WO1999025934A1 - Querkraftdornlagerung - Google Patents

Querkraftdornlagerung Download PDF

Info

Publication number
WO1999025934A1
WO1999025934A1 PCT/CH1998/000493 CH9800493W WO9925934A1 WO 1999025934 A1 WO1999025934 A1 WO 1999025934A1 CH 9800493 W CH9800493 W CH 9800493W WO 9925934 A1 WO9925934 A1 WO 9925934A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear force
force mandrel
mandrel
bearing
shear
Prior art date
Application number
PCT/CH1998/000493
Other languages
English (en)
French (fr)
Inventor
Erich Müller
Original Assignee
Pecon Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pecon Ag filed Critical Pecon Ag
Priority to AT98952491T priority Critical patent/ATE299974T1/de
Priority to AU10189/99A priority patent/AU1018999A/en
Priority to DE59812946T priority patent/DE59812946D1/de
Priority to JP2000521288A priority patent/JP2001523778A/ja
Priority to EP98952491A priority patent/EP1032737B1/de
Priority to US09/554,643 priority patent/US6471441B1/en
Publication of WO1999025934A1 publication Critical patent/WO1999025934A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/02Arrangement or construction of joints; Methods of making joints; Packing for joints
    • E01C11/04Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
    • E01C11/14Dowel assembly ; Design or construction of reinforcements in the area of joints
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/48Dowels, i.e. members adapted to penetrate the surfaces of two parts and to take the shear stresses
    • E04B1/483Shear dowels to be embedded in concrete

Definitions

  • the present invention relates to a transverse force mandrel bearing for transmitting dynamic loads, consisting of a transverse force mandrel, a transverse force dome bearing sleeve and at least one bearing cage and a bearing basket holding the transverse force mandrel.
  • Shear force mandrels are connecting and pressure distribution elements for two concrete parts running in the same plane, which are separated from each other by a joint.
  • a transverse force mandrel bearing which, as usual, consists of a transverse force mandrel, a transverse force bearing sleeve and a bearing basket holding the bearing sleeve.
  • end plates are arranged on the storage basket, which only serve to fix the transverse force dome bearing sleeves to a casing during the production of the concrete slab.
  • the storage basket consists of a number of closed loops made of reinforcing steel wires. The loops lie in planes parallel to the direction of the joint.
  • EP-A-0 '032' 105 shows a system which presumably could also cope with dynamic loads in relation to the shear force mandrel bearing.
  • the storage baskets are formed here by cups that are more or less closed on all sides. The permissible pressure limit of the concrete is also exceeded within the cup, but the force is transferred to the cup and the concrete running above the cup is relieved to the extent that the permissible pressure limit mcnt is exceeded here more.
  • EP-A-0 '773' 324 A further development is shown in EP-A-0 '773' 324. Again, the problem of the static load and in particular the force distribution to avoid exceeding the admissible pressure limit of the concrete is also considered.
  • an end plate facing the joint is also provided, with a plate protruding into the structure being arranged on each end plate. This plate lies on the side of the mandrel respectively the sleeve which, when the static reaction forces are transmitted to the corresponding component, lies opposite the side of the mandrel or the sleeve which is under pressure.
  • shear force mandrels can be produced which have a core which is drawn in without play and a jacket which projects above this core and whose ends are protected against corrosion by means of plastic plugs.
  • the focus here is on the one hand to produce shear force mandrels which preferably consist predominantly of relatively inexpensive structural steel and have a stainless steel jacket tube.
  • Such transverse force mandrels have been well preserved for the transmission of static loads. They can also be manufactured extremely precisely and are perfectly protected against corrosion.
  • the invention furthermore shows a new method for producing transverse force mandrels, since the method mentioned at the outset, which is already protected by the applicant, is less suitable, particularly in the case of more than two layers.
  • the overall concept consists of a shear force mandrel bearing basket with the Features of claim 1 and a multi-layer transverse force mandrel and their common arrangement of essential importance. For the dynamic loads, these two elements must be coordinated.
  • Figure la is a vertical longitudinal section perpendicular to the direction of the joint and
  • Figure lb is a plan view of the same transverse force mandrel bearing with a view of the rear of an end plate in which the transverse force dome bearing sleeve is also held.
  • Figure lc shows the cross section of the transverse force mandrel cut along the line A-A.
  • Figure 2a shows the same view as Figure la of a second embodiment
  • FIG. 2b shows the same view as in FIG. 1b of the embodiment according to FIG. 2a.
  • Figure 2c shows a cross section through the transverse force mandrel in Figure 2a along the line B-B.
  • FIG. 3a shows a third embodiment of a transverse force mandrel bearing, again as in FIGS.
  • FIG. 3b shows the rear view as in FIG. 1b corresponding to the embodiment according to FIG. 3a.
  • FIG. 3c shows a cross section of the transverse force mandrel as used in FIG. 3a, cut along the line CC.
  • Figure 4a is a fourth embodiment of the subject of the invention in the same representation as shown in Figure la and
  • FIG. 4b shows a corresponding view as in FIG. 1b of the embodiment according to FIG. 4a, while
  • Figure 4c shows a cross section through the transverse force mandrel as used in Figure 4a along the line D-D.
  • the two components under dynamic load which are connected to each other by means of transverse force mandrel bearings, are marked here with Bi and B 2 .
  • Bi and B 2 the two components under dynamic load, which are connected to each other by means of transverse force mandrel bearings.
