WO1998048157A1 - Turbocompresseur equipe d'un element coulissant - Google Patents

Turbocompresseur equipe d'un element coulissant Download PDF

Info

Publication number
WO1998048157A1
WO1998048157A1 PCT/JP1997/003346 JP9703346W WO9848157A1 WO 1998048157 A1 WO1998048157 A1 WO 1998048157A1 JP 9703346 W JP9703346 W JP 9703346W WO 9848157 A1 WO9848157 A1 WO 9848157A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding member
compressor
turbocharger
fresh air
compressor housing
Prior art date
Application number
PCT/JP1997/003346
Other languages
English (en)
French (fr)
Inventor
Masami Shimizu
Kiyohiko Ebara
Original Assignee
Kyoritsu Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Corp. filed Critical Kyoritsu Corp.
Priority to JP54540498A priority Critical patent/JP3639846B2/ja
Publication of WO1998048157A1 publication Critical patent/WO1998048157A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a turbocharger that compresses fresh air and sends the fresh air to an internal combustion engine within a range where a blade provided on a compressor impeller contacts an inner wall of a compressor housing forming the turbocharger.
  • the present invention relates to a turbocharger with a sliding member equipped with a sliding member.
  • a turbocharger using exhaust pressure (hereinafter referred to as exhaust pressure) is used to burn more air-fuel mixture and improve engine output.
  • the turbine wheel is driven by using high-temperature, high-pressure exhaust residual energy that has not been converted into mechanical energy in the cylinder of the internal combustion engine, and is connected to this turbine wheel coaxially through the mouth-to-mouth shaft.
  • the compressor impeller compresses fresh air and sends the compressed fresh air to the internal combustion engine.
  • the pressure in the cylinder becomes high and the combustion energy in the combustion chamber increases. Then, the combustion energy is converted into mechanical energy via a piston, a crankshaft, and the like, so that the engine output can be improved.
  • a turbocharger generally has a structure in which a turbine wheel having blades and a compressor impeller are connected by a rotor shaft, and each is entirely covered by a turbine housing and a compressor housing.
  • the compressor impeller provided inside the compressor housing is provided with a plurality of blades whose edges are formed along the wall surface of the compressor housing.
  • the compressor housing and compressor impeller must be configured so that the blades do not contact the inner wall of the compressor housing when the complex sine wheel rotates.
  • the compression efficiency can be improved without sacrificing the durability of the compressor housing and the compressor sine propeller.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a turbocharger that can obtain high compression efficiency without sacrificing durability at low cost.
  • the present invention employs the following means in order to solve the above problems.
  • a taper charger with a sliding member according to the present invention is provided inside a turbine housing, and is connected to a turbine wheel that converts exhaust pressure flowing from an internal combustion engine into rotational force, and is connected to the turbine wheel.
  • a rotor shaft that transmits the rotational force of the turbine wheel;
  • a compressor impeller that is connected to the rotor shaft and that compresses the fresh air taken in by the rotational force and sends it to the internal combustion engine;
  • a compressor housing that covers the housing.
  • a groove corresponding to an outer edge length from the inlet of the fresh air to the outlet of the complex sign impeller corresponding to a range within 1 Z2 of the outer edge from the outlet is formed on the inner wall of the compressor housing. And a sliding member is mounted in this groove so as to protrude to a point just before the complex sign wheel comes into contact with the groove.
  • a groove is formed on the inner wall of the compressor housing corresponding to a range within 12 of the outer edge length from the outflow port, and a sliding member is projected from this groove to just before the compressor sine contact.
  • the turbocharger compressor housing with a sliding member according to the present invention is provided inside the turbine housing, and is connected to the turbine wheel for converting exhaust pressure flowing from the internal combustion engine into rotational force, and to the turbine wheel, A rotor shaft that transmits the rotational force of the turbine wheel, and an internal combustion engine that is connected to the rotor shaft and compresses the fresh air taken in by the rotational force.
  • the present invention relates to a nighttime charger including a compressor impeller for pumping the compressed air to a stake, and a compressor housing for covering the compressor impeller.
  • the sliding member may be attached to the inner wall of the compressor housing over the entire contact surface between the compressor housing and the compressor sign wheel.
  • the clearance between the compressor housing and the compressor impeller can be reduced as much as possible by projecting the sliding member, so that there is no loss of efficiency due to leakage of fresh air, and the speed of the turbocharger is reduced.
  • the acceleration response in the region can be improved.
  • FIG. 1 is an exploded perspective view of a turbocharger according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the turbocharger according to the present embodiment.
  • FIG. 3 is an enlarged view of a compressor housing according to the first embodiment.
  • FIG. 5 is an enlarged view of a compressor housing according to the second embodiment.
  • FIG. 6 is an enlarged view of a compressor housing according to another embodiment.
  • Fig. 7 (a) is a side view of the sliding member, and (b) is a plan view of the sliding member.
  • FIG. 9 is a view for explaining a method of manufacturing a sliding member.
  • the turbocharger 30 usually operates as a turbocharger that converts exhaust pressure into rotational force. And a compressor impeller 36 connected via a rotor shaft 35 with the evening wheel 31. These components are each covered by a housing.
  • the turbine wheel 31 is rotated by the exhaust pressure of the exhaust gas flowing from the exhaust inlet 32, and the exhaust gas subjected to the energy conversion is exhausted from the exhaust outlet 33.
  • the rotational force of the turbine wheel 31 is transmitted to the compressor spar 36 via a rotor shaft 35, and fresh air taken in from a fresh air inlet 37 is supplied to a plurality of blades provided in the sine compressor spar 36. It is compressed and sent to the internal combustion engine through the flow path between the two.
  • the turbocharger 30 activates the wastegate valve 3. 9, the exhaust gas upstream of the turbine wheel 31 is bypassed downstream of the turbine wheel 31 so that the exhaust pressure applied to the turbine wheel 31 can be adjusted.
  • the turbocharger with a sliding member 1 has an exhaust inlet 2 for taking in exhaust gas from the internal combustion engine, an exhaust outlet 5 for exhausting exhaust gas, and an exhaust bypass 6 arranged near the exhaust inlet 2. And a turbine housing 4 containing a turbine wheel 3 that is rotationally driven by the pressure of the exhaust gas flowing from the exhaust inlet 2.
  • the turbocharger 1 has a fresh air inlet 7 for taking in fresh air and a fresh air outlet 10 for discharging fresh air, and compresses fresh air flowing from the fresh air inlet 7.
