WO1999011697A1 - Phenolic resin foam - Google Patents

Phenolic resin foam Download PDF

Info

Publication number
WO1999011697A1
WO1999011697A1 PCT/JP1998/003895 JP9803895W WO9911697A1 WO 1999011697 A1 WO1999011697 A1 WO 1999011697A1 JP 9803895 W JP9803895 W JP 9803895W WO 9911697 A1 WO9911697 A1 WO 9911697A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
resin
weight
phenolic resin
phenol
Prior art date
Application number
PCT/JP1998/003895
Other languages
French (fr)
Japanese (ja)
Inventor
Yuuichi Arito
Kenzi Takasa
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17033380&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999011697(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to AU88886/98A priority Critical patent/AU8888698A/en
Priority to JP51660399A priority patent/JP4711469B2/en
Publication of WO1999011697A1 publication Critical patent/WO1999011697A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers

Definitions

  • the present invention relates to a heat-insulating phenol resin foam suitable as various building materials.
  • Fuunol resin foam is widely used as a building material among organic resin foams because of its excellent flame retardancy, heat resistance, low smoke emission, dimensional stability, solvent resistance, and processability. ing.
  • a phenolic resin foam is produced by uniformly mixing and foaming a resole resin obtained by condensing phenol and formalin with an alkaline catalyst, a blowing agent, a surfactant, a curing catalyst, and other additives.
  • Conventional phenolic resin foams are used as blowing agents such as trichloro-mouth trifluoroethane (CFC-113), trichloro-mouth monofluoromethane (CFC-111) and dichloro-mouth trifluoroene (HCFC-1).
  • Halogenated hydrocarbons and their derivatives such as 2 3
  • dichlorofluoroethane HCF C-141b
  • These halogenated hydrocarbons and their derivatives as foaming agents are excellent in safety during production, and furthermore, since the gas itself has low thermal conductivity, it is possible to reduce the thermal conductivity of the obtained foam. Had the advantage to say.
  • an object of the present invention is to provide a phenolic resin foam having a foaming agent of hydrocarbon, having excellent heat insulating performance, excellent mechanical strength such as compressive strength, and improved brittleness. .
  • the present inventors have set forth conditions for producing a phenolic resin foam, for example, the molar ratio of the charged formaldehyde and phenol during the polymerization of the resin, the molecular weight of the resole resin, and the like.
  • the foaming conditions such as the amount of the catalyst and the foaming temperature
  • a phenolic resin foam having a specific foam form and a specific resin crosslinked structure can achieve the above-mentioned object of the present invention.
  • the invention has been completed. Disclosure of the invention
  • the present invention is the following phenol resin foam.
  • the hydrocarbon in the closed cell is composed of one or more kinds of hydrocarbons, and at least one of the hydrocarbons is a saturated hydrocarbon having 4 to 6 carbon atoms.
  • FIG. 1 is an example of a pyrogram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention.
  • FIG. 2 shows an example of a mass spectrum of a structural component derived from one urea bridge (the component of peak 7 in FIG. 1) of a pie mouth gram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. is there.
  • FIG. 3 is an example of a mass spectrum of a structural component derived from one urea bridge (the component of peak 8 in FIG. 1) in a pie mouth gram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. is there.
  • FIG. 4 is an example of a mass spectrum of a structural component derived from one urea bridge (the component at peak 9 in FIG. 1) in a pyrogram of a pyrolysis gas chromatograph of a phenol resin foam sample according to the present invention. .
  • FIG. 5 shows an example of a mass spectrum of a structural component derived from one urea bridge (the component at peak 10 in FIG. 1) in a pie mouthgram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. It is.
  • FIG. 6 shows an example of a mass spectrum of one urea crosslink-derived structural component (the component of peak 11 in FIG. 1) of a pie mouth gram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the structure of the fu ⁇ ol resin foam be a specific structure.
  • the closed cell ratio is 70% or more, preferably 80% or more, and more preferably 90% or more. If the closed cell ratio is less than 70%, the blowing agent of the phenolic resin foam may be replaced with air, which may significantly reduce the heat insulation performance with time, and increase the surface brittleness of the foam. There is a concern that mechanical practical performance will not be satisfied.
  • the upper limit of the closed cell rate is preferably 99.3% or less.
  • the average cell diameter of the funor resin foam in the present invention is from 10 to 400 m, preferably from 15 to 300 m. Particularly preferably, it is 20 m or more and 150 am or less. If the average cell diameter is less than 10 zm, there is a limit to the thickness of the cell wall, so the foam density inevitably increases, and as a result, the heat transfer ratio of the resin part in the foam increases, and The thermal insulation performance of the resin foam may be insufficient. On the other hand, when the cell diameter exceeds 400 m, heat conduction by radiation increases, and the heat insulating performance of the foam decreases.
  • the density of the foam in the present invention is not more than 1 0 k gZm 3 or 7 0 k gZm 3, more preferably 5 0 k gZm 3 below 2 0 k gZm 3 or more. If the density is less than 10 kg / m 3 , the mechanical strength such as the compressive strength will be reduced, the material will be easily damaged during handling, and the surface brittleness will also increase. Conversely, if the density exceeds 70 kg / m 3 , there is a concern that heat transfer in the resin section will increase and the heat insulation performance will decrease.
  • the phenol resin foam needs to have a specific resin crosslinked structure.
  • pyrolysis gas chromatography is used as a means for indirectly measuring the crosslinked structure of the resin.
  • the area of each component of trimethylphenol in the pyrolysis gas chromatography pyrogram when a phenolic resin foam is used as a sample directly indicates the structure of the phenolic resin foam.
  • it can be a powerful indicator that indirectly reflects the structure of the polymer that constitutes the original phenolic resin foam.
  • the C value increases when there are many methylene and methyl ether crosslinks in the phenolic resin, and the C value decreases when there are few methylene and methyl ether crosslinks.
  • the C value needs to be not less than 0.05 and not more than 4.0. It is preferably in the range of 0.1 to 2.0, more preferably in the range of 0.1 to 1.0.
  • the present inventors adjusted the molecular weight distribution of the resin, the charge ratio of formaldehyde to phenol during the polymerization, and the foaming conditions so that the C value was within this range. That is, the charge ratio of formaldehyde to phenol during polymerization is preferably from 1.3 to 3.0, more preferably from 1.5 to 2.5, and the molecular weight of the resole resin is 40 ° of the resole resin composition.
  • the viscosity at C is adjusted so as to be in the range of 100 to 500 cps, and the temperature in the mixer during foaming should not exceed 80 ° C.
  • the molecular weight distribution of the resole resin, the charge ratio of formaldehyde to phenol during polymerization, and the foaming conditions are adjusted, the strength and foaming properties of the resin itself of the obtained foam are remarkably improved, and It has been found that even with the use of a foaming agent, a foamed resin foam having excellent heat insulation performance and mechanical strength can be obtained.
  • the foam may be brittle and the practical performance may be insufficient, as is apparent from Comparative Example 2 described later. Furthermore, there is a possibility that the viscosity of the resin is too high during the production of the foam, which may cause disadvantages such as an increase in the expansion ratio. If the C value is less than 0.05, it is apparent from Comparative Example 3 described later. Thus, the compressive strength and the like of the funinol resin foam decrease.
  • the present inventors have found that the formation of a urea crosslinked structure in the phenol resin further improves the strength of the phenol resin foam.
  • the index indicating the urea cross-linked structure can be obtained from the area ratio of the components appearing in the pi-mouth graph of pyrolysis gas chromatography of the foam sample.
  • the component D derived from urea crosslinking is a component released in the pyrogram during a retention time of 8 minutes to 18 minutes under the measurement conditions described later, and a phenyl group and an isocyanate in the molecule. It is a compound containing (-NCO) group. Specifically, peaks 7 to 11 in FIG. 1 are shown, and the corresponding mass spectra are shown in FIGS. 2 to 6, respectively. Let D be the sum of the areas from peaks 7 to 11.
  • the phenol derivative in the present invention is phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, 2,6-dimethylphenol, 2,4,6-trimethylphenol, and specifically, Are peaks 1 to 6 in Fig. 1.
  • E is the sum of the areas of these pyrograms.
  • the F value is preferably from 0.01 to 3 and more preferably from 0.02 to 0.2.
  • the phenol resin foam according to the present invention has greatly improved brittleness and compressive strength as compared with the conventional hydrocarbon blowing agent phenol resin foam.
  • optimizing the urea cross-linking structure significantly improves brittleness. As a result, it is expected that the range of use can be expanded to applications where the use of conventional phenolic foam has been restricted due to its brittleness.
  • the phenolic resin foam of the present invention has a brittleness of 30% or less, more preferably 20% or less, as measured by a measurement method described later.
  • the lower limit of brittleness is preferably 1% or more.
  • the compression strength is 0.5 kg / cm 2 or more, and more preferably 1.0 kg / cm 2 or more. If the compressive strength is less than 0.5 kgZcm 2 , not only is it easy to break during construction and the like, but also its use is limited due to its low mechanical strength.
  • the upper limit of the compressive strength is preferably 20 kgZcm2 or less.
  • Brittleness and compressive strength are closely related to the closed cell ratio, average cell diameter, density and strength of the resin itself of the phenol resin foam.
  • the strength of the resin can be improved, and the brittleness and compressive strength of the resin foam can be significantly improved. .
  • hydrocarbons can be used, but cyclic or linear alkanes, algens, and alkynes having 3 to 7 carbon atoms can be preferably used. Further, an alkane or cycloalkane having 4 to 6 carbon atoms is more preferable from the viewpoints of chemical stability and thermal conductivity.
  • alkane or cycloalkane having 4 to 6 carbon atoms is more preferable from the viewpoints of chemical stability and thermal conductivity.
  • normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, etc. Can be mentioned.
  • butanes of normal butane, isobutane and cyclobutane and pentanes of normal pentane, isopentane, cyclopentane and neopentane are particularly suitable for the present invention.
  • two or more of these hydrocarbons can be used in combination.
  • pentanes 5 to 95% by weight and butanes 95 to 5% by weight, more preferably pentanes 25 to 75% by weight and butanes 75 to 25% by weight are mixed. Mixtures are particularly preferred because they exhibit good thermal insulation properties over a wide temperature range.
  • the combination of normal pentane and isobutane can be used from a low temperature range (for example, insulation material for freezer at about -80 ° C) to a high temperature range (for example, heat insulation material for heating body at about 200 ° C). It is particularly preferable because excellent heat insulation performance can be secured in a wide range, and these compounds are relatively inexpensive and economically advantageous.
  • Fluorocarbons such as perfluorooctane, perfluorocyclooctane, etc. can be mixed and used at the time of foaming.
  • low-boiling substances such as nitrogen, helium, argon, and air can be used as foam nuclei dissolved in a foaming agent.
  • the amount of the foaming agent used in the present invention may be arbitrarily selected depending on the desired density of the foam, foaming conditions, and the like, but is usually 3 to 40 parts by weight based on 100 parts by weight of the resin. In It is more preferably 5 to 30 parts by weight.
  • the phenolic resin foam according to the present invention has a thermal conductivity of not more than 0.025 kcal Zm hr ° C and excellent heat insulation performance even though the blowing agent is a hydrocarbon.
  • a more preferable thermal conductivity is 0.020 kca 1 / mhr ° C or less.
  • the lower limit of the thermal conductivity is preferably at least 0.012 kcal Zm hr ° C.
  • the present inventors have found that a high-boiling aliphatic hydrocarbon, a high-boiling alicyclic hydrocarbon, or a mixture thereof during foaming forms a better phenolic resin foam when present at the time of foaming.
  • High-boiling aliphatic hydrocarbons or high-boiling alicyclic hydrocarbon or mixtures thereof of the present invention 1 X 1 0 5 normal boiling point at P a is 1 5 0 alkane structure comprising at ° C or more or It is preferably a hydrocarbon mainly having a cycloalkane structure, and specific examples include solid paraffin, liquid paraffin, mineral spirit, low molecular weight polyethylene, and low molecular weight polypropylene.
  • Solid paraffin, also called paraffin wax has a carbon number ranging from 16 to 60 and is mainly composed of normal paraffin, but many contain isoparaffin and naphthene, and usually have a melting point of 35 ° C to 80 ° C. ° C.
  • Fluidized baffles are hydrocarbon oils with a pour point typically above 120 ° C and a relatively light lubricating oil fraction, for example, a spindle oil fraction, highly refined by washing with sulfuric acid. Low, with saturated hydrocarbon as the main component.
  • Mineral spirit is also called petroleum spirit and is specified in Japanese Industrial Standard K2201 (Industrial Gasoline Standard) No.4.
  • the amount of the high-boiling aliphatic hydrocarbon or the high-boiling alicyclic hydrocarbon or a mixture thereof is from 0.01% to 10% by weight based on the phenolic resin foam; More preferably, it is 0.05 to 5% by weight. If the amount of high-boiling aliphatic hydrocarbon or high-boiling alicyclic hydrocarbon or a mixture thereof is less than 0.01% by weight, there is little effect. If the weight exceeds 10% by weight, high-boiling aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons or a mixture thereof are liquefied in air bubbles to lower the heat insulation performance, and the rigidity of the resin is reduced. Is likely to decrease.
  • the fluoroether of the present invention is a fluoroether represented by the following general formula (I) and having both a perfluoropropyl ether structure and a fluoromethylene structure in the molecule.
  • Galden HT-70 and Galden HT-55, which are ropolyethers, can be preferably used.
  • n are each an integer of 1 or more, more preferably 1 or more and 10 or less.
  • the amount of the fluoroether used in the present invention is 0.0 with respect to the phenol resin foam.
  • the fluoroether in the present invention When the fluoroether in the present invention was used alone as a foaming agent, the fluoroether was rapidly separated from the resin phase at the time of foaming, so that a foam was not obtained and the phenol resin was agglomerated.
  • the fluoroether in the present invention is a specific polyfluoroether and a specific fluorinated ester used in JP-A-3-231 941 and JP-A-4-1202242. In contrast to this, it does not have a foaming function as a foaming agent.
  • the cell diameter of the phenolic resin foam is reduced, thereby improving the heat insulating performance.
  • oxygen is present in the molecule.
  • their lifespan in the atmosphere is shorter, their global warming potential is relatively smaller, and they can be expected to be compatible with global environmental protection.
  • c is a natural number of 4 or more, more preferably a natural number of 4 or more and 16 or less.
  • D is 2c + 1.
  • the fluoroamine in the present invention has a high boiling point and does not function as a blowing agent.
  • Florinato FC-43 triplefluoroamylamine
  • FC-70 triplefluoramylamine
  • FC-71 triplefluo mouth
  • Xylamine Xylamine
  • the amount of fluoramine used must be from 0.01% to 5% by weight, more preferably from 0.05% to 3% by weight, based on the phenol resin foam. If the amount of fluoramine is less than 0.01% by weight, no effect can be obtained. When the amount of fluoramine exceeds 5% by weight, not only is the production cost increased, which is not economically disadvantageous, but also the fluoramine is precipitated on the cell wall surface, thereby deteriorating the heat insulation performance and decreasing the rigidity of the resin. Is concerned about
  • the fluoroamine in the present invention does not have a foaming function as a foaming agent because of its high boiling point. Therefore, when the fluoramine in the present invention is used alone as a foaming agent, foaming does not occur at all.
  • the fluoroamine according to the present invention when the fluoroamine according to the present invention is present in the foamable composition at the time of foaming the phenolic resin, the fluoramine suitably functions to form the structure of the cell portion and the resin portion of the phenolic resin foam. That is, in the present invention, by using a hydrocarbon as a foaming agent and allowing fluoramine to coexist at the time of foaming, the cell diameter of the phenolic resin foam is reduced, and therefore, the phenolic resin foam according to the present invention has heat insulation performance. It will be improved.