  • the elements are embedded in the concrete.
  • the transverse force mandrel mounting is designed symmetrically with respect to the joint F to be bridged.
  • the shear force mandrel bearing consists, as usual, of the shear force mandrel 1, a shear force dome bearing sleeve 2 and bearing cages 3.
  • the storage baskets 3 consist of at least two elements, namely an end plate 4 and a carrying belt-like loop 5. It is essential that the carrying belt-like loop 5 together with the end plate 4 is a closed one Force system forms.
  • the end plate 4 is embedded in the concrete flush with the end surface of the respective concrete part B 1, B 2 directed towards the joint.
  • the riser-like loops are arranged so that they are able to transfer the alternating loads that occur on the transverse force mandrel to the end plate. This is achieved by the strap-like design of the loops 5.
  • 5 m of different design forms can be formed like a carrying strap-like loops. They can have exactly the same width as the end plates 4 or be narrower or wider than this. In the embodiment according to FIGS.
  • the riser-like loop 5 has the same width as the end plate 4, while the other three embodiments represent variants in which the riser-like loops are narrower than the end plate 4.
  • the transverse force mandrel 1 or the transverse force dome bearing sleeve 2 can pass through the carrying belt-like loop 5, as shown by the embodiments according to FIGS. 1 and 4, or they can be encompassed by these loops 5, as shown by the embodiment according to FIG. 2.
  • the loops 5 have shoulder strap-like functions. This becomes clearer in the embodiment according to FIG. 3.
  • two carrying straps are used on each side, which together form a closed power system with the end plate 4.
  • a shoulder strap-like loop 5 ′ which extends to below the transverse force dome bearing sleeve 2, engages at the upper end of the one end plate.
  • these carrying belt-like loops run past the lateral force dome bearing sleeve 2 Loops 5 'and 5 "are connected to the transverse force mandrel 1 instead of the transverse force dome sleeve 2.
  • the possible shapes of the shoulder strap-like loops 5 in the side view can be trapezoidal, for example, preferably choosing the shape of an isosceles trapezoid, the height of which can, however, be different, as is indicated by the dashed line in component B.
  • the shape of the riser-like loops 5 can also have approximately the shape of a triangle, as shown in FIG. 2a. This For " ⁇ let's of course also be achieved if the transverse force dowel or the Querkraftdornlagerhu-.se 2 5 enforce the only straplike loop each. But Letzlicn may be semicircular in shape, the straplike loop, as shown in FIGS ⁇ r 4a.
  • the riser-like loops are preferably with ventilation holes or ventilation holes 6 m of any crosses and any number, as shown by the different embodiments.
  • the multi-layer design of the transverse force mandrel 1 is absolutely imperative.
  • the physical properties can only be achieved thanks to the multi-layer design of the shear force mandrels, namely the required load-bearing capacity combined with the high compressive strength, resistance to scoring and elasticity values.
  • Shear force gates with a monoferritic cross-section i.e. Shear force gates, which consist entirely of a metal or a metal alloy and a piece, have not produced these desired pairings of the physical properties. This finding is extremely surprising.
  • the shear force mandrels according to the invention can also be multi-layered with all the known cross-sectional shapes.
  • the most common cross-sectional shapes are still present, such as, in particular, cylindrical shear force mandrels and shear force mandrels with a rectangular one or square cross section.
  • shear force mandrels ⁇ r_t a rectangular or square cross-section pr ⁇ nz ⁇ p ⁇ e_l can be formed from a stratification of at least two plate-shaped bars, but usually three or more layers will be provided.
  • the outermost layer can also be designed as an enveloping jacket.
  • the connection between the plate-shaped bars to form a transverse force mandrel can of course be of the most varied nature.
  • positive and / or non-positive connections are also possible. This can result in packets of plates, similar to multilayer leaf springs, whereby the individual bearings can be positively connected to one another, for example by rivets or pins penetrating them, or have side notches in order to finally realize a connection by strapping.
  • a cylindrically designed transverse force mandrel can also be produced from more than two layers.
  • the method known from EP-A-0 '765' 967 is less suitable for this purpose.
  • a particularly interesting process for the production of such cross-shaft mandrels is that a first tube is pushed over a central cylindrical rod, which surrounds this rod with a certain amount of play and then hammers its diameter onto the core without play using a hammer process. Surprisingly, an extremely precise rod can be achieved here, the non-positive connection being excellent.
  • the core of the shear force mandrel is a rod.
  • the core is an innermost tube and several tubes are pulled or hammered over it in several layers.
  • the cavity of the innermost tube can also be filled with a nauseating mass for physical reasons or as corrosion protection.
  • the hardness of the multi-layer dome between the individual layers In order to achieve the dynamic resilience required for the mandrel, it is necessary to vary the hardness of the multi-layer dome between the individual layers. It is possible to make the hardness from the outside to the inside increasing and decreasing. For various reasons, it is particularly advantageous to increasingly choose the hard one from the outside in.
  • the core can be a rod or a single or multi-layer tube. The material compaction achieved with the hammer process results in a physically more favorable product than a multi-layer mandrel formed by the thermal process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Hydraulic Turbines (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Gripping On Spindles (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Road Paving Structures (AREA)