  • a compressor housing 9 that houses a compressor impeller 8 is provided.
  • the turbine housing 4 and the compressor housing 9 are connected by a connecting member 17.
  • the connecting member 17 is provided with a port shaft 11 for coaxially connecting the turbine wheel 3 and the compressor impeller 8. Rotatably supported I have. Further, a lubricating oil passage 12 for supplying lubricating oil to the bearing portion of the rotor shaft 11 is formed in the connecting member 17.
  • a plurality of blades 13A and 13B are provided on the surfaces of the turbine wheel 3 and the compressor impeller 8, and the blade 13B provided on the turbine wheel 3 has a rear end. It has a curved shape from to the tip.
  • the blades 13A provided on the complex sine propeller 8 are usually formed by alternately arranging long impellers 13A and short impellers 13A having different streamlines.
  • the length of the streamline refers to the length of the outer edge of the compressor impeller 8 from the fresh air inlet to the outlet, and is also referred to as the shroud length.
  • the outer edge of the compressor impeller 8 is generally referred to as a “compressed sign”, and the outer edge of the inner wall of the complex housing 9 is referred to as a shroud 16 of the compressor housing.
  • the material of the blade 13A is generally made of aluminum, and the impeller 13B provided on the turbine wheel 3 is made of heat-resistant steel having a large specific gravity.
  • ceramics with good heat resistance and low specific gravity may be used instead of heat resistant steel.
  • the compressor housing 9 includes a shroud in order to reduce the clearance between the blades 13 A provided in the complex compressor 8 and the shroud section 16 as much as possible.
  • a groove 14 is provided in the slot 16 and a clearance is provided just before the blade 13 A comes in contact with the shroud 16, and the sliding member 15 protrudes from the shroud 16 in the groove 14. I am wearing it.
  • the method of mounting the sliding member 15 is to apply an adhesive to the groove 14 or the sliding member 15 and press-fit the sliding member 15 into the groove 14.
  • the range in which the groove 14 is provided should be within 12 L of the outer edge length L from the inlet to the outlet of the fresh air of the compressor impeller 8, and the length from the outlet to 1/2 of this length. Up to L
  • the pressure of fresh air rises in the range from the outlet to 1/2 L, and if the clearance in this range is made sufficiently small, the efficiency of the turbocharger can be increased. Conversely, if there is clearance in this range, fresh air will leak from this gap, A swirling flow is generated, reducing the efficiency of the turbocharger.
  • the reason why the groove 14 in which the sliding member is mounted is set from the outlet to 1 Z 2 ⁇ L is that it is enough to prevent fresh air from leaking in a range where the pressure increases.
  • the apparent clearance on the inflow side of the fresh air of the blade is smaller than that on the outflow side. From this, until the complex sine propeller 8 obtains a sufficient rotation speed, the contact ratio between the shroud portion 16 of the compressor housing 9 and the sliding member increases on the inflow side. Furthermore, the blade on the inflow side compared to the outflow side of the fresh air has a small blade thickness and low rigidity, so that the blade may be damaged by fatigue due to contact, and this is to prevent this.
  • the rotational speed of the compressor impeller 8 may decrease due to frictional force at the contact surface.Therefore, the rotational speed of the compressor impeller 8 must not be reduced. However, it is necessary to make the clearance as low as possible to meet the conflicting demand of pumping fresh air without escaping.
  • the turbocharger with a sliding member 1 pumps fresh air to the internal combustion engine without releasing fresh air from the gap between the compressor housing 9 and the blade 13A.
  • the acceleration performance in the low-speed range can be improved.
  • this sliding member is a resin in which about 50% (weight) of polytetrafluoroethylene (hereinafter referred to as PTFE) and about 50% (weight) of synthetic mica are chemically bonded.
  • PTFE polytetrafluoroethylene
  • the generic name is Fluoroscint 500.
  • This resin has much less load deformation at high temperatures than fluororesin, and its thermal dimensional stability is close to that of aluminum.
  • the linear expansion coefficient is one fifth of P TF E, it is not necessary to consider the fit / clearance.
  • the hardness is one-third that of PTFE with improved friction characteristics while maintaining the friction characteristics of PTFE.
  • This resin has friction coefficient and friction due to non-rough friction Low speed does not wear metal material.
  • the electrical performance is about the same as unfilled PTFE.
  • the turbocharger with a sliding member is provided on the inner wall of the shroud portion 21 of the compressor housing over the entire contact surface between the shroud portion 21 and the blade 22.
  • a groove 23 is provided, and a sliding member 24 is mounted in the groove 23.
  • the sliding member 23 is formed by chemically binding about 50% (by weight) of PTFE and about 50% (by weight) of synthetic mica. It is preferable to use a sliding member made of SINT500.
  • the turbocharger with a sliding member described above is a turbocharger with an intercooler that cools the supply air whose temperature has risen with a heat exchanger, and a turbocharger with a waste gate that prevents the supply pressure and exhaust pressure from becoming excessive.
  • it can be used as a variable turbocharger for varying the exhaust turbine inlet area of a turbocharger or a ceramic turbocharger using ceramic as a turbine material.
  • a method for mounting the sliding member a method is used in which a groove is formed in the shroud portion of the compressor housing, an adhesive is applied to the sliding member or the groove, and the sliding member is pressed into the groove.
  • a C-shaped ring 45 is fitted to the outer wall of the cylindrical sliding member 44, A groove 43 having an annular concave portion 43 a into which the C-shaped ring 45 fits is formed in a shroud portion 42 of the compressor housing 40, and the sliding member 44 is formed into the groove 43. May be introduced.
  • the sliding member 44 is formed so that the axial length thereof is substantially the same as the axial length of the groove 43, and the inner peripheral surface 44b is formed of the blade 41 of the compressor impeller 41. a It is assumed to be formed to have substantially the same shape as the edge portion and to protrude from the shroud portion 42. Further, a groove 44 a for fitting the C-shaped ring 45 is formed on the outer peripheral surface of the sliding member 44 at a position corresponding to the recess 43 a of the groove 43.
  • the sliding member 44 since the sliding member 44 is locked to the stepped portion of the groove 43 via the C-shaped ring 45, the sliding member 44 can be applied without applying an adhesive. It does not fall out of the groove 43, and it becomes more difficult to fall off if an adhesive is used in combination.
  • the present invention is applicable to a turbocharger that compresses fresh air and pressure-feeds the fresh air to an internal combustion engine. Further, the present invention can realize a turbocharger having high durability and high compression performance with a simple configuration, and thus is suitable for mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Description