  • Resin resin for producing a phenolic resin foam is polymerized by heating phenol and formalin in a temperature range of 40 ° C to 100 ° C with an alkali catalyst. Let At that time, substituting a part of the raw material phenol with saligenin is effective for controlling the C value. That is, as the molecular weight of the resole resin increases, the C value tends to increase. However, if the molecular weight is too high, the viscosity of the resole resin sharply increases, making it difficult to handle.
  • a fininol resin foam having a high C value that is, a high crosslink density
  • a fininol resin foam having a high C value that is, a high crosslink density
  • urea may be added during the resole polymerization to adjust the resole resin that has reacted with the urea. It is more preferable to mix the sol resin with a sol resin and carry out a heat reaction while maintaining the basicity.
  • the amount of methylolated urea in the resole resin composition is usually 1 to 40% by weight, preferably 2 to 30% by weight, based on the resole resin.
  • the resin resin composition is used at a desired viscosity by adjusting the amount of water.
  • the preferred viscosity of the resin composition varies depending on the foaming conditions.
  • the viscosity at 40 ° C. is preferably 100 to 500 cps, and more preferably 200 to 300 cps. It is.
  • the surfactant may be previously mixed with the resin and introduced into the mixer, or these may be separately introduced into the mixer.
  • the curing catalyst is mixed with the resin in advance, the curing reaction proceeds before foaming and a good foam cannot be obtained, so it is desirable to mix the resole resin and the curing catalyst with a mixer.
  • high-boiling aliphatic hydrocarbons high-boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers and fluoramines are used, they may be mixed with the resole resin in advance and introduced into the mixer. Although it may be good, or it may be supplied to the mixer alone, it is more effective and preferable to dissolve it in a blowing agent and introduce it into the mixer.
  • the foamable composition obtained by mixing with a mixer is poured into a mold or the like, and the foaming and curing is completed by heat treatment to obtain a phenol resin foam o
  • aromatic sulfonic acids such as toluenesulfonic acid, xylenesulfonic acid, benzenesulfonic acid, phenolsulfonic acid, styrenesulfonic acid, and naphthalenesulfonic acid are used alone or in combination of two or more. It can be used.
  • resorcinol, cresol, saligenin (0-methylol phenol), p-methylol phenol and the like may be added as a curing aid.
  • these curing catalysts may be diluted with a solvent such as diethylene glycol or ethylene glycol.
  • nonionic surfactants are effective, for example, alkylene oxide, which is a copolymer of ethylene oxide and propylene oxide, a condensate of alkylene oxide and castor oil, and an alkylene oxide. And condensation products of alkylphenols such as nonylphenol and dodecylphenol, fatty acid esters such as polyoxyethylene fatty acid esters, silicone compounds such as polydimethylsiloxane, and polyalcohols. These surfactants may be used alone or in combination of two or more. The amount of use is not particularly limited, but is preferably used in the range of 0.3 to 10 parts by weight per 100 parts by weight of the resole resin in the present invention.
  • the average cell diameter of the foam according to the present invention is defined as: The four straight lines having a length of 9 cm are drawn on a 50-times enlarged photograph of the inside of the foam, and the number of cells crossed by each straight line is determined by each straight line. The average value (the number of cells measured according to JISK6402) divided by 1800 / zm.
  • Density is a value obtained by measuring the weight and apparent volume of a 20 cm square phenolic resin foam as a sample, removing the face material and siding material of this sample, and measuring according to JISK7222. did.
  • the closed cell ratio was measured as follows. A 35 to 36 mm diameter cylindrical sample cut through a phenolic resin foam with a cork boiler is cut to a height of 30 to 40 mm. Measure the sample volume according to the standard method of using an air-comparison hydrometer 100000 (manufactured by Tokyo Science). The value obtained by subtracting the cell wall volume calculated from the sample weight and the resin density from the sample volume was divided by the apparent volume calculated from the outer dimensions of the sample, and measured in accordance with ASTM D2856. However, the density of the phenol resin was 1.27 gZcm 3 .
  • the thermal conductivity was measured according to the plate heat flow meter method of JISA1412 at a sample of 200 mm square, a low temperature plate at 5 ° C, and a high temperature plate at 35 ° C.
  • a test piece for the brittle test was cut out of 12 cubes of 2.5 mm each side and 1.5 mm in length so as to include a molded skin or face material on one side. However, when the thickness of the foam was less than 25 mm, the thickness of the test piece was the thickness of the foam. Inner dimensions 1 9 1 X 1 9 7 X 1 that can be sealed with room temperature-dried 1 9 ⁇ 0.8 mm oak cubes 24 and 2 test pieces so that dust does not come out of the box Place in a wooden box of 97 mm oak and make 600 ⁇ 3 revolutions at 60 ⁇ 2 revolutions per minute.
  • the contents of the box are transferred to a mesh with a nominal size of 9.5 mm, sieved to remove small pieces, the weight of the remaining test piece is measured, and the reduction rate from the weight of the test piece before the test is calculated. Is brittle and was measured according to JISA 9511.
  • the compressive strength was measured in accordance with JISK 7220 with a specified strain of 0.05.
  • the pyrogram of pyrolysis gas chromatography was measured as follows. For the phenolic resin foam sample used for measurement, the powder obtained by shaving the foam core from which the face material and siding material have been removed with a cutter knife, etc., is further carefully ground in a mortar, and 0.3 to 0 per measurement. 4 mg was used as the sample amount.
  • the thermal decomposition apparatus PY210D manufactured by Frontier Lab Co., Ltd., which is a heating furnace type thermal decomposition apparatus, was used. The thermal decomposition temperature was 670 ° C.
  • FIG. 1 shows an example of a gas chromatogram of a phenol resin foam sample according to the present invention.
  • the structure of each component was confirmed by a mass spectrum obtained by introducing the component separated by gas chromatography into a mass spectrometer.
  • the mass spectrum was measured with an electron impact ionization method (EI method) at an ionization voltage of 70 eV and an ionization current of 30 OmA using JEOL JMSAX-505H.
  • EI method electron impact ionization method
  • the foaming agent and high-boiling aliphatic hydrocarbons, high-boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers, and fluoroamines remaining in the bubbles can be confirmed as follows.
  • the phenolic resin foam sample is ground in a suitable solvent selected from pyridine, toluene, tetrahydrofuran (THF), dimethylformamide (DMF), etc., placed in a closed container, and the foaming agent and high boiling point fat
  • Aromatic hydrocarbons, high-boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers, and fluoroamines can be extracted and identified by gas chromatography or liquid chromatography.
  • the ratio of the structure derived from urea crosslinking in the phenolic resin foam can be calculated from the area of each component by measuring pyrolysis gas chromatography in the same manner as the ratio of phenol to trimethylphenol.
  • the resin used in the following examples and comparative examples was prepared as follows.
  • Reactor was charged with 37% formalin (Wako Pure Chemical Industries, special grade reagent) 550 g and 99% phenol (Wako Pure Chemical Co., special grade reagent) 300 g, and the propeller rotating type Stir with a stirrer and adjust the temperature inside the reactor to 40 ° C with a temperature controller.
  • 60 g of a 50% aqueous solution of sodium hydroxide (NaOH) was added, and the reaction solution was heated from 40 ° C to 85 ° C and held for 115 minutes. Then, cool the reaction solution to 5 ° C. This is referred to as Resin Resin A-1.
  • resole resin B was performed in the same manner as resole resin A, except that the weight of added methylol urea U was changed to 300 g.
  • Resin resin C was synthesized in the same manner as resole resin A, except that the weight of added methylol urea U was changed to 250 g.
  • Reactor was charged with 37% formalin (380 g) and 99% ethanol (300 g) Stir with a propeller rotary stirrer and adjust the temperature inside the reactor with a temperature controller.
  • Resin Resin D-1 a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 50 ° C to 55 ° C for 20 minutes. The temperature was then raised to 85 and held for 125 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is referred to as Resin Resin D-1.
  • resole resin D was performed in the same manner as resole resin A except that resole resin A-1 was changed to D-1 and the weight of added methylol urea U was changed to 100 g.
  • Resin resin E was synthesized in the same manner as resole resin D, except that the weight of added methylol urea U was changed to 500 g.
  • Resin Resin F was synthesized in the same manner as Resin Resin D, except that the weight of added methylol urea U was changed to 1500 g.
  • a reactor was charged with 37% formalin (520 g) and 99% ethanol (300 g), stirred with a propeller rotating stirrer, and the temperature inside the reactor was adjusted to 50 ° C with a temperature controller. Adjust to C.
  • 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 40 ° C for 10 minutes. Thereafter, the temperature was increased to 85 ° C, and was maintained for 120 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 20 ° C. This is referred to as Resin Resin G-1.
  • Resol Resin G The resole resin G-1 was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5, and the reaction solution was dehydrated at 60 ° C. This is referred to as Resol Resin G.
  • a reactor was charged with 37% formalin (304 g) and saligenin (Tokyo Kasei Kogyo Co., Ltd.) (330 g) and 99% ethanol (500 g), and stirred with a propeller rotary stirrer. Adjust the temperature inside the reactor to 50 ° C with a temperature controller. Then 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 50 ° C to 55 ° C for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and was maintained for 110 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is designated as Resin Resin H-1.
  • Resin resin H-1 was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5, and the reaction solution was dehydrated at 60 ° C. This is called Resole Resin H.
  • resole resin I The synthesis of resole resin I was performed in the same manner as resole resin D, except that the weight of methylol urea U to be added was changed to 400 g.
  • resole resin J The synthesis of resole resin J was performed in the same manner as resole resin A, except that resole resin A-1 was changed to J-1.
  • Paintase 32 (a surfactant made by Dow Corning Asia Co., Ltd.) was dissolved in Resin Resin A at a ratio of 3.5 g to 100 g of Resin Resin.
  • This resin resin mixture as a foaming agent, normal pentane (Wako Pure Chemical, purity of more than 99%) in which 0.3% by weight of nitrogen was dissolved, and isobutane (purity of 99 %)
  • paratoluenesulfonic acid monohydrate as a curing catalyst (Wako Pure Chemical, purity 95% or more) 60% by weight and diethylene glycol (Wako Pure Chemical, purity 98% or more) 4 0% by weight of the mixture was supplied to a pin mixer with a temperature-controlled jacket at a ratio of 100 parts of the resin mixture, 7 parts of the foaming agent, and 15 parts of the curing catalyst.
  • the mixer was cooled with a temperature control jacket so that the temperature in the mixer did not exceed 80 ° C.
  • the mixture coming out of the mixer is poured into a formwork laid with Spunbond E104 (made by Asahi Kasei Kogyo Co., Ltd.), placed in an oven at 80 ° C for 5 hours, and the phenolic resin foam of this example is placed in the oven. Obtained.
  • Example 1 A mixture of 40% by weight of para-toluenesulfonic acid monohydrate, 30% by weight of diethylene glycol, and 30% by weight of resorcinol was used as a curing catalyst, except that the ratio was changed to 14 parts to 100 parts of resin. A phenol resin foam was produced in exactly the same manner as in 1.
  • phenolic resin foams were produced using the resins shown in Table 1 as resole resins, while adjusting the number of catalysts, and otherwise in exactly the same manner as in Example 1. .
  • a phenol resin foam was produced in exactly the same manner as in Example 1 except that isobutane in which 0.3% by weight of nitrogen was dissolved was used as a foaming agent.
  • the phenol was prepared in the same manner as in Example 1 except that a one-to-one mixture of normal pentane in which 0.3% by weight of nitrogen was dissolved and normal butane (purity: 9.9% or more) was used as a blowing agent. A resin foam was manufactured.
  • Foam resin foaming was carried out in exactly the same manner as in Example 1, except that a 1: 1 mixture of isopentane (0.3% by weight of nitrogen) and isobutane containing 0.3% by weight of nitrogen was used as the blowing agent. Body manufactured.
  • a phenolic resin foam was produced in exactly the same manner as in Example 1 except that a one-to-one mixture of isopentane in which 0.3% by weight of nitrogen was dissolved as a blowing agent and normal butane was used.
  • Example 2 The same procedure as in Example 1 was repeated except that a mixture of normal hexane (Wako Pure Chemical, a primary reagent) in which 0.3% by weight of nitrogen was dissolved and isobutane as a foaming agent was used. was manufactured.
  • normal hexane Waako Pure Chemical, a primary reagent
  • Paraffin manufactured by Wako Pure Chemical, melting point: 44 to 46 ° C, primary reagent
  • a phenolic resin foam was produced in exactly the same manner as in Example 1 except that this was performed.
  • a 1: 1 mixture of normal pentane in which 5% by weight of liquid paraffin (a first-class reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.3% by weight of nitrogen are dissolved and isobutane is used.
  • a phenol resin foam was produced in exactly the same manner as in Example 1 except for the above.
  • Example 1 Except for using a 1: 1 mixture of normal pentane and isobutane in which 3% by weight of nitrogen and 0.3% by weight of nitrogen were dissolved as a blowing agent, Galden (HT1) HT-55 (Audimond Co., Ltd.) A phenol resin foam was produced in exactly the same manner as in 1.
  • Example 1 except that a 1: 1 mixture of normal pentane in which 3% by weight and 0.3% by weight of nitrogen were dissolved and normal pentane and isobutane were used as a foaming agent was used.
  • a phenol resin foam was produced in exactly the same manner as in 1.
  • Example 2 Exactly the same as in Example 1 except that a 1: 1 mixture of normal pentane and isobutane in which 3% by weight of Florinato FC-71 (manufactured by SLEEM) and 0.3% by weight of nitrogen were dissolved was used as a foaming agent. To produce a fininol resin foam.
  • Example 1 was repeated except that a 1: 1 mixture of normal pentane in which 3% by weight of Fluorinert FC-70 (manufactured by Sliem) and 0.3% by weight of nitrogen were dissolved and isobutane was used as a blowing agent.
  • a phenolic resin foam was produced in exactly the same manner.
  • Table 1 shows the ratio of the area D of all urea cross-linked components to the area E of all phenol derivatives, the closed cell ratio of foams, the average cell diameter, density, thermal conductivity, brittleness, and compressive strength. Are shown together.
  • Table 1 (Part 1) Resin F value German u-air, rate average ⁇ 2 diameter ⁇ jj * .1
  • Difficult 6 D 0.1 4 0.041 89.7 1 08 28 0.01 88 1 9 1.6 Difficult 7 E 0.22 0.021 92.4 98 29 0.01 90 1 6 1.7 Difficult 8 F 0.13 0.062 91.5 1 1 3 28 0.01 87 1 7 1.6 Difficult 9 G 0.38 0.000 82.4 1 1 5 29 0.0201 24 1.5 Difficult 1 0 H 0.64 0.00 87.3 1 1 2 29 0.01 97 21 1.6 Difficult 1 1 A 0.38 0.093 93.1 90 29 0.01 98 1 1 1. 7 Difficult 1 2 A 0.40 0.092 91.2 1 1 8 27 0.01 9 1 1 0 1.6 Out of order 13 A 0.39 0.091 92.3 83 28 0.01 83 9 1.6
  • a phenol resin foam having a C value in the range of 0.05 to 0, a closed cell ratio of 70% or more, and an average cell diameter of 10 to 400 m was used.
  • the brittleness is also improved to less than 30%.
  • the thermal conductivity of the example was 0.025 kca 1 / mhr r ° C or less, indicating excellent heat insulation performance.
  • the F value was in the range of 0.01 to 3, the brittleness was less than 20%, and the thermal conductivity was 0.020 kca 1 / mh. r ° C or less, indicating better performance.
  • Comparative Example 2 where the C value was too large as 4.13
  • Comparative Example 3 where it was too small as 0.04
  • the thermal conductivity was 0.025 kca 1 no mh r ° C in both cases.
  • the brittleness is a large value of 30% or more, and the heat insulation and the mechanical strength are inferior.
  • Comparative Example 1 although the C value was 0.11, which was within the range of the present invention, the closed cell rate was 61.8%, which was outside the range of the present invention, and the thermal conductivity was 0.1. 0 2 7 3 kca 1 / mh r ° C, poor heat insulation, brittleness 43%, poor mechanical strength.
  • the fu ⁇ ol resin foam according to the present invention has excellent heat insulating performance, excellent mechanical strength such as compressive strength, and significantly improved surface brittleness. Since the resin foam according to the present invention uses a foaming agent having a low global warming coefficient without fear of destruction of the ozone layer, it is suitable as a building insulation material more suitable for the global environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A phenolic resin foam which is obtained by using a hydrocarbon as a foaming agent having no fear of ozonosphere depletion and a low coefficient of global warming, has excellent heat-insulating performance, and is excellent in mechanical strengths such as compression strength and reduced in brittleness. This foam has a closed-cell content of 70 % or higher, an average cell diameter of 10 to 400 νm, and a density of 10 to 70 kg/m3 and gives through pyrolytic gas chromatography a pyrolysis pattern in which the ratio C of the area A for all trimethylphenols as pyrolysis products to the area B for phenol as another pyrolysis product (C=A/B) is in the range defined by equation (1): 0.05 ≤ C ≤ 4.0.