Abstract

Ein zwischen zwei Bauteilen (B1, B2) angeordneter Querkraftdorn ist für die Übertragung von dynamischen Belastungen mehrlagig ausgestaltet. Der mehrlagige Querkraftdorn (1) ist auf der einen Seite der Fuge (F) wie üblich in einer Querkraftdornlagerhülse (2) gelagert. Beidseits der Fuge ist entsprechend ein Lagerkorb (3) angeordnet, der einerseits aus einer Stirnplatte (4) und andererseits aus mindestens einer traggurtähnlichen Schlaufe (5) geformt ist. Die Stirnplatte (4) zusammen mit der mindestens einen traggurtähnlichen Schlaufe bildet ein geschlossenes Kräftesystem. Der Lagerkorb (3) ist auf der einen Seite fest mit dem Querkraftdorn (1) und auf der anderen Seite der Fuge fest mit der Querkraftdornlagerhülse (2) verbunden. Sowohl die Querschnittsform des mehrlagigen Querkraftdornes (1) als auch die Gestaltungsform der traggurtartigen Schlaufen (5) kann variiert werden.

Description

Querkraftdornlagerung
Die vorliegende Erfindung betrifft eine Querkraftdornlagerung zur Uebertragung dynamischer Belastungen, bestehend aus einem Querkraftdorn, einer Querkraftdomlagerhulse sowie mindestens einem die Lagerhulse und einem den Querkraftdorn haltenden Lagerkorb .
Querkraftdorne sind Verbindungs- und Druckverteilungselemente für zwei in der gleichen Ebene verlaufende Betonteile, die voneinander durch eine Fuge getrennt sind. Aus der EP-A- 0' 119 '652 ist eine Querkraftdornlagerung bekannt, die wie üblich aus einem Querkraftdorn, einer Querkraftdo lagerhulse sowie einem die Lagerhulse haltenden Lagerkorb bestent. Ferner sind am Lagerkorb Stirnplatten angeordnet, die lediglich der Fixierung der Querkraftdomlagerhulse an einer Verschalung wahrend der Erstellung der Betonpiatte dienen. Der Lagerkorb besteht aus einer Anzahl geschlossener Schlaufen aus Armierungsstahldrahten . Die Schlaufen liegen in Ebenen parallel zur Verlaufsrichtung der Fuge.
Neben dem genannten Querkraftdornlagersystem sind e ne Vielzahl weiterer Querkraftdornlagerungen bekannt. Eines der wesentlichsten Probleme der statischen Querkraftdornlagerung besteht darin, dass im Bereich der Querkraftdorne beziehungsweise im Bereich der Querkraftdornlagerhulsen oft die Druckgrenzen für Beton wesentlich überschritten werden. Dieses Problem lasst s ch reduzieren, indem man die Anzahl αer Querkraftdorne in der Verlaufsrichtung der Dehnungsfuge erhöht, doch fuhrt dies zu erheblichen Mehrkosten. Eine Querkraftdornlagerung, die auch dynamischen Belastungen standhalt, wird πedoch hierdurch nicht erreicht.
Ein System, das in Bezug auf die Querkraftdornlagerung vermutlich auch dynamischen Belastungen gerecht werden konnte, zeigt die EP-A-0 '032 ' 105 (U.C. Aschwanden). Die Lagerkorbe werden hier durch mehr oder weniger allseitig geschlossene Becher gebildet. Innerhalb des Bechers wird dabei zwar auch die zulassige Druckgrenze des Betons überschritten, doch erfolgt die Kraftübertragung auf den Becher und der oberhalb des Bechers verlaufende Beton wird soweit entlastet, dass hier die zulassige Druckgrenze mcnt mehr überschritten wird.
Eine Weiterentwicklung zeigt die EP-A-0 ' 773 ' 324. Auch mer wird wiederum das Problem der statischen Belastung und insbesondere die Kraftverteilung zur Vermeidung des Ueber- schreitens der zulassigen Druckgrenze des Betons betrachtet. Als Losung wird auch hier einer zur Fuge hin gerichtete Stirnplatte vorgesehen, wobei an jeder Stirnplatte eine in den Baukorper hineinragende Platte angeordnet ist. Diese Platte liegt jeweils auf der Seite des Dorns beziehungsweise der Hülse, die bei der Uebertragung der statischen Reaktionskrafte auf das entsprechende Bauteil der αruck- belasteten Seite des Dorns beziehungsweise der Hülse gegenüberliegt. Des weiteren wird hier noch vorgeschlagen, diese in den Baukorper hineinragenden Platten sozusagen nutzlos auch noch an der gegenüberliegenden Seite vorzusehen, um sicher zu sein, dass das Element den statxschen Belastungen auch dann standhalt, wenn es aus Unachtsamkeit verkehrt herum eingebaut werden wurde.
Die Anmeldenn hat bereits ein Verfahren entwickelt, mittels dessen sich Querkraftdorne herstellen lassen, die einen spielfrei eingezogenen Kern aufweisen und einen Mantel, der diesen Kern überragt und deren Enden mittels Kunst- stoffpfropfen gegen Korrosion geschützt sind. Der hierbei im Mittelpunkt stehende Gedanke besteht darin, einerseits Querkraftdorne herzustellen, die vorzugsweise überwiegend aas relativ preiswertem Baustahl bestehen unα iediglicr ein Mantelrohr aus Edelstahl aufweisen. Solche Querkraf dorne haben sich zur Uebertragung statischer Belastungen bestens bewahrt. Sie lassen sich auch ausserst präzis herstellen u"α sind ausgezeichnet gegen Korrosion geschützt.
Ausgehend von diesem Stand der Technik hat man sicn die Aufgabe gestellt, erstmals eine Querkraftdornlagerung zu schaffen, die insbesondere für dynamische Belastungen geeig¬ net ist. Bis heute sind keine Querkraftdornlagerungen auf dem Markt, die für dynamische Belastungen zugelassen sind. Bei dynamischen Belastungsversuchen an Querkraftdornen, wie sie aus der EP-A-0 ' 765 ' 967 bekannt geworden sind, hat man festgestellt, dass diese gegenüber Querkraftdornen, die aus einem einzigen monoferπten Stahl bestehen, erheblich bessere dynamisch-physikalische Eigenschaften gezeigt haben. Basierend auf dieser Erkenntnis wurden weitere Versuche mit mehrlagigen Querkraftdornen durchgeführt, die allesamt bessere Resultate aufzeigten als Querkraftdorne aus mono- ferπtem Material. Hierbei werden unter monofernten Querkraftdornen solche Stabe verstanden, die sicn aus einer einzigen Stahllegierung zusammensetzen und nicht mehrere Lagen aus gleichen Stahllegierungen oder unterschiedlichen Stahllegierungen aufweisen.
Die Erfindung zeigt des weiteren ein neues Verfahren zur Herstellung von Querkraftdornen auf, da insbesondere bei mehr als zwei Lagen das eingangs erwähnte von der Anmelderin bereits geschützte Verfahren weniger geeignet ist.
Es ist folglich die Aufgabe der vorliegenden Erfindung, erstmals eine Querkraftdornlagerung zu schaffen, die für dynamische Belastungen geeignet ist.
Diese Aufgabe erfüllt eine Querkraftdornlagerung mit den Merkmalen des Patentanspruches 1.
