WO1998056427A1 - Novel contrast media - Google Patents

Novel contrast media Download PDF

Info

Publication number
WO1998056427A1
WO1998056427A1 PCT/JP1998/002563 JP9802563W WO9856427A1 WO 1998056427 A1 WO1998056427 A1 WO 1998056427A1 JP 9802563 W JP9802563 W JP 9802563W WO 9856427 A1 WO9856427 A1 WO 9856427A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
group
contrast agent
metal cation
ligand
Prior art date
Application number
PCT/JP1998/002563
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Kawa
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO1998056427A1 publication Critical patent/WO1998056427A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/124Macromolecular compounds dendrimers, dendrons, hyperbranched compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems

Definitions

  • the present invention relates to a contrast agent comprising a metal cation and a ligand having a hyperbranched molecular structure.
  • the contrast agent of the present invention provides a means for stably dispersing a metal element in a blood stream at a molecular level, and is suitably used in an X-ray contrast technique or a contrast technique utilizing a nuclear magnetic resonance phenomenon.
  • the contrast agent of the present invention uses a ligand having a hyperbranched molecular structure, the thermal motility of the complex, particularly the rotational motility, is significantly suppressed as compared with the conventional complex, and it is particularly suitable for MRI technology. It is a contrast agent.
  • the present invention also relates to a metal cation complex comprising a branched polymer having a polyaminocarboxylate anion having a tertiary amino group and a carboxyl group, which are a group forming a functional group with a metal cation.
  • This complex can be used not only as a contrast agent as described above, but also as a polymer composition that can be used in various other fields. Background art
  • X-ray contrast technology (hereinafter abbreviated as XRI technology) is a technology that obtains an image by injecting an element with high X-ray absorption capacity and a high atomic number into a living body by some method, and then performing X-ray irradiation.
  • Imaging technology (hereinafter abbreviated as MRI technology) using the nuclear magnetic resonance phenomenon (hereinafter abbreviated as NMR phenomenon) is a paramagnetic species (usually a gadolinium cation or other paramagnetic transition element cation) that causes an NMR phenomenon.
  • Nonionic iodine compounds for example, organic compounds containing a high concentration of iodine atoms, which have been rendered hydrophilic, are now widely used. However, even with such organic iodine compounds, side effects considered to be caused by iodine have been reported, and development of a new XRI contrast agent is desired.
  • EDTA ethylenediaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • DOTA 1,4,7,10-tetrakis (acetic acid) tetraazacyclododecane
  • Complexes as ligands have been put to practical use.
  • Dendrimers are described, for example, in Hawker, CJ eta 1; J. Chem. Soc., Chem. Commun., 1990, p. 1 ia, DA eta 1; Age w. Chem. Int. Ed. Enl., Vol. 29, pp. 13 (1990), Frechet, JMJ; Science, 26 Vol. 3, pp. 1710 (1994), or Masaaki Kakimoto; Chemistry, Vol. 50, pp. 608 (1995). Since such a molecule has a high molecular structure that is regularly branched from the center of the molecule, for example, as described in the above-mentioned literature by Tom a1ia et al. Due to the extreme steric crowding of the branched ends that occurs as the molecular weight increases, a spherical molecular form is obtained.
  • the degree of freedom of the polymer chains to rotate in the molecule is higher than that of the linear polymer chains. Is extremely preferable to increase the ⁇ R value.
  • the complex described in this document has 1,4,7,10-tetrakis (acetic acid) tetraazacyclododecane (DOT ⁇ ) at the end of the polymer chain of the dendrimer (ie, the surface of the spherical molecule). Omitted) and so on.
  • DOT ⁇ 1,4,7,10-tetrakis (acetic acid) tetraazacyclododecane
  • metal cations have various functions such as excitation by absorption of electromagnetic wave energy and fluorescence phenomenon by emission, emission of X-rays by electron beam irradiation, magnetism, various catalytic actions, and redox action.
  • state eg, oxidation number, external environment such as ligands, dispersion state of individual atoms, etc.
  • sex e.g., oxidation number, external environment such as ligands, dispersion state of individual atoms, etc.
  • the usual method for this purpose is to disperse the cation in a matrix material. is there.
  • the matrix material used is sufficiently transparent in the desired electromagnetic wave wavelength range.
  • inorganic glass such as silicon glass has been an important matrix material in the past. This is due not only to the excellent light transmittance of the inorganic glass in a wide wavelength range, but also to the properties such as heat resistance, chemical resistance, water resistance, surface hardness, abrasion resistance, and low coefficient of linear expansion.
  • these elements can be mixed in the inorganic matrix to a concentration of about several percent by weight, but generally, the cation has low solubility in the inorganic matrix, or Since it was difficult to control the chemical structure near the cation, it had the disadvantage that it easily formed an aggregated state (cluster).
  • the fluorescence intensity is rather lowered when the added concentration is increased to a certain level due to concentration quenching caused by the transfer of the excitation energy in the cluster.
  • amorphous materials such as acrylic resins, styrene resins, aromatic polycarbonate resins, aromatic polyacrylate resins, polyimide resins, and amorphous polyolefin resins.
  • Thermoplastic resin has been developed, and features that are not found in inorganic glass, such as excellent moldability such as thermoplasticity and solution applicability, light weight, toughness, versatility in the choice of monomer chemical structure, and compatibility with other materials Applications have been devised that take advantage of the characteristics such as adhesion and recyclability.
  • Examples of application of cations of fluorinated elements such as lanthanides to inorganic matrices include, for example, inorganic glasses to which cations such as elpium are added as materials for optical amplifiers in optical communication technology.
  • inorganic glasses to which cations such as elpium are added as materials for optical amplifiers in optical communication technology.
  • a lanthanide salt of a polymerizable organic acid such as acrylic acid, methacrylic acid, styrene carboxylic acid, and styrene sulfonic acid is synthesized, and the lanthanide cation-supporting monomer is polymerized or copolymerized.
  • a method for increasing the ion concentration to about 10% by weight has been reported.
  • Japanese Patent Application Laid-Open No. 5-86189 discloses a polysiloxane obtained by using chlorosilanes having an organic group and a chloride of a rare earth element as raw materials and having a lanthanide incorporated in a polymer chain. Have been.
  • JP-A-5-88026 discloses that a polyacrylate / polysiloxane contains a complex having excellent solubility and oxidation resistance in an organic solvent such as an acetylacetone complex of lanthanide. Material is disclosed.
  • inorganic phosphors commonly used in cathode ray tubes, fluorescent lamps, X-ray intensifying screens, and the like include multi-step processes that are complicated in their production, such as mixing, precipitation, filtration, and drying.
  • the steps such as drying, baking, pulverization, and classification are usually required, and the dispersibility in the solvent or binder polymer when applying this to the base material may be insufficient, and as described above
  • concentration quenching due to the formation of clusters in the fluorescent species Lan-Yun Node.
  • a lanthanide complex using a low-molecular organic ligand such as an acetyl acetonate derivative has been used as a fluorescent labeling agent such as a fluorophore for a fluorescent substance. After all, improvement of the fluorescence intensity, etc. was desired.
  • An object of the present invention is to provide a highly safe XRI contrast agent which can contain a metal element having a desired large atomic number in the form of a cation without using iodine having side effects, and has been suppressed.
  • An object of the present invention is to provide a contrast agent for MRI which has a large R value due to its cation releasing property and extremely suppressed rotational motility, and which is excellent in safety and performance.
  • Another object of the present invention is that when metal cations are dispersed at a high concentration in an organic polymer material or a solvent, the formation of clusters can be extremely suppressed, and an element having a high atomic number can be suppressed.
  • An object of the present invention is to provide a metal cation complex that provides a means for dispersing cations stably in a blood stream. Disclosure of the invention
  • the present inventor has conducted intensive systematic research, particularly on the complexation of a metal cation and an organic material, and has found that a coordination containing a hyperbranched molecular structure in a specific bonding mode It has been found that complexing a proton with a metal ion is very effective. In other words, in such a complex, the metal cation is not exposed on the surface of the dendrimer, and the hyperbranched molecular structure arranged in the vicinity of the metal cation has a large space exclusion effect (effect of occupying a large space). It is thought that the stability in blood is improved due to the fact that the complex is functionally shielded from the metal cation.
  • the compound has a very large R value as described above, and that a strong MRI signal intensity can be obtained, and has completed the present invention.
  • the present inventor has conducted intensive systematic studies especially on the composite of a metal cation and an organic polymer material.
  • a complex in which a branched polymer having a polyaminocarboxylate anion having a tertiary amino group and a carboxyl group, which are a complex-forming functional group, is arranged near a metal cation by bonding, the cation is converted to a complex.
  • the complex can be solubilized stably in a wide range of solvents and the obtained complex can be made thermoplastic.
  • such complexes maintain the characteristics of the branched polymer, such as reduced weight, toughness against bending displacement, or adhesion to a wide variety of substrates.
  • the cations are not exposed on the surface of the dendrimer, and are aggregated with each other in principle due to the large space exclusion effect (the effect of occupying a large space) of the branched polymer arranged near the metal cation. Due to the difficulty, when this is dispersed in various matrices, the cations are dispersed at the atomic level, which extremely suppresses the formation of clusters and also suppresses the decomposition of complexes due to ion exchange in the aqueous electrolyte solution. And found that the present invention was completed.
  • the gist of the present invention is a complex comprising a metal cation and a ligand having a hyperbranched molecular structure, and wherein a complex-forming functional group in the ligand is located between a focal point atom of the hyperbranched molecular structure.
  • a contrast agent comprising, as an essential component, a complex which is not a constituent element of the hyperbranched molecular structure and is bonded through 0 or more and 50 or less atoms bonded in series; wherein the ligand is a water-soluble contrast agent;
  • the above-described contrast agent wherein the ligand has an active hydrogen atom-containing functional group or a polyalkylene oxide group at the terminal of the hyperbranched molecular structure; the ligand is a hydroxyl group or a polyalkylene oxide group having a repeating unit of 4 or less carbon atoms.
  • the ligand comprises an element arbitrarily selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus in the hyperbranched molecular structure;
  • the child is Aete
  • the contrast agent having a structure arbitrarily selected from the group consisting of, an ester, an amide, and a tertiary amamine in the hyperbranched molecular structure; the contrast agent having a ligand having a porphyrin ring;
  • the contrast agent having a molecular structure of not less than 300 and not more than 500, 000 or less; the contrast agent having a hyperbranched molecular structure having a dendrimer structure; and the focal point atom having a hyperbranched molecular structure having a On average for one metal cation
  • the contrast agent wherein the metal cation is a cation of an element belonging to the sixth period of the periodic table; and the contrast agent wherein the metal cation is a trivalent cation.
  • the contrast agent wherein the metal cation is a cation of gold or platinum; the metal cation is a group 3A, 4A, 5A, 6A, 7A, 8A, or 8A of the periodic table;
  • the contrast agent which is a cation of a transition metal belonging to any one of the groups 1B and 2B and has paramagnetism; the metal cation is manganese, iron, or lanthanide
  • the contrast agent, wherein the metal cation is a trivalent gadolinium cation; or the contrast agent, wherein the complex is represented by the following general formula (1);
  • ⁇ ⁇ + represents an n-valent metal cation
  • RA— represents a monovalent acid anion
  • n is an integer of 1 to 4
  • R represents a hyperbranched molecular structure
  • A represents a carboxylate group or a sulfonate group which is a complex-forming functional group.
  • the contrast agent wherein the complex is a metal cation complex represented by the following general formula (2);
  • M n + represents an n-valent metal cation
  • R m represents a ligand
  • X represents a tertiary amino group and a carboxyl group which are complex forming functional groups.
  • the represents an n-valent carboxylate anions of Poria Minokarubon acids having, R m represents a good branched polymer residues be different Rusorezore independent each other to bind to X n, n is an integer of 1 to 4 And m represents an integer of 1 to 6.
  • the branched polymer residue R is a number average molecular weight Mn, GPc, and a weight average molecular weight Mw ( GPC ) measured by gel permeation chromatography ( GPC ). Between the two, 300 0 ⁇ Mn ( GPC) ⁇ 500 000 and 1.0 Mw (the two relations of ope, / Mn, G pc, ⁇ 15 are simultaneously satisfied.)
  • Ligand (X) the branched polymer residue in the ligand (X n —) -R m wherein at least one of the branched polymer residues R in R m has a hyperbranched molecular structure; At least one of R is the true weight average molecular weight Mw measured by mass spectrometry or light scattering method and the weight average molecular weight measured by gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the contrast agent of the present invention will be described.
  • the complex for a contrast agent of the present invention comprises a metal cation described below and a ligand containing a hyperbranched molecular structure in a specific bonding mode as described below as constituent components, and a Coulomb force or a coordination bond between the two components. It consists of.
  • the contrast agent of the present invention is preferably a water-soluble one or a hydrophilic one that does not cause precipitational aggregation in water. The means for imparting water solubility or hydrophilicity will be described later.
  • the metal cation is defined as hydrogen, boron, carbon, Excluding nitrogen and phosphorus, 1 A (alkali metal), 2 A (alkaline earth metal), 3 A 4 A 5 A 6 A 7 A 8 1 B 2 B (above transition element), 3 B 4 B and 5 It is a cation of an element belonging to each group of B.
  • the valence of the metal cation is not particularly limited, but the complex of the present invention may be arranged with a ligand containing a sterically crowded hyperbranched molecular structure in a specific bonding mode in the vicinity of the metal cation.
  • valences are usually preferable, and more preferably 2 or 3 valences, and most preferably 3 valences, in terms of the efficiency of the space elimination effect described above. I do.
  • Specific cations used in the complex for contrast agent of the present invention include metal cations such as Li + Na + K 1 Rb + , C s + F r + , and Be 2 + Mg Alkaline earth metal cations such as 2 + , C a 2 + , S r 2 + B a 2 + , R a 2 , scandium cations such as Sc 3+ Y 3+ , T i 2 T i 3 T i 4+ Z r + Z r 2+ Z r 3 Z r 4+ H f + , ⁇ f 2+ , ⁇ f ;, + , ⁇ f 4+, etc., V + V 2+ , V 3 V 4 V B + , Nb + Nb 2+ Nb 3+
  • Vanadium-group cations such as T a Ta 2 T a T a 4+ , T a 5+ , C r C r C r 3 C r h , C r 5+ C r 6 Mo + Mo 2+ , Mo 3+ Mo 4 Mo Mo e W + ; Chromium group cations such as W 2+ , w 4+ , zu + , W 6+ , etc., Mn Mn E Mn Mn 4+ Mn 5+ , Mn 6 + Mn 7 'Tc + T c Manganese family cations such as 2 + T c T c 4 T c Tc 6 + , T c 7 + R e + , Re 2 R e 3 'R e 4 R e R e R e R e 7 + , F e Fe 21 F e 3 F e F E f Ru, Ru 2 Ru 3+ , Ru 4+ , Ru Ru 6 Ru 7 Ru 0 s 0 s 2
  • Copper group cations such as Au + Au 2+ Au 3+ Au 5+ , Au 7 , zinc group cations such as Zn 2+ Cd + Cd 2+ Hg Hg 2+ , La 2+ La 3 ′, Ce 2 C e 3 C e 1+ P r 21 P r 3 P r "Nd 2 + Nd 3+, N d 4+ Pm Pm 3 Sm 2 + Sm 3 Eu 2 + E u 3+ Gd 2 + Gd 3 Tb 2+ Tb Tb 4 Dy 2 + Dy 3 Dy 4 + Ho 2+ Ho 3 + E r 2+ E r 3 Tm Tm 3 'Yb 2 + Yb 3 Lu 2 + L u 3+ etc.
  • Specific examples include cations of elements belonging to the fourth, fifth, sixth and seventh periods of the periodic table.
  • element Yon which belongs to the 6th period, is preferred. More preferred are lanthanide cations such as thulium, ytterbium and lutetium, or noble metal cations such as gold and platinum, and most preferably gadolinium, gold or platinum.
  • the complex for contrast agent of the present invention When used as a contrast agent for MRI, the cation needs to have paramagnetism.
  • transitions that typically belong to any of the groups 3A, 4A, 5A, 6A, 7A, 8, 8, 1B, and 2B of the periodic table Use metal cations.
  • the magnetism of the transition metal shows complex behavior depending on the oxidation number and the nature of the ligand.
  • Pr 3+ Nd 31 , Eu 3+ , Gd 3+ Tb 3+ Trivalent lanthanide cations such as Dy 3+ Ho 3+ , Er 3+ Tm 3+ , Y b 3 , manganese group cations such as Mn 2+ Mn 3+ , iron groups such as F e 2 F e 3 Cation, N i 2+, Ni group cations such as the N i 3+, and the like as a typical, among others Gd 3 +, F e 2 + , F e 3 +, Mn 2 + and the like are preferable, Most preferred is Gd 3+ .
  • the ligand which is a component of the complex for a contrast agent of the present invention and has a hyperbranched molecular structure in a specific bonding mode, is characterized in that the complex-forming functional group in the ligand is a focal point having a hyperbranched molecular structure. ) It must be bonded to the atom via 0 to 50 serially connected atoms that are not components of the hyperbranched molecular structure.
  • the complex-forming functional group in the ligand is a functional group that interacts with the metal cation in the complex by Coulomb force or coordination bond.
  • a functional group include a hydroxyl group, a sulfonyl group, a phosphate group, a phosphite group, a hypophosphite group, a thioate group (—COSH), a dithioate group (—CSSH), a xanthate group, and a nitrate group.
  • Hydroxy groups such as alcoholic hydroxyl group, phenolic hydroxyl group, etc., primary amino group, secondary amino group, tertiary amino group, nitro group, nitrile group (cyano group), isonitrile group, etc.
  • Functional group nitrogen-containing aromatic ring such as pyrrole ring and pyridine ring, sulfur-containing functional group such as mercapto group (thiol group), disulfide group, sulfide group, isothiocynate group, thiocarbamate group, phosphine group, Phosphorus atom functional groups such as phosphinoxide groups, selenium-containing functional groups such as selenol groups, diselenide groups and selenide groups, and anionic groups generated when the above acidic groups lose protons (A carboxylate group, a sulfonate group, a phosphonet group, a xanthate group, etc.), an anionic group (eg, an alcoholate group, a phenol
  • acid-forming groups such as carboxyl group, sulfonyl group, phosphate group, xanthate group, etc.
  • anionic groups eg, those groups formed by losing protons
  • a carboxylate group, a sulfonate group, a phosphonate group, a xanthate group), a nitrogen-containing functional group such as a primary amino group, a secondary amino group, a tertiary amino group, a nitrile group, a pyrrol ring, a pyridine ring, etc.
  • Sulfur-containing functional groups such as nitrogen-containing aromatic ring, mercapto group, disulfide group, sulfide group, thiocarbamate group, phenolic hydroxyl group, phenol — Acid groups such as carboxyl group, sulfonyl group, etc., and anionic groups generated by losing protons (carboxylate group, sulfonate group, etc.) ),
  • Nitrogen-containing functional groups such as tertiary amino groups and nitrile groups, nitrogen-containing aromatic rings such as pyrrolyl rings, sulfur-containing functional groups such as mercapto groups, disulfide groups, sulfide groups, thiocarbamate groups, and phenol.
  • the complex-forming functional groups exemplified above may be present in any number and in any combination in one ligand, and a series of such functional groups form the coordination site of the metal cation. They are often arranged with the intent to occupy them efficiently and exhibit excellent complex stability.
  • the number of the functional groups present in one ligand is suitably 1 or more and 30 or less, preferably 1 or more and 20 or less, It is more preferably 1 or more and 15 or less, most preferably 1 or more and 10 or less.
  • the adjacent functional groups are desirably separated by 0 to 10 series-bonded atoms, and the number of the series-bonded atoms is more preferably 0 to 7 and still more preferably 0 to 5 Below, most preferably 0 or more and 3 or less.
  • Examples of the structure of a series of the functional groups exhibiting excellent complex stability that can be used in the complex for a contrast agent of the present invention include ethylenediaminetetraacetic acid (commonly known as EDTA), diethylenetriaminepentaacetic acid (commonly known as DTPA), 4,7,10—Tetrakis (acetic acid) Represented by polyaminocarboxylic acids such as tetraazacyclododecane (DOTA), and porphyrins such as porphyrin ring, protoporphyrin ring, etyoborphyrin ring, and mesoborphyrin ring. And polynitrogen-containing aromatic rings.
  • EDTA ethylenediaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • acetic acid 4,7,10—Tetrakis
  • acetic acid Represented by polyaminocarboxylic acids such as tetraazacyclo
  • the ligand which is a constituent of the complex for a contrast agent of the present invention has a hyperbranched (Hyperbranch) molecular structure.
  • the hyperbranched molecular structure is a dendritic branched molecular structure.
  • the hyperbranched molecular structure is a concept typified by the dendrimer described in detail in each of the above-mentioned Hawker, Tomalia, Frechet, or Kakimoto et al. There is There is no limitation on the molecular weight in the light.
  • the starting point of branching (hereinafter referred to as “focal point”) can be specified, and when the molecular chain is traced from the focal point toward the molecular end. It has a molecular structure that has at least one molecular end that passes at least one branch point other than the focal point.
  • the focal point in the present invention means the last branch point in the shortest route from the arbitrary molecular end of the ligand in the complex to the nearest complex-forming functional group by reversing the molecular chain.
  • the complex-forming functional group in the ligand which is a component of the complex for a contrast agent of the present invention, is not a component of the hyperbranched molecular structure between the focal point atom of the hyperbranched molecular structure and 0 or more and 50 or less. Must be connected through the atoms connected in series.
  • the term “sequentially bonded atoms” as used herein means a linear structure, and its constituent elements are not limited.
  • the vicinity of the central cation is hydrophilic.
  • the spatial or chemical environment near the metal cations can be changed.
  • the MRI contrast agent When placed, it can control the accessibility of water molecules to paramagnetic metal cations, which greatly affects its performance.
  • the number of the atoms bonded in series is 50 or more, the shielding effect of the hyperbranched molecular structure in the ligand may decrease, which is not preferable. More preferably, the number is 40 or less, Preferably it is 30 or less, most preferably 25 or less.
  • the ligand which is a component of the complex for a contrast agent of the present invention preferably has hydrophilicity or water solubility.
  • hydrophilic means that the complex does not cause precipitable aggregation in water
  • water-soluble means that the complex dissolves in water without forming an aggregated structure. Even when the complex is not hydrophilic or water-soluble, it may be possible to administer the complex as a contrast agent to a patient in a state of suspension in water or an aqueous solution. It cannot be said that it is preferable because the contrast effect is lowered.
  • an active hydrogen atom-containing functional group or a polyalkylene oxide group is introduced into the terminal of the hyperbranched molecular structure of the ligand.
  • Method is suitably used. This is because such terminals exist on the surface of the complex.
  • the active hydrogen atom-containing functional group include a hydroxyl group, a mercapto group, an amino group, a hydrazide group, a carboxyl group, a sulfonic acid group, an amide group, a carbamate group, a urea group, a thioic acid group and a dithioic acid group.
  • a hydroxyl group, an amino group, and a urea group are particularly preferable.
  • the polyalkylene oxide group include a polyethylenoxide group, a polypropylene oxide group, a polybutylene oxide group, a polypentylene oxide group, a polyhexylene oxide group, a polyisopropylene oxide group, and a polyisopropylene oxide group.
  • a monomer unit structure having an alkylene group having 6 or less carbon atoms in the repeating unit such as an isobutylene oxide group, a polycyclopentylene oxide group, and a polycyclohexylene oxide group may be mentioned. The above may be copolymerized.
  • a hydroxyl group, a urea group, and a polyalkylene oxide group having a repeating unit of 4 or less such as a polyethylene oxide group, a polypropylene oxide group, and a polybutylene oxide group are most preferable.
  • Preferred are a hydroxyl group and a polyethylene oxide group.
  • functional groups having no active hydrogen atom such as carbonyl group, ester group, nitrile group, nitro group and aldehyde group, are also effective for imparting hydrophilicity.
  • a ligand having two or more of the above functional groups in a molecule may be used as a component thereof. May be used in combination.
  • a hyperbranched molecular structure in the ligand contains an element arbitrarily selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus. At least, a method for imparting water solubility to the hyperbranched molecular structure itself is given. Specific examples of such a structure include an oxygen-containing structure such as an ether bond, a carbonyl group, an ester bond, a carbonate bond, a furan ring, an amide bond, a urethane bond, a urea bond, and a secondary or tertiary amine structure.
  • Non-aromatic nitrogen-containing structure pyrrole ring, pyridine ring, quinoline ring, pyrimidine ring, purine ring, imidazole ring, imidazolidinine ring, triazole ring, etc., nitrogen-containing aromatic ring, sulfide bond , Disulfide bond, thiocarbonyl group, thioester bond, thiocarbonate bond
  • Non-aromatic sulfur-containing structures such as thiourethane bond and thiourea bond, sulfur-containing aromatic rings such as thiazole ring, thiophene ring, and thionaphthene ring, phosphate ester, phosphite ester, hypophosphite ester, Examples thereof include a phosphorus-containing structure such as a secondary or tertiary phosphine and a phosphinoxide.
  • oxygen-containing structures such as ether bonds, carbonyl groups, and ester bonds; amide bonds; non-aromatic nitrogen-containing structures such as tertiary amine structures; nitrogen-containing aromatic rings such as pyridine rings; and non-aromatic nitrogen-containing structures such as sulfide bonds.
  • Aromatic sulfur-containing structures, phosphorus-containing structures such as tertiary phosphines and phosphinoxides are preferred, and non-aromatic nitrogens such as oxygen-containing structures such as ether bonds and ester bonds, amide bonds and tertiary amine structures.
  • the containing structure is most preferred.
  • the range of the molecular weight is preferably from 300 to 400,000 or less, more preferably from 400 to 300,000 or less, and still more preferably from 450 to 200,000.
  • Mw ( CPC ) It can be said that the smaller the value of / Mn, the better, but it is more preferably 1.0 or more and 12 or less, more preferably 1.0 or more and 9 or less, and most preferably 1.0 or more and 5 or less.
  • the above-mentioned hyperbranched molecular structure has as high a degree of branching as possible, particularly when the molecular weight is increased. This is thought to be because when considering molecules having the same molecular weight in the same monomer (repeating unit) structure, the larger the number of branch points, the easier it is to adopt a conformation with a high space exclusion effect. In other words, as it approaches a linear macromolecule without branching, it can change from a thread-condensed conformation with a high space exclusion effect to a low-conformation conformation with a stretched polymer chain. As a result, the probability of taking a state where the space exclusion effect is low increases.
  • Means for quantifying the degree of branching of a polymer include, for example, measurement of the relationship between the intrinsic viscosity and the absolute molecular weight in a dilute solution, or the structure of a branched unit and an unbranched unit in a nuclear magnetic resonance (NMR) spectrum.
  • NMR nuclear magnetic resonance
  • a method utilizing the integral value of a signal assigned to each of the structures may be mentioned.
  • preferred conditions for the degree of branching include: For example, the weight average molecular weight Mw measured by the mass spectrum method or the light scattering method and the weight average molecular weight Mw measured by the GPC method satisfy the relationship of Mw / Mw, GPc,> 1.
  • Mw is larger than Mw ( GPC)
  • GPC GPC
  • the above-mentioned mass spectral method is not limited as long as a molecular peak is given, and is suitably used for relatively high molecular weight molecules having a molecular weight of 100 or more or unstable molecules. In some cases, it may be preferable to apply a new method such as the Matrix Assisted Laser Des- ptionionization (MALD I) mass spectrometer or the Electrospray mass spectrum. Also, all GPC measurements in the description of the present invention need to be performed in a good solvent having a hyperbranched molecular structure. MwZ The value of Mw (ope,) is usually at most about 3 within the above-mentioned range of molecular weight, but is not particularly limited.