Description

明 細 書 フエノール樹脂発泡体 技術分野  Description phenolic resin foam technical field
本発明は、 各種建築材料として好適な断熱用フエノ一ル樹脂発泡体に関する。 背景技術  TECHNICAL FIELD The present invention relates to a heat-insulating phenol resin foam suitable as various building materials. Background art
フユノール樹脂発泡体は、 有機樹脂発泡体のなかでも、 特に難燃性、 耐熱性、 低発煙性、 寸法安定性、 耐溶剤性、 加工性に優れているため、 各種建築材料とし て広く使用されている。 一般的にフヱノール樹脂発泡体は、 フヱノールとホルマ リンをアルカリ性触媒により縮合したレゾール樹脂と、 発泡剤、 界面活性剤、 硬 化触媒、 その他添加剤を均一に混合し発泡させることによって製造される。 従来のフヱノ一ル樹脂発泡体は、 発泡剤としてトリクロ口トリフルォロェタン (CFC— 1 1 3) 、 トリクロ口モノフルォロメタン (CFC— 1 1) 、 ジクロ 口トリフルォロェタン (HCFC— 1 2 3) 、 ジクロロフルォロェタン (HCF C一 1 4 1 b) 等のハロゲン化炭化水素やその誘導体が用いられてきた。 発泡剤 としての、 これらハロゲン化炭化水素やその誘導体は製造時の安全性に優れ、 更 にガス自体の熱伝導度が低いことから、 得られた発泡体の熱伝導度をも低くでき ると言う利点を有していた。  Fuunol resin foam is widely used as a building material among organic resin foams because of its excellent flame retardancy, heat resistance, low smoke emission, dimensional stability, solvent resistance, and processability. ing. Generally, a phenolic resin foam is produced by uniformly mixing and foaming a resole resin obtained by condensing phenol and formalin with an alkaline catalyst, a blowing agent, a surfactant, a curing catalyst, and other additives. Conventional phenolic resin foams are used as blowing agents such as trichloro-mouth trifluoroethane (CFC-113), trichloro-mouth monofluoromethane (CFC-111) and dichloro-mouth trifluoroene (HCFC-1). Halogenated hydrocarbons and their derivatives, such as 2 3) and dichlorofluoroethane (HCF C-141b), have been used. These halogenated hydrocarbons and their derivatives as foaming agents are excellent in safety during production, and furthermore, since the gas itself has low thermal conductivity, it is possible to reduce the thermal conductivity of the obtained foam. Had the advantage to say.
しかしながら、 現在においては、 CFC_ 1 1 3、 CFC— 1 1等、 塩素原子 を含む物質は成層圏のオゾンを分解しオゾン層の破壊を引き起こすことが明らか にされるに至り、 これらの物質は地球レベルでの環境破壊の原因として世界的に 問題とされるようになり、 それらの製造及び使用量が世界的に規制されるように なってきた。 また、 塩素を含まないオゾン破壊係数が 0のフルォロ炭化水素であ る 1, 1, 1, 2—テトラフルォロェタン (HFC— 1 3 4 a) 、 1, 1—ジフ ルォロェタン (HFC— 1 5 2 a) なども、 地球温暖化係数が比較的大きいこと から、 ヨーロッパでは使用が制限される動きにあるために、 発泡剤と ン等の炭化水素類が注目されている。 However, at present it has been found that substances containing chlorine atoms, such as CFC_113 and CFC-11, decompose stratospheric ozone and cause destruction of the ozone layer. Has become a global issue as a cause of environmental destruction in the country, and their production and use have been regulated globally. In addition, chlorine-free fluorocarbons with an ozone depletion potential of 0, 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-difluoroethane (HFC-1 5 2a), etc., are relatively limited in their use in Europe due to their relatively high global warming potential. Attention has been paid to hydrocarbons such as hydrocarbons.
従来、 フヱノール樹脂発泡体の発泡剤としてノルマルペンタンゃシクロペンタ ンの様な炭化水素を使用することは知られていたが、 これらの炭化水素は、 ォゾ ン層を破壊することが無く、 地球温暖化係数も比較的小さい点で優れているもの の、 ハロゲン化炭化水素と比べ、 得られるフ ノール樹脂発泡体の独立気泡率も 低下し、 ガス自体の熱伝導率が高いために良好な断熱性能は得られず、 圧縮強度 等の機械的強度も不十分であるなど実用上問題があつた。  Conventionally, it has been known to use hydrocarbons such as normal pentane-cyclopentane as a blowing agent for phenolic resin foams. However, these hydrocarbons do not destroy the ozone layer and reduce global warming. Although the gasification coefficient is relatively small, the closed cell ratio of the phenolic resin foam obtained is lower than that of halogenated hydrocarbons. However, there were practical problems such as insufficient mechanical strength such as compressive strength.
本発明は、 従来のフ ノ一ル樹脂発泡体が有する上記諸問題を解決しうるもの である。 即ち本発明の課題は、 発泡剤が炭化水素で、 優れた断熱性能を有し、 か つ、 圧縮強度等の機械的強度に優れ、 脆性が改善されたフエノール樹脂発泡体を 提供することである。  The present invention can solve the above-mentioned problems of the conventional foam resin foam. That is, an object of the present invention is to provide a phenolic resin foam having a foaming agent of hydrocarbon, having excellent heat insulating performance, excellent mechanical strength such as compressive strength, and improved brittleness. .
本発明者らは、 前記本発明の課題を達成するために、 フエノール樹脂発泡体の 製造条件、 例えば、 レゾ一ル樹脂重合時のホルムアルデヒドとフエノールの仕込 みのモル比やレゾール樹脂の分子量、 更に触媒量や発泡温度などの発泡条件など を幅広く検討した結果、 特定の気泡形態、 特定の樹脂架橋構造を成したフエノー ル樹脂発泡体が、 前記本発明の課題を達成し得ることを見出し、 本発明を完成さ せるに至った。 発明の開示  In order to achieve the object of the present invention, the present inventors have set forth conditions for producing a phenolic resin foam, for example, the molar ratio of the charged formaldehyde and phenol during the polymerization of the resin, the molecular weight of the resole resin, and the like. As a result of extensively examining the foaming conditions such as the amount of the catalyst and the foaming temperature, it was found that a phenolic resin foam having a specific foam form and a specific resin crosslinked structure can achieve the above-mentioned object of the present invention. The invention has been completed. Disclosure of the invention
即ち、 本発明は下記のフエノール樹脂発泡体である。  That is, the present invention is the following phenol resin foam.
1 . 独立気泡率 7 0 %以上、 平均気泡径 1 0 a m以上 4 0 0 m以下、 密度 1 0 k g /m 3以上 7 0 k g /m3以下であって、 独立気泡中に炭化水素を含有し、 熱分解ガスクロマトグラフィーの熱分解パターンから求められる、 熱分解生成物 のトリメチルフヱノール Aのフヱノール Bに対する面積比 C ( C = A/ B ) が下 記式 (1 ) の範囲にあることを特徴とするフ ノール樹脂発泡体。 1. Closed cell ratio 70% or more, the average cell diameter 1 0 am or 4 0 0 m or less, equal to or less than the density of 1 0 kg / m 3 or more 7 0 kg / m 3, containing a hydrocarbon in the closed cells The area ratio C (C = A / B) of trimethylphenol A to phenol B of the pyrolysis product, which is determined from the pyrolysis pattern of pyrolysis gas chromatography, is in the range of the following formula (1). A phenolic resin foam characterized in that:
0 . 0 5≤C≤ 4 . 0 ( 1 )  0 .0 5≤C≤ 4.0 .0 (1)
2 . 熱分解ガスクロマトグラフィーの熱分解パターンから求められる、 熱分解 生成物の尿素架橋由来の成分 Dのフ二ノール誘導体成分 Eに対する面積比 F ( F = D/E) が下記式 (2) の範囲である前項 1記載のフニノール樹脂発泡体。 0. 0 1 ≤F≤ 0. 3 (2) 2. The area ratio of the component D derived from urea crosslinking of the pyrolysis product to the fudinol derivative component E obtained from the pyrolysis pattern of pyrolysis gas chromatography F (F = D / E) is in the range of the following formula (2). 0.0 1 ≤F≤ 0.3 (2)
3. 独立気泡中の炭化水素が 1種類又は 2種類以上の炭化水素からなり、 該炭 化水素の、 少なくとも 1つが炭素数 4から 6の飽和炭化水素であることを特徴と する前項 1又は 2記載のフエノール樹脂発泡体。  3. The hydrocarbon in the closed cell is composed of one or more kinds of hydrocarbons, and at least one of the hydrocarbons is a saturated hydrocarbon having 4 to 6 carbon atoms. The phenolic resin foam according to the above.
4. 飽和炭化水素がイソブタン、 ノルマルブタン、 シクロブタン、 ノルマルぺ ンタン、 イソペンタン、 シクロペンタン、 ネオペンタンであることを特徴とする 前項 3記載のフェノール樹脂発泡体。  4. The phenolic resin foam according to item 3, wherein the saturated hydrocarbon is isobutane, normal butane, cyclobutane, normal pentane, isopentane, cyclopentane, or neopentane.
5. 独立気泡中の炭化水素がイソブタン、 ノルマルブタン、 シクロブタンから 選ばれるブタン類 5〜9 5重量%とノルマルペンタン、 イソペンタン、 シクロべ ンタン、 ネオペンタンから選ばれるペンタン類 9 5〜5重量%の混合物であるこ とを特徴とする前項 1又は 2記載のフェノール樹脂発泡体。  5. A mixture of 5 to 95% by weight of butanes selected from isobutane, normal butane and cyclobutane with hydrocarbons in closed cells and 95 to 5% by weight of pentanes selected from normal pentane, isopentane, cyclopentane and neopentane 3. The phenolic resin foam according to the above item 1 or 2, wherein:
6. 独立気泡中の炭化水素がイソブタン 5〜9 5重量%とノルマルペンタンの 9 5〜 5重量%の混合物であることを特徴とする前項 5記載のフェノ一ル樹脂発 泡体。  6. The phenolic resin foam according to the above item 5, wherein the hydrocarbon in the closed cells is a mixture of 5 to 95% by weight of isobutane and 95 to 5% by weight of normal pentane.
7. 独立気泡率 8 0 %以上、 平均気泡径 1 0 fi m以上 4 0 0 m以下、 密度 1 0 k gZm3以上 7 0 k g/m3以下であって、 独立気泡中に炭化水素を含有し、 尿素架橋構造を有するフ ノール樹脂構造から成る脆性が 3 0 %以下、 圧縮強度 が 0. 5 k g/ cm2 以上、 熱伝導率が 0. 0 2 5 k c a 1 /mh r°C以下であ ることを特徴とするフエノール樹脂発泡体。 7. closed cell ratio 80% or more, the average cell diameter 1 0 fi m or more 4 0 0 m or less, equal to or less than the density of 1 0 k gZm 3 or 7 0 kg / m 3, containing a hydrocarbon in the closed cells and, 3 0% brittleness consisting off Knoll resin structure having a polyurea crosslinked structure below, compressive strength 0. 5 kg / cm 2 or more, a thermal conductivity of 0. 0 2 5 kca 1 / mh r ° C below A phenolic resin foam characterized by the fact that:
8. 高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混 合物をフ ノール樹脂発泡体に対して 0. 0 1〜 1 0重量%含有することを特徴 とする前項 1又は 2記載のフ ノ一ル樹脂発泡体。  8. The above-mentioned item, wherein the high-boiling aliphatic hydrocarbon or the high-boiling alicyclic hydrocarbon or a mixture thereof is contained in an amount of 0.01 to 10% by weight based on the phenol resin foam. The phenol resin foam according to 1 or 2.
9. 下記一般式 ( I ) で示されるフルォロェ一テルの少なくとも 1種をフエノ ール樹脂発泡体に対して 0. 0 1〜5重量%含有することを特徴とする前項 1又 は 2記載のフヱノ一ル樹脂発泡体。  9. The method according to the above item 1 or 2, wherein at least one fluoroester represented by the following general formula (I) is contained in an amount of 0.01 to 5% by weight based on the phenol resin foam. Vinyl resin foam.
FaHbC-[(0- C F- C F2) - (0- C F2)n]-0-C FaHb ( I ) (式中、 aは 0、 1、 2、 3であり、 bは 3— aであり、 mおよび nは、 それぞ れ 1以上の整数である。 ) F a H b C-[(0- C F- CF 2 )-(0- CF 2 ) n ] -0-CF a H b (I) (Where a is 0, 1, 2, 3; b is 3—a; and m and n are each an integer of 1 or more.)
1 0 . 下記一般式 (I I) で示されるフルォロアミンの少なくとも 1種をフヱノ —ル樹脂発泡体に対して 0 . 0 1〜5重量%含有することを特徴とする前項 1又 は 2記載のフヱノール樹脂発泡体。  10. The phenol according to item 1 or 2, wherein the fluoramine represented by the following general formula (II) is contained in an amount of 0.01 to 5% by weight based on the phenol resin foam. Resin foam.
( C C Fd ) 3 N ( ) ( C C F d) 3 N ()
(式中、 cは 4以上の自然数であり、 dは 2 c + lである。 ) 図面の簡単な説明  (In the formula, c is a natural number of 4 or more, and d is 2 c + l.)
第 1図は、 本発明によるフヱノール樹脂発泡体サンプルの、 熱分解ガスクロマ トグラフィ一のパイ口グラムの 1例である。  FIG. 1 is an example of a pyrogram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention.
第 2図は、 本発明によるフヱノール樹脂発泡体サンプルの、 熱分解ガスクロマ トグラフィ一のパイ口グラムの一つの尿素架橋由来構造成分 (第 1図のピーク 7 の成分) のマススぺク トルの例である。  FIG. 2 shows an example of a mass spectrum of a structural component derived from one urea bridge (the component of peak 7 in FIG. 1) of a pie mouth gram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. is there.
第 3図は、 本発明によるフヱノール樹脂発泡体サンプルの、 熱分解ガスクロマ トグラフィ一のパイ口グラムの一つの尿素架橋由来構造成分 (第 1図のピーク 8 の成分) のマススぺク トルの例である。  FIG. 3 is an example of a mass spectrum of a structural component derived from one urea bridge (the component of peak 8 in FIG. 1) in a pie mouth gram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. is there.
第 4図は、 本発明によるフヱノール樹脂発泡体サンプルの、 熱分解ガスクロマ トグラフィ一のパイログラムの一つの尿素架橋由来構造成分 (第 1図のピーク 9 の成分) のマススぺク トルの例である。  FIG. 4 is an example of a mass spectrum of a structural component derived from one urea bridge (the component at peak 9 in FIG. 1) in a pyrogram of a pyrolysis gas chromatograph of a phenol resin foam sample according to the present invention. .
第 5図は、 本発明によるフヱノール樹脂発泡体サンプルの、 熱分解ガスクロマ トグラフィ一のパイ口グラムの一つの尿素架橋由来構造成分 (第 1図のピーク 1 0の成分) のマススぺク トルの例である。  FIG. 5 shows an example of a mass spectrum of a structural component derived from one urea bridge (the component at peak 10 in FIG. 1) in a pie mouthgram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. It is.
第 6図は、 本発明によるフヱノール樹脂発泡体サンプルの、 熱分解ガスクロマ トグラフィ一のパイ口グラムの一つの尿素架橋由来構造成分 (第 1図のピーク 1 1の成分) のマススぺク トルの例である。 発明を実施するための最良の形態 FIG. 6 shows an example of a mass spectrum of one urea crosslink-derived structural component (the component of peak 11 in FIG. 1) of a pie mouth gram of pyrolysis gas chromatography of a phenol resin foam sample according to the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明では、 フユノール樹脂発泡体の組織を特定の組織とする必要がある。 本発明によるフヱノール樹脂発泡体においては、 独立気泡率は 7 0 %以上、 好 ましくは 8 0 %以上、 更に好ましくは 9 0 %以上である。 独立気泡率が 7 0 %未 満であると、 フ ノール樹脂発泡体の発泡剤が空気と置換して断熱性能の経時低 下が著しくなる恐れがあるばかりではなく、 発泡体の表面脆性が増加して機械的 実用性能を満足しなくなる懸念がある。 なお、 独立気泡率の上限としては 9 9. 3 %以下であることが好ましい。  In the present invention, it is necessary that the structure of the fuñol resin foam be a specific structure. In the phenol resin foam according to the present invention, the closed cell ratio is 70% or more, preferably 80% or more, and more preferably 90% or more. If the closed cell ratio is less than 70%, the blowing agent of the phenolic resin foam may be replaced with air, which may significantly reduce the heat insulation performance with time, and increase the surface brittleness of the foam. There is a concern that mechanical practical performance will not be satisfied. The upper limit of the closed cell rate is preferably 99.3% or less.
本発明におけるフユノール樹脂発泡体の平均気泡径は 1 0 zm以上 4 0 0 m 以下であり、 好ましくは 1 5 zm以上 3 0 0〃m以下である。 特に好ましくは 2 0 m以上 1 5 0 am以下である。 平均気泡径が 1 0 zm未満であると、 気泡 壁の厚さに限界が有ることから、 必然的に発泡体密度が上昇し、 その結果発泡体 における樹脂部の伝熱割合が増加しフ ノール樹脂発泡体の断熱性能は不十分と なる恐れがある。 また、 逆に気泡径が 4 0 0 mを越えると、 輻射による熱伝導 が増加するようになり、 発泡体の断熱性能が低下する。  The average cell diameter of the funor resin foam in the present invention is from 10 to 400 m, preferably from 15 to 300 m. Particularly preferably, it is 20 m or more and 150 am or less. If the average cell diameter is less than 10 zm, there is a limit to the thickness of the cell wall, so the foam density inevitably increases, and as a result, the heat transfer ratio of the resin part in the foam increases, and The thermal insulation performance of the resin foam may be insufficient. On the other hand, when the cell diameter exceeds 400 m, heat conduction by radiation increases, and the heat insulating performance of the foam decreases.
本発明における発泡体の密度は 1 0 k gZm3以上 7 0 k gZm3以下であり、 より好ましくは 2 0 k gZm3以上 5 0 k gZm3以下である。 密度が 1 0 k g/ m3 未満であると、 圧縮強度等の機械的強度が小さくなり、 取り扱い時に破損し やすくなり、 表面脆性も増加する。 逆に密度が 7 0 k g/m3 をこえると、 樹脂 部の伝熱が増加し断熱性能が低下する懸念がある。 The density of the foam in the present invention is not more than 1 0 k gZm 3 or 7 0 k gZm 3, more preferably 5 0 k gZm 3 below 2 0 k gZm 3 or more. If the density is less than 10 kg / m 3 , the mechanical strength such as the compressive strength will be reduced, the material will be easily damaged during handling, and the surface brittleness will also increase. Conversely, if the density exceeds 70 kg / m 3 , there is a concern that heat transfer in the resin section will increase and the heat insulation performance will decrease.