Für die dynamische Querkraftdornlagerung ist das Gesamtkonzept bestehend aus einem Querkraftdornlagerkorb mit den Merkmalen des Patentanspruches 1 sowie einem mehrlagigen Querkraftdorn und deren gemeinsame Anordnung von essentieller Bedeutung. Für die dynamischen Belastungen müssen diese beiden Elemente aufeinander abgestimmt sein.
In der anliegenden Zeichnung sind einige Ausfuhrungsbeispiele des Erfindungsgegenstandes vereinfacht dargestellt und annand der nachfolgenden Beschreibung erläutert. Es zeigt:
Figur la einen vertikalen Längsschnitt senkrecht zur Fugenverlaufsrichtung und
Figur lb eine Aufsicht auf dieselbe Querkraftdornlagerung mit Blick auf die Ruckseite einer Stirnplatte, in der auch die Querkraftdomlagerhulse gehalten ist.
Figur lc zeigt den Querschnitt des Querkraftdornes geschnitten entlang der Linie A-A.
Figur 2a zeigt dieselbe Ansicht wie Figur la einer zweiten Ausfuhrungsform und
Figur 2b dieselbe Ansicht wie in Figur lb der Ausfuhrung nach Figur 2a.
Figur 2c zeigt einen Querschnitt durch den Querkraf dorn in Figur 2a entlang der Linie B-B.
Figur 3a zeigt eine dritte Ausfuhrungsform einer Querkraftdornlagerung wiederum entsprecnend wie in Figur la und
Figur 3b die rückseitige Ansicht wie in Figur lb entsprechend der Ausfuhrung nach Figur 3a. Figur 3c zeigt einen Querscnnitt des Querkraftdornes wie in Figur 3a verwendet, geschnitten entlang der Linie C-C. In
Figur 4a ist eine vierte Ausfuhrungsform des Erfindungsgegenstandes in gleicher Darstellung wie in Figur la gezeigt und
Figur 4b zeigt eine entsprechende Ansicht wie in Figur lb der Ausfuhrung gemass Figur 4a, wahrend
Figur 4c einen Querschnitt durch den Querkraftdorn wie in Figur 4a verwendet entlang der Linie D-D zeigt .
Die beiden unter dynamischer Belastung stehenden Bauteile, die mittels Querkraftdornlagerung miteinander in Verbindung stehen, sind hier mit Bi und B2 gekennzeichnet. In der Figur la ist andeutungsweise dargestellt, dass die Elemente im Beton eingelagert sind. Um die weiteren Zeichnungen nicht unnötig zu belasten, ist die Darstellung des Betons weggelassen worden. Im wesentlichen ist die Querkraft- dornlagerung bezüglich der zu überbrückenden Fuge F symmetrisch gestaltet. Die Querkraftdornlagerung besteht wie üblich aus dem Querkraftdorn 1, einer Querkraftdomlagerhulse 2 sowie Lagerkorben 3.
Die LagerKorbe 3 bestehen aus mindestens zwei Elementen, nämlich einer Stirnplatte 4 und einer traggurtartigen Schlaufe 5. Dabei ist wesentlich dass die traggurtahnliche Schlaufe 5 mit der Stirnplatte 4 zusammen ein geschlossenes Kraftesystem bildet. Die Stirnplatte 4 ist bundig mit der z„r Fuge hm gerichteten Stirnflache des jeweiligen Betonteiles Bι,B2 im Beton eingelassen. Die traggurtartigen Schlaufen sind so angeordnet, dass sie die auf den Querkraftdorn auftretenden Wechsellasten auf die Stirnplatte zu übertragen vermögen. Dies wird durch die traggurtartige Ausgestaltung der Schlaufen 5 erreicht. Im Prinzip lassen sich oie traggurtartigen Schlaufen 5 m verschiedenen Gestaltungsformen ausbilden. Sie können genau die gleiche Breite aufweisen wie die Stirnplatten 4 oder schmaler oder breiter als diese sein. In der Ausfuhrung gemass den Figuren 4 weist die traggurtartige Schlaufe 5 dieselbe Breite wie die Stirnplatte 4 auf, wahrend die übrigen drei Ausfuhrungsformen Varianten darstellen, bei denen die traggurtartigen Schlaufen schmaler als die Stirnplatte 4 sind. Der Querkraftdorn 1 beziehungsweise die Querkraftdomlagerhulse 2 können die traggurtartige Schlaufe 5 durchsetzen, wie dies die Ausführungen gemass den Figuren 1 und 4 zeigen oder sie können von diesen Schlaufen 5 umfangen sein, wie dies die Ausfuhrung gemass der Figur 2 darstellt. In beiden Varianten haben die Schlaufen 5 jedoch traggurtartige Funktionen. Dies wird nocn deutlicher bei der Ausfuhrung nach Figur 3. Hier sind pro Seite zwei Traggurte verwendet, die zusammen ein geschlossenes Kraftesystem mit der Stirnplatte 4 bilden. Bei dieser Variante greift am oberen Ende der einen Stimplatte eine traggurtartige Schlaufe 5' an, die sich bis unterhalb der Querkraftdomlagerhulse 2 erstreckt. Dies gibt eine Tragkonstruktion ähnlich einer Hangebrucke für Belastungen m die eine Richtung, wahrend sich zweite traggurtartige Schlaufen 5" vom unteren Ende der Stirnplatte 4 bis zum oberen Bereich der Querkraftdomlagerhulse 2 erstrecken. Selbstverständlich laufen diese traggurtartigen Schlaufen seitlich an der Querkraftdomlagerhulse 2 vorbe_. Analoges trifft natürlich auf der gegenüberliegenden Seite zu, wo die traggurtartigen Schlaufen 5' und 5" statt mit der Querkraftdomlagerhulse 2 direkt mit dem Querkraf dorn 1 in Verbindung stehen.
Die in der Seitenansicht möglichen Formen der traggurtartigen Schlaufen 5 können beispielsweise trapezförmig sein, wobei man vorzugsweise die Form eines gleichschenkligen Trapezes wählt, dessen Hohe allerdings unterschiedlich sein kann, wie dies durch die strichlinierte Linie im Bauteil B. andeutungsweise eingezeichnet ist. Die Form der traggurtartigen Schlaufen 5 kann aber auch in etwa die Form eines Dreieckes aufweisen, wie dies die Figur 2a zeigt. Diese For"~ lasst sich selbstverständlich auch dann erreichen, wenn der Querkraftdorn beziehungsweise die Querkraftdornlagerhu-.se 2 die einzige traggurtartige Schlaufe 5 jeweils durchsetzen. Letzlicn kann aber auch die traggurtartige Schlaufe halbkreisförmig gestaltet sein, wie dies die Fig^r 4a zeigt. Um wahrend des Vergiessens mögliche Lunkerbildung innerhalb oes Lagerkorbes 3 zu vermeiden, sind die traggurtartiger Schlaufen vorzugsweise mit Entluftungsbohrungen oeziehungs- eise Entluftungslochern 6 m beliebigen Crossen und beliebiger Anzahl versehen, wie dies die verschiedenen Ausfuhrungsformen zeigen.
Für die Uebertragung der dynamischen Belastungen ist die mehrlagige Ausgestaltung des Querkraftdornes 1 von absolut zwingender Notwendigkeit. Nur dank der mehrlagigen Ausgestaltung der Querkraftdorne lassen sich die pnysikalischen Eigenschaften erzielen, nämlich die erforderliche Wechsel- belastbarkeit gepaart mit der hohen Druckfestigkeit, Scnerfestigkeit und Elastizitatswerten . Querkraftoorne mit monoferritischem Querschnitt, d.h. Querkraftoorne, die in ihrer Gesamtheit aus einem Metall beziehungsweise einer Metallegierung und aus einem Stuck bestehen, haben diese gewünschten Paarungen der physikalischen Eigenschaften nicht erbracht. Diese Erkenntnis ist ausgesprochen überraschend. Bisher wurden mehrlagige Querkraftdorne im wesentlichen aus Kostengrunden sowie aus Gründen des Korrosionsschutzes verwendet; dass sich durch diesen laminaren Aufbau die physikalischen Eigenschaften des Querkra tdornes so einstellen lassen wurden, dass damit erstmals aucn Querkraft- dornlagerungen gebaut werden können, die dynamische Belastungen zu übertragen vermögen, war nicht vornersehbar .
Prinzipiell lassen sich die erfmdungsgemassen Querkraftdorne mit allen üblich bekannten Querschnittsformen auch mehrlagig nerstellen. Nach wie vor v/erden die häufigsten Quer- schnittsformen vorhanden sein, wie insbesondere zylindrische Querkraftdorne sowie Querkraftdorne mit einem rechteckigen oder quadratischen Querschnitt. Wahrend Querkraftdorne ιr_t einem rechteckigen oder quadratischen Querschnitt prιnzιpιe_l aus einer Schichtung von mindestens zwei plattenformigen Stäben gebildet werden können, wird man jedoch üblicherweise eher drei oder mehr Schichten vorsehen. Dabei kann die ausserste Schicht auch als umhüllender Mantel ausgebildet sein. Auch die Verbindung zwischen den plattenformigen Stäben zu einem Querkraftdorn können selbstverständlich unterschiedlichster Natur sein. Neben Klebe- und Schweissverbmdungen kommen aucn form- und/oder kraftschlussige Verbindungen _n Frage. Dabei können Pakete von Platten entstehen, ähnlich w_e bei mehrlagigen Blattfedern, wobei die einzelnen Lager beispielsweise durch sie durchsetzende Nieten oder Stifte formschlussig untereinander verbunden sein können, oder seitliche Auskerbungen aufweisen, um schliesslich eine Verbindung durch eine Umreifung zu realisieren.
Bei den zylindrischen Ausfuhrungsformen der Querkraftdorne kommen ebenfalls zwei- oder mehrlagige Ausfuhrungen n Frage. Hierbei spielen die Durchmesserverhaltnisse selbstverständlich in Abhängigkeit der Mateπalkombination eine entsprechende Rolle. Dies zu optimieren wird Sache des Fachmannes sein, der dies auch in Abhängigkeit der zu erwartenden Kräfte und Bewegungen auslegen wird. Dynamische Belastungen auf Querkraftdornlagerungen treten ja in sehr verschiedenen Anwendungen auf, von Querkraftdornen, die Fahrbahnbetor- platten verbinden über Bodenplatten Parkhausern oder Lagerhausern bis zu komplexen Betonkonstruktionen, wie Tunnelrohren oder Betonkanalen. In all diesen Anwendungen können schneller oder langsamer auftretende Wechselbelastungen vorkommen, die nur vernunftig aufgenommen werden können mit Querkraftdornlagerungen, die für dynamische Belastungen ausgebildet sind. Bisher hat man sich hierbei mit erheblich überdimensionierten Querkraftdornlagerungen Geholfen, die an sich nur für statische Belastungen ausgelegt s nd und hat dabei die bei Wechsellasten auftretenden unter- schiedlicn gerichteten Kräfte praktisch summiert, um damit m einen faktisch starren Bereich zu gelangen, der somit wiederum cen statischen Belastungen entspricht.
Wie beispielsweise in der Figur 2c dargestellt, kann auch ein zylindrisch gestalteter Querkraftdorn aus mehr als zwei Lagen gefertigt werden. Für diesen Zweck eignet sich das aus der EP-A-0 ' 765 ' 967 bekannte Verfahren weniger. Ein besonders interessantes Verfahren zur Herstellung solcher Quer raft- dorne besteht darin, dass man über einen zentriscnen zylindriscnen Stab ein erstes Rohr schiebt, das mit einem gewissen Spiel diesen Stab umgibt und dann dessen Durchmesser durch ein Hammerverfahren auf den Kern völlig spielfrei aufhammert. Erstaunlicherweise lasst sich dabei ein ausserst genauer Stab erzielen, wobei die kraftschlussige Verbindung hervorragend ist. Auf einen derart geformten zweilagigen Kern kann problemlos auf dieselbe Art und Weise ein weiteres Ronr daruberge∑ogen werden, wiederum mit Spiel, wobei wiederum mittels einem Hammerverfahren der neue ausserste Mantel auf den bereits zweilagigen Kern aufgehämmert werden kann. Auf diese Weise lasst sich ein beliebig mehrlagiger Stab bilden, der enorme Festigkeitswerte aufweisen kann und dessen physikalische Eigenschaften praktisch für jeden Anwendungszweck massgeschneidert erreichbar sind.
In den meisten Fallen wird man sicherlich mit unterschiedlichen Stahllegierungen für die verschiedenen Lagen arbeiten. Es hat sich jedoch gezeigt, dass auch oei Beibehaltung der Stahllegierung allein durch die mehrlagige beziehungsweise mehrschichtige Konstruktion des Querkraft- dornes erheblich verbesserte Werte erzielbar sind.
Es ist jedoch nicht zwingend, dass der Kern des Querkraft- dornes ein Stab ist. In Frage kommt auch die Variante, bei der der Kern ein innerstes Rohr ist und mehrere Rohre in mehreren Lagen darüber gezogen oder gehämmert sind. Schliesslich kann aber auch der Hohlraum des innersten Rohres aus pnysikalischen Gründen oder als Korrosionsschutz rit einer nartenden Masse ausgefüllt sein.
Für die Erzielung der dynamischen Belastbarkeit, die hier f r den Dorn erforderlich ist, ist es erforderlich, d e Harte des mehrscnichtigen Domes zwischen den einzelnen Schichten zu variieren. Möglich ist es sowohl die Harte von aussen nacn innen zunehmend als auch abnehmend zu gestalten. Aus verschiedenen Gründen ist es besonders von Vorteil, die Harte von aussen nach innen zunehmend zu wählen. Für die Herstellung der mehrschichtigen Dorne mit mehreren Lagen, wobei die einzelnen Lagen rohrformig übereinander angeordnet sind, hat es sich erwiesen, dass ein besonders geeignetes Resultat erzielt wird, indem man die jeweils ausserste Schicht bei der Herstellung als Rohr mit Spiel aufschiebt und danach mittels einem bekannten Hammerverfahren auf den Kern kraftschlussig aufbringt. Auch hier kann oer Kern ein Stab oder ein ein- oder mehrschichtiges Rohr sein. Die beim Hammerverfahren erzielten Materialverdichtungen ergeben ein physikalisch günstigeres Produkt als ein durch thermische Verfahren kraftschlussig gebildeter mehrlagiger Dorn.