明 細 書
滑り部材付きターボチャージャ 技術分野
本発明は、 新気を圧縮してこの新気を内燃機関に圧送するターボチャージャに 係り、 このターボチヤ一ジャを形成するコンプレッサハウジングの内壁に、 コン プレッサインペラに設けたブレードが接触する範囲内で滑り部材を装着した滑り 部材付きターボチャージャに関する。 背景技術
内燃機関等では、 より多くの混合気を燃焼させ、 機関出力を向上させるために 排気の圧力 (以下、 排圧と記す) を利用したターボチヤ一ジャが用いられている, このターボチヤ一ジャは、 内燃機関のシリ ンダ内で機械的エネルギに変換されな かった高温、 高圧の排気残留エネルギを利用してタービンホイールを駆動し、 こ のタービンホイールと口一夕一シャフ トを通じて同軸的に連結したコンプレッサ ィンペラにて新気を圧縮し、 圧縮した新気を内燃機関に圧送するものである。 このように圧縮された新気がシリ ンダ内に供給されると、 シリ ンダ内が高圧に なり燃焼室の燃焼エネルギが増大する。 そして、 この燃焼エネルギがピストンや クランクシャフ ト等を介して機械的エネルギに変換されるので、 機関出力を向上 させることができる。
次に、 ターボチヤ一ジャは、 一般に、 ブレードを有するタービンホイールとコ ンプレッサインペラをロータ一シャフ 卜で連結し、 それぞれをタービンハウジン グ及びコンプレツサハウジングで全体を覆った構造のものである。
ここで、 コンプレッサハウジングの内部に設けたコンプレッサインペラは、 そ の縁部がコンプレッサハウンジングの壁面に沿うように形成されたブレードを複 数備えている。
そして、 コンプレッサハウンジングとコンプレッサインペラとは、 コンプレツ サインペラが回転する際に、 ブレードがコンプレッサハウジングの内壁に接触し ないように構成する必要がある。 これらコンプレッサハウンジングとコンプレツ „ /JP
サインペラが接触すると、 コンプレッサインペラの回転時に、 両者の接触による 摩擦熱が発生し、 コンプレッサハウンジングゃコンプレツサインペラを破損させ る虞がある。
一方、 コンプレッサハウジングとコンプレツサインペラとの隙間が大きいと、 その隙間から新気が漏れて旋回流を生じ、 新気を効率良く内燃機関に圧送するこ とができなくなる。 特に、 内燃機関の機関回転数が低い領域では、 十分な排圧が 得られず、 タービンホイールの回転力が小さくなるので、 コンプレッサハウンジ ング内において新気を十分に圧縮することができないという問題を生じる。 従って、 ターボチャージャにおける新気の圧縮効率を向上させるためには、 コ ンプレッサハウジングとコンプレツサインペラとの隙間を極力小さく し、 新気の 漏れを防止する必要がある。
このような要求に対し、 コンプレッサハウジングとコンプレッサインペラとの 接触を許容することで、 コンプレッサハウジングとコンプレッサインペラとのク リアランスを極限まで減少させ、 新気の圧縮効率を向上させる技術も開発されて いる。
例えば、 コンプレッサインペラとコンプレツサハウジングとの隙間を減少させ ることを目的として、 コンプレッサインペラのプレード縁部に対向するコンプレ ッサハウンジング側壁面 (シユラウ ド部) に、 アルミやポリエステル樹脂等を混 合させた粉末を溶射し、 削られ易い皮膜を形成する、 いわゆるアブレ一ダブル溶 射を施し、 これにより形成された皮膜でコンプレッサハウンジングとコンプレツ サインペラとの隙間を減少させたアブレ一ダブル夕一ボチャージャが知られてい る。
このようなアブレ一ダブルターボチャージャによれば、 コンプレツサハゥジン グとコンプレツサインペラの耐久性を犠牲にすることなく、 圧縮効率を向上させ ることができる。
し力、し、 上記したようなアブレーダブルターボチヤ一ジャでは、 皮膜の原料と なるアルミゃポリエステル樹脂を混合させた粉末が高価であるとともに、 溶射の 加工管理が難しいため加工費用が高価になるという問題がある。 „
発明の開示
本発明は前記した問題点に鑑みてなされたものであり、 耐久性を犠牲にするこ となく高い圧縮効率を得られるターボチャージャを、 安価に提供することを課題 とする。
そして、 本発明は、 前記課題を解決するために以下の手段を採用した。
本発明に係る滑り部材付きタ一ポチャ一ジャは、 タービンハゥジングの内部に 設けるとともに、 内燃機関から流入する排圧を回転力に変換するタービンホイ一 ルと、 前記タービンホイールに連結するとともに、 前記タービンホイールの回転 力を伝えるローターシャフ トと、 前記ロータ一シャフ トに連結するとともに、 取 り込んだ新気を前記回転力により圧縮しつつ内燃機関へと圧送するコンプレッサ インペラと、 前記コンプレツサインペラを覆うコンプレッサハウジングとを備え ている。