本発明においては、 フ ノール樹脂発泡体を特定の樹脂架橋構造と成す必要が ある。 本発明では、 この樹脂の架橋構造を間接的に測定する手段として、 熱分解 ガスクロマトグラフィーを用いる。 フヱノール樹脂発泡体を試料としたときの熱 分解ガスクロマトグラフィ一のパイログラムに現れるトリメチルフエノ一ルゃフ ェノ一ルの各成分の面積は、 直接フ二ノール樹脂発泡体の構造を示すものではな いが、 間接的に元のフュノ一ル樹脂発泡体を構成している高分子の構造を反映す る有力な指標となり得る。 本発明においては、 前記パイログラムのトリメチルフ ェノール Aのフヱノール Bに対する面積比率 C値 (C = AZ B ) を、 フヱノール 樹脂のメチレン構造ないしメチルエーテル構造の架橋密度を間接的に反映する指 標とする。 フヱノール樹脂中にメチレン架橋ゃメチルエーテル架橋が多いと C値 は大きくなり、 逆にメチレン架橋やメチルエーテル架橋が少ないと C値は小さく なる。 In the present invention, the phenol resin foam needs to have a specific resin crosslinked structure. In the present invention, pyrolysis gas chromatography is used as a means for indirectly measuring the crosslinked structure of the resin. The area of each component of trimethylphenol in the pyrolysis gas chromatography pyrogram when a phenolic resin foam is used as a sample directly indicates the structure of the phenolic resin foam. However, it can be a powerful indicator that indirectly reflects the structure of the polymer that constitutes the original phenolic resin foam. In the present invention, the trigram The area ratio C value of phenol A to phenol B (C = AZB) is an index that indirectly reflects the crosslink density of the methylene or methyl ether structure of the phenol resin. The C value increases when there are many methylene and methyl ether crosslinks in the phenolic resin, and the C value decreases when there are few methylene and methyl ether crosslinks.
本発明においては、 上記 C値は 0 . 0 5以上 4 . 0以下であることが必要であ る。 好ましくは 0 . 1以上 2 . 0以下であり、 より好ましくは 0 . 1以上 1 . 0 以下である樹脂架橘構造とする。 本発明者らは、 C値がこの範囲になるようにレ ゾ一ル樹脂の分子量分布、 重合時のホルムアルデヒドとフヱノールの仕込み比、 発泡条件を調整した。 即ち、 重合時のホルムアルデヒドとフ ノールの仕込み比 は 1 . 3〜3 . 0が好ましく、 より好ましくは 1 . 5〜2 . 5であり、 レゾール 樹脂の分子量は、 レゾール樹脂組成物の 4 0 °Cにおける粘度が 1 0 0 0〜5 0 0 0 0 c p sの範囲となるように調整し、 発泡時の混合機内の温度は 8 0 °Cを超え ないようにする。 このように、 レゾール樹脂の分子量分布、 重合時のホルムアル デヒドとフエノールの仕込み比、 発泡条件を調整した場合に、 得られた発泡体の 樹脂自体の強度及び発泡特性が著しく改善され、 炭化水素発泡剤を用いても断熱 性能及び機械的強度に優れたフ ノ一ル樹脂発泡体が得られることを見いだした のである。  In the present invention, the C value needs to be not less than 0.05 and not more than 4.0. It is preferably in the range of 0.1 to 2.0, more preferably in the range of 0.1 to 1.0. The present inventors adjusted the molecular weight distribution of the resin, the charge ratio of formaldehyde to phenol during the polymerization, and the foaming conditions so that the C value was within this range. That is, the charge ratio of formaldehyde to phenol during polymerization is preferably from 1.3 to 3.0, more preferably from 1.5 to 2.5, and the molecular weight of the resole resin is 40 ° of the resole resin composition. The viscosity at C is adjusted so as to be in the range of 100 to 500 cps, and the temperature in the mixer during foaming should not exceed 80 ° C. Thus, when the molecular weight distribution of the resole resin, the charge ratio of formaldehyde to phenol during polymerization, and the foaming conditions are adjusted, the strength and foaming properties of the resin itself of the obtained foam are remarkably improved, and It has been found that even with the use of a foaming agent, a foamed resin foam having excellent heat insulation performance and mechanical strength can be obtained.
本発明では、 この C値が 4 . 0を越えると、 後述する比較例 2から明らかなよ うに発泡体が脆く実用性能が不十分となる恐れがある。 さらに、 発泡体製造時に 樹脂の粘度が高すぎて発泡倍率が上がらないなどの不都合を生じる可能性がある また、 C値が 0 . 0 5未満である場合は、 後述する比較例 3から明らかなように、 フニノ—ル樹脂発泡体の圧縮強度等が低下する。  In the present invention, if the C value exceeds 4.0, the foam may be brittle and the practical performance may be insufficient, as is apparent from Comparative Example 2 described later. Furthermore, there is a possibility that the viscosity of the resin is too high during the production of the foam, which may cause disadvantages such as an increase in the expansion ratio.If the C value is less than 0.05, it is apparent from Comparative Example 3 described later. Thus, the compressive strength and the like of the funinol resin foam decrease.
更に、 本発明者らは、 フエノール樹脂中に尿素架橋構造を形成させるとフ ノ —ル樹脂発泡体の強度がより一層向上することを見いだした。 尿素架橋構造を示 す指標も C値と同様に、 発泡体試料の熱分解ガスクロマトグラフィ一のパイ口グ ラムに現れる成分の面積比率により求められる。 本発明者らは、 尿素架橋由来の 成分 Dのフエノール誘導体成分 Eに対する面積比率 F値 (F = D Z E ) 力く、 フニ ノール樹脂の尿素架橋構造の密度の指標になることを見出した。 Furthermore, the present inventors have found that the formation of a urea crosslinked structure in the phenol resin further improves the strength of the phenol resin foam. Similarly to the C value, the index indicating the urea cross-linked structure can be obtained from the area ratio of the components appearing in the pi-mouth graph of pyrolysis gas chromatography of the foam sample. The present inventors have found that the area ratio F of the component D derived from urea crosslinking to the phenol derivative component E (F = DZE) It has been found that it becomes an index of the density of the urea crosslinked structure of the phenolic resin.
本発明において、 尿素架橋由来の成分 Dとは、 該パイログラムで、 後述する測 定条件において、 保持時間 8分から 1 8分の間に放出される成分で、 分子内にフ ェニル基とイソシアナート (― NCO) 基を含む化合物である。 具体的には第 1 図のピーク 7から 1 1で、 これらに対応するマススペク トルが各々第 2図から第 6図に示すものである。 ピーク 7から 1 1までの面積の総和を Dとする。 本発明 におけるフエノール誘導体とはフエノール、 2—メチルフヱノール、 4—メチル フエノール、 2, 4—ジメチルフエノール、 2, 6—ジメチルフヱノール、 2, 4, 6—トリメチルフヱノールであり、 具体的には第 1図のピーク 1から 6であ る。 本発明ではこれらのパイログラムの面積の総和を Eとする。 F値は 0. 0 1 以上 3以下であることが好ましく、 より好ましくは、 0. 0 2以上 0. 2以 下である。 F値が 0. 0 1未満の場合は、 フ ノール樹脂発泡体の著しい強度の 向上は見られず、 また F値が 0. 3を越えると逆に強度が低下するようになる。 本発明によるフ ノ一ル樹脂発泡体は、 従来の炭化水素発泡剤のフ二ノール樹 脂発泡体と比べ脆性及び圧縮強度も大きく改善されている。 更に、 尿素架橋構造 を最適化すると、 脆性が著しく改善される。 これにより、 従来のフ ノール樹月 発泡体がその脆さ故に使用が制限されていた用途にも、 利用範囲を拡大すること が期待される。  In the present invention, the component D derived from urea crosslinking is a component released in the pyrogram during a retention time of 8 minutes to 18 minutes under the measurement conditions described later, and a phenyl group and an isocyanate in the molecule. It is a compound containing (-NCO) group. Specifically, peaks 7 to 11 in FIG. 1 are shown, and the corresponding mass spectra are shown in FIGS. 2 to 6, respectively. Let D be the sum of the areas from peaks 7 to 11. The phenol derivative in the present invention is phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, 2,6-dimethylphenol, 2,4,6-trimethylphenol, and specifically, Are peaks 1 to 6 in Fig. 1. In the present invention, E is the sum of the areas of these pyrograms. The F value is preferably from 0.01 to 3 and more preferably from 0.02 to 0.2. When the F value is less than 0.01, no significant improvement in the strength of the phenolic resin foam is observed, and when the F value exceeds 0.3, the strength decreases conversely. The phenol resin foam according to the present invention has greatly improved brittleness and compressive strength as compared with the conventional hydrocarbon blowing agent phenol resin foam. Furthermore, optimizing the urea cross-linking structure significantly improves brittleness. As a result, it is expected that the range of use can be expanded to applications where the use of conventional phenolic foam has been restricted due to its brittleness.
本発明のフエノール樹脂発泡体は、 後述する測定法による脆性が 3 0 %以下で あり、 より好ましくは 2 0 %以下である。 脆性が 3 0 %を越えると、 発泡体表面 が削れた樹脂粉が多くなり施工時の作業性が低下するばかりでなく、 運搬、 施工 などの取り扱い時に製品が破損し易くなるなどの問題がある。 なお、 脆性の下限 としては 1 %以上であることが好ましい。 また、 圧縮強度は 0. 5 k g/cm2 以上であり、 より好ましくは 1. 0 k g/cm2以上である。 圧縮強度が 0. 5 k gZcm2未満の場合は、 施工時などに破損し易いばかりでなく、 その機械的 強度の低さ故、 利用範囲も限定されてしまう。 なお、 圧縮強度の上限としては 2 0 k gZ cm2以下であることが好ましい。 脆性及び圧縮強度は、 フエノール樹 脂発泡体の独立気泡率、 平均気泡径、 密度及び樹脂自体の強度と密接に関わって おり、 本発明では、 特にフ ノール樹脂発泡体を形成する樹脂自体を特定の架橋 構造と成すことで樹脂の強度を向上させ、 樹脂発泡体の脆性及び圧縮強度を著し く改善しうるのである。 The phenolic resin foam of the present invention has a brittleness of 30% or less, more preferably 20% or less, as measured by a measurement method described later. When the brittleness exceeds 30%, not only does the resin powder with a sharpened foam surface increase the workability during construction, but also there are problems such as the product being easily damaged during handling such as transportation and construction. . The lower limit of brittleness is preferably 1% or more. Further, the compression strength is 0.5 kg / cm 2 or more, and more preferably 1.0 kg / cm 2 or more. If the compressive strength is less than 0.5 kgZcm 2 , not only is it easy to break during construction and the like, but also its use is limited due to its low mechanical strength. The upper limit of the compressive strength is preferably 20 kgZcm2 or less. Brittleness and compressive strength are closely related to the closed cell ratio, average cell diameter, density and strength of the resin itself of the phenol resin foam. In the present invention, in particular, by forming the resin itself forming the phenolic resin foam into a specific crosslinked structure, the strength of the resin can be improved, and the brittleness and compressive strength of the resin foam can be significantly improved. .
本発明における発泡剤としては、 炭化水素を用いることができるが、 炭素数 3 から 7の環状または鎖状のアルカン、 アルゲン、 アルキンを好ましく使用できる。 さらに、 化学的安定性と熱伝導率の観点より炭素数 4から 6のアルカンもしくは シクロアルカンがより好ましい。 具体的には、 ノルマルブタン、 イソブタン、 シ クロブタン、 ノルマルペンタン、 イソペンタン、 シクロペンタン、 ネオペンタン、 ノルマルへキサン、 イソへキサン、 2, 2—ジメチルブタン、 2, 3—ジメチル ブタン、 シクロへキサン等を挙げることが出来る。 更にその中でも、 ノルマルブ タン、 イソブタン、 シクロブタンのブタン類とノルマルペンタン、 イソペンタン、 シクロペンタン、 ネオペンタンのペンタン類が本発明に特に好適である。 本発明 では、 これら炭化水素を 2種類以上混合して使用することもできる。 具体的には ペンタン類 5〜 9 5重量%とブタン類を 9 5〜5重量%、 より好ましくはペン夕 ン類 2 5〜7 5重量%とブタン類を 7 5〜2 5重量%混合した混合物は、 広い温 度範囲で良好な断熱特性を示すので特に好ましい。 その中でも、 ノルマルペンタ ンとイソブタンの組み合わせは、 低温域 (例えば、 — 8 0 °C程度の冷凍庫用断熱 材) から高温域 (例えば、 2 0 0 °C程度の加熱体用断熱材) までの広い範囲で優 れた断熱性能を確保でき、 更にこれら化合物が比較的安価であり経済的にも有利 であるので特に好ましい。  As the blowing agent in the present invention, hydrocarbons can be used, but cyclic or linear alkanes, algens, and alkynes having 3 to 7 carbon atoms can be preferably used. Further, an alkane or cycloalkane having 4 to 6 carbon atoms is more preferable from the viewpoints of chemical stability and thermal conductivity. Specifically, normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, etc. Can be mentioned. Among them, butanes of normal butane, isobutane and cyclobutane and pentanes of normal pentane, isopentane, cyclopentane and neopentane are particularly suitable for the present invention. In the present invention, two or more of these hydrocarbons can be used in combination. Specifically, pentanes 5 to 95% by weight and butanes 95 to 5% by weight, more preferably pentanes 25 to 75% by weight and butanes 75 to 25% by weight are mixed. Mixtures are particularly preferred because they exhibit good thermal insulation properties over a wide temperature range. Among them, the combination of normal pentane and isobutane can be used from a low temperature range (for example, insulation material for freezer at about -80 ° C) to a high temperature range (for example, heat insulation material for heating body at about 200 ° C). It is particularly preferable because excellent heat insulation performance can be secured in a wide range, and these compounds are relatively inexpensive and economically advantageous.
また、 パーフルォロブタン、 パーフルォロシクロブタン、 パーフルォロペン夕 ン、 パ一フルォロシクロペンタン、 パーフルォ口へキサン、 パ一フルォロシクロ へキサン、 パーフルォロヘプタン、 パ一フルォロシクロヘプタン、 パーフルォロ オクタン、 パーフルォロシクロォクタン等のフルォロカーボン類を発泡時に混合 して使用することも出来る。 さらに、 窒素、 ヘリウム、 アルゴン、 空気などの低 沸点物質を発泡核として発泡剤に溶解させて使用することもできる。 本発明にお ける発泡剤の使用量は、 所望する発泡体の密度、 発泡条件等によって任意に選択 して差し支えないが、 通常、 樹脂 1 0 0重量部に対して、 3から 4 0重量部であ ることが好ましく、 より好ましくは 5から 3 0重量部である。 Also, perfluorobutane, perfluorocyclobutane, perfluoropentane, perfluorocyclopentane, perfluorohexane, perfluorocyclohexane, perfluoroheptane, perfluorocycloheptane Fluorocarbons such as perfluorooctane, perfluorocyclooctane, etc. can be mixed and used at the time of foaming. Furthermore, low-boiling substances such as nitrogen, helium, argon, and air can be used as foam nuclei dissolved in a foaming agent. The amount of the foaming agent used in the present invention may be arbitrarily selected depending on the desired density of the foam, foaming conditions, and the like, but is usually 3 to 40 parts by weight based on 100 parts by weight of the resin. In It is more preferably 5 to 30 parts by weight.
本発明によるフエノール樹脂発泡体は、 発泡剤が炭化水素でありながら、 熱伝 導率は 0 . 0 2 5 k c a l Zm h r °C以下であり、 優れた断熱性能を有する。 よ り好ましい熱伝導率では 0 . 0 2 0 k c a 1 /m h r °C以下である。 なお、 熱伝 導率の下限としては 0 . 0 1 2 k c a l Zm h r °C以上であることが好ましい。 さらに本発明者らは、 発泡時に高沸点の脂肪族炭化水素若しくは高沸点の脂環 式炭化水素またはそれらの混合物が発泡時に存在すると更に良いフエノ一ル樹脂 発泡体を形成することを見出した。 本発明の高沸点の脂肪族炭化水素若しくは高 沸点の脂環式炭化水素またはそれらの混合物は、 1 X 1 0 5 P aでの通常の沸点 が 1 5 0 °C以上であってアルカン構造またはシクロアルカン構造を主とする炭化 水素であることが好ましく、 具体的には固体パラフィ ン、 流動パラフィ ン、 ミネ ラルスピリ ッ ト、 低分子量ポリエチレン、 低分子量ポリプロピレン等を挙げるこ とが出来る。 固体パラフィ ンはパラフィ ンロウとも呼ばれ炭素数は 1 6から 6 0 の範囲に分布し主として正パラフィンからなるが、 ィソパラフィンおよびナフテ ンを含む物も多く、 通常、 融点は 3 5 °Cから 8 0 °C程度に変化する。 流動バラフ ィンは、 通常流動点が一 2 0 °C以上で、 比較的軽質の潤滑油留分たとえばスピン ドル油留分を硫酸洗浄によつて高度に精製した炭化水素油であり、 揮発性が低く 飽和炭化水素を主成分とする。 ミネラルスピリッ トは、 石油スピリッ トとも呼ば れ日本工業規格 K 2 2 0 1 (工業ガソリン規格) 4号に規定されている。 The phenolic resin foam according to the present invention has a thermal conductivity of not more than 0.025 kcal Zm hr ° C and excellent heat insulation performance even though the blowing agent is a hydrocarbon. A more preferable thermal conductivity is 0.020 kca 1 / mhr ° C or less. Note that the lower limit of the thermal conductivity is preferably at least 0.012 kcal Zm hr ° C. Furthermore, the present inventors have found that a high-boiling aliphatic hydrocarbon, a high-boiling alicyclic hydrocarbon, or a mixture thereof during foaming forms a better phenolic resin foam when present at the time of foaming. High-boiling aliphatic hydrocarbons or high-boiling alicyclic hydrocarbon or mixtures thereof of the present invention, 1 X 1 0 5 normal boiling point at P a is 1 5 0 alkane structure comprising at ° C or more or It is preferably a hydrocarbon mainly having a cycloalkane structure, and specific examples include solid paraffin, liquid paraffin, mineral spirit, low molecular weight polyethylene, and low molecular weight polypropylene. Solid paraffin, also called paraffin wax, has a carbon number ranging from 16 to 60 and is mainly composed of normal paraffin, but many contain isoparaffin and naphthene, and usually have a melting point of 35 ° C to 80 ° C. ° C. Fluidized baffles are hydrocarbon oils with a pour point typically above 120 ° C and a relatively light lubricating oil fraction, for example, a spindle oil fraction, highly refined by washing with sulfuric acid. Low, with saturated hydrocarbon as the main component. Mineral spirit is also called petroleum spirit and is specified in Japanese Industrial Standard K2201 (Industrial Gasoline Standard) No.4.
本発明において、 高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素また はそれらの混合物の量は、 フエノール樹脂発泡体に対して 0 . 0 1重量%から 1 0重量%であり、 より好ましくは、 0 . 0 5重量%から 5重量%である。 高沸 点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混合物の量が 0 . 0 1重量%未満であるとほとんど効果はない。 また、 重量が 1 0重量%を越 えると、 気泡中で高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素または それらの混合物が液化して断熱性能が低下したり、 樹脂の剛性が低下したりする 事が懸念される。  In the present invention, the amount of the high-boiling aliphatic hydrocarbon or the high-boiling alicyclic hydrocarbon or a mixture thereof is from 0.01% to 10% by weight based on the phenolic resin foam; More preferably, it is 0.05 to 5% by weight. If the amount of high-boiling aliphatic hydrocarbon or high-boiling alicyclic hydrocarbon or a mixture thereof is less than 0.01% by weight, there is little effect. If the weight exceeds 10% by weight, high-boiling aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons or a mixture thereof are liquefied in air bubbles to lower the heat insulation performance, and the rigidity of the resin is reduced. Is likely to decrease.