Claims

Patentansprüche
1. Querkraftdornlagerung zur Uebertragung von Belastungen, bestehend aus einem Querkraftdorn (1), einer Querkraftdomlagerhulse (2) sowie mindestens einem die Lagerhülse (2) und einem den Querkraftdorn (1) haltenden Lagerkorb (3) , gekennzeichnet durch die Kombination von mindestens einem mehrlagigen Querkraftdorn (1), der beidseits einer Fuge F mittels je einem zur Uebertragung statischer und dynamischer Kräfte ausgelegten Lagerkorb (3) direkt beziehungsweise über eine Lagerhülse (2), in der der Querkraftdorn (1) gleitet, gehalten ist, wobei der Lagerkorb (3) aus einer zur Fuge hin gerichteten Stirnplatte (4) besteht, an der mindestens eine traggurtähnliche Schlaufe (5) angeformt ist, die Wechsellasten vom Querkraftdorn (1) auf die Stirnplatte (4) übertragt und dass die Festigkeitswerte und/oder Harte des mehrschichtigen Dorns von aussen nach innen zunehmend oder abnehmend sind.
2. Querkraftdornlagerung nach Anspruch 1, dadurch gekennzeichnet, dass der mehrlagige Querkraftdorn (1) einen mindestens annähernd kreisförmigen Querschnitt aufweist.
3. Querkraftdornlagerung nach Anspruch 2, dadurch gekennzeichnet, dass der Querkraftdorn (1) einen Kern aus Stahl und einen Mantel aus korrosionsfestem Stahl aufweist, der lückenlos und spielfrei den Kern umschliesst.
4. Querkraftdornlagerung nach Anspruch 2, dadurch gekennzeichnet, dass die mehreren Lagen aus einem zylindrischen Kern und einer oder mehreren konzentrischen Lager gebildet sind.
5. Querkraftdornlagerung nach Anspruch 4, dadurch gekenn- zeicnnet, dass der Kern von einem Stab oder einem Rohr gebildet ist.
6. Querkraftdornlagerung nach Anspruch 5, dadurch gekennzeichnet, dass das Rohr mit einer hartenden Masse gefüllt ist .
7. QuerKraftdornlagerung nach Anspruch 2, dadurch gekenn- zeicnnet, dass die einzelnen Lagen nur kraftschlussig und/oder formschlussig miteinander verbunden sind.
8. Querkraftdornlagerung nach Anspruch 2, dadurch gekennzeichnet, dass die einzelnen Lagen beziehungsweise mindestens zwei einander berührende Lagen miteinander mindestens teilweise in adhasiver Verbindung stehen.
9. Querkraftdornlagerung nach Anspruch 1, dadurch gekenn¬ zeichnet, dass der mehrlagige Querkraftdorn (1) einer, rechteckigen Querschnitt aufweist, wobei die einzelner Schichten in horizontaler oder vertikaler in Längsrichtung des Querkraftdornes verlaufender Anordnung verlaufen.
10. Querkraftdornlagerung nach Anspruch 9, dadurch gekennzeichnet, dass die einzelnen Schichten in rein kraft- schlussiger Verbindung zueinander gehalten sind.
11. Querkraftdornlagerung nach Anspruch 9, dadurch gekennzeichnet, dass die einzelnen Schichten aber Formschlussmittel miteinander in Verbindung gehalten sind.
12. Querkraftdornlagerung nach Anspruch 1, dadurch gekennzeichnet, dass der Lagerkorb (3) mindestens eine einzige traggurtähnliche Schlaufe (5) aufweist, die breiter als der Querkraftdorn (1), beziehungsweise als die Querkraft- dornhulse (2) ist und der Dorn (1) beziehungsweise o e Hülse (2) die Schlaufe (5) durchsetzt.
13. Querkraftdornlagerung nach Anspruch 1, dadurch gekennzeichnet, dass der Lagerkorb (3) mindestens eine einzige traggurtähnliche Schlaufe (5) aufweist, die breiter als der Querkraftdorn (1), beziehungsweise als die Querkraft- dornhülse (2) ist und der Dorn (1) beziehungsweise d e Hülse (2) von der Schlaufe (5) in deren Langsausdehnur.g im Baukorper B umschlauft wird und das rückwärtige Ende des Domes (1) beziehungsweise der Hülse ,2) mit der Schlaufe (5) zur Kraftübertragung verbunden ist.
14. Querkraftdornlagerung nach Anspruch 12, dadurch gekennzeichnet, dass der Lagerkorb (3) aus mindestens einer traggurtahnlichen Schlaufe (5) besteht, die in der Seitenansicht die Form eines Trapezes oder Mehrecks aufweist .
15. Querkraftdornlagerung nach Anspruch 12 oder Anspruch 13, dadurch gekennzeichnet, dass der Lagerkorb (3) aus mindestens einer traggurtahnlichen Schlaufe (5) besteht, die in der Seitenansicht mindestens annähernd die Form eines Halbkreises aufweist.
16. Querkraftdornlagerung nach Anspruch 1, dadurch gekennzeichnet, dass der Lagerkorb (3) zwei traggurtartige Schlaufen (5 ',5") aufweist, die beidseits an der Querkraftdornhülse (2) beziehungsweise dem Querkraftdorn (1) vorbeilaufen und damit verbunden sind.
17. Querkraftdornlagerung nach Anspruch 16, dadurch gekennzeichnet, dass die traggurtahnlichen Schlaufen (5) , d e oberhalb des Querkraftdornes (1) an der Sirnplatte (4) befestigt sind, an der Unterseite des Querkraftdornes (1) oder der Hülse (2) angreifen beziehungsweise, dass die unterhalb des Domes (1) an der Stirnplatte (4) angeordneten Schlaufen (5) mit ihrem anderen Ende an der Oberseite der Hülse (2) beziehungsweise des Querkraft- dornes (1) angreifen.
18. Querkraftdornlagerung nach Anspruch 1, dadurch gekennzeichnet, dass die traggurtähnliche Schlaufe von einem Stahlband gebildet wird.
19. Querkraftdornlagerung nach Anspruch 1 oder 18, dadurch gekennzeichnet, dass die traggurtähnliche Schlaufe Entluftungslocher oder -bohrungen (6) aufweist.
20. Anwendung einer Querkraftdornlagerung mit den Merkmalen des Patentanspruches 1, dadurch gekennzeichnet, dass die Querkraftdornlagerung zur Verbindung von Bauelementen (Bj., B2) dient, die einer dynamischen Wechselbelastung unterworfen sind.
21. Verfahren zur Herstellung eines Querkraftdornes einer Dornlagerung mit den Merkmalen des Patentanspruches 1, dadurch gekennzeichnet, dass die ausseren Schichten oes mehrschichtigen Domes auf den Kern mittels Ha.mm.ern aufgebracht werden, wobei die jeweils ausserste Schicht als Rohr mit Spiel augeschoben und danach durch Hammern spielfrei kraftschlussig verbunden wird.
PCT/CH1998/000493 1997-11-17 1998-11-16 Querkraftdornlagerung WO1999025934A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT98952491T ATE299974T1 (de) 1997-11-17 1998-11-16 Querkraftdornlagerung
AU10189/99A AU1018999A (en) 1997-11-17 1998-11-16 Shear-load chuck holder
DE59812946T DE59812946D1 (de) 1997-11-17 1998-11-16 Querkraftdornlagerung
JP2000521288A JP2001523778A (ja) 1997-11-17 1998-11-16 剪断荷重の合せピン取付部
EP98952491A EP1032737B1 (de) 1997-11-17 1998-11-16 Querkraftdornlagerung
US09/554,643 US6471441B1 (en) 1997-11-17 1998-11-16 Shear-load chuck holder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH02648/97A CH692991A5 (de) 1997-11-17 1997-11-17 Querkraftdornlagerung.
CH2648/97 1997-11-17

Publications (1)

Publication Number Publication Date
WO1999025934A1 true WO1999025934A1 (de) 1999-05-27

Family

ID=4238476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000493 WO1999025934A1 (de) 1997-11-17 1998-11-16 Querkraftdornlagerung

Country Status (8)

Country Link
US (1) US6471441B1 (de)
EP (1) EP1032737B1 (de)
JP (1) JP2001523778A (de)
AT (1) ATE299974T1 (de)
AU (1) AU1018999A (de)
CH (1) CH692991A5 (de)
DE (1) DE59812946D1 (de)
WO (1) WO1999025934A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU743592B3 (en) * 2000-08-08 2002-01-31 Danley Construction Products Pty Ltd Plate dowell assembly
WO2011133531A1 (en) * 2010-04-21 2011-10-27 Russell Boxall Transferring loads across joints in concrete slabs
EP2146004A3 (de) * 2008-07-17 2012-01-04 BS Ingenieure AG Schubdornverbindung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR045400A0 (en) * 2000-09-29 2000-10-26 Gallagher, Stephen James An improved concrete joint
US7806624B2 (en) * 2000-09-29 2010-10-05 Tripstop Technologies Pty Ltd Pavement joint
US8381470B2 (en) * 2001-09-13 2013-02-26 Russell Boxall Tapered load plate for transferring loads between cast-in-place slabs
NZ531726A (en) * 2001-09-13 2006-06-30 Russell Boxall Load transfer plate for in situ concrete slabs
US7632037B2 (en) * 2004-08-05 2009-12-15 Construction Materials, Inc. Dowel apparatus and method
US7201535B2 (en) * 2005-02-10 2007-04-10 Kramer Donald R Concrete slab dowel system and method for making and using same
US7736088B2 (en) * 2006-07-13 2010-06-15 Russell Boxall Rectangular load plate
CA2794784C (en) 2011-11-08 2017-07-25 Peter Smith Removable dowel connector and system and method of installing and removing the same
US10077551B2 (en) 2015-10-05 2018-09-18 Illinois Tool Works Inc. Joint edge assembly and method for forming joint in offset position
US10119281B2 (en) 2016-05-09 2018-11-06 Illinois Tool Works Inc. Joint edge assembly and formwork for forming a joint, and method for forming a joint
CN107059531A (zh) * 2016-11-30 2017-08-18 北京中景橙石科技股份有限公司 一种抗沉降透水地面及其铺设方法
US11136731B2 (en) * 2019-11-14 2021-10-05 David R. Poole Integrated form for embedding a waterstop in a keyed concrete joint
EP4153815A1 (de) * 2020-05-20 2023-03-29 McTech Group, Inc. Dübelkörbe und jacken mit auswechselbaren dübeln