  • the most effective hyperbranched molecular structure in terms of the effect of shielding the metal cation and the effect of increasing the R of the complex is the above-described dendrimer structure. It is presumed that this is mainly due to the effective effect of eliminating the space and the two effects of extremely reducing the free rotation inside the structure due to the regular and dense branch structure of the dendrimer. In the case of dendrimers, it is theoretically also advantageous that the molecular weight distribution can be set to 1.0 with the value of Mw ( GPC) / Mn ( Gpc, ) .
  • two or more hyperbranched molecular structural units in one complex are contained as an average of two or more four-force point atoms in the hyperbranched molecular structure with respect to one metal cation. This is thought to be the effect of multiple independent hyperbranched molecular structural units significantly reducing the free rotation of metal cations. From the viewpoint of this effect, it is most preferable that the number of hyperbranched molecular structural units is three or more on average for one metal cation as the number of focal point atoms.
  • the complex for a contrast agent of the present invention comprises a cron force (ionic bond) or a coordinate bond between a metal cation and a complex-forming functional group in a ligand.
  • the formation of ionic bonds is possible by an anion exchange reaction. More specifically, a salt of a metal cation with a carboxylic acid such as formic acid, acetic acid, oxalic acid, or propionic acid, or a salt with a chloride ion, a bromide ion, or an iodide ion, and a ligand or It is carried out by mixing with a salt of a ligand (for example, sodium salt, potassium salt, etc.).
  • a salt of a ligand for example, sodium salt, potassium salt, etc.
  • all the counter ions which neutralize the positive charge of the metal ion are the above-mentioned ligands. This is because relatively small anions, such as fluoride ions, chloride ions, bromide ions, halide ions such as iodide ions, sulfate ions, nitrate ions, formate ions, acetate ions, oxalate ions, etc. This is because the residual Yin, which is widely used in the field, reduces the shielding effect and the free rotation suppression effect.
  • the complex of the present invention is produced by the above-described anion exchange reaction, the equivalent relation between the metal cation and the ligand is accurately controlled. Is desired. However, the effect of the present invention may be obtained even if an excess of a ligand is allowed to act on the metal cation because the product contains the desired complex.
  • the complex of the present invention is used as a contrast agent.
  • parenteral administration such as intravenous administration or the like can be used.
  • Solvents or suspending agents used in the preparation of parenteral drugs, that is, in the manufacture of injections, etc. include, for example, water, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin, etc. No. Preparation of the preparation may be performed according to a conventional method.
  • a pharmaceutically acceptable carrier for example, granules, fine granules, powders, tablets, hard syrups, soft capsules, syrups, emulsions, suspensions, Oral administration in the form of ribosomes, liquids, etc.
  • excipients used in producing a solid preparation include lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate and the like.
  • Liquid preparations for oral administration ie, emulsions, syrups, suspensions, solutions and the like, contain commonly used inert diluents such as vegetable oils.
  • the formulation may also contain, in addition to the inert diluent, an auxiliary such as a wetting agent, a suspending aid, a sweetening agent, a fragrance, a coloring agent or a preservative.
  • auxiliary such as a wetting agent, a suspending aid, a sweetening agent, a fragrance, a coloring agent or a preservative.
  • Liquid preparations may be included in the forceps of a resorbable substance, such as gelatin.
  • the contrast agent according to the present invention is generally administered at a dose that allows the desired contrast effect to be obtained without side effects. Its specific value is to be determined at the discretion of a physician, generally 0.1 mg to 10 g, preferably 1 mg to 5 g per adult per diagnosis.
  • the compound of the present invention may be contained and administered as an active ingredient in an amount of 1 mg to 5 g, more preferably 3 mg to 3 g, per adult per diagnosis. ⁇ 2. — Metal cation complex represented by general formula (2) >>
  • a preferred metal cation complex of the present invention is represented by the general formula (2), and will be described later.
  • the metal cation M n + and a branched polymer having a polyaminocarboxylate anion having a tertiary amino group and a carboxyl group, which are complex-forming functional groups, are constituent components, and electrostatic interaction between both components is performed. It is constituted by an action or a coordination bond.
  • This metal cation complex is a force that binds a lipoxylate anion (COO—) of a number equal to the valence n of the metal cation to become electrically neutral.
  • COO— lipoxylate anion
  • a form in which a part of the carboxylate ion is replaced with a small ion such as a hydroxide ion is also possible.
  • Pr 3+ , N d 3+ , Sm 3+ , Eu 3+ , Tb 3+ , D y 3 + , Ho:! + , Er 3+ , Tm 3+ , Yb 3+ trivalent lanthanoid de cations etc., visible to near infrared region, a long life, are preferred in that fluoresces with a characteristic, such as a narrow wavelength width, H o 3+, E r 3 +, Tm 3 + in etc.
  • upconverter job Nreza first material, £ 11 2 tens Ya Ding 13 3+ to visible light isolator using a rotary F araday, P r 3+, Sm 2 +, E u 3+ , etc.
  • P t 2+, P t 3+, Au +, Au 2+, Au 3+, P b 21, B i 3 ten atomic number high cation increase the refractive index, such as electromagnetic wave absorbing effect, such as X-ray or, electromagnetic wave is suitable in terms of shielding effect, L i +, Na +, ⁇ ', Rb +, C s + etc.
  • ⁇ alkali metal cation, Mg 2+, C a 2+, S r 2+, B Alkaline earth metal cations such as a 2+ are preferred in terms of antistatic effect.
  • X n — is a tertiary amino group, which is a complex-forming functional group that electrically neutralizes the n-valent positive charge of the metal cation.
  • R represents a branched polymer residue.
  • branched polymer residue as used herein means a polymer structure having a branch in the main chain structure.
  • n represents an integer of 1 to 4.
  • N-valent carboxylate anions X n of Nokarubon acid - A represents a straight-chain or cyclic compounds having at least one tertiary Amino groups and two or more carboxyl groups, a series of these functional groups is a metal cation It is arranged with the intention of efficiently occupying the coordination site.
  • the total number of the tertiary amino group and the carboxyl group present in one X is suitably 30 or less, preferably 20 or less. The value is more preferably 15 or less, most preferably 10 or less.
  • the adjacent functional groups are desirably separated from each other by 0 to 10 series-bonded atoms, and the number of the series-bonded atoms is more preferably 0 to 7 but still more preferably 0 or more. 5 or less, most preferably 0 or more and 3 or less.
  • Examples of such a structure include ethylenediamine tetraacetic acid (commonly known as EDTA), methylentriamine pentaacetic acid (commonly known as DTPA), or 1,4,7,10-tetrakis (acetate quat) tetraazacyclododecane (commonly known as D0 TA)) and the like.
  • the chemical structure of the monomer constituting the branched polymer residue is not particularly limited as long as both the solvent solubility and the thermoplastic property of the metal cation complex represented by the general formula (2) are not impaired at the same time. There is no. This is because, in the present invention, one of the main reasons for using branched polymer residues is due to its spatial exclusion effect. That is, regarding the spatial exclusion effect, which is one of the main points of the effect of the present invention, the spatial spread of the polymer residue is the most important, and the contribution of the difference in chemical properties derived from the chemical structure is small. That's what it means.
  • the chemical structure of the branched polymer residue R that can be used in the present invention is a necessary condition for ensuring excellent moldability, that is, compatibility with a solvent or various matrix materials, or heat.
  • plasticity specifically, aromatic polyether, aromatic polyester, aromatic or semi-aromatic polyamide, aromatic polycarbonate, aromatic polyester resin, aromatic police Aromatic polymers and aliphatic polyethers that contain elements other than carbon, such as sulfide, aromatic polyimide, aromatic polyamide, aromatic polyurethane, aromatic polyurethane, aromatic polyamide, etc. in the polymer main chain.
  • the complex When the metal cation complex is used in a dispersed state in an aqueous electrolyte solution, such as in the use of a contrast agent as described above, the complex must have water solubility.
  • water-soluble means a property that the complexes dissolve in water without aggregating with each other, or a property that the complexes are dispersed in water without forming a sedimentable aggregated structure.
  • the structure of the branched polymer residue R suitable for imparting such water solubility to the complex is an aliphatic polyether such as polyethylene oxide, an aliphatic polyamide, an aliphatic polyester, an aliphatic polycarbonate, an aliphatic polyester, or the like.
  • Elements other than aliphatic chains and carbon such as tercarbonate, aliphatic polysulfide, aliphatic polyimide, aliphatic polyamide, aliphatic polyurethane, aliphatic polyurethane urea, and aliphatic polyurea Included in the chain structure.
  • a plurality of these exemplified structures may be contained in one branched polymer residue.
  • the metal cation has the ability to generate fluorescence
  • the branched polymer residue R contains an aromatic structure, the structure absorbs light mainly in the ultraviolet or infrared region, and The mechanism that transfers energy to the metal cation can improve the fluorescence intensity.
  • Such an effect is known as an antenna effect (for example, Tanner, SP eta 1; J. Am. Chem. Soc., 96, 706 (1974), Ok amo to, Y. eta 1; Macro mo lecules, vol. 14, p. 17 (1 1981), Sabbatini, N. et al. etal; Coordination Chemistry Rev., Vol. 123, page 201 (1993), etc.), for example, is effective for improving the fluorescence intensity of lanthanide cations. Since the antenna effect is based on the properties of the metal cation complex itself, it is also effective in improving the fluorescence intensity at a low concentration at which concentration quenching does not pose a problem.
  • an antenna effect for example, Tanner, SP eta 1; J. Am. Chem. Soc., 96, 706 (1974), Ok amo to, Y. eta 1; Macro mo lecules, vol. 14, p. 17 (1 1981), Sabbatini, N
  • the preferred structure of the branched polymer residue R from the viewpoint of the antenna effect is a structure having absorption in the ultraviolet to infrared region, for example, an aromatic polyether, an aromatic polyester, an aromatic or semi-aromatic polyamide, or an aromatic polycarbonate.
  • an aromatic conjugated polymer composed of A plurality of these exemplified structures may be contained in one branched polymer residue.
  • the metal cation complex or the polymer composition containing the metal cation complex is used for near-infrared fluorescence, for example, when used as a material for an optical amplifier, an overtone of a vibration mode derived from a carbon-hydrogen bond is required. May appear in the near-infrared region (for example, around 1.5 m), which is a noise component.
  • the branched polymer residue R in the ligand which is a component of the metal cation complex represented by the general formula (2), needs to have a specific molecular weight distribution. That is, between the number average molecular weight Mn (GPc ) and the weight average molecular weight Mw ( GPC) measured by the gel permeation chromatography ( GPC) method , 300 ⁇ Mn ( Gl > c ) ⁇ It is desirable that the two relations of 500 000 and 1.0 ⁇ Mw (ope, / Mn ( G PC ) ⁇ 15 be satisfied at the same time.
  • the value of Mn (G Pc, is less than 300, If so, the spatial extension of the branched polymer residue R is not sufficient, and the above-described space exclusion effect is reduced. If it exceeds 0, it is considered that such a spatial spread is so large that all of them cannot be located near the metal cations.In either case, cluster formation is likely to occur, which adversely affects the effect of the present invention.
  • the value of Mn ( GPC ) is more preferably not less than 400 and not more than 400, more preferably not less than 450 and not more than 200, most preferably not less than 500. The following is assumed.
  • the Frechet described above or the C 0 n ergent method described in the literature by Kakimoto it is possible to set the value to 1.0 in principle, while the DiVergent method (one molecule of the dendrimer from the center) (The method of constructing outwardly), it can usually be about 1 to about 2. Therefore, the value of Mw (ope, / Mn,) is more preferably 1.0 to 1 2 The value is more preferably 1.0 or more and 9 or less, most preferably 1.0 or more and 5 or less.
  • the ligand has at least one branched polymer residue R having a hyperbranched (Hyperbranch) molecular structure.
  • the hyperbranched molecular structure is a dendritic branched molecular structure, and is, for example, a concept typified by the above-mentioned Hawker, Tomalia, Frechet, or dendrimer described in detail in each document by Kakimoto et al.
  • the starting point of branching that is, the above-mentioned focal point
  • the force of force is determined.
  • the molecular structure has at least one molecular end that passes at least one branch point other than the report point.
  • the complex-forming functional group Xn in the ligand is not a component of the hyperbranched molecular structure between the branched polymer residue R and the focal point atom of the branched polymer having the hyperbranched molecular structure.
  • the atoms connected in series here have a straight-chain structure, and there are no restrictions on the constituent elements. It is considered that the spatial or chemical environment near the metal cation can be changed by controlling the number of atoms or the kind of element connected in series.
  • the shielding effect of the hyperbranched molecular structure in the ligand may be reduced, which is not preferable. More preferably, the number is 40 or less. It is more preferably at most 30 and most preferably at most 25. When utilizing the fluorescence of the metal cation of the complex, it may be preferable that the number of the atoms connected in series is small from the viewpoint of the efficiency of the antenna effect of the ligand.
  • the branched polymer residue R has as high a degree of branching as possible as long as the thermoplasticity of the metal cation complex and the compatibility with the solvent or the matrix material are not impaired. This is because, when considering polymers having the same monomer (repeating unit) structure and the same molecular weight, the larger the number of branch points, the higher the conformation with a high space exclusion effect that hinders the approach of the cations. It is thought that it is easy to take. In other words, as it approaches a linear polymer without branching, it can change from a thread-condensed conformation with high space exclusion effect to a low-conformation conformation with extended polymer chains. As a result, the probability that the cations approach each other increases. From this viewpoint, a preferred branched structure is the above-described hyperbranched molecular structure, and among them, the above-mentioned dendrimer structure is most effective.
  • the viscosity can be reduced by adopting a dendrimer structure, and the convenience in use is excellent. Can be obtained.
  • the means for quantifying the degree of branching of the polymer is as described above.
  • the metal cation complex represented by the general formula (2) is a carboxylate derivative derived from a polyaminocarbonic acid having a tertiary amino group and a carboxyl group, which are a complex forming functional group in the metal cation and the ligand. And a coordination bond between the metal cation and the tertiary amino group or the carboxyl group in the ligand. The formation of such an ion bond is possible by the exchange reaction of the ion.
  • a strong acid salt of the metal cation for example, a salt with an anion such as chloride ion, bromide ion, iodide ion, fluoride ion, sulfate ion, nitrate ion, and phosphate ion
  • a method in which a carboxyl group in a metal is converted to a salt of a strong base eg, a metal ion such as sodium ion, lithium ion, or lithium ion
  • a method of mixing and heating a lower carboxylic acid salt such as oxalic acid and propionic acid with the ligand in the form of a polycarboxylic acid to remove the lower carboxylic acid generated from the raw material salt can be used.
  • the method is not limited to this, and any method may be used.
  • the concentration of the cation in the polymer composition is not particularly limited for the purpose of optical use as long as the transparency required for the use is maintained. It is preferable that the amount is 0.01 to 10% by weight based on the total amount of the cationic complex. If the cation concentration is less than 0.01% by weight, the effect of the present invention, such as an increase in the refractive index or the ability to generate fluorescence, becomes insufficient. In some cases, the mechanical properties such as the molecular composition become extremely brittle and the decrease in mechanical properties becomes remarkable. Not good. From this viewpoint, the more preferable cation concentration is 0.05 to 7% by weight, more preferably 0.1 to 5% by weight, and most preferably 0.5 to 4% by weight.
  • a general feature of the polymer composition in which the metal cation complex is dispersed in a polymer matrix is an extremely good dispersion of the cation which is not found in conventional materials. This is because the space exclusion effect of the metal cation complex is maintained to some extent even in the process of producing such a polymer composition, and specifically, for example, in an image observed by a transmission electron microscope. Exemplified is that the proportion of clusters in contact with the cations is less than 20%, more preferably less than 10%, further preferably less than 7%, and most preferably less than 5%.
  • the type of polymer matrix used for the polymer composition containing the metal cation complex there is no particular limitation on the type of polymer matrix used for the polymer composition containing the metal cation complex.
  • the compatibility with the metal cation complex is good in order to maintain the transparency required for the use.
  • a dispersion smaller than the wavelength of such light is achieved. It is necessary. More specifically, for example, in observation with a transmission electron microscope, it is desirable that the size of the aggregate of the cations be 20 Onm or less.
  • the aggregate referred to here is a cluster in which metal cations are in direct contact with each other, or a state in which the cations considered to be a group formed by association of the metal cation complex are close to each other at a distance of about several nm or less. is there. From the viewpoint of the transparency of the polymer composition or the reduction of concentration quenching in the process of generating fluorescence, the smaller the aggregate, the more preferable.
  • the aggregate is not formed and each cation is uniformly dispersed in the composition. Needless to say, this state is ideal for the purpose of the present invention.
  • Suitable polymer matrices depend on the chemical structure of the branched polymeric residues that make up the dispersed metal cation complex, but if they are organic, the compatibility, processability, economics, and the matrix itself
  • Known resin materials such as aliphatic polyethers such as ethylene glycol, aromatic or aliphatic polyurethanes, aromatic or aliphatic polyurethane ureas, aromatic or aliphatic polyureas, and aromatic polyimides are suitably used.
  • the molecular weight distribution and branched structure of such a matrix polymer are not particularly limited as long as excellent moldability is maintained.
  • the method for producing the polymer composition of the present invention by mixing the metal cation complex and the polymer matrix is not particularly limited.
  • a method of mixing and then drying the mixture in a solution to obtain a composition a method of using a device for mixing in a molten state such as a single screw extruder, a twin screw extruder, or a Brabender can be exemplified.
  • a method of mixing in a solution is effective in reducing the aggregate of the cations.
  • a plurality of kinds of the cations, a plurality of kinds of metal cation complexes, or a plurality of kinds of polymer matrices can be used.
  • the metal cation complex or the polymer composition containing the metal cation complex is used for a wide range of applications in which various functions of the cation are applied.
  • a high-brightness fluorescent coating material with extremely stable storage stability that does not cause problems such as the formation of precipitates in the inorganic phosphor dispersion liquid by preparing a solution utilizing its excellent solvent solubility If this is applied to the outer surface of a molded article of any shape, such as a flat surface, a curved surface, or a pipe, it can be used for various displays such as fluorescent road signs, safety signs, license plates, and safety display seals.
  • Protective parts and protective equipment for ensuring traffic safety such as boards (paper), helmets, bumpers, rain gear (rain flaps, umbrellas, etc.), lighting equipment such as fluorescent lights, and X-ray intensifying screens etc.
  • the product is advantageously obtained.
  • a low-toxic solvent such as water or alcohol is required from the standpoint of environmental protection, which has been particularly required in recent years. In this case, it is necessary to prepare a metal cation complex containing a ligand having good compatibility with such a solvent.
  • the metal cation complex of the present invention or the composition thereof may be used as a fluorescent labeling agent for, for example, Fluoromenoassay, a lens utilizing an increase in refractive index, an optical waveguide material having a refractive index change in the thickness direction, or an optical waveguide.
  • fluorescent labeling agent for, for example, Fluoromenoassay, a lens utilizing an increase in refractive index, an optical waveguide material having a refractive index change in the thickness direction, or an optical waveguide.
  • Near-infrared fluorescence that is important for communication technology (eg For example, an optical communication member such as an optical amplifier using a lanthanide such as ⁇ r 3t Nd 3+ Dy 3+ , Er 3+ having a wavelength of 1.3 ⁇ or 1.5 // m), It is very useful to apply it as a laser transmitter. In addition, Ho 3 + Er 3 + Tm 3+ etc.
  • Pr 3+ Sm 2l Eu 3+ etc. are useful elements for optical information recording materials utilizing the hole-burning phenomenon, while P t 2+ P t are used for visible light isolators using arad ay rotation.
  • a cation having a high atomic number such as 3 Au Au 2 Au 3+ Pb 2 Pb "Bi 3 is useful in terms of increasing the refractive index and radiation absorbing ability. It can be usefully used as an optical member material.
  • any additive may be used as long as the purpose of the present invention is not significantly impaired, such as an organic phosphorus compound such as trioctyl phosphoxide. It is also possible to use an additive or the like that suppresses a decrease in the fluorescence intensity by coordinating with a cation.
  • GPC TSK gel manufactured by Tosoh Corporation (grade for molecular weight of about 10,000 or more: GMH XL, grade for molecular weight of about several hundred to 10,000: G-2000), developing solvent: tetrahydrofuran (THF), measurement temperature : 40 ° C, control: monodisperse polystyrene, detection: refractive index change.
  • Ln lanthanide triacetate anhydride
  • LNA c commercially available hydrate
  • TCN ⁇ (2-cyanoethyl) oxymethyl ⁇ amino methane
  • TEC ⁇ (2-ethoxycarbonylethyl) oxymethyl ⁇ amino methane
  • BOC group t-butoxycarbonyl group
  • DCC dicyclohexylcarpoimide
  • BOC-TC the BOC group TCN 3
  • TC- T CN 3 amine obtained by removing the Torifuruoro acetate in THF as a catalyst
  • TC- T CN 3 substantially diethylenetriaminepentaacetic ⁇ Sethi Kkujianhai dry de
  • DTP A- CN 18 substantially.
  • the ion-exchange resin was removed by filtration, 3 equivalents of sodium hydroxide were added to DTPA, and then glycerol and water were distilled off under reduced pressure to obtain a hydrophilic dendrimer having DTPA trisodium salt at the molecular center.
  • the residue mainly consisting of (NNa—DTP AD) was obtained.
  • Example 2 The TEC (2.2 equivalents) obtained in Example 2 was combined with diethylenetriamine pen acetic acid anhydride (DTPA dianhydride, 1.0 equivalent) and N, N-dimethylformamide (DMF). The reaction was carried out in the presence of medium pyridine (4.2 equivalents) to obtain a compound in which two molecules of TEC were bound to one molecule of DTPA via an amide bond (hereinafter abbreviated as DTP A—Et 6). The product is silica gel column chromatography
  • Example 2 The TEC (3 equivalents) obtained in Example 2 was mixed with BOC-TC (1 equivalent), and 1- (3-dimethylaminopropyl) -3-ethylcarposimid hydrochloride (3.3 equivalents) And stirred in methylene chloride at room temperature for 12 days.
  • Example 2 The TEC (3 equivalents) obtained in Example 2 was mixed with BOC-TC (1 equivalent), and the mixture of 1- (3-dimethylaminopropyl) -13-ethylcarposimid hydrochloride (3.3 equivalents) After stirring for 12 days at room temperature in methylene chloride, the product was washed with water, dried (using anhydrous sodium sulfate), filtered, and then concentrated to obtain a product from which water-soluble by-products had been removed. NMR confirmed that the product thus obtained was a mixture of one molecule of BOC-TC and two or three molecules of TEC bonded to the amide (the product having this hyperbranched structure was hereinafter referred to as HB P—short for NHBOC).
  • HBP-NHBOC has a ratio of weight average molecular weight Mw ( GPC) and number average molecular weight Mn ( GPC > ) obtained by GPC measurement, where Mw ( GPC) / Mn (G Pc, is approximately 2. dendrimers not one but have a hyperbranched ⁇ Ko structure was confirmed. in THF Torifuruoro acetic acid BOC group HB P- NHBoc were removed as a catalyst (a product, hereinafter HBP- NH 2 approximately).
  • HBP- an amino group of NH 2 was determined by titration, (2 anhydride DTP a) the amino group 2.0 and for the equivalent 0 equivalents of diethylene tri amine Npentaseti Kkujianhai dry de mixed, Asetonitoriru in pyridine (4 equivalents), continue heating and stirring at 50 to 70 ° C for 3 days, purify by silica gel gel ram chromatography (developing solvent: methanol-Zaceton mixed system), and obtain two molecules of HBP- A compound in which NH 2 was bound to DTPA via an amide bond was obtained ( DTPA—HBP 2 ).
  • the carboxyl group content of the above DTP A—HB P 2 was determined by titration, and an aqueous solution of sodium hydrogen carbonate (3.0 equivalents) was added to 1.0 equivalent of the DTP A ring, which was used in Example 2 here.
  • An anhydrous salt of gadolinium chloride ( ⁇ ) (1.0 equivalent) was performed to further apply 2-aminoethanol. From the NMR and IR spectrum of the hydrophilic complex D thus obtained, it was found that the end of the ethyl ester was converted to an amide of 2-aminoethanol.
  • Example 4 The compound prepared in Example 4 was administered to an SD rat (male, 5-week-old body weight: 130 to 140 g, Nippon Chars River Co., Ltd.) at 500 mg / kg (10 m1 Zkg physiological saline). Saline solution) using a 2.5 ml syringe via the tail vein. The general condition was observed for 8 days immediately after the administration, and changes in body weight were measured. The animals were then dissected to observe the changes due to drug administration.
  • Example II Contrast effect by the compound of Example 4
  • an SD rat male, 5-week-old body weight 130-140 g, A silicone tube was force-neutralized into the trachea of Mr. Charlriver and connected to the human respiratory tract.
  • the respirator was activated to maintain respiration, and spontaneous respiration was stopped by injecting approximately 0.1 ml 1 Zkg of Myoblock injection (Organon Sankyo) intraperitoneally.
  • force neutrination for administration of the compound was performed on the right lower leg vein, and a surface coil for proton was applied to the upper abdomen of the rat to fix the liver and kidney parts, and fixed.
  • the MR images were measured using a GE 2-tesla horizontal bore (10 cm) system.
  • the measurement was performed by injecting 100 mg of this compound in a saline solution at a rate of 0.4 ml (0.1 mm o 1 / kg) from a force-nucleation tube, and performing gradient echo method (T1 emphasis).
  • T1 gradient echo method
  • TR 80 ms
  • FOV 50 x 50 mm slice thickness 2 mm
  • Flip angle 90 ° under forced breath hold with the ventilator stopped for 30 seconds. The number of integrations was two.
  • the contrast agent of the present invention comprising a metal cation and a ligand having a hyperbranched molecular structure disperses the metal element extremely stably at the molecular level in the bloodstream, and thus has excellent safety. is there.
  • the complex since the rotational motility of the complex is extremely suppressed, the complex has a large rotational correlation ( R ), and is a contrast agent suitable particularly for MRI technology, and its industrial utility value is extremely large. hole.
  • the contrast agent comprising a ligand having a hyperbranched molecular structure of the present invention is very excellent in convenience at the time of use due to its low viscosity property.
  • the metal cation complex according to the present invention comprises a metal cation and a complex forming functional group. It is composed of a certain tertiary amino group and a branched polymer having a polyaminocarboxylate anion having a carboxyl group by electrostatic interaction or coordination bond. Excellent solvent applicability, thermoformability, light weight, toughness against bending displacement, adhesion to a wide variety of substrates, etc.
  • an element having a high atomic number in a wide concentration range it is useful as an optical material having a controlled refractive index used in lenses, optical waveguides, etc., and utilizes the X-ray absorption ability of the element. It is also useful as an X-ray contrast agent, and since it is an ionic compound, a polymer composition or coating agent using the same also has an electromagnetic wave shielding ability and an antistatic ability.
  • a metal element having a fluorescent property is selected, a material having a high fluorescent property with suppressed concentration quenching can be obtained.
  • a high-brightness fluorescent coating material with excellent storage stability that can be used for molded products such as fluorescent lamps, road signs, and safety signs, or as a fluoroelastomer (f1 uor 0 imm unoassay) It is a material that can be used for a wide range of fluorescent applications, such as fluorescent labeling agents used in applications such as optical amplifiers, optical communication members such as optical amplifiers, and laser transmitters.
  • the cation has paramagnetism, it is also useful as a contrast agent used for imaging (MRI) utilizing a nuclear magnetic resonance (NMR) phenomenon.
  • MRI magnetic resonance
  • NMR nuclear magnetic resonance