発泡時に高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれら の混合物を存在させることによって、 フ ノール樹脂発泡体の気泡をより小さく 均一にし、 それによつてフエノール樹脂発泡体の断熱性能を改善する効果がある。 また本発明者らは、 発泡時にフルォロェ一テルが存在すると、 良好なフヱノー ル樹脂発泡体を得られることを見出した。 本発明のフルォロエーテルは、 下記一 般式 (I) で示される、 分子内にパーフルォロプロピルエーテル構造とフルォロ メチレン構造を併せ持つフルォロェ一テルであって、 例えば、 ァウジモント株式 会社製のパーフルォロポリエーテル類であるガルデン (Ga l den) HT- 7 0、 ガルデン (Ga l d en) HT— 55等を好ましく用いることができる。 High-boiling aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons or the like during foaming The presence of this mixture has the effect of making the cells of the phenolic resin foam smaller and more uniform, thereby improving the thermal insulation performance of the phenolic resin foam. The present inventors have also found that the presence of fluoroether during foaming can provide a good phenolic resin foam. The fluoroether of the present invention is a fluoroether represented by the following general formula (I) and having both a perfluoropropyl ether structure and a fluoromethylene structure in the molecule. Galden HT-70 and Galden HT-55, which are ropolyethers, can be preferably used.
FaHbC-[(0-CF-CF2) - (0-CF2)n]-0-CFaHb (I) C F3 F a H b C-[(0-CF-CF 2 )-(0-CF 2 ) n ] -0-CF a H b (I) C F 3
(式中、 aは 0、 1、 2、 3であり、 bは 3— aであり、 mおよび nは、 それぞ れ 1以上の整数であり、 より好ましくは 1以上 1 0以下である。 )  (Where a is 0, 1, 2, 3; b is 3-a; and m and n are each an integer of 1 or more, more preferably 1 or more and 10 or less. )
本発明のフルォロエーテルの使用量は、 フヱノール樹脂発泡体に対して 0. 0 The amount of the fluoroether used in the present invention is 0.0 with respect to the phenol resin foam.
1重量%から 5重量%であり、 より好ましくは、 0. 05重量%から3重量%で ある。 フルォロエーテルの量が 0. 0 1重量%未満であると効果が得られない。 また、 フルォロエーテルの量が 5重量%を越えると、 製造コストが嵩み経済的に 不利になるばかりではなく、 気泡中で特定のフルォロェ一テルが液化して断熱性 能が低下したり、 樹脂の剛性が低下する事が懸念される。 It is from 1% by weight to 5% by weight, more preferably from 0.05% by weight to 3% by weight. If the amount of the fluoroether is less than 0.01% by weight, no effect can be obtained. On the other hand, if the amount of the fluoroether exceeds 5% by weight, not only is the production cost increased and the economy disadvantageous, but also the specific fluoroester is liquefied in the air bubbles and the heat insulation performance is reduced, and the resin becomes less efficient. There is a concern that the rigidity will decrease.
本発明におけるフルォロェ一テルを発泡剤として単独で使用すると、 フルォロ エーテルが発泡の際に急激に樹脂相から分離してしまい発泡体は得られずに、 フ ヱノール樹脂の固まりになってしまった。 これは、 本発明におけるフルォロェ一 テルが、 特開平 3— 23 1 94 1号公報及び特開平 4一 202242号公報で使 用されている特定のポリフルォロエーテル類及び特定のフッ化工一テル類とは異 なり、 発泡剤としての発泡機能を有しないためである。  When the fluoroether in the present invention was used alone as a foaming agent, the fluoroether was rapidly separated from the resin phase at the time of foaming, so that a foam was not obtained and the phenol resin was agglomerated. This is because the fluoroether in the present invention is a specific polyfluoroether and a specific fluorinated ester used in JP-A-3-231 941 and JP-A-4-1202242. In contrast to this, it does not have a foaming function as a foaming agent.
本発明では、 発泡剤として炭化水素を用いて、 発泡時にフルォロエーテルを共 存させることによって、 フヱノール樹脂発泡体の気泡径を小さくし、 それによつ て断熱性能を改善するのである。  In the present invention, by using a hydrocarbon as a foaming agent and allowing fluoroether to coexist at the time of foaming, the cell diameter of the phenolic resin foam is reduced, thereby improving the heat insulating performance.
また、 本発明によるフルォロエーテルは、 酸素が分子内に存在するため、 パ一 フルォロアルカン類と比較して大気中での寿命が短くなり地球温暖化係数が比較 的小さくなり、 地球環境保護に適合すると言う利点が期待できる。 In the fluoroether according to the present invention, oxygen is present in the molecule. Compared to fluoroalkanes, their lifespan in the atmosphere is shorter, their global warming potential is relatively smaller, and they can be expected to be compatible with global environmental protection.
更に本発明者らは、 発泡時に下記一般式 (I I) で示されるフルォロアミンが存 在すると良好なフエノール樹脂発泡体が得られることも見出した。  Furthermore, the present inventors have also found that a good phenol resin foam can be obtained when a fluoramine represented by the following general formula (II) is present during foaming.
(式中、 cは 4以上の自然数であり、 より好ましくは 4以上 1 6以下の自然数で ある。 dは 2 c + 1である。 ) (In the formula, c is a natural number of 4 or more, more preferably a natural number of 4 or more and 16 or less. D is 2c + 1.)
本発明におけるフルォロアミンは沸点が高く、 発泡剤としては機能しない。 具 体的には、 住友スリ一ェム株式会社製のフロリナ一ト F C— 4 3 (トリパーフル ォロブチルァミン) 、 F C— 7 0 (トリパーフルォロアミルァミン) 、 F C— 7 1 (トリパーフルォ口へキシルアミン) 等を好ましく用い得る。  The fluoroamine in the present invention has a high boiling point and does not function as a blowing agent. Specifically, Florinato FC-43 (triplefluoroamylamine), FC-70 (triplefluoramylamine), FC-71 (triplefluo mouth) manufactured by Sumitomo SLIM Co., Ltd. Xylamine) can be preferably used.
本発明ではフルォロアミンの使用量を、 フヱノール樹脂発泡体に対して 0 . 0 1重量%から 5重量%とする必要があり、 より好ましくは、 0 . 0 5重量%から 3重量%である。 フルォロアミンの量が 0 . 0 1重量%未満であると効果が得ら れない。 また、 フルォロアミンはその使用量が 5重量%を越えると、 製造コスト が嵩み経済的に不利になるばかりではなく、 気泡壁面にフルォロアミンが析出し て断熱性能が低下したり、 樹脂の剛性が低下する事が懸念される。  In the present invention, the amount of fluoramine used must be from 0.01% to 5% by weight, more preferably from 0.05% to 3% by weight, based on the phenol resin foam. If the amount of fluoramine is less than 0.01% by weight, no effect can be obtained. When the amount of fluoramine exceeds 5% by weight, not only is the production cost increased, which is not economically disadvantageous, but also the fluoramine is precipitated on the cell wall surface, thereby deteriorating the heat insulation performance and decreasing the rigidity of the resin. Is concerned about
本発明におけるフルォロアミンは沸点が高いため発泡剤としての発泡機能を有 しない。 従って、 本発明におけるフルォロアミンを発泡剤として単独で使用する と、 全く発泡する事がない。 しかしながら、 本発明によるフルォロアミンはフヱ ノ一ル樹脂発泡時に発泡性組成物中に存在させることによって、 フ ノール樹脂 発泡体の気泡部及び樹脂部の構造形成に好適に機能するのである。 すなわち、 本 発明では、 発泡剤として炭化水素を用いて、 発泡時にフルォロアミンを共存させ ることによって、 フエノール樹脂発泡体の気泡径が小さくなり、 それ故に本発明 によるフヱノール樹脂発泡体は、 断熱性能が改善されるのである。  The fluoroamine in the present invention does not have a foaming function as a foaming agent because of its high boiling point. Therefore, when the fluoramine in the present invention is used alone as a foaming agent, foaming does not occur at all. However, when the fluoroamine according to the present invention is present in the foamable composition at the time of foaming the phenolic resin, the fluoramine suitably functions to form the structure of the cell portion and the resin portion of the phenolic resin foam. That is, in the present invention, by using a hydrocarbon as a foaming agent and allowing fluoramine to coexist at the time of foaming, the cell diameter of the phenolic resin foam is reduced, and therefore, the phenolic resin foam according to the present invention has heat insulation performance. It will be improved.
次に、 本発明によるフ ノール樹脂発泡体の製造法について説明する。  Next, a method for producing a phenolic resin foam according to the present invention will be described.
フヱノール樹脂発泡体を製造するレゾ一ル樹脂は、 フヱノ一ルとホルマリンを 原料としてアルカリ触媒により 4 0 °Cから 1 0 0 °Cの温度範囲で加熱して重合さ せる。 その際、 原料フヱノールの一部をサリゲニンに代替すると C値をコント口 —ルするのに有効である。 すなわち、 レゾール樹脂の分子量を上げていくと C値 は大きくなる傾向に有るが、 分子量を上げすぎると、 レゾ一ル樹脂の粘度が急激 に上昇して、 取り扱い難くなる。 サリゲニンをフヱノールの代替または一部代替 として用いると、 取り扱いやすい低分子のレゾール樹脂で有りながら C値の大き な、 すなわち架橋密度の高いフニノール樹脂発泡体を得ることが出来る。 尿素架 橋構造を導入する場合には、 レゾ一ル重合時に尿素を添加して尿素と反応したレ ゾ一ル樹脂を調整しても良いが、 予めアル力リ触媒でメチロール化した尿素をレ ゾール樹脂に混合し塩基性のまま加熱反応させると更に良い。 レゾール樹脂組成 物中のメチロール化尿素量は、 通常レゾール樹脂に対し 1〜4 0重量%、 好まし くは 2〜3 0重量%、 添加する。 レゾ一ル樹脂組成物は、 水分量を調整すること により所望する粘度にして使用される。 樹脂組成物の好適粘度は発泡条件により 異なるカ^ 4 0 °Cにおける粘度が、 好ましくは 1 0 0 0〜5 0 0 0 0 c p sで、 より好ましくは 2 0 0 0〜3 0 0 0 0 c p sである。 Resin resin for producing a phenolic resin foam is polymerized by heating phenol and formalin in a temperature range of 40 ° C to 100 ° C with an alkali catalyst. Let At that time, substituting a part of the raw material phenol with saligenin is effective for controlling the C value. That is, as the molecular weight of the resole resin increases, the C value tends to increase. However, if the molecular weight is too high, the viscosity of the resole resin sharply increases, making it difficult to handle. When saligenin is used as a substitute or a partial substitute for phenol, a fininol resin foam having a high C value, that is, a high crosslink density, can be obtained while being a low-molecular-weight resole resin that is easy to handle. When introducing a urea bridge structure, urea may be added during the resole polymerization to adjust the resole resin that has reacted with the urea. It is more preferable to mix the sol resin with a sol resin and carry out a heat reaction while maintaining the basicity. The amount of methylolated urea in the resole resin composition is usually 1 to 40% by weight, preferably 2 to 30% by weight, based on the resole resin. The resin resin composition is used at a desired viscosity by adjusting the amount of water. The preferred viscosity of the resin composition varies depending on the foaming conditions. The viscosity at 40 ° C. is preferably 100 to 500 cps, and more preferably 200 to 300 cps. It is.
適正な粘度に調整されたレゾール樹脂組成物と、 発泡剤、 界面活性剤、 硬化触 媒、 更に必要に応じて高沸点の脂肪族炭化水素、 高沸点の脂環式炭化水素または それらの混合物、 フルォロェ一テル、 フルォロアミン、 その他添加剤を混合機に 導入し、 均一に混合して、 発泡性組成物を得ることが出来る。 その際、 界面活性 剤を予め樹脂に混合しておいて、 混合機に導入しても良いし、 これらを別々に混 合機に導入しても良い。 ただし、 硬化触媒は予めレゾ一ル樹脂と混合されると、 発泡前に硬化反応が進行し良好な発泡体が得られないため、 混合機でレゾール樹 脂と硬化触媒とを混合することが望ましい。 また、 高沸点の脂肪族炭化水素、 高 沸点の脂環式案化水素またはそれらの混合物、 フルォロエーテル、 フルォロアミ ンを用いる場合には、 これらを予めレゾール樹脂と混合して混合機に導入しても 良いし、 混合機に単独で供給しても良いが、 発泡剤に溶解して混合機に導入する と、 より効果的で好ましい。 混合機で混合して得られた発泡性組成物を、 型枠な どに流し込み、 加熱処理により発泡硬化を完了させ、 フエノール樹脂発泡体を得 る o 発泡硬化させる際の硬化触媒としては、 トルエンスルホン酸、 キシレンスルホ ン酸、 ベンゼンスルホン酸、 フヱノールスルホン酸、 スチレンスルホン酸、 ナフ タレンスルホン酸などの芳香族スルホン酸を単独又は 2種類以上混合して使用で きる。 また硬化助剤としてレゾルシノール、 クレゾール、 サリゲニン (0—メチ ロールフヱノール) 、 p—メチロールフヱノールなどを添加しても良い。 また、 これら硬化触媒を、 ジエチレングリコール、 エチレングリコールなどの溶媒で希 釈しても良い。 A resole resin composition adjusted to an appropriate viscosity, a foaming agent, a surfactant, a curing catalyst, and, if necessary, a high-boiling aliphatic hydrocarbon, a high-boiling alicyclic hydrocarbon, or a mixture thereof; Fluoroether, fluoramine, and other additives can be introduced into a mixer and uniformly mixed to obtain a foamable composition. At that time, the surfactant may be previously mixed with the resin and introduced into the mixer, or these may be separately introduced into the mixer. However, if the curing catalyst is mixed with the resin in advance, the curing reaction proceeds before foaming and a good foam cannot be obtained, so it is desirable to mix the resole resin and the curing catalyst with a mixer. . When high-boiling aliphatic hydrocarbons, high-boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers and fluoramines are used, they may be mixed with the resole resin in advance and introduced into the mixer. Although it may be good, or it may be supplied to the mixer alone, it is more effective and preferable to dissolve it in a blowing agent and introduce it into the mixer. The foamable composition obtained by mixing with a mixer is poured into a mold or the like, and the foaming and curing is completed by heat treatment to obtain a phenol resin foam o As a curing catalyst for foaming and curing, aromatic sulfonic acids such as toluenesulfonic acid, xylenesulfonic acid, benzenesulfonic acid, phenolsulfonic acid, styrenesulfonic acid, and naphthalenesulfonic acid are used alone or in combination of two or more. It can be used. Also, resorcinol, cresol, saligenin (0-methylol phenol), p-methylol phenol and the like may be added as a curing aid. Further, these curing catalysts may be diluted with a solvent such as diethylene glycol or ethylene glycol.
本発明で使用する界面活性剤は、 フユノール樹脂発泡体製造に有効な物のうち 任意の物を使用できる。 中でも、 ノニオン系の界面活性剤が効果的であり、 例え ば、 エチレンオキサイ ドとプロピレンオキサイドの共重合体であるアルキレンォ キサイ ドゃ、 アルキレンォキサイドとヒマシ油の縮合物、 アルキレンォキサイ ド とノニルフヱノール、 ドデシルフヱノ一ルのようなアルキルフヱノ一ルとの縮合 生成物、 更にはポリオキシエチレン脂肪酸エステル等の脂肪酸エステル類、 ポリ ジメチルシロキサン等のシリコーン系化合物、 ポリアルコール類等がある。 これ らの界面活性剤は一種類で用いても良いし、 二種類以上を組み合わせて用いても 良い。 また、 その使用量についても特に制限はないが、 本発明ではレゾール樹脂 1 0 0重量部当たり 0 . 3〜 1 0重量部の範囲で好ましく使用される。  As the surfactant used in the present invention, any of those effective for producing a funool resin foam can be used. Among them, nonionic surfactants are effective, for example, alkylene oxide, which is a copolymer of ethylene oxide and propylene oxide, a condensate of alkylene oxide and castor oil, and an alkylene oxide. And condensation products of alkylphenols such as nonylphenol and dodecylphenol, fatty acid esters such as polyoxyethylene fatty acid esters, silicone compounds such as polydimethylsiloxane, and polyalcohols. These surfactants may be used alone or in combination of two or more. The amount of use is not particularly limited, but is preferably used in the range of 0.3 to 10 parts by weight per 100 parts by weight of the resole resin in the present invention.
次に本発明におけるフエノール樹脂発泡体の組織、 構造、 特性の評価方法につ いて説明する。  Next, a method for evaluating the structure, structure, and characteristics of the phenolic resin foam according to the present invention will be described.
本発明における発泡体の平均気泡径とは、 発泡体内部の 5 0倍拡大写真上に 9 c mの長さの直線を 4本引き、 各直線が横切った気泡の数を各直線で求め、 それ らの平均値 (J I S K 6 4 0 2に準じて測定したセル数) で 1 8 0 0 /z mを割 つた値である。  The average cell diameter of the foam according to the present invention is defined as: The four straight lines having a length of 9 cm are drawn on a 50-times enlarged photograph of the inside of the foam, and the number of cells crossed by each straight line is determined by each straight line. The average value (the number of cells measured according to JISK6402) divided by 1800 / zm.
密度は、 2 0 c m角のフ ノール樹脂発泡体を試料とし、 この試料の面材、 サ ィディング材を取り除いて重量と見かけ容積を測定して求めた値であり、 J I S K 7 2 2 2に従い測定した。  Density is a value obtained by measuring the weight and apparent volume of a 20 cm square phenolic resin foam as a sample, removing the face material and siding material of this sample, and measuring according to JISK7222. did.
独立気泡率は、 次のようにして測定した。 フエノール樹脂発泡体からコルクボ —ラーでくり貫いた直径 3 5〜3 6 mmの円筒試料を、 高さ 3 0〜4 0 mmに切 りそろえ、 空気比較式比重計 1 0 0 0型 (東京サイエンス社製) の標準使用方法 により試料容積を測定する。 その試料容積から試料重量と樹脂密度から計算した 気泡壁の容積を差し引いた値を、 試料の外寸から計算した見かけの容積で割った 値であり、 ASTM D 2 8 5 6に従い測定した。 ただし、 フヱノール樹脂の密 度は 1. 2 7 gZcm3とした。 The closed cell ratio was measured as follows. A 35 to 36 mm diameter cylindrical sample cut through a phenolic resin foam with a cork boiler is cut to a height of 30 to 40 mm. Measure the sample volume according to the standard method of using an air-comparison hydrometer 100000 (manufactured by Tokyo Science). The value obtained by subtracting the cell wall volume calculated from the sample weight and the resin density from the sample volume was divided by the apparent volume calculated from the outer dimensions of the sample, and measured in accordance with ASTM D2856. However, the density of the phenol resin was 1.27 gZcm 3 .