そして、 前記コンプレツサインペラの新気の流入口から流出口にかけた外縁長 さに対し、 前記流出口から前記外縁長さの 1 Z 2以内の範囲に対応させた溝を前 記コンプレッサハウジングの内壁に設け、 この溝に前記コンプレツサインペラが 接触する寸前まで突出させた滑り部材を装着したものである。
本発明によれば、 流出口から外縁長さの 1 2以内の範囲に対応させた溝をコ ンプレッサハウジングの内壁に設けるとともに、 この溝にコンプレツサインペラ が接触する寸前まで突出させた滑り部材を装着することで、 コンプレッサハウジ ングとコンプレッサインペラとのクリアランスを限りなく小さくできる。 さらに、 この溝に滑り部材を装着するだけなので簡単に取り付けることができる。
そして、 この材料は、 アブレ一ダブル加工用の材料より安価である。 また、 コ ンプレツサインペラの回転に伴いブレードが滑り部材に接触しても何等支障はな い。
次に、 本発明に係る滑り部材付きターボチャージヤコンプレッサハウジングは、 タービンハウジングの内部に設けるとともに、 内燃機関から流入する排圧を回転 力に変換するタービンホイールと、 前記タービンホイールに連結するとともに、 前記タービンホイールの回転力を伝えるロータ一シャフ トと、 前記ロータ一シャ フ トに連結するとともに、 取り込んだ新気を前記回転力により圧縮しつつ内燃機 T JP
関へと圧送するコンプレッサインペラと、 前記コンプレッサインペラを覆うコン プレッサハウジングとを備えた夕一ボチャージャである。
そして、 前記コンプレッサハウジングと前記コンプレツサインペラとの接触面 の全面に亘つて、 コンプレツサハウジングの内壁に前記滑り部材を装着しても良 い。
上記したような発明によれば、 滑り部材を突出させることでコンプレッサハウ ジングとコンプレッサインペラとのクリアランスをできる限り少なくすることが できるので、 新気の漏れによる効率のロスがなく、 ターボチャージャの低速域で の加速応答性向上を図ることができる。
さらに、 滑り部材とブレー ドが接触しても、 コンプレツサインペラのブレード の磨耗を防止することができ、 長時間の使用に耐えることができる。 また、 摩擦 による熱の発生と回転速度の低下をも防止することができる。 図面の簡単な説明
【図 1】 本実施の形態に係るターボチヤ一ジャの分解斜視図
【図 2】 本実施の形態に係るターボチャージャの断面図
【図 3】 本実施の形態 1に係るコンプレツサハウジングの拡大図
【図 4】 ターボチャージャの動作原理図
【図 5】 本実施の形態 2に係るコンプレッサハウジングの拡大図
【図 6】 他の実施の形態に係るコンプレッサハウンジングの拡大図
【図 7】 ( a ) は滑り部材の側面図、 (b ) は滑り部材の平面図
【図 8】 C型リ ングの斜視図
【図 9】 滑り部材の製造方法を説明する図 発明を実施するための最良の形態
以下、 本実施の形態に係る滑り部材付きターボチャージャ 1を図 1 〜 5に基づ いて説明する。
( 1 ) 最初に、 ターボチャージャ 3 0の動作原理を簡単に説明する。 ターボチ ャ一ジャ 3 0は、 通常、 図 4に示すように、 排圧を回転力に変換するタービンホ ィール 3 1 と、 この夕一ビンホイール 3 1 とローターシャフ ト 3 5を介して連結 されたコンプレッサインペラ 3 6とによって形成する。 そして、 これらの部材は- それぞれハウジングによって覆われている。
そして、 ターボチャージャ 3 0は、 排気入口 3 2から流入した排気の排圧によ つてタービンホイール 3 1が回転し、 エネルギ変換が行われた排気は排気出口 3 3から排出される。
前記タービンホイール 3 1の回転力は、 ロータ一シャフ ト 3 5を介してコンプ レッサインペラ 3 6に伝わり、 新気入口 3 7から取り入れた新気は、 コンプレツ サインペラ 3 6に設けた複数のブレードの間の流路を通り、 圧縮されつつ内燃機 関へと圧送される。
なお、 前記ターボチャージャ 3 0は、 夕一ボチャージャ 3 0から内燃機関へ供 給される新気の圧力 (過給圧) が所定値を越えた場合に、 ァクチユエ一夕 3 4が ウェイストゲ一トバルブ 3 9を開弁させ、 タービンホイール 3 1より上流の排気 をタービンホイール 3 1の下流へバイパスさせ、 タービンホイール 3 1にかかる 排圧を調節することができるようになつている。
( 2 ) 次に、 本実施の形態 1に係る滑り部材付きターボチャージャの構成を図 1 〜 3に基づいて説明する。
この滑り部材付きターボチャージャ 1は、 図 1に示すように、 内燃機関からの 排気を取り入れる排気入口 2と、 排気を排出する排気出口 5と、 排気入口 2の近 傍に配置された排気バイパス 6とが形成されるとともに、 前記排気入口 2から流 入した排気の圧力により回転駆動されるタービンホイール 3を内装するタービン ハウジング 4を備えている。