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

A contrast medium which has high safety, can provide a high MRI signal intensity by virtue of a high level of restriction of the intramolecular rotational motion, and excellent handleability at the time of use by virtue of low viscosity; a metal cation complex which can stably disperse metal cations in a high concentration in an organic polymer material, a solvent, or a blood stream; and a contrast medium containing the complex as the indispensable component.

Description

明 細 書 新規な造影剤 技術分野  Description New contrast agents Technical field
本発明は、 金属陽イオンと超分岐分子構造を有する配位子からなる造影剤に関 する。 本発明の造影剤は、 血流中に金属元素を分子レベルで安定に分散させる手 段を与えるものであり、 エックス線造影技術、 又は核磁気共鳴現象を利用した造 影技術において好適に利用される。 本発明の造影剤は超分岐分子構造を有する配 位子を使用しているため、 従来の錯体に比べ錯体の熱運動性、 特に回転運動性が 非常に抑制されており、 特に M R I技術に好適な造影剤である。  The present invention relates to a contrast agent comprising a metal cation and a ligand having a hyperbranched molecular structure. The contrast agent of the present invention provides a means for stably dispersing a metal element in a blood stream at a molecular level, and is suitably used in an X-ray contrast technique or a contrast technique utilizing a nuclear magnetic resonance phenomenon. . Since the contrast agent of the present invention uses a ligand having a hyperbranched molecular structure, the thermal motility of the complex, particularly the rotational motility, is significantly suppressed as compared with the conventional complex, and it is particularly suitable for MRI technology. It is a contrast agent.
また本発明は、 金属陽イオンと錯形成官能基群である 3級ァミノ基とカルボキ シル基を有するポリァミノカルボン酸陰イオンを有する分岐高分子からなる金属 陽イオン錯体に関する。 本錯体は、 上記のような造影剤として使用できるだけで なく、 その他種々の分野で利用可能な高分子組成物としても提供可能である。 背景技術  The present invention also relates to a metal cation complex comprising a branched polymer having a polyaminocarboxylate anion having a tertiary amino group and a carboxyl group, which are a group forming a functional group with a metal cation. This complex can be used not only as a contrast agent as described above, but also as a polymer composition that can be used in various other fields. Background art
エックス線造影技術 (以下 X R I技術と略) は、 エックス線吸収能の大きい原 子番号の高い元素を何らかの方法で生体内に注入し、 次いでエックス線の照射を 行うことにより像を得る技術である。 また、 核磁気共鳴現象 (以下 NM R現象と 略) を利用した造影技術 (以下 M R I技術と略) は、 N M R現象を起こす常磁性 化学種 (通常はガドリニウム陽イオン等の常磁性遷移元素陽イオン) を何らかの 方法で生体内に注入し、 次いで磁場の印加を行うことにより像を得る技術である いずれの場合も、 特定の検査部位で良好な造影を行うためには、 血流中、 即ち電 解質水溶液中にかかる造影化学種を安定に分散させる技術が必須である。  X-ray contrast technology (hereinafter abbreviated as XRI technology) is a technology that obtains an image by injecting an element with high X-ray absorption capacity and a high atomic number into a living body by some method, and then performing X-ray irradiation. Imaging technology (hereinafter abbreviated as MRI technology) using the nuclear magnetic resonance phenomenon (hereinafter abbreviated as NMR phenomenon) is a paramagnetic species (usually a gadolinium cation or other paramagnetic transition element cation) that causes an NMR phenomenon. ) Is injected into the living body by some method, and then an image is obtained by applying a magnetic field.In each case, in order to perform good imaging at a specific examination site, it is necessary to use A technique for stably dispersing the imaging chemical species in the aqueous solution for the decomposition is essential.
初期の X R I技術においては、 血液中にヨウ化物イオン ( I ) の塩を注入す る方法が行われたが、 これを投与された患者にショック症状、 疼痛感、 あるいは 甲状腺障害を引き起こす問題があった。 こうした重篤な副作用を緩和する目的で、 非ィォン性ョゥ素化合物、 例えばョゥ素原子を高濃度で含有する有機化合物に親 水性を付与したものが現在広く用いられている。 しかし、 かかる有機ヨウ素化合 物においても、 依然としてヨウ素に起因すると考えられる副作用が報告されてお り、 新しい XR I用造影剤の開発が望まれている。 Early XRI techniques used a method of injecting the salt of iodide ion (I) into the blood, but there were problems with shock, pain, or thyroid disorders in the patients who received it. Was. To alleviate these serious side effects, Nonionic iodine compounds, for example, organic compounds containing a high concentration of iodine atoms, which have been rendered hydrophilic, are now widely used. However, even with such organic iodine compounds, side effects considered to be caused by iodine have been reported, and development of a new XRI contrast agent is desired.
MR I技術においては、 造影化学種として 3価のガドリニウム陽イオン (Gd In MRI technology, trivalent gadolinium cation (Gd
3+) を安定に血流中に分散させる方法が種々提案されている。 例えば、 エチレン ジァミン 4酢酸 (通称 EDT A) 、 ジエチレントリアミン 5酢酸(通称 DT P A)、 あるいは 1, 4, 7, 1 0—テトラキス (ァセティ ックアシッ ド) テトラァザシ クロ ドデカン (通称 DOTA) 等のポリアミノカルボン酸類を配位子とする錯体 が実用化されている。 かかる錯体は、 該陽イオンの 3価の陽電荷を中和するため に 3つのカルボキシル基がカルボキシレート陰イオン (COO ) となり、 配位 子中の残りのカルボキシル基の酸素原子とァミノ基の窒素原子が該陽ィォンの残 つた配位座に配位した構造を有するが、 錯体の安定性は十分でなく、 遊離した該 陽イオンが血流より吸収され骨に沈着する等の副作用が知られている。 ガドリ二 ゥム等のランタノイ ドの化学的性質は、 一般にマグネシウムやカルシウム等のァ ルカリ土類元素のそれに類似しているものの、 その毒性や安全性は十分に把握さ れているとは言えず、 G d 3 +の血液中での遊離を抑制することは MR I技術にお ける重要な課題である。 Various methods have been proposed for dispersing 3+ ) stably in the bloodstream. For example, polyaminocarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), or 1,4,7,10-tetrakis (acetic acid) tetraazacyclododecane (DOTA) are used. Complexes as ligands have been put to practical use. In such a complex, three carboxyl groups become carboxylate anions (COO) in order to neutralize the trivalent positive charge of the cation, and the oxygen atom of the remaining carboxyl group in the ligand and the nitrogen atom of the amino group It has a structure in which atoms are coordinated to the remaining coordination sites of the cation, but the stability of the complex is not sufficient, and side effects such as the release of the released cation from the bloodstream and deposition on bone are known. ing. Although the chemical properties of lanthanides such as gadolinium are generally similar to those of alkaline earth elements such as magnesium and calcium, their toxicity and safety have not been fully understood. However, suppressing the release of Gd3 + in blood is an important issue in MRI technology.
一方、 MR I技術における造影効果を支配する 1つの因子として、 例えば Toth, E. et al. ; Chem. Eur. J., 2巻 1 2号, 1 6 0 7頁 (1 9 9 6) に詳述されて いるように、 It体の R o t a t i o n a l c o r r e l a t i o n t i me (rR と略) が挙げられる。 これは、 定性的には錯体の回転運動性の尺度であり、 これが大きいこと、 即ち錯体が自由に回転運動しにくいことが望ましい。 上記文 献の記載のように、 該て R 値を大きくする手段として高分子を配位子に結合する ことが提案されており、 特に効果的な高分子としてデンドリマ一が例示されてい る。 On the other hand, as one factor governing the contrast effect in MRI technology, for example, Toth, E. et al .; Chem. Eur. J., Vol. 2, No. 12, pp. 1607 (1996) As described in detail, it is the Rotational correlation relation time (abbreviated as r R ) of the It body. This is qualitatively a measure of the rotational mobility of the complex, and it is desirable that this is large, that is, that the complex be difficult to freely rotate. As described in the above literature, it has been proposed to bind a polymer to a ligand as a means for increasing the R value, and dendrimer is exemplified as a particularly effective polymer.
デンドリマーとは、 例えば、 H awk e r, C. J. e t a 1 ; J. Ch e m. S o c. , Ch em. C ommu n. , 1 9 9 0年, 1 0 1 0頁、 Toma 1 i a, D. A. e t a 1 ; A n g e w. Ch em. I n t. E d. En l . , 2 9巻, 1 3 8頁 (1 9 9 0) 、 F r e c h e t, J. M. J. ; S c i e n c e, 2 6 3巻, 1 7 1 0頁 ( 1 9 9 4 ) 、 あるいは柿本雅明;化学, 5 0巻 , 6 0 8頁 (1 9 9 5 ) 等の文献に詳述されている規則的な樹枝状分岐を有する 分岐高分子の総称であり、 かかる分子は、 分子の中心から規則的な分岐をした高 分子構造を有するため、 例えば上記の Tom a 1 i aら著の文献に解説されてい るように、 高分子量化するにつれて生じる分岐末端の極度の立体的込み合いによ り球状の分子形態をとるようになる。 Dendrimers are described, for example, in Hawker, CJ eta 1; J. Chem. Soc., Chem. Commun., 1990, p. 1 ia, DA eta 1; Age w. Chem. Int. Ed. Enl., Vol. 29, pp. 13 (1990), Frechet, JMJ; Science, 26 Vol. 3, pp. 1710 (1994), or Masaaki Kakimoto; Chemistry, Vol. 50, pp. 608 (1995). Since such a molecule has a high molecular structure that is regularly branched from the center of the molecule, for example, as described in the above-mentioned literature by Tom a1ia et al. Due to the extreme steric crowding of the branched ends that occurs as the molecular weight increases, a spherical molecular form is obtained.
上記の To t hら著の文献は、 デンドリマ一は制御された高度の樹枝状分岐構 造を有するため、 直鎖状高分子鎖に比べ該高分子鎖が分子内で回転運動をする自 由度が極度に制限されていることが該 τ R 値を大きくする上で好ましいと説明し ている。 しかし、 該文献に記載の錯体は、 デンドリマ一の高分子鎖末端 (即ち球 状分子の表面) に 1, 4, 7, 1 0—テトラキス (ァセティ ックアシッ ド) テト ラァザシクロドデカン (DOT Αと略) 等の公知のポリアミノカルボン酸構造を 多数結合したものを配位子とするポリ錯体であるため、 錯体単位である 1つの G d 3 +に配位した 1つのポリアミノカルボン酸構造はどれも 1箇所でデンドリマ 一に結合している。 このため、 該錯体単位は各デンドリマ一末端において、 高分 子鎖軸に沿った自由回転性のため完全には回転運動性を抑制されてはいない。 ま た、 該錯体単位はデンドリマ一分子表面に露出しているため、 実用化されている 低分子錯体と同様の Gd3+の遊離性を有する懸念が指摘される。 更に、 デンドリ マー表面に該錯体単位が濃縮されているため、 MR I技術における T2 短縮効果 が強く出てきて信号強度を低下させる場合もある。 According to the above-mentioned publication by Toth et al., Since dendrimers have a highly controlled dendritic branch structure, the degree of freedom of the polymer chains to rotate in the molecule is higher than that of the linear polymer chains. Is extremely preferable to increase the τ R value. However, the complex described in this document has 1,4,7,10-tetrakis (acetic acid) tetraazacyclododecane (DOTΑ) at the end of the polymer chain of the dendrimer (ie, the surface of the spherical molecule). Omitted) and so on. Since it is a polycomplex having a ligand composed of a number of known polyaminocarboxylic acid structures such as, etc., any one polyaminocarboxylic acid structure coordinated to one Gd3 + which is a complex unit It is connected to the dendrimer in one place. For this reason, since the complex unit is free to rotate along the polymer chain axis at one end of each dendrimer, the rotational motility is not completely suppressed. In addition, since the complex unit is exposed on the surface of one molecule of the dendrimer, there is a concern that the complex unit has the same Gd 3+ release property as a low-molecular-weight complex that has been put into practical use. Furthermore, since the dendrimer surface the complex units are concentrated in some cases to reduce the signal strength T 2 shortening effect comes out strongly in the MR I technology.
一方、 金属陽イオンは、 電磁波エネルギーの吸収による励起とその放出による 蛍光現象、 電子線照射によるエックス線の発生、 磁性、 各種触媒作用、 酸化還元 作用等の様々な機能を有しているが、 これらの機能を実用に供するためには、 そ の状態の制御 (例えば、 酸化数、 配位子等の外界の環境、 個々の原子の分散状態 等) 、 或いは特定の製品形態とするための成形加工性の付与が必要である。 この ために通常とられるのは、 該陽イオンをマトリックス物質中に分散させる手法で ある。 On the other hand, metal cations have various functions such as excitation by absorption of electromagnetic wave energy and fluorescence phenomenon by emission, emission of X-rays by electron beam irradiation, magnetism, various catalytic actions, and redox action. In order to make this function practical, it is necessary to control its state (eg, oxidation number, external environment such as ligands, dispersion state of individual atoms, etc.), or to form into a specific product form It is necessary to provide sex. The usual method for this purpose is to disperse the cation in a matrix material. is there.
金属陽イオンの電磁的機能、 例えば蛍光能、 マトリックス中を通過する光の速 度を変化させる性質 (即ち屈折率の変化) 、 電磁波 (特にエックス線) 吸収能等 を利用する場合を例にとると、 用いられるマトリックス物質は所望の電磁波波長 領域で十分透明であることが通常必要である。 例えば、 可視光領域周辺の波長を 利用する技術においては、 シリ力ガラス等の無機ガラスが従来重要なマトリック ス物質であった。 これは、 無機ガラスの持つ広い波長領域での優れた光線透過率 のみならず、 耐熱性、 耐薬品性、 耐水性、 表面硬度、 耐摩耗性、 低い線膨張係数 等の特性によるものである。  For example, when utilizing the electromagnetic functions of metal cations, such as fluorescence, the property of changing the speed of light passing through a matrix (that is, the change in refractive index), and the ability to absorb electromagnetic waves (especially X-rays) It is usually necessary that the matrix material used is sufficiently transparent in the desired electromagnetic wave wavelength range. For example, in technologies utilizing wavelengths in the visible light region, inorganic glass such as silicon glass has been an important matrix material in the past. This is due not only to the excellent light transmittance of the inorganic glass in a wide wavelength range, but also to the properties such as heat resistance, chemical resistance, water resistance, surface hardness, abrasion resistance, and low coefficient of linear expansion.
陽イオン金属、 特に蛍光を有するランタノィド陽イオンを無機マトリックス中 に分散する技術として、 融点以上の温度で溶融混合する方法、 酸等に原料を溶解 しておきそれらを混合した後に中和して沈殿を作るいわゆる共沈法、 原料粉末を 目的組成に混合した後に高温で加熱することによりィォンを相互拡散する固相反 応法、 気相の該元素を注入する方法、 高速に加速した該元素を打ち込む方法、 該 元素のアルコキシド等を無機マトリックスの前駆体となるアルコキシド等と共に 加水分解縮合するいわゆるゾル一ゲル法等が従来行われてきた。 これらの方法で、 数重量%程度の濃度まで該元素を無機マトリックス中に混合することができる場 合もあるが、 一般に該陽イオンの無機マ トリ ックスへの溶解度が低いこと、 或い は該陽イオン近傍の化学構造の制御が困難であることから、 凝集状態 (クラスタ ―) を形成し易い欠点があった。 特に、 該陽イオンの蛍光を利用する場合には、 かかるクラスター内での励起エネルギー授受に起因する濃度消光により、 添加濃 度をある程度以上とすると却つて蛍光強度が低下する欠点があった。  As a technique for dispersing cationic metals, especially lanthanide cations having fluorescence, in an inorganic matrix, a method of melting and mixing at a temperature higher than the melting point, dissolving raw materials in an acid, etc., mixing them, then neutralizing and precipitating So-called coprecipitation method, solid-phase reaction method in which the raw material powder is mixed with the target composition and then heated at a high temperature to interdiffuse the ions, a method of injecting the element in the gas phase, and driving the element accelerated at high speed A so-called sol-gel method of hydrolyzing and condensing an alkoxide or the like of the element with an alkoxide or the like serving as a precursor of an inorganic matrix has been conventionally performed. In some cases, these elements can be mixed in the inorganic matrix to a concentration of about several percent by weight, but generally, the cation has low solubility in the inorganic matrix, or Since it was difficult to control the chemical structure near the cation, it had the disadvantage that it easily formed an aggregated state (cluster). In particular, in the case of utilizing the fluorescence of the cation, there is a drawback that the fluorescence intensity is rather lowered when the added concentration is increased to a certain level due to concentration quenching caused by the transfer of the excitation energy in the cluster.
一方、 有機高分子材料の製造技術の進歩により、 アクリル系樹脂、 スチレン系 樹脂、 芳香族ポリカーボネート系樹脂、 芳香族ポリアリレー ト系樹脂、 ポリイミ ド系樹脂、 非晶性ポリオレフィン樹脂のような透明非晶性の熱可塑性樹脂が開発 され、 無機ガラスにない特徴、 例えば熱可塑性や溶液塗布性のような優れた成形 加工性、 軽量性、 強靱性、 モノマーの化学構造選択の多様性、 他種材料との密着 性、 リサイクル性等の特徴を生かした用途が考案されている。 例えばカメラや眼 鏡用レンズ、 自動車のヘッ ドランプカバ一、 光ディスクやコンパク トディスクの ような用途に用いられる透明構造材料、 フォ トレジス ト用高分子材料、 或いは電 子写真感光体ゃ感熱転写色素のバインダ一のような機能性低分子化合物の支持媒 体としての用途が広がりつつある。 On the other hand, advances in organic polymer material manufacturing technology have led to the development of transparent amorphous materials such as acrylic resins, styrene resins, aromatic polycarbonate resins, aromatic polyacrylate resins, polyimide resins, and amorphous polyolefin resins. Thermoplastic resin has been developed, and features that are not found in inorganic glass, such as excellent moldability such as thermoplasticity and solution applicability, light weight, toughness, versatility in the choice of monomer chemical structure, and compatibility with other materials Applications have been devised that take advantage of the characteristics such as adhesion and recyclability. For example, cameras and eyes Mirror lenses, automotive headlamp covers, transparent structural materials used in applications such as optical discs and compact discs, polymer materials for photoresists, or electrophotographic photoreceptors and binders for thermal transfer dyes The use of functional low molecular compounds as support media is expanding.
かかる材料技術の現状に鑑み、 例えば光通信技術のような従来主に無機材料を 主体としてきた技術分野、 或いは蛍光体技術のような従来無機物質や比較的低分 子量の有機錯体を主体としてきた技術分野において、 上記のような有機高分子材 料の特徽を生かした新材料の開発は重要な課题の一つと言えよう。 より具体的に は、 例えば、 高い蛍光発生能を持つ有機高分子系蛍光材料、 或いは、 制御された 屈折率、 光信号伝達時の損失 (信号強度の低化) を補うための増幅機能、 波長変 換機能等の光学特性を具備した有機高分子材料等は極めて有用と考えられる。 ランタノィ ド等の蛍光発生能を有する元素の陽イオンの無機マトリックスへの 応用例としては、 例えば、 光通信技術における光増幅器用材料として、 エルピウ ム等の陽イオンを添加した無機ガラスが利用されつつある (木村ら; Op t r 0 n i c s, 1 9 9 0年 1 1号, 4 7〜 5 3頁、 Wi l l i am J. M i n i s c a 1 c o ; J . L i gh twa v e Te c hn o l o gy, 9巻, 2 3 4頁 ( 1 9 9 1 ) 、 及び成書として Emm a n u e l D e s u r v i v e ; E r b i um— Do p e d F i b e r Amp l i f i e r s : P r i n c i p l e s a n d Ap p l i c a t i o n s, J o hn Wi l e y & S o n s, N ew Yo r k (1 9 9 4 ) 等参照) 。 これは、 エルビウムの f 軌道電子の可 視〜近赤外領域の光 (例えば、 波長 9 8 0 nm) による励起と、 約 1 5 0 0 nm の波長の蛍光発生現象を応用したものである。 しかし、 無機ガラスをマトリック スとした場合には、 エルビウム陽イオンの溶解度が比較的低いため、 たかだか数 百 p pmの添加でもこの陽イオンの会合によるクラスタ一形成が起こる。 この結 果、 濃度消光が顕著となるため、 これ以上添加しても逆に蛍光発生効率の減少、 即ち、 光増幅機能の頭打ち現象が見られるという欠点があった。 また、 無機ガラ ス材料であるため、 軽量性、 成形加工性、 或いは強靱性は必ずしも満足できるも のではなかった。 こうした欠点を改善する目的で、 例えば星野ら ; 1 9 9 1年度電子情報通信学 会予稿集 4一 2 3 2等には、 金属アルコキシドとランタノィ ドの塩化物を原料と し、 均質な溶液中での加水分解縮合反応により、 高濃度且つ均一に希土類元素を 含む石英膜を得る方法が開示されている。 し力、し、 かかる方法ではクラッキング や基板からの石英膜の剥離が生ずるため、 基板に厚い石英膜を成形するのは困難 等の成形加工上の問題があつた。 In view of the current state of such material technologies, for example, in the technical field such as optical communication technology, which has mainly been mainly composed of inorganic materials, or in the case of conventional inorganic substances such as phosphor technology or organic complexes having a relatively low molecular weight, these are mainly used. In the technical field, the development of new materials that make use of the specialty of organic polymer materials described above is one of the important tasks. More specifically, for example, an organic polymer fluorescent material having a high fluorescence generating ability, or a controlled refractive index, an amplification function for compensating for a loss (lower signal intensity) during optical signal transmission, and a wavelength. An organic polymer material having optical characteristics such as a conversion function is considered to be extremely useful. Examples of application of cations of fluorinated elements such as lanthanides to inorganic matrices include, for example, inorganic glasses to which cations such as elpium are added as materials for optical amplifiers in optical communication technology. Yes (Kimura et al., Op tr 0 nics, 1990, Issue 11, p. 47-53, Willi am J. Minisca 1 co; J. Ligh twa ve Te cn ology, 9, Vol., Pp. 234 (1991), and written as Emm anuel D esurvive; Erbium—Doped Fiber Amplifiers: Principles and Applications, John Wiley & Sons, New York rk (1994) etc.). This applies the excitation of erbium's f-orbital electrons with visible to near-infrared light (eg, at a wavelength of 980 nm) and the generation of fluorescence at a wavelength of about 150 nm. However, when inorganic glass is used as a matrix, the solubility of the erbium cation is relatively low, so that even at a few hundred ppm addition, cluster formation occurs due to association of the cation. As a result, since the concentration quenching becomes remarkable, there is a drawback that the fluorescence generation efficiency is conversely reduced even if added more, that is, the phenomenon of peaking of the light amplification function is observed. Also, because it is an inorganic glass material, its lightness, moldability, and toughness have not always been satisfactory. For the purpose of remedying these drawbacks, for example, Hoshino et al .; Proceedings of the Institute of Electronics, Information and Communication Engineers, 1991, 432, etc., use metal alkoxides and lanthanide chlorides as raw materials in homogeneous solutions. Discloses a method for obtaining a quartz film containing a rare earth element at a high concentration and uniformly by a hydrolysis condensation reaction in the above. In such a method, cracking and peeling of the quartz film from the substrate occur, so that there is a problem in forming processing such as difficulty in forming a thick quartz film on the substrate.
他方、 有機高分子材料へのランタノィ ド陽イオンの添加も検討されている。 例 んは、 Ok amo t o, Y. e t a 1 ; Ma c r omo l e c u l e s, 1 4 巻, 1 7頁 (1 9 8 1) や、 H e a t s, J. e t a l編; "Me t a l C o n t a i n i n g P o l yme r i c S y s t ems" , P l e n um P r e s s, New Yo r k (1 9 8 5) 、 更に Yo s h i y u k i Ok a mo t o ;高分子学会予稿集, 1 9 9 4年 4 3卷 ( 1 ) , 2 9頁等には、 ァクリ ル酸、 メタクリル酸、 スチレンカルボン酸、 及びスチレンスルホン酸等の重合性 有機酸のランタノィ ド塩を合成し、 かかるランタノィ ド陽イオン担持モノマ一を 重合又は共重合させ、 該陽イオン濃度を 1 0重量%程度まで高める方法が報告さ れている。 また、 特開平 5— 8 6 1 8 9号公報には、 有機基を有するクロロシラ ン類と希土類元素の塩化物を原料として得られる、 ランタノィ ドが高分子鎖中に 取り込まれたポリシロキサンが開示されている。 更に、 特開平 5— 8 8 0 2 6号 公報には、 ランタノィ ドのァセチルアセトン錯体のような有機溶媒への溶解性や 耐酸化性に優れた錯体を、 ポリアクリレートゃポリシロキサン中に含む材料が開 示されている。  On the other hand, the addition of lanthanide cations to organic polymer materials is also being studied. Examples are Ok amo to, Y. eta 1; Macromo lecules, Vol. 14, p. 17 (1980), and Heats, J. etal .; "Metal C ontaining Pollyme ric". Syst ems ", Plenum Press, New York (1995), and Yo shiyuki Ok a mo to; Proceedings of the Society of Polymer Science, Japan, 1994, 43 (1), pp. 29 For example, a lanthanide salt of a polymerizable organic acid such as acrylic acid, methacrylic acid, styrene carboxylic acid, and styrene sulfonic acid is synthesized, and the lanthanide cation-supporting monomer is polymerized or copolymerized. A method for increasing the ion concentration to about 10% by weight has been reported. Japanese Patent Application Laid-Open No. 5-86189 discloses a polysiloxane obtained by using chlorosilanes having an organic group and a chloride of a rare earth element as raw materials and having a lanthanide incorporated in a polymer chain. Have been. Further, JP-A-5-88026 discloses that a polyacrylate / polysiloxane contains a complex having excellent solubility and oxidation resistance in an organic solvent such as an acetylacetone complex of lanthanide. Material is disclosed.
これらの方法は、 確かに有機高分子材料中の金属陽イオンの濃度を高めるのに 有効であり見掛上良好な透明性を有する材料を与えるが、 該陽ィォンの近傍の構 造が精密に制御されているわけではなく、 たとえ見掛上の透明性が達成されても 光の波長よりも小さい構造レベルでの該陽イオンの会合は依然として起こり得る ため、 濃度消光の問題は完全には解決されていなかった。  Although these methods are certainly effective in increasing the concentration of metal cations in the organic polymer material and give a material having apparently good transparency, the structure near the cation is precisely formed. The problem of concentration quenching is completely resolved because the cations are not controlled and the cations can still be associated at structural levels smaller than the wavelength of light, even if apparent transparency is achieved. Had not been.
一方、 例えばブラウン管、 蛍光灯、 エックス線増感紙等に通常用いられている 無機蛍光体には、 その製造に煩雑な多段階の工程、 例えば混合 ·沈殿 ·濾過 ·乾 燥 ·焼成 ·粉砕 ·分級等の工程が通常必要であること、 基材にこれを塗布する場 合の溶剤或いはバインダーポリマーへの分散性が不十分な場合があること、 及び 既に述べたように蛍光種であるラン夕ノィ ド陽ィオンのクラスタ一形成による濃 度消光等の欠点があった。 また、 フルォロイムノアツセィ用蛍光体のような蛍光 ラベル剤には、 従来例えばァセチルァセトネート誘導体のような低分子有機配位 子を用いたランタノィ ド錯体が使用されてきたが、 やはり蛍光強度の向上等が望 まれていた。 On the other hand, inorganic phosphors commonly used in cathode ray tubes, fluorescent lamps, X-ray intensifying screens, and the like include multi-step processes that are complicated in their production, such as mixing, precipitation, filtration, and drying. The steps such as drying, baking, pulverization, and classification are usually required, and the dispersibility in the solvent or binder polymer when applying this to the base material may be insufficient, and as described above There were drawbacks such as concentration quenching due to the formation of clusters in the fluorescent species Lan-Yun Node. In addition, a lanthanide complex using a low-molecular organic ligand such as an acetyl acetonate derivative has been used as a fluorescent labeling agent such as a fluorophore for a fluorescent substance. After all, improvement of the fluorescence intensity, etc. was desired.
本発明の課題は、 副作用を有するヨウ素を使用することなく所望の大きい原子 番号を有する金属元素を陽イオンの形で含有することのできる安全性に優れた X R I用造影剤、 及び、 抑制された陽イオン遊離性を有しかつ極度に抑制された回 転運動性のため大きな上記て R 値を有する安全性及び性能的に優れた MR I用造 影剤を提供することにある。 An object of the present invention is to provide a highly safe XRI contrast agent which can contain a metal element having a desired large atomic number in the form of a cation without using iodine having side effects, and has been suppressed. An object of the present invention is to provide a contrast agent for MRI which has a large R value due to its cation releasing property and extremely suppressed rotational motility, and which is excellent in safety and performance.
また、 本発明の別の課題は、 金属陽イオンを高濃度で有機高分子材料や溶剤に 分散させる場合にクラスターの形成を極度に抑制することができ、 また任意の原 子番号の高い元素の陽イオンを血流中で安定に分散させる手段を与える金属陽ィ ォン錯体を提供することにある。 発明の開示  Another object of the present invention is that when metal cations are dispersed at a high concentration in an organic polymer material or a solvent, the formation of clusters can be extremely suppressed, and an element having a high atomic number can be suppressed. An object of the present invention is to provide a metal cation complex that provides a means for dispersing cations stably in a blood stream. Disclosure of the invention
本発明者は、 上記課題を解決するために、 特に金属陽イオンと有機材料との複 合化について鋭意系統的な研究を行った結果、 超分岐分子構造を特定の結合様式 で含有する配位子を金属陽ィオンとともに錯形成させることが非常に有効である ことを見いだした。 即ち、 かかる錯体において、 金属陽イオンはデンドリマ一表 面に露出しておらず、 金属陽ィォンの近傍に配置した超分岐分子構造の大きな空 間排除効果 (大きな空間を占有する効果) により外部環境から遮蔽された状況に あるものと考えられるため、 血液中における安定性の改善が見られ、 また、 かか る錯体において、 金属陽イオンはこれに配位する錯形成官能基が超分岐分子構造 の特定の部位に結合しているため、 非常に大きな上記て R 値を有し、 強い MR I 信号強度を得ることができることを見出し、 本発明を完成するに至った。 また、 本発明者は、 上記課題を解決するために、 特に金属陽イオンと有機高分 子材料との複合化について鋭意系統的な検討を行った結果、 静電的相互作用ある いは配位結合により、 錯形成官能基群である 3級ァミノ基とカルボキシル基を有 するポリアミノカルボン酸陰イオンを有する分岐高分子を金属陽イオンの近傍に 配置させた錯体とすることにより、 該陽イオンを幅広い溶剤に安定に可溶化させ ると共に、 得られた錯体を熱可塑性とすることが可能であることを見出した。 ま た、 かかる錯体は該分岐高分子の特徴、 例えば軽量化、 曲げ変位に対する靱性、 或いは広範な種類の基板に対する密着性等を維持する。 更に、 該陽イオンは、 デ ンドリマ一表面に露出しておらず、 金属陽ィォンの近傍に配置した該分岐高分子 の大きな空間排除効果 (大きな空間を占有する効果) により原理的に互いに凝集 し難いことから、 これを各種マトリックス中へ分散した場合に該陽イオンが原子 レベルで分散するため、 クラスタ一の形成が極端に抑制され、 また電解質水溶液 中でのィォン交換による錯体の分解をも抑制することをも見出し、 本発明を完成 するに至った。 In order to solve the above-mentioned problems, the present inventor has conducted intensive systematic research, particularly on the complexation of a metal cation and an organic material, and has found that a coordination containing a hyperbranched molecular structure in a specific bonding mode It has been found that complexing a proton with a metal ion is very effective. In other words, in such a complex, the metal cation is not exposed on the surface of the dendrimer, and the hyperbranched molecular structure arranged in the vicinity of the metal cation has a large space exclusion effect (effect of occupying a large space). It is thought that the stability in blood is improved due to the fact that the complex is functionally shielded from the metal cation. It has been found that the compound has a very large R value as described above, and that a strong MRI signal intensity can be obtained, and has completed the present invention. In order to solve the above-mentioned problems, the present inventor has conducted intensive systematic studies especially on the composite of a metal cation and an organic polymer material. By forming a complex in which a branched polymer having a polyaminocarboxylate anion having a tertiary amino group and a carboxyl group, which are a complex-forming functional group, is arranged near a metal cation by bonding, the cation is converted to a complex. It has been found that the complex can be solubilized stably in a wide range of solvents and the obtained complex can be made thermoplastic. In addition, such complexes maintain the characteristics of the branched polymer, such as reduced weight, toughness against bending displacement, or adhesion to a wide variety of substrates. Further, the cations are not exposed on the surface of the dendrimer, and are aggregated with each other in principle due to the large space exclusion effect (the effect of occupying a large space) of the branched polymer arranged near the metal cation. Due to the difficulty, when this is dispersed in various matrices, the cations are dispersed at the atomic level, which extremely suppresses the formation of clusters and also suppresses the decomposition of complexes due to ion exchange in the aqueous electrolyte solution. And found that the present invention was completed.
即ち、 本発明の要旨は、 金属陽イオン及び超分岐分子構造を有する配位子から なる錯体であり、 かつ、 配位子中の錯形成官能基が超分岐分子構造のフォーカル ボイント原子との間に超分岐分子構造の構成要素でない 0以上 5 0以下の直列結 合した原子を介して結合している錯体を必須成分とする造影剤;配位子が、 水溶 性を有する前記造影剤;配位子が、 活性水素原子含有官能基、 又はポリアルキレ ンォキシド基を超分岐分子構造の末端に有する前記造影剤;配位子が、 水酸基、 又は繰り返し単位の炭素数が 4以下のポリアルキレンォキシド基を超分岐分子構 造の末端に有する前記造影剤;配位子が、 酸素、 窒素、 硫黄、 及びリンからなる 群から任意に選ばれる元素を超分岐分子構造中に含有する前記造影剤;配位子が、 エーテル、 エステル、 アミ ド、 及び 3級ァミンからなる群から任意に選ばれる構 造を超分岐分子構造中に含有する前記造影剤;配位子が、 ボルフィリン環を有す る前記造影剤;超分岐分子構造が、 3 0 0以上 5 0, 0 0 0以下の分子量を有す る前記造影剤;超分岐分子構造が、 デンドリマー構造を有する前記造影剤;超分 岐分子構造のフォーカルボイント原子が、 1つの金属陽イオンに対して平均して 2つ以上含有される前記造影剤;金属陽イオンが、 周期律表第 6周期に属する元 素の陽イオンである前記造影剤;金属陽イオンが、 3価の陽イオンである前記造 影剤;金属陽イオンが、 金又は白金の陽イオンである前記造影剤;金属陽イオン が、 周期律表の 3 A族、 4 A族、 5 A族、 6 A族、 7 A族、 8族、 1 B族、 及び 2 B族のいずれかの族に属する遷移金属の陽イオンであり、 かつ、 常磁性を有す るものである前記造影剤;金属陽イオンが、 マンガン、 鉄、 あるいはランタノィ ド元素のいずれかの陽イオンである前記造影剤;金属陽イオンが、 3価のガドリ 二ゥム陽イオンである前記造影剤;錯体が、 下記一般式 (1 ) で表わされる前記 造影剤; That is, the gist of the present invention is a complex comprising a metal cation and a ligand having a hyperbranched molecular structure, and wherein a complex-forming functional group in the ligand is located between a focal point atom of the hyperbranched molecular structure. A contrast agent comprising, as an essential component, a complex which is not a constituent element of the hyperbranched molecular structure and is bonded through 0 or more and 50 or less atoms bonded in series; wherein the ligand is a water-soluble contrast agent; The above-described contrast agent wherein the ligand has an active hydrogen atom-containing functional group or a polyalkylene oxide group at the terminal of the hyperbranched molecular structure; the ligand is a hydroxyl group or a polyalkylene oxide group having a repeating unit of 4 or less carbon atoms. Wherein the ligand comprises an element arbitrarily selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus in the hyperbranched molecular structure; The child is Aete The contrast agent having a structure arbitrarily selected from the group consisting of, an ester, an amide, and a tertiary amamine in the hyperbranched molecular structure; the contrast agent having a ligand having a porphyrin ring; The contrast agent having a molecular structure of not less than 300 and not more than 500, 000 or less; the contrast agent having a hyperbranched molecular structure having a dendrimer structure; and the focal point atom having a hyperbranched molecular structure having a On average for one metal cation The contrast agent wherein the metal cation is a cation of an element belonging to the sixth period of the periodic table; and the contrast agent wherein the metal cation is a trivalent cation. The contrast agent wherein the metal cation is a cation of gold or platinum; the metal cation is a group 3A, 4A, 5A, 6A, 7A, 8A, or 8A of the periodic table; The contrast agent which is a cation of a transition metal belonging to any one of the groups 1B and 2B and has paramagnetism; the metal cation is manganese, iron, or lanthanide The contrast agent, wherein the metal cation is a trivalent gadolinium cation; or the contrast agent, wherein the complex is represented by the following general formula (1);
Mn+ (RA ) „ … ( 1 ) M n + (RA)…… (1)
(上記式中、 Μπ +は n価の金属陽イオンを表わし、 RA— は一価酸の陰イオンを 表わし、 nは 1 ~4の整数であり、 Rは超分岐分子構造を表わし、 A は錯形成 官能基であるカルボキシレート基又はスルホネ一ト基を表わす。 ) (In the above formula, π π + represents an n-valent metal cation, RA— represents a monovalent acid anion, n is an integer of 1 to 4, R represents a hyperbranched molecular structure, and A Represents a carboxylate group or a sulfonate group which is a complex-forming functional group.)
錯体が、 下記一般式 (2) で表わされる金属陽イオン錯体である前記造影剤;  The contrast agent, wherein the complex is a metal cation complex represented by the following general formula (2);
Mn+ (Xn ) — Rm … (2) M n + (X n ) — R m … (2)
(上記式中、 Mn +は n価の金属陽イオンを表わし、 (Xn— ) — Rm は配位子を表 し、 X は錯形成官能基群である 3級ァミノ基とカルボキシル基を有するポリァ ミノカルボン酸の n価カルボキシレート陰イオンを表わし、 Rm は Xn に結合す るそれぞれ独立したお互いに異なっていても良い分岐高分子残基を表わし、 nは 1〜4の整数を表わし、 mは 1〜6の整数を表わす。 また、 分岐高分子残基 Rは、 ゲルパーミエーシヨンクロマトグラフィ (GPC) 法で測定される数平均分子量 Mn ,GPc, と重量平均分子量 Mw (GPC) との間において、 3 0 0≤Mn (GPC) ≤ 5 0 0 0 0及び 1. 0 Mw (ope, /Mn ,Gpc,≤ 1 5なる二つの関係を同時に満 たす。 ) (In the above formula, M n + represents an n-valent metal cation, (X n —) — R m represents a ligand, and X represents a tertiary amino group and a carboxyl group which are complex forming functional groups. the represents an n-valent carboxylate anions of Poria Minokarubon acids having, R m represents a good branched polymer residues be different Rusorezore independent each other to bind to X n, n is an integer of 1 to 4 And m represents an integer of 1 to 6. The branched polymer residue R is a number average molecular weight Mn, GPc, and a weight average molecular weight Mw ( GPC ) measured by gel permeation chromatography ( GPC ). Between the two, 300 0 ≤ Mn ( GPC) ≤ 500 000 and 1.0 Mw (the two relations of ope, / Mn, G pc, ≤ 15 are simultaneously satisfied.)
配位子 (X ) — Rm 中の分岐高分子残基 Rの少なくとも 1つが、 超分岐分子 構造を有する前記造影剤;配位子 (Xn— ) -Rm 中の分岐高分子残基 Rの少なく とも 1つが、 マススぺク トル法又は光散乱法で測定される真の重量平均分子量 Mwとゲルパ一ミエーシヨンクロマトグラフィ (GPC) 法で測定される重量平 均分子量 Mw (GPC> との間において、 MwZMw (GPC) > 1なる関係を満たす前 記造影剤;配位子 (Χπ_) — Rm 中の分岐高分子残基 Rの少なくとも 1つが、 デ ンドリマ—である前記造影剤;配位子 (Χπ— ) — Rm 中の分岐高分子残基 Rの少 なくとも 1つが、 芳香族環含有モノマー単位により構成される前記造影剤;金属 陽イオン及び超分岐分子構造を有する配位子からなる錯体であり、 かつ、 配位子 中の錯形成官能基が超分岐分子構造のフォーカル ·ポイント原子との間に超分岐 分子構造の構成要素でない 0以上 5 0以下の直列結合した原子を介して結合して いる錯体、 及び、 薬学的に許容し得る担体を含んでなる体内診断用医薬組成物; 一般式 (2) で表わされる金属陽イオン錯体;一般式 (2) で表わされる金属 陽イオン錯体が高分子マトリックス中に分散しており、 該金属陽イオン濃度が 0. 0 1〜 1 0重量%である高分子組成物;一般式 (2) で表わされる金属陽ィ ォン錯体を外表面に有する成形体;外表面が、 高分子マトリックス中に一般式 (2) で表わされる金属陽イオン錯体を 0. 0 1〜 1 0重量%分散した高分子組 成物で、 形成されている成形体;並びに、 一般式 (2) で表わされる金属陽ィォ ン錯体を含有してなる塗装材に存する。 発明を実施するための最良の形態 Ligand (X) —the branched polymer residue in the ligand (X n —) -R m wherein at least one of the branched polymer residues R in R m has a hyperbranched molecular structure; At least one of R is the true weight average molecular weight Mw measured by mass spectrometry or light scattering method and the weight average molecular weight measured by gel permeation chromatography (GPC) method. Contrast agent satisfying the relationship of Mw ( GPC > with MwZMw ( GPC) >1; ligand (Χ π ) — at least one of the branched polymer residues R in R m is de Ndorima - the contrast agent is, ligand (chi [pi -) - one even without less of branched polymer residues R in R m, wherein the contrast agent composed of an aromatic ring-containing monomer units; metal A complex comprising a cation and a ligand having a hyperbranched molecular structure, and a complex-forming functional group in the ligand is located between the focal point atom of the hyperbranched molecular structure and a component of the hyperbranched molecular structure A complex bound through a series bond atom of 0 or more and 50 or less, and a pharmaceutical composition for in-vivo diagnosis comprising a pharmaceutically acceptable carrier; a metal cation represented by the general formula (2): Ion complex; a metal cation complex represented by the general formula (2) is a polymer matrix A polymer composition having a metal cation concentration of 0.01 to 10% by weight, the metal cation complex being represented by the following general formula (2): A molded body whose outer surface is formed of a polymer composition in which a metal cation complex represented by the general formula (2) is dispersed in a polymer matrix in an amount of 0.01 to 10% by weight; BEST MODE FOR CARRYING OUT THE INVENTION The present invention resides in a coating material containing a metal cation complex represented by the general formula (2).
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
《 1. 造影剤》  << 1. Contrast agent >>
本発明の造影剤について説明する。  The contrast agent of the present invention will be described.
(錯体)  (Complex)
本発明の造影剤用錯体は、 後述する金属陽イオンと超分岐分子構造を後述する ような特定の結合様式で含有する配位子とを構成成分とし、 両成分間のクーロン 力又は配位結合により構成されるものである。 本発明の造影剤は、 水溶性又は水 中で沈殿性の凝集を起こさない親水性を有するものが好ましい。 かかる水溶性又 は親水性の付与手段については後述する。  The complex for a contrast agent of the present invention comprises a metal cation described below and a ligand containing a hyperbranched molecular structure in a specific bonding mode as described below as constituent components, and a Coulomb force or a coordination bond between the two components. It consists of. The contrast agent of the present invention is preferably a water-soluble one or a hydrophilic one that does not cause precipitational aggregation in water. The means for imparting water solubility or hydrophilicity will be described later.
(金属陽イオン)  (Metal cation)
本発明において金属陽イオンとは、 周期律表において、 水素、 ホウ素、 炭素、 窒素、 及びリンを除く、 1 A (アルカリ金属) 、 2 A (アルカリ土類金属) 、 3 A 4 A 5 A 6 A 7 A 8 1 B 2 B (以上遷移元素) 、 3 B 4 B 及び 5 Bの各族に属する元素の陽イオンである。 該金属陽イオンの価数に特に制 限はないが、 立体的に込み合った超分岐分子構造を特定の結合様式で含有する配 位子を該金属陽イオンの近傍に配置することが本発明の錯体の特徴であるため、 過度の空間的密集を避けるために通常 1ないし 4価が好適であり、 上記の空間排 除効果の効率の点でより好ましくは 2又は 3価、 最も好ましくは 3価とする。 本発明の造影剤用錯体に使用される具体的な陽イオンとしては、 L i + Na + K1 Rb + , C s + F r + 等のアル力リ金属陽イオン、 B e 2 + M g 2 + , C a 2 + , S r 2 + B a 2 + , R a 2 等のアルカリ土類金属陽イオン、 S c 3+ Y3+等のスカンジウム族陽イオン、 T i 2 T i 3 T i 4+ Z r + Z r2+ Z r3 Z r4+ H f + , Η f 2+, Η f ;,+, Η f 4+等のチタン族陽ィォ ン、 V+ V2+, V3 V4 VB+, Nb+ Nb2+ Nb3+ Nb4+, Nb5 + In the present invention, the metal cation is defined as hydrogen, boron, carbon, Excluding nitrogen and phosphorus, 1 A (alkali metal), 2 A (alkaline earth metal), 3 A 4 A 5 A 6 A 7 A 8 1 B 2 B (above transition element), 3 B 4 B and 5 It is a cation of an element belonging to each group of B. The valence of the metal cation is not particularly limited, but the complex of the present invention may be arranged with a ligand containing a sterically crowded hyperbranched molecular structure in a specific bonding mode in the vicinity of the metal cation. In order to avoid excessive spatial crowding, 1 to 4 valences are usually preferable, and more preferably 2 or 3 valences, and most preferably 3 valences, in terms of the efficiency of the space elimination effect described above. I do. Specific cations used in the complex for contrast agent of the present invention include metal cations such as Li + Na + K 1 Rb + , C s + F r + , and Be 2 + Mg Alkaline earth metal cations such as 2 + , C a 2 + , S r 2 + B a 2 + , R a 2 , scandium cations such as Sc 3+ Y 3+ , T i 2 T i 3 T i 4+ Z r + Z r 2+ Z r 3 Z r 4+ H f + , Η f 2+ , Η f ;, + , Η f 4+, etc., V + V 2+ , V 3 V 4 V B + , Nb + Nb 2+ Nb 3+ Nb 4+ , Nb 5 +
T a Ta2 T a T a4+, T a 5+等のバナジウム族陽イオン、 C r C r C r 3 C r h, C r 5+ C r 6 Mo + Mo 2+, Mo 3+ Mo 4 Mo Mo e W+ ; W2+, w4+, ず +, W6+, 等のクロム族陽イオン、 Mn Mn E Mn Mn4+ Mn 5+, Mn6 + Mn7 ' Tc + T c 2 + T c T c 4 T c Tc6+, T c 7+ R e + , Re 2 R e 3' R e 4 R e R e R e 7 +等のマンガン族陽イオン、 F e F e 21 F e 3 F e F e f Ru , Ru2 R u 3+, Ru4+, R u Ru6 Ru 7 Ru 0 s 0 s 2 0 s 3+ 0 s 4 0 s 0 s 0 s 7 0 s 8 の鉄族陽イオン、 C 0 Co2+ Co3 C o C o Rh + Rh2 Rh3+, Rh4+, Rh Rh6+, I r + 1 r 1 r 1 r 4 1 r 5 Vanadium-group cations such as T a Ta 2 T a T a 4+ , T a 5+ , C r C r C r 3 C r h , C r 5+ C r 6 Mo + Mo 2+ , Mo 3+ Mo 4 Mo Mo e W + ; Chromium group cations such as W 2+ , w 4+ , zu + , W 6+ , etc., Mn Mn E Mn Mn 4+ Mn 5+ , Mn 6 + Mn 7 'Tc + T c Manganese family cations such as 2 + T c T c 4 T c Tc 6 + , T c 7 + R e + , Re 2 R e 3 'R e 4 R e R e R e 7 + , F e Fe 21 F e 3 F e F E f Ru, Ru 2 Ru 3+ , Ru 4+ , Ru Ru 6 Ru 7 Ru 0 s 0 s 2 0 s 3+ 0 s 4 0 s 0 s 0 s 7 0 s 8 C0 Co 2+ Co 3 C o C o Rh + Rh 2 Rh 3+ , Rh 4+ , Rh Rh 6+ , I r +1 r 1 r 1 r 4 1 r 5
I r 6 +等のコバルト族陽イオン、 N i + N i 2 N i E N i P d + P d 2+, P d3+ P d4+ P t 2+ P t 3 P t P t P t 6+等のニッケ ル族陽イオン、 C u C u 2 + C u 3' C u4 A g A g 2 + , A g 3 + I r 6 + like cobalt Group cation, N i + N i 2 N i E N i P d + P d 2+, P d 3+ P d 4+ P t 2+ P t 3 P t P t P nickel group cations such as t 6+, C u C u 2 + C u 3 'C u 4 a g a g 2 +, a g 3 +
Au+ Au2+ Au3+ Au5+, Au7 等の銅族陽イオン、 Zn2+ Cd + Cd2+ Hg Hg2+等の亜鉛族陽イオン、 La2+ La3', C e 2 C e 3 C e 1+ P r 21 P r 3 P r " Nd2 + Nd3+, N d 4+ Pm Pm3 Sm2 + Sm3 Eu2 + E u 3+ Gd2 + Gd3 Tb2+ Tb Tb4 Dy 2 + Dy 3 Dy 4 + Ho2+ Ho3 + E r 2+ E r 3 Tm Tm3' Yb2 + Yb3 Lu2 + L u3+等のランタノイ ド陽イオン、 Ac Th4 + P a3 + Pa4 P a5 + U3+ U4 U U6 + Np3+, N p ' N p 5 + Np6 + Pu3 P u4 + Ρ υ 5+ Pu6+, Am2 + Am3+ Am' Am5 + Am6 + Cm3 Cm4 + Β k 3+ Bk4 C f 2 + C f 3+ C f ' E s 2 + E s 3 + Fm2 Fm3 + Md 2+ Md3+, No2 No3+等のァクチノィ ド陽 イオン、 A 1 Ga2 + G a 3+ I n' , I n2' I n 3ト, T 1 + T 12+ T 13+等の 3 B族陽イオン、 S i 2+ S i Ge2 Ge4+ S n 2+, Sn4 P b 2 , P b 4 等の 4 B族陽イオン、 As As5 S b 1 , S b 3+ S b " B i , B i 3+ B i 5+等の 5 B族陽イオン等が挙げられる。 Copper group cations such as Au + Au 2+ Au 3+ Au 5+ , Au 7 , zinc group cations such as Zn 2+ Cd + Cd 2+ Hg Hg 2+ , La 2+ La 3 ′, Ce 2 C e 3 C e 1+ P r 21 P r 3 P r "Nd 2 + Nd 3+, N d 4+ Pm Pm 3 Sm 2 + Sm 3 Eu 2 + E u 3+ Gd 2 + Gd 3 Tb 2+ Tb Tb 4 Dy 2 + Dy 3 Dy 4 + Ho 2+ Ho 3 + E r 2+ E r 3 Tm Tm 3 'Yb 2 + Yb 3 Lu 2 + L u 3+ etc. lanthanoid de cations, Ac Th 4 + P a 3 + Pa 4 Pa 5 + U 3+ U 4 UU 6 + Np 3+ , N p 'N p 5 + Np 6 + Pu 3 Pu 4 + Ρ υ 5+ Pu 6+ , Am 2 + Am 3+ Am 'Am 5 + Am 6 + Cm 3 Cm 4 + Β k 3+ Bk 4 C f 2 + C f 3+ C f' E s 2 + E s 3 + Fm 2 Fm 3 + Md 2+ Md 3+ , No 2 No 3+ etc. Akuchinoi de cations, a 1 Ga 2 + G a 3+ I n ', I n 2' I n 3 bets, T 1 + T 1 2+ T 1 3+ 3 B group such cation, S i 2+ S i Ge 2 Ge 4+ S n 2+, Sn 4 P b 2, 4 B Zokuhi ions such as P b 4, As As 5 S b 1, S b 3+ S b " Group 5B cations such as B i, B i 3+ B i 5+ and the like can be mentioned.
本発明の造影剤用錯体のエックス線吸収能を上昇させる目的では、 上記の陽ィ オンのうち該金属陽イオンの原子番号が高いほど効果的である。 具体的には、 周 期律表の第 4、 第 5、 第 6及び第 7周期に属する元素の陽イオンが挙げられる。 但し、 その効果と経済性の観点から第 6周期に属する元素の陽ィォンが好ましく、 中でもランタン、 セリウム、 プラセオジム、 ネオジム、 プロメチウム、 サマリゥ ム、 ユウ口ピウム、 ガドリニウム、 テルビウム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イ ッテルビウム、 ルテチウム等のランタノイ ドの陽ィォ ン、 あるいは金、 白金等の貴金属の陽イオンがより好ましく、 最も好ましいのは ガドリニウム、 金又は白金である。  For the purpose of increasing the X-ray absorption capacity of the complex for a contrast agent of the present invention, the higher the atomic number of the metal cation among the above cations, the more effective. Specific examples include cations of elements belonging to the fourth, fifth, sixth and seventh periods of the periodic table. However, from the viewpoint of its effect and economy, element Yon, which belongs to the 6th period, is preferred. More preferred are lanthanide cations such as thulium, ytterbium and lutetium, or noble metal cations such as gold and platinum, and most preferably gadolinium, gold or platinum.
MR I用造影剤として本発明の造影剤用錯体を使用する場合には、 該陽イオン は常磁性を有する必要がある。 かかる目的では、 通常、 周期律表の 3 A族、 4 A 族、 5 A族、 6 A族、 7 A族、 8族、 1 B族、 及び 2 B族のいずれかの族に属す る遷移金属の陽イオンを用いる。 遷移金属の磁性は、 酸化数や配位子の性質に依 存じた複雑な挙動を示すが、 好適な陽イオンとしては、 P r3+ Nd31, E u3+, Gd3+ Tb3+ Dy3+ Ho3+, E r 3+ Tm3+, Y b 3 等の 3価ランタノィ ド陽イオン、 Mn2+ Mn 3+等のマンガン族陽イオン、 F e 2 F e 3 等の鉄族 陽イオン、 N i 2+, N i 3+等のニッケル族陽イオン等が代表的なものとして挙げ られ、 中でも Gd3 +, F e2 +, F e3 +, Mn2 +等が好ましく、 最も好適なのは Gd3+である。 When the complex for contrast agent of the present invention is used as a contrast agent for MRI, the cation needs to have paramagnetism. For such purposes, transitions that typically belong to any of the groups 3A, 4A, 5A, 6A, 7A, 8, 8, 1B, and 2B of the periodic table Use metal cations. The magnetism of the transition metal shows complex behavior depending on the oxidation number and the nature of the ligand.Pr 3+ Nd 31 , Eu 3+ , Gd 3+ Tb 3+ Trivalent lanthanide cations such as Dy 3+ Ho 3+ , Er 3+ Tm 3+ , Y b 3 , manganese group cations such as Mn 2+ Mn 3+ , iron groups such as F e 2 F e 3 Cation, N i 2+, Ni group cations such as the N i 3+, and the like as a typical, among others Gd 3 +, F e 2 + , F e 3 +, Mn 2 + and the like are preferable, Most preferred is Gd 3+ .
(配位子)  (Ligand)
本発明の造影剤用錯体の構成成分である、 超分岐分子構造を特定の結合様式で 含有する配位子は、 配位子中の錯形成官能基が超分岐分子構造のフォーカルボイ ント (f o c a l p o i n t) 原子との間に超分岐分子構造の構成要素でない 0以上 50以下の直列結合した原子を介して結合している必要がある。  The ligand, which is a component of the complex for a contrast agent of the present invention and has a hyperbranched molecular structure in a specific bonding mode, is characterized in that the complex-forming functional group in the ligand is a focal point having a hyperbranched molecular structure. ) It must be bonded to the atom via 0 to 50 serially connected atoms that are not components of the hyperbranched molecular structure.
ここで言う配位子中の錯形成官能基とは、 錯体中の金属陽イオンとクーロン力 又は配位結合により相互作用を有する官能基である。 かかる官能基としては、 力 ルポキシル基、 スルホニル基、 リン酸基、 亜リン酸基、 次亜リン酸基、 チォ酸基 (—COSH) 、 ジチォ酸基 (― CSSH) 、 キサントゲン酸基、 硝酸基等の酸 性基、 アルコール性水酸基、 フエノール性水酸基等の水酸基、 1級ァミノ基、 2 級ァミノ基、 3級ァミノ基、 ニト口基、 二トリル基 (シァノ基) 、 イソニトリル 基等の窒素含有官能基、 ピロール環、 ピリジン環等の窒素含有芳香環、 メルカプ ト基 (チオール基) 、 ジスルフィ ド基、 スルフィ ド基、 イソチオシァネート基、 チォカルバメート基等の硫黄含有官能基、 ホスフィン基、 ホスフィンォキシド基 等のリン原子官能基、 セレノール基、 ジセレニド基、 セレニド基等のセレン含有 官能基、 上記酸性基がプロ トンを失って生じる陰イオン基 (カルボキシレート基、 スルホネ一ト基、 ホスホネ一ト基、 キサンテート基等) 、 上記水酸基がプロ トン を失って生じる陰イオン基 (アルコラ一ト基、 フヱノラート基等) 、 カルボニル 基、 エノラート基等を例示できる。 このうち、 錯形成能力及び安全性の面から好 適なのは、 カルボキシル基、 スルホニル基、 リン酸基、 キサントゲン酸基等の酸 性基、 及びこれら酸性基がプロ トンを失って生じる陰イオン基 (それぞれカルボ キシレート基、 スルホネート基、 ホスホネート基、 キサンテート基) 、 1級アミ ノ基、 2級ァミノ基、 3級ァミノ基、 二トリル基等の窒素含有官能基、 ピロ一ル 環、 ピリジン環等の窒素含有芳香環、 メルカプト基、 ジスルフィ ド基、 スルフィ ド基、 チォカルバメート基等の硫黄含有官能基、 フエノール性水酸基、 フエノラ —卜基、 カルボニル基、 エノラート基等であり、 中でもカルボキシル基、 スルホ ニル基等の酸性基、 及びこれら酸性基がプロ トンを失って生じる陰イオン基 (そ れぞれカルボキシレート基、 スルホネート基) 、 3級ァミノ基、 二トリル基等の 窒素含有官能基、 ピロ一ル環等の窒素含有芳香環、 メルカプト基、 ジスルフィ ド 基、 スルフィ ド基、 チォカルバメート基等の硫黄含有官能基、 フヱノール性水酸 基、 カルボニル基、 エノラート基等がより好ましく、 カルボキシル基、 スルホ二 ル基等の酸性基、 及びこれら酸性基がプロ トンを失って生じる陰イオン基 (それ ぞれカルボキシレート基、 スルホネート基) 、 3級ァミノ基等の窒素含有官能基、 ピロ一ル環等の含窒素芳香環等が最も好ましい。 Here, the complex-forming functional group in the ligand is a functional group that interacts with the metal cation in the complex by Coulomb force or coordination bond. Examples of such a functional group include a hydroxyl group, a sulfonyl group, a phosphate group, a phosphite group, a hypophosphite group, a thioate group (—COSH), a dithioate group (—CSSH), a xanthate group, and a nitrate group. Hydroxy groups such as alcoholic hydroxyl group, phenolic hydroxyl group, etc., primary amino group, secondary amino group, tertiary amino group, nitro group, nitrile group (cyano group), isonitrile group, etc. Functional group, nitrogen-containing aromatic ring such as pyrrole ring and pyridine ring, sulfur-containing functional group such as mercapto group (thiol group), disulfide group, sulfide group, isothiocynate group, thiocarbamate group, phosphine group, Phosphorus atom functional groups such as phosphinoxide groups, selenium-containing functional groups such as selenol groups, diselenide groups and selenide groups, and anionic groups generated when the above acidic groups lose protons (A carboxylate group, a sulfonate group, a phosphonet group, a xanthate group, etc.), an anionic group (eg, an alcoholate group, a phenolate group, etc.) generated by losing a proton in the above hydroxyl group, a carbonyl group, an enolate group, etc. Can be illustrated. Of these, acid-forming groups such as carboxyl group, sulfonyl group, phosphate group, xanthate group, etc., and anionic groups (eg, those groups formed by losing protons) are preferable in terms of complexing ability and safety. A carboxylate group, a sulfonate group, a phosphonate group, a xanthate group), a nitrogen-containing functional group such as a primary amino group, a secondary amino group, a tertiary amino group, a nitrile group, a pyrrol ring, a pyridine ring, etc. Sulfur-containing functional groups such as nitrogen-containing aromatic ring, mercapto group, disulfide group, sulfide group, thiocarbamate group, phenolic hydroxyl group, phenol — Acid groups such as carboxyl group, sulfonyl group, etc., and anionic groups generated by losing protons (carboxylate group, sulfonate group, etc.) ), Nitrogen-containing functional groups such as tertiary amino groups and nitrile groups, nitrogen-containing aromatic rings such as pyrrolyl rings, sulfur-containing functional groups such as mercapto groups, disulfide groups, sulfide groups, thiocarbamate groups, and phenol. More preferred are a hydroxyl group, a carbonyl group, an enolate group, etc., and an acidic group such as a carboxyl group or a sulfonyl group, and an anionic group formed by losing a proton from these acidic groups (a carboxylate group, a sulfonate, respectively) Groups), a nitrogen-containing functional group such as a tertiary amino group, and a nitrogen-containing aromatic ring such as a pyrrol ring are most preferred.
上記の例示された錯形成官能基は、 1つの配位子中に任意の数、 任意の組み合 わせで存在しても構わず、 一連の該官能基群が金属陽ィォンの配位座を効率よく 占める意図で配置され優れた錯体安定性を示す場合がしばしばある。 但し、 金属 陽イオンへの配位効率の点から、 1つの配位子中に存在する該官能基の数は、 1以上 3 0以下とするのが適当で、 好ましくは 1以上 2 0以下、 更に好ましくは 1以上 1 5以下、 最も好ましくは 1以上 1 0以下とする。 また、 隣接する該官能 基は、 0以上 1 0以下の直列結合した原子で隔てられているのが望ましく、 この 直列結合した原子の数はより好ましくは 0以上 7以下、 更に好ましくは 0以上 5 以下、 最も好ましくは 0以上 3以下とする。 本発明の造影剤用錯体に使用できる 優れた錯体安定性を示す一連の該官能基群の構造例としては、 エチレンジァミン 4酢酸 (通称 EDTA) 、 ジエチレントリアミン 5酢酸 (通称 DTPA) 、 ある いは 1, 4, 7, 1 0—テトラキス (ァセティ ックアシッ ド) テトラァザシクロ ドデカン (通称 DOTA) 等のポリアミノカルボン酸類、 ポルフィ リン環、 プロ トポルフィ リン環、 ェチォボルフィ リン環、 メソボルフィ リン環等のポリフィ リ ン類に代表されるポリ窒素含有芳香環類等が挙げられる。  The complex-forming functional groups exemplified above may be present in any number and in any combination in one ligand, and a series of such functional groups form the coordination site of the metal cation. They are often arranged with the intent to occupy them efficiently and exhibit excellent complex stability. However, from the viewpoint of coordination efficiency to metal cations, the number of the functional groups present in one ligand is suitably 1 or more and 30 or less, preferably 1 or more and 20 or less, It is more preferably 1 or more and 15 or less, most preferably 1 or more and 10 or less. Further, the adjacent functional groups are desirably separated by 0 to 10 series-bonded atoms, and the number of the series-bonded atoms is more preferably 0 to 7 and still more preferably 0 to 5 Below, most preferably 0 or more and 3 or less. Examples of the structure of a series of the functional groups exhibiting excellent complex stability that can be used in the complex for a contrast agent of the present invention include ethylenediaminetetraacetic acid (commonly known as EDTA), diethylenetriaminepentaacetic acid (commonly known as DTPA), 4,7,10—Tetrakis (acetic acid) Represented by polyaminocarboxylic acids such as tetraazacyclododecane (DOTA), and porphyrins such as porphyrin ring, protoporphyrin ring, etyoborphyrin ring, and mesoborphyrin ring. And polynitrogen-containing aromatic rings.
本発明の造影剤用錯体の構成成分である配位子は、 超分岐 (Hy p e r b r a n c h) 分子構造を含む。 ここで超分岐分子構造とは樹枝状分岐分子構造であり、 例えば、 前記した Hawk e r、 Toma l i a、 F r e c h e t、 あるいは柿 本ら著の各文献に詳述されているデンドリマーに代表される概念であるが、 本発 明においては分子量に制限はない。 本発明における超分岐分子構造をより厳密に 定義すれば、 分岐の開始点 (以下、 フォーカルポイント [ F o c a l p o i n t ] と称す) が特定でき、 該フォーカルポイントから分子末端に向かって分子鎖 をたどった場合にフォーカルボイント以外の分岐点を最低 1つ通過する分子末端 が最低 1つ存在する分子構造である。 また、 本発明におけるフォーカルポイント とは、 錯体中の配位子の任意の分子末端から分子鎖を逆行して最も近い錯形成官 能基に至る最短経路中の最後の分岐点を意味する。 The ligand which is a constituent of the complex for a contrast agent of the present invention has a hyperbranched (Hyperbranch) molecular structure. Here, the hyperbranched molecular structure is a dendritic branched molecular structure.For example, the hyperbranched molecular structure is a concept typified by the dendrimer described in detail in each of the above-mentioned Hawker, Tomalia, Frechet, or Kakimoto et al. There is There is no limitation on the molecular weight in the light. If the hyperbranched molecular structure in the present invention is more strictly defined, the starting point of branching (hereinafter referred to as “focal point”) can be specified, and when the molecular chain is traced from the focal point toward the molecular end. It has a molecular structure that has at least one molecular end that passes at least one branch point other than the focal point. In addition, the focal point in the present invention means the last branch point in the shortest route from the arbitrary molecular end of the ligand in the complex to the nearest complex-forming functional group by reversing the molecular chain.
本発明の造影剤用錯体の構成成分である配位子中の錯形成官能基は、 超分岐分 子構造のフォーカルボイント原子との間に超分岐分子構造の構成要素でない 0以 上 5 0以下の直列結合した原子を介して結合している必要がある。 ここで言う直 列結合した原子とは直鎖状構造であり、 その構成元素に制限はないが、 M R I造 影剤として本発明の造影剤用錯体を使用する場合には中心陽イオン近傍を親水的 環境とするのが望ましいので、 酸素、 窒素、 硫黄等の元素を該直鎖状構造に含有 させるのが好ましい場合もある。 該直列結合した原子の数あるいは元素の種類を 制御することで、 金属陽イオン近傍の空間的あるいは化学的環境を変えることが できると考えられ、 具体的には、 例えば MR I造影剤を念頭に置いた場合には、 その性能を大きく左右する水分子の常磁性金属陽イオンへの接近容易性を制御で きる。 なお、 該直列結合した原子の数が 5 0以上となると、 配位子中の超分岐分 子構造の遮蔽効果が低下する場合があるので好ましくなく、 より好ましくはこの 数を 4 0以下、 さらに好ましくは 3 0以下、 最も好ましくは 2 5以下とする。 本発明の造影剤用錯体の構成成分である配位子は、 親水性あるいは水溶性を有 することが望ましい。 ここで親水性とは該錯体が沈殿性の凝集を水中で生じない ことを意味し、 水溶性とは該錯体が水中で凝集構造を生じず溶解することを意味 する。 該錯体が親水性あるいは水溶性を有さない場合でも、 水あるいは水溶液へ の懸濁状態で造影剤として患者に投与することも可能な場合もあるが、 血流中で の凝集の可能性や造影効果低下等の理由で好ましいとは言えない。  The complex-forming functional group in the ligand, which is a component of the complex for a contrast agent of the present invention, is not a component of the hyperbranched molecular structure between the focal point atom of the hyperbranched molecular structure and 0 or more and 50 or less. Must be connected through the atoms connected in series. The term “sequentially bonded atoms” as used herein means a linear structure, and its constituent elements are not limited. However, when the contrast agent complex of the present invention is used as an MRI contrast agent, the vicinity of the central cation is hydrophilic. In some cases, it is preferable to include elements such as oxygen, nitrogen, and sulfur in the linear structure because it is desirable to have a natural environment. By controlling the number of atoms or the kind of elements connected in series, it is thought that the spatial or chemical environment near the metal cations can be changed. Specifically, for example, with the MRI contrast agent in mind When placed, it can control the accessibility of water molecules to paramagnetic metal cations, which greatly affects its performance. If the number of the atoms bonded in series is 50 or more, the shielding effect of the hyperbranched molecular structure in the ligand may decrease, which is not preferable. More preferably, the number is 40 or less, Preferably it is 30 or less, most preferably 25 or less. The ligand which is a component of the complex for a contrast agent of the present invention preferably has hydrophilicity or water solubility. Here, “hydrophilic” means that the complex does not cause precipitable aggregation in water, and “water-soluble” means that the complex dissolves in water without forming an aggregated structure. Even when the complex is not hydrophilic or water-soluble, it may be possible to administer the complex as a contrast agent to a patient in a state of suspension in water or an aqueous solution. It cannot be said that it is preferable because the contrast effect is lowered.
該配位子に親水性あるいは水溶性を賦与する方法として、 配位子の超分岐分子 構造の末端に活性水素原子含有官能基、 又はポリアルキレンォキシド基を導入す る方法が好適に用いられる。 これは、 かかる末端が該錯体の表面に存在するため である。 上記の活性水素原子含有官能基としては、 水酸基、 メルカプト基、 アミ ノ基、 ヒ ドラジド基、 カルボキシル基、 スルホン酸基、 アミ ド基、 カーバメート 基、 尿素基、 チォ酸基、 ジチォ酸基等が例示できるが、 水酸基、 アミノ基、 及び 尿素基が中でも好適である。 ポリアルキレンォキシド基の好適な例としては、 ポ リェチレンォキシド基、 ポリプロピレンォキシド基、 ポリプチレンォキシド基、 ポリペンチレンォキシド基、 ポリへキシレンォキシド基、 ポリイソプロピレンォ キシド基、 ポリイソブチレンォキシド基、 ポリシクロペンチレンォキシド基、 ポ リシクロへキシレンォキシド基等の繰り返し単位の炭素数が 6以下のアルキレン 基を有するモノマ一単位構造が挙げられ、 これらのモノマ一単位構造は 2種以上 が共重合されていても構わない。 これらのうち好ましいのは、 水酸基、 尿素基、 及びポリエチレンォキシド基、 ポリプロピレンォキシド基、 ポリブチレンォキシ ド基等の繰り返し単位の炭素数が 4以下のポリアルキレンォキシド基であり、 最 も好ましいのは水酸基、 及びポリエチレンォキシド基である。 また、 カルボニル 基、 エステル基、 二トリル基、 ニトロ基、 アルデヒ ド基等の活性水素原子を有さ ない官能基も親水性賦与に有効である。 本発明の造影剤用錯体の親水性や水溶性 を損なわない限りにおいて、 その構成成分として、 上記の官能基 2種以上を 1分 子内に有する配位子を用いても良く、 また異なる種類の配位子を混合して用いて も良い。 As a method for imparting hydrophilicity or water solubility to the ligand, an active hydrogen atom-containing functional group or a polyalkylene oxide group is introduced into the terminal of the hyperbranched molecular structure of the ligand. Method is suitably used. This is because such terminals exist on the surface of the complex. Examples of the active hydrogen atom-containing functional group include a hydroxyl group, a mercapto group, an amino group, a hydrazide group, a carboxyl group, a sulfonic acid group, an amide group, a carbamate group, a urea group, a thioic acid group and a dithioic acid group. Among them, a hydroxyl group, an amino group, and a urea group are particularly preferable. Preferable examples of the polyalkylene oxide group include a polyethylenoxide group, a polypropylene oxide group, a polybutylene oxide group, a polypentylene oxide group, a polyhexylene oxide group, a polyisopropylene oxide group, and a polyisopropylene oxide group. A monomer unit structure having an alkylene group having 6 or less carbon atoms in the repeating unit such as an isobutylene oxide group, a polycyclopentylene oxide group, and a polycyclohexylene oxide group may be mentioned. The above may be copolymerized. Of these, a hydroxyl group, a urea group, and a polyalkylene oxide group having a repeating unit of 4 or less such as a polyethylene oxide group, a polypropylene oxide group, and a polybutylene oxide group are most preferable. Preferred are a hydroxyl group and a polyethylene oxide group. In addition, functional groups having no active hydrogen atom, such as carbonyl group, ester group, nitrile group, nitro group and aldehyde group, are also effective for imparting hydrophilicity. As long as the hydrophilicity and water-solubility of the contrast agent complex of the present invention are not impaired, a ligand having two or more of the above functional groups in a molecule may be used as a component thereof. May be used in combination.
該配位子に親水性あるいは水溶性を賦与するもう 1つの方法として、 配位子中 の超分岐分子構造に、 酸素、 窒素、 硫黄、 及びリンからなる群から任意に選ばれ る元素を含有せしめ、 超分岐分子構造自身に親水性ある 、は水溶性を賦与する方 法が挙げられる。 かかる構造の具体例としては、 エーテル結合、 カルボニル基、 エステル結合、 カーボネー ト結合、 フラン環等の酸素含有構造、 アミ ド結合、 ゥ レタン結合、 尿素結合、 2級または 3級ァミ ン構造等の非芳香族窒素含有構造、 ピロ一ル環、 ピリジン環、 キノ リン環、 ピリ ミジン環、 プリン環、 ィミダゾ一ル 環、 イミダゾリ ジン環、 トリァゾ一ル環等の窒素含有芳香環、 スルフィ ド結合、 ジスルフィ ド結合、 チォカルボニル基、 チォエステル結合、 チォカーボネート結 合、 チォウレタン結合、 チォ尿素結合等の非芳香族硫黄含有構造、 チアゾ一ル環、 チオフヱン環、 チォナフテン環等の含硫黄芳香環、 リン酸エステル、 亜リン酸ェ ステル、 次亜リン酸エステル、 2級又は 3級ホスフィン、 ホスフィンォキシド等 のリン含有構造等が挙げられる。 このうち、 エーテル結合、 カルボニル基、 エス テル結合等の酸素含有構造、 アミ ド結合、 3級ァミン構造等の非芳香族窒素含有 構造、 ピリジン環等の窒素含有芳香環、 スルフィ ド結合等の非芳香族硫黄含有構 造、 3級ホスフィン、 ホスフィンォキシド等のリン含有構造等が好適で、 中でも エーテル結合、 エステル結合等の酸素含有構造、 アミ ド結合、 3級ァミン構造等 の非芳香族窒素含有構造が最も好適である。 As another method for imparting hydrophilicity or water solubility to the ligand, a hyperbranched molecular structure in the ligand contains an element arbitrarily selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus. At least, a method for imparting water solubility to the hyperbranched molecular structure itself is given. Specific examples of such a structure include an oxygen-containing structure such as an ether bond, a carbonyl group, an ester bond, a carbonate bond, a furan ring, an amide bond, a urethane bond, a urea bond, and a secondary or tertiary amine structure. Non-aromatic nitrogen-containing structure, pyrrole ring, pyridine ring, quinoline ring, pyrimidine ring, purine ring, imidazole ring, imidazolidinine ring, triazole ring, etc., nitrogen-containing aromatic ring, sulfide bond , Disulfide bond, thiocarbonyl group, thioester bond, thiocarbonate bond Non-aromatic sulfur-containing structures such as thiourethane bond and thiourea bond, sulfur-containing aromatic rings such as thiazole ring, thiophene ring, and thionaphthene ring, phosphate ester, phosphite ester, hypophosphite ester, Examples thereof include a phosphorus-containing structure such as a secondary or tertiary phosphine and a phosphinoxide. Of these, oxygen-containing structures such as ether bonds, carbonyl groups, and ester bonds; amide bonds; non-aromatic nitrogen-containing structures such as tertiary amine structures; nitrogen-containing aromatic rings such as pyridine rings; and non-aromatic nitrogen-containing structures such as sulfide bonds. Aromatic sulfur-containing structures, phosphorus-containing structures such as tertiary phosphines and phosphinoxides are preferred, and non-aromatic nitrogens such as oxygen-containing structures such as ether bonds and ester bonds, amide bonds and tertiary amine structures. The containing structure is most preferred.
前記超分岐分子構造として 3 0 0以上 5 0, 0 0 0以下の分子量を有する高分 子構造を用いると、 金属陽イオンを遮蔽する効果と錯体の Ro t a t i 0 n a 1 c o r r e l a t i o n t i me (て R ) (前述の T o t hらの文献参照) を大きくする効果の点で非常に好ましい場合がある。 該分子量の範囲が 3 0 0に 満たないと高分子を用いる効果はほとんど得られなくなり、 逆に 5 0, 0 0 0を 超えると錯体が大きくなりすぎ体内からの***性が極端に悪化する。 従って該分 子量の範囲は、 好ましくは 3 0 0以上 4 0, 0 0 0以下、 より好ましくは 4 0 0 以上 3 0, 0 0 0以下、 更に好ましくは 4 5 0以上 2 0, 0 0 0以下、 最も好ま しくは 5 0 0以上 1 0, 0 0 0以下とする。 また、 かかる高分子量の超分岐分子 構造を用いる場合、 その分子量分布は、 ゲルパーミエ一シヨンクロマトグラフィ (GPC) 法で測定される数平均分子量 Mn (GPC> と重量平均分子量 Mw (GPC) とがし 0≤Mw <GPC) /Mn ,G Pc, 1 5なる関係を満たすことが望ましい。 上記の Mw (GPC) /Mn (G Pc, の値が 1 5を超えると、 錯体の空間的広がりのば らつきが大きくなりすぎ、 遮蔽効果が損なわれる場合がある。 従って、 Mw (CPC) /Mn , , の値は小さければ小さいほど望ましいと言えるが、 より好ましくは 1. 0以上 1 2以下、 更に好ましくは 1. 0以上 9以下、 最も好ましくは 1. 0 以上 5以下とする。 なお、 超分岐分子構造として高分子を用いる付随効果として、 各金属陽ィォンがお互いに接近し難くなることから、 MR I造影剤として高濃度 で使用した場合でも T2 短縮効果が強く出ず信号強度の低下を抑えることも予想 される。 With high-molecular structure having a 3 0 0 or 5 0, 0 0 0 The following molecular weight as the hyperbranched molecule structure, to shield the metal cations effect a complex of Ro tati 0 na 1 correlationti me (Te R) (Refer to the above-mentioned Toth et al. Document). If the molecular weight is less than 300, the effect of using the polymer is hardly obtained, while if it exceeds 50,000, the complex becomes too large and excretion from the body is extremely deteriorated. Therefore, the range of the molecular weight is preferably from 300 to 400,000 or less, more preferably from 400 to 300,000 or less, and still more preferably from 450 to 200,000. 0 or less, most preferably 500 or more and 100 or less. When such a high molecular weight hyperbranched molecular structure is used, its molecular weight distribution is different from the number average molecular weight Mn ( GPC ) and the weight average molecular weight Mw ( GPC) measured by the gel permeation chromatography (GPC) method. ≤Mw <GPC) / Mn, it is desirable to satisfy the G Pc, 1 5 the relationship. If the value of Mw ( GPC) / Mn (GPc, above ) exceeds 15, the spatial spread of the complex becomes too large and the shielding effect may be impaired. Therefore, Mw ( CPC ) It can be said that the smaller the value of / Mn,, the better, but it is more preferably 1.0 or more and 12 or less, more preferably 1.0 or more and 9 or less, and most preferably 1.0 or more and 5 or less. , as accompanying effect of using the polymer as hyperbranched molecular structure, since each metal cation Ion hardly close to each other, MR I signal intensity sidelines strongly T 2 shortening effect even when used in high concentrations as a contrast agent Anticipated to keep the decline Is done.
上記の超分岐分子構造は、 特に高分子量となつた場合に可能な限り高度の分岐 を有することが望ましい。 これは、 同一モノマー (繰り返し単位) 構造で同一の 分子量を有する分子を考えた場合、 分岐点数が多ければ多いほど、 空間排除効果 の高い立体配座をとり易いためと考えられる。 言い換えれば、 分岐のない線状高 分子に近づくにつれて、 空間排除効果の高い糸毬状に凝集した立体配座から高分 子鎖が伸びきつた同効果の低い立体配座まで変化しうるようになり、 結果として 空間排除効果の低い状態をとる確率が高くなるということである。 高分子の分岐 度を定量する手段としては、 例えば希薄溶液中での極限粘度と絶対分子量との関 係の測定、 或いは核磁気共鳴 (NMR) スぺク トルにおける分岐単位構造と非分 岐単位構造のそれぞれに帰属されるシグナルの積分値を利用する方法等が挙げら れるが、 本発明において超分岐分子構造の分子量が 2, 0 0 0を超える場合の好 ましい分岐度の条件として、 例えば、 マススペク トル法又は光散乱法で測定され る重量平均分子量 Mwと GP C法で測定される重量平均分子量 Mw , , とが、 Mw/Mw ,G Pc, > 1なる関係を満たすことが挙げられる。  It is desirable that the above-mentioned hyperbranched molecular structure has as high a degree of branching as possible, particularly when the molecular weight is increased. This is thought to be because when considering molecules having the same molecular weight in the same monomer (repeating unit) structure, the larger the number of branch points, the easier it is to adopt a conformation with a high space exclusion effect. In other words, as it approaches a linear macromolecule without branching, it can change from a thread-condensed conformation with a high space exclusion effect to a low-conformation conformation with a stretched polymer chain. As a result, the probability of taking a state where the space exclusion effect is low increases. Means for quantifying the degree of branching of a polymer include, for example, measurement of the relationship between the intrinsic viscosity and the absolute molecular weight in a dilute solution, or the structure of a branched unit and an unbranched unit in a nuclear magnetic resonance (NMR) spectrum. A method utilizing the integral value of a signal assigned to each of the structures may be mentioned. In the present invention, when the molecular weight of the hyperbranched molecular structure exceeds 2,000, preferred conditions for the degree of branching include: For example, the weight average molecular weight Mw measured by the mass spectrum method or the light scattering method and the weight average molecular weight Mw measured by the GPC method satisfy the relationship of Mw / Mw, GPc,> 1. Can be
Mwが Mw (GPC) よりも大きくなる例は、 Hawk e r, C. J. e t a 1 J. Am. Ch em. S o c. , 1 1 2巻, 7 6 3 8頁 (1 9 9 0) や Uh r i c h, K. E. e t a l ; Ma c r omo l e c u l e s, 2 5卷, 4 5 8 3 頁 (1 9 9 2 ) 等に報告されており、 これは、 マススぺク トル法又は光散乱法で 測定されるような絶対分子量 (即ち、 Mw) が同一でも、 分岐度が高まるにつれ て、 良溶媒中で観測される高分子鎖の空間的広がり (即ち、 Mw (GPC) ) は小さ くなつてゆくものと定性的には解釈されている。 なお、 上記のマススぺク トルの 手法には分子ピークを与える限りにおいて制限はなく、 例えば分子量 1 0 0 0以 上程度の比較的高分子量の分子や不安定な分子に対して好適に用いられる Ma t r i x a s s i s t e d l a s e r d e s o r p t i o n i o n i z a t i o n (MALD I ) マススぺク トルや E l e c t r o s p r a yマススぺク トル等の新しい手法の適用が好ましい場合もある。 また、 本発明の記述における 全ての GP C測定は、 超分岐分子構造の良溶媒中で行われる必要がある。 MwZ Mw (o p e , の値は、 上記分子量の範囲においては通常高々 3程度となるが、 特に 制限はない。 Examples in which Mw is larger than Mw ( GPC) are described in Hawker, CJeta 1 J. Am. Chem. Soc., Vol. 112, pp. 7638 (1990) and Uh rich , KE etal; Macromo lecules, Vol. 25, p. 4583 (1992), etc., which are absolute as measured by the mass spectral method or the light scattering method. Even if the molecular weight (ie, Mw) is the same, as the degree of branching increases, the spatial extent of the polymer chains observed in a good solvent (ie, Mw ( GPC) ) qualitatively decreases with decreasing size. Has been interpreted. The above-mentioned mass spectral method is not limited as long as a molecular peak is given, and is suitably used for relatively high molecular weight molecules having a molecular weight of 100 or more or unstable molecules. In some cases, it may be preferable to apply a new method such as the Matrix Assisted Laser Des- ptionionization (MALD I) mass spectrometer or the Electrospray mass spectrum. Also, all GPC measurements in the description of the present invention need to be performed in a good solvent having a hyperbranched molecular structure. MwZ The value of Mw (ope,) is usually at most about 3 within the above-mentioned range of molecular weight, but is not particularly limited.
上記の金属陽イオンを遮蔽する効果と錯体のて R を大きくする効果の点で最も 効果的な超分岐分子構造は、 前記したデンドリマー構造である。 これは、 デンド リマ一の規則的かつ密集した分岐構造による、 有効な空間排除効果と該構造内部 の自由回転性を極度に低下させる 2つの効果に主に起因するものと推定される。 また、 デンドリマーの場合、 理論的にはその分子量分布を Mw (G P C ) /M n (G p c , の値で 1 . 0とすることが可能であることも利点である。 The most effective hyperbranched molecular structure in terms of the effect of shielding the metal cation and the effect of increasing the R of the complex is the above-described dendrimer structure. It is presumed that this is mainly due to the effective effect of eliminating the space and the two effects of extremely reducing the free rotation inside the structure due to the regular and dense branch structure of the dendrimer. In the case of dendrimers, it is theoretically also advantageous that the molecular weight distribution can be set to 1.0 with the value of Mw ( GPC) / Mn ( Gpc, ) .
また、 1つの錯体中の超分岐分子構造単位は、 超分岐分子構造のフォー力ルポ イント原子の数として、 1つの金属陽イオンに対して平均して 2つ以上含有され ているのが好ましい。 これは、 独立した複数の超分岐分子構造単位が金属陽ィォ ンの自由回転性を大きく減少させる効果と考えられる。 この効果の点で、 超分岐 分子構造単位はフォーカルボイント原子の数として、 1つの金属陽イオンに対し て平均して 3つ以上含有されているのが最も好ましい。  It is preferable that two or more hyperbranched molecular structural units in one complex are contained as an average of two or more four-force point atoms in the hyperbranched molecular structure with respect to one metal cation. This is thought to be the effect of multiple independent hyperbranched molecular structural units significantly reducing the free rotation of metal cations. From the viewpoint of this effect, it is most preferable that the number of hyperbranched molecular structural units is three or more on average for one metal cation as the number of focal point atoms.
(錯体の製造方法)  (Method for producing complex)
本発明の造影剤用錯体は、 金属陽イオンと配位子中の錯形成官能基との間のク —ロン力 (イオン結合) 又は配位結合によりなる。 イオン結合の生成は陰イオン の交換反応により可能である。 より具体的には、 金属陽イオンの蟻酸、 酢酸、 シ ユウ酸、 プロピオン酸等のカルボン酸との塩、 あるいは塩化物イオン、 臭化物ィ オン、 ヨウ化物イオンとの塩等と、 配位子あるいは配位子の塩 (例えばナトリウ ム塩、 カリウム塩等) とを混合して行われる。  The complex for a contrast agent of the present invention comprises a cron force (ionic bond) or a coordinate bond between a metal cation and a complex-forming functional group in a ligand. The formation of ionic bonds is possible by an anion exchange reaction. More specifically, a salt of a metal cation with a carboxylic acid such as formic acid, acetic acid, oxalic acid, or propionic acid, or a salt with a chloride ion, a bromide ion, or an iodide ion, and a ligand or It is carried out by mixing with a salt of a ligand (for example, sodium salt, potassium salt, etc.).
本発明の造影剤用錯体において、 金属陽ィォンの正電荷を中和する対陰ィォン は全て前記の配位子となっていることが望ましい。 何故ならば、 比較的小さな陰 イオン、 例えばフッ化物イオン、 塩化物イオン、 臭化物イオン、 ヨウ化物イオン 等のハロゲン化物イオン、 硫酸イオン、 硝酸イオン、 蟻酸イオン、 酢酸イオン、 シユウ酸ィォン等の一般的に広く用いられる陰ィォンの残留は、 遮蔽効果や自由 回転抑制効果を低下させるためである。 従って、 上述の陰イオン交換反応により 本発明の錯体を製造する場合、 金属陽イオンと配位子の当量関係を正確に制御す ることが望まれる。 但し、 金属陽イオンに対し過剰当量の配位子を作用させても 生成物には所望の錯体が含まれているので本発明の効果が得られる場合もある。 In the complex for a contrast agent of the present invention, it is preferable that all the counter ions which neutralize the positive charge of the metal ion are the above-mentioned ligands. This is because relatively small anions, such as fluoride ions, chloride ions, bromide ions, halide ions such as iodide ions, sulfate ions, nitrate ions, formate ions, acetate ions, oxalate ions, etc. This is because the residual Yin, which is widely used in the field, reduces the shielding effect and the free rotation suppression effect. Therefore, when the complex of the present invention is produced by the above-described anion exchange reaction, the equivalent relation between the metal cation and the ligand is accurately controlled. Is desired. However, the effect of the present invention may be obtained even if an excess of a ligand is allowed to act on the metal cation because the product contains the desired complex.
(造影剤)  (Contrast agent)
また、 本発明の錯体は造影剤として用いられる。 この場合、 通常静脈内投与な どの非経口投与の方法が用いられるカ^ 経口投与することもできる。 非経口剤投 与の製剤、 即ち注射剤等の製造に用いられる溶剤、 または懸濁化剤としては、 た とえば水、 プロピレングリコール、 ポリエチレングリコール、 ベンジルアルコ一 ル、 ォレイン酸ェチル、 レシチン等が挙げられる。 製剤の調製は常法によればよ い。 また経口投与する場合、 単独または薬学的に許容される担体と複合して、 例 えば顆粒剤、 細粒剤、 散剤、 錠剤、 硬シロップ剤、 軟カプセル剤、 シロップ剤、 乳剤、 懸濁剤、 リボソーム、 液剤等の剤形にして経口投与する。 固体製剤を製造 する際に用いられる賦形剤としては、 例えば乳糖、 ショ糖、 デンプン、 タルク、 セルロース、 デキストリン、 カオリン、 炭酸カルシウム等が挙げられる。 経口投 与のための液体製剤、 即ち乳剤、 シロップ剤、 懸濁剤、 液剤等は、 一般的に用い られる不活性な希釈剤、 例えば植物油等を含む。 この製剤は不活性な希釈剤以外 に捕助剤、 例えば湿潤剤、 懸濁補助剤、 甘味剤、 芳香剤、 着色剤または保存剤等 を含むこともできる。 液体製剤にして、 ゼラチンのような吸収されうる物質の力 プセル中に含ませてもよい。  Further, the complex of the present invention is used as a contrast agent. In this case, parenteral administration such as intravenous administration or the like can be used. Solvents or suspending agents used in the preparation of parenteral drugs, that is, in the manufacture of injections, etc., include, for example, water, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin, etc. No. Preparation of the preparation may be performed according to a conventional method. For oral administration, alone or in combination with a pharmaceutically acceptable carrier, for example, granules, fine granules, powders, tablets, hard syrups, soft capsules, syrups, emulsions, suspensions, Oral administration in the form of ribosomes, liquids, etc. Examples of excipients used in producing a solid preparation include lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate and the like. Liquid preparations for oral administration, ie, emulsions, syrups, suspensions, solutions and the like, contain commonly used inert diluents such as vegetable oils. The formulation may also contain, in addition to the inert diluent, an auxiliary such as a wetting agent, a suspending aid, a sweetening agent, a fragrance, a coloring agent or a preservative. Liquid preparations may be included in the forceps of a resorbable substance, such as gelatin.
本発明による造影剤は、 一般に所望の造影効果が副作用を伴うことなく得られ る投与量で投与される。 その具体的な値は、 医師の判断で決定されるべきである 力 一般に一回の診断につき成人当たり 0 . 1 m g〜 1 0 g、 好ましくは 1 m g 〜5 gである。 本発明の化合物は有効成分として一回の診断につき、 成人当たり 1 m g〜5 g、 更に好ましくは 3 m g〜3 g含有され投与されても良い。 《2 . —般式 (2 ) で表わされる金属陽イオン錯体》  The contrast agent according to the present invention is generally administered at a dose that allows the desired contrast effect to be obtained without side effects. Its specific value is to be determined at the discretion of a physician, generally 0.1 mg to 10 g, preferably 1 mg to 5 g per adult per diagnosis. The compound of the present invention may be contained and administered as an active ingredient in an amount of 1 mg to 5 g, more preferably 3 mg to 3 g, per adult per diagnosis. << 2. — Metal cation complex represented by general formula (2) >>
本発明の一般式 (2 ) で表わされる金属陽イオン錯体について説明する。 The metal cation complex represented by the general formula (2) of the present invention will be described.
(金属陽イオン錯体) (Metal cation complex)
本発明の好ましい金属陽イオン錯体は前記一般式 (2 ) で表わされ、 後述する 金属陽イオン Mn+と、 錯形成官能基群である 3級ァミノ基とカルボキシル基を有 するポリァミノカルボン酸陰イオンを有する分岐高分子とを構成成分とし、 両成 分間の静電的相互作用あるいは配位結合により構成されるものである。 本金属陽 イオン錯体は、 電気的に中性となるために金属陽イオンの価数 nと等しい数の力 ルポキシレート陰イオン (COO— ) を結合した形をとる力^ 配位水を含んだ形、 該カルボキシレート陰ィォンの一部が水酸化物ィォン等の小さな陰ィォンで置換 された形も可能である。 A preferred metal cation complex of the present invention is represented by the general formula (2), and will be described later. The metal cation M n + and a branched polymer having a polyaminocarboxylate anion having a tertiary amino group and a carboxyl group, which are complex-forming functional groups, are constituent components, and electrostatic interaction between both components is performed. It is constituted by an action or a coordination bond. This metal cation complex is a force that binds a lipoxylate anion (COO—) of a number equal to the valence n of the metal cation to become electrically neutral. A form in which a part of the carboxylate ion is replaced with a small ion such as a hydroxide ion is also possible.
(金属陽イオン)  (Metal cation)
一般式 (2) 中、 Mn+で表わされる金属陽イオンとは、 前述と同様のものが挙 げられる。 In the general formula (2), the metal cation represented by M n + is the same as described above.
これらのうち、 P r3+, N d 3+, Sm3+, E u 3+, Tb3+, D y 3 + , H o :!+, E r3+, Tm3+, Yb3+等の 3価ランタノイ ド陽イオンは、 可視〜近赤外領域、 長い寿命、 狭い波長幅等の特徴を持つ蛍光を発する点で好適であり、 H o3+, E r 3 +, Tm3 +等はアップコンバージョ ンレーザ一材料に、 £ 112十ゃ丁133+等 は F a r a d a y回転を利用した可視光用アイソレータに、 P r 3+, Sm2 +, E u3+等はホ一ルバ一ニング現象を利用した光情報記録材料にそれぞれ有用な元 素である。 P t 2+, P t 3+, Au+ , Au2+, Au3+, P b 21 , B i 3十等の原子 番号の高い陽イオンは屈折率上昇、 エックス線等の電磁波吸収効果、 あるいは電 磁波遮蔽効果の点で好適であり、 L i + , Na + , Κ ' , Rb + , C s + 等のァ ルカリ金属陽イオン、 Mg2+, C a2+, S r2+, B a 2+等のアルカリ土類金属陽 イオンは帯電防止効果の点で好適である。 Among them, Pr 3+ , N d 3+ , Sm 3+ , Eu 3+ , Tb 3+ , D y 3 + , Ho:! + , Er 3+ , Tm 3+ , Yb 3+ trivalent lanthanoid de cations etc., visible to near infrared region, a long life, are preferred in that fluoresces with a characteristic, such as a narrow wavelength width, H o 3+, E r 3 +, Tm 3 + in etc. upconverter job Nreza first material, £ 11 2 tens Ya Ding 13 3+ to visible light isolator using a rotary F araday, P r 3+, Sm 2 +, E u 3+ , etc. ho one These elements are useful elements for optical information recording materials utilizing the levering phenomenon. P t 2+, P t 3+, Au +, Au 2+, Au 3+, P b 21, B i 3 ten atomic number high cation increase the refractive index, such as electromagnetic wave absorbing effect, such as X-ray or, electromagnetic wave is suitable in terms of shielding effect, L i +, Na +, Κ ', Rb +, C s + etc. § alkali metal cation, Mg 2+, C a 2+, S r 2+, B Alkaline earth metal cations such as a 2+ are preferred in terms of antistatic effect.
(配位子)  (Ligand)
(X ) — Rm なる一般式で表わされる配位子中、 Xn—は該金属陽イオンの n 価の正電荷を電気的に中和する錯形成官能基群である、 3級アミノ基とカルボキ シル基を有するポリアミノカルボン酸の n価カルボキシレ一ト陰イオンを表わし、 Rは分岐高分子残基を表わす。 ここで言う分岐高分子残基とは主鎖構造の分岐を 有する高分子構造を意味する。 なお、 nは 1〜4の整数を表わす。 (X) — In the ligand represented by the general formula of R m , X n — is a tertiary amino group, which is a complex-forming functional group that electrically neutralizes the n-valent positive charge of the metal cation. And an n-valent carboxylate anion of a polyaminocarboxylic acid having a carboxyl group, and R represents a branched polymer residue. The term “branched polymer residue” as used herein means a polymer structure having a branch in the main chain structure. Here, n represents an integer of 1 to 4.
上記の錯形成官能基群である 3級ァミノ基とカルボキシル基を有するポリアミ ノカルボン酸の n価カルボキシレート陰イオン X n -とは、 最低 1つの 3級ァミノ 基と 2つ以上のカルボキシル基を有する直鎖状又は環状化合物を表わし、 これら 一連の官能基群が金属陽イオンの配位座を効率よく占める意図で配置されたもの である。 但し、 金属陽イオンへの配位効率の点から、 1つの該 X 中に存在する 該 3級ァミノ基とカルボキシル基の総数は、 3 0以下とするのが適当で、 好まし くは 2 0以下、 更に好ましくは 1 5以下、 最も好ましくは 1 0以下とする。 また、 隣接する該官能基は、 0以上 1 0以下の直列結合した原子で隔てられているのが 望ましく、 この直列結合した原子の数はより好ましくは 0以上 7以下、 更に好ま しくは 0以上 5以下、 最も好ましくは 0以上 3以下とする。 かかる構造例として は、 ェチレンジアミ ン 4酢酸 (通称 E D T A ) 、 ジェチレントリアミ ン 5酢酸 (通称 D T P A ) 、 あるいは 1, 4, 7, 1 0 —テトラキス (ァセテイ ツクァシ ッ ド) テトラァザシクロ ドデカン (通称 D 0 T A ) 等のポリアミノカルボン酸類 が挙げられる。 Polyamides containing tertiary amino groups and carboxyl groups, which are the above complex forming functional groups N-valent carboxylate anions X n of Nokarubon acid - A represents a straight-chain or cyclic compounds having at least one tertiary Amino groups and two or more carboxyl groups, a series of these functional groups is a metal cation It is arranged with the intention of efficiently occupying the coordination site. However, from the viewpoint of the coordination efficiency to the metal cation, the total number of the tertiary amino group and the carboxyl group present in one X is suitably 30 or less, preferably 20 or less. The value is more preferably 15 or less, most preferably 10 or less. The adjacent functional groups are desirably separated from each other by 0 to 10 series-bonded atoms, and the number of the series-bonded atoms is more preferably 0 to 7 but still more preferably 0 or more. 5 or less, most preferably 0 or more and 3 or less. Examples of such a structure include ethylenediamine tetraacetic acid (commonly known as EDTA), methylentriamine pentaacetic acid (commonly known as DTPA), or 1,4,7,10-tetrakis (acetate quat) tetraazacyclododecane (commonly known as D0 TA)) and the like.
該分岐高分子残基を構成するモノマーの化学構造については、 一般式 (2 ) で 表わされる金属陽イオン錯体の特徴である溶剤溶解性又は熱可塑性の両特性を同 時に損なわない限りにおいて特に制限はない。 何故ならば、 本発明において、 分 岐した高分子残基を使用する主たる理由の 1つは、 その空間排除効果に存するた めである。 即ち、 本発明の効果の要点の 1つである該空間排除効果に関しては該 高分子残基の空間的な広がりが最も重要であり、 化学構造に由来する化学的性質 の差の寄与は小さい、 ということである。  The chemical structure of the monomer constituting the branched polymer residue is not particularly limited as long as both the solvent solubility and the thermoplastic property of the metal cation complex represented by the general formula (2) are not impaired at the same time. There is no. This is because, in the present invention, one of the main reasons for using branched polymer residues is due to its spatial exclusion effect. That is, regarding the spatial exclusion effect, which is one of the main points of the effect of the present invention, the spatial spread of the polymer residue is the most important, and the contribution of the difference in chemical properties derived from the chemical structure is small. That's what it means.
従って、 本発明に使用可能な分岐高分子残基 Rの化学構造の必要条件は、 優れ た成形加工性を確保するために必要な性質、 即ち、 溶剤或いは各種マトリックス 材料との相溶性、 或いは熱可塑性を有することに存するが、 具体的には、 芳香族 ポリエーテル、 芳香族ポリエステル、 芳香族又は半芳香族ポリアミ ド、 芳香族ポ リカ一ボネート、 芳香族ポリエステル力一ボネ一ト、 芳香族ポリスルフィ ド、 芳 香族ポリィミ ド、 芳香族ポリアミ ドイミ ド、 芳香族ポリウレタン、 芳香族ポリゥ レタンゥレア、 芳香族ポリゥレア等の炭素以外の元素を高分子主鎖に含む芳香族 系高分子、 脂肪族ポリエーテル、 脂肪族ポリエステル、 脂肪族ポリアミ ド、 脂肪 族ポリカーボネート、 脂肪族ポリエステルカーボネート、 脂肪族ポリウレタン、 脂肪族ポリウレタンゥレア、 脂肪族ポリゥレア等の炭素以外の元素を高分子主鎖 に含む脂肪族系高分子、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 ポリメ チルメタクリ レー ト、 ポリメチルァク リ レー ト、 ポリフヱニレン、 ポリフヱニル アセチレン、 ポリフヱニレンビニレン等の炭素—炭素結合で主鎖が構成されてい る高分子、 ポリ シロキサン、 ポリチタノキサン、 ポリ ジルコノキサン、 シリカ (S i 02)、 チタニア (T i 02)、 ジルコニァ (Z r 02)等の酸素原子と炭素以 外の 4 A又は 4 B族元素よりなる高分子等が例示でき、 これらのうち、 複数の構 造が分岐高分子残基 R中に共存していても差し支えない。 また、 本金属陽イオン 錯体は、 複数種の金属陽イオン、 或いは複数種の配位子により構成されていても 差し支えない。 Therefore, the chemical structure of the branched polymer residue R that can be used in the present invention is a necessary condition for ensuring excellent moldability, that is, compatibility with a solvent or various matrix materials, or heat. Although it has plasticity, specifically, aromatic polyether, aromatic polyester, aromatic or semi-aromatic polyamide, aromatic polycarbonate, aromatic polyester resin, aromatic police Aromatic polymers and aliphatic polyethers that contain elements other than carbon, such as sulfide, aromatic polyimide, aromatic polyamide, aromatic polyurethane, aromatic polyurethane, aromatic polyamide, etc. in the polymer main chain. , Aliphatic polyester, aliphatic polyamide, fat Aliphatic polymers whose main chain contains elements other than carbon, such as aliphatic polycarbonates, aliphatic polyester carbonates, aliphatic polyurethanes, aliphatic polyurethane ureas, and aliphatic polyureas, polyethylene, polypropylene, polystyrene, and polymethyl methacrylate , Porimechiruaku Li rate, Porifuweniren, Porifuweniru acetylene, polyunsaturated We vinylene like carbon of - polymer main chain carbon bond has been configured, polysiloxanes, polytitanoxane, poly Jirukonokisan, silica (S i 0 2), titania ( T i 0 2), can Jirukonia (Z r 0 2) polymers such consisting of 4 a or 4 B group element oxygen atoms and carbon except such as is illustrated, among these, a plurality of structures are branched polymer It may be present in residue R. Further, the metal cation complex may be composed of plural kinds of metal cations or plural kinds of ligands.
本金属陽イオン錯体を、 前述のような造影剤用途等、 電解質水溶液中での分散 状態で使用する場合、 該錯体は水溶性を有する必要がある。 ここで言う水溶性と は、 該錯体が互いに凝集せず水に溶解する性質、 又は沈殿性の凝集構造をとらず に水に分散する性質を意味する。 かかる水溶性を該錯体に賦与するのに好適な分 岐高分子残基 Rの構造は、 ポリエチレンォキシド等の脂肪族ポリエーテル、 脂肪 族ポリアミ ド、 脂肪族ポリエステル、 脂肪族ポリカーボネート、 脂肪族ポリエス テルカーボネー ト、 脂肪族ポリスルフィ ド、 脂肪族ポリイ ミ ド、 脂肪族ポリァミ ドィ ミ ド、 脂肪族ポリウレタン、 脂肪族ポリウレタンゥレア、 脂肪族ポリウレア 等の脂肪族鎖と炭素以外の元素を高分子主鎖構造中に含むものが挙げられる。 こ れらの例示された構造は、 1つの分岐高分子残基中に複数含まれていてもよい。 金属陽イオンが蛍光発生能を有する場合の本発明の付随的な効果として、 分岐 高分子残基 Rが芳香族構造を含む場合、 該構造が主に紫外あるいは赤外領域の光 を吸収しこのエネルギーを金属陽ィオンに伝達する機構により蛍光強度の向上を もたらすことが挙げられる。 かかる効果は、 アンテナ効果として知られており (例えば T a n n e r , S. P. e t a 1 ; J. Am. C h e m. S o c. , 9 6巻, 7 0 6頁 (1 9 7 4) 、 Ok amo t o, Y. e t a 1 ; Ma c r o mo l e c u l e s, 1 4巻, 1 7頁 (1 9 8 1) 、 S a b b a t i n i , N. e t a l ; C o o r d i n a t i o n Ch em i s t r y R e v. , 1 2 3巻, 2 0 1頁 (1 9 9 3 ) 等参照) 、 例えばランタノィ ド陽イオンの蛍光強度 の向上等に有効である。 該アンテナ効果は金属陽イオン錯体自身の性質に基づく ため、 濃度消光が問題とならないような低い濃度における蛍光強度の向上にも有 効である。 アンテナ効果の観点から好ましい分岐高分子残基 Rの構造は、 紫外か ら赤外領域に吸収のある構造、 例えば芳香族ポリエーテル、 芳香族ポリエステル、 芳香族又は半芳香族ポリアミ ド、 芳香族ポリカーボネート、 芳香族ポリエステル 力一ボネート、 芳香族ポリスルフィ ド、 芳香族ポリイミ ド、 芳香族ポリアミ ドィ ミ ド、 芳香族ポリウレタン、 芳香族ポリウレタンゥレア、 芳香族ポリウレア等の 炭素以外の元素を高分子主鎖に含み芳香族環含有モノマ一単位により構成される 芳香族系高分子、 ポリフヱニレン、 ポリフヱニルアセチレン、 ポリフヱニレンビ 二レン等の炭素一炭素結合で主鎖が構成されており芳香族環含有モノマー単位に より構成される芳香族系共役高分子等が挙げられる。 これらの例示された構造は、 1つの分岐高分子残基中に複数含まれていてもよい。 When the metal cation complex is used in a dispersed state in an aqueous electrolyte solution, such as in the use of a contrast agent as described above, the complex must have water solubility. As used herein, the term "water-soluble" means a property that the complexes dissolve in water without aggregating with each other, or a property that the complexes are dispersed in water without forming a sedimentable aggregated structure. The structure of the branched polymer residue R suitable for imparting such water solubility to the complex is an aliphatic polyether such as polyethylene oxide, an aliphatic polyamide, an aliphatic polyester, an aliphatic polycarbonate, an aliphatic polyester, or the like. Elements other than aliphatic chains and carbon, such as tercarbonate, aliphatic polysulfide, aliphatic polyimide, aliphatic polyamide, aliphatic polyurethane, aliphatic polyurethane urea, and aliphatic polyurea Included in the chain structure. A plurality of these exemplified structures may be contained in one branched polymer residue. As an additional effect of the present invention when the metal cation has the ability to generate fluorescence, when the branched polymer residue R contains an aromatic structure, the structure absorbs light mainly in the ultraviolet or infrared region, and The mechanism that transfers energy to the metal cation can improve the fluorescence intensity. Such an effect is known as an antenna effect (for example, Tanner, SP eta 1; J. Am. Chem. Soc., 96, 706 (1974), Ok amo to, Y. eta 1; Macro mo lecules, vol. 14, p. 17 (1 1981), Sabbatini, N. et al. etal; Coordination Chemistry Rev., Vol. 123, page 201 (1993), etc.), for example, is effective for improving the fluorescence intensity of lanthanide cations. Since the antenna effect is based on the properties of the metal cation complex itself, it is also effective in improving the fluorescence intensity at a low concentration at which concentration quenching does not pose a problem. The preferred structure of the branched polymer residue R from the viewpoint of the antenna effect is a structure having absorption in the ultraviolet to infrared region, for example, an aromatic polyether, an aromatic polyester, an aromatic or semi-aromatic polyamide, or an aromatic polycarbonate. , Aromatic polyester polyester, aromatic polysulfide, aromatic polyimide, aromatic polyamide, aromatic polyurethane, aromatic polyurethane urea, aromatic polyurea, etc. Aromatic polymer, polyphenylene, polyphenylene acetylene, polyphenylene vinylene, etc., composed of one unit of an aromatic ring-containing monomer contained in the chain. And an aromatic conjugated polymer composed of A plurality of these exemplified structures may be contained in one branched polymer residue.
また、 本金属陽イオン錯体又はこれを含有する高分子組成物を、 近赤外の蛍光 を利用する用途、 例えば光増幅器用材料として利用する場合、 炭素一水素結合に 由来する振動モー ドの倍音が近赤外領域 (例えば 1. 5 m付近) に現れる場合 があり、 雑音成分となる。 かかる不都合を回避する目的で、 分岐高分子残基 Rの 構造中の炭素原子に結合する水素原子を全て他の元素、 例えばフッ素ゃ塩素のよ うなハ口ゲン原子や重水素等で置き換えるのが好適である場合がある。  In addition, when the metal cation complex or the polymer composition containing the metal cation complex is used for near-infrared fluorescence, for example, when used as a material for an optical amplifier, an overtone of a vibration mode derived from a carbon-hydrogen bond is required. May appear in the near-infrared region (for example, around 1.5 m), which is a noise component. In order to avoid such inconveniences, it is preferable to replace all hydrogen atoms bonded to carbon atoms in the structure of the branched polymer residue R with another element, for example, a haeogen or deuterium such as fluorine-chlorine. It may be preferred.
(分岐高分子残基 Rの構造)  (Structure of branched polymer residue R)
一般式 (2) で表わされる金属陽イオン錯体の構成成分である前記配位子中の 分岐高分子残基 Rは、 特定の分子量分布を有することが必要である。 即ち、 ゲ ルバ一ミエ一ションクロマトグラフィ (GP C) 法で測定される数平均分子量 Mn (G Pc, と重量平均分子量 Mw (GPC) との間において、 3 0 0≤Mn (Gl>c) ≤ 5 0 0 0 0及び 1. 0 ^Mw (ope, /Mn (G PC)≤ 1 5なる二つの関係を同時に満 たすことが望ましい。 該 Mn (G Pc, の値が 3 0 0未満であると、 該分岐高分子残 基 Rの空間的広がりが十分でなく上記の空間排除効果が低くなり、 逆に 5 0 0 0 0を超えるとかかる空間的広がりが大きすぎ金属陽イオン近傍に全てが配置しえ なくなるものと考えられ、 いずれの場合もクラスタ一形成が起こり易くなり本発 明の効果に好ましくない影響を与える場合がある。 従って、 Mn (GPC) の値は、 より好ましくは 4 0 0以上 4 0 0 0 0以下、 更に好ましくは 4 5 0以上 2 0 0 0 0以下、 最も好ましくは 5 0 0以上 1 0 0 0 0以下とする。 The branched polymer residue R in the ligand, which is a component of the metal cation complex represented by the general formula (2), needs to have a specific molecular weight distribution. That is, between the number average molecular weight Mn (GPc ) and the weight average molecular weight Mw ( GPC) measured by the gel permeation chromatography ( GPC) method , 300 ≤Mn ( Gl > c ) ≤ It is desirable that the two relations of 500 000 and 1.0 ^ Mw (ope, / Mn ( G PC ) ≤ 15 be satisfied at the same time. If the value of Mn (G Pc, is less than 300, If so, the spatial extension of the branched polymer residue R is not sufficient, and the above-described space exclusion effect is reduced. If it exceeds 0, it is considered that such a spatial spread is so large that all of them cannot be located near the metal cations.In either case, cluster formation is likely to occur, which adversely affects the effect of the present invention. There is. Therefore, the value of Mn ( GPC ) is more preferably not less than 400 and not more than 400, more preferably not less than 450 and not more than 200, most preferably not less than 500. The following is assumed.
一方、 上記の Mw (GPC) /Mn (GPC, の値が 1 5を超えると、 分岐高分子残基 Rの空間的広がりのばらつきが大きくなりすぎ、 その結果該空間排除効果のばら つきも大きくなると考えられるため、 クラスタ一形成が起こり易くなり金属陽ィ オンが蛍光能を有する場合の濃度消光が起こり易くなる場合がある。 従って、 Mw , » /Mn (GPc,の値は小さければ小さいほど空間排除効果の点では望まし いと言える。 かかる観点から、 最も適した分岐高分子構造としてデンドリマーが 挙げられる。 なお、 デンドリマ一とは、 前述した通りである。 デンドリマ一は高 度に制御された樹枝状分岐構造を有するため、 その Mw (GPC)ZMn (GPC>の値を 極めて小さくすることができる。 例えば、 上記の F r e c h e tあるいは柿本著 の文献に述べられている C 0 n V e r g e n t法 (デンドリマ一分子をその外側 のブロックから中心に向かって構築してゆく方法) によれば原理的に 1. 0とす ることが可能で、 一方、 D i V e r g e n t法 (デンドリマ一分子を中心から 外側に向かって構築してゆく方法) によっても通常 1以上 2以下程度とするこ とができる。 従って、 ここで Mw (ope, /Mn , )の値として、 より好ましくは 1. 0以上 1 2以下、 更に好ましくは 1. 0以上 9以下、 最も好ましくは 1. 0 以上 5以下とする。 On the other hand, if the value of Mw ( GPC ) / Mn (GPC ,) exceeds 15, the spatial spread of the branched polymer residue R becomes too large, and as a result, the spatial exclusion effect varies greatly. Therefore, cluster quenching may occur easily, and concentration quenching may occur when the metal cation has fluorescence.Therefore, the smaller the value of Mw, »/ Mn (GPc, From this viewpoint, the most suitable branched polymer structure is a dendrimer, and the dendrimer is as described above. Due to the dendritic branch structure, the value of Mw ( GPC ) ZMn ( GPC > can be made extremely small. For example, the Frechet described above or the C 0 n ergent method described in the literature by Kakimoto ( De According to the method of constructing one molecule of the dendrimer from the outer block toward the center), it is possible to set the value to 1.0 in principle, while the DiVergent method (one molecule of the dendrimer from the center) (The method of constructing outwardly), it can usually be about 1 to about 2. Therefore, the value of Mw (ope, / Mn,) is more preferably 1.0 to 1 2 The value is more preferably 1.0 or more and 9 or less, most preferably 1.0 or more and 5 or less.
前記配位子は、 超分岐 (Hy p e r b r a n c h) 分子構造を有する分岐高分 子残基 Rを少なくとも 1つ有することが望ましい。 ここで超分岐分子構造とは樹 枝状分岐分子構造であり、 例えば、 前記した Hawk e r、 Toma l i a、 F r e c h e t、 あるいは柿本ら著の各文献詳述されているデンドリマーに代表さ れる概念であるが、 ここでは分子量に制限はない。 本超分岐分子構造をより厳密 に定義すれば、 分岐の開始点 (即ち、 前述のフォーカルポイント) が特定でき、 該フォ一カルボイントから分子末端に向かって分子鎖をたどった場合にフォー力 ルポィント以外の分岐点を最低 1つ通過する分子末端が最低 1つ存在する分子構 造である。 It is preferable that the ligand has at least one branched polymer residue R having a hyperbranched (Hyperbranch) molecular structure. Here, the hyperbranched molecular structure is a dendritic branched molecular structure, and is, for example, a concept typified by the above-mentioned Hawker, Tomalia, Frechet, or dendrimer described in detail in each document by Kakimoto et al. However, there is no restriction on the molecular weight here. If the hyperbranched molecular structure is more strictly defined, the starting point of branching (that is, the above-mentioned focal point) can be specified, and when the molecular chain is traced from the focal point toward the molecular end, the force of force is determined. The molecular structure has at least one molecular end that passes at least one branch point other than the report point.
該配位子中の錯形成官能基群 X n は、 上記超分岐分子構造を有する分岐高分子 残基 Rのフォーカルボイント原子との間に超分岐分子構造の構成要素でない 0以 上 5 0以下の直列結合した原子を介して結合していることが望ましい。 これは、 分岐高分子の分岐が、 錯体の中心に位置する金属陽イオンから外側に向かうほど 密になるのが、 効率的な空間排除効果の発現の上で好ましいためと推測される。 ここで言う直列結合した原子とは直鎖状構造であり、 その構成元素に制限はない。 該直列結合した原子の数あるいは元素の種類を制御することで、 金属陽イオン近 傍の空間的あるいは化学的環境を変えることができると考えられる。 なお、 該直 列結合した原子の数が 5 0以上となると、 配位子中の超分岐分子構造の遮蔽効果 が低下する場合があるので好ましくなく、 より好ましくはこの数を 4 0以下、 さ らに好ましくは 3 0以下、 最も好ましくは 2 5以下とする。 なお、 該錯体の金属 陽イオンの蛍光を利用する場合、 配位子の前記アンテナ効果の効率の点からは上 記直列結合した原子の数は少ない方が好ましい場合もある。 The complex-forming functional group Xn in the ligand is not a component of the hyperbranched molecular structure between the branched polymer residue R and the focal point atom of the branched polymer having the hyperbranched molecular structure. Are desirably linked via the atoms bonded in series. This is presumably because the branching of the branched polymer becomes denser outward from the metal cation located at the center of the complex in order to exhibit an efficient space exclusion effect. The atoms connected in series here have a straight-chain structure, and there are no restrictions on the constituent elements. It is considered that the spatial or chemical environment near the metal cation can be changed by controlling the number of atoms or the kind of element connected in series. When the number of the atoms bonded in series is 50 or more, the shielding effect of the hyperbranched molecular structure in the ligand may be reduced, which is not preferable. More preferably, the number is 40 or less. It is more preferably at most 30 and most preferably at most 25. When utilizing the fluorescence of the metal cation of the complex, it may be preferable that the number of the atoms connected in series is small from the viewpoint of the efficiency of the antenna effect of the ligand.
(分岐高分子残基の分岐度)  (Degree of branching of branched polymer residue)
分岐高分子残基 Rは、 本金属陽イオン錯体の熱可塑性や、 溶媒或いはマトリツ クス材料への相溶性を損なわない限りにおいて、 可能な限り高度の分岐を有する ことが望ましい。 これは、 同一モノマ一 (繰り返し単位) 構造で同一の分子量を 有する高分子を考えた場合、 分岐点数が多ければ多いほど、 該陽イオンどうしの 接近を妨害する空間排除効果の高い立体配座をとり易いためと考えられる。 言い 換えれば、 分岐のない線状高分子に近づくにつれて、 空間排除効果の高い糸毬状 に凝集した立体配座から高分子鎖が伸びきつた同効果の低い立体配座まで変化し うるようになり、 結果として該陽イオンどうしが接近する確率が高くなるという ことである。 かかる観点から好ましい分岐構造は、 前記の超分岐分子構造であり、 中でも前記デンドリマ一構造が最も有効である。  It is desirable that the branched polymer residue R has as high a degree of branching as possible as long as the thermoplasticity of the metal cation complex and the compatibility with the solvent or the matrix material are not impaired. This is because, when considering polymers having the same monomer (repeating unit) structure and the same molecular weight, the larger the number of branch points, the higher the conformation with a high space exclusion effect that hinders the approach of the cations. It is thought that it is easy to take. In other words, as it approaches a linear polymer without branching, it can change from a thread-condensed conformation with high space exclusion effect to a low-conformation conformation with extended polymer chains. As a result, the probability that the cations approach each other increases. From this viewpoint, a preferred branched structure is the above-described hyperbranched molecular structure, and among them, the above-mentioned dendrimer structure is most effective.
さらに、 本金属陽イオン錯体を造影剤として使用する場合、 デンドリマー構造 をとることにより、 粘度を低くすることができ、 使用時の便利性においても優れ た造影剤を得ることができる。 Furthermore, when the metal cation complex is used as a contrast agent, the viscosity can be reduced by adopting a dendrimer structure, and the convenience in use is excellent. Can be obtained.
高分子の分岐度を定量する手段としては、 前述のとおりである。  The means for quantifying the degree of branching of the polymer is as described above.
(金属陽ィォン錯体の製造方法)  (Method for producing metal cation complex)
一般式 (2 ) で表わされる金属陽イオン錯体は、 前記金属陽イオンと配位子中 の錯形成官能基群である 3級ァミノ基とカルボキシル基を有するポリァミノカル ボン酸由来のカルボキシレ一ト陰イオンとのイオン結合、 及び該金属陽イオンと 配位子中の該 3級ァミノ基あるいは該カルボキシル基との配位結合よりなる。 か かるィォン結合の生成は陰ィォンの交換反応により可能である。 より具体的には、 該金属陽イオンの強酸塩 (例えば塩化物イオン、 臭化物イオン、 沃化物イオン、 フッ化物イオン、 硫酸イオン、 硝酸イオン、 燐酸イオン等の陰イオンとの塩) と、 配位子中のカルボキシル基を強塩基 (例えばナトリウムイオン、 リチウムイオン、 力リウムイオン等のアル力リ金属陽イオン) の塩に変換したものとを混合する方 法、 該金属陽イオンの蟻酸、 酢酸、 シユウ酸、 プロピオン酸等の低級カルボン酸 塩と、 ポリカルボン酸の形の該配位子とを混合 ·加熱し、 原料の塩より生成する 低級カルボン酸を除去する方法等を例示できるが、 これらに限定されるわけでは なく任意の方法を用いても構わない。  The metal cation complex represented by the general formula (2) is a carboxylate derivative derived from a polyaminocarbonic acid having a tertiary amino group and a carboxyl group, which are a complex forming functional group in the metal cation and the ligand. And a coordination bond between the metal cation and the tertiary amino group or the carboxyl group in the ligand. The formation of such an ion bond is possible by the exchange reaction of the ion. More specifically, a strong acid salt of the metal cation (for example, a salt with an anion such as chloride ion, bromide ion, iodide ion, fluoride ion, sulfate ion, nitrate ion, and phosphate ion); A method in which a carboxyl group in a metal is converted to a salt of a strong base (eg, a metal ion such as sodium ion, lithium ion, or lithium ion), formic acid, acetic acid, A method of mixing and heating a lower carboxylic acid salt such as oxalic acid and propionic acid with the ligand in the form of a polycarboxylic acid to remove the lower carboxylic acid generated from the raw material salt can be used. The method is not limited to this, and any method may be used.
(造影剤)  (Contrast agent)
一般式 (2 ) で表わされる金属陽イオン錯体を造影剤として用いる場合は、 前 記に準ずる。  When the metal cation complex represented by the general formula (2) is used as a contrast agent, the above applies.
(高分子組成物)  (Polymer composition)
一般式 (2 ) で表わされる金属陽イオン錯体を高分子マトリックス中に分散さ せ、 高分子組成物とすることも可能である。 この場合、 かかる高分子成物中の該 陽イオン濃度は、 光学用途を目的とする場合には、 該用途に必要な透明性を維持 する限りにおいて特に制限はないが、 通常高分子マトリックスと金属陽イオン錯 体との合計に対して 0 . 0 1〜 1 0重量%であることが好適である。 該陽イオン 濃度が 0 . 0 1重量%に満たないと、 本発明の効果である屈折率の上昇或いは蛍 光発生能の付与が不十分となり、 逆に 1 0重量%を超えると該かかる高分子組成 物が極端に脆くなる等の機械的物性の低下が顕著となる場合があり、 いずれも好 ましくない。 かかる観点から、 より好適な該陽イオン濃度は 0 . 0 5〜7重量%、 更に好適には 0 . 1〜5重量%、 最も好適には 0 . 5〜4重量%である。 It is also possible to disperse the metal cation complex represented by the general formula (2) in a polymer matrix to obtain a polymer composition. In this case, the concentration of the cation in the polymer composition is not particularly limited for the purpose of optical use as long as the transparency required for the use is maintained. It is preferable that the amount is 0.01 to 10% by weight based on the total amount of the cationic complex. If the cation concentration is less than 0.01% by weight, the effect of the present invention, such as an increase in the refractive index or the ability to generate fluorescence, becomes insufficient. In some cases, the mechanical properties such as the molecular composition become extremely brittle and the decrease in mechanical properties becomes remarkable. Not good. From this viewpoint, the more preferable cation concentration is 0.05 to 7% by weight, more preferably 0.1 to 5% by weight, and most preferably 0.5 to 4% by weight.
なお、 本金属陽イオン錯体を高分子マトリックス中に分散させた高分子組成物 の一般的な特徴として、 従来材料に見られない極めて良好な該陽イオンの分散が 挙げられる。 これは、 本金属陽イオン錯体の空間排除効果がかかる高分子組成物 を製造する過程でもある程度維持されるために他ならず、 具体的には、 例えば、 透過型電子顕微鏡により観察される像において該陽イオンどうしが接触している クラスタ一の割合が 2 0 %未満、 より好ましくは 1 0 %未満、 更に好ましくは 7 %未満、 最も好ましくは 5 %未満であることが例示される。  A general feature of the polymer composition in which the metal cation complex is dispersed in a polymer matrix is an extremely good dispersion of the cation which is not found in conventional materials. This is because the space exclusion effect of the metal cation complex is maintained to some extent even in the process of producing such a polymer composition, and specifically, for example, in an image observed by a transmission electron microscope. Exemplified is that the proportion of clusters in contact with the cations is less than 20%, more preferably less than 10%, further preferably less than 7%, and most preferably less than 5%.
本金属陽イオン錯体を含有する高分子組成物に使用される高分子マトリ ックス の種類には、 特に制限はない。 但し、 光学用途を目的とする場合には、 該用途に 必要な透明性を維持するために、 金属陽イオン錯体との相溶性が良好であること が望ましい。 即ち、 金属陽イオン錯体を分散させた場合に、 実用上重要と考えら れる紫外から赤外領域の光に対しての透明性を達成するためにはかかる光の波長 よりも小さい分散を達成することが必要である。 より具体的には、 例えば透過型 電子顕微鏡観察において、 該陽イオンの集合体の大きさが 2 0 O n m以下となる ことが望ましい。  There is no particular limitation on the type of polymer matrix used for the polymer composition containing the metal cation complex. However, for the purpose of optical use, it is desirable that the compatibility with the metal cation complex is good in order to maintain the transparency required for the use. In other words, when the metal cation complex is dispersed, in order to achieve transparency for light in the ultraviolet to infrared region, which is considered to be practically important, a dispersion smaller than the wavelength of such light is achieved. It is necessary. More specifically, for example, in observation with a transmission electron microscope, it is desirable that the size of the aggregate of the cations be 20 Onm or less.
ここで言う集合体とは、 金属陽イオンどうしが直接接触したクラスター、 又は 本金属陽イオン錯体の会合による集団と考えられる該陽イオンが数 n m以下程度 の距離で近接しあった状態のことである。 かかる集合体は、 高分子組成物の透明 性或いは蛍光発生過程における濃度消光の低減の観点から、 小さければ小さいほ ど好ましく、 かかる集合体の形成がなく各陽イオンが均一に組成物中に分散して いる状態が本発明の趣旨において理想的であることは言うまでもない。  The aggregate referred to here is a cluster in which metal cations are in direct contact with each other, or a state in which the cations considered to be a group formed by association of the metal cation complex are close to each other at a distance of about several nm or less. is there. From the viewpoint of the transparency of the polymer composition or the reduction of concentration quenching in the process of generating fluorescence, the smaller the aggregate, the more preferable. The aggregate is not formed and each cation is uniformly dispersed in the composition. Needless to say, this state is ideal for the purpose of the present invention.
好適な高分子マトリックスは、 分散される金属陽イオン錯体を構成する分岐高 分子残基の化学構造に依存するが、 これが有機物である場合、 相溶性、 成形加工 性、 経済性、 及びマトリ ックス自身の透明性から、 ポリスチレン、 ポリメチルメ タクリレート、 芳香族ポリエステル類、 芳香族ポリカーボネート類、 芳香族ポリ エステルカーボネート類、 半芳香族ポリアミ ド類、 非晶性ポリオレフイン類、 ポ リエチレングリコール等の脂肪族ポリエーテル、 芳香族又は脂肪族ポリウレタン、 芳香族又は脂肪族ポリウレタンゥレア、 芳香族又は脂肪族ポリウレア、 芳香族ポ リイミ ド等の公知の樹脂材料が好適に用いられる。 かかるマトリックス高分子の 分子量分布や分岐構造には、 優れた成形加工性を保持する限りにおいて特に制限 はない。 Suitable polymer matrices depend on the chemical structure of the branched polymeric residues that make up the dispersed metal cation complex, but if they are organic, the compatibility, processability, economics, and the matrix itself Polystyrene, polymethyl methacrylate, aromatic polyesters, aromatic polycarbonates, aromatic polyester carbonates, semi-aromatic polyamides, amorphous polyolefins, Known resin materials such as aliphatic polyethers such as ethylene glycol, aromatic or aliphatic polyurethanes, aromatic or aliphatic polyurethane ureas, aromatic or aliphatic polyureas, and aromatic polyimides are suitably used. The molecular weight distribution and branched structure of such a matrix polymer are not particularly limited as long as excellent moldability is maintained.
金属陽イオン錯体と高分子マトリックスとを混合して本発明の高分子組成物を 製造する方法に特に制限はない。 例えば、 溶液中で混合後塗布乾燥して組成物を 得る方法、 単軸押出機、 二軸押出機、 ブラベンダー等の溶融状態で混合する装置 を使用する方法等が例示できる。 この中、 溶液中で混合する方法が該陽イオンの 集合体を低減する上で効果的である。 更に、 本発明の高分子組成物においては、 複数種の該陽イオン、 複数種の金属陽イオン錯体、 或いは複数種の高分子マトリ ックスの使用も可能である。  The method for producing the polymer composition of the present invention by mixing the metal cation complex and the polymer matrix is not particularly limited. For example, a method of mixing and then drying the mixture in a solution to obtain a composition, a method of using a device for mixing in a molten state such as a single screw extruder, a twin screw extruder, or a Brabender can be exemplified. Among them, a method of mixing in a solution is effective in reducing the aggregate of the cations. Further, in the polymer composition of the present invention, a plurality of kinds of the cations, a plurality of kinds of metal cation complexes, or a plurality of kinds of polymer matrices can be used.
本金属陽イオン錯体又はこれを含有する高分子組成物は、 該陽イオンの有する 各種機能を応用する幅広い用途に利用される。 例えば、 その優れた溶剤溶解性を 利用して溶液を調製し、 無機蛍光体分散液における沈殿の生成等の問題の生じな い、 非常に安定した保存安定性を有する高輝度の蛍光性塗装材として利用できる これを例えば、 平面、 曲面、 パイプ状等の任意の形状の成形体の外表面に塗布 すれば、 蛍光を利用した道路標識、 安全標識、 ナンバープレート、 安全表示シー ル等の各種表示板 (紙) 、 ヘルメッ ト、 バンパー、 雨具 (雨合羽、 傘等) 等の交 通安全確保のための保護部品や保護具、 蛍光灯等の照明器具、 エックス線増感紙 等の增感紙等の製品が有利に得られる。 かかる塗装材としての利用において、 使 用される溶剤の種類に特に制限はないが、 近年特に求められている環境保護の立 場から水或いはアルコール類のような毒性の低い溶剤の使用が求められる場合に は、 かかる溶剤に相溶性の良い配位子を構成成分とする金属陽イオン錯体を調製 する必要がある。  The metal cation complex or the polymer composition containing the metal cation complex is used for a wide range of applications in which various functions of the cation are applied. For example, a high-brightness fluorescent coating material with extremely stable storage stability that does not cause problems such as the formation of precipitates in the inorganic phosphor dispersion liquid by preparing a solution utilizing its excellent solvent solubility If this is applied to the outer surface of a molded article of any shape, such as a flat surface, a curved surface, or a pipe, it can be used for various displays such as fluorescent road signs, safety signs, license plates, and safety display seals. Protective parts and protective equipment for ensuring traffic safety, such as boards (paper), helmets, bumpers, rain gear (rain flaps, umbrellas, etc.), lighting equipment such as fluorescent lights, and X-ray intensifying screens etc. The product is advantageously obtained. There is no particular limitation on the type of solvent used for such a coating material, but the use of a low-toxic solvent such as water or alcohol is required from the standpoint of environmental protection, which has been particularly required in recent years. In this case, it is necessary to prepare a metal cation complex containing a ligand having good compatibility with such a solvent.
更に、 本発明の金属陽イオン錯体或いはその組成物を、 例えばフルォロイムノ アツセィ用等の蛍光ラベル剤、 屈折率増加を利用したレンズや太さ方向の屈折率 変化を持たせた光導波路材料、 或いは光通信技術で重要な近赤外領域の蛍光 (例 えば 1· 3 πι、 あるいは 1. 5 //mの波長) を有する例えば Ρ r 3t Nd3+ Dy 3+, E r3+等のランタノイ ドを使用して光増幅器等の光通信用部材、 レーザ 一発信器等として応用することも非常に有用である。 更に、 Ho3 + E r3 + Tm3+等はアブコンパ一ジョンレーザ一材料に、 £ 112+ゃ丁^)3+等は? a r a d ay回転を利用した可視光用アイソレータに、 P r3+ Sm2l Eu3+等はホー ルバ一ニング現象を利用した光情報記録材料にそれぞれ有用な元素であり、 一方 P t2+ P t3 Au Au2 Au3+ Pb2 Pb" B i 3 等の原子番 号の高い陽イオンは屈折率上昇及び放射線吸収能の点で有用であり、 これらを使 用した本発明の錯体はそれぞれの光学部材材料として有用に利用できる。 Further, the metal cation complex of the present invention or the composition thereof may be used as a fluorescent labeling agent for, for example, Fluoromenoassay, a lens utilizing an increase in refractive index, an optical waveguide material having a refractive index change in the thickness direction, or an optical waveguide. Near-infrared fluorescence that is important for communication technology (eg For example, an optical communication member such as an optical amplifier using a lanthanide such as Ρr 3t Nd 3+ Dy 3+ , Er 3+ having a wavelength of 1.3πι or 1.5 // m), It is very useful to apply it as a laser transmitter. In addition, Ho 3 + Er 3 + Tm 3+ etc. are the materials of Ab Comparison Laser, and what is £ 11 2+ゃ 丁 ^) 3+ etc.? Pr 3+ Sm 2l Eu 3+ etc. are useful elements for optical information recording materials utilizing the hole-burning phenomenon, while P t 2+ P t are used for visible light isolators using arad ay rotation. A cation having a high atomic number such as 3 Au Au 2 Au 3+ Pb 2 Pb "Bi 3 is useful in terms of increasing the refractive index and radiation absorbing ability. It can be usefully used as an optical member material.
本発明の金属陽イオン錯体又はこれを含有する高分子組成物の実用に当り、 本 発明の趣旨を著しく損なわない限りにおいて任意の添加剤、 例えばトリオクチル フォスフィ ンォキシド等の有機りん化合物のように、 該陽イオンに配位すること でその蛍光強度の低下を抑制する添加剤等の使用も可能である。 実施例  In practical use of the metal cation complex of the present invention or the polymer composition containing the same, any additive may be used as long as the purpose of the present invention is not significantly impaired, such as an organic phosphorus compound such as trioctyl phosphoxide. It is also possible to use an additive or the like that suppresses a decrease in the fluorescence intensity by coordinating with a cation. Example
以下、 本発明を実施例により具体的に説明するが、 本発明は、 その要旨を越え ない限り、 これらの実施例に限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples as long as the gist is not exceeded.
[測定装置と条件等]  [Measuring equipment and conditions]
( 1 ) GPC:東ソ一社製 TSKゲル (分子量 1万程度以上用グレード: GMH XL、 分子量数百〜 1万程度用グレード: G— 2000 ) 、 展開溶媒:テトラヒ ドロフラン (THF) 、 測定温度: 40°C、 対照:単分散ポリスチレン、 検出: 屈折率変化。  (1) GPC: TSK gel manufactured by Tosoh Corporation (grade for molecular weight of about 10,000 or more: GMH XL, grade for molecular weight of about several hundred to 10,000: G-2000), developing solvent: tetrahydrofuran (THF), measurement temperature : 40 ° C, control: monodisperse polystyrene, detection: refractive index change.
(2) NMR: 日本電子社製 J NM-EX 270型 FT— NMR ( Ή 270 MHz, 13C 67. 8MH z) 、 溶媒: CDC 13 (2) NMR: JEOL Ltd. J NM-EX 270 type FT- NMR (Ή 270 MHz, 13 C 67. 8MH z), solvent: CDC 1 3
(3) FT- I R: 日本分光工業社製 FTZ I R— 8000型 F T— I R、 食塩 又は KB r結晶上にサンプルの塩化メチレン溶液のキャストフイルムを作成して 測定。  (3) FT-IR: Measured by preparing a cast film of a methylene chloride solution of the sample on FTZ IR-8000 type FT-IR, salt or KBr crystal manufactured by JASCO Corporation.
(4) マススペク トル:島津製作所製 KOMP ACT MALD I ΙΠ型レーザ —イオン化 TOF— MSを使用した。 マトリックス物質として、 3—インドール アクリル酸を用い、 陽イオンを検出した。 なお、 測定値には陽イオン補正等は一 切加えずそのまま使用した。 (MALD I測定は原理上、 分子ピークに例えば N a+ や K+ 等のアルカリ金属陽イオンが付加した形で観測されるので、 合理的 な陽イオンの原子量を仮定してこれを差し引く補正を行う場合がある。 例えば、 L e o n, J. W. e t a 1. ; P o l y m. B u l l . , 3 5巻, 4 4 9頁 ( 1 9 9 5 ) 参照。 ) (4) Mass spectrum: KOMP ACT MALD I レ ー ザ type laser manufactured by Shimadzu Corporation —Ionized TOF—MS was used. Cation was detected using 3-indole acrylic acid as the matrix material. The measured values were used without any cation correction or the like. (In principle, MALDI measurement is observed in a form in which alkali metal cations such as Na + and K + are added to the molecular peaks, so correction is performed by assuming a reasonable cation atomic weight. For example, see Leon, JWeta 1 .; Polym. Bull., 35, 4449 (1995).)
(5) プロ トン緩和度測定: 日本電子製 MU— 2 5 ( 2 5 MH z) 実施例 1 : ポリベンジルェ一テルデンドリマ一錯体  (5) Proton relaxation measurement: JEOL MU-25 (25 MHz) Example 1: Polybenzylether terdendrimer complex
H awk e r, C . J. e t a 1 ; J . Am. C h e m. S o c. , 1 1 2 巻, 7 6 3 8頁 ( 1 9 9 0 ) に記載の方法に従い、 第 4世代のデンドリティ ック ベンジルブロミ ド (該文献で [G— 4] —B rと略記されている) を合成した。 これに対し、 テトラヒ ドロフラン (THF) 中で大過剰のアンモニアを作用させ、 フォーカルボイントにァミノ基を有する相当するデンドリティ ックベンジルァミ ンァミン (以下 [G— 4] -NH2 と略) に変換した。 これを、 ジエチレントリ Ύミンペン夕ァセティ ックジアンハイ ドライ ド (DTP Aの 2酸無水物) に反応 させ、 2分子の [G— 4] -NH2 が 1分子の DTPAにアミ ド結合を介して結 合した化合物を得た (以下 DTP A— [G— 4] と略) 。 このものは、 NMR スペク トルにおいて、 該デンドリマー構造に由来する芳香族及びべンジル位のシ グナル、 該 DTP A構造に由来するメチレン基のシグナルを与えた。 Hawker, C. J. eta 1; J. Am. Chem. Soc., Vol. 112, pp. 736 (199), the fourth generation Dendritic benzyl bromide (abbreviated in the literature as [G-4] —Br) was synthesized. In contrast, by the action of a large excess of ammonia in as tetrahydrofuran (THF), corresponding Dendoriti Kkubenjiruami Namin having Amino group to the focal Boyne Doo (hereinafter [G- 4] -NH 2 approximately) was converted to. This is reacted in diethylene (2 anhydride DTP A) tri Ύ Minpen evening Aseti Kkujianhai dry de, two molecules of [G-4] binding -NH 2 via the ami de bound to DTPA one molecule The obtained compound was obtained (hereinafter abbreviated as DTP A— [G—4]). This gave a signal of aromatic and benzyl positions derived from the dendrimer structure, and a signal of a methylene group derived from the DTPA structure, in the NMR spectrum.
なお、 [G— 4] -NH2 と DTPA— [G- 4] 2 の GP C測定とマススぺ ク トル測定の結果、 及びこれらから算出される Mw/Mw (GPC) の値を表 1にま とめた。 Incidentally, [G- 4] -NH 2 and DTPA- [G- 4] 2 of GP results of C measurement and Masusu Bae-vector measurement, and the value of Mw / Mw (GPC), which is calculated from those in Table 1 Summarized.
[ランタノイ ド錯体の合成]  [Synthesis of Lanthanide Complex]
上記 DTP A— [G— 4] とランタノイ ド (以下一般式 Lnと略) の 3酢酸 塩無水物 (以下一般式 LNA cと略、 市販の水和物を窒素気流下加熱して無水物 を調製した) とをモル比 1Z1で混合した。 これをクロ口ベンゼン中で激しく攪 拌しながら 2時間加熱還流し、 生成する酢酸を連続的に留去した。 反応終了後、 減圧下溶媒を留去して錯体を得た (以下一般式 L n— DTP A— [G— 4] 2 と 略) 。 吸湿を避けるために、 蛍光測定実験に供するまでは、 窒素雰囲気下シリカ ゲルを乾燥剤として入れたデシケ一夕一内に保存した。 こうして得た錯体は、 F T— I Rスペク トルで原料の DTP A— [G- 4] 2 において見られたカルボン 酸のカルボニル基に帰属される吸収が消失していたこと、 'H及び13 C— NMR スぺク トルでァセチル基に帰属されるシグナルが見られなかったこと、 及び元素 分析値が誤差 1 %以内で計算値と一致したことから、 原料の LNA cのァセチル 基は完全に DTP A— [G- 4] 2 中のカルボン酸で置換され、 目的とする錯体 に変換されたものと結論した。 Above DTP A— [G—4] and lanthanide (hereinafter abbreviated as Ln) triacetate anhydride (hereinafter abbreviated as LNA c, commercially available hydrate is heated under nitrogen stream to remove the anhydride. Was mixed at a molar ratio of 1Z1. This is violently stirred in black benzene. The mixture was heated under reflux for 2 hours while stirring, and the generated acetic acid was continuously distilled off. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain a complex (hereinafter, abbreviated as Ln-DTPA- [G-4] 2 of the general formula). In order to avoid moisture absorption, silica gel was stored in a desiccator containing a desiccant overnight under a nitrogen atmosphere until it was used for the fluorescence measurement experiment. Thus obtained complexes, FT-ingredients in IR spectrum DTP A- [G- 4] exhibited absorption attributed had disappeared to a carbonyl group of the carboxylic acid was observed at 2, 'H and 13 C- Since no signal attributable to the acetyl group was found in the NMR spectrum, and the elemental analysis value was consistent with the calculated value within 1% error, the acetyl group of LNAc in the raw material was completely DTP A — It was concluded that the carboxylic acid in [G-4] 2 was substituted and converted to the target complex.
使用した L n3 +の種類、 及び対応する錯体の灰分分析値 (灰分は L n 203とし て計算) を表 2にまとめた。 なお、 比較例として、 ジエチレントリアミン 5酢酸 (DTPA) のテルビウム錯体 (以下 Tb— DTP Aと略) を採用し、 Tb— DTP A- [G— 4] と THF溶液中の蛍光強度を同じ金属陽イオン濃度で比 較したところ、 Tb— DTPA— [G— 4] 2 の方が強い蛍光強度を与えた。 表 1 :合成したデンドリマーの分析値 L n 3 + of the type used, and ash analysis of the corresponding complex (ash calculated as L n 2 0 3) are summarized in Table 2. As a comparative example, a terbium complex of diethylenetriaminepentaacetic acid (DTPA) (hereinafter abbreviated as Tb-DTPA) was adopted, and the fluorescence intensity in a THF solution was the same as that of Tb-DTPA- [G-4]. When compared by concentration, Tb—DTPA— [G—4] 2 gave stronger fluorescence intensity. Table 1: Analytical values of synthesized dendrimers
物質 w Mn (GPo w (Gpo /Mn ( Mw/ w Substance w Mn (GPo w (Gpo / Mn ( Mw / w
[G-4] - NH2 3020 2960 1.02 1.1 [G-4] - NH 2 3020 2960 1.02 1.1
DTPA - [G- 4] 5620 5300 1.06 1.2 DTPA-[G-4] 5620 5300 1.06 1.2
表 2 :合成した錯体 Ln— DTPA— [G— 4] 2 の種類と灰分分析値 Ln 灰分 (重量%) Table 2: Synthesized complexes Ln—DTPA— [G—4] 2 types and ash analysis Ln ash (% by weight)
理論値 実測値  Theoretical value Actual measurement value
P r 2.33 2.30  P r 2.33 2.30
N d 2.38 2.46  N d 2.38 2.46
E u 2.48 2.55  E u 2.48 2.55
Gd 2.56 2.47  Gd 2.56 2.47
Tb 2.58 2.59  Tb 2.58 2.59
Dy 2.63 2.54  Dy 2.63 2.54
H o 2.66 2.59  H o 2.66 2.59
E r 2.69 2.74  E r 2.69 2.74
Tm 2.72 2.75  Tm 2.72 2.75
Yb 2.77 2.71 実施例 2 :親水性錯体 A  Yb 2.77 2.71 Example 2: Hydrophilic complex A
[親水性配位子の合成]  [Synthesis of hydrophilic ligand]
Newk ome, G. R. , e t a 1. ; Ma c r omo l e c u l e s, 2 4巻, 1 44 3頁 ( 1 9 9 1 ) に記載の方法に準拠して、 トリス (ヒ ドロキシ メチル) ァミノメタンとアクリロニトリルを原料として卜リス { (2—シァノエ チル) ォキシメチル } ァミノメタン (以下 TCNと略) 、 及びトリス { (2—ェ トキシカルボニルェチル) ォキシメチル } ァミノメタン (以下 TECと略) を合 成した。 TECのァミノ基をジ一 t—プチルジカーボネートを用いる定法により t—ブトキシカルボニル基 (BOC基) で保護し、 次いで水酸化ナトリウムを使 用したエステルの加水分解により相当する トリカルボン酸 (以下 BOC— TCと 略) とした。 更に、 上記 Newk omeら著の文献に記載の 1ーヒ ドロキシベン ゾトリアゾールとジシクロへキシルカルポジイミ ド (DCC) を用いるペプチド 合成反応に準拠し、 BOC— TCに対して TCNをテトラヒ ドロフラン (THF) 中で反応させ、 1分子の BOC— TCに 3分子の TCNがアミ ド結合した化合物 (以下 BOC— TC— TCN3と略) を得た。 BOC— TC— TCN3の BOC基 を、 THF中トリフルォロ酢酸を触媒として除去して得たアミン (以下 TC— T CN3 と略) を、 ジエチレントリアミンペンタァセティ ックジアンハイ ドライ ドNewcome, GR, eta 1 .; According to the method described in Macromolecules, 24, 1443 (1991), tris (hydroxymethyl) aminoaminomethane and acrylonitrile were used as raw materials. Lis {(2-cyanoethyl) oxymethyl} amino methane (hereinafter abbreviated as TCN) and tris {(2-ethoxycarbonylethyl) oxymethyl} amino methane (hereinafter abbreviated as TEC) were synthesized. The amino group of TEC is protected with a t-butoxycarbonyl group (BOC group) by a conventional method using di-t-butyldicarbonate, and then the corresponding tricarboxylic acid (hereinafter referred to as BOC—) is obtained by hydrolysis of the ester using sodium hydroxide. TC). Further, based on the peptide synthesis reaction using 1-hydroxybenzotriazole and dicyclohexylcarpoimide (DCC) described in Newcome et al., TCN was converted to tetrahydrofuran (THF) for BOC-TC. ), One molecule of BOC-TC and three molecules of TCN are amide-bonded (Hereinafter abbreviated as BOC—TC—TCN 3 ). BOC-TC- the BOC group TCN 3, amine obtained by removing the Torifuruoro acetate in THF as a catalyst (hereinafter TC- T CN 3 substantially), diethylenetriaminepentaacetic § Sethi Kkujianhai dry de
(DTPAの 2酸無水物) に反応させ、 2分子の TC TCN3 が 1分子の DT PAにアミ ド結合を介して結合した化合物を得た (以下 DTP A— CN18と略) 。 DTP A-CN , 8を大過剰のグリセロール中に分散し、 乾燥した塩化水素ガスを 吹き込みながら 6 0°Cで攪拌し、 二トリル基をグリセロールエステルに変換し、 塩基性ィォン交換樹脂で中和して塩化物ィォンを除去した。 該ィォン交換樹脂は 濾過して除去し、 DTP Aに対して 3当量の水酸化ナトリウムを加え、 次いでグ リセロールと水を減圧留去して DTP A 3ナトリウム塩を分子中心に有する親水 性デンドリマ一を主体とする残渣を得た (以下 3 N a—DTP A Dと略) 。 Reacted (2 anhydride DTPA), two molecules TC TCN 3 to obtain a compound attached via amino linkage thereof to DT PA one molecule (hereinafter DTP A- CN 18 substantially). Disperse DTP A-CN, 8 in a large excess of glycerol, stir at 60 ° C while blowing in dry hydrogen chloride gas, convert nitrile groups to glycerol esters, and neutralize with basic ion exchange resin To remove chloride ion. The ion-exchange resin was removed by filtration, 3 equivalents of sodium hydroxide were added to DTPA, and then glycerol and water were distilled off under reduced pressure to obtain a hydrophilic dendrimer having DTPA trisodium salt at the molecular center. The residue mainly consisting of (NNa—DTP AD) was obtained.
[ガドリ二ゥム錯体の合成]  [Synthesis of gadolinium complex]
上記 3 Na_DTPA— Dと、 市販の塩化ガドリニウム (ΙΠ) 水和物を窒素気 流下 1 7 0°Cで 3 0分間加熱して得た無水塩を計算上等モルとなるよう混合して 水中で加熱還流し、 D T P Aを分子中心に有する親水性デンドリマ一の 3価ガド リニゥム陽イオン (Gd3+) 錯体と食塩を含有する水溶液を得た。 この錯体は、 強い MR I信号強度を得ることができ、 MR I造影剤として有用である。 実施例 3 :親水性錯体 B The above 3Na_DTPA-D and commercially available gadolinium chloride (ΙΠ) hydrate are heated at 170 ° C for 30 minutes under a nitrogen stream to obtain an equimolar amount of anhydrous salt, and then mixed in water. The mixture was heated under reflux to obtain an aqueous solution containing a trivalent gadolinium cation (Gd 3+ ) complex of a hydrophilic dendrimer having DTPA at its molecular center and sodium chloride. This complex can obtain a strong MRI signal intensity and is useful as an MRI contrast agent. Example 3: Hydrophilic complex B
見水性配位子の合成]  Synthesis of water-soluble ligands]
実施例 2で得た TEC (2. 2当量) を、 ジエチレントリアミンペン夕ァセテ イツクジアンハイ ドライ ド (DTPAの 2酸無水物、 1. 0当量) と N, N—ジ メチルフオルムアミ ド (DMF) 中ピリジン (4. 2当量) の存在下反応させ、 2分子の T E Cが 1分子の D T P Aにアミ ド結合を介して結合した化合物を得た (以下 DTP A— E t 6と略) 。 生成物は、 シリカゲルカラムクロマトグラフィ The TEC (2.2 equivalents) obtained in Example 2 was combined with diethylenetriamine pen acetic acid anhydride (DTPA dianhydride, 1.0 equivalent) and N, N-dimethylformamide (DMF). The reaction was carried out in the presence of medium pyridine (4.2 equivalents) to obtain a compound in which two molecules of TEC were bound to one molecule of DTPA via an amide bond (hereinafter abbreviated as DTP A—Et 6). The product is silica gel column chromatography
(展開溶剤:アセトン Zメタノール混合系) で精製した。 (Developing solvent: acetone-Z methanol mixed system).
[ガドリニウム錯体の合成]  [Synthesis of gadolinium complex]
上記 DTP A— E t 6 (1. 0当量) のメタノール溶液に、 市販の 0. 1規定 水酸化カリウムエタノール溶液 (KOH: 3. 0当量) を加え、 ここに実施例 2 で使用した塩化ガドリニウム (ΠΙ) の無水塩 ( 1. 0当量) を水溶液として加え、 室温で 1時間攪拌後、 濃縮した。 残渣を塩化メチレンに溶解し濾過し、 再度濃縮 し、 真空オーブン中 5 0°Cで乾燥して親水性錯体 Bを得た。 実施例 4 :親水性錯体 C To a methanol solution of DTP A—Et 6 (1.0 equivalent), An ethanol solution of potassium hydroxide (KOH: 3.0 equivalents) was added, and the anhydrous salt of gadolinium chloride (ΠΙ) used in Example 2 (1.0 equivalent) was added as an aqueous solution, followed by stirring at room temperature for 1 hour. Concentrated. The residue was dissolved in methylene chloride, filtered, concentrated again, and dried in a vacuum oven at 50 ° C to obtain hydrophilic complex B. Example 4: Hydrophilic complex C
ほ見水性配位子の合成]  Synthesis of Homi aqueous ligand]
実施例 2で得た TEC(3当量) を BOC— TC(1当量) と混合し、 1一 (3 ージメチルァミノプロピル) — 3—ェチルカルポジイミ ド塩酸塩 ( 3. 3当量) を加え、 塩化メチレン中室温で 1 2日間攪拌した。 シリカゲルカラムクロマトグ ラフィ (展開溶剤: n—へキサン/アセトン混合系) で精製し、 1分子の BOC 一 TCに 3分子の TECがアミ ド結合した化合物 (以下 BOC— TC— TE C3 と略) を得た。 BOC— TC— TEC3 の BOC基を、 THF中トリフルォロ酢 酸を触媒として除去して得たアミン (以下 TC一 TEC 3 と略、 2. 0当量) を、 ジエチレントリアミンペンタァセティ ックジアンハイ ドライ ド (DTPAの 2酸 無水物、 1. 0当量) と混合し、 ァセトニトリル中ピリジン (4当量) の存在下 5 0〜7 0°Cで 3日加熱攪拌を継続し、 シリカゲルカラムクロマトグラフィ (展 開溶剤: メタノール Zァセ卜ン混合系) で精製し、 2分子の TC一 TE C3 が 1 分子の DTP Aにアミ ド結合を介して結合した化合物を得た (以下 DTP A— E t 18と略) 。 The TEC (3 equivalents) obtained in Example 2 was mixed with BOC-TC (1 equivalent), and 1- (3-dimethylaminopropyl) -3-ethylcarposimid hydrochloride (3.3 equivalents) And stirred in methylene chloride at room temperature for 12 days. Silica gel column chromatography grayed Rafi was purified (developing solvent hexane / acetone mixed system to n-), compound TEC of 3 molecules BOC one TC of 1 molecule has amino linkage thereof (hereinafter BOC-TC- TE C 3 substantially) I got BOC-TC- the BOC group TEC 3, amine obtained by removing the Torifuruoro acetic acid in THF as catalyst (hereinafter TC one TEC 3 substantially, 2.0 eq), diethylenetriaminepentaacetic § Sethi Kkujianhai dry de (DTPA Diacid anhydride, 1.0 equivalent), and heated and stirred at 50-70 ° C for 3 days in the presence of pyridine (4 equivalent) in acetonitrile, followed by silica gel column chromatography (developing solvent: methanol). purification by Z § Se Bokun mixed system), two molecules of TC one TE C 3 to obtain a compound attached via amino linkage thereof to DTP a one molecule (hereinafter DTP A- E t 18 substantially) .
[ガドリ二ゥム錯体の合成]  [Synthesis of gadolinium complex]
上記 D TP A-E t 18 ( 1. 0当量) の水溶液に、 炭酸水素ナトリウム ( 3. 0当量) の水溶液を加え、 ここに実施例 2で使用した塩化ガドリニウム (ΠΙ) の 無水塩 (1. 0当量) を水溶液として加え、 室温で 4 5分攪拌後、 濃縮した。 残 渣を塩化メチレンと水とともに振り混ぜ、 有機相を分液 ·乾燥 (無水硫酸ナトリ ゥム使用) し濾過して濃縮した。 ここに大過剰量の 2—アミノエタノールに溶解 し、 窒素気流下 9 0°Cで 4時間攪拌した後減圧濃縮した。 残渣のメタノール溶液 を強酸性イオン交換樹脂 (三菱化学製ダイアイオン PK 2 1 6 L、 ダイアイオン は商標名) で処理して痕跡量の 2—アミノエ夕ノールを除去した後、 濾過 '濃縮 した。 こうして得た親水性錯体 Cは、 NMR及び I Rスペク トルより、 ェチルェ ステル末端が 2—ァミノエタノールのァミ ドに変換されていることが判明した。 実施例 5 :親水性錯体 D An aqueous solution of sodium hydrogen carbonate (3.0 equivalents) was added to the above aqueous solution of DTP AE t18 (1.0 equivalents), and the anhydrous gadolinium chloride (塩 化) used in Example 2 (1.0 equivalents) was added. ) Was added as an aqueous solution, stirred at room temperature for 45 minutes, and concentrated. The residue was shaken with methylene chloride and water, and the organic phase was separated, dried (using anhydrous sodium sulfate), filtered and concentrated. This was dissolved in a large excess amount of 2-aminoethanol, stirred at 90 ° C for 4 hours under a nitrogen stream, and then concentrated under reduced pressure. The methanol solution of the residue is converted to a strongly acidic ion-exchange resin (Mitsubishi Chemical's Diaion PK 216 L, Was used to remove traces of 2-aminoenol and then filtered and concentrated. From the NMR and IR spectra of the hydrophilic complex C thus obtained, it was found that the end of the ester was converted to an amide of 2-aminoethanol. Example 5: Hydrophilic complex D
見水性配位子の合成]  Synthesis of water-soluble ligands]
実施例 2で得た TEC(3当量) を BOC— TC(1当量) と混合し、 1一 (3 —ジメチルァミノプロピル) 一 3—ェチルカルポジイミ ド塩酸塩 ( 3. 3当量) を加え、 塩化メチレン中室温で 1 2日間攪拌した後、 水洗、 乾燥 (無水硫酸ナト リウム使用) 、 濾過、 次いで濃縮して水溶性の副生成物を除去した生成物を得た。 こうして得た生成物は、 1分子の BOC— TCに TE Cが 2ないし 3分子アミ ド 結合した化合物の混合物であることが N M Rより確認された (この超分岐構造を 有する生成物を、 以下 HB P— NHBOCと略) 。 また、 HBP— NHBOCは、 GP C測定で得られる重量平均分子量 Mw (GPC) と数平均分子量 Mn (GPC> との 比 Mw (GPC) /Mn (G Pc, が約 2であり、 理想的なデンドリマ一ではないが超分 岐分子構造を有することが確認された。 HB P— NHBOCの BOC基を THF 中トリフルォロ酢酸を触媒として除去した (この生成物を、 以下 HBP— NH2 と略) 。 HBP— NH2 のアミノ基量を滴定で決定し、 該ァミノ基 2. 0当量に 対してし 0当量のジエチレントリアミ ンペンタァセティ ックジアンハイ ドライ ド (DTP Aの 2酸無水物) を混合し、 ァセトニトリル中ピリジン (4当量) の 存在下 5 0〜 7 0 °Cで 3日加熱攪拌を継続し、 シリ力ゲル力ラムクロマトグラフ ィ(展開溶剤: メタノール Zァセトン混合系) で精製し、 2分子の HBP— NH2 が D T P Aにアミ ド結合を介して結合した化合物を得た(以下 D T P A— H B P 2 と略) 。 The TEC (3 equivalents) obtained in Example 2 was mixed with BOC-TC (1 equivalent), and the mixture of 1- (3-dimethylaminopropyl) -13-ethylcarposimid hydrochloride (3.3 equivalents) After stirring for 12 days at room temperature in methylene chloride, the product was washed with water, dried (using anhydrous sodium sulfate), filtered, and then concentrated to obtain a product from which water-soluble by-products had been removed. NMR confirmed that the product thus obtained was a mixture of one molecule of BOC-TC and two or three molecules of TEC bonded to the amide (the product having this hyperbranched structure was hereinafter referred to as HB P—short for NHBOC). HBP-NHBOC has a ratio of weight average molecular weight Mw ( GPC) and number average molecular weight Mn ( GPC > ) obtained by GPC measurement, where Mw ( GPC) / Mn (G Pc, is approximately 2. dendrimers not one but have a hyperbranched岐分Ko structure was confirmed. in THF Torifuruoro acetic acid BOC group HB P- NHBoc were removed as a catalyst (a product, hereinafter HBP- NH 2 approximately). HBP- an amino group of NH 2 was determined by titration, (2 anhydride DTP a) the amino group 2.0 and for the equivalent 0 equivalents of diethylene tri amine Npentaseti Kkujianhai dry de mixed, Asetonitoriru in pyridine (4 equivalents), continue heating and stirring at 50 to 70 ° C for 3 days, purify by silica gel gel ram chromatography (developing solvent: methanol-Zaceton mixed system), and obtain two molecules of HBP- A compound in which NH 2 was bound to DTPA via an amide bond was obtained ( DTPA—HBP 2 ).
[ガドリニウム錯体の合成]  [Synthesis of gadolinium complex]
上記 DTP A— HB P2 のカルボキシル基量を滴定で決定し、 1. 0当量の DTP A環に対し、 炭酸水素ナトリウム (3. 0当量) の水溶液を加え、 ここに 実施例 2で使用した塩化ガドリニウム (ΠΙ) の無水塩 (1. 0当量) を水溶液と して加え作用させ、 実施例 4の親水性錯体 Cを得たのと同様に更に 2—アミノエ タノ一ルを作用させる操作を行った。 こうして得た親水性錯体 Dは、 NMR及び I Rスぺク トルより、 ェチルエステル末端が 2—ァミノエタノールのァミ ドに変 換されていることが判明した。 実施例 3、 4及び 5の親水性錯体の水溶液について、 3 7 °Cにおけるプロ トン の縦緩和度 (R 1 ) 及び横緩和度 (R 2) をそれぞれ測定し、 表 3にまとめた。 なお、 対照として、 マグネピスト (シヱ一リング製、 DTP Aのガドリニウム (1) 錯体) を用いた。 表 3 :親水性錯体のプロ トン緩和度 R 1及び R 2 (単位: mM— ' s e c_') 物質 R 1 R 2 The carboxyl group content of the above DTP A—HB P 2 was determined by titration, and an aqueous solution of sodium hydrogen carbonate (3.0 equivalents) was added to 1.0 equivalent of the DTP A ring, which was used in Example 2 here. An anhydrous salt of gadolinium chloride (ΠΙ) (1.0 equivalent) Then, the same operation as that of obtaining the hydrophilic complex C of Example 4 was performed to further apply 2-aminoethanol. From the NMR and IR spectrum of the hydrophilic complex D thus obtained, it was found that the end of the ethyl ester was converted to an amide of 2-aminoethanol. With respect to the aqueous solutions of the hydrophilic complexes of Examples 3, 4, and 5, the longitudinal relaxation (R 1) and the transverse relaxation (R 2) of the proton at 37 ° C. were measured, respectively, and are summarized in Table 3. As a control, magnepist (a gadolinium (1) complex of DTP A, manufactured by Schirring) was used. Table 3: Proton relaxation R1 and R2 of hydrophilic complex (unit: mM—'sec_ ') Substance R1 R2
親水性錯体 B 6. 1 7. 1  Hydrophilic complex B 6. 1 7.1
親水性錯体 C 9. 3 1 0  Hydrophilic complex C 9.3 1 0
親水性錯体 D 8. 9 9. 4  Hydrophilic complex D 8.9.9.4
マグネピスト 3. 9 3. 6 実施例 6 :急性毒性試験  Magnepist 3.9 3.6 Example 6: Acute toxicity test
実施例 4で製造した化合物を SD系ラッ ト (雄性、 5週齢体重 1 3 0〜 1 4 0 g、 日本チヤ一ルスリバ一社) に 5 0 0 mg/k g ( 1 0 m 1 Zk g生理食塩水 溶液) の割合で尾静脈より 2. 5m 1の注射筒を用いて投与した。 投与直後より 8日間一般状態を観察するとともに体重の変化を計測し、 その後解剖して、 薬物 投与による変化を観察した。  The compound prepared in Example 4 was administered to an SD rat (male, 5-week-old body weight: 130 to 140 g, Nippon Chars River Co., Ltd.) at 500 mg / kg (10 m1 Zkg physiological saline). Saline solution) using a 2.5 ml syringe via the tail vein. The general condition was observed for 8 days immediately after the administration, and changes in body weight were measured. The animals were then dissected to observe the changes due to drug administration.
本化合物投与による死亡は認められず、 全観察期間を通じ、 一般症状 ·体重と もに変化なかった。 また解剖後の検査においても異常は認められなかった。 実施例 Ί :実施例 4の化合物による造影効果  No deaths were observed due to administration of this compound, and there were no changes in general symptoms and body weight throughout the observation period. No abnormalities were observed in the post-dissection examination. Example II: Contrast effect by the compound of Example 4
ウレタン麻酔下において S D系ラッ ト (雄性、 5週齢体重 1 3 0〜 1 4 0 g、 曰本チヤ一ルスリバ一社) の気管にシリコンチューブを力ニューレーシヨンし人 ェ呼吸器に接続した。 ただちに人工呼吸器を稼動して呼吸を維持するとともにミ ォブロック注射液 (オルガノン ·三共社) を腹腔内に約 0. 1 m 1 Zk g投与し て、 自発呼吸を停止させた。 次いで、 右下腿静脈に化合物投与のための力ニュー レ一ションを施すとともに、 プロトン用サ一フヱイスコイルをラッ ト上腹部に肝 臓、 腎臓部分を造影するためあてて固定した。 MR画像の測定は GE社製 2テス ラ水平ボア ( 1 0 cm) システムを使用した。 測定は本化合物の 1 0 O mg/ m l生理食塩水溶液を 0. 4m l (0. 1 mm o 1 / k g ) の割合で力ニューレ シヨンチューブから注入し、 グラジェントエコー法 (T 1強調) を用い、 TE = 8ms、 TR= 8 0ms、 F O V 5 0 x 5 0 mm、 スライス厚 2 mm、 F l i p 角 9 0 ° の条件で、 3 0秒間人工呼吸器を停止した強制的息止め状態下、 積算回 数 2回で行った。 Under urethane anesthesia, an SD rat (male, 5-week-old body weight 130-140 g, A silicone tube was force-neutralized into the trachea of Mr. Charlriver and connected to the human respiratory tract. Immediately, the respirator was activated to maintain respiration, and spontaneous respiration was stopped by injecting approximately 0.1 ml 1 Zkg of Myoblock injection (Organon Sankyo) intraperitoneally. Next, force neutrination for administration of the compound was performed on the right lower leg vein, and a surface coil for proton was applied to the upper abdomen of the rat to fix the liver and kidney parts, and fixed. The MR images were measured using a GE 2-tesla horizontal bore (10 cm) system. The measurement was performed by injecting 100 mg of this compound in a saline solution at a rate of 0.4 ml (0.1 mm o 1 / kg) from a force-nucleation tube, and performing gradient echo method (T1 emphasis). Using TE = 8 ms, TR = 80 ms, FOV 50 x 50 mm, slice thickness 2 mm, Flip angle 90 °, under forced breath hold with the ventilator stopped for 30 seconds, The number of integrations was two.
その結果、 肝臓および腎臓像に良好な造影効果が認められた。 肝臓においては 投与直後から血管の走行を含む良好な組織像が、 腎臓でも非投与ラッ トでは困難 な内部構造を識別可能な組織像が得られ、 高い造影効果が認められた。 また、 投 与 3 0分目の膀胱にも高い造影効果が認められることから、 尿***も速やかであ ることが推察された。 産業上の利用可能性  As a result, a good contrast effect was observed on the liver and kidney images. A good histological image including the running of blood vessels was obtained in the liver immediately after the administration, and a histological image that could identify the internal structure of the kidney that was difficult in the non-administered rat, indicating a high contrast effect. Also, a high contrast effect was observed in the bladder 30 minutes after administration, suggesting that urine excretion was rapid. Industrial applicability
( 1 ) 本発明の金属陽イオンと超分岐分子構造を有する配位子からなる造影剤 は、 血流中に金属元素を分子レベルで極めて安定に分散させるため、 安全性に優 れたものである。 また、 該錯体の回転運動性が非常に抑制されているため大きな Ro t a t i o n a l c o r r e l a t i o n t i me (て R ) を有するた め、 特に MR I技術に好適な造影剤であり、 その工業的利用価値は極めて大であ な。 (1) The contrast agent of the present invention comprising a metal cation and a ligand having a hyperbranched molecular structure disperses the metal element extremely stably at the molecular level in the bloodstream, and thus has excellent safety. is there. In addition, since the rotational motility of the complex is extremely suppressed, the complex has a large rotational correlation ( R ), and is a contrast agent suitable particularly for MRI technology, and its industrial utility value is extremely large. hole.
さらに、 本発明の超分岐分子構造を有する配位子からなる造影剤は、 その低粘 度という性質から、 使用時の便利性においても非常に優れたものである。  Further, the contrast agent comprising a ligand having a hyperbranched molecular structure of the present invention is very excellent in convenience at the time of use due to its low viscosity property.
(2) 本発明に係る金属陽イオン錯体は、 金属陽イオンと、 錯形成官能基群で ある 3級アミノ基とカルボキシル基を有するポリァミノカルボン酸陰イオンを有 する分岐高分子との静電的相互作用あるいは配位結合により構成されているので、 均質性、 溶剤或いは各種マトリックス材料との相溶性、 熱可塑性を有し、 軽量性 及び靱性にも優れるため、 従来にない優れた溶剤塗布性 ·熱成形加工性 ·軽量性 •曲げ変位に対する靱性 ·広範な種類の基板に対する密着性等を兼備する金属陽 イオン含有材料となる。 また、 幅広い濃度範囲において原子番号の高い元素を含 有させることが可能であるので、 レンズゃ光導波路等に用いられる屈折率を制御 した光学材料として有用であり、 該元素のエックス線吸収能を利用してのエツク ス線造影剤としても有用であり、 更に、 イオン性化合物であるのでこれを用いた 高分子組成物あるいは塗装剤は、 電磁波遮蔽能や帯電防止能をも有する。 (2) The metal cation complex according to the present invention comprises a metal cation and a complex forming functional group. It is composed of a certain tertiary amino group and a branched polymer having a polyaminocarboxylate anion having a carboxyl group by electrostatic interaction or coordination bond. Excellent solvent applicability, thermoformability, light weight, toughness against bending displacement, adhesion to a wide variety of substrates, etc. This is a metal cation-containing material that also has In addition, since it is possible to contain an element having a high atomic number in a wide concentration range, it is useful as an optical material having a controlled refractive index used in lenses, optical waveguides, etc., and utilizes the X-ray absorption ability of the element. It is also useful as an X-ray contrast agent, and since it is an ionic compound, a polymer composition or coating agent using the same also has an electromagnetic wave shielding ability and an antistatic ability.
( 3 ) また、 金属元素として蛍光能を有するものを選択した場合には、 濃度消 光の抑制された高い蛍光能をも有する材料となるため、 溶剤に溶解すれば、 エツ クス線增感紙、 蛍光灯、 道路標識や安全標識を初めとする各種成形体に使用可能 な保存安定性に優れた高輝度蛍光性塗装材として、 或いはフルォロイムノアツセ ィ ( f 1 u o r 0 i mm u n o a s s a y ) 等で用いられる蛍光ラベル剤、 光増 幅器を初めとする光通信部材、 レーザー発信器等、 幅広い蛍光利用用途に使用可 能な材料となる。  (3) If a metal element having a fluorescent property is selected, a material having a high fluorescent property with suppressed concentration quenching can be obtained. As a high-brightness fluorescent coating material with excellent storage stability that can be used for molded products such as fluorescent lamps, road signs, and safety signs, or as a fluoroelastomer (f1 uor 0 imm unoassay) It is a material that can be used for a wide range of fluorescent applications, such as fluorescent labeling agents used in applications such as optical amplifiers, optical communication members such as optical amplifiers, and laser transmitters.
( 4 ) 更に、 該陽イオンが常磁性を有する場合、 核磁気共鳴 (N M R) 現象を 利用した造影 (M R I ) に用いられる造影剤としても有用である。  (4) Further, when the cation has paramagnetism, it is also useful as a contrast agent used for imaging (MRI) utilizing a nuclear magnetic resonance (NMR) phenomenon.

Claims

請 求 の 範 囲 The scope of the claims
I . 金属陽イオン及び超分岐分子構造を有する配位子からなる錯体であり、 か つ、 配位子中の錯形成官能基が超分岐分子構造のフォーカルボイント原子との間 に超分岐分子構造の構成要素でない 0以上 5 0以下の直列結合した原子を介して 結合している錯体を必須成分とする造影剤。 I. A complex consisting of a metal cation and a ligand having a hyperbranched molecular structure, wherein the complex-forming functional group in the ligand is located between the focal point atom of the hyperbranched molecular structure and the hyperbranched molecular structure. A contrast agent comprising, as an essential component, a complex that is bonded through 0 or more and 50 or less atoms connected in series, which is not a component of the above.
2 . 配位子が、 水溶性を有する請求の範囲第 1項に記載の造影剤。  2. The contrast agent according to claim 1, wherein the ligand is water-soluble.
3 . 配位子が、 活性水素原子含有官能基、 又はポリアルキレンォキシド基を超 分岐分子構造の末端に有する請求の範囲第 1項又は第 2項に記載の造影剤。 3. The contrast agent according to claim 1, wherein the ligand has an active hydrogen atom-containing functional group or a polyalkylene oxide group at a terminal of the hyperbranched molecular structure.
4 . 配位子が、 水酸基、 又は繰り返し単位の炭素数が 4以下のポリアルキレン ォキシド基を超分岐分子構造の末端に有する請求の範囲第 1項ないし第 3項のい ずれか 1項に記載の造影剤。 4. The ligand according to any one of claims 1 to 3, wherein the ligand has a hydroxyl group or a polyalkylene oxide group having a repeating unit of 4 or less carbon atoms at the terminal of the hyperbranched molecular structure. Contrast agent.
5 . 配位子が、 酸素、 窒素、 硫黄、 及びリンからなる群から任意に選ばれる元 素を超分岐分子構造中に含有する請求の範囲第 1項ないし第 4項のいずれか 1項 に記載の造影剤。  5. The method according to any one of claims 1 to 4, wherein the ligand contains an element arbitrarily selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus in the hyperbranched molecular structure. The contrast agent described.
6 . 配位子が、 エーテル、 エステル、 アミ ド、 及び 3級ァミンからなる群から 任意に選ばれる構造を超分岐分子構造中に含有する請求の範囲第 1項ないし第 5 項のいずれか 1項に記載の造影剤。  6. The hyperbranched molecular structure according to any one of claims 1 to 5, wherein the ligand contains a structure arbitrarily selected from the group consisting of ether, ester, amide, and tertiary amine in the hyperbranched molecular structure. The contrast agent according to Item.
7 . 配位子が、 ボルフィ リン環を有する請求の範囲第 1項ないし第 6項のいず れか 1項に記載の造影剤。  7. The contrast agent according to any one of claims 1 to 6, wherein the ligand has a porphyrin ring.
8 . 超分岐分子構造が、 3 0 0以上 5 0, 0 0 0以下の分子量を有する請求の 範囲第 1項ないし第 7項のいずれか 1項に記載の造影剤。  8. The contrast agent according to any one of claims 1 to 7, wherein the hyperbranched molecular structure has a molecular weight of at least 300 and no more than 500,000.
9 . 超分岐分子構造が、 デンドリマー構造を有する請求の範囲第 8項に記載の 造影剤。  9. The contrast agent according to claim 8, wherein the hyperbranched molecular structure has a dendrimer structure.
1 0 . 超分岐分子構造のフォーカルポイント原子が、 1つの金属陽イオンに対 して平均して 2つ以上含有される請求の範囲第 1項ないし第 9項のいずれか 1項 に記載の造影剤。  10. The imaging method according to any one of claims 1 to 9, wherein two or more focal point atoms of the hyperbranched molecular structure are contained on average for one metal cation. Agent.
I I . 金属陽イオンが、 周期律表第 6周期に属する元素の陽イオンである請求 の範囲第 1項ないし第 1 0項のいずれか 1項に記載の造影剤。 II. The metal cation is a cation of an element belonging to the sixth period of the periodic table. Item 10. The contrast agent according to any one of Items 1 to 10.
1 2. 金属陽イオンが、 3価の陽イオンである請求の範囲第 1項ないし第 1 0 項のいずれか 1項に記載の造影剤。  12. The contrast agent according to any one of claims 1 to 10, wherein the metal cation is a trivalent cation.
1 3. 金属陽イオンが、 金又は白金の陽イオンである請求の範囲第 1 1項に記 載の造影剤。  1 3. The contrast agent according to claim 11, wherein the metal cation is a cation of gold or platinum.
1 4. 金属陽イオンが、 周期律表の 3 A族、 4 A族、 5 A族、 6 A族、 7 A族、 8族、 1 B族、 及び 2 B族のいずれかの族に属する遷移金属の陽イオンであり、 かつ、 常磁性を有するものである請求の範囲第 1項ないし第 1 0項のいずれか 1 項に記載の造影剤。  1 4. The metal cation belongs to any of groups 3A, 4A, 5A, 6A, 7A, 8, 8, 1B, and 2B in the periodic table The contrast agent according to any one of claims 1 to 10, which is a cation of a transition metal and has paramagnetism.
1 5. 金属陽イオンが、 マンガン、 鉄、 あるいはランタノイ ド元素のいずれか の陽イオンである請求の範囲第 1 4項に記載の造影剤。  15. The contrast agent according to claim 14, wherein the metal cation is a cation of one of manganese, iron, and a lanthanide element.
1 6. 金属陽イオンが、 3価のガドリニウム陽イオンである請求の範囲第 1 5 項に記載の造影剤。  16. The contrast agent according to claim 15, wherein the metal cation is a trivalent gadolinium cation.
1 7. 錯体が、 一般式 (1 ) で表わされることを特徴とする請求の範囲第 1項 ないし第 1 6項のいずれか 1項に記載の造影剤。  1 7. The contrast agent according to any one of claims 1 to 16, wherein the complex is represented by the general formula (1).
Mn+ (RA ) π … ( 1 ) M n + (RA) π ... (1)
(上記式中、 Mn +は n価の金属陽イオンを表わし、 RA— は一価酸の陰イオンを 表わし、 nは 1〜4の整数であり、 Rは超分岐分子構造を表わし、 は錯形成 官能基であるカルボキンレート基又はスルホネート基を表わす。 ) (In the above formula, Mn + represents an n-valent metal cation, RA— represents a monovalent acid anion, n is an integer of 1 to 4, R represents a hyperbranched molecular structure, and Complex formation Represents a carboquinate group or a sulfonate group which is a functional group.)
1 8. 錯体が、 下記一般式 (2) で表わされる金属陽イオン錯体であることを 特徴とする請求の範囲第 1項ないし第 1 6項のいずれか 1項に記載の造影剤。  1 8. The contrast agent according to any one of claims 1 to 16, wherein the complex is a metal cation complex represented by the following general formula (2).
Mn+ (Xn- ) — Rm … (2) M n + (X n- ) — R m … (2)
(上記式中、 Mn +は n価の金属陽イオンを表わし、 (Xn— ) — Rm は配位子を表 し、 Xn は錯形成官能基群である 3級ァミノ基とカルボキシル基を有するポリァ ミノカルボン酸の n価カルボキシレート陰イオンを表わし、 Rm は Xn—に結合す るそれぞれ独立したお互いに異なっていても良い分岐高分子残基を表わし、 nは 1〜4の整数を表わし、 mは 1〜6の整数を表わす。 また、 分岐高分子残基 Rは、 ゲルパーミエーシヨンクロマトグラフィ (GPC) 法で測定される数平均分子量 Mn (G pc, と重量平均分子量 Mw (GPC) との間において、 3 0 0≤Mn (GPC) ≤ 5 0 0 0 0及び 1. 0≤Mw ,G Pc, /Mn , ≤ 1 5なる二つの関係を同時に満 たす。 ) (In the above formula, M n + represents an n-valent metal cation, (X n —) — R m represents a ligand, and X n represents a complex tertiary amino group and a carboxyl group. Represents an n-valent carboxylate anion of a polyaminocarboxylic acid having a group, R m represents an independently branched polymer residue which may be different from each other and binds to X n —, and n represents 1 to 4 M represents an integer of 1 to 6. The branched polymer residue R is a number-average molecular weight measured by gel permeation chromatography (GPC). Between Mn (G pc,) and the weight average molecular weight, Mw ( GPC) , 300 0 ≤ Mn ( GPC ) ≤ 500 000 and 1.0 ≤ Mw, G Pc, / Mn, ≤ 15 Satisfies two relationships at the same time.)
1 9. 配位子 (Xn— ) — Rm 中の分岐高分子残基 Rの少なくとも 1つが、 超分 岐分子構造を有する請求の範囲第 1 8項に記載の造影剤。 19. The contrast agent according to claim 18, wherein at least one of the branched polymer residues R in the ligand (X n —) —R m has a hyperbranched molecular structure.
2 0. 配位子 (Xn— ) -Rm 中の分岐高分子残基 Rの少なくとも 1つが、 マス スぺク トル法又は光散乱法で測定される真の重量平均分子量 Mwとゲルパーミェ ーシヨンクロマトグラフィ (GP C) 法で測定される重量平均分子量 Mw , との間において、 Mw/Mw ,GPc, > 1なる関係を満たす請求の範囲第 1 9項に 記載の造影剤。 20. At least one of the branched polymer residues R in the ligand (X n —) -R m has the true weight average molecular weight Mw and gel permeation measured by the mass spectral method or the light scattering method. 10. The contrast agent according to claim 19, wherein a relationship of Mw / Mw, GPc,> 1 is satisfied between the weight average molecular weight Mw measured by a shion chromatography (GPC) method.
2 1. 配位子 (Xn— ) — Rm 中の分岐高分子残基 Rの少なくとも 1つが、 デン ドリマーである請求の範囲第 1 9項又は第 2 0項に記載の造影剤。 21. Ligand (X n —) — The contrast agent according to claim 19 or 20, wherein at least one of the branched polymer residues R in R m is a dendrimer.
2 2. 配位子 (Xn_) — Rm 中の分岐高分子残基 Rの少なくとも 1つが、 芳香 族環含有モノマー単位により構成される請求の範囲第 1 8項ないし第 2 1項のい ずれか 1項に記載の造影剤。 2 2. ligands (X n _) - at least one of the branched polymer residues R in R m, the first 8 wherein the claims made by the aromatic ring-containing monomer unit to the second item 1 The contrast agent according to any one of the first to third aspects.
2 3. 金属陽イオン及び超分岐分子構造を有する配位子からなる錯体であり、 かつ、 配位子中の錯形成官能基が超分岐分子構造のフォーカル ·ボイント原子と の間に超分岐分子構造の構成要素でない 0以上 5 0以下の直列結合した原子を介 して結合している錯体、 並びに、 薬学的に許容し得る担体を含んでなる体内診断 用医薬組成物。  2 3. A complex consisting of a metal cation and a ligand having a hyperbranched molecular structure, and a complex-forming functional group in the ligand is located between the focal-point atom of the hyperbranched molecular structure and a hyperbranched molecule. A pharmaceutical composition for in-vivo diagnosis, comprising a complex which is not a component of the structure and is bonded via 0 to 50 series-bonded atoms, and a pharmaceutically acceptable carrier.
2 4. 請求の範囲第 1 8項に記載の一般式 (2) で表わされる金属陽イオン錯 体。  2 4. A metal cation complex represented by the general formula (2) according to claim 18.
2 5. 請求の範囲第 1 8項に記載の金属陽ィォン錯体が高分子マトリックス中 に分散しており、 該金属陽イオン濃度が 0. 0 1〜 1 0重量%であることを特徴 とする高分子組成物。  25. The metal cation complex according to claim 18 is dispersed in a polymer matrix, and the metal cation concentration is from 0.01 to 10% by weight. Polymer composition.
2 6. 請求の範囲第 1 8項に記載の金属陽イオン錯体を外表面に有することを 特徴とする成形体。  2 6. A molded article having the metal cation complex according to claim 18 on an outer surface.
2 7. 外表面が請求の範囲第 2 5項に記載の高分子組成物で形成されている請 求の範囲第 2 6項に記載の成形体。 2 7. An outer surface made of the polymer composition described in claim 25 27. The molded article according to Item 26.
2 8 . 請求の範囲第 1 8項に記載の金属陽ィォン錯体を含有してなることを特 徴とする塗装材。  28. A coating material characterized by containing the metal cation complex according to claim 18.
PCT/JP1998/002563 1997-06-12 1998-06-10 Novel contrast media WO1998056427A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP15491197 1997-06-12
JP9/154911 1997-06-12
JP9/154912 1997-06-12
JP15491297 1997-06-12

Publications (1)

Publication Number Publication Date
WO1998056427A1 true WO1998056427A1 (en) 1998-12-17

Family

ID=26483051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002563 WO1998056427A1 (en) 1997-06-12 1998-06-10 Novel contrast media

Country Status (1)

Country Link
WO (1) WO1998056427A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011770A1 (en) * 2000-08-04 2002-02-14 Nihon Medi-Physics Co., Ltd. Compositions for preventing urinary calculus
JP2012107164A (en) * 2010-11-19 2012-06-07 Kyushu Univ Water-soluble highly-branched polymer having paramagnetism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502350A (en) * 1986-08-18 1988-09-08 ザ・ダウ・ケミカル・カンパニー Dendritic polymer complex
JPH03246234A (en) * 1989-11-21 1991-11-01 Schering Ag Cascade polymer containing complex-forming ligand, preparation thereof and drug containing said cascade polymer
JPH07503031A (en) * 1991-10-07 1995-03-30 ニコムド サルター,アイエヌシー. Dendritic polychelating agent
JPH08505899A (en) * 1993-01-22 1996-06-25 ザ・ダウ・ケミカル・カンパニー Structured copolymers for use as absorbents, gels and metal ion carriers
JPH08311205A (en) * 1995-05-16 1996-11-26 Bayer Ag Carbosilane-dendrimer,carbosilane-hybrid material,productionthereof,and production of coating material from the carbosilane-dendrimer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502350A (en) * 1986-08-18 1988-09-08 ザ・ダウ・ケミカル・カンパニー Dendritic polymer complex
JPH03246234A (en) * 1989-11-21 1991-11-01 Schering Ag Cascade polymer containing complex-forming ligand, preparation thereof and drug containing said cascade polymer
JPH07503031A (en) * 1991-10-07 1995-03-30 ニコムド サルター,アイエヌシー. Dendritic polychelating agent
JPH08505899A (en) * 1993-01-22 1996-06-25 ザ・ダウ・ケミカル・カンパニー Structured copolymers for use as absorbents, gels and metal ion carriers
JPH08311205A (en) * 1995-05-16 1996-11-26 Bayer Ag Carbosilane-dendrimer,carbosilane-hybrid material,productionthereof,and production of coating material from the carbosilane-dendrimer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011770A1 (en) * 2000-08-04 2002-02-14 Nihon Medi-Physics Co., Ltd. Compositions for preventing urinary calculus
JP2012107164A (en) * 2010-11-19 2012-06-07 Kyushu Univ Water-soluble highly-branched polymer having paramagnetism

Similar Documents

Publication Publication Date Title
KR970011151B1 (en) Starbust conjugates
CN110191890B (en) Chemical substances for coating nanostructures
KR101592235B1 (en) A method for preparing protein cage and a method for in-situ preparing core-shell structured polymer-protein particle containing hydrophobic additives
JP2011501751A (en) Biocompatible dispersion stabilizer that disperses inorganic nanoparticles in aqueous medium
ITMI951929A1 (en) MACROMOLECULAR COMPOUNDS OF THE DENDRIMERIC TYPE
AU2007350282A1 (en) Dendrimers and methods of making and using thereof
US9555132B2 (en) Water-soluble nanoparticles
JP4071238B2 (en) Polyethylene glycol aldehyde derivative
CN109825294B (en) Manganese-doped molybdenum disulfide quantum dot one-step hydrothermal preparation method from bottom to top
Çatıker et al. Synthesis and characterization of novel ABA type poly (Ester-ether) triblock copolymers
US20210253950A1 (en) Ultrabright luminescent lanthanide nanoparticles comprising terbium, with longer excited-state lifetime
KR101097907B1 (en) Surface-modified Layered Gadolinium Hydroxide, Process of Preparing the Same and MRI Contrast Agent Including the Same
WO1998056427A1 (en) Novel contrast media
JP5736367B2 (en) Metal salen complex derivative and method for producing the same
KR101928037B1 (en) Alginate-based biocompatible amphiphilic polymer functionalized upconversion nanoparticle used for bioimaging
KR101079237B1 (en) Compound having self-assembling property and preparing method thereof, and method for preparing nano structure using the same
Matsuoka et al. Synthesis of Carbosilane Compounds Functionalized with Three or Four. BETA.-Cyclodextrin Moieties. Use of a One-Pot Reaction in Liquid Ammonia for Birch Reduction and the Subsequent SN2 Replacement.
US10927221B2 (en) Dendrimeric metallacrowns
US20060104908A1 (en) Polymerization method for the synthesis of polypeptide imaging agents
JPH1160725A (en) Metal cationic complex and its use
EP2077294B1 (en) Dendritic polymers and magnetic resonance imaging contrast agent employing the same
JPH10168177A (en) Metal salt and its production
JPH111326A (en) Production of inorganic glass and inorganic glass
KR101922520B1 (en) Novel absorbent and catalyst for CO2 capture and conversion
Agatemor Exploration of the antimicrobial and magnetic properties of ƞ⁶-arene-ƞ⁵-cyclopentadienyliron (ll)-derived dendrimers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA