圧力センサ一 (49) が設けられ、  7. A pressure sensor (49) for detecting the resin pressure in the molding material reservoir (48) is provided in the molding material reservoir (48) of the filling device (26),
該圧力センサー (49) の検出結果に基づいて前記押圧駆動装置 (57) を作 動させ、 前記押し込みプランジャー (56) による溶融樹脂の加圧減圧力をフィ ードバック制御すると共に、 前記射出用駆動装置 (45) を作動させて前記射出 部材 (44) による溶融樹脂の射出速度を制御する制御装置 (66) が設けられ ていることを特徴とする請求の範囲第 6項記載の射出成形機 (24) 。  The pressing drive device (57) is operated based on the detection result of the pressure sensor (49), and the pressurizing and depressurizing force of the molten resin by the pressing plunger (56) is feedback-controlled, and the injection driving device is driven. 7. The injection molding machine according to claim 6, further comprising a control device (66) for operating a device (45) to control an injection speed of the molten resin by the injection member (44). twenty four) .
8. 前記射出用駆動装置 (45) には、 前記射出部材 (44) の移動スト口 ークを規定するストローク規定手段 (52) が設けられていることを特徴とする 請求の範囲第 7項記載の射出成形機 (24) 。  8. The injection drive device (45) is provided with a stroke defining means (52) for defining a movement stroke of the injection member (44). Injection molding machine as described (24).
9. 前記ストローク規定手段 (52) が、 前記移動ストロークを調整可能な 構成とされていることを特徴とする請求の範囲第 8項記載の射出成形機 (24) 。  9. The injection molding machine (24) according to claim 8, wherein said stroke defining means (52) is configured to adjust said movement stroke.
10. 前記スクリュ (29) には、 前記流路から前記樹脂が逆流することを 防止する逆流防止機構 (32) が設けられていることを特徴とする請求の範囲第 3項記載の射出成形機 (24) 。  10. The injection molding machine according to claim 3, wherein the screw (29) is provided with a backflow prevention mechanism (32) for preventing the resin from flowing back from the flow path. (twenty four) .
1 1. 前記溶融成形材加圧減圧装置 (27) は、 前記充填装置 (26) の上 部に配設され、  1 1. The pressurizing and depressurizing device (27) for the melt-molded material is disposed above the filling device (26),
前記溶融装置 (25) は、 前記溶融成形材加圧減圧装置 (27) に対して反操 作側に配設されていることを特徴とする請求の範囲第 3項記載の射出成形機 (2 4) 。 The injection molding machine (2) according to claim 3, wherein the melting device (25) is arranged on a side opposite to the molten molding material pressurizing and depressurizing device (27). Four) .
12. 前記成形材が金属であることを特徴とする請求の範囲第 1項記載の射 出成形機 (24) 。 12. The injection molding machine according to claim 1, wherein the molding material is a metal.
13. 前記溶融成形材加圧減圧装置 (27) は、 内部が流路により前記成形 材溜まり部 (48) と前記溶融用加熱筒 (28) 内に連通する加減圧用加熱筒 13. The pressurizing and depressurizing device for molten material (27) includes a heating cylinder for pressurizing and depressurizing the interior of which communicates with the molding material reservoir (48) and the heating tube for melting (28) by a flow path.
(55 B) と、 (55 B) and
該加減圧用加熱筒 (55B) 内にその軸方向に移動自在に挿入されている前記 押圧部材としての押し込みプランジャー (56) と、  A pushing plunger (56) as the pressing member inserted into the heating / compression heating cylinder (55B) movably in its axial direction;
該押し込みプランジャ一 (56) と連結され、 該押し込みプランジャー (56) を移動させる押圧駆動装置 (57) とを備えていることを特徴とする請求の範囲 第 12項記載の射出成形機 (24) 。  13. An injection molding machine (24) according to claim 12, further comprising a pressing drive (57) connected to said pushing plunger (56) and moving said pushing plunger (56). ).
14. 前記射出用駆動装置 (45) と押圧駆動装置 (57) とは、 それぞれ 油圧駆動源 (64) に接続されて作動する油圧シリンダ、 またはそれぞれ電動駆 動源に接続されて作動する運動変換機構を備えていることを特徴とする請求の範 囲第 1 3項記載の射出成形機 (24) 。  14. The injection drive device (45) and the pressing drive device (57) are each connected to a hydraulic drive source (64) and operated by a hydraulic cylinder, or each is connected to an electric drive source and operated by a motion conversion device. The injection molding machine (24) according to claim 13, further comprising a mechanism.
15. 前記射出用駆動装置 (45) と押圧駆動装置 (57) とは、 いずれか 一方が油圧駆動源 (64) に接続されて作動する油圧シリンダを備え、 他方が電 動駆動源に接続されて作動する運動変換機構を備えていることを特徴とする請求 の範囲第 13項記載の射出成形機 (24) 。  15. One of the injection drive device (45) and the press drive device (57) includes a hydraulic cylinder that operates by being connected to a hydraulic drive source (64), and the other is connected to an electric drive source. The injection molding machine (24) according to claim 13, further comprising a motion conversion mechanism that operates by moving.
16. 前記溶融用加熱筒 (28) には、 その内部を前記流路に連通する連通 孔 (33) が設けられ、 前記溶融成形材加圧減圧装置 (27) の押し込みプラン ジャー (56) が前記連通孔 (33) の流路への開口を開閉する構成とされてい ることを特徴とする請求の範囲第 14項記載の射出成形機 (24) 。  16. The heating tube for melting (28) is provided with a communication hole (33) for communicating the inside thereof with the flow path, and the plunger (56) of the pressurizing and depressurizing device for molten material (27) is provided with a plunger (56). 15. The injection molding machine (24) according to claim 14, wherein an opening to the flow passage of the communication hole (33) is configured to be opened and closed.
17. 前記充填装置 (26) の成形材溜まり部 (48) に、 該成形材溜まり 部 (48) の溶融金属圧を検出する圧力センサー (49) が設けられ、  17. A pressure sensor (49) for detecting the pressure of the molten metal in the molding material reservoir (48) is provided in the molding material reservoir (48) of the filling device (26);
該圧力センサ一 (49) の検出結果に基づいて前記押圧駆動装置 (57) を作 動させ、 前記押し込みプランジャー (56) による溶融金属の加圧減圧力をフィ ードバック制御すると共に、 前記射出用駆動装置 (45) を作動させて前記射出 部材 (44) による溶融金属の射出速度を制御する制御装置 (66) が設けられ ていることを特徴とする請求の範囲第 16項記載の射出成形機 (24) 。 The pressure driving device (57) is operated based on the detection result of the pressure sensor (49), and the pressurizing and depressing force of the molten metal by the pushing plunger (56) is feedback-controlled, and the injection 17. The injection molding machine according to claim 16, further comprising a control device (66) for operating a drive device (45) to control an injection speed of the molten metal by the injection member (44). (twenty four) .
1 8. 前記射出用駆動装置 (45) には、 前記射出部材 (44) の移動スト ロークを規定するストローク規定手段 (5 2) が設けられていることを特徴とす る請求の範囲第 1 7項記載の射出成形機 (24) 。 1 8. The injection driving device (45) is provided with stroke defining means (52) for defining a movement stroke of the injection member (44). Injection molding machine according to item 7, (24).