そして、 前記ターボチヤ一ジャー 1は、 新気を取り入れる新気入口 7と、 新気 を排出する新気出口 1 0.とが形成されるとともに、 前記新気入口 7から流入した 新気を圧縮するコンプレッサインペラ 8を内装するコンプレッサハウジング 9を 備えている。
前記タービンハウジング 4 と前記コンプレッサハウジング 9は、 連結部材 1 7 により連結され、 この連結部材 1 7は、 前記タービンホイール 3と前記コンプレ ッサインペラ 8とを同軸的に連結する口一夕シャフ ト 1 1を回転自在に支持して いる。 さらに、 前記連結部材 1 7には、 前記ロータシャフ ト 1 1の軸受部に潤滑 油を供給する潤滑油通路 1 2が形成される。
次に、 タービンホイール 3とコンプレッサインペラ 8の表面には、 図 1〜 2が 示すように複数のブレード 1 3 A、 1 3 Bを設け、 タービンホイール 3に設けた ブレード 1 3 Bは、 後端から先端にかけて湾曲した形状を有する。
次に、 コンプレツサインペラ 8に設けたブレード 1 3 Aは、 通常は流線の長さ が異なる長ィンペラ 1 3 Aと短ィンペラ 1 3 Aをそれぞれ交互に配置して形成す る。
ここで、 流線の長さとは、 コンプレッサインペラ 8の新気の流入口から流出口 にかけた外縁長さをいい、 シュラウ ド長さともいう。 なお、 コンプレッサインべ ラ 8の外縁部を一般的にコンプレツサインぺラシユラウ ド部といい、 コンプレツ サハゥジング 9の内壁の外縁部をコンプレッサハウジングのシュラウ ド部 1 6と いう。
ところで、 ブレード 1 3 Aの材質は、 一般的にアルミを用いるカ、 タービンホ ィール 3に設けたィンペラ 1 3 Bは比重の大きい耐熱鋼が用いられる。 また、 耐 熱鋼の代わりに耐熱性が良く比重の小さいセラ ミ ックを用いることもある。
次に、 コンプレッサハウンジング 9には、 図 3に示すように、 コンプレツサイ ンペラ 8に設けられた複数のブレード 1 3 Aとシユラウ ド部 1 6とのクリアラン スを可能な限り減少させるために、 シュラウ ド部 1 6に溝 1 4を設け、 さらに、 プレード 1 3 Aとシユラウ ド部 1 6が接触する寸前のク リアランスをもたせて、 溝 1 4に滑り部材 1 5をシュラウ ド部 1 6から突出するように装着している。
ここで、 滑り部材 1 5を装着する方法は、 溝 1 4または滑り部材 1 5に接着剤 を塗布するとともに、 この滑り部材 1 5を溝 1 4に圧入するものである。
また、 溝 1 4を設ける範囲は、 コンプレッサインペラ 8の新気の流入口から流 出口にかけた外縁長さ Lに対して 1 2 · L以内とし、 さらに、 流出口からこの 長さ 1 / 2 · Lまでとする。
ところで、 新気の圧力は、 流出口から 1 / 2 · Lまでの範囲で上昇し、 この範 囲のクリアランスを十分小さくすれば、 ターボチャージャの効率を高めることが できる。 これとは逆にこの範囲にク リアランスがあるとこの隙間から新気が漏れ、 旋回流が生じてターボチヤ一ジャの効率を低下させる。
ここで、 滑り部材を装着する溝 1 4を流出口から 1 Z 2 · Lまでにした理由は、 圧力が上昇する範囲での新気の漏れを防止すれば十分だからである。
また、 ブレードの新気の流入側の見かけのク リアランスは、 流出側に比較して 小さい。 このことからコンプレツサインペラ 8が十分な回転速度を得るまでの間、 コンプレッサハウジング 9のシュラウ ド部 1 6と滑り部材との接触する割合が流 入側の方が多くなる。 さらに、 新気の流出側に比較して流入側は、 ブレード厚み が小さく剛性が弱いから接触による疲労によってブレードが破損する場合があり、 これを防止するためである。
すなわち、 ブレード 1 3 Aと滑り部材 1 5が接触すると接触面での摩擦力によ つてコンプレッサインペラ 8の回転速度が減衰する場合があることから、 コンプ レッサインペラ 8の回転速度を減衰させないことと、 クリアランスを可能な限り ゼロにして新気を逃がさずに圧送するという相反する要求に合致させる必要があ る力ヽらである。
本実施の形態 1に係る滑り部材付きターボチャージャ 1は、 このようにするこ とでコンプレッサハウジング 9とブレード 1 3 Aとの間の空隙から新気を逃がす ことなく内燃機関に新気を圧送することができるとともに、 低速域での加速性能 の向上を図ることができる。
次に、 この滑り部材は、 ポリテトラフルォロエチレン (以下、 P T F Eという) を約 5 0 % (重量) と合成雲母を約 5 0 % (重量) を化学的に結合した樹脂であ り、 一般的名称は、 フルォロシント 5 0 0という。
この樹脂は、 高温においての荷重変形がフッ素樹脂にく らベて非常に少なく、 熱的寸法安定性は、 アルミニウムに近い。 また、 線形膨張係数が P T F Eの 5分 の 1であることからはめ合いゃクリアランスを考慮に入れなくても良い。
そして、 極低温から 2 6 0 °Cまでの温度範囲で使用可能であり、 温度サイクル 中や熱衝撃を与えた後でも、 約 3 4 3 °Cで形状安定性を維持する。 さらに、 水蒸 気の非透過性等の耐薬品性は、 テフロンに匹敵する。
また、 P T F Eの摩擦特性を維持しつつ硬さでは摩擦特性が改良された P T F Eの 3分の 1である。 この樹脂は非ざらつき摩擦特性により、 摩擦係数及び摩擦 速度が低いので金属材料を磨耗させない。 さらに、 電気的性能は、 未充填 P T F Eとほぼ同等である。
( 3 ) 次に、 実施の形態 2に係る滑り部材付き夕一ボチャージャを説明する。 ここでは、 前述の実施の形態 1 と異なる構成についてのみ説明する。
本実施の形態にかかる滑り部材付きターボチャージャは、 図 5に示すように、 コンプレッサハウジングのシュラウ ド部 2 1の内壁にシュラウ ド部 2 1 とブレー ド 2 2との接触面の全面に亘つて溝 2 3を設けるとともに、 この溝 2 3に滑り部 材 2 4を装着している。
このようにこれによりシュラウ ド部 2 1 とブレー ド 2 2が接触する全面積に滑 り部材 2 4を装着しているので、 接触面の全面のク リアランスをなく し、 新気を 逃がすことなく内燃機関に圧送する。
ここで、 タービンホイールからの回転力を受けてコンプレツサインペラが回転 し、 コンプレツサインペラに設けたブレード 2 2が滑り部材 2 4に接触した状態 で摺動する場合がある。
し力、し、 コンプレッサインペラが十分な回転速度を有すると、 ローターシャフ トの回転軸の中心が軸受けの中心にほぼ一致するため、 コンプレツサインペラの 偏りがなくなり無接触状態になるものと考えられる。
ここで、 この滑り部材 2 3は、 実施の形態 1に係る滑り部材と同様に P T F E を約 5 0 % (重量) と合成雲母を約 5 0 % (重量) を化学的に結合させたフルォ 口シント 5 0 0からなる滑り部材を用いることが好ましい。
以上述べた滑り部材付きターボチヤージャは、 温度上昇した給気を熱交換機で 冷却するインタクーラ付き夕一ボチャージャや給気圧力、 排気圧力が過大になる のを防止するウェイス トゲ一 ト付きターボチヤ一ジャ、 または過給機の排気ター ビン入口面積を可変にする可変ターボチャージャ若しくはタービン材料としてセ ラミ ックを用いるセラミ ックターボチヤ一ジャとして用いることができる。
尚、 前述した滑り部材付きターボチヤ一ジャでは、 滑り部材の装着方法として、 コンプレッサハウジングのシュラウ ド部に溝を設け、 滑り部材もしくは溝に接着 剤を塗布して、 滑り部材を溝に圧入する方法を例示したが、 例えば、 図 6〜 8に 示すように、 筒状の滑り部材 4 4の外壁に C型リ ング 4 5を嵌着するとともに、 コンプレッサハウンジング 4 0のシュラウ ド部 4 2に、 前記 C型リ ング 4 5が嵌 合する環状の凹部 4 3 aを有する溝 4 3を形成して、 前記滑り部材 4 4を前記溝 4 3に揷入するようにしてもよい。
その際、 前記滑り部材 4 4は、 軸方向の長さが前記溝 4 3の軸方向の長さと略 同一になるよう形成するとともに、 内周面 4 4 bがコンプレッサインペラ 4 1の ブレード 4 1 a縁部と略同一形状で、 且つ前記シュラウ ド部 4 2よりも突出する よう形成されるものとする。 さらに、 前記滑り部材 4 4の外周面には、 前記溝 4 3の凹部 4 3 aと対応する位置に、 前記 C型リ ング 4 5を嵌着するための溝 4 4 aを形成する。
このような構成によれば、 滑り部材 4 4は、 前記 C型リ ング 4 5を介して前記 溝 4 3の段部に係止されるので、 接着剤を塗布しなく とも滑り部材 4 4が前記溝 4 3から抜け落ちることがなく、 さらに接着剤を併用すればより一層抜け落ち難 くなる。
また、 上記した滑り部材 4 4を形成する方法としては、 図 9に示すように、 C 型リ ング 4 5が外嵌された筒体を、 シュラウ ド部 4 2の溝 4 3に挿入した後に、 前記シュラウ ド部 4 2より突出した部位を切削加工して、 コンプレッサインペラ 4 1のブレード 4 1 aの縁部と略同一形状をなすように形成する方法を例示する ことができる。 その際、 前記滑り部材 4 4の内壁面は、 前記シュラウ ド部 4 2よ りも若干突出するように形成し、 滑り部材 4 4とコンプレッサインペラ 4 1のブ レード 4 1 aとのクリアランスが、 前記シュラウ ド部 4 2とコンプレッサインべ ラ 4 1のブレード 4 1 aとのクリアランスよりも狭くなるようにする。 産業上の利用可能性
本発明は、 新気を圧縮してこの新気を内燃機関に圧送するターボチャージャに 適用できる。 また、 本発明は、 耐久性が高く且つ圧縮性能が高いターボチャージ ャを簡略な構成で実現することができるため、 大量生産にも適している。

Claims

請求の範囲
1 . タービンハウジングの内部に設けるとともに内燃機関から流入する排圧を回 転力に変換するタービンホイールと、 前記夕一ビンホイールに連結するとともに 前記タービンホイールの回転力を伝えるロータ一シャフ 卜と、 前記ロータ一シャ フ トに連結するとともに取り込んだ新気を前記回転力により圧縮しつつ内燃機関 へと圧送するコンプレッサインペラと、 前記コンプレッサインペラを覆うコンプ レッサハウジングとを備えたターボチヤ一ジャにおいて、
前記コンプレツサインペラの新気の流入口から流出口にかけた外縁長さに対し、 この流出口から前記外縁長さの 1 / 2以内の範囲に対応させた溝を前記コンプレ ッサハウジングの内壁に設け、 この溝に前記コンプレツサインペラが接触する寸 前まで突出させた滑り部材を装着したことを特徴とする滑り部材付きターボチヤ 一ジャ。
2 . タービンハウジングの内部に設けるとともに内燃機関から流入する排圧を回 転力に変換するタービンホイールと、 前記タービンホイールに連結するとともに 前記タービンホイールの回転力を伝えるロータ一シャフ 卜と、 前記ローターシャ フ トに連結するとともに取り込んだ新気を前記回転力により圧縮しつつ内燃機関 へと圧送するコンプレッサインペラと、 前記コンプレッサインペラを覆うコンプ レッサハウジングとを備えたターボチヤ一ジャにおいて、
前記コンプレッサハウジングと前記コンプレツサインペラとの接触面の全面に 直って、 コンプレッサハウジングの内壁に前記滑り部材を装着したことを特徴と する滑り部材付きターボチャージャ。
PCT/JP1997/003346 1997-04-22 1997-09-19 Turbocompresseur equipe d'un element coulissant WO1998048157A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54540498A JP3639846B2 (ja) 1997-04-22 1997-09-19 滑り部材付きターボチャージャ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10463997 1997-04-22
JP9/104639 1997-04-22

Publications (1)

Publication Number Publication Date
WO1998048157A1 true WO1998048157A1 (fr) 1998-10-29