熱伝導率はサンプル 2 0 0 mm角、 低温板 5 °C、 高温板 3 5 °Cで J I S A 1 4 1 2の平板熱流計法に従い測定した。  The thermal conductivity was measured according to the plate heat flow meter method of JISA1412 at a sample of 200 mm square, a low temperature plate at 5 ° C, and a high temperature plate at 35 ° C.
脆性試験の試験片は、 一つの面に成形スキン又は面材を含むように一辺 2 5土 1. 5mmの立方体 1 2個切り出して試料とした。 ただし、 発泡体の厚さが 2 5 mmに満たない場合の試験片の厚さは発泡体の厚さとした。 室温乾燥した一辺 1 9 ± 0. 8 mmの樫製の立方体 2 4個と試験片 1 2個を、 埃が箱の外へ出ない ように密閉できる内寸 1 9 1 X 1 9 7 X 1 9 7 mmの樫製の木箱に入れ、 毎分 6 0 ± 2回転の速度で 6 0 0 ± 3回転させる。 回転終了後、 箱の中身を呼び寸法 9. 5mmの網に移し、 ふるい分けをして小片を取り除き、 残った試験片の重量 を測定し、 試験前の試験片重量からの減少率を計算した値が脆性であり、 J I S A 9 5 1 1に従い測定した。  A test piece for the brittle test was cut out of 12 cubes of 2.5 mm each side and 1.5 mm in length so as to include a molded skin or face material on one side. However, when the thickness of the foam was less than 25 mm, the thickness of the test piece was the thickness of the foam. Inner dimensions 1 9 1 X 1 9 7 X 1 that can be sealed with room temperature-dried 1 9 ± 0.8 mm oak cubes 24 and 2 test pieces so that dust does not come out of the box Place in a wooden box of 97 mm oak and make 600 ± 3 revolutions at 60 ± 2 revolutions per minute. After the rotation is completed, the contents of the box are transferred to a mesh with a nominal size of 9.5 mm, sieved to remove small pieces, the weight of the remaining test piece is measured, and the reduction rate from the weight of the test piece before the test is calculated. Is brittle and was measured according to JISA 9511.
圧縮強さは J I S K 7 2 2 0に従い規定ひずみを 0. 0 5として測定した。 熱分解ガスクロマトグラフィーのパイログラムの測定は次のように行った。 測 定に用いるフヱノール樹脂発泡体サンプルは、 面材、 サイディング材を取り除い た発泡体コア部分よりカッターナイフなどで削りだした粉末を更に乳鉢で入念に 粉碎し、 一度の測定当たり 0. 3〜0. 4 mgを試料量とした。 熱分解装置は、 加熱炉型熱分解装置であるフロンティアラボ社製 PY 2 0 1 0 Dを用いた。 熱分 解温度は 6 7 0 °Cで行つた。 ガスクロマトグラフィ一の測定はヒユーレツ トパッ カード社 HP 5 8 9 0 A型で、 無極性液相のキヤビラリ一カラムであるデユラ ボンド (Du r a b o n d o) DB— 1 (内径 2 5 mm、 膜厚 0. 2 5〃 m、 長さ 3 0 m) を用いた。 キヤリャ一ガスはヘリウム (H e) 、 全流量は 1 0 0 c c /m i n、 ヘッ ドプレッシャー 1 0 0 k P a、 オーブン温度は、 5 0でか らスタートし毎分 2 0°Cのスピードで 3 4 0 °Cまで昇温し 1 5. 5分間保持した c 各成分の検出は水素炎イオン化検出器 (F I D ) で行い、 各ピークの面積値を全 検出成分で規格化し、 それぞれの成分の比率とした。 ただし、 ピークの裾が重な る場合には、 ピークの重なりの谷間から、 ベースラインへ垂線を下ろし、 ベース ラインと垂線に囲まれた範囲をピーク面積とした。 The compressive strength was measured in accordance with JISK 7220 with a specified strain of 0.05. The pyrogram of pyrolysis gas chromatography was measured as follows. For the phenolic resin foam sample used for measurement, the powder obtained by shaving the foam core from which the face material and siding material have been removed with a cutter knife, etc., is further carefully ground in a mortar, and 0.3 to 0 per measurement. 4 mg was used as the sample amount. As the thermal decomposition apparatus, PY210D manufactured by Frontier Lab Co., Ltd., which is a heating furnace type thermal decomposition apparatus, was used. The thermal decomposition temperature was 670 ° C. Gas chromatography was performed using a Hewlett Packard HP 589 A type A non-polar liquid phase capillary column, Du rabondo DB-1 (inner diameter 25 mm, film thickness 0.25). 〃 m, length 30 m) was used. The carrier gas is helium (He), the total flow rate is 100 cc / min, the head pressure is 100 kPa, the oven temperature is 50, and the speed is 20 ° C / min. Heated to 340 ° C and held for 15.5 minutes c The detection of each component was performed with a flame ionization detector (FID), and the area value of each peak was normalized with respect to all the detected components to obtain the ratio of each component. However, when the tails of the peaks overlap, a perpendicular was drawn from the valley where the peaks overlap to the baseline, and the area surrounded by the baseline and the perpendicular was defined as the peak area.
本発明によるフヱノール樹脂発泡体サンプルのガスクマトグラムの一例を第 1 図に示す。 各成分の構造は、 ガスクロマトグラフィーにより分離した成分を質量 分析機へ導入して得たマススぺク トルにより確認した。 マススぺク トルは日本電 子 J M S A X— 5 0 5 Hにより、 電子衝撃イオン化法 (E I法) でイオン化電 圧 7 0 e V、 イオン化電流 3 0 O m Aで測定した。  FIG. 1 shows an example of a gas chromatogram of a phenol resin foam sample according to the present invention. The structure of each component was confirmed by a mass spectrum obtained by introducing the component separated by gas chromatography into a mass spectrometer. The mass spectrum was measured with an electron impact ionization method (EI method) at an ionization voltage of 70 eV and an ionization current of 30 OmA using JEOL JMSAX-505H.
気泡中に残存する発泡剤および高沸点の脂肪族炭化水素、 高沸点の脂環式炭化 水素またはそれらの混合物、 フルォロェ一テル、 フルォロアミンは、 以下のよう に確認できる。 フヱノール樹脂発泡体サンプルを密閉した容器に入れたピリジン、 トルエン、 テトラヒ ドロフラン (T H F ) 、 ジメチルホルムァミ ド (D M F ) 等 から選んだの適当な溶媒中で粉砕し、 発泡剤および高沸点の脂肪族炭化水素、 高 沸点の脂環式炭化水素またはそれらの混合物、 フルォロェ一テル、 フルォロアミ ンを抽出しガスクロマトグラフィ一又は液体ク口マトグラフィ一にかけ、 同定で きる。  The foaming agent and high-boiling aliphatic hydrocarbons, high-boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers, and fluoroamines remaining in the bubbles can be confirmed as follows. The phenolic resin foam sample is ground in a suitable solvent selected from pyridine, toluene, tetrahydrofuran (THF), dimethylformamide (DMF), etc., placed in a closed container, and the foaming agent and high boiling point fat Aromatic hydrocarbons, high-boiling alicyclic hydrocarbons or mixtures thereof, fluoroethers, and fluoroamines can be extracted and identified by gas chromatography or liquid chromatography.
該フエノール樹脂発泡体中の尿素架橋由来構造の比率は、 フエノ一ルと トリメ チルフヱノ一ルの比率を求めたのと同様に熱分解ガスクロ トグラフィ一を測定し、 その各成分の面積より計算できる。 パイログラムの尿素架橋由来構造の成分の面 積の総和 Dと、 フヱノール、 2—メチルフヱノール、 4—メチルフヱノール、 2, 4ージメチルフエノール、 2, 6—ジメチルフエノール、 2, 4, 6 —トリメチ ルフヱノールの面積の総和 Eを求め、 Dの Eに対する面積比を F ( F = D / E ) とする。  The ratio of the structure derived from urea crosslinking in the phenolic resin foam can be calculated from the area of each component by measuring pyrolysis gas chromatography in the same manner as the ratio of phenol to trimethylphenol. The sum D of the area of the components of the structure derived from the urea bridge in the pyrogram, and the sum of the area of phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, 2,6-dimethylphenol, and 2,4,6-trimethylphenol Find the total area E, and let the area ratio of D to E be F (F = D / E).
本発明によるフ ノール樹脂発泡体の尿素架橋由来の分解生成物のマススぺク トルの例は第 2図から第 6図に示す。 実施例 Examples of the mass spectrum of the decomposition product derived from the urea crosslinking of the phenolic resin foam according to the present invention are shown in FIGS. 2 to 6. Example
次に実施例および比較例によつて本発明をさらに詳細に説明する。  Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
以下の実施例及び比較例で用いたレゾ一ル樹脂は以下のようにして準備した。 The resin used in the following examples and comparative examples was prepared as follows.
(A) レゾ一ル樹脂の合成 (A) Synthesis of resin resin
反応機に、 3 7 %ホルマリン (和光純薬社製、 試薬特級) 5 5 0 0 gと 9 9 % フエノール (和光純薬社製、 試薬特級) 3 0 0 0 gを仕込み、 プロペラ回転式の 撹拌機により撹拌し、 温調機により反応機内部液温度を 4 0°Cに調整する。 次い で、 5 0 %水酸化ナトリウム (N a OH) 水溶液を 6 0 g加え、 反応液を 4 0°C から 8 5°Cに上昇させ 1 1 5分間保持した。 その後、 反応液を 5 °Cまで冷却する。 これを、 レゾ一ル樹脂 A— 1とする。  Reactor was charged with 37% formalin (Wako Pure Chemical Industries, special grade reagent) 550 g and 99% phenol (Wako Pure Chemical Co., special grade reagent) 300 g, and the propeller rotating type Stir with a stirrer and adjust the temperature inside the reactor to 40 ° C with a temperature controller. Next, 60 g of a 50% aqueous solution of sodium hydroxide (NaOH) was added, and the reaction solution was heated from 40 ° C to 85 ° C and held for 115 minutes. Then, cool the reaction solution to 5 ° C. This is referred to as Resin Resin A-1.
更に、 反応機に 3 7 %ホルマリン 2 1 6 0 gと水 2 0 0 0 gと 5 0 %水酸化ナ トリウム (Na OH) 水溶液 1 5 6 gを加え、 尿素 (和光純薬社製、 試薬特級) 3 2 0 0 gを仕込み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応 機内部液温度を 4 0°Cに調整する。 次いで、 反応液を 5 0°Cから 7 0°Cに上昇さ せ 6 0分間保持した。 これを、 メチロール尿素 Uとする。  Further, 37% formalin 2160 g, water 20000 g and 50% sodium hydroxide (NaOH) aqueous solution 156 g were added to the reactor, and urea (Wako Pure Chemical Industries, Charge 300 g of special grade, stir with a propeller rotating stirrer, and adjust the temperature inside the reactor to 40 ° C with a temperature controller. Next, the reaction solution was heated from 50 ° C. to 70 ° C. and held for 60 minutes. This is referred to as methylol urea U.
次に、 レゾール樹脂 A— 1全量にメチロール尿素 Uを 1 2 3 0 g混合して液温 度を 6 0°Cに上昇させ 1時間保持した。 次いで反応液を 3 0°Cまで冷却し、 パラ トルエンスルホン酸一水和物の 5 0 %水溶液で p Hが 5になるまで中和した。 こ の反応液を、 6 0°Cで脱水処理して、 粘度を測定したところ 4 0°Cにおける粘度 は 6 7 0 0 c p sであった。 これを、 レゾ一ル樹脂 Aとする。  Next, 123 g of methylol urea U was mixed with the whole amount of the resole resin A-1, and the liquid temperature was raised to 60 ° C. and maintained for 1 hour. The reaction was then cooled to 30 ° C. and neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5. This reaction solution was dehydrated at 60 ° C., and the viscosity was measured. The viscosity at 40 ° C. was 6700 cps. This is referred to as Resin Resin A.
(B) レゾ一ル樹脂の合成  (B) Synthesis of resin resin
レゾール樹脂 Bの合成は添加するメチロール尿素 Uの重量を 3 0 0 gに変更し た以外はレゾ一ル樹脂 Aと同様に行った。  The synthesis of resole resin B was performed in the same manner as resole resin A, except that the weight of added methylol urea U was changed to 300 g.
(C) レゾ一ル樹脂の合成  (C) Synthesis of resin resin
レゾ一ル樹脂 Cの合成は添加するメチロール尿素 Uの重量を 2 5 0 0 gに変更 した以外はレゾール樹脂 Aと同様に行った。  Resin resin C was synthesized in the same manner as resole resin A, except that the weight of added methylol urea U was changed to 250 g.
(D) レゾール樹脂の合成  (D) Synthesis of resole resin
反応機に、 3 7 %ホルマリ ン 3 8 0 0 gと 9 9 %フヱノール 3 0 0 0 gを仕込 み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温度をReactor was charged with 37% formalin (380 g) and 99% ethanol (300 g) Stir with a propeller rotary stirrer and adjust the temperature inside the reactor with a temperature controller.
5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム (N aOH) 水溶液 6 0 g を加え、 反応液を 5 0°Cから 5 5°Cに 2 0分間保持した。 その後温度を 8 5でに 上げ、 温度が 8 5°Cに達してから 1 2 5分間保持した。 その後、 反応液を 5 °Cま で冷却した。 これを、 レゾ一ル樹脂 D— 1とする。 Adjust to 50 ° C. Next, 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 50 ° C to 55 ° C for 20 minutes. The temperature was then raised to 85 and held for 125 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is referred to as Resin Resin D-1.
レゾール樹脂 Dの合成は、 レゾール樹脂 A— 1を D— 1に変更し、 添加するメ チロール尿素 Uの重量を 1 0 0 0 gに変更した以外はレゾ一ル樹脂 Aと同様に行 つた o  The synthesis of resole resin D was performed in the same manner as resole resin A except that resole resin A-1 was changed to D-1 and the weight of added methylol urea U was changed to 100 g.
(E) レゾ一ル樹脂の合成  (E) Synthesis of resin resin
レゾ一ル樹脂 Eの合成は添加するメチロール尿素 Uの重量を 5 0 0 gに変更し た以外はレゾール樹脂 Dと同様に行つた。  Resin resin E was synthesized in the same manner as resole resin D, except that the weight of added methylol urea U was changed to 500 g.
(F) レゾール樹脂の合成  (F) Synthesis of resole resin
レゾ一ル樹脂 Fの合成は添加するメチロール尿素 Uの重量を 1 5 0 0 gに変更 した以外はレゾ一ル樹脂 Dと同様に行つた。  Resin Resin F was synthesized in the same manner as Resin Resin D, except that the weight of added methylol urea U was changed to 1500 g.
(G) レゾ一ル樹脂の合成  (G) Synthesis of resin resin
反応機に、 3 7 %ホルマリン 5 2 0 0 gと 9 9 %フヱノール 3 0 0 0 gを仕込 み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応機内部液温度を 5 0 °Cに調整する。 次いで、 5 0 %水酸化ナトリウム (N a OH) 水溶液 6 0 g を加え、 反応液を 4 0°Cに 1 0分間保持した。 その後温度を 8 5°Cに上げ、 温度 が 8 5 °Cに達してから 1 2 0分間保持した。 その後、 反応液を 2 0°Cまで冷却し た。 これを、 レゾ一ル樹脂 G— 1とする。  A reactor was charged with 37% formalin (520 g) and 99% ethanol (300 g), stirred with a propeller rotating stirrer, and the temperature inside the reactor was adjusted to 50 ° C with a temperature controller. Adjust to C. Next, 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 40 ° C for 10 minutes. Thereafter, the temperature was increased to 85 ° C, and was maintained for 120 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 20 ° C. This is referred to as Resin Resin G-1.
レゾール樹脂 G— 1をパラトルエンスルホン酸一水和物の 5 0 %水溶液で pH が 5になるまで中和し、 この反応液を、 6 0°Cで脱水処理した。 これを、 レゾー ル樹脂 Gとする。  The resole resin G-1 was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5, and the reaction solution was dehydrated at 60 ° C. This is referred to as Resol Resin G.
(H) レゾ一ル樹脂の合成  (H) Synthesis of resin resin
反応機に、 3 7 %ホルマリン 3 0 4 0 gとサリゲニン (東京化成工業株式会社 製) 3 3 0 0 gと 9 9 %フヱノール 5 0 0 gを仕込み、 プロペラ回転式の撹拌 機により撹拌し、 温調機により反応機内部液温度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム (NaOH) 水溶液 6 0 gを加え、 反応液を 5 0°Cから 5 5°Cに 2 0分間保持した。 その後温度を 8 5°Cに上げ、 温度が 8 5°Cに達して から 1 1 0分間保持した。 その後、 反応液を 5 °Cまで冷却した。 これを、 レゾ一 ル樹脂 H— 1とする。 A reactor was charged with 37% formalin (304 g) and saligenin (Tokyo Kasei Kogyo Co., Ltd.) (330 g) and 99% ethanol (500 g), and stirred with a propeller rotary stirrer. Adjust the temperature inside the reactor to 50 ° C with a temperature controller. Then 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 50 ° C to 55 ° C for 20 minutes. Thereafter, the temperature was raised to 85 ° C, and was maintained for 110 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This is designated as Resin Resin H-1.
レゾ一ル樹脂 H— 1をパラトルエンスルホン酸一水和物の 5 0 %水溶液で pH が 5になるまで中和し、 この反応液を、 6 0°Cで脱水処理した。 これを、 レゾー ル樹脂 Hとする。  Resin resin H-1 was neutralized with a 50% aqueous solution of paratoluenesulfonic acid monohydrate until the pH reached 5, and the reaction solution was dehydrated at 60 ° C. This is called Resole Resin H.
( I ) レゾール樹脂の合成  (I) Synthesis of resole resin
レゾール樹脂 Iの合成は添加するメチロール尿素 Uの重量を 4 0 0 0 gに変更 した以外はレゾール樹脂 Dと同様に行った。  The synthesis of resole resin I was performed in the same manner as resole resin D, except that the weight of methylol urea U to be added was changed to 400 g.
(J) レゾール樹脂の合成  (J) Synthesis of resole resin
反応器に、 3 7 %ホルマリン 6 3 0 0 gと 9 9 %フヱノール 3 0 0 0 gを仕込 み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応器内部液温度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム (N aOH) 水溶液 6 0 g を加え、 反応液を 2 0分間 5 0から 5 5 °Cに保持した。 その後温度を 8 5 °Cに上 げ、 温度が 8 5°Cに達してから 1 8 0分間保持した。 その後、 反応液を 5°Cまで 冷却する。 これを、 レゾール樹脂 J一 1とする。  In a reactor, 37% formalin (630 g) and 99% phenol (300 g) were charged, and the mixture was stirred by a propeller rotary stirrer, and the temperature inside the reactor was reduced to 50 ° by a temperature controller. Adjust to C. Next, 60 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was kept at 50 to 55 ° C for 20 minutes. Thereafter, the temperature was increased to 85 ° C, and was maintained for 180 minutes after the temperature reached 85 ° C. Then, cool the reaction solution to 5 ° C. This is referred to as resole resin J-1.