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032105A1 (de) 1980-01-04 1981-07-15 Ulisse C. Aschwanden Dorn und Hülse zur Verbindung von Bauteilen des Hoch- und Tiefbaues
EP0119652A2 (de) 1983-03-16 1984-09-26 Heinz Witschi Verbindungs- und Druckverteilungselement für Betonbauteile
EP0545854A1 (de) * 1991-11-29 1993-06-09 Toni H. Erb Schubdornverbindungsanordnung
DE29620637U1 (de) * 1996-02-28 1997-02-20 Pecon Ag, Lostorf Querkraftdornverankerung
DE29620638U1 (de) * 1996-06-19 1997-02-20 Pecon Ag, Lostorf Querkraftdornlagerung
EP0765967A1 (de) 1995-09-29 1997-04-02 Pecon AG Verfahren zur Herstellung eines Querkraftdornes und Querkraftdorn hergestellt nach diesem Verfahren
EP0773324A1 (de) 1995-11-07 1997-05-14 F.J. Aschwanden AG Vorrichtung zum Verbinden und zur Aufnahme von Querkräften von zwei durch eine Fuge getrennten Bauteilen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2194718A (en) * 1938-06-25 1940-03-26 Older Clifford Concrete road joint
US2323026A (en) * 1938-12-02 1943-06-29 Henry A Taubensee Roadway formation unit
US2572552A (en) * 1946-08-21 1951-10-23 Donald E Willard Load transfer device
US2608141A (en) * 1947-04-26 1952-08-26 James H Jacobson Load transfer device for concrete pavements
US2654297A (en) * 1949-02-18 1953-10-06 Felix L Nettleton Expansion dowel
FR2337787A1 (fr) * 1976-01-08 1977-08-05 Sip Sprl Element pour la construction de joints de retrait ou de dilatation et element composite obtenu avec cet element
US4883385A (en) * 1988-04-15 1989-11-28 Dayton Superior Corporation Load transfer assembly
US5005331A (en) * 1990-04-10 1991-04-09 Shaw Ronald D Concrete dowel placement sleeves
US5216862A (en) * 1988-10-27 1993-06-08 Shaw Ronald D Concrete dowel placement sleeves
US5797231A (en) * 1996-01-16 1998-08-25 Kramer; Donald R. Concrete slab dowel system and method for making same
US6145262A (en) * 1998-11-12 2000-11-14 Expando-Lok, Inc. Dowel bar sleeve system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032105A1 (de) 1980-01-04 1981-07-15 Ulisse C. Aschwanden Dorn und Hülse zur Verbindung von Bauteilen des Hoch- und Tiefbaues
EP0119652A2 (de) 1983-03-16 1984-09-26 Heinz Witschi Verbindungs- und Druckverteilungselement für Betonbauteile
EP0545854A1 (de) * 1991-11-29 1993-06-09 Toni H. Erb Schubdornverbindungsanordnung
EP0765967A1 (de) 1995-09-29 1997-04-02 Pecon AG Verfahren zur Herstellung eines Querkraftdornes und Querkraftdorn hergestellt nach diesem Verfahren
EP0773324A1 (de) 1995-11-07 1997-05-14 F.J. Aschwanden AG Vorrichtung zum Verbinden und zur Aufnahme von Querkräften von zwei durch eine Fuge getrennten Bauteilen
DE29620637U1 (de) * 1996-02-28 1997-02-20 Pecon Ag, Lostorf Querkraftdornverankerung
DE29620638U1 (de) * 1996-06-19 1997-02-20 Pecon Ag, Lostorf Querkraftdornlagerung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU743592B3 (en) * 2000-08-08 2002-01-31 Danley Construction Products Pty Ltd Plate dowell assembly
EP2146004A3 (de) * 2008-07-17 2012-01-04 BS Ingenieure AG Schubdornverbindung
WO2011133531A1 (en) * 2010-04-21 2011-10-27 Russell Boxall Transferring loads across joints in concrete slabs
US8627626B2 (en) 2010-04-21 2014-01-14 Russell Boxall Transferring loads across joints in concrete slabs

Also Published As

Publication number Publication date
EP1032737A1 (de) 2000-09-06
AU1018999A (en) 1999-06-07
EP1032737B1 (de) 2005-07-20
DE59812946D1 (de) 2005-08-25
JP2001523778A (ja) 2001-11-27
ATE299974T1 (de) 2005-08-15
CH692991A5 (de) 2003-01-15
US6471441B1 (en) 2002-10-29

Similar Documents

Publication Publication Date Title
WO1999025934A1 (de) Querkraftdornlagerung
DE69812399T2 (de) Umlaufende bügel und binder zur verstärkung von bauelementen, durch umlaufenden bügel oder binder verstärkte bauelemente und verfahren zur konstruktion solcher bauelemente
DE60223857T2 (de) Verbindung für Bewehrungsstäbe und Verbindungsverfahren
EP0755473B1 (de) Dübelleiste für schubbewehrungen
WO2000047834A1 (de) Einrichtung zum anschliessen von kragplatten an eine wand- oder deckenkonstruktion
EP2130984B1 (de) Lastverteilkörper mit Profilträgersystem
DE68907059T2 (de) System mit einem verbindungsleiter und mit einer verbindungsplatte.
EP1932978B1 (de) Bewehrungselement für die Aufnahme von Kräften in betonierten Platten im Bereich von Stützelementen
EP0875635B1 (de) Verbundbauteil zum im wesentlichen vertikalen Stützen von Bauelementen von Gebäuden
EP3225758A1 (de) Anschlussbauteil zur wärmeentkopplung zwischen einem vertikalen und einem horizontalen gebäudeteil
AT523623B1 (de) Modulares System zum Bau, zur Führung und zur Befestigung von Elementen rohrförmiger Strukturen und entsprechende rohrförmige Struktur
WO2005098160A1 (de) Vorgefertigtes element aus hochfestem beton für stützen-deckenknoten
CH690966A5 (de) Isolierendes Anschlusselement für Kragplatten.
DE29706644U1 (de) Betonanker für Stahlbeton-Konstruktionen
DE29707378U1 (de) Thermisch isolierendes Bauelement
DE3302075A1 (de) Spannbeton- oder stahlbetonbiegetraeger
WO2000020688A1 (de) Vorrichtung zur aufnahme von lasten an betonbauwerken
DE19851202A1 (de) Brücke
EP1329563B1 (de) Lastverteilkörper
DE202023104774U1 (de) Beton-Deckenelement mit Betonsteg
EP4372148A1 (de) Baugruppe, bestehend aus einem rohr und einer verbindungsbaugruppe
DE102021128827A1 (de) Fahrtreppenvorrichtung mit freitragender fachwerkartiger Abstützstruktur mit Zugstreben aus Hybridmaterial sowie Verfahren und Verwendung
AT408362B (de) Abstandhalter für gitterträger
DE19856434C1 (de) Betonbrücke mit externer Vorspannung
EP0307427A1 (de) Armierung für betonkonstruktionen.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998952491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09554643

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998952491

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998952491

Country of ref document: EP