1 9. 前記ストローク規定手段 (5 2) が、 前記移動ストロークを調整可能 な構成とされていることを特徴とする請求の範囲第 1 8項記載の射出成形機 (2 4) 。  19. The injection molding machine (24) according to claim 18, wherein said stroke defining means (52) is configured to adjust said movement stroke.
2 0. 前記スクリュ (2 9) には、 前記流路から溶融金属が逆流することを 防止する逆流防止機構 (3 2) が設けられていることを特徴とする請求の範囲第 1 3項記載の射出成形機 (24) 。  20. The screw (29) according to claim 13, wherein the screw (29) is provided with a backflow prevention mechanism (32) for preventing backflow of the molten metal from the flow path. Injection molding machines (24).
2 1. 前記溶融成形材加圧減圧装置 (2 7) は、 前記充填装置 (2 6) の上 部に配設され、  2 1. The pressurizing and depressurizing device for molten material (2 7) is disposed above the filling device (26),
前記溶融装置 (2 5) は、 前記溶融成形材加圧減圧装置 (2 7) に対して反操 作側に配設されていることを特徴とする請求の範囲第 1 3項記載の射出成形機 (24) 。  14. The injection molding according to claim 13, wherein the melting device (25) is disposed on a side opposite to the molten molding material pressure reducing device (27). Machine (24).
2 2. 溶融装置 (2 5) により溶融した成形材を、 流路を通じて成形材溜ま り部 (48) に導入し、  2 2. The molding material melted by the melting device (25) is introduced into the molding material reservoir (48) through the flow path,
該導入した成形材を射出用設定圧以上の第一の予圧 (PSET1) に加圧した後に 射出することを特徴とする射出成形方法。 An injection molding method characterized in that the introduced molding material is injected after being pressurized to a first preload ( PSET1 ) which is equal to or higher than a set pressure for injection.
2 3. 前記成形材が合成樹脂であることを特徴とする請求の範囲第 2 2項記 載の射出成形方法。  23. The injection molding method according to claim 22, wherein the molding material is a synthetic resin.
24. 前記第一の予圧 (PSET1) に加圧された溶融成形材を、 該第一の予圧24. The molten preform pressurized at the first preload (P SET1 ) is subjected to the first preload.
(P SET,) より低圧の第二の予圧 (P SET2) に減圧した後に射出することを特徴 とする請求の範囲第 2 3項記載の射出成形方法。 24. The injection molding method according to claim 23, wherein the injection is performed after the pressure is reduced to a second preload (P SET2 ) lower than (P SET,).
2 5. 前記成形材が金属であることを特徴とする請求の範囲第 2 2項記載の 射出成形方法。  23. The injection molding method according to claim 22, wherein the molding material is a metal.
2 6. 前記第一の予圧 (PSET1) に加圧された溶融成形材を、 該第一の予圧 (PSET より低圧の第二の予圧 (PSET2) に減圧した後に射出することを特徴 とする請求の範囲第 2 5項記載の射出成形方法。 2 6. said first preload (P SET1) in pressurized melt molding material, and wherein the injection after decompression to a second preload of the low pressure than said first preload (PSET (P SET2) The injection molding method according to claim 25, wherein
PCT/JP1998/005388 1997-12-01 1998-12-01 Injection molding machine and injection molding method WO1999028109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19882043T DE19882043T1 (en) 1997-12-01 1998-12-01 Injection molding machine and injection molding process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/330704 1997-12-01
JP33070497A JP3423963B2 (en) 1997-12-01 1997-12-01 Injection molding machine

Publications (1)

Publication Number Publication Date
WO1999028109A1 true WO1999028109A1 (en) 1999-06-10

Family

ID=18235636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005388 WO1999028109A1 (en) 1997-12-01 1998-12-01 Injection molding machine and injection molding method

Country Status (3)

Country Link
JP (1) JP3423963B2 (en)
DE (1) DE19882043T1 (en)
WO (1) WO1999028109A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404728B2 (en) 2004-09-14 2010-01-27 東海ゴム工業株式会社 Rubber injection molding apparatus and rubber product manufacturing method
JP2009226683A (en) * 2008-03-21 2009-10-08 Fanuc Ltd Injection molding machine of preplasticization type equipped with abnormality detecting apparatus
DE102013008137B4 (en) 2013-05-14 2017-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sampling apparatus and method for taking a sample amount from a melt stream
JP6262014B2 (en) * 2014-02-17 2018-01-17 住友重機械工業株式会社 Injection device
EP3471941B1 (en) * 2016-06-30 2021-04-28 Imflux Inc. Upstream nozzle sensor for injection molding apparatus and methods of use
DE102017100953B4 (en) 2017-01-18 2019-07-18 Edegs Formenbau Gmbh spraying device
CA3056449A1 (en) 2017-05-02 2018-11-08 iMFLUX Inc. Method for controlling a rate or force of a clamp in a molding system using one or more strain gauges
JP7434890B2 (en) * 2019-12-26 2024-02-21 セイコーエプソン株式会社 Injection molding machine and injection molding machine control method
JP2022154938A (en) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 Three-dimensionally laminated object modeling apparatus and three-dimensionally laminated object modeling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011328A (en) * 1983-06-07 1985-01-21 クレツクネル−ヴエルケ・アクチエンゲゼルシヤフト Hydraulic controller for injection molding device with extruder for working rubber
JPH02202420A (en) * 1989-01-31 1990-08-10 Sodick Co Ltd Pressure measuring device of plasticizing material in injection molding and injection molding machine
JPH04286617A (en) * 1991-03-15 1992-10-12 Toshiba Mach Co Ltd Apparatus and method for continuous plasticizing type injection molding
JPH0650176Y2 (en) * 1989-08-10 1994-12-21 エヌオーケー株式会社 Injection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146368B2 (en) * 1991-11-11 2001-03-12 東芝機械株式会社 Continuous plasticization type injection molding method
JP3256914B2 (en) * 1993-07-21 2002-02-18 東芝機械株式会社 Continuous plasticization type injection molding equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011328A (en) * 1983-06-07 1985-01-21 クレツクネル−ヴエルケ・アクチエンゲゼルシヤフト Hydraulic controller for injection molding device with extruder for working rubber
JPH02202420A (en) * 1989-01-31 1990-08-10 Sodick Co Ltd Pressure measuring device of plasticizing material in injection molding and injection molding machine
JPH0650176Y2 (en) * 1989-08-10 1994-12-21 エヌオーケー株式会社 Injection device
JPH04286617A (en) * 1991-03-15 1992-10-12 Toshiba Mach Co Ltd Apparatus and method for continuous plasticizing type injection molding

Also Published As

Publication number Publication date
JPH11156902A (en) 1999-06-15
JP3423963B2 (en) 2003-07-07
DE19882043T1 (en) 2000-01-05

Similar Documents

Publication Publication Date Title
KR100539167B1 (en) A control device for an injection molding machine and a method for controlling the injection molding machine
US6340439B1 (en) Depressurization method in plasticization and metering process for a motor-driven injection molding machine
JPH09123241A (en) Injection controlling method for screw preplasticating type injection molding machine
WO1999028109A1 (en) Injection molding machine and injection molding method
JP2023126444A (en) Injection molding machine
JP3430214B2 (en) Injection molding machine and injection molding method
JP3336296B2 (en) Injection device and control method thereof
JP2000176619A (en) Metal injection-forming machine and metal injection- forming method
JPH10156902A (en) Injection molding machine, resin injection pressure controlling method, and resin injecting method
JP2021160276A (en) Injection molding machine
JP2769648B2 (en) Injection molding machine
KR102195485B1 (en) Lubricating condition setting method of injection molding machine
JP5372626B2 (en) Injection molding apparatus and injection molding method
JP3337205B2 (en) Injection device and control method thereof
JP2957915B2 (en) Measuring method before starting molding of injection molding machine and weighing control device before starting molding of injection molding machine
EP0656250A1 (en) Apparatus for controlling gate cut and ejection for an injection molding machine and method for controlling the same
US20230311388A1 (en) Control device of injection molding machine, injection molding machine, and method of controlling injection molding machine
JP2020044730A (en) Injection molding machine
US20240157617A1 (en) Control device of injection molding machine, injection molding machine, and method of controlling injection molding machine
JP2912146B2 (en) Resin pressure control method in injection molding
JP3321437B2 (en) Injection device and control method thereof
JP2649266B2 (en) Injection device hydraulic circuit
JP2005254532A (en) Pressure control method of injection molding machine
JP3607602B2 (en) Injection device and control method thereof
JP2003260726A (en) Method for controlling injection molding machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

WWE Wipo information: entry into national phase

Ref document number: 09355593

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19882043

Country of ref document: DE

Date of ref document: 20000105

WWE Wipo information: entry into national phase

Ref document number: 19882043

Country of ref document: DE