レゾール樹脂 Jの合成は、 レゾール樹脂 A— 1を J一 1に変更した以外はレゾ —ル樹脂 Aと同様に行った。  The synthesis of resole resin J was performed in the same manner as resole resin A, except that resole resin A-1 was changed to J-1.
(K) レゾ一ル樹脂の合成  (K) Synthesis of resin resin
反応器に、 3 7 %ホルマリン 3 3 3 0 gと 9 9 %フヱノール 3 0 0 0 gを仕込 み、 プロペラ回転式の撹拌機により撹拌し、 温調機により反応器内部液温度を 5 0°Cに調整する。 次いで、 5 0 %水酸化ナトリウム (N a OH) 水溶液 3 4 g を加え、 反応液を 5 0〜8 5°Cに上げ、 温度が 8 5°Cに達してから 1 2 0分保持 した。 その後、 反応液を 5 °Cまで冷却した。 これを、 レゾール樹脂 K— 1とする c レゾール樹脂 Kの合成は、 レゾ一ル樹脂 Aにおけるレゾール樹脂 A— 1を K— 1に変更した以外はレゾール樹脂 Aと同様に行った。 《実施例 1》 In a reactor, 37% formalin (330 g) and 99% ethanol (300 g) were charged, and the mixture was stirred with a propeller-rotating stirrer. Adjust to C. Next, 34 g of a 50% aqueous sodium hydroxide (NaOH) solution was added, and the reaction solution was heated to 50 to 85 ° C, and was held for 120 minutes after the temperature reached 85 ° C. Thereafter, the reaction solution was cooled to 5 ° C. This was designated as resole resin K-1. C Resole resin K was synthesized in the same manner as resole resin A except that resole resin A-1 in resole resin A was changed to K-1. << Example 1 >>
レゾ一ル樹脂 Aにペインタツ ド 3 2 (ダウコ一ニングアジア株式会社製界面活 性剤) をレゾ一ル樹脂 1 0 0 gに対して 3 . 5 gの割合で溶解した。 この、 レゾ —ル樹脂混合物と、 発泡剤として、 窒素を 0 . 3重量%溶解したノルマルペンタ ン (和光純薬、 純度 9 9 %以上) と、 イソブタン (エスゲイ産業株式会社製、 純 度 9 9 %以上) の 1対 1混合物と、 硬化触媒としてパラ トルエンスルホン酸一水 和物 (和光純薬、 純度 9 5 %以上) 6 0重量%とジエチレングリコール (和光純 薬、 純度 9 8 %以上) 4 0重量%の混合物をそれぞれ、 樹脂混合物 1 0 0部、 発 泡剤 7部、 硬化触媒 1 5部の割合で温調ジャケッ ト付きピンミキサーに供給した。 ミキサー内温度が 8 0 °Cを超えないように温調ジャケッ トで冷却した。 ミキサー から出てきた混合物をスパンボンド E 1 0 4 0 (旭化成工業株式会社製) を敷い た型枠に流し込み、 8 0 °Cのオーブンに入れ 5時間保持し本実施例のフヱノール 樹脂発泡体を得た。  Paintase 32 (a surfactant made by Dow Corning Asia Co., Ltd.) was dissolved in Resin Resin A at a ratio of 3.5 g to 100 g of Resin Resin. This resin resin mixture, as a foaming agent, normal pentane (Wako Pure Chemical, purity of more than 99%) in which 0.3% by weight of nitrogen was dissolved, and isobutane (purity of 99 %) And paratoluenesulfonic acid monohydrate as a curing catalyst (Wako Pure Chemical, purity 95% or more) 60% by weight and diethylene glycol (Wako Pure Chemical, purity 98% or more) 4 0% by weight of the mixture was supplied to a pin mixer with a temperature-controlled jacket at a ratio of 100 parts of the resin mixture, 7 parts of the foaming agent, and 15 parts of the curing catalyst. The mixer was cooled with a temperature control jacket so that the temperature in the mixer did not exceed 80 ° C. The mixture coming out of the mixer is poured into a formwork laid with Spunbond E104 (made by Asahi Kasei Kogyo Co., Ltd.), placed in an oven at 80 ° C for 5 hours, and the phenolic resin foam of this example is placed in the oven. Obtained.
《実施例 2》  << Example 2 >>
硬化触媒としてパラ トルエンスルホン酸一水和物 4 0重量%とジエチレングリ コール 3 0重量%、 レゾルシノール 3 0重量%の混合物を樹脂 1 0 0部に対し 1 4部の割合に変更した以外実施例 1 と全く同様にしてフ ノール樹脂発泡体を 製造した。  Example 1 A mixture of 40% by weight of para-toluenesulfonic acid monohydrate, 30% by weight of diethylene glycol, and 30% by weight of resorcinol was used as a curing catalyst, except that the ratio was changed to 14 parts to 100 parts of resin. A phenol resin foam was produced in exactly the same manner as in 1.
《実施例 3》  << Example 3 >>
発泡剤として P F— 5 0 5 0 ( 3 M社製パーフルォロペンタン) を 3重量%と 窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を 使用した以外は実施例 1 と全く同様にしてフ ノ一ル樹脂発泡体を製造した。 《実施例 4〜 1 0、 比較例 1〜 3》  Performed except that a 1: 1 mixture of normal pentane containing 3% by weight of PF-5500 (3M Perfluoropentane) and 0.3% by weight of nitrogen and isobutane was used as the blowing agent. A resin foam was produced in exactly the same manner as in Example 1. << Examples 4 to 10, Comparative Examples 1 to 3 >>
実施例 4〜 1 0、 比較例 1〜 3は、 レゾール樹脂として表 1に示す樹脂を用い、 触媒部数を調整しながら、 その他は実施例 1 と全く同様にしてフエノール樹脂発 泡体を製造した。  In Examples 4 to 10 and Comparative Examples 1 to 3, phenolic resin foams were produced using the resins shown in Table 1 as resole resins, while adjusting the number of catalysts, and otherwise in exactly the same manner as in Example 1. .
《実施例 1 1》  << Example 11 >>
発泡剤として窒素を 0 . 3重量%溶解したノルマルべン夕ンを使用した以外は 実施例 1 と全く同様にしてフエノ一ル樹脂発泡体を製造した。 Except that as a blowing agent, we used normal-benzen with 0.3% by weight of dissolved nitrogen. A phenol resin foam was produced in exactly the same manner as in Example 1.
《実施例 1 2》  << Example 1 2 >>
発泡剤として窒素を 0 . 3重量%溶解したィソブタンを使用した以外は実施例 1 と全く同様にしてフ ノール樹脂発泡体を製造した。  A phenol resin foam was produced in exactly the same manner as in Example 1 except that isobutane in which 0.3% by weight of nitrogen was dissolved was used as a foaming agent.
《実施例 1 3》  << Example 13 >>
発泡剤として窒素を 0 . 3重量%溶解したノルマルペンタンと、 ノルマルブタ ン (エスゲイ産業株式会社製、 純度 9 9 %以上) の 1対 1混合物を使用した以外 は実施例 1 と全く同様にしてフエノール樹脂発泡体を製造した。  The phenol was prepared in the same manner as in Example 1 except that a one-to-one mixture of normal pentane in which 0.3% by weight of nitrogen was dissolved and normal butane (purity: 9.9% or more) was used as a blowing agent. A resin foam was manufactured.
《実施例 1 4》  << Example 14 >>
発泡剤として窒素を 0 . 3重量%溶解したイソペンタン (和光純薬、 純度 9 9 %以上) と、 イソブタンの 1対 1混合物を使用した以外は実施例 1 と全く同様に してフ ノール樹脂発泡体を製造した。  Foam resin foaming was carried out in exactly the same manner as in Example 1, except that a 1: 1 mixture of isopentane (0.3% by weight of nitrogen) and isobutane containing 0.3% by weight of nitrogen was used as the blowing agent. Body manufactured.
《実施例 1 5》  << Example 15 >>
発泡剤として窒素を 0 . 3重量%溶解したイソペンタンと、 ノルマルブタンの 1対 1混合物を使用した以外は実施例 1 と全く同様にしてフェノ一ル樹脂発泡体 を製造した。  A phenolic resin foam was produced in exactly the same manner as in Example 1 except that a one-to-one mixture of isopentane in which 0.3% by weight of nitrogen was dissolved as a blowing agent and normal butane was used.
《実施例 1 6》  << Example 16 >>
発泡剤として窒素を 0 . 3重量%溶解したノルマルへキサン (和光純薬、 一級 試薬) と、 イソブタンの 3対 7混合物を使用した以外は実施例 1 と全く同様にし てフヱノ一ル樹脂発泡体を製造した。  The same procedure as in Example 1 was repeated except that a mixture of normal hexane (Wako Pure Chemical, a primary reagent) in which 0.3% by weight of nitrogen was dissolved and isobutane as a foaming agent was used. Was manufactured.
《実施例 1 7》  << Example 17 >>
発泡剤としてパラフィン (和光純薬社製、 融点 4 4 °Cから 4 6 °C、 一級試薬) 5重量%と窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を使用した以外は実施例 1 と全く同様にしてフ ノール樹脂発泡体を製 造した。  A one-to-one mixture of normal pentane and isobutane, each containing 5% by weight and 0.3% by weight of nitrogen dissolved, is used as a blowing agent. Paraffin (manufactured by Wako Pure Chemical, melting point: 44 to 46 ° C, primary reagent) A phenolic resin foam was produced in exactly the same manner as in Example 1 except that this was performed.
《実施例 1 8》  << Example 18 >>
発泡剤として流動パラフィ ン (和光純薬社製、 一級試薬) 5重量%と窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を使用し た以外は実施例 1 と全く同様にしてフ Xノール樹脂発泡体を製造した。 As a blowing agent, a 1: 1 mixture of normal pentane in which 5% by weight of liquid paraffin (a first-class reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.3% by weight of nitrogen are dissolved and isobutane is used. A phenol resin foam was produced in exactly the same manner as in Example 1 except for the above.
《実施例 1 9》  << Example 1 9 >>
発泡剤としてガルデン (G a 1 d e n ) H T— 5 5 (ァウジモンド株式会社製) 3重量%と窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を使用した以外は実施例 1 と全く同様にしてフ ノール樹脂発泡体を製 造した。  Example 1 Except for using a 1: 1 mixture of normal pentane and isobutane in which 3% by weight of nitrogen and 0.3% by weight of nitrogen were dissolved as a blowing agent, Galden (HT1) HT-55 (Audimond Co., Ltd.) A phenol resin foam was produced in exactly the same manner as in 1.
《実施例 2 0》  << Example 20 >>
発泡剤としてガルデン (G a 1 d e n ) H T— 7 0 (ァウジモンド株式会社製) 3重量%と窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を使用した以外は実施例 1 と全く同様にしてフ ノール樹脂発泡体を製 造した。  Example 1 except that a 1: 1 mixture of normal pentane in which 3% by weight and 0.3% by weight of nitrogen were dissolved and normal pentane and isobutane were used as a foaming agent was used. A phenol resin foam was produced in exactly the same manner as in 1.
《実施例 2 1》  << Example 21 >>
発泡剤としてフロリナ一ト F C— 7 1 (スリーェム社製) 3重量%と窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を使用し た以外は実施例 1 と全く同様にしてフニノール樹脂発泡体を製造した。  Exactly the same as in Example 1 except that a 1: 1 mixture of normal pentane and isobutane in which 3% by weight of Florinato FC-71 (manufactured by SLEEM) and 0.3% by weight of nitrogen were dissolved was used as a foaming agent. To produce a fininol resin foam.
《実施例 2 2》  << Example 2 2 >>
発泡剤としてフロリナー ト F C— 7 0 (スリ一ェム社製) 3重量%と窒素を 0 . 3重量%溶解したノルマルペンタンと、 イソブタンの 1対 1混合物を使用し た以外は実施例 1 と全く同様にしてフ ノール樹脂発泡体を製造した。  Example 1 was repeated except that a 1: 1 mixture of normal pentane in which 3% by weight of Fluorinert FC-70 (manufactured by Sliem) and 0.3% by weight of nitrogen were dissolved and isobutane was used as a blowing agent. A phenolic resin foam was produced in exactly the same manner.
なお、 以上の実施例、 比較例で得たフ ノール樹脂発泡体サンプルの、 熱分解 ガスクロマトグラフィ一のパイログラムのトリメチルフヱノール成分の面積 Aの フエノ一ル成分の面積 Bに対する比 C値と、 全尿素架橋由来の成分の面積 Dの全 フユノ一ル誘導体成分の面積 Eに対する比 F値及び発泡体の独立気泡率、 平均気 泡径、 密度、 熱伝導率、 脆性、 圧縮強度を表 1にまとめて示す。 表 1 (その 1 ) 樹脂 F値 独 u気 ,率 平均^ 2径 ■jj*.1 謝云 雌 趣離 The ratio C value of the area A of the trimethylphenol component to the area B of the phenol component in the pyrolysis gas chromatography pyrograms of the phenol resin foam samples obtained in the above Examples and Comparative Examples Table 1 shows the ratio of the area D of all urea cross-linked components to the area E of all phenol derivatives, the closed cell ratio of foams, the average cell diameter, density, thermal conductivity, brittleness, and compressive strength. Are shown together. Table 1 (Part 1) Resin F value German u-air, rate average ^ 2 diameter ■ jj * .1
(*2) (%) (βηϊ) (kg/m3) (kcal/mhr°C) (%) (kg/cm') (* 2) (%) (βηϊ) (kg / m 3 ) (kcal / mhr ° C) (%) (kg / cm ')
«例 1 A 0. 38 0. 092 92. 4 91 28 0. 01 83 1 0 1. 6 難例 2 A 0. 40 0. 095 92. 6 88 28 0. 01 81 8 1. 6 難例 3 A 0. 38 0. 088 92. 2 78 29 0. 01 79 9 1. 6 難例 4 B 0. 49 0. 063 92. 8 98 29 0. 01 83 1 5 1. 7 難例 5 C 0. 23 0. 1 1 2 92. 4 1 03 27 0. 01 82 1 2 1. 6 r «Example 1 A 0.38 0.092 92.4 91 28 0.01 83 1 01.6 Difficulty 2 A 0.40 0.095 92.6 88 28 0. A 0.38 0. 088 92.2 78 29 0.01 79 9 1.6 Difficult 4 B 0.49 0.063 92.8 98 29 0.01 83 1 5 1.7 Difficult 5 C 23 0.1 1 2 92.4 1 03 27 0.01 82 1 21.6 r
難例 6 D 0. 1 4 0. 041 89. 7 1 08 28 0. 01 88 1 9 1. 6 難例 7 E 0. 22 0. 021 92. 4 98 29 0. 01 90 1 6 1. 7 難例 8 F 0. 13 0. 062 91. 5 1 1 3 28 0. 01 87 1 7 1. 6 難例 9 G 0. 38 0. 000 82. 4 1 1 5 29 0. 0201 24 1. 5 難例 1 0 H 0. 64 0. 00 87. 3 1 1 2 29 0. 01 97 21 1. 6 難例 1 1 A 0. 38 0. 093 93. 1 90 29 0. 01 98 1 1 1. 7 難例 1 2 A 0. 40 0. 092 91. 2 1 1 8 27 0. 01 9 1 1 0 1. 6 離例 1 3 A 0. 39 0. 091 92. 3 83 28 0. 01 83 9 1. 6 Difficult 6 D 0.1 4 0.041 89.7 1 08 28 0.01 88 1 9 1.6 Difficult 7 E 0.22 0.021 92.4 98 29 0.01 90 1 6 1.7 Difficult 8 F 0.13 0.062 91.5 1 1 3 28 0.01 87 1 7 1.6 Difficult 9 G 0.38 0.000 82.4 1 1 5 29 0.0201 24 1.5 Difficult 1 0 H 0.64 0.00 87.3 1 1 2 29 0.01 97 21 1.6 Difficult 1 1 A 0.38 0.093 93.1 90 29 0.01 98 1 1 1. 7 Difficult 1 2 A 0.40 0.092 91.2 1 1 8 27 0.01 9 1 1 0 1.6 Out of order 13 A 0.39 0.091 92.3 83 28 0.01 83 9 1.6
表 1 (その 2 ) Table 1 (Part 2)
Γ\3 Γ \ 3
CO CO
Figure imgf000025_0001
Figure imgf000025_0001
=M C値: I ^解 物中のトリメチルフエノール Aのフエノール Bに対する面積比 (C = A B) = M C value: I ^ Area ratio of trimethylphenol A to phenol B in the digest (C = AB)
\2 F値: 解 ^^物中の尿 ^^由 分 Dのフヱノール誘導体成分 Eに対する画寳比(F = DZE) \ 2 F value: Solution ^^ Urine in the product ^^ Division ratio of D to phenol derivative component E (F = DZE)
実施例 1〜 2 2に示すように、 C値が 0. 0 5〜 0の範囲で、 独立気泡率 が 7 0 %以上、 平均気泡径 1 0〜4 0 0 mの範囲のフヱノール樹脂発泡体は、 密度が 2 7〜2 9 k g/m3程度と低い場合においても圧縮強度が 1. 5 k g/ cm2以上であり、 機械的強度が優れている。 また、 脆性も 3 0 %未満と改善さ れている。 このとき、 実施例の熱伝導率は、 0. 0 2 5 k c a 1 /mh r °C以下 となり、 優れた断熱性能を示している。 As shown in Examples 1 to 22, a phenol resin foam having a C value in the range of 0.05 to 0, a closed cell ratio of 70% or more, and an average cell diameter of 10 to 400 m was used. Has a compressive strength of 1.5 kg / cm 2 or more even when the density is as low as 27 to 29 kg / m 3 , and has excellent mechanical strength. The brittleness is also improved to less than 30%. At this time, the thermal conductivity of the example was 0.025 kca 1 / mhr r ° C or less, indicating excellent heat insulation performance.
また、 実施例 9及び 1 0を除く実施例は、 F値が 0. 0 1〜 3の範囲であ り、 脆性が 2 0 %未満となり、 熱伝導率も 0. 0 2 0 k c a 1 /mh r °C以下と なり、 より優れた性能を示している。  In Examples other than Examples 9 and 10, the F value was in the range of 0.01 to 3, the brittleness was less than 20%, and the thermal conductivity was 0.020 kca 1 / mh. r ° C or less, indicating better performance.
更に、 実施例 1 7〜2 2に示すように、 高沸点の脂肪族炭化水素、 高沸点の脂 環式炭化水素またはそれらの混合物、 フルォロェ一テル、 フルォロアミ ンが発泡 時に存在する場合には、 熱伝導率が 0. 0 1 8 k c a 1 Zmh r °C以下と、 特に 優れた断熱性能を示している。  Further, as shown in Examples 17 to 22, when a high-boiling aliphatic hydrocarbon, a high-boiling alicyclic hydrocarbon or a mixture thereof, fluorether, and fluoramine are present at the time of foaming, The thermal conductivity is below 0.018 kca 1 Zmh r ° C, indicating particularly excellent heat insulation performance.
これに対し、 C値が 4. 1 3と大きすぎる比較例 2及び 0. 0 4と小さすぎる 比較例 3では、 いずれの場合も熱伝導率は 0. 0 2 5 k c a 1ノ mh r °C以上、 脆性は 3 0 %以上と大きな値となっており、 断熱性と機械的強度が劣っている。 また、 比較例 1では、 C値は 0. 1 1と本発明の範囲内であるものの、 独立気 泡率が 6 1. 8 %と本発明の範囲を外れており、 熱伝導率は 0. 0 2 7 3 k c a 1 /mh r°Cと断熱性に劣り、 脆性は 4 3 %と機械的強度も劣っている。 産業上の利用可能性  On the other hand, in Comparative Example 2 where the C value was too large as 4.13, and in Comparative Example 3 where it was too small as 0.04, the thermal conductivity was 0.025 kca 1 no mh r ° C in both cases. As described above, the brittleness is a large value of 30% or more, and the heat insulation and the mechanical strength are inferior. In Comparative Example 1, although the C value was 0.11, which was within the range of the present invention, the closed cell rate was 61.8%, which was outside the range of the present invention, and the thermal conductivity was 0.1. 0 2 7 3 kca 1 / mh r ° C, poor heat insulation, brittleness 43%, poor mechanical strength. Industrial applicability
本発明によるフユノール樹脂発泡体は、 優れた断熱性能を有し、 圧縮強度等の 機械的強度に優れ、 表面脆性が著しく改善されている。 本発明による樹脂発泡体 は、 オゾン層破壊の恐れがなく地球温暖化係数の低い発泡剤を使用しているため、 地球環境により適合した建築用断熱材として好適である。  The fuñol resin foam according to the present invention has excellent heat insulating performance, excellent mechanical strength such as compressive strength, and significantly improved surface brittleness. Since the resin foam according to the present invention uses a foaming agent having a low global warming coefficient without fear of destruction of the ozone layer, it is suitable as a building insulation material more suitable for the global environment.

Claims

請 求 の 範 囲 The scope of the claims
1. 独立気泡率 7 0 %以上、 平均気泡径 1 0 β m以上 4 0 0 m以下、 密度 1 0 k gZm3以上 7 0 k g/m3以下であって、 独立気泡中に炭化水素を含有し、 熱分解ガスクロマトグラフィーの熱分解パターンから求められる、 熱分解生成物 のトリメチルフヱノール Aのフヱノール Bに対する面積比 C (C=A/B) が下 記式 ( 1 ) の範囲にあることを特徴とするフエノール樹脂発泡体。 1. closed cell ratio 70% or more, the average cell diameter 1 0 beta m or more 4 0 0 m or less, equal to or less than the density of 1 0 k gZm 3 or 7 0 kg / m 3, containing a hydrocarbon in the closed cells The area ratio C (C = A / B) of trimethylphenol A to phenol B, which is the pyrolysis product, determined from the pyrolysis pattern of pyrolysis gas chromatography is in the range of the following formula (1). A phenolic resin foam, characterized in that:
0. 0 5≤C≤ 4. 0 (1 )  0.0 5 ≤ C ≤ 4.0 (1)
2. 熱分解ガスクロマトグラフィーの熱分解パターンから求められる、 熱分解 生成物の尿素架橋由来の成分 Dのフエノール誘導体成分 Eに対する面積比 F (F 二 DZE) が下記式 (2) の範囲である請求の範囲第 1項記載のフエノール樹脂 発泡体。  2. The area ratio F (F-DZE) of the component D derived from urea crosslinking of the pyrolysis product to the phenol derivative component E, determined from the pyrolysis pattern of pyrolysis gas chromatography, is within the range of the following formula (2). The phenolic resin foam according to claim 1.
0. 0 1≤ F≤ 0. 3 (2)  0.0 1 ≤ F ≤ 0.3 (2)
3. 独立気泡中の炭化水素が 1種類又は 2種類以上の炭化水素から成り、 該炭 化水素の、 少なくとも 1つが炭素数 4から 6の飽和炭化水素であることを特徴と する請求の範囲第 1項又は第 2項記載のフェノール樹脂発泡体。  3. The hydrocarbon in the closed cell comprises one or more kinds of hydrocarbons, wherein at least one of the hydrocarbons is a saturated hydrocarbon having 4 to 6 carbon atoms. Item 3. The phenolic resin foam according to item 1 or 2.
4. 飽和炭化水素がィソブタン、 ノルマルブタン、 シクロブタン、 ノルマルべ ンタン、 イソペンタン、 シクロペンタン、 ネオペンタンであることを特徴とする 請求の範囲第 3項記載のフエノ一ル樹脂発泡体。  4. The phenolic resin foam according to claim 3, wherein the saturated hydrocarbon is isobutane, normal butane, cyclobutane, normal pentane, isopentane, cyclopentane, or neopentane.
5. 独立気泡中の炭化水素がイソブタン、 ノルマルブタン、 シクロブタンから 選ばれるブタン類 5〜9 5重量%とノルマルペンタン、 イソペンタン、 シクロべ ンタン、 ネオペンタンから選ばれるペンタン類 9 5〜 5重量%の混合物であるこ とを特徴とする請求の範囲第 1項又は第 2項記載のフェノ一ル樹脂発泡体。  5. A mixture of 5 to 95% by weight of butanes selected from isobutane, normal butane and cyclobutane and 95 to 5% by weight of pentanes selected from normal pentane, isopentane, cyclopentane and neopentane 3. The phenolic resin foam according to claim 1 or 2, wherein:
6. 独立気泡中の炭化水素がイソブタン 5〜9 5重量%とノルマルペンタンの 9 5〜 5重量%の混合物であることを特徴とする請求の範囲第 5項記載のフエノ ール樹脂発泡体。 6. The phenolic resin foam according to claim 5, wherein the hydrocarbon in the closed cells is a mixture of 5 to 95% by weight of isobutane and 95 to 5% by weight of normal pentane.
7. 独立気泡率 8 0 %以上、 平均気泡径 1 0 m以上 4 0 0 m以下、 密度 1 0 k gZm3以上 7 0 k gZm3以下であって、 独立気泡中に炭化水素を含有し、 尿素架橋構造を有するフ ノール樹脂構造から成る脆性が 30%以下、 圧縮強度 が 0. 5 k gZcm2 以上、 熱伝導率が 0. 025 k c a 1 Zmh r°C以下であ ることを特徴とするフュノール樹脂発泡体。 7. closed cell ratio 80% or more, the average cell diameter 1 0 m or more 4 0 0 m or less, equal to or less than the density of 1 0 k gZm 3 or 7 0 k gZm 3, it contains hydrocarbons in closed cells, 30% brittleness consisting off Knoll resin structure having a polyurea crosslinked structure below, compressive strength 0. 5 k gZcm 2 or more, the thermal conductivity characterized by the following der Rukoto 0. 025 kca 1 Zmh r ° C Funol resin foam.
8. 高沸点の脂肪族炭化水素または高沸点の脂環式炭化水素またはそれらの混 合物をフエノール樹脂発泡体に対して 0. 0 1〜1 0重量%含有することを特徴 とする請求の範囲第 1項又は第 2項記載のフェノール樹脂発泡体。  8. A high-boiling aliphatic hydrocarbon or a high-boiling alicyclic hydrocarbon or a mixture thereof is contained in an amount of 0.01 to 10% by weight based on the phenol resin foam. 3. The phenolic foam according to item 1 or 2.
9. 下記一般式 (I) で示されるフルォロェ一テルの少なくとも 1種をフヱノ —ル樹脂発泡体に対して 0. 0 1〜5重量%含有することを特徴とする請求の範 囲第 1項又は第 2項記載のフ ノ一ル樹脂発泡体。  9. Claim 1 characterized in that at least one fluoroester represented by the following general formula (I) is contained in an amount of 0.01 to 5% by weight based on the phenol resin foam. Or the phenolic resin foam according to item 2.
FaHbC-[(0-CF-CF2) - (0-CF2)n]-0-CFaHb (D F a H b C-[(0-CF-CF 2 )-(0-CF 2 ) n ] -0-CF a H b (D
(式中、 aは 0、 1、 2、 3であり、 bは 3— aであり、 mおよび nは、 それぞ れ 1以上の整数である。 ) (Where a is 0, 1, 2, 3; b is 3—a; and m and n are each an integer of 1 or more.)
1 0. 下記一般式 (II) で示されるフルォロアミンの少なくとも 1種をフエノ —ル樹脂発泡体に対して 0. 0 1〜 5重量%含有することを特徴とする請求の範 囲第 1項又は第 2項記載のフエノール樹脂発泡体。  10. The claim 1 or claim 1, characterized in that at least one fluoroamine represented by the following general formula (II) is contained in an amount of 0.01 to 5% by weight based on the phenol resin foam. 3. The phenolic resin foam according to item 2.
(Cc Fd )3 N (Π) (C c F d) 3 N (Π)
(式中、 cは 4以上の自然数であり、 dは 2 c+ lである。 )  (Where c is a natural number greater than or equal to 4 and d is 2 c + l.)
PCT/JP1998/003895 1997-09-03 1998-09-01 Phenolic resin foam WO1999011697A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU88886/98A AU8888698A (en) 1997-09-03 1998-09-01 Phenolic resin foam
JP51660399A JP4711469B2 (en) 1997-09-03 1998-09-01 Phenolic resin foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/238656 1997-09-03
JP23865697 1997-09-03

Publications (1)

Publication Number Publication Date
WO1999011697A1 true WO1999011697A1 (en) 1999-03-11

Family

ID=17033380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003895 WO1999011697A1 (en) 1997-09-03 1998-09-01 Phenolic resin foam

Country Status (4)

Country Link
JP (2) JP4711469B2 (en)
KR (1) KR100370995B1 (en)
AU (1) AU8888698A (en)
WO (1) WO1999011697A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131803A (en) * 2005-11-14 2007-05-31 Asahi Kasei Construction Materials Co Ltd Method for producing phenolic resin foam
WO2012053493A1 (en) * 2010-10-18 2012-04-26 旭化成建材株式会社 Phenol resin foamed plate
JP2014055305A (en) * 2013-12-25 2014-03-27 Sekisui Chem Co Ltd Foamable resol-type phenolic resin molding material and phenolic resin foam
WO2015194174A1 (en) * 2014-06-18 2015-12-23 旭化成建材株式会社 Phenol resin foam and method for manufacturing same
JPWO2014092086A1 (en) * 2012-12-11 2017-01-12 旭化成建材株式会社 Phenolic resin foam and method for producing the same
JP2017114993A (en) * 2015-12-22 2017-06-29 旭化成建材株式会社 Phenol resin foam body and manufacturing method therefor
WO2017110946A1 (en) * 2015-12-22 2017-06-29 旭化成建材株式会社 Phenolic resin foam and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476090B1 (en) * 1998-07-03 2002-11-05 Asahi Kasei Kabushiki Kaisha Phenolic foam
JP6791643B2 (en) * 2015-03-24 2020-11-25 積水化学工業株式会社 Phenolic resin foam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185535A (en) * 1984-11-29 1986-08-19 オウエンズ―コーニング カナダ インコーポレイテッド Phenol resin foam material and manufacture
JPH07196838A (en) * 1993-12-29 1995-08-01 Asahi Organic Chem Ind Co Ltd Expansion-curable phenolic resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008230A1 (en) * 1995-08-28 1997-03-06 Owens Corning Process for producing phenolic foams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185535A (en) * 1984-11-29 1986-08-19 オウエンズ―コーニング カナダ インコーポレイテッド Phenol resin foam material and manufacture
JPH07196838A (en) * 1993-12-29 1995-08-01 Asahi Organic Chem Ind Co Ltd Expansion-curable phenolic resin composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131803A (en) * 2005-11-14 2007-05-31 Asahi Kasei Construction Materials Co Ltd Method for producing phenolic resin foam
WO2012053493A1 (en) * 2010-10-18 2012-04-26 旭化成建材株式会社 Phenol resin foamed plate
CN103154106A (en) * 2010-10-18 2013-06-12 旭化成建材株式会社 Phenol resin foamed plate
JP5894926B2 (en) * 2010-10-18 2016-03-30 旭化成建材株式会社 Phenolic resin foam board
US9976026B2 (en) 2010-10-18 2018-05-22 Asahi Kasei Construction Materials Corporation Phenol resin foamed plate
JP2017206714A (en) * 2012-12-11 2017-11-24 旭化成建材株式会社 Phenolic resin foam and manufacturing method thereof
JPWO2014092086A1 (en) * 2012-12-11 2017-01-12 旭化成建材株式会社 Phenolic resin foam and method for producing the same
JP2014055305A (en) * 2013-12-25 2014-03-27 Sekisui Chem Co Ltd Foamable resol-type phenolic resin molding material and phenolic resin foam
WO2015194174A1 (en) * 2014-06-18 2015-12-23 旭化成建材株式会社 Phenol resin foam and method for manufacturing same
JPWO2015194174A1 (en) * 2014-06-18 2017-04-20 旭化成建材株式会社 Phenol resin foam and method for producing the same
KR20170007396A (en) 2014-06-18 2017-01-18 아사히 가세이 겐자이 가부시키가이샤 Phenol resin foam and method for manufacturing same
JP2017114993A (en) * 2015-12-22 2017-06-29 旭化成建材株式会社 Phenol resin foam body and manufacturing method therefor
WO2017110946A1 (en) * 2015-12-22 2017-06-29 旭化成建材株式会社 Phenolic resin foam and method for producing same
JPWO2017110946A1 (en) * 2015-12-22 2018-07-12 旭化成建材株式会社 Phenol resin foam and method for producing the same
KR20180081093A (en) 2015-12-22 2018-07-13 아사히 가세이 겐자이 가부시키가이샤 Phenolic Resin Foam and Manufacturing Method Thereof
RU2703133C1 (en) * 2015-12-22 2019-10-15 Асахи Касеи Констракшн Матириалс Корпорейшн Phenol resin-based foam plastic and a method for production thereof

Also Published As

Publication number Publication date
AU8888698A (en) 1999-03-22
JP4711469B2 (en) 2011-06-29
KR100370995B1 (en) 2003-02-06
JP2009293033A (en) 2009-12-17
KR20010023571A (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP2009293033A (en) Phenolic resin foam
CA2048683C (en) Blowing agents
JP3813062B2 (en) Phenolic foam
US5057546A (en) Semi-flexible or flexible phenolic foam composition
JPH11140216A (en) Phenolic resin foam
WO1995033789A1 (en) Non-cfc foam produced using perfluoroalkanes
JP3681307B2 (en) Method for producing phenolic resin foam
CA2312133C (en) Phenol foam comprising tri(perfluoroalkyl)amine
CA2267313C (en) The manufacture of non-cfc cellular resol foams using perfluorinated ethers
JP4868653B2 (en) Phenolic resin foam
JP2007131803A (en) Method for producing phenolic resin foam
US5489619A (en) Process for producing improved phenolic foams from phenolic resole resins
JP2003183439A (en) Phenolic resin foam
WO1998036021A1 (en) Phenolic resin foam
JPH11140217A (en) Phenolic foam
JPH083359A (en) Production of resol type phenol resin foam
JP2002309031A (en) Phenol resin foam for fine foam
JP2000230070A (en) Phenol resin foam
JP2001114922A (en) Phenol resin foam
JP2007131801A (en) Method for producing phenolic resin foam
MXPA00005691A (en) Phenol foam
CA2191615C (en) Non-cfc foam produced using perfluoroalkanes
JPH11181140A (en) Foamed phenol resin thermal insulant
EP1572790A2 (en) A closed cell phenolic foam
MXPA00012823A (en) Phenolic foam

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007002219

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1020007002219

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007002219

Country of ref document: KR