Family

ID=14386029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003346 WO1998048157A1 (fr) 1997-04-22 1997-09-19 Turbocompresseur equipe d'un element coulissant

Country Status (2)

Country Link
JP (1) JP3639846B2 (ja)
WO (1) WO1998048157A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014743A1 (ja) * 2011-07-25 2013-01-31 トヨタ自動車 株式会社 コンプレッサハウジング及び排気タービン過給機
WO2016136681A1 (ja) * 2015-02-25 2016-09-01 株式会社オティックス 過給機用のコンプレッサハウジング及びその製造方法
WO2016136037A1 (ja) * 2015-02-25 2016-09-01 株式会社オティックス 過給機用のコンプレッサハウジング
US10683870B2 (en) 2015-03-24 2020-06-16 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller cover, rotary machine, and impeller cover manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047714A (ja) * 2012-08-31 2014-03-17 Toyota Motor Corp ターボチャージャ
JP2014047726A (ja) * 2012-08-31 2014-03-17 Toyota Motor Corp タービンハウジング及び排気タービン過給機
CN107250552B (zh) 2015-02-27 2020-02-14 三菱重工发动机和增压器株式会社 增压器的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257454A (ja) * 1993-03-10 1994-09-13 Hitachi Ltd 自動車用ターボチャージャのコンプレッサケース
JPH06307250A (ja) * 1993-04-20 1994-11-01 Hitachi Ltd 過給機用コンプレッサハウジング
JPH09170442A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd 内燃機関の過給機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257454A (ja) * 1993-03-10 1994-09-13 Hitachi Ltd 自動車用ターボチャージャのコンプレッサケース
JPH06307250A (ja) * 1993-04-20 1994-11-01 Hitachi Ltd 過給機用コンプレッサハウジング
JPH09170442A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd 内燃機関の過給機

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014743A1 (ja) * 2011-07-25 2013-01-31 トヨタ自動車 株式会社 コンプレッサハウジング及び排気タービン過給機
CN103748335A (zh) * 2011-07-25 2014-04-23 丰田自动车株式会社 压缩机壳体以及废气涡轮增压器
JP5664785B2 (ja) * 2011-07-25 2015-02-04 トヨタ自動車株式会社 コンプレッサハウジング及び排気タービン過給機
CN103748335B (zh) * 2011-07-25 2016-05-04 丰田自动车株式会社 压缩机壳体以及废气涡轮增压器
US9388821B2 (en) 2011-07-25 2016-07-12 Toyota Jidosha Kabushiki Kaisha Compressor housing and exhaust turbine supercharger
WO2016136681A1 (ja) * 2015-02-25 2016-09-01 株式会社オティックス 過給機用のコンプレッサハウジング及びその製造方法
WO2016136037A1 (ja) * 2015-02-25 2016-09-01 株式会社オティックス 過給機用のコンプレッサハウジング
JPWO2016136037A1 (ja) * 2015-02-25 2017-11-30 株式会社オティックス 過給機用のコンプレッサハウジング
CN107614848A (zh) * 2015-02-25 2018-01-19 株式会社欧德克斯 增压器用的压缩机壳体
EP3263911A4 (en) * 2015-02-25 2018-02-21 OTICS Corporation Compressor housing for supercharger and manufacturing method thereof
US10683870B2 (en) 2015-03-24 2020-06-16 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller cover, rotary machine, and impeller cover manufacturing method

Also Published As

Publication number Publication date
JP3639846B2 (ja) 2005-04-20

Similar Documents

Publication Publication Date Title
JP4028923B2 (ja) 滑り部材付きターボチャージャ
US4613288A (en) Turbocharger
EP1273765B1 (en) Turbocharger shaft dual phase seal
KR100453467B1 (ko) 내연기관의과급기
US6089020A (en) Heat recovering apparatus for cogeneration system with a turbocharged engine
US6210106B1 (en) Seal apparatus for gas turbine engine variable vane
US7700207B2 (en) Turbocompressor shutdown mechanism
US20080075583A1 (en) Sealing of variable guide vanes
CN103362641A (zh) 涡轮增压器旋转组件中的平衡漂移的控制
WO2015061241A1 (en) Actuation pivot shaft face seal with u seal
KR20030029992A (ko) 전기 터보 과급기를 위한 로터와 베어링 시스템
EP1554467B1 (en) Supercharger coupled to a motor/generator unit
JP2011052558A (ja) 過給機
US9587557B2 (en) VTG turbocharger vane pack assembly with abradable coating
JP3639846B2 (ja) 滑り部材付きターボチャージャ
EP3470648B1 (en) Turbocharger
US20170044927A1 (en) Lock-up prevention vane for variable geometry turbocharger
US6854272B2 (en) Exhaust gas turbocharger for an internal combustion engine
KR20170009130A (ko) 회전 관성 저감 자동차용 터보차저
JP2004162578A (ja) 滑り部材付きターボチャージャ
CN102207008B (zh) 一种涡轮增压器及提高涡轮增压器增压效率的方法
US3090546A (en) Pressurized oil seal for rotating machinery
JPH11125120A (ja) 可変容量型ターボチャージャ
US11359538B2 (en) Valve
GB2409005A (en) Internally insulated turbine assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase