WO1998036441A1 - Fluorescent lamp and metal halide lamp - Google Patents

Fluorescent lamp and metal halide lamp Download PDF

Info

Publication number
WO1998036441A1
WO1998036441A1 PCT/JP1998/000548 JP9800548W WO9836441A1 WO 1998036441 A1 WO1998036441 A1 WO 1998036441A1 JP 9800548 W JP9800548 W JP 9800548W WO 9836441 A1 WO9836441 A1 WO 9836441A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
fluorescent lamp
emission
color
light
Prior art date
Application number
PCT/JP1998/000548
Other languages
French (fr)
Japanese (ja)
Inventor
Izumi Akashi
Masanori Shimizu
Shoetsu Sakamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE69834294T priority Critical patent/DE69834294T2/en
Priority to CA002249613A priority patent/CA2249613A1/en
Priority to JP10535565A priority patent/JP3143127B2/en
Priority to US09/171,078 priority patent/US6414426B1/en
Priority to EP98901580A priority patent/EP0896361B1/en
Publication of WO1998036441A1 publication Critical patent/WO1998036441A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material

Definitions

  • the present invention secures color reproducibility that enables categorical identification of red, green, blue, yellow, white, and black surface colors, which are the basic colors of human color category judgment. However, it relates to a highly efficient illumination light source.
  • the present invention largely belongs to the following three technologies.
  • the first is that, while ensuring color reproducibility that allows the classification of red, green, blue, yellow, white, and black surface colors at a minimum
  • ⁇ It relates to fluorescent lamps, metal lamps, and ride lamps, which are highly efficient and efficient lighting sources.
  • the present invention relates to fluorescent lamps and metal halide lamps that have a light color with little sense of discomfort.
  • the third is that when used in combination with a conventional low color temperature light source, while ensuring color reproducibility that allows classification of red, green, blue, yellow, white, and black surface colors at a minimum.
  • the present invention relates to fluorescent lamps and metal halide lamps, which are highly efficient illumination light sources that emit light with little discomfort and are equivalent to light bulb colors. Background art
  • spectral characteristics are designed by evaluating the fidelity of subtle color reproduction with respect to a reference light source (black body thigh 'synthetic daylight) using an average color rendering index (R a). On the other hand, it was evaluated by applying and developing the characteristic '14 of color reproduction (categorical color perception) that humans distinguished color roughly, and the design of its spectral characteristics was There is a Japanese application (Japanese Patent Application No. 242863 (September 21, 1995)) and pcTZjpgszosei 8 that uses it as S3 ⁇ 4.
  • Such a high-efficiency new light source that gives priority to the luminous efficiency of the light source while satisfying the minimum color appearance is often used mainly in the field of lighting. This is because outdoor lighting does not require the appearance of high-quality colors as indoor lighting does, and the luminous efficiency of the light source is mainly given priority.
  • Another point of realizing the high-efficiency new light source is to design the shift (Duv) from the blackbody on the uv chromaticity coordinates to be 0 or more.
  • the range in which the deviation (Du v) from the blackbody radiation locus is 0 or more indicates that the categorical color perception of the basic color can be performed with high efficiency. As long as the appearance can be maintained, Du V takes a positive value.
  • the light color of light 3 ⁇ 4g is described in the national International standards include IEC (International Electrotechnical Commission) standards. Some countries in the world have their own standards. An example of this is the chromaticity classification standard for fluorescent lamps specified in JIS (Japanese Industrial Standards) in Japan.
  • the IEC standard determines a center point near the blackbody radiation locus, determines the light color with its tolerance, and the JIS defines upper and lower limit lines near the blackbody radiation locus. This is a standard within the allowable range.
  • the width of the IEC language range is 7.5 to 9.5 in the vertical direction of D uv, and the JIS tolerance range is 10 to 19 in the vertical direction.
  • the conventional illumination light source actually provided light colors in the range of 5 to 10 to the positive side of DuV.
  • the CIE signal light color is stipulated to explain the conventional use range of the light source light color as white from a different viewpoint.
  • the signal light color is specified in a narrow range along the blackbody radiation trace. The plus side of DuV outside the white range has not been used as a so-called white light in the conventional illumination light source.
  • 3 ⁇ 4 is an improvement in the sense of target brightness in scotopic vision and clear vision of the high-efficiency new light source.
  • the first solution of the present invention is to design the spectral characteristics of the above-mentioned high-efficiency new light source by giving consideration to the influence of the rod and focusing on the condition of relatively low illuminance.
  • the second problem to be solved by the present invention is to improve the natural brightness of a large field of view of Sukki's highly efficient new light source.
  • illuminance and luminance are used as light measurement amounts corresponding to brightness, but the spectral characteristics of illuminance and luminance are based on the spectral characteristics of brightness in the 2 ['] field of view near the central force of the eye. Things.
  • light is received not only from the area limited to the center but also from a larger field of view, so the correspondence between the actual brightness and the illuminance may differ depending on the spectral distribution of the light source ⁇
  • the second solution to the above-mentioned high efficiency new light source is to set spectral characteristics to improve the natural brightness perception in a large visual field which is felt in an actual illumination field. Try to decide.
  • a third problem to be solved by the present invention is to improve the white appearance of the emitted color of the high efficiency new light source.
  • the high-efficiency new light source has high whiteness and a clear light color range.
  • the present invention aims to enhance the white feeling of the high-efficiency new light source, Try to solve the third fi and.
  • a fourth solution of the present invention is to give the high-efficiency new light source a light color appearance as a light bulb color.
  • an illumination light source of the present invention solves the following 1111 in order to improve the sense of brightness in mesopic and local vision of the high efficiency new light source, and to improve the sense of brightness in a large visual field. Have means to do so.
  • the present invention according to claim 1 is a fluorescent lamp for perceiving color in the category power, wherein the main light is emitted, and the peak wavelength of the emitted light is in the range of 530 to 580 [nm] and 600 to 65. 0 [nm], and the luminous flux of the phosphor having an emission wavelength peak range of 420 to 530 [nm] is converted to the total luminous flux of the main emission wavelength range.
  • the peak wavelength of the phosphor having an emission wavelength peak range of 420 to 530 [nm] is converted to the total luminous flux of the main emission wavelength range.
  • it is 4 to 40%
  • the correlated color temperature of the lamp light color is 3500 to ⁇ [K]
  • ⁇ 1 in sighted and mesopic or large field of view 3 ⁇ 41 While increasing the efficiency, at least the categorical red, green, blue, yellow, and white colors of the surface color of the illuminated object! ⁇
  • the present invention according to claim 2 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the peak wavelength of the emitted light is in the range of 530 to 580 [nm] and 600 to 650. [nm], and the emission wavelength peak ranges from 470 to 530 [nm].
  • the luminous flux of the phosphor in the range of the light wavelength is 4 to 40% of the total luminous flux in the range of the main emission wavelength, and the correlated color of the lamp light color is 3500 to ⁇ [K], and Duv (distance rrom perfect radiator ator).
  • ocus on uv co-ordinates It is characterized by a power of 5 to 70, and at least the red color of the surface of the illuminated object while increasing the efficiency in sighted and mesopic or large fields of view.
  • This is a fluorescent lamp that has a categorical translation of green, blue, yellow, and white colors.
  • the present invention according to claim 3 is a fluorescent lamp for categorical color perception, wherein the emission wavelength has a peak range of 420 to 530 [nm], 530 to 580 [nm], and 600 to 650 [nm]. It has a light color in the range of y 0.43 x +0.60, y> 0.64 x +0.15, x> 0.16 in the xy chromaticity coordinates. At least red, green, blue, yellow, and white surface colors of the illuminated object can be categorically distinguished while increasing luminous efficiency in scotopic vision, mesopic vision, or large fields of view.
  • This is a fluorescent lamp in which the number of pastes is as follows.
  • the present invention according to claim 4 is a fluorescent lamp for color perception of category power, wherein the peak range of the emission wavelength is 470 to 530 [nm:], 530 to 580 [nm], 600 to 650 [nm]. ran], the x-y chromaticity coordinates, and y x 0.43 x + 0.60, y> 0.64 x + 0.15, x> 0.16 It is characterized by having a light color in a range surrounded by a range, and increasing the luminous efficiency in scotopic vision and mesopic vision, or in a large field of view, and at least the surface colors of the object to be illuminated red, green, blue, This fluorescent lamp is characterized by its ability to categorize yellow and white colors.
  • the present invention according to claim 5 provides a main phosphor, wherein the phosphor having an emission wavelength peak range of 530 to 580 [nm] activates terbium, or tenorebium and cerium.
  • the phosphor of 600-650 [nra] is europium or a phosphor activated with a gun, and has an emission peak wavelength of 420-530 [nra].
  • Phosphors and phosphors with emission peak wavelengths between 470 and 530 [nm] are activated by europium, or europium and manganese, or antimony, or manganese, or antimony and manganese
  • the fluorescent lamp according to any one of claims 1 to 4, wherein the fluorescent lamp is a phosphor.
  • the phosphors having the emission wavelength peak ranges from 530 to 580 [ ⁇ ] and from 600 to 650 [nm] are represented by (Ce, Gd, Tb) (Mg, Mn) and B 5 0 1 (), ( Ce, Gd)
  • the present invention according to claim 7 is a phosphor having an emission peak wavelength of 420 to 530 [nm], a phosphor having an emission peak wavelength of 470 to 50 [nm] is haloline,
  • phosphor emission peak wavelength is present in the 4 2 0 ⁇ 5 3 0 [nm] is, BaMgAl I (p 17:. Eu, or, (Sr, Ca, Ba) , (P0 (4 )
  • phosphor emission peak wavelength ⁇ to 4 7 0 ⁇ 5 3 0 [nm] is Sr 4 Al 14 0 25: Eu, or 7.
  • the present invention according to claim 10 is characterized in that a fluorescent light having an emission peak wavelength in the range of 420 to 470 [nm].
  • a fluorescent light having an emission peak wavelength in the range of 420 to 470 [nm].
  • the number of glues is such that a light body and a phosphor having a wavelength of 470 to 530 [nm] are simultaneously present.
  • the phosphor having an emission peak wavelength of 420 to 470 [nm] and the phosphor having an emission peak wavelength of 470 to 530 [nm] are (Ba, 10.
  • the illumination light source of the present invention has means for solving the following problems in order to improve the white appearance of the emitted light color when the high efficiency new light source is used in combination with the conventional high color light source. .
  • the present invention according to claim 12 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the emission wavelength peak ranges from 530 to 580 [nm] and 600 to A phosphor having a peak of the emission wavelength in the range of 420 to 470 [ran] as a secondary emission wavelength, and having a correlated color temperature of at least 3 5 0 0 to ⁇ [K], force, tsu, D uv (distance from perfect radiator locus on uv co-ordinates) is in the range of 5 to 70, and the relationship between x and y on the xy chromaticity coordinates Is in the range 0.43 X +0.60,
  • This fluorescent lamp is characterized by being able to at least categorically identify the red, green, blue, yellow, and white colors of the surface of the illuminated object while enhancing the whiteness of the emitted color.
  • the relationship between x and y is within the range of 0.43 x +0.60, and while increasing the whiteness of the emission color, at least the surface colors of the illuminated object are red, green, and blue.
  • This is a fluorescent lamp characterized in that categorical identification of yellow, white and yellow colors
  • the present invention according to claim 14 is a fluorescent lamp for categorical color perception, which is obtained by a phosphor having a main light emission whose emission wavelength peak ranges from 530 to 580 [ran].
  • Xy chromaticity coordinates (x, y) a: (0.228, 0.351), b: (0 358, 0.551), c: (0 525) , 0.440), d: (0.53, 0.440), e: (0.285, 0.332)
  • the relationship between X and y is y x 0.43 X +0.60 that the categorical identification of the red, green, blue, yellow, and white colors of the surface color of the illuminated object is possible while increasing the whiteness of the emission color.
  • This is a characteristic fluorescent lamp.
  • the invention according to claim 15 is characterized in that a luminous flux emitted from a phosphor having an emission peak at an auxiliary emission wavelength of 420 to 47 [ran] and a main emission wavelength of 5330 to 580 [ran]
  • the ratio [%] to the luminous flux emitted from the phosphor having an emission peak is B: G, B is 4 to 11 [%], and G is 96 to 89 [%].
  • the present invention according to claim 16 has an emission peak at an emission wavelength of 600 to 600 [nm].
  • the present invention according to claim 17 is a phosphor activated with europium and a phosphor having an emission wavelength peak of 420 to 470 [nm], and an emission wavelength peak of 530 to 580 [nm].
  • the phosphor at [nm] is terbium, or a phosphor activated with terbium and cerium.
  • the phosphor with an emission wavelength peak at 600-650 [ ⁇ ] is manganese or europium.
  • the present invention according to claim 18 is characterized in that the phosphor comprises a terbium-activated phosphor whose peak emission wavelength is in the range of 530 to 580 [nm], and a haloline ⁇ 3 ⁇ 4 phosphor.
  • the fluorescent lamp according to claim 14 characterized by the above-mentioned.
  • the present invention according to claim 19 is characterized in that the phosphors having emission wavelength peak ranges of 530 to 580 [nm] and 600 to 650 [nm] are represented by (Ce, Gd, Tb) ( mg, Mn) B and 5 0 10, (Ce, Gd ) (mg, Mn) B 5 0 10 , characterized in that is realized by a phosphor which is constituted by claim 1 2 to 1 7 noise Re A fluorescent lamp as described in
  • the phosphor having an emission peak wavelength in the range of 420 to 47 [nm] is BaMgAl 1 () 0
  • the high efficiency new light source is mixed with the conventional low color light source, and the illumination light source of the present invention has the following problems in order to improve the sense of incongruity of the emitted light color as a bulb color. Is provided.
  • this fluorescent lamp uses a glue number that allows categorical identification of red, green, blue, yellow, and white colors of the surface color of the illuminated object.
  • the present invention according to claim 22 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the emission wavelength peak ranges from 530 to 580 [nm] and 600 to Obtained with a phosphor at 650 [nm],
  • the fluorescent lamp is characterized by being in a range excluding the fluorescent lamp, and at least being capable of categorically discriminating red, green, blue, yellow, and white colors of the surface color of the illuminated object.
  • the present invention according to claim 23 provides a fluorescent lamp obtained from a phosphor having a main emission wavelength of 530 to 560 nm and an emission peak wavelength of 600 to 650 nm, wherein the fluorescent lamp has a peak wavelength of 530 to 560 nm.
  • the present invention according to claim 24 provides a fluorescent lamp obtained from a phosphor having a main emission wavelength of 530 to 560 nm and an emission peak wavelength of 600 to 620 nm, wherein the auxiliary emission wavelength has an emission peak of 420 to 530 nm.
  • the phosphor having an emission wavelength peak range of 530 to 580 [ran] is terbium or a phosphor obtained by activating terbium and cerium, and has a fluorescence of 600 to 650 [nm].
  • the present invention according to claim 26 is characterized in that the peak range of the emission wavelength is 530 to 580 [nm] and The phosphor of 600 ⁇ 650 [nm], (Ce , Gd, Tb) (Mg, Mn) and B B 0 10, (Ce, Gd) (Mg, Mn) realized in one phosphor configured in BO ln
  • the invention according to claim 27 is characterized in that it is used for outdoor lighting, road lighting, street lighting, safety light, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, or factory lighting.
  • 27. A fluorescent lamp according to any one of 1 to 26.
  • the illumination light source of the present invention has means for solving the following problems.
  • a twenty-eighth aspect of the present invention is a methanol lamp having the same light color and emission spectrum as the fluorescent lamp of the present invention. You.
  • the present invention according to claim 29 is characterized in that it is used for outdoor lighting, road lighting, street lighting, safety light, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, or factory lighting. It is a metal halide lamp described. Brief explanation of drawings
  • FIG. 1 is a graph showing the spectral distribution of a typical embodiment of the fluorescent lamp of the present invention.
  • FIG. 2 and 3 show a comparison of various relative luminous sensitivities in which relative luminous efficiency is made relative to a peak height of 1.
  • Fig. 5 is a diagram showing the relative spectral sensitivities of the three types of cones of the eye (S cone, M cone, and L cone) and the rod's spectral sensitivity, with the peak as 1.
  • FIG. 6 is a diagram showing the range on the xy chromaticity coordinates of the fluorescent lamp of the present invention (claims 3 and 4).
  • FIG. 7 is a diagram showing the theoretical efficiency of light on the xy chromaticity coordinates.
  • FIG. 8 is a diagram showing a correction factor F of luminance on the XY chromaticity coordinates.
  • FIG. 9 is a diagram showing the positions on the unique color tone storage.
  • 12 to 16 are diagrams showing the spectral distributions of the light sources (1f) to (1j) which are the examples in the 20 W fluorescent lamp.
  • FIG. 17 is a spectral distribution diagram when a high-efficiency new light source is realized by a fluorescent lamp.
  • FIG. 19 is a diagram showing 21 types of light colors from tl to t21 on XY chromaticity coordinates.
  • FIG. 20 is a diagram showing, for each xy chromaticity point of each test light source, the percentage of respondents that the color is acceptable as a light bulb color.
  • FIG. 21 f is a diagram showing the relationship between the lv range of claim 21 of the invention and the curve 23.
  • FIG. 22 is a diagram showing a range of light colors of a fluorescent lamp of JIS as a comparative example for reference.
  • FIG. 23 to FIG. 26 are diagrams showing the spectral distributions of the fluorescent lamp examples when the luminous flux ratio of LAP: YOX is changed.
  • FIG. 27 is a diagram showing a spectral distribution of a fluorescent lamp as another embodiment of the present invention.
  • FIG. 28 is a diagram showing the relationship between the value of V '( ⁇ ) ⁇ (e) and the various light sources.
  • FIG. 29 is a diagram showing the relationship between the value of V10 (E) V ( ⁇ ) and the various light sources.
  • the new high-efficiency light source assures color reproducibility that allows the classification of the red, green, blue, yellow, white, and black surface colors by concentrating light emission mainly in the green and red wavelength bands.
  • luminescence in the blue or blue-green wavelength band is added to achieve a scotopic vision and a mesopic vision.
  • the aim is to improve the sense of brightness in the target and the sense of neat brightness in a large field of view.
  • FIG. 1 a typical embodiment of the fluorescent lamp of the present invention is shown in FIG. 1
  • the solid line 1 in FIG. 1 is the spectral distribution when the present invention is implemented by a fluorescent lamp
  • the spring 2 is the spectral distribution of ⁇ when the high-efficiency new light source is implemented by a fluorescent lamp.
  • the response characteristic of the brightness of the light depends on the spectrum, and is called a ratio or a ratio function.
  • the brightness of lighting is evaluated by the standard photopic visibility function (hereinafter ⁇ ( ⁇ )) defined by the CIE (International Commission on Illumination). This reflects the condition in which the eyes are used to the bright spot, that is, the brightness sensitivity characteristics of the cone photoreceptors in photopic vision. It is known that the center of sensitivity is at 5.55 [nm], and ordinary illumination light sources are evaluated based on the efficiency of the spectral characteristics with respect to ⁇ ( ⁇ ).
  • V '(e) parallax luminosity function
  • mesopic vision which is a state of brightness intermediate between photopic vision and ⁇ photopic vision, has an intermediate ratio characteristic between these. These characteristics change depending on the adaptation of the environment's brightness to the eye. I do.
  • V (e) is ⁇ 2 ( ⁇ ), which is based on the 2 ⁇ ] degree field of view, which is the range of central vision depending on whether the center has high visual acuity, but the 10 ['] degree field of view is much larger.
  • ⁇ 10 ( ⁇ ) is composed of. This is recommended as "CII Publication 1964" (CI ⁇ 1964 supplementary colorimetric standard system).
  • ⁇ 1 () (; ⁇ ) reflects the actual situation in evaluating the sense of brightness from such a large visual dimension.
  • the cone has an S (blue) cone that is sensitive to short wavelengths, an L (red) cone that is sensitive to long wavelengths, and an M (green) cone in between, but S near the central force
  • S blue
  • L red
  • M green
  • the number of cones is small, and the number of S cones around the center is large. Therefore, the visual dimension is large, and the result is that the sensitivity to blue is higher.
  • V '( ⁇ ) itself is a ratio composed of points off the center.
  • the blue or blue-green band is important for correcting the brightness of the light source assuming use at illuminance, and for correcting the sense of brightness due to light coming into view from a large field of view in a real environment. It has a meaning.
  • CIE Publication No. 75 This is a direct extraction of the sense of visual brightness, and is described in “CIE Publication No. 75” (CIE Publication No. 75: Spectral luminous efficiency functions based upon brightness mac mg for monochromatic point sources). 2 "and 10 ° fields (1988)), which are called 2 [for those with a field of view of (°) and those with a field of view of 10 ° which are called V M0 (E). A color that responds well to the direct brightness sensitivity but draws a smooth profile.
  • V 10 ( ⁇ ), V M ( ⁇ ), V ′ ( ⁇ ), V b , 2 (), V b ,,. (L) is considered as an auxiliary brightness photometric light, although it better reflects the actual situation with respect to V (or), depending on the time and the case. Hffi and not used for development. However, in view of the actual situation, it is possible to increase the visual and effective brightness of the high-efficiency new light source, which is characterized by being used at relatively low illuminance. is there.
  • Figures 2 and 3 compare these relative luminous sensitivities with these ratios being relative to each other with the peak height being 1.
  • Figure 2 shows V (e), ⁇ 10 ( ⁇ ), ⁇ ⁇ ( ⁇ ), and ⁇ '( ⁇ ).
  • Figure 3 shows V h2 U) and V hl, which differ in the method of deriving phycophysical for ⁇ ( ⁇ ). (; L), and ⁇ ( ⁇ ) for reference.
  • V ′ (e) and ⁇ ( ⁇ ) are shown as differences in various relative luminous efficiencies.
  • the peak of the difference between VwoU) and V z (also) is 500 [nra], the range within a peak ratio of 50 [%] is 460 to 520 [nm], and the range of a peak ratio within 80 [%] is 480 to 505 [%]. nm].
  • the peak of the difference between V ( ⁇ ) and ⁇ ( ⁇ ) is 490 [nra], the range within a peak ratio of 50 [%] is 445 to 515 [nm], and the range within a peak ratio of 80 [%] is 470 to 505 [nm].
  • V t ⁇ ( ⁇ ) and V ( ⁇ ) The difference between the peaks of V t ⁇ ( ⁇ ) and V ( ⁇ ) is 500 [nm], the peak ratio of 50 [%] or less is 450-520 [nm], and the peak ratio is 80 [%] or less. 475 to 510 [nm].
  • the maximum range of 420 to 530 [nm] is the range to be eff! E.
  • the present invention is based on this range.
  • VM (also) is the correction of the blue band of 455 [ran] or less mainly related to the S cone, and many corrections on the short wavelength side of visible light have absolutely small original sensitivities.
  • the maximum effect within the peak ratio of 80 [%] other than the difference between M (E) and V ( ⁇ ) is within the range of 470 to 530 [nm].
  • Fig. 5 shows the basic spectral sensitivities of the three types of cones of the eye (S-cone, M-cone, and L-cone) and the basic spectral sensitivities of the rods, with the peak being set to 1 and shown relative to each other.
  • the rods that work in mesopic and stereopsis have a peak in spectral sensitivity between the S and M cones.
  • general illumination light sources aim to pierce three types of cones (S cone, M cone, and L cone) that work in photopic vision. By concentrating luminescence mainly in the green and red bands, it stimulates mainly two types of cones (M cone and L cone), and stabs mainly in the visual r-g opponent color response system. That is the thing to do.
  • the conventional illumination light source is assumed to be used for photopic vision, so the power that did not take into account the spectral sensitivity of the rod was included in the present invention.
  • the improvement in the sense of visual brightness is mainly based on the fact that two types of cones (M cone and L cone) and a rod are stabbed, and the S cone that contributes little to the brightness sensation
  • M cone and L cone two types of cones
  • S cone that contributes little to the brightness sensation
  • the density of S cones is high around the central force of the retina, the larger the visual size, the higher the sensitivity of the S cones.
  • the ⁇ ⁇ The improvement in perceived brightness can be achieved mainly by increasing the degree of stabbing the S cones distributed around the center of the retina.
  • the emission wavelength emitted by the high-efficiency new light source should be concentrated in the blue band of 420 to 470 [nm].
  • ⁇ ⁇ ⁇ ⁇ At least categorical delicate red, green, blue, yellow, and white colors of the surface of the object can be achieved while increasing the visual efficiency in visual and mesopic or large visual fields.
  • the correlated color temperature of the lamp light color must be set high, and the value of correlated color, which is a common light source light color vote, must be 3500 [K] or more for ⁇ .
  • FIG. 6 shows the range on the xy chromaticity coordinates of the fluorescent lamp of the present invention (claims 3 and 4).
  • the y-axis of Fig. 6 is 0.34 x + 0.60
  • the y of 0.6 in Fig. 6 is 0.64x + 0.15
  • the x of 5 in Fig. 6 is 0.
  • the power realized by having a light color within the range of the 16 xy chromaticity ranges The rationale is given below.
  • the present invention shows that the DUV is on the plus side of the light generally used as white in 6 of FIG. 6, and that it is in the range of conventional illumination light.
  • the range y ⁇ -0.43 x + 0.60 is based on the high efficiency new light source whose emission is concentrated mainly in the green and red bands by visual experiment, and the emission peak wavelength is 420 to 5 3 0 [nm] This is the result of adding the existing phosphor or the phosphor present in the range of 470 to 530 [ran] to obtain the point at which the tint is reduced.
  • Representative examples include the experiment, first, common as phosphor green emission (I arsenate 1) L a P0 4: C e, and Tb (LAP), common as red phosphor emitting (I 2) Y 2 ⁇ 3 : A light source that mixes the light emitted from two fluorescent lamps, each coated with Eu (YOX) alone, to a high efficiency new light source that concentrates light emission mainly in the green and red bands. Was set as a sample. Next, the light of this light source has an emission peak wavelength of 4
  • Figure 6 shows the experimental results. Furthermore, the positions of the light colors of the fluorescent lamps using the phosphor alone on the Xy chromaticity coordinates are shown as 7 in the figure, LAP, 8 as YOX, 9 as SCA, and 10 as SAE. Was.
  • reference numerals 11 and 12 denote green and red light-emitting elements (i-dani 1) and the red-light (i-dani 1), which are the high-efficiency new light source samples.
  • a plot of the results, 14 is a plot of the results of a similar subjective evaluation experiment performed with a light mixing ratio of LAP: YOX-85: 15, and 15 is a similar subjective evaluation experiment performed with a light mixing ratio of LAP: YOX-80. : The results obtained in step 20 are plotted.
  • 16 in FIG. 6 shows that the light mixing ratio of the sample is LP A (green): YOX
  • (1) is that the yellow-green color of the high efficiency new light source increases the emission in the blue or blue-green band.
  • the boundary changes to a bluish green light color, that is, a boundary where the senses of the opposite colors of bluish and yellowish colors cancel each other out and the color begins to decrease.
  • the range of x> 0.16 indicates the permissible limit of the tint strength in the blue or blue-green direction.
  • 9 and 10 in Fig. 6 are the positions on the chromaticity diagram of the fluorescent lamp realized by using the phosphors of (Chem. 3) and (Chem. 4).
  • the above-mentioned x> 0.16 is realized so as not to take in the chromaticity 9 and 10.
  • Increasing the emission in the blue or blue-green band can increase the proportion contributing to improved luminous efficiency in stereopsis and mesopic vision, or in a large field of view at equal illuminance (equal luminous flux).
  • the increase in light emission in this band essentially leads to a decrease in the efficiency of the light source at the measured light intensity V (e).
  • the increase in the light emission in these bands causes the light emission in the red band to be relatively weakened, thereby obscuring the appearance of red, which is used for important purposes such as danger indication.
  • the quantity of light and the photometric quantity of the illumination are related via ⁇ ( ⁇ ), and the mono-color light at the peak of V (also) 3 [lm / W].
  • the light other than 55 5 [nm] has a value smaller than 68 3 [lra / W], but this relationship is shown in the chromaticity coordinates. The theoretical efficiency.
  • Figure 9 shows the position of the unique color on the start / record *.
  • New color refers to a light stimulus with a wavelength that gives a color sensation of pure red, green, blue, and yellow stimuli when only a single spectrum of light wavelengths is extracted and viewed.
  • Figure 9 shows the connection between the red, green, blue, and yellow colors and the equal energy white W.
  • Theoretically, unique yellow, unique green, and iso-energetic white The light color in the xy chromaticity coordinates surrounded by W has a yellowish and greenish tinge, and is separated from white by a bell-shaped monochromatic (mono) -color) The closer to the position of the light, the stronger the color.
  • the light emitting part of the luminaire has an old impression with a light color that feels yellowish. Light color is preferred.
  • the line (LN) is similar to the above-mentioned subjective evaluation experiment line (Equation (1)), and it can be inferred that the result of the subjective f3 ⁇ 4B experiment is supported by such a theory. It is probable that yellowish and blueish 3 ⁇ 43 ⁇ 4 ⁇ occurred when the ratio of exceeded a certain amount for the stimulation of the M and L cones.
  • the light source of the present invention as a fluorescent lamp and using a rare-earth phosphor, it becomes possible to concentrate light emission narrowly in a predetermined wavelength band.
  • a phosphor having a peak emission wavelength range of 530 to 580 [ran] that obtains main light emission is terbium or a phosphor activated by terbium and cerium
  • the phosphor of 600 to 65 0 [ ⁇ ] is a phosphor activated with europium or manganese, and has a light emission peak wavelength of 420 to 530 [hex], and Fluorescence with emission peak wavelength between 470 and 530 [nm]
  • the body is a phosphor activated with europium, or europium and manganese, or antimony, or manganese, or antimony and manganese.
  • phosphor in a range of peak emission wavelength is 53 0 ⁇ 580 [ran] is (I spoon 1) LaP0 4: Ce, Tb , ( of 5) Ce Gal H 0 19: Tb, (of 6) (Ce, Gd) MgB 5 0 10: Tb, or (reduction 7) LaA'O.2Si0 2 '0.9P z 0 5: Ce, there is Tb, 60 0 ⁇ 650 [ phosphor nm] is (I spoon 2) Y 2 0 3: Eu , or (I spoon 8) (YGd) 2 0 3 : Eu Ru der.
  • These main emission wavelength phosphors are disclosed in PCT / JP96 / 02618: Right Source.
  • the phosphor having a peak wavelength of 420 to 470 [nm] is (Chemical Formula 9) BaMgAl 1Q 0 17 : Eu or (Idani 3) ⁇ ! Duru. Many of these phosphors can be considered to have similar constitutions, but within the scope of the present invention, Mg was added.
  • a phosphor having an emission peak wavelength in the range of 470 to 530 [nm] is (Dani 4) Or (Ig 11) Ce (Mg, Zn) Al u O ig : n.
  • a phosphor layer By forming a phosphor layer using two phosphors having emission peak wavelengths of 420 to 470 [nra] and 470 to 530 [nm] at the same time, light emission of 420 to 530 [nm] can be realized. In addition, it is possible to simultaneously improve the brightness of the target in a ⁇ , ⁇ , ⁇ , ⁇ , and a large field of vision, and efficiently improve the white sensation.
  • Examples of other phosphors that emit light of 420 to 530 [nm] include:
  • the scope of the present invention also includes BaMgAl 1Q 0 17 : Eu, n in which the addition of Sr is eliminated. If the concentration of Eu in the activator is increased, 4 The emission of 20 to 470 [nm] is enhanced, and if the concentration of Mn in the activator is increased,
  • the emission ratio of 420 to 4 nm 0 [nm] and 470 to 530 [nm] can be set with this single phosphor, making it easy to set the color tone in lamp production and suppressing color unevenness.
  • the phosphor in the range of peak emission wavelength is 5 3 0 ⁇ 5 8 0 [nm ] ( I spoon 1 4) (Ce, Gd, Tb) (Mg, Mn) B 5 0 10, 6 0 0 ⁇ 6 5 0 [nm] phosphor (I-Dai 15) (CeiGiD
  • the base material of the phosphors can be made the same, and the emission ratio of 530 to 580 [nm] and 600 to 650 [nm] can be set with one phosphor. Unevenness is suppressed.
  • the phosphor having an emission peak wavelength in the range of 420 to 530 [] is a halophosphate calcium phosphor ( ⁇ 16) Ca PO ⁇ Cl ⁇ Sb, ⁇ , so that the fluorescent lamp of the present invention can be manufactured at low cost. It can be manufactured.
  • n of the activator is yellow and Sb of the activator has an emission peak in bluish green, so that increasing the concentration of Sb increases light in the bluish green band.
  • the claims of the present invention include a case where Mn is eliminated, and in this case, a single-peak light emission having a blue-white light color is obtained.
  • the color of the light emitted from the high-efficiency new light source is reduced to enhance the white color.
  • the main emission wavelength range of 530 to 580 [nm] and 600 to 650 [ran] is increased. [nm] while minimizing the addition of light other than [nm] Is reduced to enhance the white appearance. Therefore, unlike the first embodiment of the present invention, light emission is mainly added to wavelengths in the blue band in the range of 420 to 470 [nm]. Further, the specific embodiment of the phosphor conforms to the first embodiment.
  • the wavelength of the light emitted from the light source can be greatly changed with a minimum amount of sub-emission by increasing the spectrum on the shorter wavelength side than in the first embodiment. It is.
  • the subjects were four adults with normal color vision, and the number of repetitions of one condition was set to three.
  • the xy chromaticity value, correlated color, and Du V (Table 1) at this time are shown.
  • FIG. 11 also shows the chromaticity values (x, y) of claims 13 and 14 for comparison: a: (0.228, 0.351), b: (0.358, 0.551), c: (0.525, 0.440) , D: (0.453, 0.440), e: (0.285, 0.332)
  • the fluorescent lamp of the present invention By setting the fluorescent lamp of the present invention within a range of y ⁇ 0.43 x + 0.60 or less in FIG. 11, it is possible to realize a fluorescent lamp with little light color and a white appearance. .
  • the light sources corresponding to the light sources (1a) to (l'e) in Table 2 were actually prototyped as 20W fluorescent lamps.
  • the ratio, xy chromaticity value, correlated color, and Duv are shown in Table 3 as light source (1f) to light source (1j).
  • FIG. 12 to FIG. 16 show the spectral distributions of the light sources U f) to (l j), which are embodiments of the 2OW fluorescent lamp.
  • spectral distributions are compared with the embodiment in which a high-efficiency new light source having the spectral distribution shown in FIG. 17 is realized by a fluorescent lamp, and the emission peak is in the wavelength band of 420 to 470 [nm].
  • the relative spectral power of the phosphor having a dark spot increases, and by adding this wavelength band, the color can be reduced and the white color can be enhanced.
  • Table 4 shows the LAP of the light sources (1a) to (1e) based on the light mixing ratio of the fluorescent lamp with three single phosphors in Table 2 based on the luminous flux ratio.
  • the light mixing ratio of only SCA is shown by the luminous flux ratio. From this, almost all the light mixing ratio [%] of LAP and SCA is 96: 4.
  • chromaticity points (0.285, 0.332) that constitute the chromaticity range of the present invention are the points closest to the blue side, and are the points where the light mixing ratio of SCA becomes maximum.
  • the luminous flux ratio [%] of LAP, YOX and SCA at that chromaticity point is calculated from the chromaticity value of a single-color fluorescent lamp having three types of single phosphors to be mixed, based on the additive color mixing formula. Then 81: 9: 10. In this case, the light mixing ratio [%] of only LAP and SCA is 89:11.
  • the light mixing ratio of a phosphor having an emission wavelength peak of 420 to 470 [nm] such as SC A and a phosphor having an emission wavelength peak of 530 to 580 [ran] such as LAP [° / o] B By setting G to 4 to 11 [%] and G to 96 to 89 [%] in G, it is possible to realize a fluorescent lamp with little light color and a white appearance.
  • the light mixing ratio M of LAP, YOX and SCA at this intersection is 70: 28: 2, calculated based on the additive color mixing formula.
  • the luminous flux R emitted from a phosphor having an emission peak at an emission wavelength of 600 to 650 [nm], such as YOX is compared with the luminous flux emitted from a phosphor such as SCA having an emission wavelength of 420 to 470 [nra].
  • the light flux ratio [%] of the sum B ⁇ with the light flux emitted from a phosphor such as LAP having an emission peak at 530 to 580 [nm] is R :, R is 0 to 28 [%], and B " ⁇ is By setting it to 100 to 72 [%], the color of light color is reduced and white It can be realized with high efficiency while obtaining the category Kano perception.
  • d (0.453, 0.30), e: (0.285, 0.332)
  • the light source 26 By combining the light source 26 with the light sources (1127 to (1111) 29 and the shifter) and mixing the light, the dotted lines (1) 30, (2) 31, and (3) 32 X A light source having y chromaticity can be created, and a light source having a chromaticity range of 25 according to the present invention can be realized.
  • the light sources (1f) to (lj) of the embodiment will be described.
  • Table 5 compares the lamp efficiencies of the new fluorescent lamp with the indicated spectral distribution, the white fluorescent lamp of the conventional halophosphate phosphor, and the daylight fluorescent lamp of the three-band emission type.
  • the lamp efficiencies of the light sources (1f) to (lj) are improved by about 24 to 43% compared to the white fluorescent lamp of the conventional halophosphate phosphor.
  • the efficiency of fluorescent lamps can be improved by about 10-35%.
  • a light color image equivalent to a bulb color is given to the light emission color of the high efficiency new light source.
  • the specific embodiment of the phosphor conforms to the first embodiment.
  • the embodiment of the present invention has been realized based on experimental data in which a subjective evaluation was made as to whether or not the light color of a light source was acceptable as a light bulb color.
  • the test stimulus was made to be able to randomly present 21 types of light colors from t1 to t21 shown in FIG.
  • Each test stimulus (I spoon 1) LaP z 0 4: Ce , a fluorescent lamp of green-emitting phosphor of the Tb (LAP), (I spoon 2) Y 2 0 3: red light emitting phosphor of Eu
  • the fluorescent lamp (YOX), the fluorescent lamp (SCA) that emits blue light from the phosphor of (Shi 3) (Sr, Ba, Ca) 10 (PO 4 ) 6 Cl z : Eu, and the emission peak wavelength 580 [ran] and xy chromaticity values (0.515, 0.472) were set by changing the mixing ratio of a fluorescent lamp that emits pure yellow light and.
  • the characteristics of each test stimulus are shown in (Table 6).
  • test stimulus was randomly presented to the subject, As a result, the light color of the test stimulus was evaluated as "an alternative to the power that can be accepted as the bulb color.”
  • the brightness of each light-emitting part was set to 300 O cd / m 2 and 300 O cd / m 2 , but as a result of the experiment, there was no difference in the evaluation of light color between the two types of brightness. It wasn't.
  • Fig. 20 shows the percentage of respondents who answered that the lamp color is acceptable as a decimal point for each xy chromaticity point of each test light source.
  • Curve 23 is a regression curve with a 50% tolerance probability that the majority is acceptable as bulb color. In other words, the range within the curve 23 is the range of light colors for which the majority is acceptable as the bulb color.
  • the above l to v ranges indicate the range of light colors of conventional lamps obtained by the JIS method in which limit lines are defined above and below the vicinity of the blackbody radiation locus, and the limit lines are defined as allowable ranges.
  • the chromaticity classification of fluorescent lamps specified by IEC is included in this range.
  • the present invention of claim 22 is a range in which the range of 1 to v is excluded from the curve 23. '
  • This figure shows the change in fe3 ⁇ 4 when the luminous flux ratio of LAP: YOX is changed for a fluorescent lamp composed of only ⁇ and ⁇ .
  • FIG. 22 shows the relationship between the chromaticity of 1 to v of claim 21 of the present invention and the range of light colors of the JIS fluorescent lamp.
  • Fig. 22 29 is white, 30 is warm white, and 31 is the chromaticity range of the fluorescent lamp of bulb color. From the figure, it can be seen that the vertices other than the lower left of the chromaticity range of white correspond to 1 to V.
  • FIGS. 23 to 26 show the spectral distribution of the embodiment of the fluorescent lamp in which the luminous flux ratio of LAP: YOX is changed.
  • the efficiency can be improved by 10% while reducing the number of phosphors compared to the conventional three-wavelength-band fluorescent lamp color. Can be.
  • the Xy chromaticity value of the fluorescent lamp is (0.4315, 0.4334), the correlated color temperature is 3 3 17 K, 011 ⁇ is 12.3, and by adding secondary emission in addition to the main emission wavelength, This is an embodiment capable of producing an arbitrary light color within the chromaticity ranges of claims 21 and 22 of the present invention.
  • the first is to ensure color reproducibility that allows classification of red, green, blue, yellow, white, and black surface colors at a minimum, and to achieve objectives in sighted and mesopic or large fields of vision.
  • the second is that it can be used in combination with conventional high-color light sources while maintaining a color reproduction of '14' ft, which allows the classification of the surface colors of red, green, blue, yellow, white, and black.
  • a metal halide lamp with a light white color with little light discomfort.
  • the third is to use a mixture of conventional low-color light sources, while maintaining the minimum color reproduction that can classify red, green, blue, yellow, white, and black surface colors.
  • Meta is a highly efficient illumination light source with a light color that is less uncomfortable and the light color is equivalent to a bulb color Noren ride lamp.
  • Metal halide lamps emit light in the wavelength range of 530 to 580 [ran] and 600 to 650 [nm] and emit in the metal halide (metal halide) range of 420 to 530 [nm].
  • the present invention can be realized by adding a metal halide (metal halide) and a metal halide (metal halide) which emits light at 470 to 530 [ran].
  • metal halide lamps based on In (blue emission), T1 (green emission), and Na (yellow / red emission) are used.
  • the present invention can be realized by a set of inclusions ⁇ : in which the components are increased.
  • the present invention is realized by a combination ⁇ : of (I-Dai 17) NaI'AlCl 3 or (I-Dai 18) CaI 2 'AlCl 3 and a thallium metal halide (for example, thallium iodide metal). It is also possible.
  • Another common methanol pentolide lamp has a Sc—Na— (Th) system, which is filled with thallium metal halide (for example, thallium metal iodide). It is also possible to implement the invention.
  • thallium metal halide for example, thallium metal iodide
  • Ce—Na—Cs— (Sm) -based materials for example, these iodides
  • thallium metal halides for example, thallium
  • the present invention provides a highly efficient new light source
  • the first is a color reproduction that can categorize red, green, blue, yellow, white, and black surface colors at a minimum.
  • a light source that is a highly efficient illumination light source that has a light color that is less unnatural and that has a light color equivalent to that of a light bulb. As an improvement.
  • the present invention has a high possibility of being put into practical use as an efficient light source in a place where the fidelity of color appearance is not emphasized. For example, it is particularly promising as a light source for lighting, and can be used in lighting, road lighting, street lighting, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, and factory lighting.
  • the light source of the present invention is applied in a place where the fidelity of color appearance is not emphasized and a place where the light source is used in a low illuminance, so that the light source can be used from a sighted view to a mesopic state! ⁇
  • the effect of the present invention can be effectively obtained.
  • the present invention relates to a high-efficiency new light source, which has a visible band emission wavelength range of 420 to 530 [nm] (more specifically, 420 to 470 [nra], and 470 to 530 [nm]]. nm]), 530 to 580 [nm] and 600 to 650 [nm].
  • the next step is to realize an illumination light source with a white light color while securing a color reproduction life that can classify the surface colors of red, green, blue, yellow, white, and black at least. That is.
  • the third is the light bulb equivalent to the bulb color, while ensuring the minimum color reproducibility that allows the classification of the red, green, blue, yellow, white, and black surface colors.
  • a highly efficient illumination light source must be realized.
  • the main comparison targets are the bulb color (3000K): EX-L, daylight white (5000K): ⁇ ⁇ ⁇ , and daylight color (6700K): EX-D of a three-band fluorescent lamp.
  • the high-efficiency new light source based on 2B (two-wavelength-emission fluorescent lamp), in order to keep the lamp efficiency from falling below 10 [%] (Dani 3) 61 ⁇ , (3 ⁇ 4, 83) 5 (? 0 4) 3 (1 11 and 28 + 3 embodying the pressurized Ete present invention, halophosphate Cal Shiumu phosphor (I spoon 1 6) Ca5 (P0 4) 3 (F, Cl) : Sb and Mn are added to carry out the present invention, and 2B + HAW, and (2) Sr ⁇ O ⁇ Eu is added to carry out the present invention, and 2B + SAE is exemplified.
  • the high-efficiency new light source (2 Since the efficiency of the wavelength-band fluorescent lamp is higher than 20%, the ordinary luminous flux is higher and superior to the 3-wavelength fluorescent lamp. Here, apart from that, we will examine the subjective brightness.
  • V (( ⁇ ) / ⁇ ( ⁇ ) is used as a representative index to verify the effect of improving the sense of brightness in scotopic vision and mesopic vision, and visual sensation in a large visual field such as a real environment is used.
  • V 10 () ⁇ V ( ⁇ ) is used as a representative index for verifying the effect of effective brightness enhancement.
  • FIG. 28 shows the relationship between the values of V, u) / va) and the various light sources
  • FIG. 29 shows the values of ⁇ 10 ( ⁇ ) ⁇ (e) and the concealment of the various light sources. Things.
  • the effect of improving the efficiency of each type by adding a phosphor to the high-efficiency new light source is broadband such as a white halophosphate power phosphor used in general illumination light sources.
  • the phosphor that emits light is relatively small and emits light in a relatively narrow band. That, 4 2 0 ⁇ 4 7 0 [ran ] to phosphor having relatively narrow band emission with a peak of emission (I spoon 3) (Sr, Ca, Ba ) 1 0 (P0 4) 6 C1 2: Eu shows a sufficient improvement effect. Furthermore, 4 7 0 ⁇ 5 3 0 [ ran] to the light emitting phosphor exhibiting relatively narrowband emission having a peak of (spoon 1 1) Sr 4 Al w 0 s: Eu is shows the significant improvement .
  • the tint of the light color is enhanced, and the white color is improved. It can give a sense of color.
  • the present invention clarifies the chromaticity range of the light color that can be accepted as the bulb color, and thereby enables highly efficient light in the fe3 ⁇ 4 range. Hara can be realized.
  • the high-efficiency new light source of the present invention when used in combination with a high-color St light source, the light color variation of light colors with less discomfort and high whiteness is developed, and the light source is used in combination with a low-color light source.
  • It will be edible to develop a light color variation with light color that is less uncomfortable and light color equivalent to the light bulb color.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Luminescent Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

A fluorescent lamp or metal halide lamp which ensures color reproducibility to enable categorical identification of surfaces colors of at least red, green, blue, yellow and white of an illumination object. The fluorescent lamp or metal halide lamp generates a light having a high luminous efficacy in scotopic vision and mesopic vision or in a large visual field, or generates a light having a white color which has less difference in light color in the case where the fluorescent lamp or metal halide lamp is used together with a high color temperature light source, or generates a light equivalent to an incandescent lamp color which has less difference in light color in the case where the fluorescent lamp or metal halide lamp is used together with a low color temperature light source.

Description

明 細 書  Specification
蛍光ランプとメタルハライドランプ  Fluorescent lamps and metal halide lamps
技術分野 Technical field
本発明は、 最低限度、 人間の色のカテゴリ一判断の基本色である赤,緑,青, 黄,白,黒の表面色 (surface color)のカテゴリカル識別が可能な色再現性を確保 しながら、 高効率な照明光源に関するものである。  The present invention secures color reproducibility that enables categorical identification of red, green, blue, yellow, white, and black surface colors, which are the basic colors of human color category judgment. However, it relates to a highly efficient illumination light source.
その内、 本発明は、 大きく以下の 3つの技術に属する。  Among them, the present invention largely belongs to the following three technologies.
第一は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現性を確保しつつ、 喑所視および薄明視、 または大視野での 的明るさ感の 高レ、、 高効率な照明光源である蛍光ランプとメタルノ、ライドランプに関する。 第二は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現生を確保しつつ、 従来の高色温度光源と混在して使用した場合において、 光 色の違和感の少ない、 光色に白色感のある蛍光ランプとメタルノヽライドランプ に関する。  The first is that, while ensuring color reproducibility that allows the classification of red, green, blue, yellow, white, and black surface colors at a minimum, 喑It relates to fluorescent lamps, metal lamps, and ride lamps, which are highly efficient and efficient lighting sources. Second, when used in combination with a conventional high color temperature light source, while ensuring color reproduction that allows classification of red, green, blue, yellow, white, and black surface colors at a minimum. The present invention relates to fluorescent lamps and metal halide lamps that have a light color with little sense of discomfort.
第三は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現性を確保しつつ、 従来の低色温度光源と混在して使用した において、 光 色の違和感の少ない、 光色が電球色相当である、 高効率な照明光源である蛍光 ランプとメタル'ハライドランプに関する。 背景技術  The third is that when used in combination with a conventional low color temperature light source, while ensuring color reproducibility that allows classification of red, green, blue, yellow, white, and black surface colors at a minimum. The present invention relates to fluorescent lamps and metal halide lamps, which are highly efficient illumination light sources that emit light with little discomfort and are equivalent to light bulb colors. Background art
従来のランプでは、 基準光源 (黒体腿 '合成昼光) に対して微妙な色再現 の忠実性を平均演色評価数 (R a ) で評価することで分光特性が設計されてい たのに対し、 人間が色を大ぐくりに識別する色再現 (カテゴリカル色知覚) の 特 '14を応用展開することで評価し、 その分光特性の設計を; ¾ϋィ匕したものに、 日本出願 (特願平 7第 242863 (1995年九月 21日) 、 それを S¾と する pcTZjpgszosei 8がある。 In conventional lamps, spectral characteristics are designed by evaluating the fidelity of subtle color reproduction with respect to a reference light source (black body thigh 'synthetic daylight) using an average color rendering index (R a). On the other hand, it was evaluated by applying and developing the characteristic '14 of color reproduction (categorical color perception) that humans distinguished color roughly, and the design of its spectral characteristics was There is a Japanese application (Japanese Patent Application No. 242863 (September 21, 1995)) and pcTZjpgszosei 8 that uses it as S¾.
これにより、 最低娘、 人間の色のカテゴリー判断の ¾ ^色である赤,緑,青, 黄,白,黒の表面色の分類的識別 (カテゴリカル色知覚)' が可能な色再現性を確 保しつつ高効率な光源を実現が可能となった。 この高効率にカテゴリカル色知 覚を実現する光源を実現するボイントは、 主に緑と赤の波長帯域に発光を集中 することであった。 以下これを高効率新光源と呼ぶ。  As a result, the color reproducibility that can classify the surface colors of red, green, blue, yellow, white, and black (categorical color perception) ', which is the lowest color of humans' color category judgment, is This has made it possible to realize a highly efficient light source while ensuring the same. The point of achieving a light source that achieves categorical color perception with high efficiency was to focus light emission mainly on the green and red wavelength bands. Hereinafter, this is referred to as a high efficiency new light source.
この様な、 最小限の色の見えを満足させながら光源の発光効率を優先させ た前記高効率新光源は、 主に 照明の分野に使用されることが多い。 これは 屋外照明においては屋内照明のように高品質な色の見えが必要とされず、 主に 光源の発光効率の方が優先されるからである。  Such a high-efficiency new light source that gives priority to the luminous efficiency of the light source while satisfying the minimum color appearance is often used mainly in the field of lighting. This is because outdoor lighting does not require the appearance of high-quality colors as indoor lighting does, and the luminous efficiency of the light source is mainly given priority.
また、 この前記高効率新光源を実現するもう一つのポイントは、 u v色度 座標上において、 黒体„ からのずれ (Duv) を 0以上にずらして設計 することである。  Another point of realizing the high-efficiency new light source is to design the shift (Duv) from the blackbody on the uv chromaticity coordinates to be 0 or more.
その黒体放射軌跡からのずれ (Du v) が 0以上の範囲が、 高効率に基本色 のカテゴリカル色知覚が可能であること力ゝら、 前記高効率新光源は基本色の力 テゴリカルな見えが保てる限りにおいて、 Du Vがプラスの値を取る。  The range in which the deviation (Du v) from the blackbody radiation locus is 0 or more indicates that the categorical color perception of the basic color can be performed with high efficiency. As long as the appearance can be maintained, Du V takes a positive value.
ここで、 D u Vがプラスの範囲の内で新光源以外の従来の照明光源に使われ てレ、なかつた部分を詳細に説明する。  Here, a detailed description will be given of the part of the conventional illumination light source other than the new light source within the positive range of D uV.
従来、 光 ¾gの光色を説明するものとしては、 照明光源の色度区分に関する国 際規格として I E C (国際電気標準会議) の規格がある。 また、 世界各国にお いてはそれぞれ、 独自の規格を有する もある。 この様な例に、 日本におい ての J I S (日本工業規格) で定められている蛍光ランプの色度区分の規格が ある。 Conventionally, the light color of light ¾g is described in the national International standards include IEC (International Electrotechnical Commission) standards. Some countries in the world have their own standards. An example of this is the chromaticity classification standard for fluorescent lamps specified in JIS (Japanese Industrial Standards) in Japan.
その I E C規格は、 黒体放射軌跡の近傍に中心点を決め、 その許容差を持つ て光色を決め、 前記 J I Sは黒体放射軌跡の近傍に上下に限界線を規定し、 そ の中を許容範囲とする規格である。  The IEC standard determines a center point near the blackbody radiation locus, determines the light color with its tolerance, and the JIS defines upper and lower limit lines near the blackbody radiation locus. This is a standard within the allowable range.
特に、 従来のランプは、 従来の演色生の評価の立場から、 黒体 から 上方 (D u vがプラス側) に外れることの無いような配慮のもとに開発がなさ れてきた。  In particular, conventional lamps have been developed from the standpoint of evaluation of conventional color rendering, with consideration given not to deviate upward from the black body (Duv is positive).
し力 し、 実際は、 I E Cの言午容範囲の幅は、 D u vの上下方向に 7 . 5から 9 . 5の幅であり、 J I Sの許容範囲の幅は 1 0から 1 9の幅であることから、 従来の照明光源は実際には D u Vのプラス側へ 5から 1 0の範囲までの光色が 実用に供されていた。  In fact, the width of the IEC language range is 7.5 to 9.5 in the vertical direction of D uv, and the JIS tolerance range is 10 to 19 in the vertical direction. For this reason, the conventional illumination light source actually provided light colors in the range of 5 to 10 to the positive side of DuV.
また、 異なる観点から光源光色の白色としての従来の使用範囲を説明するも のに、 C I Eの信号光色の規定があり、 この中で、 黒体放射勒跡に沿った狭い 範囲に規定されている白色の範囲外の D u Vのプラス側は、 いわゆる、 白色光 として従来照明光源には使用されてこなかった。  In addition, the CIE signal light color is stipulated to explain the conventional use range of the light source light color as white from a different viewpoint.In this specification, the signal light color is specified in a narrow range along the blackbody radiation trace. The plus side of DuV outside the white range has not been used as a so-called white light in the conventional illumination light source.
本発明の第一の解決しょうとする! ¾ は、 前記の高効率新光源、の暗所視およ ひ 明視での 的明るさ感の改善である。  Try to be the first solution of the present invention! ¾ is an improvement in the sense of target brightness in scotopic vision and clear vision of the high-efficiency new light source.
照度が高い明所視の状態では、 目の視細胞の内、 錐体が働き、 照度が低い喑 所視の状態では、 目の視細胞の内、 桿体が働くこと、 そしてその中間の薄明視 の状態では、 錐体と桿体の双方力^!くことが知られている。 し力 し、 従来の照 明光源は錐体の働く明所視状態を前提に分光分布の設計が行われてレヽた。 これに対し、 従来の忠実な色再現を目的とした光源ではなく、 前記の高効率 新光源が適用される場は、 比較的低照度 (暗所視、 薄明視) に照明設計される 場である。 In photopic conditions with high illuminance, the cones work in the photoreceptors of the eye, and in low light conditions, the rods work in the photoreceptors of the eye, and in the middle, dim light Sight It is known that in the state of, both the cone and the rod are strong! However, in the conventional illumination light source, the spectral distribution was designed based on the photopic state in which the cone works. On the other hand, instead of the conventional light source aiming at faithful color reproduction, the above-mentioned high efficiency new light source is applied when the illumination is designed for relatively low illuminance (scotopic vision, mesopic vision). is there.
これゆえ、 前記の高効率新光源に対し、 桿体の影響を考え、 比較的低照度な 状態を重視して分光特性の設計を行うことを、 本発明の第一の解決しょうとす る H Mとする。  Therefore, the first solution of the present invention is to design the spectral characteristics of the above-mentioned high-efficiency new light source by giving consideration to the influence of the rod and focusing on the condition of relatively low illuminance. And
本発明の第二の解決しょうとする麵は、 肅己の高効率新光源の、 大視野で の ί¾¾的な明るさ感の改善である。  The second problem to be solved by the present invention is to improve the natural brightness of a large field of view of Sukki's highly efficient new light source.
一般に照度や輝度は明るさに対応する測光量として用いられているが、 この 照度や輝度の分光特性は、 目の中心力近傍の 2 [' ]視野の明るさの分光特性を ベー スにしたものである。 し力 し、 実際の照明環境では中心かに限定された 範囲からのみではなく、 もっと大視野からの光を受けるため、 光源の分光分布 によっては実際の明るさ感と照度の対応にずれが生じる^^があつた。  In general, illuminance and luminance are used as light measurement amounts corresponding to brightness, but the spectral characteristics of illuminance and luminance are based on the spectral characteristics of brightness in the 2 ['] field of view near the central force of the eye. Things. However, in an actual lighting environment, light is received not only from the area limited to the center but also from a larger field of view, so the correspondence between the actual brightness and the illuminance may differ depending on the spectral distribution of the light source ^^
これゆえ、 前記の高効率新光源に対し、 実際の照明の場に入って感じる大視 野でのネ_¾的な明るさ感を向上させる分光特性の設定を行うことを、 第二の解 決しようとする とする。  Therefore, the second solution to the above-mentioned high efficiency new light source is to set spectral characteristics to improve the natural brightness perception in a large visual field which is felt in an actual illumination field. Try to decide.
本発明の第三の解決しょうとする課題は、 前記の高効率新光源の、 発光色の 白色感の向上である。  A third problem to be solved by the present invention is to improve the white appearance of the emitted color of the high efficiency new light source.
前記高効率新光源にぉレ、ては白色感の高レ、光色の範囲は明らかでなレ、。 これに対して、 本発明は前記高効率新光源の白色感を高めることを、 本発明 の第三の解決しようとする fi lとする。 The high-efficiency new light source has high whiteness and a clear light color range. On the other hand, the present invention aims to enhance the white feeling of the high-efficiency new light source, Try to solve the third fi and.
本発明の第四の解決しょうとする■は、 前記の高効率新光源に、 電球色と しての光色の見えを与えることである。  A fourth solution of the present invention is to give the high-efficiency new light source a light color appearance as a light bulb color.
つまり、 前記高効率新光源に低色温度の光源として電球色の発光色のィメ一 ジを与えることを、 本発明の第四の解決しょうとする! ^とする。 発明の開示  That is, it is a fourth solution of the present invention to provide the high-efficiency new light source with a light-emitting color image as a light source having a low color temperature! ^ Disclosure of the invention
本発明は、 前記高効率新光源の薄明視および喑所視での明るさ感を改善する、 また、 大視野での明るさ感を改善するために本発明の照明光源は以下の 1111を 解決する手段を有する。  According to the present invention, an illumination light source of the present invention solves the following 1111 in order to improve the sense of brightness in mesopic and local vision of the high efficiency new light source, and to improve the sense of brightness in a large visual field. Have means to do so.
請求項 1の本発明は、 カテゴリ力ノレ色知覚用の蛍光ランプであって、 主たる 発光を、 発光波長のピークの範囲が 5 3 0〜5 8 0 [nm]および、 6 0 0〜6 5 0 [nm]にある蛍光体で得、 発光波長のピークの範囲が 4 2 0〜 5 3 0 [nm]の発 光波長の範囲の蛍光体による光束を前記主たる発光波長の範囲の総光束に対し、 4〜 4 0 %とし、 ランプ光色の相関色温度が 3 5 0 0〜∞ [K]、 Duv (distance from perfect radiator locus on uv co-ordinates)力 ¾ 5〜 7 0であることを特 徴とし、 喑所視および薄明視、 または大視野での ¾1 効率を高めながら、 少な くとも、 被照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな!^ IJが可能 であることを特徴とする蛍光ランプである。 The present invention according to claim 1 is a fluorescent lamp for perceiving color in the category power, wherein the main light is emitted, and the peak wavelength of the emitted light is in the range of 530 to 580 [nm] and 600 to 65. 0 [nm], and the luminous flux of the phosphor having an emission wavelength peak range of 420 to 530 [nm] is converted to the total luminous flux of the main emission wavelength range. On the other hand, it is 4 to 40%, and the correlated color temperature of the lamp light color is 3500 to ∞ [K], and the Duv (distance from perfect radiator locus on uv co-ordinates) force ¾ 5 to 70. As a feature, 喑 1 in sighted and mesopic or large field of view ¾1 While increasing the efficiency, at least the categorical red, green, blue, yellow, and white colors of the surface color of the illuminated object! ^ A fluorescent lamp characterized by being capable of IJ.
請求項 2の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 主たる 発光を、 発光波長のピークの範囲が 5 3 0〜5 8 0 [nm]および、 6 0 0〜6 5 0 [nm]にある蛍光体で得、 発光波長のピークの範囲が 4 7 0〜 5 3 0 [nm]の発 光波長の範囲の蛍光体による光束を前記主たる発光波長の範囲の総光束に対し、 4〜 40 %とし、 ランプ光色の相関色雄が 3500〜∞ [K]、 Duv (distance rrom perfect radiator 丄 ocus on uv co-ordinates)力 S 5〜 70でめることを特 徴とし、 喑所視および薄明視、 または大視野での 効率を高めながら、 少な くとも、 被照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな翻 ijが可能 であることを糊教とする蛍光ランプである。 The present invention according to claim 2 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the peak wavelength of the emitted light is in the range of 530 to 580 [nm] and 600 to 650. [nm], and the emission wavelength peak ranges from 470 to 530 [nm]. The luminous flux of the phosphor in the range of the light wavelength is 4 to 40% of the total luminous flux in the range of the main emission wavelength, and the correlated color of the lamp light color is 3500 to ∞ [K], and Duv (distance rrom perfect radiator ator). ocus on uv co-ordinates) It is characterized by a power of 5 to 70, and at least the red color of the surface of the illuminated object while increasing the efficiency in sighted and mesopic or large fields of view. This is a fluorescent lamp that has a categorical translation of green, blue, yellow, and white colors.
請求項 3の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 発光波 長のピークの範囲が、 420〜530[nm]、 530〜580 [nm]、 600〜6 50[nm]に含む蛍光体で構成され、 x y色度座標において、 yく一 0. 43 x + 0. 60, y >0. 64 x + 0. 15, x>0. 16の範囲の光色を持つこと を特徴とし、 暗所視および薄明視、 または大視野での視感効率を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな識別が 可能であることを糊数とする蛍光ランプである。  The present invention according to claim 3 is a fluorescent lamp for categorical color perception, wherein the emission wavelength has a peak range of 420 to 530 [nm], 530 to 580 [nm], and 600 to 650 [nm]. It has a light color in the range of y 0.43 x +0.60, y> 0.64 x +0.15, x> 0.16 in the xy chromaticity coordinates. At least red, green, blue, yellow, and white surface colors of the illuminated object can be categorically distinguished while increasing luminous efficiency in scotopic vision, mesopic vision, or large fields of view. This is a fluorescent lamp in which the number of pastes is as follows.
請求項 4の本発明は、 カテゴリ力ノレ色知覚用の蛍光ランプであって、 発光波 長のピークの範囲が、 470〜530 [nm:]、 530〜580[nm]、 600〜6 50 [ran]に含む蛍光体で構成され、 X y色度座標にぉレ、て、 yく一 0. 43 x + 0. 60, y > 0. 64 x + 0. 1 5, x > 0. 16の範囲に囲まれる範囲 の光色を持つことを特徴とし、 暗所視および薄明視、 または大視野での視感 効率を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青,黄,白の色の力 テゴリカルな識別が可能であることを特徴とする蛍光ランプである。  The present invention according to claim 4 is a fluorescent lamp for color perception of category power, wherein the peak range of the emission wavelength is 470 to 530 [nm:], 530 to 580 [nm], 600 to 650 [nm]. ran], the x-y chromaticity coordinates, and y x 0.43 x + 0.60, y> 0.64 x + 0.15, x> 0.16 It is characterized by having a light color in a range surrounded by a range, and increasing the luminous efficiency in scotopic vision and mesopic vision, or in a large field of view, and at least the surface colors of the object to be illuminated red, green, blue, This fluorescent lamp is characterized by its ability to categorize yellow and white colors.
請求項 5の本発明は、 主たる発光を得る、 発光波長のピークの範囲が 530 〜580 [nm]の蛍光体はテルビウム、 または、 テノレビゥムとセリウムを付活し た蛍光体であり、 6 0 0〜6 5 0 [nra]の蛍光体はユーロピウム、 または、 ガンを付活した蛍光体であり、 発光ピーク波長が 4 2 0〜5 3 0 [nra]に存在す る蛍光体、 および、 発光ピーク波長が 4 7 0〜5 3 0 [nm]に する蛍光体は ユーロピウム、 または、 ユーロピウムとマンガン、 または、 アンチモン、 また は、 マンガン、 またはアンチモンとマンガンを付活した蛍光体であることを特 徴とする請求項 1〜4のいずれかに記載の蛍光ランプである。 The present invention according to claim 5 provides a main phosphor, wherein the phosphor having an emission wavelength peak range of 530 to 580 [nm] activates terbium, or tenorebium and cerium. The phosphor of 600-650 [nra] is europium or a phosphor activated with a gun, and has an emission peak wavelength of 420-530 [nra]. Phosphors and phosphors with emission peak wavelengths between 470 and 530 [nm] are activated by europium, or europium and manganese, or antimony, or manganese, or antimony and manganese The fluorescent lamp according to any one of claims 1 to 4, wherein the fluorescent lamp is a phosphor.
請求項 6の本発明は、 発光波長のピークの範囲が 5 3 0〜5 8 0 [ηπι]及び 6 0 0 〜 6 5 0 [nm] に あ る 蛍光体を 、 (Ce, Gd, Tb) (Mg, Mn)B501() と 、 (Ce, Gd)
Figure imgf000009_0001
とを特徴とする請求 項 1〜 5の 、ずれかに記載の蛍光ランプである。
According to the present invention of claim 6, the phosphors having the emission wavelength peak ranges from 530 to 580 [ηπι] and from 600 to 650 [nm] are represented by (Ce, Gd, Tb) (Mg, Mn) and B 5 0 1 (), ( Ce, Gd)
Figure imgf000009_0001
The fluorescent lamp according to any one of claims 1 to 5, characterized in that:
請求項 7の本発明は、 発光ピーク波長が 4 2 0〜 5 3 0 [nm]に存在する蛍光 体、 発光ピーク波長が 4 7 0〜5 3 0 [nm]に存在する蛍光体はハロリン,力 ルシゥム蛍光体であることを特徴とする請求項 1〜 6のいずれかに記載の蛍光 ランプである。  The present invention according to claim 7 is a phosphor having an emission peak wavelength of 420 to 530 [nm], a phosphor having an emission peak wavelength of 470 to 50 [nm] is haloline, The fluorescent lamp according to any one of claims 1 to 6, wherein the fluorescent lamp is a phosphor.
請求項 8の本発明は、 発光ピーク波長が 4 2 0〜5 3 0 [nm]に存在する蛍光 体は、 BaMgAlI(p17:Eu、 または、 (Sr, Ca, Ba) ,。 (P04) 6 Cl :Eu、 または、 BaMgAl1Q017:Eu, Mn、 であることを特徴とする請求項:!〜 6のいずれかに記載の 蛍光ランプである。 The present invention of claim 8, phosphor emission peak wavelength is present in the 4 2 0~5 3 0 [nm] is, BaMgAl I (p 17:. Eu, or, (Sr, Ca, Ba) , (P0 (4 ) The fluorescent lamp according to any one of (1) to (6), characterized in that: 6 Cl: Eu or BaMgAl 1Q 0 17 : Eu, Mn.
請求項 9の本発明は、 発光ピーク波長が 4 7 0〜5 3 0 [nm]に雜する蛍光 体は Sr4Al14025:Eu、 または、
Figure imgf000009_0002
ることを特徴とする請求項 1 〜 6のレ、ずれ力 こ言 fii^の蛍光ランプである。
The present invention of claim 9, phosphor emission peak wavelength雜to 4 7 0~5 3 0 [nm] is Sr 4 Al 14 0 25: Eu, or
Figure imgf000009_0002
7. A fluorescent lamp according to claim 1, wherein the fluorescent lamp has a shift force of fii ^.
請求項 1 0の本発明は、 発光ピーク波長が 4 2 0〜 4 7 0 [nm]に存在する蛍 光体、 および、 4 7 0〜5 3 0 [nm]に; f¾する蛍光体とを同時に有することを 糊数とする請求項 1〜 9のレ、ずれかに記載の蛍光ランプ。 The present invention according to claim 10 is characterized in that a fluorescent light having an emission peak wavelength in the range of 420 to 470 [nm]. 10. The fluorescent lamp according to any one of claims 1 to 9, wherein the number of glues is such that a light body and a phosphor having a wavelength of 470 to 530 [nm] are simultaneously present.
請求項 1 1の本発明は、 発光ピーク波長が 4 2 0〜4 7 0 [nm]に存在する蛍 光体、 および、 4 7 0〜5 3 0 [nm]に する蛍光体は (Ba,
Figure imgf000010_0001
Mn、 であることを特徴とする請求項 1 0記載の蛍光ランプである。 次に、 前記高効率新光源が従来の高色 光源と混在して、 使用される に、 発光光色の白色感を改善するため本発明の照明光源は以下の課題を解決す る手段を有する。
According to the present invention of claim 11, the phosphor having an emission peak wavelength of 420 to 470 [nm] and the phosphor having an emission peak wavelength of 470 to 530 [nm] are (Ba,
Figure imgf000010_0001
10. The fluorescent lamp according to claim 10, wherein Mn is Next, the illumination light source of the present invention has means for solving the following problems in order to improve the white appearance of the emitted light color when the high efficiency new light source is used in combination with the conventional high color light source. .
請求項 1 2の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 主た る発光を、 発光波長のピークの範囲が 5 3 0〜 5 8 0 [nm]および、 6 0 0〜 6 5 0 [nm]に含む蛍光体で得、 かつ、 副発光波長として少なくとも、 4 2 0〜4 7 0 [ran]の範囲に発光波長のピークを有する蛍光体を有し、 相関色温度が 3 5 0 0〜∞[K]、 力、つ、 D uv (distance from perfect radiator locus on uv co - ordinates)が 5〜 7 0の範囲の内、 x y色度座標上において、 xと yの関係が yく一 0. 43 X +0. 60の範囲にあり、  The present invention according to claim 12 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the emission wavelength peak ranges from 530 to 580 [nm] and 600 to A phosphor having a peak of the emission wavelength in the range of 420 to 470 [ran] as a secondary emission wavelength, and having a correlated color temperature of at least 3 5 0 0 to ∞ [K], force, tsu, D uv (distance from perfect radiator locus on uv co-ordinates) is in the range of 5 to 70, and the relationship between x and y on the xy chromaticity coordinates Is in the range 0.43 X +0.60,
発光色の白色感を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな識別が可能であることを特徴とする蛍光ランプで ある。  This fluorescent lamp is characterized by being able to at least categorically identify the red, green, blue, yellow, and white colors of the surface of the illuminated object while enhancing the whiteness of the emitted color.
請求項 1 3の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 主た る発光を、 発光波長のピークの範囲が 5 3 0〜5 8 0 [nm]および、 6 0 0〜6 5 0 [nm]に含む蛍光体で得、 つ、 副発光波長として少なくとも、 4 2 0〜4 7 0 [nm]の範囲に発光波長のピークを有する蛍光体を有し、 X y色度座標上に お い て 色 度 値 ( X , y ) = a: (0. 228, 0. 351) , b: (0. 358, 0. 551), c: (0. 525, 0. 440) , d: (0. 453, 0. 440) , e: (0. 285, 0. 332)に囲まれる範囲のうち、 xと yの関係が yく一0. 43 x +0. 60の範囲にあり、 発光色の白色感を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな識別が可能であることを特徴とする蛍光ランプで ある。 The present invention according to claim 13 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the emission wavelength peak ranges from 530 to 580 [nm] and 600 to 650 [nm] is obtained as a phosphor, and at least as a side emission wavelength, 420 to 4 It has a phosphor with an emission wavelength peak in the range of 70 [nm], and the chromaticity value (X, y) = a: (0.228, 0.351) on the Xy chromaticity coordinates , b: (0.358, 0.551), c: (0.525, 0.440), d: (0.453, 0.440), e: (0.285, 0.332) The relationship between x and y is within the range of 0.43 x +0.60, and while increasing the whiteness of the emission color, at least the surface colors of the illuminated object are red, green, and blue. This is a fluorescent lamp characterized in that categorical identification of yellow, white and yellow colors is possible.
請求項 1 4の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 主た る発光を、 発光波長のピークの範囲が 5 3 0〜5 8 0 [ran]に含む蛍光体で得、 x y 色 度 座 標 上 に お い て 色 度 値 ( x 、 y ) = a: (0. 228, 0. 351) , b: (0· 358, 0. 551) , c: (0· 525, 0. 440), d: (0. 53, 0. 440), e: (0. 285, 0. 332)に囲まれる範囲のうち、 Xと yの関係が、 yく一 0. 43 X +0. 60の範囲にあ り、 発光色の白色感を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな識別が可能であることを特徴とする蛍光ランプで ある。  The present invention according to claim 14 is a fluorescent lamp for categorical color perception, which is obtained by a phosphor having a main light emission whose emission wavelength peak ranges from 530 to 580 [ran]. , Xy chromaticity coordinates (x, y) = a: (0.228, 0.351), b: (0 358, 0.551), c: (0 525) , 0.440), d: (0.53, 0.440), e: (0.285, 0.332), the relationship between X and y is y x 0.43 X +0.60 that the categorical identification of the red, green, blue, yellow, and white colors of the surface color of the illuminated object is possible while increasing the whiteness of the emission color. This is a characteristic fluorescent lamp.
請求項 1 5の本発明は、 副発光波長 4 2 0〜4 7 0 [ran]に発光ピークを有す る蛍光体から発光する光束と、 主たる発光波長 5 3 0〜5 8 0 [ran] に発光 ピークを有する蛍光体から発光する光束との比率 [%]を B : Gとし、 Bを 4〜1 1 [%]、 Gを 9 6〜8 9 [%]とすることを特徴とする請求項 1 2〜1 4のいずれか に記載の蛍光ランプである。  The invention according to claim 15 is characterized in that a luminous flux emitted from a phosphor having an emission peak at an auxiliary emission wavelength of 420 to 47 [ran] and a main emission wavelength of 5330 to 580 [ran] The ratio [%] to the luminous flux emitted from the phosphor having an emission peak is B: G, B is 4 to 11 [%], and G is 96 to 89 [%]. A fluorescent lamp according to any one of claims 12 to 14.
請求項 1 6の本発明は、 発光波長 6 0 0〜 6 5 0 [nm] に発光ピークを有す る蛍光体から発光する光束に対し、 発光波長 4 2 0〜4 7 0 [nm] に発光ピー クを有する蛍光体から発光する光束と発光波長 5 3 0〜5 8 0 [ran] に発光 ピークを有する蛍光体から発光する光束の和、 との比率 を R : とし、 R を 0〜2 8 [%]、 B+Gを 1 0 0〜7 2 とすることを特徴とする請求項 1 2〜 1 5のいずれかに記載の蛍光ランプである。 The present invention according to claim 16 has an emission peak at an emission wavelength of 600 to 600 [nm]. Luminous flux emitted from a phosphor having an emission peak at an emission wavelength of 420 to 470 [nm] and an emission peak at an emission wavelength of 530 to 580 [ran] The sum of the luminous fluxes emitted from the phosphors having the following formulas: R :, R is 0 to 28 [%], and B + G is 100 to 72. A fluorescent lamp according to any one of Items 1 to 15.
請求項 1 7の本発明は、 発光波長のピークが 4 2 0〜4 7 0 [nm]にある蛍光 体をユーロピウム、 を付活した蛍光体、 発光波長のピークが 5 3 0〜5 8 0 [nm]にある蛍光体をテルビウム、 または、 テルビウムとセリウムを付活した蛍 光体、 発光波長のピークが 6 0 0〜6 5 0 [ηπι]にある蛍光体をマンガン、 また は、 ユーロピウムを付活した蛍光体としたことを 数とする請求項 1 2〜1 6 のいずれかに記載の蛍光ランプである。  The present invention according to claim 17 is a phosphor activated with europium and a phosphor having an emission wavelength peak of 420 to 470 [nm], and an emission wavelength peak of 530 to 580 [nm]. The phosphor at [nm] is terbium, or a phosphor activated with terbium and cerium. The phosphor with an emission wavelength peak at 600-650 [ηπι] is manganese or europium. The fluorescent lamp according to any one of claims 12 to 16, wherein the activated phosphor is a number.
請求項 1 8の本発明は、 蛍光体の発光波長のピークが 5 3 0〜5 8 0 [nm]に 存在するテルビウムを付活した蛍光体と、 ハロリン ^¾蛍光体から構成される ことを特徴とする請求項 1 4言 E¾の蛍光ランプである。  The present invention according to claim 18 is characterized in that the phosphor comprises a terbium-activated phosphor whose peak emission wavelength is in the range of 530 to 580 [nm], and a haloline ^ ¾ phosphor. The fluorescent lamp according to claim 14 characterized by the above-mentioned.
請求項 1 9の本発明は、 発光波長のピークの範囲が 5 3 0〜 5 8 0 [nm]及び 6 0 0〜 6 5 0 [nm]の蛍光体を、 (Ce, Gd, Tb) (Mg, Mn)B5010と、 (Ce, Gd) (Mg, Mn)B5010 で構成した一つの蛍光体で実現したことを特徴とする請求項 1 2〜1 7のいず れかに記載の蛍光ランプである。 The present invention according to claim 19 is characterized in that the phosphors having emission wavelength peak ranges of 530 to 580 [nm] and 600 to 650 [nm] are represented by (Ce, Gd, Tb) ( mg, Mn) B and 5 0 10, (Ce, Gd ) (mg, Mn) B 5 0 10 , characterized in that is realized by a phosphor which is constituted by claim 1 2 to 1 7 noise Re A fluorescent lamp as described in
請求項 2 0の本発明は、 発光ピーク波長が 4 2 0〜4 7 0 [nm]に存在する蛍 光体は、 BaMgAl1()0|7:Eu、 または、 (Sr, Ca, Ba) ]0(P04) 6 CI 2 :Eu、 または、 BaMgAl 10017 :Eu,Mn、 であることを特徴とする請求項 1 2〜1 7のいずれ力又は、 1 9記載の蛍光ランプである。 次に、 前記高効率新光源が従来の低色 光源と混在して、 使用される^^ に、 発光光色の電球色としての見えの違和感を改善するため本発明の照明光源 は以下の課題を解決する手段を有する。 According to the present invention of claim 20, the phosphor having an emission peak wavelength in the range of 420 to 47 [nm] is BaMgAl 1 () 0 | 7 : Eu, or (Sr, Ca, Ba) ] 0 (P0 4) 6 CI 2: Eu, or, BaMgAl 10017: Eu, any force of claims 1 2 to 1 7, characterized in that the Mn, or a fluorescent lamp 1 9, wherein. Next, the high efficiency new light source is mixed with the conventional low color light source, and the illumination light source of the present invention has the following problems in order to improve the sense of incongruity of the emitted light color as a bulb color. Is provided.
請求項 2 1の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 主た る発光を、 発光波長のピークの範囲が 5 3 0〜5 8 0 [nm]および、 6 0 0〜6 5 0 [nm]にある蛍光体で得、 相関色温度が 1 7 0 0〜∞[K]、 Duv (distance ェ rom perfect radiator locus on uv co-ordinates) nゝ o1 〜 Ί 0の範囲と、 x y色度座標において色度値 ( X , y ) 力 、 fx2+gy2+hxy+ix+jy+k=0、 f=0. 6179, g=0. 6179, h=-0. 7643, i→. 2205, j=-0. 1765, k=0. 082 の 2次曲線の範囲 と、 が重なる範囲に発光色を有することを糊数とし、 The present invention according to claim 21 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the emission wavelength peak ranges from 530 to 580 [nm] and 600 to Obtained with a phosphor at 65 0 [nm], correlated color temperature is in the range of 1700 to ∞ [K], Duv (distance rom perfect radiator locus on uv co-ordinates) n ゝ o 1 to Ί 0 And the chromaticity value (X, y) force at xy chromaticity coordinates, fx 2 + gy 2 + hxy + ix + jy + k = 0, f = 0.6179, g = 0.6179, h = -0. 7643, i → .2205, j = -0. 1765, k = 0.082
少なくとも、 被照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな識別 が可能であることを糊数とする蛍光ランプである。  At least, this fluorescent lamp uses a glue number that allows categorical identification of red, green, blue, yellow, and white colors of the surface color of the illuminated object.
請求項 2 2の本発明は、 カテゴリカル色知覚用の蛍光ランプであって、 主た る発光を、 発光波長のピークの範囲が 5 3 0〜5 8 0 [nm]および、 6 0 0〜6 5 0 [nm]にある蛍光体で得、  The present invention according to claim 22 is a fluorescent lamp for categorical color perception, wherein the main light is emitted, and the emission wavelength peak ranges from 530 to 580 [nm] and 600 to Obtained with a phosphor at 650 [nm],
x y色度座標において色度値 ( , y ) 、 fx2+gy"+hxy+ix+jy+k=0、 f=0. 6179, g=0. 6179, h=-0. 7643, i=-0. 2205, j=-0. 1765, k=0. 0829の 2次曲線の範囲 以 內 カゝ ら 、 x y 色 度 座 標 の 点 1: (0. 4775, 0. 4283) , m: (0. 4594, 0. 3971) , n: (0. 4214, 0. 3887) , 0: (0. 4171, 0. 3846), : (0. 3903, 0. 3719) , q: (0. 3805, 0. 3642) , r: (0. 3656, 0. 3905) , s: (0. 3938, 0. 4097) , t: (0. 4021, 0. 4076) , u: (0. 4341, 0. 4233) , ν: (0· 4348, 0. 4185)を結ぶ ( 1〜 ν ) 範囲を除 除いた範囲であることを特徴とし、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな識別が可能であることを特徴とする蛍光ランプで ある。 Chromaticity value (, y) in xy chromaticity coordinates, fx 2 + gy "+ hxy + ix + jy + k = 0, f = 0.6179, g = 0.6179, h = -0.7643, i = From the range of the quadratic curve of -0.2205, j = -0. 1765, k = 0. 0829, the point 1 of the xy chromaticity coordinate: (0.4775, 0.4283), m: (0.4594, 0.3971), n: (0.4214, 0.3887), 0: (0.4171, 0.3846),: (0.3903, 0.3719), q: (0. 3805, 0.3642), r: (0.3656, 0.3905), s: (0.3938, 0.4097), t: (0.4021, 0.4076), u: (0.4341, 0. 4233), ν: Excludes the range (1 to ν) connecting (0.4348, 0.4185). The fluorescent lamp is characterized by being in a range excluding the fluorescent lamp, and at least being capable of categorically discriminating red, green, blue, yellow, and white colors of the surface color of the illuminated object.
請求項 23の本発明は、 主たる発光波長を 530〜 560n m、 600〜 6 50 nmに発光ピーク波長が存在する蛍光体から得た蛍光ランプにおいて、 5 30〜560 nmにピーク波長が存在する蛍光体から発光する光束と、 600 〜650 nmに発光ピーク波長が存在する蛍光体から発光する光束の比^ G: R The present invention according to claim 23 provides a fluorescent lamp obtained from a phosphor having a main emission wavelength of 530 to 560 nm and an emission peak wavelength of 600 to 650 nm, wherein the fluorescent lamp has a peak wavelength of 530 to 560 nm. The ratio of the luminous flux emitted from the body to the luminous flux emitted from the phosphor having an emission peak wavelength at 600 to 650 nm ^ G: R
(%) 、 G=70〜59、 R=30〜41であることを糊敷とする請求項 21 又は 22言己载の蛍光ランプである。 23. The fluorescent lamp according to claim 21, wherein (%), G = 70-59, and R = 30-41.
請求項 24の本発明は、 主たる発光波長を 530〜 560n m、 600〜 6 20 nmに発光ピーク波長が存在する蛍光体から得た蛍光ランプにおいて、 副 発光波長を 420〜530 nmに発光ピークを有する する蛍光体から得、 420〜530nm (B+BG) 、 530〜 560 n m(G)、 600〜620nm The present invention according to claim 24 provides a fluorescent lamp obtained from a phosphor having a main emission wavelength of 530 to 560 nm and an emission peak wavelength of 600 to 620 nm, wherein the auxiliary emission wavelength has an emission peak of 420 to 530 nm. 420 to 530 nm (B + BG), 530 to 560 nm (G), 600 to 620 nm
(R) に発光ピークを有する蛍光体から発光する光束の比率 (B+BG) : G : RRatio of luminous flux emitted from phosphor having emission peak at (R) (B + BG): G: R
(%) 力 B+BG二 0〜3、 G=59〜71、 R= 41〜 26であることを特徴と する請求項 21〜23のいずれかに言 の蛍光ランプである。 (%) Power The fluorescent lamp according to any one of claims 21 to 23, characterized in that B + BG 20-3, G = 59-71, R = 41-26.
請求項 25の本発明は、 発光波長のピークの範囲が 530〜 580 [ran]の蛍 光体はテルビウム、 または、 テルビウムとセリウムを付活した蛍光体であり、 600〜650 [nm]の蛍光体はユーロピウム、 または、 マンガンを付活した蛍 光体であることを特徴とする請求項 21〜 24のレ、ずれかに記載の蛍光ランプ である。  The invention according to claim 25, wherein the phosphor having an emission wavelength peak range of 530 to 580 [ran] is terbium or a phosphor obtained by activating terbium and cerium, and has a fluorescence of 600 to 650 [nm]. The fluorescent lamp according to any one of claims 21 to 24, wherein the body is a phosphor activated with europium or manganese.
請求項 26の本発明は、 発光波長のピークの範囲が 530〜 580 [nm]及び 600〜 650 [nm]の蛍光体を、 (Ce, Gd, Tb) (Mg, Mn) BB010と、 (Ce, Gd) (Mg, Mn) B.Oln で構成した一つの蛍光体で実現したことを特徴とする請求項 21〜25のいず れかに記載の蛍光ランプである。 The present invention according to claim 26 is characterized in that the peak range of the emission wavelength is 530 to 580 [nm] and The phosphor of 600~ 650 [nm], (Ce , Gd, Tb) (Mg, Mn) and B B 0 10, (Ce, Gd) (Mg, Mn) realized in one phosphor configured in BO ln The fluorescent lamp according to any one of claims 21 to 25, wherein:
請求項 27の本発明は、 屋外照明、 道路照明、 街路照明、 安全灯、 車両灯 火、 トンネル照明、 広場照明、 車庫照明、 倉庫照明、 又は工場照明に使用すること を特敫とする請求項 1〜 26記載の蛍光ランプである。  The invention according to claim 27 is characterized in that it is used for outdoor lighting, road lighting, street lighting, safety light, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, or factory lighting. 27. A fluorescent lamp according to any one of 1 to 26.
また、 本発明を蛍光ランプ以外の光源で実現する場合は、 本発明の照明光源 は以下の課題を解決する手段を有する。  When the present invention is realized by a light source other than a fluorescent lamp, the illumination light source of the present invention has means for solving the following problems.
請求項 28の本発明は、 請求項 1〜 26のレ、ずれかに |5¾の蛍光ランプと同 等の光色と発光スぺクトルを持つことを特^ Cとするメタノレノヽライドランプであ る。  A twenty-eighth aspect of the present invention is a methanol lamp having the same light color and emission spectrum as the fluorescent lamp of the present invention. You.
請求項 29の本発明は、 屋外照明、 道路照明、 街路照明、 安全灯、 車両灯火、 トンネル照明、 広場照明、 車庫照明、 倉庫照明、 又は工場照明に使用することを特 徴とする請求項 28記載のメタルハライドランプである。 図 面 の 簡 単 な 説 明  The present invention according to claim 29 is characterized in that it is used for outdoor lighting, road lighting, street lighting, safety light, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, or factory lighting. It is a metal halide lamp described. Brief explanation of drawings
図 1は本発明の蛍光ランプの代表的な実施の形態の分光分布を示すグラフで ある。  FIG. 1 is a graph showing the spectral distribution of a typical embodiment of the fluorescent lamp of the present invention.
図 2、 図 3は比視感度をピーク高さを 1として相対化した各種比視感度の 比較を示す図である。  2 and 3 show a comparison of various relative luminous sensitivities in which relative luminous efficiency is made relative to a peak height of 1. FIG.
図 4は vb,10 (え)と ν^α)の差、 VM (え)と VU)の差、 νιο(λ)と ν(λ) = ν2(λ)との差、 V' (λ)と ν(λ)の差をとつたものを示す図である。 図 5は目の 3種の錐体 (S錐体、 M錐体、 L錐体) の基本分光感度と、 桿 体の 分光感度を、 ピークを 1として相対化して示す図である。 Figure 4 shows the difference between v b , 10 (e) and ν ^ α), the difference between V M (e) and VU), the difference between ν ιο (λ) and ν (λ) = ν 2 (λ), V 'is a diagram showing the difference between (λ) and ν (λ). Fig. 5 is a diagram showing the relative spectral sensitivities of the three types of cones of the eye (S cone, M cone, and L cone) and the rod's spectral sensitivity, with the peak as 1.
図 6は本発明の蛍光ランプ (請求項 3、 4) の xy色度座標上の範囲を示す 図である。  FIG. 6 is a diagram showing the range on the xy chromaticity coordinates of the fluorescent lamp of the present invention (claims 3 and 4).
図 7は X y色度座標上の光の理論的な効率を示す図である。  FIG. 7 is a diagram showing the theoretical efficiency of light on the xy chromaticity coordinates.
図 8は、 X y色度座標上の輝度の補正計数 Fを示す図である。  FIG. 8 is a diagram showing a correction factor F of luminance on the XY chromaticity coordinates.
図 9は、 ユニーク (unique) 色のスぺク トノレ 上の位置を示す図である。 図 10は、 x y色度座標上において、 光源 1 7(1 a)〜光源 21 (1 e) の xy色度 ί直と、 その回帰直線 22 (y =— 0.43 X +0.58) の関係を示す図であ る。  FIG. 9 is a diagram showing the positions on the unique color tone storage. Figure 10 shows the relationship between the xy chromaticity of light sources 17 (1a) to 21 (1e) and its regression line 22 (y =-0.43 X + 0.58) on the xy chromaticity coordinates. It is a figure.
図 1 1 は 、 請求項 1 3 、 1 4 の 色度値 ( X , y ) = a: (0.228, 0.351), b: (0.358, 0.551), c: (0· 525, 0.440), d: (0.453, 0.440), e: (0.285, 0. 332)と、 赚 23 (y <-0. 43 x + 0. 60) および、 光源色の色名の関 係を示した図である。  Fig. 11 shows the chromaticity values (X, y) = a: (0.228, 0.351), b: (0.358, 0.551), c: (0 · 525, 0.440), d: (0.453, 0.440), e: (0.285, 0.332), 赚 23 (y <-0.43 x +0.60), and the relationship between the color names of the light source colors.
図 12〜図 1 6は、 、 20W蛍光ランプにおける実施例である光源(1 f )〜 ( 1 j )の分光分布を示す図である。  12 to 16 are diagrams showing the spectral distributions of the light sources (1f) to (1j) which are the examples in the 20 W fluorescent lamp.
図 17は、 高効率新光源を蛍光ランプで実現した場合の分光分布図である。 図 1 8は、 本発明の請求項 1 3 、 1 4の 色度値 ( x, y ) = a: (0.228, 0.351) , b: (0.358, 0.551) , c: (0.525, 0.440), d: (0.453, 0.440), e: (0.285, 0. 332)に囲まれる範囲で且つ、 yく一 0. 43 x + 0. 60 で定義される色 度範囲 25等を xy色度座標上に示したものである。  FIG. 17 is a spectral distribution diagram when a high-efficiency new light source is realized by a fluorescent lamp. FIG. 18 shows the chromaticity values (x, y) = a: (0.228, 0.351), b: (0.358, 0.551), c: (0.525, 0.440), d in claims 13 and 14 of the present invention. : (0.453, 0.440), e: The chromaticity range 25, etc. defined by y and 0.43 x + 0.60 in the range surrounded by (0.285, 0.332) is plotted on the xy chromaticity coordinates. It is shown.
図 1 9は、 t l〜t 21の 21種類の光色を X y色度座標上に示す図である。 図 2 0は、 電球色として許容できると回答した割合を小数点で、 各テスト 光源の x y色度点毎に、 示した図である。 FIG. 19 is a diagram showing 21 types of light colors from tl to t21 on XY chromaticity coordinates. FIG. 20 is a diagram showing, for each xy chromaticity point of each test light source, the percentage of respondents that the color is acceptable as a light bulb color.
図 2 1 f»発明の請求項 2 1の l〜v範囲と、 曲線 2 3との関係を示す図で ある。  FIG. 21 f is a diagram showing the relationship between the lv range of claim 21 of the invention and the curve 23.
図 2 2は、 参考として、 比較^とした J I Sの蛍光ランプの光色の範囲を 示す図である。  FIG. 22 is a diagram showing a range of light colors of a fluorescent lamp of JIS as a comparative example for reference.
図 2 3力 ら図 2 6は、 L A P : YOXの光束比を変化させた場 の蛍光ラン プの実施例の分光分布を示す図である。  FIG. 23 to FIG. 26 are diagrams showing the spectral distributions of the fluorescent lamp examples when the luminous flux ratio of LAP: YOX is changed.
図 2 7は、 本発明の他の実施例としての蛍光ランプの分光分布を示す図であ る。  FIG. 27 is a diagram showing a spectral distribution of a fluorescent lamp as another embodiment of the present invention.
図 2 8は V' ( λ)Ζν (え)の値と前記各種光源の関係を示した図である。  FIG. 28 is a diagram showing the relationship between the value of V '(λ) Ζν (e) and the various light sources.
図 2 9は V10 (え) V ( λ )の値と前記各種光源の関係を示した図である。 発明を実施するための最良の形態  FIG. 29 is a diagram showing the relationship between the value of V10 (E) V (λ) and the various light sources. BEST MODE FOR CARRYING OUT THE INVENTION
高効率新光源は、 主に緑と赤の波長帯域に発光を集中することで最低 、 赤,緑,青,黄,白,黒の表面色の分類的翻リが可能な色再現性を確保しつつ 高効 率な光源を実現するものであるが、 本発明の第 1の実施の形態はこれに青もし くは青緑の波長帯域の発光を付加することで、 暗所視および薄明視での 的 明るさ感と、 大視野でのネ越的な明るさ感を改善するものである。  The new high-efficiency light source assures color reproducibility that allows the classification of the red, green, blue, yellow, white, and black surface colors by concentrating light emission mainly in the green and red wavelength bands. In the first embodiment of the present invention, luminescence in the blue or blue-green wavelength band is added to achieve a scotopic vision and a mesopic vision. The aim is to improve the sense of brightness in the target and the sense of neat brightness in a large field of view.
次に、 本発明の蛍光ランプの代表的な実施の形態を図 1に示す。  Next, a typical embodiment of the fluorescent lamp of the present invention is shown in FIG.
図 1の 1の実線は本発明を蛍光ランプで実施した場合の分光分布であり、 2 の ¾泉は前記高効率新光源、を蛍光ランプで実施した^の分光分布を示して ヽ る。 本発明では図 1のごとく、 青もしくは青緑の分光分布の相対パワーを強調 することで、 前記高効率新光源に対し、 喑所視およひ^明視での 的明るさ 感と、 大視野での 的な明るさ感を改善することができる。 以降、 この根拠 を詳細に示す。 The solid line 1 in FIG. 1 is the spectral distribution when the present invention is implemented by a fluorescent lamp, and the spring 2 is the spectral distribution of ^ when the high-efficiency new light source is implemented by a fluorescent lamp. You. The present invention emphasizes the relative power of the blue or blue-green spectral distribution as shown in FIG. It can improve the sense of brightness in the visual field. Hereafter, this rationale will be described in detail.
光の明るさに関する応答特性はスぺクトルによって異なり、 これは比 度 または比 ¾¾¾度関数と呼ばれる。 一般に照明の明るさは C I E (国際照明委員 会) が定めた標準明所視比 度関数 (以降 ν (λ)) で評価される。 これは明 るレヽ場所に目が慣れた状態つまり、 明所視での錐体視細胞の明るさ感度特性を 反映したものである。 これは 5 5 5 [nm]に感度の中心があることが知られてお り、 通常の照明光源はこの ν (λ〉に対する分光特性の効率で評価されている。 The response characteristic of the brightness of the light depends on the spectrum, and is called a ratio or a ratio function. In general, the brightness of lighting is evaluated by the standard photopic visibility function (hereinafter ν (λ)) defined by the CIE (International Commission on Illumination). This reflects the condition in which the eyes are used to the bright spot, that is, the brightness sensitivity characteristics of the cone photoreceptors in photopic vision. It is known that the center of sensitivity is at 5.55 [nm], and ordinary illumination light sources are evaluated based on the efficiency of the spectral characteristics with respect to ν (λ).
—方、 暗レヽ場所に目が慣れた状態つまり、 暗所視での桿 ί«¾細胞の明るさ感 度特 14を反映したものに C I Ε (国際照明委員会) が定めた標準喑所視比視感 度関数 (以降 V' (え)) がある。 これは 5 0 7 [ran]に感度の中心があることが 知られている。 —In the state where the eyes are used to the dark area, that is, the standard place set by CI (International Commission on Illumination) to reflect the scotopic vision of the rod. There is a parallax luminosity function (hereinafter V '(e)). It is known that there is a center of sensitivity at 507 [ran].
また、 明所視と喑所視の中間の明るさの状態である薄明視ではこれらの中間 の比 度特性となると言われており、 これらは環境の明るさの対する目の順 応状態で変化する。  It is said that mesopic vision, which is a state of brightness intermediate between photopic vision and 喑 photopic vision, has an intermediate ratio characteristic between these.These characteristics change depending on the adaptation of the environment's brightness to the eye. I do.
つまり、 喑所視もしくは薄明視状態では、 明所視ょり青もしくは青緑帯域で 感度が高くなるという事実がある。 これに対し、 従来の明所視での効率を前提 とした照明光源と異なり、 主に設計照度が暗い場所で使用されることが多い前 記高効率新光源、に、 青もしくは青緑帯域のスぺクトルを付加することによって、 実効的また 的な明るさ感を増加させることが可能である。 さて、 従来の ν (λ )についても、 各種の修正がなされている。 In other words, there is the fact that in photopic or mesopic conditions, the sensitivity is higher in the blue or blue-green band when photopic. On the other hand, unlike the conventional illumination light source that presupposes photopic efficiency, the new high-efficiency light source that is often used in places where the design illuminance is dark often has a blue or blue-green band. By adding a spectrum, it is possible to increase the effective or effective brightness. Now, various modifications have been made to the conventional ν (λ).
先ず、 ンャッド1 ί!^_ι£等色関数 (Judd' s modified colormaching functions) こつ いて述べる (以降 vM( ;o) 。 この修正の理由は ν ( λ )が短波長の青の帯域で 低 く見積もられすぎていたためである。 VM (又)は確かにより実態を反映して いる と考えられるが、 測光系を変えることは望ましくないということも真実 であるので、 これは 「シ一 アイ ィ一 パブリケーシヨン 第 8 6番」 (C I L Publication No.8り :2 Spectral luminous efficiency function for photopic vision (1990) ) として定められているが一般のランプの明るさの評 価に反映されてはいなレ、。 First, Nyaddo 1 ί ^ _ ι £ color matching function (Judd 's modified colormaching functions) tips have discussed with (and later v M (; low in a band of o) Blue reason for this modification is ν (λ) is a short wavelength!. Although it is believed that V M (or) certainly reflects the actual situation, it is true that it is not desirable to change the photometric system. It is specified as “I-Publication No. 86” (CIL Publication No. 8: 2 Spectral luminous efficiency function for photopic vision (1990)), but is reflected in the evaluation of the brightness of general lamps. Yes.
次に、 V )に対して、 視野の大きさが異なった比!¾度について述べる。 V (え)は視力の高い中心かによる中心視の範囲である 2 Γ ]度視野を前提に構 成 された ν2( λ )であるが、 さらにもっと大きい視野の 1 0 [' ]度視野で構成 したものに ν10( λ )がある。 これは 「シ一 アイ ィー パブリケーシヨン 1 9 6 4」 ( C I Ε 1964 supplementary colorimetric standard system ) と して勧告されている。 Next, a description will be given of the ratio of different visual fields to V). V (e) is ν 2 (λ), which is based on the 2 視] degree field of view, which is the range of central vision depending on whether the center has high visual acuity, but the 10 ['] degree field of view is much larger. Ν 10 (λ) is composed of. This is recommended as "CII Publication 1964" (CI Ε 1964 supplementary colorimetric standard system).
実環境下において目に到達する光は、 狭い視野からのみのものではなく広い 視野から到達するため。 こういった大きい視覚寸法から明るさ感を評価するに は ν1()( ;ι )がより実態を反映していると考えられる。 The light that reaches the eyes in a real environment is not only from a narrow field of view, but from a wide field of view. It is considered that ν 1 () (; ι) reflects the actual situation in evaluating the sense of brightness from such a large visual dimension.
錐体には短波長に感度が高い S (青) 錐体、 長波長に感度の高い L (赤) 錐 体、 その中間の M (緑) 錐体が存在するが、 中心力近傍には S錐体は少なく、 中心かの周辺部には S錐体が多レ、こと力 ら、 視覚寸法が大きレ、方が青に関する 感度を高く ¾もる結果となる。 また、 中心かには桿体も存在せず、 V' (λ)自身も中心かから外れたポイン トで構成された比 度であること力ゝら、 暗所視または薄明視等の低レ、照度で の使用を前提とした光源の明るさの補正、 また、 実環境下での大きレヽ視野から 目に入る光による、 明るさ感の補正には、 青もしくは青緑の帯域が重要な意味 を持つことがわかる。 The cone has an S (blue) cone that is sensitive to short wavelengths, an L (red) cone that is sensitive to long wavelengths, and an M (green) cone in between, but S near the central force The number of cones is small, and the number of S cones around the center is large. Therefore, the visual dimension is large, and the result is that the sensitivity to blue is higher. In addition, there is no rod at the center, and V '(λ) itself is a ratio composed of points off the center. The blue or blue-green band is important for correcting the brightness of the light source assuming use at illuminance, and for correcting the sense of brightness due to light coming into view from a large field of view in a real environment. It has a meaning.
次に、 光色の違う光同士を交互に提示しちらつきを最小にする交照法により、 また、 僅かに光色の違う光を明るさマッチングして求める逐次比較法によって 得られた結果がベ一スとなっている ν(λ)に対して、 直接マツチング法という 直接的に明るさの比較を行う方法で構成された比 ¾¾¾度にっレ、て述べる。  Next, the results obtained by the illumination method that alternately presents light beams of different light colors to minimize flickering and the successive approximation method that obtains light beams of slightly different light colors by brightness matching are obtained. We will describe the relative degree of ν (λ), which is constructed by a direct brightness comparison method called the direct matching method.
これは、 直接に視覚の明るさ感を抽出したものであり、 「シ一 アイ ィー パブリケーシヨ ン 第 7 5番」 (C I E Publication No.75 : Spectral luminous efficiency functions based upon brightness mac mg for monochromatic point sources 2" and 10° fields (1988) ) として定められて 2 [Ί度視野のものは (又)、 10门度視野のものは VM0 (え)と呼ばれおりこ の^は、 明るさの直接的な明るさの感度とは良く対応するがスムーズなプロ フィーノレを描かなレ、。 This is a direct extraction of the sense of visual brightness, and is described in “CIE Publication No. 75” (CIE Publication No. 75: Spectral luminous efficiency functions based upon brightness mac mg for monochromatic point sources). 2 "and 10 ° fields (1988)), which are called 2 [for those with a field of view of (°) and those with a field of view of 10 ° which are called V M0 (E). A color that responds well to the direct brightness sensitivity but draws a smooth profile.
しかし、 この直接マッチング法も Vb.2 (又)に る νΐ),ΙΟ(λ)の差を見ると、 視覚寸法が大きレ、方が青に関する感度を高く もる結果となってレ、る。 However, this direct matching method also V b. 2 (also) Ni that in), looking at the difference between ΙΟ (λ), the visual dimension size les, it is becomes higher mole results sensitivity for blue-les, You.
これらの V10 (λ) 、 VM (λ) 、 V ' (λ) 、 Vb,2( ), Vb,,。( L)は、 各々、 時と場合により、 V (又)に対して実態をより良く反映してはいるものの、 補助的な明るさの測光量とみなされており、 一般のランプの明るさの Hffiと開 発に利用されていない。 し力 し、 実態に鑑み、 これらを総合すれば、 比較的低い照度で用いられる ことが特徴である前記高効率新光源の視感的、 実効的な明るさ感を 増加させ ることが可能である。 These V 10 (λ), V M (λ), V ′ (λ), V b , 2 (), V b ,,. (L) is considered as an auxiliary brightness photometric light, although it better reflects the actual situation with respect to V (or), depending on the time and the case. Hffi and not used for development. However, in view of the actual situation, it is possible to increase the visual and effective brightness of the high-efficiency new light source, which is characterized by being used at relatively low illuminance. is there.
図 2、 図 3はこれらの比 度をピーク高さを 1として相対化した各種比視 感度の比較である。 図 2には V (え)、 ν10(λ), νΜ(λ)、 ν'(λ)を示してい る。 また、 図 3には、 ν(λ)に対して心理物理的 (phycophysical) 導出の手 法が異なる Vh2U)と Vhl。(;L)を示して あり、 参考に ν(λ)を示している。 これをもとに、 図 4に Vw )と ν 2(λ)の差、 νΜ(λ)と ν(λ)の差、 V „)(又)と (ぇ)= (又)との差、 V' (え)と ν(λ)の差をとつたものを各種比視 感度の差として示す。 Figures 2 and 3 compare these relative luminous sensitivities with these ratios being relative to each other with the peak height being 1. Figure 2 shows V (e), ν 10 (λ), ν Μ (λ), and ν '(λ). Figure 3 shows V h2 U) and V hl, which differ in the method of deriving phycophysical for ν (λ). (; L), and ν (λ) for reference. Based on this, Figure 4 shows the difference between Vw) and ν 2 (λ), the difference between ν Μ (λ) and ν (λ), and the difference between V „) (also) and (ぇ) = (also). , V ′ (e) and ν (λ) are shown as differences in various relative luminous efficiencies.
これらの種々の比 度を考慮すると、 このグラフのプラス側が、 従来の V (え)では低く見積もられすぎていた割合に相当し、 これらは青または青緑の帯 域に集中してレ、ることが分かる。  Taking these various ratios into account, the positive side of this graph corresponds to the ratio that was underestimated in the conventional V (e), which were concentrated in the blue or blue-green band, You can see that
次に個別にこれらを検 t ると、 種々の比Ei度ピークとその範囲には以下 の関係が導かれる。  Next, when these are individually examined, the following relations are derived for various ratio Ei degree peaks and their ranges.
•VwoU)と V z (又)の差のピークは 500 [nra]、 ピーク比 50 [%]以内の 範囲は 460〜 520 [nm]、 ピーク比 80 [%]以内の範囲は 480〜 505 [nm]となる。 • The peak of the difference between VwoU) and V z (also) is 500 [nra], the range within a peak ratio of 50 [%] is 460 to 520 [nm], and the range of a peak ratio within 80 [%] is 480 to 505 [%]. nm].
·νΜ(λ)と V(;0の差のピークは 435 [nm]、 ピーク比 50 [%]以内の範囲 は 41 5〜450 [nra]、 ピーク比 80 [%]以內の範囲は 420〜445 [nm] となる。 · The peak difference between ν Μ (λ) and V (; 0 is 435 [nm], the peak ratio within 50 [%] is 415 to 450 [nra], and the peak ratio below 80 [%] is 420. ~ 445 [nm].
秦 νιο(λ)と V (え) =V2 (え)との差のピークは 500 [nm]. ピーク比 50 [%] 以内の範囲は 465〜5 1 5 [nra]、 ピーク比 80 [%]以内の範囲は 48 0〜505 [nm]となる。 Hata ν ιο (λ) and V (e) = V 2 (e) have a peak of 500 [nm]. Peak ratio 50 The range within [%] is 465 to 515 [nra], and the range within 80 [%] is 480 to 505 [nm].
• V (λ)と ν(λ)の差のピークは 490 [nra]、 ピーク比 50 [%]以内の範 囲は 445〜5 1 5 [nm]、 ピーク比 80 [%]以内の範囲は 470〜 505 [nm]となる。  • The peak of the difference between V (λ) and ν (λ) is 490 [nra], the range within a peak ratio of 50 [%] is 445 to 515 [nm], and the range within a peak ratio of 80 [%] is 470 to 505 [nm].
また、 その導出方法が異なるため、 直接の比較はできないが、 参考として Also, since the derivation method is different, direct comparison is not possible, but as a reference
• Vb.2^)と ν(λ)の差のピークは 530[nm]、 ピーク比 50 [%]以内の範 囲は、 比視感度の歪みがあることから 430〜480 [nm]、 5 1 0〜535 [nm]に 2分される。 ここにおいて、 ピーク比 80[%]以内の範囲は 530 [nm] ±2. 5 [nm]以内となる。 • V b. 2 ^) and [nu (lambda) difference of the peak 530 [nm] of the peak ratio of 50 [%] within the range is from 430 to 480 since there is distortion in the relative luminous efficiency [nm], It is divided into 5 10 to 535 [nm]. Here, the range of the peak ratio within 80 [%] is within 530 [nm] ± 2.5 [nm].
秦 Vt ιο( λ )と V ( λ )の差のピークは 500 [nm]、 ピーク比 50 [%]以內の範 囲は 450〜520 [nm], ピーク比 80 [%]以内の範囲は 475〜 510 [nm] となる。 Hata: The difference between the peaks of V t ιο (λ) and V (λ) is 500 [nm], the peak ratio of 50 [%] or less is 450-520 [nm], and the peak ratio is 80 [%] or less. 475 to 510 [nm].
以上の関係から、 図 4のグラフのうち、 大きくプラス側にあり、 分光分布 の補正をかけるべき範囲について考察する。  Based on the above relationship, consider the range on the graph in Fig. 4 that is largely on the plus side and should be corrected for spectral distribution.
ここで、 前記高効率新光源の主たる発光波長の範囲以下の波長で、 これら補 正帯域を組み合わせると、 最大で 420〜 530 [nm]の範囲が ffi!Eすべき範囲 となる。  Here, if these correction bands are combined at a wavelength equal to or less than the main emission wavelength range of the high-efficiency new light source, the maximum range of 420 to 530 [nm] is the range to be eff! E.
本発明はこの範囲に基づいている。  The present invention is based on this range.
さらに、 この範囲の中で効果の高い範囲について、 以下に検 Tる。  In addition, we will examine below the range that has the highest effect in this range.
VM (又)は主に S錐体に関わる 455 [ran]以下の青の帯域の補正であること、 可視光短波長側での多くの補正は元々の感度が絶対的に小さいことから 、 V M (え)と V ( λ )の差以外の補正のピーク比 8 0 [%]以内の最も効果の高レ、領域 は 4 7 0〜5 3 0 [nm]の範囲となる。 VM (also) is the correction of the blue band of 455 [ran] or less mainly related to the S cone, and many corrections on the short wavelength side of visible light have absolutely small original sensitivities. The maximum effect within the peak ratio of 80 [%] other than the difference between M (E) and V (λ) is within the range of 470 to 530 [nm].
次に図 5に目の 3種の錐体 (S錐体、 M錐体、 L錐体) の基本分光感度と、 桿体の基本分光感度を、 ピークを 1として相対ィ匕して示す。  Next, Fig. 5 shows the basic spectral sensitivities of the three types of cones of the eye (S-cone, M-cone, and L-cone) and the basic spectral sensitivities of the rods, with the peak being set to 1 and shown relative to each other.
ここで、 薄明視、 喑所視で働く桿体は S錐体と M錐体の間に分光感度のピ一 クを持っていることが判る。  Here, it can be seen that the rods that work in mesopic and stereopsis have a peak in spectral sensitivity between the S and M cones.
また、 一般の照明光源は明所視で働く 3種の錐体 (S錐体、 M錐体、 L錐 体) を刺^ Tることを目的としているが、 fiilSの高効率新光源は、 主に緑と赤 の帯域に発光を集中することで、 主に 2種の錐体 (M錐体、 L錐体) を刺激し、 視覚の r― g反対色応答系を中心に刺 m~ることを糊敫とするものである。 ここで、 従来の照明光源は、 明所視での使用を前提にしているので、 桿体の 分光感度を考慮されては来なかった力 今回の発明の内、 喑所視および薄明視 での 的明るさ感の改善は、 主に 2種の錐体 (M錐体、 L錐体) と桿体を刺 W "ることを 敫としており、 明るさ感覚への寄与度の小さい S錐体を刺 る割合を減らし桿体を刺激する効率を上げるためには、 前記高効率新光源、に追 加する発光波長を 4 7 0〜5 3 0 [nm]の青緑帯域に集中するとよレ、。  In addition, general illumination light sources aim to pierce three types of cones (S cone, M cone, and L cone) that work in photopic vision. By concentrating luminescence mainly in the green and red bands, it stimulates mainly two types of cones (M cone and L cone), and stabs mainly in the visual r-g opponent color response system. That is the thing to do. Here, the conventional illumination light source is assumed to be used for photopic vision, so the power that did not take into account the spectral sensitivity of the rod was included in the present invention. The improvement in the sense of visual brightness is mainly based on the fact that two types of cones (M cone and L cone) and a rod are stabbed, and the S cone that contributes little to the brightness sensation In order to reduce the sting rate and increase the efficiency of stimulating the rod, it is necessary to concentrate the emission wavelength added to the high-efficiency new light source in the blue-green band of 470 to 530 [nm]. ,.
また、 網膜の中心力周辺部に S錐体の密度が高いことから、 視覚寸法が大き い方が S錐体に関する感度を高く見積もる結果となるため、 今回の発明の内、 大視野での ί¾的明るさ感の改善は、 主に網膜の中心カゝ周辺に多く分布する S 錐体を刺 る度合いを多くすることで実現できる。 このためには、 前記高効 率新光源に 口する発光波長を 4 2 0〜4 7 0 [nm]の青帯域に集中するとよレ、。  In addition, since the density of S cones is high around the central force of the retina, the larger the visual size, the higher the sensitivity of the S cones. As a result, the 発 明The improvement in perceived brightness can be achieved mainly by increasing the degree of stabbing the S cones distributed around the center of the retina. For this purpose, the emission wavelength emitted by the high-efficiency new light source should be concentrated in the blue band of 420 to 470 [nm].
S錐体と桿体の比 ¾度には重なりがあるため、 喑所視および薄明視での視 感的明るさ感と、 大視野での t¾i的な明るさ感をともに改善する波長帯城は 4Due to the overlap between the ratio of the S cone and the rod, There are 4 wavelength band castles that improve both the sense of brightness and the t¾i-like brightness in a large field of view.
2 0〜 5 3 0 [nm]となる。 し力 し、 可視光の短波長側では元々の明るさに対す る各種の比 ¾M度が絶対的に小さいことから、 これらをともに効率よく改善し ようとすれば、 4 7 0〜 5 3 0 [nm]により重点を置く方が良レ、。 20 to 5330 [nm]. However, on the short wavelength side of visible light, various ratios to the original brightness ¾M degrees are absolutely small, and if these are to be efficiently improved together, 470 to 530 It is better to put more emphasis on [nm].
喑所視および薄明視、 または大視野での視感効率を高めながら、 少なくとも、 ネ應明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな繊リが可能であるた めには、 ランプの光色の青、 または、 青緑成分を増強することが望ましい。 こ のためには、 ランプ光色の相関色温度を高く設定し、 一般的な光源光色の 票 である相関色 を撤票とした^においては、 3 5 0 0 [K]以上にすること、 もしくは、 ランプ光色の色度を X y色度座標において、 y < _ 0. 4 3 + 0. 6 0の範囲に設定することが望ましい。  カ テ ゴ リ At least categorical delicate red, green, blue, yellow, and white colors of the surface of the object can be achieved while increasing the visual efficiency in visual and mesopic or large visual fields. To achieve this, it is desirable to enhance the blue or blue-green component of the lamp light color. To achieve this, the correlated color temperature of the lamp light color must be set high, and the value of correlated color, which is a common light source light color vote, must be 3500 [K] or more for ^. Alternatively, it is desirable to set the chromaticity of the lamp light color in the range of y <_0.43 + 0.60 in the Xy chromaticity coordinates.
図 6に本発明の蛍光ランプ (請求項 3、 4 ) の x y色度座標上の範囲を示す。 これらの発明は、 図 6の 3の yく一 0. 4 3 x + 0. 6 0、 図 6の 4の y〉0 . 6 4 x + 0 . 1 5、 図 6の 5の x〉0 . 1 6の x y色度範囲に囲まれる範囲の 光色を持つことで実現される力 以下にその論拠を示す。  FIG. 6 shows the range on the xy chromaticity coordinates of the fluorescent lamp of the present invention (claims 3 and 4). In these inventions, the y-axis of Fig. 6 is 0.34 x + 0.60, the y of 0.6 in Fig. 6 is 0.64x + 0.15, and the x of 5 in Fig. 6 is 0. The power realized by having a light color within the range of the 16 xy chromaticity ranges The rationale is given below.
y = 0 . 6 4 x + 0 . 1 5は C I Eの文献 (CIE TECHNICAL REPORT CIE 107- 1994 ; REIEW OF THE OFFICIAL RECOMMENDATIONS OF THE CIE FOR 1ΉΕ COLOURS OF SIGNAL LIGHTS. ) の中の白色灯火の緑みへの上限に対応し、 本発明は、 図 6の 6の一般に白色として使用される光より DUVがプラス側であって、 且つ従来 になレ、照明光の領域にあることを示すものである。  y = 0.64 x + 0.15 is the green color of white lights in the CIE literature (CIE TECHNICAL REPORT CIE 107-1994; REIEW OF THE OFFICIAL RECOMMENDATIONS OF THE CIE FOR 1ΉΕ COLOURS OF SIGNAL LIGHTS.) The present invention shows that the DUV is on the plus side of the light generally used as white in 6 of FIG. 6, and that it is in the range of conventional illumination light.
y < - 0. 4 3 x + 0. 6 0の範囲は、 視覚実験的に主に緑と赤の帯域に発 光を集中した前記高効率新光源に、 発光ピーク波長が 4 2 0〜5 3 0 [nm]に存 在する蛍光体、 または、 470〜530 [ran]に存在する蛍光体を付加して、 色 味が少なくなる点を求めた結果である。 The range y <-0.43 x + 0.60 is based on the high efficiency new light source whose emission is concentrated mainly in the green and red bands by visual experiment, and the emission peak wavelength is 420 to 5 3 0 [nm] This is the result of adding the existing phosphor or the phosphor present in the range of 470 to 530 [ran] to obtain the point at which the tint is reduced.
実験には代表例として、 先ず、 緑の発光の蛍光体として一般的な (ィヒ 1) L a P04: C e, Tb (LAP) と、 赤の発光の蛍光体として一般的な (ィ匕 2) Y23 : Eu (YOX) をそれぞれ単体で塗布した 2つの蛍光ランプの発 光を互いに混光した光源を、 主に緑と赤の帯域に発光を集中した前記高効率新 光源のサンプルとして設定した。 次に、 この光源の光に、 発光ピーク波長が 4Representative examples include the experiment, first, common as phosphor green emission (I arsenate 1) L a P0 4: C e, and Tb (LAP), common as red phosphor emitting (I 2) Y 23 : A light source that mixes the light emitted from two fluorescent lamps, each coated with Eu (YOX) alone, to a high efficiency new light source that concentrates light emission mainly in the green and red bands. Was set as a sample. Next, the light of this light source has an emission peak wavelength of 4
20〜4 70 [ran]に存在する青の発光の蛍光体として一般的な (ィ匕 3 ) (Sr,Ca,Ba),0(P04)6Cl2:Eu (SCA) 、 あるいは、 発光ピーク波長が 470〜 520-4 70 General (I spoon 3) as a phosphor for emission of blue present in [ran] (Sr, Ca, Ba), 0 (P0 4) 6 Cl 2: Eu (SCA), or luminescence Peak wavelength 470 ~ 5
30[nra]に存在する青緑の発光の蛍光体として一般的な (ィ匕 4) Sr4AlH025:Eu (SAE) を単体で、塗布した蛍光ランプの発光を、 さらに混光し、 色みが少な くなる点を主観 Hffi実験から求めた。 The light emitted from a fluorescent lamp coated with a single (i-Dai 4) Sr 4 Al H 0 25 : Eu (SAE) as a blue-green light-emitting phosphor existing in 30 [nra] is further mixed. The point of less color was determined from the subjective Hffi experiment.
その実験結果を図 6に示す。 さらに、 これらの、 蛍光体を単体で使用した蛍 光ランプの光色の X y色度座標上の位置を、 同図中に 7が LAP、 8が YOX、 9が SCA、 10が SAEとして示した。  Figure 6 shows the experimental results. Furthermore, the positions of the light colors of the fluorescent lamps using the phosphor alone on the Xy chromaticity coordinates are shown as 7 in the figure, LAP, 8 as YOX, 9 as SCA, and 10 as SAE. Was.
各々の xy色度座標値は  Each xy chromaticity coordinate value is
7の LAPは、 x = 0. 332、 y = 0. 540  The LAP of 7 is x = 0.332, y = 0.540
8の YOXは、 x = 0. 596、 y = 0. 332  YOX of 8 is x = 0.596, y = 0.332
9の SCAは、 x = 0. 156、 y = 0. 079  The SCA of 9 is x = 0.156, y = 0.079
10の SAEは、 x = 0. 152、 y = 0. 356  The 10 SAEs are x = 0.152, y = 0.356
である。  It is.
図 6の 1 1は前記高効率新光源サンプルとなる緑発光 (ィ匕 1) と赤発光 (ィ匕 2) の光束による混光比が LAP (緑) : YOX (赤) =100 : 0として構 成したものに、 青 (化 3) の光を混光してゆき、 光源色に色みが少なく感じ始 める点を求めた結果をプロットしたものである。 12は同様の主観評価実験を 混光比 LAP: YOX=95 : 5で行った結果をプロッ卜したもの、 13は同 様の主観評価実験を混光比 LAP: YOX=90 : 10で行った結果をプロッ トしたもの、 14は同様の主観評価実験を混光比 LAP: YOX-85 : 15 で行った結果をプロットしたもの、 15は同様の主観評価実験を混光比 L A P: YOX-80 : 20で行った結果をプロットしたものである。 In FIG. 6, reference numerals 11 and 12 denote green and red light-emitting elements (i-dani 1) and the red-light (i-dani 1), which are the high-efficiency new light source samples. The light mixing ratio due to the light flux of 2) is composed of LAP (green): YOX (red) = 100: 0, and then the light of blue (chemical 3) is mixed and the color of the light source is less colored. It is a plot of the result of finding the point at which you begin to feel. 12 is a plot of the result of a similar subjective evaluation experiment performed at a light mixing ratio of LAP: YOX = 95: 5, and 13 is a similar subjective evaluation experiment performed at a light mixing ratio of LAP: YOX = 90: 10. A plot of the results, 14 is a plot of the results of a similar subjective evaluation experiment performed with a light mixing ratio of LAP: YOX-85: 15, and 15 is a similar subjective evaluation experiment performed with a light mixing ratio of LAP: YOX-80. : The results obtained in step 20 are plotted.
これらの 11から 15の結果から、 回帰直線を構成すると y=—0. 43 X + 0. 58となる力 主観評価にはばらつきが存在するため、 プロット点が全 て含まれる様に、 切片の小数点以下 2桁目を繰り上げ、 yく— 0. 43 x + 0. 60 (式 ( 1 ) ) とした。  From these results from 11 to 15, when a regression line is constructed, the force becomes y = --0.43 X + 0.58.Because there is variability in the subjective evaluation, the intercept of the intercept is used so that all plot points are included. The second digit after the decimal point is rounded up to y-0.43 x +0.60 (Equation (1)).
これについては、 本発明の第二の実施の形態の、 高効率新光源の発光光色の 白色感を高めたものにっレ、ての説明でさらに詳細に述べる。  This will be described in further detail in the description of the second embodiment of the present invention in which the white color of the emitted light color of the high efficiency new light source is enhanced.
また図 6の 16は、 前記サンプルとなる混光比が LP A (緑) : YOX Also, 16 in FIG. 6 shows that the light mixing ratio of the sample is LP A (green): YOX
(赤) =80: 20として構成したものに、 青緑の (化 4) 蛍光体による光を 混光してゆき、 ランプ発光色の色みが少なく感じ始める点を求めた結果をプ ロットしたものである。 (Red) = 80:20, and the result of finding the point where the light emitted by the blue-green (Chemical Formula 4) phosphor is mixed and the color of the lamp emission starts to be felt less is obtained. Things.
この結果も、 ttiteの青の蛍光体を混光する実験と類似となり、 y<—0. 4 3 x + 0. 60となる。 その結果、 混光する光色の帯域よりも色度が白みを感 じ始める点を決める主たる要因となっていることがわかる。 そしてこの式 This result is also similar to the experiment of mixing the blue phosphor of ttite with y <−0.43 x +0.60. As a result, it can be seen that chromaticity is the main factor that determines the point at which whiteness begins to be sensed rather than the band of mixed light colors. And this formula
(1) は、 前記髙効率新光源の光色の黄緑みが、 青または青緑帯域の発光を増 加させることによって青緑みの光色に切り替わる境界、 つまり、 反対色の青み と黄みの感覚が打ち消し合レ、色味が少なくなる始める境界をあらわすことにな る。 (1) is that the yellow-green color of the high efficiency new light source increases the emission in the blue or blue-green band. When added, the boundary changes to a bluish green light color, that is, a boundary where the senses of the opposite colors of bluish and yellowish colors cancel each other out and the color begins to decrease.
x > 0. 1 6の範囲は青もしくは青緑方向の色みの強さの許容限界を示した ものである。 図 6の 9, 1 0は (化 3 ) (化 4 ) の蛍光体を使用して蛍光ラン プを実現した の色度図上の位置であり。 上記 x〉0 . 1 6はこの色度 9、 1 0を取り込まないように実現 '[·生を勘案して構成したものである。  The range of x> 0.16 indicates the permissible limit of the tint strength in the blue or blue-green direction. 9 and 10 in Fig. 6 are the positions on the chromaticity diagram of the fluorescent lamp realized by using the phosphors of (Chem. 3) and (Chem. 4). The above-mentioned x> 0.16 is realized so as not to take in the chromaticity 9 and 10.
青もしくは青緑の帯域の発光が強まれば、 等照度 (等光束) における喑所視 および薄明視、 または大視野での視感効率の向上に寄与する割合を大きくする ことができるが、 これらの帯域の発光の増加は、 本質的に測光量 V (え)での光 源の効率の低下を招くことになる。 また、 これらの帯域の発光の増加により、 赤の帯域の発光が相対的に弱まり、 危険の表示など重要な意味合いに使用され る赤の見えを割匕させることになる。  Increasing the emission in the blue or blue-green band can increase the proportion contributing to improved luminous efficiency in stereopsis and mesopic vision, or in a large field of view at equal illuminance (equal luminous flux). The increase in light emission in this band essentially leads to a decrease in the efficiency of the light source at the measured light intensity V (e). In addition, the increase in the light emission in these bands causes the light emission in the red band to be relatively weakened, thereby obscuring the appearance of red, which is used for important purposes such as danger indication.
さて、 光の ¾Ιί量と照明の測光量は ν (λ)を介して関連づけられ、 V (又)の ピークにある単色 (mono- color) 光 5 5 5 [ran]の光は最大の 6 8 3 [lm/W]にな る。 その 5 5 5 [nm] 以外の光は 6 8 3 [lra/W]より小さな値になるが、 この関 係を色度座標に示したものが図 7の X y色度座標上の光の理論的な効率である。  Now, the quantity of light and the photometric quantity of the illumination are related via ν (λ), and the mono-color light at the peak of V (also) 3 [lm / W]. The light other than 55 5 [nm] has a value smaller than 68 3 [lra / W], but this relationship is shown in the chromaticity coordinates. The theoretical efficiency.
これから光源の理論的な効率は、 X y色度座標上の右下 (青または青緑) 方 向へ向かうほど低下することがわかる。  This shows that the theoretical efficiency of the light source decreases as it goes to the lower right (blue or blue-green) direction on the xy chromaticity coordinates.
また、 測光量のうち輝度が同じであれば、 白い光でも、 青緑みに色づいた光 でも同じ明るさに見えるはずであるが、 実際は白い光よりも色づいた光の方が 明るく感じる。 色光に感じる明るさを Bとし、 色光の輝度を Lとすると BZ L は色光の x y色度座標上で変化する。 l o g (L) + F (Fは補正係数) が明 るさ Bに対応しており、 輝度の補正係数 F と x y色度座標上の位置 との関 係示したものが、 図 8の x y色度座標上の輝度の補正計数 Fである。 この Fを つけなければならない理由は、 アブニーの法則 (異なったスぺクトルの光束に は加 ¾†生が成立する) が厳密には成立しないことが考えられるとともに、 その 加法 の前提となる V (又)の形状が完全ではないことと思われる。 Also, if the luminance of the measured light intensity is the same, white light and blue-green colored light should appear the same brightness, but actually colored light is brighter than white light. Let B be the brightness perceived by colored light and L be the brightness of the colored light BZ L Changes on the xy chromaticity coordinates of the colored light. log (L) + F (F is the correction coefficient) corresponds to the brightness B, and the relationship between the luminance correction coefficient F and the position on the xy chromaticity coordinates is shown in FIG. Correction factor F for luminance on degree coordinates. The reason why this F must be added is that Abney's law (addition is generated for light beams of different spectra) is not strictly satisfied, and V is a prerequisite for the addition. It seems that the shape of (also) is not perfect.
この補正の割合は右下 (青または青緑) 方向へ向かうほど上昇することがわ カる。 これからも ν ( λ )は青または青緑の帯域で低く もられている現状が うかがえるが、 本発明の上記 x y色度座標上の範囲に囲まれる光色は、 青また は青緑の理論的に低く見積もられすぎている光色の範囲をカバーするものであ る。  It can be seen that the ratio of this correction rises toward the lower right (blue or blue-green) direction. It can be seen from the present that ν (λ) is low in the blue or blue-green band, but the light color surrounded by the range on the xy chromaticity coordinates of the present invention is theoretically blue or blue-green. It covers the range of light colors that are underestimated by many.
また、 図 9にユニーク (unique) 色のスぺタ ト/レ¾¾¾*上の位置を示す。 ュ 二一ク色とは光の波長の内単スぺク トルだけを抽出して見た場合、 純粋な赤, 緑,青,黄の刺激に感じる色感覚を与える波長の光刺激を言う。  Figure 9 shows the position of the unique color on the start / record *. New color refers to a light stimulus with a wavelength that gives a color sensation of pure red, green, blue, and yellow stimuli when only a single spectrum of light wavelengths is extracted and viewed.
例えばユニーク黄とユニーク緑のスぺクトルの間のスぺクトルの波長の光を 見た 、 そこには黄みと緑みの両方力感じられる。  For example, unique yellow and unique green spectrum between the spectrum of light seen, there is a sense of both yellow and green power.
このュ二一ク色の赤,緑,青,黄と等エネルギー白色 Wを結んだものが図 9で あ る。  Figure 9 shows the connection between the red, green, blue, and yellow colors and the equal energy white W.
理論的には、 ユニーク黄とユニーク緑と等エネルギー白色 Wで囲まれた X y 色度座標内の光色では、 黄みと緑みを感じ、 白色から離れて釣り鐘型のふちの 単色 (mono- color)光の位置に近づくほどその色みが強くなる。  Theoretically, unique yellow, unique green, and iso-energetic white The light color in the xy chromaticity coordinates surrounded by W has a yellowish and greenish tinge, and is separated from white by a bell-shaped monochromatic (mono) -color) The closer to the position of the light, the stronger the color.
理論的には白色からの色差が同じであれば、 ユニーク緑と白色を結ぶ線(L N)上で反対色である黄みと青みが¾^する。 In theory, if the color difference from white is the same, a line connecting the unique green and white (L N) The opposite colors of yellow and blue are ¾ ^.
実際に本発明の光源を応用する には、 黄色みに色みが感じる光色では照 明器具の発光部が古びた印象を受けるので、 ユニーク緑と白色を結ぶ線より青 み側の領域の光色が好ましレ、。  In order to actually apply the light source of the present invention, the light emitting part of the luminaire has an old impression with a light color that feels yellowish. Light color is preferred.
上記線 (L N) は、 前記の主観評価実験のライン (上記式 ( 1 ) ) に類似し ており、 その主観 f¾B実験の結果はこのような理論で裏付けられると類推でき、 S錐体の刺激の割合が M錐体と L錐体の刺激に対して一定量を超えた際に黄み と青みとの ¾¾ΐが生じたものと考えられる。  The line (LN) is similar to the above-mentioned subjective evaluation experiment line (Equation (1)), and it can be inferred that the result of the subjective f¾B experiment is supported by such a theory. It is probable that yellowish and blueish ¾¾ΐ occurred when the ratio of exceeded a certain amount for the stimulation of the M and L cones.
以上のごとく本発明の色度範囲を実施することで、 的効率が高く、 光色 に対して感じる色味の強さを緩和した光源を実現できる。  As described above, by implementing the chromaticity range of the present invention, it is possible to realize a light source with high target efficiency and reduced intensity of color perceived for light color.
なお、 この範囲の中でも、 白色に近く、 黄みの緑、 の感覚が、 青みの緑みの 感覚に打ち消される範囲の光色を設定すること力 的効率と光色の観点か らより望ましい。  In this range, it is more desirable from the viewpoint of power efficiency and light color to set a light color in a range in which the sensation of near green and yellowish green is canceled out by the sensation of blueish greenishness.
これに関しては、 本発明の第二の実施の形態の、 高効率新光源の発光光色の 白 を高めたものについての説明でさらに詳細に述べる。  This will be described in more detail in the description of the second embodiment of the present invention in which the white color of the emitted light color of the high efficiency new light source is increased.
本発明の光源を蛍光ランプとして実現する 、 希土類蛍光体を使用するこ とで、 所定の波長帯域に狭く発光を集中することが可能となる。  By realizing the light source of the present invention as a fluorescent lamp and using a rare-earth phosphor, it becomes possible to concentrate light emission narrowly in a predetermined wavelength band.
また、 その ^例としては、 主たる発光を得る、 発光波長のピークの範囲が 5 3 0〜 5 8 0 [ran]の蛍光体はテルビウム、 または、 テルビウムとセリウムを 付活した蛍光体であり、 6 0 0〜6 5 0 [ηπι]の蛍光体はユーロピウム、 または、 マンガンを付活した蛍光体であり、 発光ピーク波長が 4 2 0〜 5 3 0 [進]に存 在する蛍光体、 および、 発光ピーク波長が 4 7 0〜 5 3 0 [nm]に存在する蛍光 体はユーロピウム、 または、 ユーロピウムとマンガン、 または、 アンチモン、 または、 マンガン、 またはアンチモンとマンガンを付活した蛍光体である。 さらに、 具体的な蛍光体の実施例としては、 発光波長のピークの範囲が 53 0〜580 [ran]の蛍光体は (ィ匕 1 ) LaP04:Ce,Tb、 (化 5) Ce gAlH019:Tb, (化 6) (Ce,Gd)MgB5010:Tb, 又は (化 7) LaA'O.2Si02'0.9Pz05:Ce, Tbがあり、 60 0〜650[nm]の蛍光体は (ィ匕 2) Y203:Eu、 または、 (ィ匕 8) (YGd)203:Euであ る。 これら、 主たる発光波長の蛍光体は、 PCT/JP96/02618: L i g h t S o u r c eに開示されている。 Also, as an example, a phosphor having a peak emission wavelength range of 530 to 580 [ran] that obtains main light emission is terbium or a phosphor activated by terbium and cerium, The phosphor of 600 to 65 0 [ηπι] is a phosphor activated with europium or manganese, and has a light emission peak wavelength of 420 to 530 [hex], and Fluorescence with emission peak wavelength between 470 and 530 [nm] The body is a phosphor activated with europium, or europium and manganese, or antimony, or manganese, or antimony and manganese. Furthermore, as the example of a specific phosphor, phosphor in a range of peak emission wavelength is 53 0~580 [ran] is (I spoon 1) LaP0 4: Ce, Tb , ( of 5) Ce Gal H 0 19: Tb, (of 6) (Ce, Gd) MgB 5 0 10: Tb, or (reduction 7) LaA'O.2Si0 2 '0.9P z 0 5: Ce, there is Tb, 60 0~650 [ phosphor nm] is (I spoon 2) Y 2 0 3: Eu , or (I spoon 8) (YGd) 2 0 3 : Eu Ru der. These main emission wavelength phosphors are disclosed in PCT / JP96 / 02618: Right Source.
発光ピーク波長が 420〜530 [nm]に存在する蛍光体の一実施例としては、 ピーク波長が 4 2 0〜4 7 0 [nm]に存在する蛍光体蛍光体は (化 9 ) BaMgAl1Q017:Euまたは、 (ィ匕 3 ) , , く?^^^^!でぁる。 これらには多 くの類似構成の蛍光体が考えられるが、 本発明の範囲には、 Mgを添加した (ィ匕 10)
Figure imgf000030_0001
As an example of a phosphor having an emission peak wavelength of 420 to 530 [nm], the phosphor having a peak wavelength of 420 to 470 [nm] is (Chemical Formula 9) BaMgAl 1Q 0 17 : Eu or (Idani 3) ^^^^! Duru. Many of these phosphors can be considered to have similar constitutions, but within the scope of the present invention, Mg was added.
Figure imgf000030_0001
また、 発光ピーク波長の範囲が 470〜530 [nm]に する蛍光体は (ィ匕 4)
Figure imgf000030_0002
又は (ィヒ 11) Ce(Mg, Zn)AluOig: nである。
Further, a phosphor having an emission peak wavelength in the range of 470 to 530 [nm] is (Dani 4)
Figure imgf000030_0002
Or (Ig 11) Ce (Mg, Zn) Al u O ig : n.
420〜470〔nra]、 470〜530 [nm]に発光ピーク波長が雜する 2つ の蛍光体を同時に使用した蛍光体層を構成することで、 420〜 530 [nm]の 発光が実現できる。 また、 この^、 喑所視およひ 明視、 大視野での 的 明るさ感の改善とともに、 効率よく白色感の向上を同時に図ることができる。 ここで、 420〜 530 [nm]の発光を得る他の蛍光体の実施例としては (ィ匕 12)
Figure imgf000030_0003
なお、 本発明の範囲には特に Srの添加を 無くした (化 13) BaMgAl1Q017:Eu, nも含む。 付活物の Euの濃度を高めれば 4 20 〜470 [nm]の発光が増強され,付活物の Mnの濃度を高めれば 470〜5
By forming a phosphor layer using two phosphors having emission peak wavelengths of 420 to 470 [nra] and 470 to 530 [nm] at the same time, light emission of 420 to 530 [nm] can be realized. In addition, it is possible to simultaneously improve the brightness of the target in a 喑, 喑, 明, 、, and a large field of vision, and efficiently improve the white sensation. Examples of other phosphors that emit light of 420 to 530 [nm] include:
Figure imgf000030_0003
The scope of the present invention also includes BaMgAl 1Q 0 17 : Eu, n in which the addition of Sr is eliminated. If the concentration of Eu in the activator is increased, 4 The emission of 20 to 470 [nm] is enhanced, and if the concentration of Mn in the activator is increased,
30 [nm]の発光が実現できる。 Light emission of 30 [nm] can be realized.
この^^、 一つの蛍光体で 420〜4マ 0 [nm]、 470〜 5 30 [nm]の発光 比率を設定できるため、 ランプ制作に当たって色調の設定が容易となり色むら が抑えられる。  The emission ratio of 420 to 4 nm 0 [nm] and 470 to 530 [nm] can be set with this single phosphor, making it easy to set the color tone in lamp production and suppressing color unevenness.
発光波長のピークの範囲が 5 3 0〜 5 8 0 [nm]の蛍光体を (ィ匕 1 4 ) (Ce, Gd,Tb) (Mg,Mn)B5010 、 6 0 0 〜 6 5 0 [nm]の蛍光体を (ィ匕 1 5 ) (CeiGiD
Figure imgf000031_0001
することで、 蛍光体の母体材料を同一にし、 一つの蛍光 体で 530〜580 [nm]、 600〜 6 50 [nm]の発光比率を設定できるだめ、 ランプ制作に当たって色調の設定が容易となり色むらが抑えられる。
The phosphor in the range of peak emission wavelength is 5 3 0~ 5 8 0 [nm ] ( I spoon 1 4) (Ce, Gd, Tb) (Mg, Mn) B 5 0 10, 6 0 0 ~ 6 5 0 [nm] phosphor (I-Dai 15) (CeiGiD
Figure imgf000031_0001
By doing so, the base material of the phosphors can be made the same, and the emission ratio of 530 to 580 [nm] and 600 to 650 [nm] can be set with one phosphor. Unevenness is suppressed.
また、 発光ピーク波長が 420〜530 [ ]に存在する蛍光体はハロリン酸 塩カルシウム蛍光体 (ィ匕 1 6) Ca PO^ Cl^Sb,^とすることで、 本発明の 蛍光ランプを安価に製造可能となる。 この蛍光体は付活物の nが黄み、 付活物 の Sbが青緑みに発光ピークを有するため Sbの濃度を高めればより青緑みの帯域 の光が増加する。 特に本発明の請求範囲には Mnを無くした場合も含み、 この場 合、 青白の光色を有した単ピークの発光となる。  The phosphor having an emission peak wavelength in the range of 420 to 530 [] is a halophosphate calcium phosphor (ィ 16) Ca PO ^ Cl ^ Sb, ^, so that the fluorescent lamp of the present invention can be manufactured at low cost. It can be manufactured. In this phosphor, n of the activator is yellow and Sb of the activator has an emission peak in bluish green, so that increasing the concentration of Sb increases light in the bluish green band. In particular, the claims of the present invention include a case where Mn is eliminated, and in this case, a single-peak light emission having a blue-white light color is obtained.
次に、 本発明の第二の実施の形態を説明する。  Next, a second embodiment of the present invention will be described.
本発明の第二の実施の形態は、 高効率新光源の発光光色の色みを低下させ白 色感を高めたものである。  In the second embodiment of the present invention, the color of the light emitted from the high-efficiency new light source is reduced to enhance the white color.
本発明の第二の実施の形態においては、 主に 420〜470 [ran]の範囲の波 長を増強することで、 主たる発光波長の範囲の 5 30〜580 [nm]、 600〜 6 50 [nm]以外の発光の追加を最小限に抑えながら、 高効率新光源の発光光色 の色みを低下させ白色感を高めるものである。 そのために、 本発明の第一の実 施の形態と異なり、 主に 420〜 470 [nm]の範囲の青の帯域の波長に、 発光 を追加する。 また、 蛍光体の具体的な実施の形態については、 第一の実施の形 態に準ずる。 In the second embodiment of the present invention, by increasing the wavelength mainly in the range of 420 to 470 [ran], the main emission wavelength range of 530 to 580 [nm] and 600 to 650 [ran] is increased. [nm] while minimizing the addition of light other than [nm] Is reduced to enhance the white appearance. Therefore, unlike the first embodiment of the present invention, light emission is mainly added to wavelengths in the blue band in the range of 420 to 470 [nm]. Further, the specific embodiment of the phosphor conforms to the first embodiment.
ここでは第一の実施の形態より短波長側のスぺクトルを^ Wすることにより、 光源の発光光色を、 最小限の副発光の ロで、 大きく変ィ匕させることが可能と なるものである。  Here, the wavelength of the light emitted from the light source can be greatly changed with a minimum amount of sub-emission by increasing the spectrum on the shorter wavelength side than in the first embodiment. It is.
具体的には、 本発明の第一の実施の形態と同じ主観評価実験で、 先ず、 緑の 発光の蛍光体として一般的な (ィ匕 1) La P04 : Ce, Tb (LAP) と、 赤の発光の蛍光体として一般的な (ィ匕 2) Y23 : Eu (YOX) をそれぞれ 単体で塗布した 2つの蛍光ランプのそれぞれの発光を混光し、 その混光した光 源を、 主に緑と赤の帯域に発光を集中した it己高効率新光源のサンプルとして 設定した。 次に、 これに、 発光ピーク波長が 420〜470 [ran]に する青 の発光の蛍光体として一般的な (ィ匕 3) (Sr, Ca,Ba)10(P04)6Cl:Eu (SCA) を 単体で塗布した蛍光ランプの発光を混光し、 調整法により色みが少なくなり白 色感の高まる; ¾を求めた。 " More specifically, in the first embodiment and the same subjective evaluation of the present invention, first, general as phosphor green emission (I spoon 1) La P0 4: Ce, and Tb (LAP), common as red phosphor emitting (I spoon 2) Y 23: Eu were mixed light of each emission of the two fluorescent lamps (YOX) were respectively applied alone, the light source in which the light mixture of It was set as a sample of a highly efficient new light source that concentrated light emission mainly in the green and red bands. Next, this general (I spoon 3) as a phosphor for emission of blue light emission peak wavelength in 420~470 [ran] (Sr, Ca , Ba) 10 (P0 4) 6 Cl: Eu ( The emission of a fluorescent lamp coated with SCA) alone was mixed, and the adjustment method reduced the color and increased the white color. "
主観評価実験において、 被験者は正常色覚を有する成人 4名であり、 1条件 の繰り返し回数は 3回とした。  In the subjective evaluation experiment, the subjects were four adults with normal color vision, and the number of repetitions of one condition was set to three.
前記高効率新光源のサンプルとして設定した、 緑発光 (ィヒ 1) と赤発光 (ィ匕 2) との混光比を、 LAP (緑) : YOX (赤) = 100 : 0力 ら、 LAP (緑) : YOX (赤) =95 : 5、 LAP (緑) : YOX (赤) 二 90 : 10、 LAP (緑) : YOX (赤) 二 85 : 15、 LAP (緑) : YOX (赤) =8 : 20まで 5段階に変ィ匕させた。 この時の xy色度値、 相関色 、 Du V (表 1) 示す。 LAP (green): YOX (red) = 100: 0, and LAP (green): YOX (red) = 100: 0 (Green): YOX (Red) = 95: 5, LAP (Green): YOX (Red) Two 90: 10, LAP (Green): YOX (Red) Two 85: 15, LAP (Green): YOX (Red) = 8 : Up to 20 in 5 stages. The xy chromaticity value, correlated color, and Du V (Table 1) at this time are shown.
1】 L APと ΥΟΧΰ:よる色光 ( 5条件) [ 1 ] LAP and ΥΟΧΰ: colored light (5 conditions)
Figure imgf000033_0002
Figure imgf000033_0002
次に、 主観評価実験の結果を (表 2) に示す。 Next, the results of the subjective evaluation experiment are shown in (Table 2).
【表 2】 色味が少な く な り 白色に感 じ始めた光源の光束比率 と X V 色度値 と 相関色温度 と D u V の実験結果  [Table 2] Experimental results of the luminous flux ratio, XV chromaticity value, correlated color temperature, and DuV of the light source that began to feel whiter and less white
Figure imgf000033_0001
(表 2) は、 被験者が色みが少なくなり白色に感じ始めた LAP : YOX: S C Aの混光比率 [%]の平均値を光束比で示したもので、 各々光源 (1 a) (当 所注:ェノレ aである。 l aではない) から光源 (1 e) として、 この時の xy 色度値と相関色 Mi 、 および D u Vを示した。
Figure imgf000033_0001
(Table 2), LAP subjects began felt less and less white tint: YOX: those shown in the light flux ratio the mean value of the light mixing ratio [%] of the SCA, each light source (1 a) (equivalent Note: The xy chromaticity value and the correlated colors Mi and DuV are shown as the light source (1 e) from the hologram a but not la).
次に、 図 10に、 xy色度座標上において、 光源 17(1 a)〜光源 21 (1 e) の xy色度直と、 その回' J帚 (y =—0.43x +0.58).を示す。 また、 光源(1 a)〜 (1 e) の xy色度値が全て含まれる様に、 切片の小数点以下 2 桁目を繰り上げ回帰 S を ¥f移動した S 23をしめす。 なお、 24の斜線 部は請求項 13, 14の範囲を示す。  Next, in Fig. 10, on the xy chromaticity coordinates, the xy chromaticity of the light source 17 (1a) to the light source 21 (1 e) and their times' J broom (y = --0.43x +0.58). Show. In order to include all the xy chromaticity values of the light sources (1a) to (1e), the second digit after the decimal point of the intercept is raised and the regression S is shifted by \ f to indicate S23. The hatched portion 24 indicates the scope of claims 13 and 14.
また図 1 1には、 比較のため請求項 1 3、 1 4の色度値 (x, y) = a: (0.228, 0.351), b: (0.358, 0.551), c: (0.525, 0.440), d: (0.453, 0.440), e: (0.285, 0. 332)  FIG. 11 also shows the chromaticity values (x, y) of claims 13 and 14 for comparison: a: (0.228, 0.351), b: (0.358, 0.551), c: (0.525, 0.440) , D: (0.453, 0.440), e: (0.285, 0.332)
と、 纖 23 (y <-0. 43 x + 0. 60) および、 光源色の色名の関係 を示した。  And the relationship between Fiber 23 (y <-0.43 x +0.60) and the color name of the light source color.
本発明の蛍光ランプを図 1 1の直線 y<— 0. 43 x + 0. 60以下の範囲 にすることによっ 、 光色の色味が少なく白色感のある蛍光ランプを実現する ことができる。  By setting the fluorescent lamp of the present invention within a range of y <−0.43 x + 0.60 or less in FIG. 11, it is possible to realize a fluorescent lamp with little light color and a white appearance. .
次に、 (表 2) の光源(1 a)〜(l'e)に対応する光源を実際に 20W蛍光ラ ンプとして試作した^の、 LAP, YOX, SC Aの蛍光体の重量の酉己合比 と、 xy色度値と、 相関色 と、 Duvを、 光源 (1 f ) 〜光源 (1 j ) と して (表 3) に示す。  Next, the light sources corresponding to the light sources (1a) to (l'e) in Table 2 were actually prototyped as 20W fluorescent lamps. The ratio, xy chromaticity value, correlated color, and Duv are shown in Table 3 as light source (1f) to light source (1j).
【表 3】 色味が少なくなり白色に感じ始める各種 2 O W蛍光ランプ の配合比と X y色度値と相関色温度と D u V[Table 3] Mixing ratio of various 2 OW fluorescent lamps, starting to feel less colored and becoming white, Xy chromaticity value, correlated color temperature, and DuV
Figure imgf000035_0001
また、 この時、 図 1 2〜図 1 6は、 、 2 O W蛍光ランプにおける実施例であ る光源、 U f )〜(l j )の分光分布である。
Figure imgf000035_0001
At this time, FIG. 12 to FIG. 16 show the spectral distributions of the light sources U f) to (l j), which are embodiments of the 2OW fluorescent lamp.
これらの分光分布は、 図 1 7に示した分光分布を持つ高効率新光源を蛍光ラ ンプで実現した実施例と比較して、 4 2 0〜 4 7 0 [nm]の波長帯域に発光ピー クを持つ蛍光体による相対分光パワーが Λし、 この波長帯域の付加によって、 色みが少なく白 を高めることができる。  These spectral distributions are compared with the embodiment in which a high-efficiency new light source having the spectral distribution shown in FIG. 17 is realized by a fluorescent lamp, and the emission peak is in the wavelength band of 420 to 470 [nm]. The relative spectral power of the phosphor having a dark spot increases, and by adding this wavelength band, the color can be reduced and the white color can be enhanced.
なお、 これに伴い、 白色感の向上とともに、 喑所視および薄明視、 大視野で の«的明るさ感の改善も同時に期待できる。  In addition, along with the improvement of the whiteness, it is possible to expect the improvement of the perceived and mesopic vision, and the improvement of the primary brightness at the large visual field.
【表 4】 実 験 結 果 J: り 求 'め た 光 源 ( 1 a ) 〜 ( 1 e ) の L A P と S C A の み の 光 束 比 率 ( % ) の 閱 係[Table 4] Experimental results J: Relationship between the luminous flux ratio (%) of only the LAP and SCA of the light sources (1a) to (1e) obtained
Figure imgf000036_0001
Figure imgf000036_0001
(表 4) は、 (表 2) の 3種類の単体の 3つの蛍光体を有する蛍光ランプの光 束比による混光比率をもとに、 光源 (1 a )〜 (1 e )の L A Pと S C Aのみの混光 比率を光束比で示したものである。 これから、 ほぼすべてにおいて LAPと S CAの混光比率 [%]が 96 : 4である。  (Table 4) shows the LAP of the light sources (1a) to (1e) based on the light mixing ratio of the fluorescent lamp with three single phosphors in Table 2 based on the luminous flux ratio. The light mixing ratio of only SCA is shown by the luminous flux ratio. From this, almost all the light mixing ratio [%] of LAP and SCA is 96: 4.
また、 本発明の色度範囲を構成する色度点 (0.285, 0.332)は、 最も青色側に ある点であるため、 SC Aの混光比率が最大になる点である。  In addition, the chromaticity points (0.285, 0.332) that constitute the chromaticity range of the present invention are the points closest to the blue side, and are the points where the light mixing ratio of SCA becomes maximum.
その色度点の LAPと YOXと SC Aの光束比率 [%]は、 混光する 3種類の 単体の蛍光体を有する単色の蛍光ランプの色度値から、 加法混色の公式に基づ いて計算すると、 81 : 9 : 10となる。 このとき LAPと SCAのみの混光 比率 [%]では、 89 : 11となる。  The luminous flux ratio [%] of LAP, YOX and SCA at that chromaticity point is calculated from the chromaticity value of a single-color fluorescent lamp having three types of single phosphors to be mixed, based on the additive color mixing formula. Then 81: 9: 10. In this case, the light mixing ratio [%] of only LAP and SCA is 89:11.
これより、 SC A等の発光波長のピークが 420〜470[nm]にある蛍光体 と、 LAP等の発光波長ピークが 530〜 580 [ran]にある蛍光体の混光比率 [°/o]B: Gにおいて、 Βを 4〜1 1 [%]、 Gを 96〜89[%]とすることによって、 光色の色味が少なく白色感のあ 蛍光ランプを実現することができる。  Thus, the light mixing ratio of a phosphor having an emission wavelength peak of 420 to 470 [nm] such as SC A and a phosphor having an emission wavelength peak of 530 to 580 [ran] such as LAP [° / o] B: By setting G to 4 to 11 [%] and G to 96 to 89 [%] in G, it is possible to realize a fluorescent lamp with little light color and a white appearance.
また、 本発明の色度範囲において、 ΥΟΧの混光比率 [%]が最大になる色度 点は、 ¾泉 y =— 0. 43 x + 0. 60と、 i! y二 0. 1 50 + 0. 64 x との交点である。 この交点の LAPと YOXと S CAの混光比率 Mは、 加法 混色の公式に基づいて計算すると、 70 : 28 : 2である。 これより、 YOX などの発光波長 600〜650 [nm]に発光ピークを有する蛍光体から発する光 束 Rに対し、 発光波長 420〜470 [nra]にピークを有する SCAなどの蛍光 体から発する光束と発光波長 530〜580[nm]に発光ピークを有する LAP などの蛍光体から発する光束との和 B€の光束比率 [%]を R: とし、 Rを 0〜 28 [%]、 B" ^を 100〜72[%]とすることによって、 光色の色味が少なく白
Figure imgf000037_0001
カテゴリカノ^知覚を得ながら高効率に実現することがで きる。
In the chromaticity range of the present invention, the chromaticity at which the light mixing ratio [%] of ΥΟΧ is maximized The point is the intersection of ¾ spring y = — 0.43 x + 0.60 and i! Y2 0.150 + 0.64 x. The light mixing ratio M of LAP, YOX and SCA at this intersection is 70: 28: 2, calculated based on the additive color mixing formula. Thus, the luminous flux R emitted from a phosphor having an emission peak at an emission wavelength of 600 to 650 [nm], such as YOX, is compared with the luminous flux emitted from a phosphor such as SCA having an emission wavelength of 420 to 470 [nra]. The light flux ratio [%] of the sum B · with the light flux emitted from a phosphor such as LAP having an emission peak at 530 to 580 [nm] is R :, R is 0 to 28 [%], and B "^ is By setting it to 100 to 72 [%], the color of light color is reduced and white
Figure imgf000037_0001
It can be realized with high efficiency while obtaining the category Kano perception.
次に、 図 1 8は、 本発明の請求項 1 3、 1 4の 色度値 ( , y) = a: (0.228, 0.351), b: (0.358, 0.551), c: (0.525, 0.440) , d: (0.453, 0. 40), e: (0.285, 0. 332)に囲まれる範囲、 カゝっ  Next, FIG. 18 shows the chromaticity values (, y) = a: (0.228, 0.351), b: (0.358, 0.551), and c: (0.525, 0.440) of claims 13 and 14 of the present invention. , d: (0.453, 0.30), e: (0.285, 0.332)
y <-0. 43 x + 0. 60 で定義される色度範囲 25と、 LAP 単体の蛍光体を有する蛍光ランプ 26と、 昼光色のハロリン酸塩蛍光体を 塗布した光源 (l k) 27の xy色度ィ直と、 昼白色ハロリン醜蛍光体を 塗布した光源 (1 1) 28の X y色度値と、 白色ハロリン酸塩蛍光体を塗 布した光源( 1 m) 29の X y色度値と、 を x y色度座標上に示したものであ る。 光源 26と、 光源(1 1 27〜(1 111)29のレ、ずれカ とを組み合ゎせて混 光することによって、 点線 (1) 30、 (2) 31、 (3) 32の X y色度をもつ光源 をつくることができ、 本発明の色度範囲 25の光源を実現することができる。 次に、 20W蛍光ランプにおいて、 実施例の光源(1 f)〜(l j )、 図 11に 示した分光分布を持つ新蛍光ランプ、 及び、 従来のハロリン酸塩蛍光体の白色 蛍光ランプと 3波長域発光形昼白色蛍光ランプのランプ効率を比較したものを (表 5) に示す。 y <-0.43 x +0.60, chromaticity range 25, fluorescent lamp 26 with LAP phosphor alone, and xy of light source (lk) 27 coated with daylight halophosphate phosphor Light source coated with neutral white halophosphorescent phosphor (11) Xy chromaticity value of 28 and light source coated white halophosphate phosphor (1 m) Xy chromaticity of 29 The values and are shown on the xy chromaticity coordinates. By combining the light source 26 with the light sources (1127 to (1111) 29 and the shifter) and mixing the light, the dotted lines (1) 30, (2) 31, and (3) 32 X A light source having y chromaticity can be created, and a light source having a chromaticity range of 25 according to the present invention can be realized.Next, in a 20 W fluorescent lamp, the light sources (1f) to (lj) of the embodiment will be described. To 11 Table 5 compares the lamp efficiencies of the new fluorescent lamp with the indicated spectral distribution, the white fluorescent lamp of the conventional halophosphate phosphor, and the daylight fluorescent lamp of the three-band emission type.
【表 5】 各種光源 ( 2 0 W ) の ラ ンプ効率  [Table 5] Lamp efficiency of various light sources (20 W)
Figure imgf000038_0001
光源(1 f)〜(l j)のランプ効率,は、 従来のハロリン酸塩蛍光体の白色蛍光ラ ンプに対して、 約 24〜43%向上、 従来の 3波長域発光形の昼白色蛍光ラン プに対して、 約 10〜35%向上でき、 高効率な蛍光ランプを実現できる。 次に、 本発明の第三の実施の形態を説明する。
Figure imgf000038_0001
The lamp efficiencies of the light sources (1f) to (lj) are improved by about 24 to 43% compared to the white fluorescent lamp of the conventional halophosphate phosphor. The efficiency of fluorescent lamps can be improved by about 10-35%. Next, a third embodiment of the present invention will be described.
本発明の第三の実施の形態は、 高効率新光源の発光光色に電球色相当の光色の イメージを与えるものである。 蛍光体の具体的な実施の形態については、 第一 の実施の形態に準ずる。 In the third embodiment of the present invention, a light color image equivalent to a bulb color is given to the light emission color of the high efficiency new light source. The specific embodiment of the phosphor conforms to the first embodiment.
本発明の実施例は、 光?原の光色が電球色として許容できるかどうかを主観評 価させた実験データに基づレ、て実現したものである。  The embodiment of the present invention has been realized based on experimental data in which a subjective evaluation was made as to whether or not the light color of a light source was acceptable as a light bulb color.
本実験においては、 喑黒視野中に視角寸法 2° の 2つの発光部を同時提示し、 一方をテスト刺激、 一方を基準刺激とした。  In this experiment, two light-emitting parts with a visual angle of 2 ° were simultaneously presented in the black visual field, one was used as the test stimulus, and the other was used as the reference stimulus.
テスト刺激は図 19に示した t 1〜 t 21の 21種類の光色をランダムに 呈示できるようにした。 各テスト刺激は、 (ィ匕 1) LaPz04:Ce,Tbの蛍光体の緑 色発光の蛍光ランプ (LAP) と、 (ィ匕 2) Y203:Euの蛍光体の赤色発光の蛍 光ランプ (YOX) と、 (ィ匕 3) (Sr,Ba,Ca)10(PO4)6Clz:Euの蛍光体の青色発 光の蛍光ランプ (SCA) と、 発光ピーク波長が 580 [ran] 且つ xy色度 値が (0.515, 0.472)の純黄色発光の蛍光ランプと、 の混光比率を変えること によって設定した。 各テスト刺激の特生を (表 6) に示した。 The test stimulus was made to be able to randomly present 21 types of light colors from t1 to t21 shown in FIG. Each test stimulus (I spoon 1) LaP z 0 4: Ce , a fluorescent lamp of green-emitting phosphor of the Tb (LAP), (I spoon 2) Y 2 0 3: red light emitting phosphor of Eu The fluorescent lamp (YOX), the fluorescent lamp (SCA) that emits blue light from the phosphor of (Shi 3) (Sr, Ba, Ca) 10 (PO 4 ) 6 Cl z : Eu, and the emission peak wavelength 580 [ran] and xy chromaticity values (0.515, 0.472) were set by changing the mixing ratio of a fluorescent lamp that emits pure yellow light and. The characteristics of each test stimulus are shown in (Table 6).
【表 6】 [Table 6]
テ ス ト 刺激 t l t 2 1 の 色度値  Chromaticity value of test stimulus t l t 2 1
と 相 関色温度 と D u v And correlated color temperature and D u v
Figure imgf000040_0001
Figure imgf000040_0001
また、 基準刺激としては白熱電球 (相関色温度 2800K, X y色度値 (0.452, 0.406)) を呈示した。  An incandescent lamp (correlated color temperature 2800K, Xy chromaticity value (0.452, 0.406)) was presented as the reference stimulus.
実験では、 被験者にテスト刺激をランダムに呈示し、 基準刺激の電球較基準 として、 テスト刺激の光色を 「電球色として許容できる力 カ の二者択一で 評価させた。 In the experiment, the test stimulus was randomly presented to the subject, As a result, the light color of the test stimulus was evaluated as "an alternative to the power that can be accepted as the bulb color."
同一条件の繰り返しは 3回、 被験者は正常色覚を有する 7名とした。  The same conditions were repeated three times, and the subjects were seven subjects with normal color vision.
また、 各発光部の輝度は 3 0 0 O cd/m2と 3 0 O cd/m2の 2種類としたが、 実 験の結果、 2種類の輝度間で光色の評価に差は見られなかつた。 The brightness of each light-emitting part was set to 300 O cd / m 2 and 300 O cd / m 2 , but as a result of the experiment, there was no difference in the evaluation of light color between the two types of brightness. It wasn't.
図 2 0に、 電球色として許容できると回答した割合を小数点で、 各テスト光 源の x y色度点毎に、 示した。 曲線 2 3は、 過半数が電球色として許容できる とした許容確率 5 0 %の回帰曲線である。 つまり、 曲線 2 3以内の範囲は、 過 半数以上が電球色として許容できるとした光色の範囲である。  Fig. 20 shows the percentage of respondents who answered that the lamp color is acceptable as a decimal point for each xy chromaticity point of each test light source. Curve 23 is a regression curve with a 50% tolerance probability that the majority is acceptable as bulb color. In other words, the range within the curve 23 is the range of light colors for which the majority is acceptable as the bulb color.
1: (0. 4775, 0.4283) , m: (0. 4594, 0. 3971), n: (0. 214, 0. 3887) , o: (0.4171, 0. 3846 ), p: (0. 3903, 0. 3719), q: (0. 3805, 0.3642), r: (0. 3656, 0. 3905), s: (0. 3938, 0.4097), t: (0. 4021, 0.4076), u: (0. 4341, 0.4233), v: (0, 4348, 0. 185)を結ぶ図 2 1の 1〜 v 範囲は、 本発明の請求項 2 1の範囲であり、 曲線 2 3との関係を示す。  1: (0.4775, 0.4283), m: (0.4594, 0.3971), n: (0.24, 0.3887), o: (0.4171, 0.3846), p: (0.3903) , 0.3719), q: (0.3805, 0.3642), r: (0.3656, 0.3905), s: (0.3938, 0.4097), t: (0.4021, 0.4076), u: The range 1 to v in FIG. 21 connecting (0.4341, 0.4233), v: (0, 4348, 0.185) is the range of claim 21 of the present invention. Show.
前記 l〜v範囲は、 黒体放射軌跡の近傍の上下に限界線を規定し、 その中を 許容範囲とする J I Sの方法から得られた 従来のランプの光色の範囲を示し たものであり、 I E Cで定められている蛍光ランプの色度区分はこの範囲に含 まれる。 請求項 2 2の本発明は、 曲線 2 3からこの 1〜v範囲を除いた範囲で ある。 '  The above l to v ranges indicate the range of light colors of conventional lamps obtained by the JIS method in which limit lines are defined above and below the vicinity of the blackbody radiation locus, and the limit lines are defined as allowable ranges. The chromaticity classification of fluorescent lamps specified by IEC is included in this range. The present invention of claim 22 is a range in which the range of 1 to v is excluded from the curve 23. '
また、 , 2 4は、 発光波長 5 3 0〜 5 8 0 [nra]に発光ピークを有する L A P蛍光体と、 発光波長 6 0 0〜6 5 0 [nm]に発光ピークを有する YO X蛍光体 とのみで構成された蛍光ランプについて、 L A P : YO Xの光束比を変ィヒさせ たときの fe¾の変化を示したものである。 25は LAP : YOX=70 : 30の色度で相関色温度は約 3500 [Κ] · Du Vは約 19、 26は LAP : YOX=65 : 35の色度で相関色 El は約 3100 [K] · Du Vは約 12、 27は LAP : YOX=60 : 40の色度で 相関色温度は約 2800 [Κ] · Du Vは約 6、 28は LAP : YOX= 55 : 45の色度で相関色髓は約 2600 [Κ] · D u Vは約 1である。 Also,, 24 are a LAP phosphor having an emission peak at an emission wavelength of 530 to 580 [nra], and a YO X phosphor having an emission peak at an emission wavelength of 600 to 650 [nm]. This figure shows the change in fe¾ when the luminous flux ratio of LAP: YOX is changed for a fluorescent lamp composed of only と and と. 25 is LAP: YOX = 70: 30 chromaticity and correlated color temperature is about 3500 [Κ] · Du V is about 19, 26 is LAP: YOX = 65: 35 chromaticity and correlated color El is about 3100 [K] ] · Du V is about 12, 27 is LAP: YOX = 60: chromaticity of 40 Correlated color temperature is about 2800 [Κ] · Du V is about 6, 28 is LAP: YOX = 55: chromaticity of 45 The correlated color is about 2600 [Κ] · DuV is about 1.
これより、 主たる発光波長が 530〜580 [nm]と 600〜650 [mi]であ る蛍光ランプについて、 相関色温度を指標とすると約 3500 [K]が、 電球色 様の光色イメージと、 白色様の光色イメージとの境目である。  Based on this, for fluorescent lamps whose main emission wavelengths are 530 to 580 [nm] and 600 to 650 [mi], using the correlated color temperature as an index, about 3500 [K] is obtained as a light color image similar to a light bulb color. This is the boundary between white and light color images.
次に、 参考として図 22に本発明の請求項 21の 1〜vの色度と、 J I Sの 蛍光ランプの光色の範囲の関係を示す。  Next, for reference, FIG. 22 shows the relationship between the chromaticity of 1 to v of claim 21 of the present invention and the range of light colors of the JIS fluorescent lamp.
図 22の 29は白色、 30は温白色、 31は電球色の蛍光ランプの色度範囲 である。 図から白色の色度範囲の左下以外の頂点が 1〜 Vに対応していること が分かる。  In Fig. 22, 29 is white, 30 is warm white, and 31 is the chromaticity range of the fluorescent lamp of bulb color. From the figure, it can be seen that the vertices other than the lower left of the chromaticity range of white correspond to 1 to V.
また、 図 21の 25から 28に示すように、 LAP: YOXの光束比を変ィ匕 させた の蛍光ランプの実施例の分光分布を図 23から図 26に示す。  As shown in FIGS. 21 to 28 in FIGS. 21 to 28, FIGS. 23 to 26 show the spectral distribution of the embodiment of the fluorescent lamp in which the luminous flux ratio of LAP: YOX is changed.
本発明の高効率新光源の発光光色に電球色相当の光色のィメージを与える一 実施例としては、 発光ピーク波長 540〜560 nmの蛍光体として (化 1) LaP204:Ce,Tbの LAPと、 発光ピーク波長が 600〜620 nmの蛍光体とし て (ィ匕 2) Y203:Euの YOXとを、 光束比で LAP : YOX=60 : 40から L ΑΡ : ΥΟΧ=70 : 30までに変ィ匕させたものである。 As an example of giving a Imeji light color high efficiency equivalent incandescent color to the light-emitting light color of the new light source of the present invention, the phosphor peak emission wavelength 540 - 560 nm (of 1) LaP 2 0 4: Ce , and Tb of LAP, and the emission peak wavelength is used as the fluorescent substance of from 600 to 620 nm (I spoon 2) Y 2 0 3: Eu and YOX of, LAP in the light flux ratio: YOX = 60: 40 from L ΑΡ: ΥΟΧ = It was made by 70:30.
光束比で LAP : YOX=70 : 30の場合、 従来の 3波長域発光形蛍光ラ ンプ電球色に比べて、 蛍光体の種類を減らしながら効率を 10 %向上すること ができる。 When the luminous flux ratio is LAP: YOX = 70: 30, the efficiency can be improved by 10% while reducing the number of phosphors compared to the conventional three-wavelength-band fluorescent lamp color. Can be.
本発明の他の^ ½例として図 2 7に、 発光ピーク波長 4 4 0〜4 6 0 n mの 蛍光体として組成が (ィ匕 3 ) (Sr, Ba, Ca) 10 (P04) 6C12: Euの S C Aと、 発光ピーク 波長 5 4 0〜 5 6 0 n mの蛍光体として組成が LaP204:Ce, Tbの L A Pと、 発光 ピーク波長が 6 0 0〜6 2 0 n mの蛍光体として組成が Y203:Eu の Y O Xとを 1 : 6 7 : 3 2の光束比で構成した蛍光ランプの分光分布を示す。 2 7 Other ^ ½ of the present invention, the emission peak wavelength of 4 4 0~4 6 0 nm in the composition as a phosphor (I spoon 3) (Sr, Ba, Ca ) 10 (P0 4) 6 C1 2: the SCA of Eu, the emission peak wavelength 5 4 0~ 5 6 0 nm of the phosphor as composition LaP 2 0 4: Ce, and LAP of Tb, emission peak wavelength of 6 0 Less than six 2 0 nm fluorescence composition as the body Y 2 0 3: and YOX of Eu 1: 6 7: shows the spectral distribution of the fluorescent lamps composed of three second light flux ratio.
前記蛍光ランプの X y色度値は、 (0.4315, 0.4334)、 相関色温度は 3 3 1 7 K, 011¥は1 2. 3でぁり、 主たる発光波長以外に副発光を加えることで、 本発明の請求項 2 1、 2 2の色度範囲において、 任意の光色を作る出せる一実 施例である。  The Xy chromaticity value of the fluorescent lamp is (0.4315, 0.4334), the correlated color temperature is 3 3 17 K, 011 ¥ is 12.3, and by adding secondary emission in addition to the main emission wavelength, This is an embodiment capable of producing an arbitrary light color within the chromaticity ranges of claims 21 and 22 of the present invention.
高効率新光源を実現するに当たり、 以上のような蛍光ランプによる実施例以 外にも、 本発明の蛍光ランプと同等の光色をメタノレハライドランプで実現して も類似の効果が得られ、  In realizing a new high-efficiency light source, other than the above-described embodiment using a fluorescent lamp, a similar effect can be obtained by realizing a light color equivalent to that of the fluorescent lamp of the present invention with a methanol halide lamp,
第一は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現性を確保しつつ、 喑所視および薄明視、 または大視野での 的明るさ感の 高い、 メタノレハライ ドランプ。  The first is to ensure color reproducibility that allows classification of red, green, blue, yellow, white, and black surface colors at a minimum, and to achieve objectives in sighted and mesopic or large fields of vision. A high-brightness methanol lamp.
第二は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的調 ijが可能な色再 現' 14を ft保しつつ、 従来の高色 光源と混在して使用した ^^において、 光 色の違和感の少ない、 光色に白色感のあるメタルハライドランプ。  The second is that it can be used in combination with conventional high-color light sources while maintaining a color reproduction of '14' ft, which allows the classification of the surface colors of red, green, blue, yellow, white, and black. In ^^, a metal halide lamp with a light white color with little light discomfort.
第三は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現十生を雀保しつつ、 従来の低色 光源と混在して使用した ^^において、 光 色の違和感の少ない、 光色が電球色相当である、 高効率な照明光源であるメタ ノレノヽライドランプ。 The third is to use a mixture of conventional low-color light sources, while maintaining the minimum color reproduction that can classify red, green, blue, yellow, white, and black surface colors. In ^^, Meta is a highly efficient illumination light source with a light color that is less uncomfortable and the light color is equivalent to a bulb color Noren ride lamp.
を実現することができる。  Can be realized.
メタルノヽライドランプの^、 主たる発光波長の範囲を 530〜 580 [ran]、 および、 600〜650 [nm]にもつ、 ノヽロゲン化金属 (メタルハライ ド) に、 420〜530 [nm]に発光するハロゲン化金属 (メタルハライド) 、 および、 470〜530 [ran]に発光するハロゲン化金属 (メタルハライド) を添加する ことで本発明が実現できる。 一般のメタルハライドランプには I n (青発光) -T 1 (緑発光) -Na (黄'赤発光) 系のランプが多く用いられているが、 これらの I nの封入量を増加し青発光を成分を増加させた封入物の組^:で本 発明を実現できる。  Metal halide lamps emit light in the wavelength range of 530 to 580 [ran] and 600 to 650 [nm] and emit in the metal halide (metal halide) range of 420 to 530 [nm]. The present invention can be realized by adding a metal halide (metal halide) and a metal halide (metal halide) which emits light at 470 to 530 [ran]. In general, metal halide lamps based on In (blue emission), T1 (green emission), and Na (yellow / red emission) are used. The present invention can be realized by a set of inclusions ^: in which the components are increased.
また、 (ィ匕 17) NaI'AlCl3あるいは (ィ匕 18) CaI2'AlCl3と 、 タリウム のハロゲン化金属 (一例としてタリウムの沃ィ匕金属) との組^:で、 本発明を 実現することも可能である。 Further, the present invention is realized by a combination ^: of (I-Dai 17) NaI'AlCl 3 or (I-Dai 18) CaI 2 'AlCl 3 and a thallium metal halide (for example, thallium iodide metal). It is also possible.
またもう一つ一般的なメタノレノヽライドランプには S c—Na— (Th) 系が 存在するが、 これにタリウムのハロゲン化金属 (一例としてタリウムの沃化金 属) を封入するこ' で本発明を実現することも可能である。  Another common methanol pentolide lamp has a Sc—Na— (Th) system, which is filled with thallium metal halide (for example, thallium metal iodide). It is also possible to implement the invention.
その他 Ce— Na— C s— (Sm) 系 (一例としてこれらの沃化物) の Sm の封入量を減じ青発光成分を減少させたもの、 あるいは、 これに、 タリウムの ハロゲン化金属 (一例としてタリウムの沃化金属) を組^:たもので、 本発明 を実現することも可能である。  Other Ce—Na—Cs— (Sm) -based materials (for example, these iodides) with reduced Sm encapsulation and reduced blue light-emitting components, or thallium metal halides (for example, thallium) It is also possible to realize the present invention.
以上から、 本発明は、 高効率新光源に対し、  From the above, the present invention provides a highly efficient new light source
第一は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現性を確保しつつ、 喑所視およひ 明視、 または大視野での 的明るさ感の 高い光源 The first is a color reproduction that can categorize red, green, blue, yellow, white, and black surface colors at a minimum. A light source with a high sense of brightness in a sighted and clear vision, or a large field of view, while ensuring its realism
第二は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現性を確保しつつ、 従来の高色温度光源と混在して使用した場合において、 光 色の違和感の少ない、 光色に白^^のある光源>  Second, when used in combination with conventional high color temperature light sources, while ensuring the minimum color reproducibility that allows the classification of red, green, blue, yellow, white, and black surface colors. In the light source, there is little discomfort in the color, and the light color has white ^^
第三は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現†生を確保しつつ、 従来の低色 ^光源と混在して使用した において、 光 色の違和感の少ない、 光色が電球色相当である、 高効率な照明光源、である光源。 としての改善を実現することができる。  Thirdly, it is used in combination with the conventional low-color light source while ensuring color reproduction that allows classification of red, green, blue, yellow, white, and black surface colors at a minimum. A light source that is a highly efficient illumination light source that has a light color that is less unnatural and that has a light color equivalent to that of a light bulb. As an improvement.
本発明は、 色の見えの忠実性を重視しない場所での、 効率本位型の光源とし て、 実用化の可能性が高い。 たとえば、 照明用光源として特に有望であり、 照明、 道路照明、 街路照明、 車両灯火、 トンネル照明、 広場照明、 車庫照明、 倉庫照明、 工場照明などで使用できる。  INDUSTRIAL APPLICABILITY The present invention has a high possibility of being put into practical use as an efficient light source in a place where the fidelity of color appearance is not emphasized. For example, it is particularly promising as a light source for lighting, and can be used in lighting, road lighting, street lighting, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, and factory lighting.
また、 本発明の光源の適用場所を、 色の見えの忠実性を重視しない場で力、つ 低照度で使用される場所、 とすることで喑所視から薄明視状態の視!^で使用 することができ、 本発明の効果を有効に弓 Iき出すことができる。  In addition, the light source of the present invention is applied in a place where the fidelity of color appearance is not emphasized and a place where the light source is used in a low illuminance, so that the light source can be used from a sighted view to a mesopic state! ^ The effect of the present invention can be effectively obtained.
本発明は高効率新光源において、 可視帯域発光波長の範囲が 4 2 0〜5 3 0 [nm] (さらに詳細には 4 2 0〜4 7 0 [nra]、 4 7 0〜 5 3 0 [nm]) 、 5 3 0〜 5 8 0 [nm]、 6 0 0〜 6 5 0 [nm]の発光の比率を制御するものである。  The present invention relates to a high-efficiency new light source, which has a visible band emission wavelength range of 420 to 530 [nm] (more specifically, 420 to 470 [nra], and 470 to 530 [nm]]. nm]), 530 to 580 [nm] and 600 to 650 [nm].
これにより、 以下の新たな作用効果を満足させることができる。  Thereby, the following new effects can be satisfied.
先ず一つは、 喑所視およひ 明視、 または大視野でのネ細効率を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな識別性 を確保する高効率な照明光源を実現することである。 First of all, (1) while increasing the efficiency of macroscopic and clear vision or large-field visualization, at least categorical red, green, blue, yellow, and white colors of the surface color of the illuminated object. Distinctiveness Is to realize a highly efficient illumination light source.
次には、 最低赌、 赤,緑,青,黄,白,黒の表面色の分類的識別が可能な色再 現十生を確保しつつ、 光色に白色感のある照明光源を実現することである。  The next step is to realize an illumination light source with a white light color while securing a color reproduction life that can classify the surface colors of red, green, blue, yellow, white, and black at least. That is.
次には、 今一つは第三は、 最低限度、 赤,緑,青,黄,白,黒の表面色の分類的 識別が可能な色再現性を確保しつつ、 光色が電球色相当である高効率な照明光 源ヲ実現することである。  Secondly, the third is the light bulb equivalent to the bulb color, while ensuring the minimum color reproducibility that allows the classification of the red, green, blue, yellow, white, and black surface colors. A highly efficient illumination light source must be realized.
一般の照明用光源においても、 同じ照度の環境でも、 相関色温度が高い光源 の方が明るく感じられることが体験的に言われている。 この:^も、 相関色温 度が高い光源の方が青もしくは青緑の帯域の発光が多いためと考えられる。 次に、 これら一般の照明光源と本発明との対比からその効果を説明する。 主な比較の対象は 3波長域発光形蛍光ランプの電球色 (3000K): EX- L、 昼白色 (5000K) :ΕΧ→ί、 昼光色 (6700K) :EX- Dである。 また、 その他の比較対象として、 ハロリン酸カルシウム蛍光 体を使用した一般的な白色蛍光ランプ: W、 効率 本位型高圧ナトリウムランプ: NH1、 低圧ナトリウムランプ: X、 演色改善型高 圧ナトリゥムランプ: NH2、 蛍光水銀ランプ: HF、 メタルハライドランプ: MHLを 例示した。  It has been empirically reported that a light source with a high correlated color temperature feels brighter even in a general illumination light source under the same illuminance environment. This may also be due to the fact that a light source with a higher correlated color temperature emits more light in the blue or blue-green band. Next, the effects of the present invention will be described based on a comparison between these general illumination light sources and the present invention. The main comparison targets are the bulb color (3000K): EX-L, daylight white (5000K): ΕΧ → ί, and daylight color (6700K): EX-D of a three-band fluorescent lamp. As other comparison targets, common white fluorescent lamps using calcium halophosphate phosphor: W, high-efficiency high-pressure sodium lamp: NH1, low-pressure sodium lamp: X, high-pressure sodium lamp with improved color rendering: NH2, fluorescent mercury Lamp: HF, Metal halide lamp: MHL
前記高効率新光源: 2B ( 2波長域発光形蛍光ランプ) を基本に、 これに対し てランプ効率が 1 0 [ % ]よ り下らないよ うにするため (ィ匕 3 ) 61~,(¾, 83)5(?04)3( 1 11を加ぇて本発明を実施した28+3 と、 ハロリン酸塩カル シゥム蛍光体 (ィ匕 1 6 ) Ca5(P04)3(F, Cl) :Sb,Mn を加えて本発明を実施した 2B+ハ 口 Wと、 (化 1 1 ) Sr^^O^Euを加えて本発明を実施した 2B+SAEを、 それぞれ 例示する。 3波長域発光形蛍光ランプに比して一般に前記高効率新光源 ( 2 波長域発光形蛍光ランプ) は 2 0 [%]以上効率が高いため、 通常の光束も 3波 長域発光形蛍光ランプに比して高レ、優位性を保つ。 ここではそれとは別に、 主 観的明るさ感を検 f rる。 The high-efficiency new light source: based on 2B (two-wavelength-emission fluorescent lamp), in order to keep the lamp efficiency from falling below 10 [%] (Dani 3) 61 ~, (¾, 83) 5 (? 0 4) 3 (1 11 and 28 + 3 embodying the pressurized Ete present invention, halophosphate Cal Shiumu phosphor (I spoon 1 6) Ca5 (P0 4) 3 (F, Cl) : Sb and Mn are added to carry out the present invention, and 2B + HAW, and (2) Sr ^^ O ^ Eu is added to carry out the present invention, and 2B + SAE is exemplified. In general, the high-efficiency new light source (2 Since the efficiency of the wavelength-band fluorescent lamp is higher than 20%, the ordinary luminous flux is higher and superior to the 3-wavelength fluorescent lamp. Here, apart from that, we will examine the subjective brightness.
すなわち、 暗所視と薄明視での 的な明るさ感向上の効果の検証には V ' (λ)/ν(λ) を指標の代表として用い、 実環境のような大視野での視感的な 明るさ感向上の効果の検証には V 10 ( ) Ζ V ( λ )を指標の代表として用いる。 図 2 8は V, u)/va)の値と前記各種光源の関係を示したものであり、 図 2 9は ν10(λ)Ζν (え)の値と前記各種光源の隱を示したものである。 これらのデータ力ゝら、 前記高効率新光源に蛍光体を加えることによる前記各 種ネ 効率の改善効果は、 一般の照明光源に用いられる白色のハロリン酸塩力 ルシゥム蛍光体の様な広帯域な発光では少なく、 比較的狭帯域な発光を示す蛍 光体の方が大きいことがわかる。 つまり、 4 2 0〜4 7 0 [ran]に発光のピーク を持つ比較的狭帯域な発光を示す蛍光体 (ィ匕 3 ) (Sr, Ca, Ba) 1 0 (P04) 6C12 : Euは 十分な改善効果を示す。 さらに、 4 7 0〜 5 3 0 [ran]に発光のピークを持つ比 較的狭帯域な発光を示す蛍光体 (ィ匕 1 1 ) Sr4Alw0s: Euは大きな改善効果を示 す。 In other words, V ((λ) / ν (λ) is used as a representative index to verify the effect of improving the sense of brightness in scotopic vision and mesopic vision, and visual sensation in a large visual field such as a real environment is used. V 10 () Ζ V (λ) is used as a representative index for verifying the effect of effective brightness enhancement. FIG. 28 shows the relationship between the values of V, u) / va) and the various light sources, and FIG. 29 shows the values of ν 10 (λ) Ζν (e) and the concealment of the various light sources. Things. According to these data, the effect of improving the efficiency of each type by adding a phosphor to the high-efficiency new light source is broadband such as a white halophosphate power phosphor used in general illumination light sources. It can be seen that the phosphor that emits light is relatively small and emits light in a relatively narrow band. That, 4 2 0~4 7 0 [ran ] to phosphor having relatively narrow band emission with a peak of emission (I spoon 3) (Sr, Ca, Ba ) 1 0 (P0 4) 6 C1 2: Eu shows a sufficient improvement effect. Furthermore, 4 7 0~ 5 3 0 [ ran] to the light emitting phosphor exhibiting relatively narrowband emission having a peak of (spoon 1 1) Sr 4 Al w 0 s: Eu is shows the significant improvement .
これら図 2 8、 図 2 9のデータは、 その相対関係のみが意味をなすものであ るが、 前記高効率新光源に主に 4 7 0〜 5 3 0 [nra]の発光を付加することによ る前記の各種視感効率を改善する効果は、 3波長域発光形蛍光ランプの電球 色: EX-Lと 昼光色: EX - Dとが互いに同じ照度に設定されているそれぞれの照明 環境で感じる、 その EX - Lの明るさ感と EX-Dの明るさ感との間の差 以上の改 善効果を示す。 本発明によるこれらの効果は、 設計照度が低く暗所視および薄明視状態で供 用され、 さほど厳密な色の見えは必要とされないが、 省エネや経済効率力 S優先 される交通照明、 街路照明、 保安灯、 残置灯、 自 匕工場の工場照明、 人通り が少な 、場の公共照明などの分野に適用範囲が広レ、。 Although the data in FIGS. 28 and 29 are meaningful only in their relative relationship, it is important to add 470 to 530 [nra] light emission mainly to the high efficiency new light source. The effect of improving the various luminous efficiencies described above is that the light bulb of the three-wavelength band fluorescent lamp has the same illuminance as the color: EX-L and daylight: EX-D in each lighting environment. Feel the difference between the brightness of EX-L and the brightness of EX-D. These effects according to the present invention are designed for low illuminance, are used in scotopic and mesopic conditions, and do not require a strict color appearance, but are energy-saving and economically efficient. Widely applicable to areas such as security lights, lingering lights, factory lighting at the Jidai Plant, low traffic, and public lighting in places.
また同時に、 本発明において 4 2 0〜5 3 0 [nm]の波長範囲の分光分布を増 強することで、 新蛍光ランプの高効率を維持しつつ、 光色の色味を«し、 白 色感を出すことができる。  At the same time, by enhancing the spectral distribution in the wavelength range of 420 to 530 [nm] in the present invention, while maintaining the high efficiency of the new fluorescent lamp, the tint of the light color is enhanced, and the white color is improved. It can give a sense of color.
さらに、 効率的に光色の色味を 威し、 白 を高めるためには、 よりスぺ クトル単波長側の 4 2 0〜4 7 0 [nm]の発光波長の範囲に発光を集中すること が望ましい。  Furthermore, in order to efficiently reduce the color of the light color and enhance the white color, it is necessary to concentrate the light emission in the emission wavelength range of 420 to 470 [nm] on the spectrum single wavelength side. Is desirable.
また、 これたとは逆に、 デザイン上の から相関色 が低い電球色相当 の光色が望まれる場合もある。 その際は、 本発明により、 電球色として許容で きる光色の色度範囲を明らかにしたことによって、 その fe¾範囲に高効率な光 '?原を実現することができる。  On the contrary, in some cases, a light color equivalent to a light bulb color having a low correlation color is desired from the viewpoint of design. In this case, the present invention clarifies the chromaticity range of the light color that can be accepted as the bulb color, and thereby enables highly efficient light in the fe¾ range. Hara can be realized.
産業上の利用可能性  Industrial applicability
以上より、 本発明の高効率新光源に、 高色 S t光源と組み合わせて使用した 場合、 違和感が少なく白色感の高い光色の光色バリエーションの展開、 また、 低色 光源と組み合わせて使用した^^、 違和感が少ない光色と電球色相当 の光色の光色バリエ一ションの展開を作ることが可食 となる。  From the above, when the high-efficiency new light source of the present invention is used in combination with a high-color St light source, the light color variation of light colors with less discomfort and high whiteness is developed, and the light source is used in combination with a low-color light source. ^^, It will be edible to develop a light color variation with light color that is less uncomfortable and light color equivalent to the light bulb color.

Claims

主 求 の 範 囲 Scope of request
1 . カテゴリカル色知覚用の蛍光ランプであって、 主たる発光を、 発光波長 のピークの範囲が 5 3 0〜 5 8 0 [nra]および、 6 0 0〜6 5 0 [nm]にある蛍光 体で得、 発光波長のピークの範囲が 4 2 0〜5 3 0 [nm]の発光波長の範囲の蛍 光体による光束を編己主たる発光波長の範囲の総光束に対し、 4〜4 0 %とし、 ランプ光色の相関色温度が 3 5 0 0〜∞[K]、 Duv (distance from perfect radiator locus on uv co-ordinates)力 5〜 7 0であることを街敷とし、 喑所視 および薄明視、 または大視野での 効率を高めながら、 少なくとも、 被照明 物の表面色の赤,緑,青,黄,白の色のカテゴリカルな識 ijが可能であることを特 徴とする蛍光ランプ。  1. A fluorescent lamp for categorical color perception, which emits the main light, with the emission wavelength peaks in the range of 530 to 580 [nra] and 600 to 650 [nm]. The luminous flux of the phosphor having an emission wavelength in the range of 420 to 530 [nm] is compared with the total luminous flux in the main emission wavelength range of 4 to 40. %, The correlated color temperature of the lamp light color is 3500 to ∞ [K], and the Duv (distance from perfect radiator locus on uv co-ordinates) power is 5 to 70. And at least categorical knowledge ij of the surface colors of the illuminated object, red, green, blue, yellow, and white, while increasing the efficiency in mesopic or large fields of view. Fluorescent lamp.
2. カテゴリカル色知覚用の蛍光ランプであって、 主たる発光を、 発光波長 のピークの範囲が 5 3 0〜 5 8 0 [nm]および、 6 0 0〜 6 5 0 [nm]にある蛍光 体で得、 発光波長のピークの範囲が 4 7 0〜5 3 0 [nm]の発光波長の範囲の蛍 光体による光束を前記主たる発光波長の範囲の総光束に対し、 4〜4 0 %とし、 ランプ光色の相関色温度が 3 5 0 0〜∞[K]、 D uv (distance from perfect radiator locus on uv co-ordinates)が 5〜 7 0であることを糊敫とし、 暗所視 および薄明視、 または大視野での 効率を高めながら、 少なくとも、 被照明 物の表面色の赤,緑,青,黄,白の色のカテゴリカルな翻 ljが可能であることを特 徴とする蛍光ランプ。  2. This is a fluorescent lamp for categorical color perception, which emits the main light with a peak emission wavelength in the range of 530 to 580 [nm] and 600 to 650 [nm]. The luminous flux of the phosphor having an emission wavelength range of 470 to 53 [nm] is 4 to 40% of the total luminous flux of the main emission wavelength range. It is assumed that the correlated color temperature of the lamp light color is 3500 to ∞ [K], and that D uv (distance from perfect radiator locus on uv co-ordinates) is 5 to 70, And at least categorical translation of the surface color of the illuminated object into red, green, blue, yellow, and white while improving efficiency in mesopic or large fields of view. Fluorescent lamp.
3 . カテゴリカル色知覚用の蛍光ランプであって、 発光波長のピークの範囲 1 4 2 0〜5 3 0 [nm]、 5 3 0〜 5 8 0 [nm]、 6 0 0〜 6 5 0 [ran]に含む蛍 光体で構成され、 x y色度座標において、 yく一 0. 4 3 x + 0 . 6 0 , y > 3. A fluorescent lamp for categorical color perception, with a range of emission wavelength peaks 1 420 to 5300 [nm], 5300 to 5800 [nm], 600 to 6500. It is composed of the phosphor contained in [ran]. In the xy chromaticity coordinates, y x 0.43 x + 0.60, y>
0. 64 x + 0. 15, x>0. 1 6の範囲の光色を持つことを特徴とし、 喑 所視およひ 明視、 または大視野での 率を高めながら、 少なくとも、 被 照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな識別が可能であること を纖とする蛍光ランプ。 It is characterized by having a light color in the range of 0.64 x + 0.15, x> 0.16, and 高 め at least illuminated while increasing the rate of sighted and clear vision or large vision A fluorescent lamp that uses fiber as a material that can categorically identify the red, green, blue, yellow, and white colors of the surface of an object.
4. カテゴリカル色知覚用の蛍光ランプであって、 発光波長のピークの範囲 力 470〜530[nm]、 530〜580[nm]、 600〜 650 [nm]に含む蛍 光体で構成され、 xy色度座標において、 yく一 0. 43 x + 0. 60, y > 0. 64 x + 0. 1 5, x〉0. 16の範囲に囲まれる範囲の光色を持つこと を特徴とし、 暗所視および薄明視、 または大視野での 効率を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青,黄,白の色の力テゴリカルな IJが 可能であることを衛敫とする蛍光ランプ。  4. A fluorescent lamp for categorical color perception, which is composed of phosphors with emission wavelength peak ranges of 470 to 530 [nm], 530 to 580 [nm], and 600 to 650 [nm], In the xy chromaticity coordinates, it has a light color within the range of y x 0.43 x + 0.60, y> 0.64 x + 0.15, x> 0.16. At the same time, while increasing the efficiency in scotopic and mesopic vision, or in large fields of view, it is necessary to at least be able to achieve a power categorical IJ of the red, green, blue, yellow, and white colors of the surface of the illuminated object.蛍 光 fluorescent lamp.
5. 主たる発光を得る、 発光波長のピークの範囲が 530〜580 [nm]の蛍 光体はテルビウム、 または、 テルビウムとセリウムを付活した蛍光体であり、 600〜650 [nm]の蛍光体はユーロピウム、 または、 マンガンを付活した蛍 光体であり、 発光ピーク波長が 420〜530[nm]に f¾する蛍光体、 および、 発光ピーク波長が 470~530 [nm]に存在する蛍光体はユーロピウム、 また は、 ユーロピウムとマンガン、 または、 アンチモン、 または、 マンガン、 また はァンチモンとマンガンを付活した蛍光体であることを樹敫とする請求項 1〜 4のレ、ずれかに記載の蛍光ランプ。  5. A phosphor that emits main light and has a peak emission wavelength range of 530 to 580 [nm] is terbium or a phosphor activated by terbium and cerium, and a phosphor of 600 to 650 [nm]. Is a phosphor activated with europium or manganese, a phosphor having an emission peak wavelength of 420 to 530 [nm], and a phosphor having an emission peak wavelength of 470 to 530 [nm] are: 5. The fluorescent light according to claim 1, wherein the fluorescent material is activated by europium, or europium and manganese, or antimony, or manganese, or antimony and manganese. lamp.
6. 発光波長のピークの範囲が 530〜580 [nm]及び 600〜650 [nm] にある蛍光体を、 (CeiG T feMr^BA。と、 (Ce,Gd) (feMr BA。で構成した一 つの蛍光体で実現したことを特徴とする請求項 1〜 5のいずれかに曾 S¾の蛍光 ランプ。 6. Phosphors having emission wavelength peaks in the range of 530 to 580 [nm] and 600 to 650 [nm] are composed of (CeiG T feMr ^ BA.) And (Ce, Gd) (feMr BA.). 6. The fluorescent light of claim 1, wherein the fluorescent material is realized by two fluorescent materials. lamp.
7 . 発光ピーク波長が 4 2 0〜5 3 0 [ran]に存在する蛍光体、 発光ピーク波 長が 4 7 0〜5 3 0 [ran]に存在する蛍光体はハロリン酸塩カルシウム蛍光体で あることを糊敫とする請求項 1〜 6のレヽずれかに記載の蛍光ランプ。  7. The phosphor whose emission peak wavelength is between 420 and 530 [ran] and the phosphor whose emission peak wavelength is between 470 and 530 [ran] are calcium halophosphate phosphors. 7. The fluorescent lamp according to claim 1, wherein the fluorescent lamp is a paste.
8 . 発光ピーク波長が 4 2 0〜 5 3 0 [nm]に存在する蛍光体は、 BaMgAl]0017:Eu, または、 (Sr, Ca,Ba) ^。(P04) 6Cl2:Eu、 または、 Ba gAl1()017:Eu, n、 であることを糊毂とする請求項 1〜 6のレ、ずれかに記載の蛍光ランプ。 . 8 phosphor emission peak wavelength is present in the 4 2 0~ 5 3 0 [nm ] is, BaMgAl] 0 0 17: Eu , or, (Sr, Ca, Ba) ^. (P0 4) 6 Cl 2: Eu or, Ba gAl 1 () 0 17 ,: Eu, n fluorescent lamp according to one of claims 1 to 6 les, shift to Nori毂that is.
9 . 発光ピーク波長が 4 7 0〜5 3
Figure imgf000051_0001
9. Emission peak wavelength is 4 7 0-5 3
Figure imgf000051_0001
または、
Figure imgf000051_0002
ことを特徴とする請求項 1〜 6のいずれかに 記載の蛍光ランプ。
Or
Figure imgf000051_0002
The fluorescent lamp according to any one of claims 1 to 6, wherein:
1 0. 発光ピーク波長が 4 2 0〜4 7 0 [nm]に する蛍光体、 および、 4 7 0〜5 3 0 [nm]に する蛍光体とを同時に有することを糊敷とする請求項 1〜 9のレ、ずれ力に纖の蛍光ランプ。  110. A glue line that simultaneously has a phosphor having an emission peak wavelength of 420 to 470 [nm] and a phosphor having an emission peak wavelength of 470 to 530 [nm]. 1 ~ 9, the fluorescent force of the fiber to the deviation force.
1 1 . 発光ピーク波長が 4 2 0〜4 7 0 [nm]に存在する蛍光体、 および、 4 7 0〜 5 3 0 [nm]に する蛍光体は (Ba, Sr)MgAl1Q017:Eu, n、 であることを特 徴とする請求項 1 0記載の蛍光ランプ。 . 1 1 phosphor emission peak wavelength is present in the 4 2 0 to 4 7 0 [nm], and 4 7 0-5 3 0 phosphors in [nm] is (Ba, Sr) MgAl 1Q 0 17: 10. The fluorescent lamp according to claim 10, wherein Eu, n, and.
1 2. カテゴリ力ノレ色知覚用の蛍光ランプであって、 主たる発光を、 発光波 長のピークの範囲が 5 3 0〜 5 8 0 [nm]および、 6 0 0〜 6 5 0 [nm]に含む蛍 光体で得、 かつ、 副発光波長として少なくとも、 4 2 0〜4 7 0 [nm]の範囲に 発光波長のピークを有する蛍光体を有し、 相関色温度が 3 5 0 0〜∞[K]、 か つ、 Duv (distance from perfect radiator locus on uv co~orainatesノ 5〜 7 0の範囲の内、 x y色度座標上において、 Xと yの関係が yく一 0.43 x +0.60 の範囲にあり、 1 2. Fluorescent lamp for color perception of category power, which emits main light with peak wavelength range of 530 to 580 [nm] and 600 to 650 [nm] And a phosphor having an emission wavelength peak in the range of at least 420 to 470 [nm] as a sub-emission wavelength, and having a correlated color temperature of 350 to ∞ [K], and Duv (distance from perfect radiator locus on uv co ~ orainates) Within the range of 5 to 70, the relationship between X and y on the xy chromaticity coordinates is 0.43 x +0.60 In the range of
発光色の白色感を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな翻 IJが可能であることを特徴とする蛍光ランプ。  A fluorescent lamp characterized by being capable of at least categorically translating the surface colors of the illuminated object into red, green, blue, yellow, and white while enhancing the whiteness of the emitted light.
13. カテゴリカル色知覚用の蛍光ランプであって、 主たる発光を、 発光波 長のピークの範囲が 530〜580 [nra]および、 600〜650 [nra]に含む蛍 光体で得、 力、つ、 副発光波長として少なくとも、 420~470 [nm]の範囲に 発光波長のピークを有する蛍光体を有し、 xy色度座標上において色度値 (X, y ) = a: (0.228, 0.351), b: (0.358, 0.551) , c: (0.525, 0.440), d: (0.453, 0.440), e: (0.285, 0. 332)に囲まれる範囲のうち、 Xと yの P 、が γ <—0.43 x +0.60の範囲にあり、 発光色の白色感を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな! ifegijが可能であることを特徴とする蛍光ランプ。  13. A fluorescent lamp for categorical color perception, in which the main luminescence is obtained with a phosphor whose emission wavelength peak ranges from 530 to 580 [nra] and 600 to 650 [nra]. A phosphor having an emission wavelength peak at least in the range of 420 to 470 [nm] as a secondary emission wavelength, and a chromaticity value (X, y) = a on the xy chromaticity coordinates: (0.228, 0.351) ), B: (0.358, 0.551), c: (0.525, 0.440), d: (0.453, 0.440), e: Of the range enclosed by (0.285, 0.332), P of X and y is γ <—0.43 x +0.60, and at least categorical ifegij of red, green, blue, yellow, and white of the surface color of the illuminated object is possible while enhancing the whiteness of the emission color. A fluorescent lamp, characterized in that:
14. カテゴリカル色知覚用の蛍光ランプであって、 主たる発光を、 発光波長 のピークの範囲が 530〜 580 [nm]に含む蛍光体で得、 x y色^^標上にお い て 色 度 値 ( X 、 y ) = a: (0.228, 0.351), b': (0.358, 0.551), c: (0.525, 0.440) , d: (0.453, 0.440), e: (0.285, 0. 332)に囲まれる範囲のうち、 Xと yの関係が、 y <— 0.43 X +0.60の範囲にあ り、 発光色の白色感を高めながら、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな I Bllが可能であることを特徴とする蛍光ランプ。 14. This is a fluorescent lamp for categorical color perception, in which the main emission is obtained by a phosphor whose emission wavelength peak range is 530 to 580 [nm], and the chromaticity is on the xy color ^^ mark. Value (X, y) = a: (0.228, 0.351), b ': (0.358, 0.551), c: (0.525, 0.440), d: (0.453, 0.440), e: (0.285, 0.332) In the enclosed area, the relationship between X and y is in the range y <-0.43 X + 0.60. While increasing the whiteness of the emission color, at least the surface colors of the illuminated object are red, green, blue, A fluorescent lamp characterized in that categorical I Bll of yellow and white colors is possible.
15. 副発光波長 420〜470[nm]に発光ピークを有する蛍光体から発光 する光束と、 主たる発光波長 530〜580 [ran] に発光ピークを有する蛍光 体から発光する光束との比率 [%]を B: Gとし、 Bを 4〜11 [%]、 Gを 96〜89 [%]とすることを特徴とする請求項 12〜 14のレヽずれかに記載の蛍光ランプ。15. Ratio [%] of the luminous flux emitted from a phosphor having an emission peak at a sub-emission wavelength of 420 to 470 [nm] to the luminous flux emitted from a phosphor having an emission peak at a main emission wavelength of 530 to 580 [ran] B: G, B is 4 to 11 [%], G is 96 to 89 The fluorescent lamp according to any one of claims 12 to 14, wherein the fluorescent lamp is [%].
16. 発光波長 600〜650 [ran] に発光ピークを有する蛍光体から発光 する光束に対し、 発光波長 420〜470[nm] に発光ピークを有する蛍光体 力、ら発光する光束と発光波長 530〜580[nm] に発光ピークを有する蛍光 体から発光する光束の和、 との比率 を R: (B+G)とし、 Rを 0〜 28 [%]、 B+G を 100〜72[%]とすることを特徴とする請求項 12〜15のいずれかに記 載の蛍光ランプ。 16. For the luminous flux emitted from a phosphor having an emission peak at an emission wavelength of 600 to 650 [ran], the phosphor having an emission peak at an emission wavelength of 420 to 470 [nm], the emitted light flux and the emission wavelength of 530 to The ratio of the sum of the luminous fluxes emitted from the phosphor having an emission peak at 580 [nm] to R: (B + G), R is 0 to 28 [%], and B + G is 100 to 72 [%]. The fluorescent lamp according to any one of claims 12 to 15, wherein:
17. 発光波長のピークが 420〜470 [ran]にある蛍光体をユーロピウム、 を付活した蛍光体、 発光波長のピークが 530〜580 [nm]にある蛍光体をテ ノレピウム、 または、 テルビウムとセリウムを付活した蛍光体、 発光波長のピー クが 600〜650[nm]にある蛍光体をマンガン、 または、 ユーロピウムを付 活した蛍光体としたことを ί敷とする請求項 12〜16のいずれかに記載の蛍 光ランプ。  17. A phosphor having an emission wavelength peak of 420 to 470 [ran] is expressed by europium, a phosphor activated with, and a phosphor having an emission wavelength peak of 530 to 580 [nm] is expressed by tenorepium or terbium. 17. The phosphor according to claim 12, wherein the phosphor activated with cerium and the phosphor having an emission wavelength peak at 600 to 650 [nm] are phosphors activated with manganese or europium. The fluorescent lamp according to any one of the above.
18. 蛍光体の発光波長のピークが 530〜 580 [nm]に するテルビゥ ムを付活した蛍光体と、 ノ、口リン 蛍光体から構成されることを特徴とする 請求項 14記載の蛍光ランプ。  18. The fluorescent lamp according to claim 14, comprising: a phosphor activated with terbium having a peak emission wavelength of the phosphor of 530 to 580 [nm]; .
19. 発光波長のピークの範囲が 530〜 580 [ran]及び 600〜 650 [nm]の蛍光体を、 (Ce, Gd, Tb) (Mg, Mn)B5010^、 (Ce, Gd) (Mg, 。で構成した一つ の蛍光体で実現したことを特徴とする請求項 12〜17のいずれかに記載の蛍 光ランプ。 19. The phosphor in the range of peak 530-emission wavelength 580 [ran] and 600~ 650 [nm], (Ce , Gd, Tb) (Mg, Mn) B 5 0 10 ^, (Ce, Gd) (18) The fluorescent lamp according to any one of (12) to (17), wherein the fluorescent lamp is realized by one phosphor composed of Mg,.
20. 発光ピーク波長が 420〜 470 [ran]に存在する蛍光体は、 Ba gAl,。017:Eu、 または、 (Sr.C^Ba^O H) 6Cl2:Eu、 または、 BaMgAl1Q017:Eu,Mn、 であることを特徴とする請求項 1 2〜 1 7のいずれか又は、 1 9記載の蛍光ラ ソプ。 20. The phosphor having an emission peak wavelength of 420 to 470 [ran] is BagAl. 0 17 : Eu, or (Sr.C ^ Ba ^ OH) 6 Cl 2 : Eu, or BaMgAl 1Q 0 17 : Eu, Mn, The fluorescent lamp according to any one of claims 12 to 17, or 19, wherein:
2 1 . カテゴリカル色知覚用の蛍光ランプであって、 主たる発光を、 発光波 長のピークの範囲が 5 3 0〜5 8 0 [nm]および、 6 0 0〜6 5 0 [ran]にある蛍 光体で得、 相関色温度が 1 7 0 0〜∞[K]、 D uv (distance from perfect radiator locus on uv co-ordinates)力 5〜 7 0の範囲と、 x y色度座標にお いて色度値 ( , y ) が、 fx g^+h y+ix+jy+l^O、 f=0.6179, g=0.6179, hニ- 0. 7643, i=-0.2205, j=-0. 1765, k=0. 0829の 2次曲線の範囲と、 が重なる範囲に 発光色を有することを糊敷とし、  21. This is a fluorescent lamp for categorical color perception. The main light emission is in the range of peak emission wavelength of 530 to 580 [nm] and 600 to 650 [ran]. Obtained with a certain phosphor, the correlated color temperature is in the range of 170 to ∞ [K], the Duv (distance from perfect radiator locus on uv co-ordinates) force is in the range of 5 to 70, and the xy chromaticity coordinates And the chromaticity value (, y) is fx g ^ + h y + ix + jy + l ^ O, f = 0.6179, g = 0.6179, h d-0.743, i = -0.2205, j = -0. 1765, k = 0.0829
少なくとも、 被照明物の表面色の赤,緑,青,黄,白の色のカテゴリカルな識別 が可能であることを糊敷とする蛍光ランプ。  At least a fluorescent lamp that has a glue line that enables categorical identification of the red, green, blue, yellow, and white colors of the surface color of the illuminated object.
2 2. 力'テゴリカル色知覚用の蛍光ランプであって、 主たる発光を、 発光波 長のピークの範囲が 5 3 0〜 5 8 0 [nm]およぴ、 6 0 0〜 6 5 0 [nm]にある蛍 光体で得、  2 2. This is a fluorescent lamp for the perception of categorical color, which emits the main light, and the peak wavelength of the emitted light is in the range of 530 to 580 [nm] and 600 to 650 [nm]. nm]
X y色度座標において色度値 (x, y ) 力 s、 fx^+g^+hxy+ix+jy+k^O , f=0.6179, g=0. 6179, h=-0. 7643, i=-0. 2205, j=-0. 1765, k=0.0829の 2次曲線の範囲 以 内 力ゝ ら 、 x y 色 度 座 標 の 点 1: (0. 4775, 0.4283), ra: (0. 4594, 0. 3971), n: (0.4214, 0. 3887), o: (0.4171, 0. 3846), p: (0. 3903, 0. 3719), q: (0. 3805, 0. 3642), r: (0. 3656, 0. 3905), s: (0. 3938, 0.4097), t: (0. 4021, 0. 4076) , u: (0.4341, 0.4233) , V: (0.4348, 0.4185)を結ぶ ( 1 〜 v ) 範囲を除 いた範囲であることを特徴とし、 少なくとも、 被照明物の表面色の赤,緑,青, 黄,白の色のカテゴリカルな!^りが可能であることを特徴とする蛍光ランプ。 Chromaticity value (x, y) at X y chromaticity coordinates s , fx ^ + g ^ + hxy + ix + jy + k ^ O, f = 0.6179, g = 0.6179, h = -0.7643, From the range of the quadratic curve of i = −0.2205, j = -0. 1765, k = 0.0829, the points of the xy chromaticity coordinate point 1: (0.4775, 0.4283), ra: (0 4594, 0.3971), n: (0.4214, 0.3887), o: (0.4171, 0.3846), p: (0.3903, 0.3719), q: (0.3805, 0.33642) ), R: (0.3656, 0.3905), s: (0.3938, 0.4097), t: (0.4021, 0.4076), u: (0.4341, 0.4233), V: (0.4348, 0.4185) ) (1 to v) is excluded, and at least the categorical red, green, blue, yellow, and white colors of the surface of the illuminated object are possible. A fluorescent lamp, comprising:
23. 主たる発光波長を 530〜560 nm、 600〜 650 n mに発光 ピーク波長が存在する蛍光体から得た蛍光ランプにおいて、 530〜560n mにピーク波長が存在する蛍光体から発光する光束と、 600〜650 nmに 発光ピーク波長が存在する蛍光体から発光する光束の比率 G : R (%) 、 G= 70〜59、 R=30〜41であることを特徴とする請求項 21又は 22記載 の蛍光ランプ。 23. In a fluorescent lamp obtained from a phosphor having emission peak wavelengths at 530 to 560 nm and 600 to 650 nm, the luminous flux emitted from the phosphor having a peak wavelength at 530 to 560 nm, The ratio of luminous flux emitted from a phosphor having an emission peak wavelength at 650650 nm, G: R (%), G = 70-59, R = 30-41, characterized by the above-mentioned. Fluorescent lamp.
24. 主たる発光波長を 530〜560 nm、 600〜620 nmに発光 ピーク波長が存在する蛍光体から得た蛍光ランプにおいて、 副発光波長を 42 0〜530 nmに発光ピークを有する存在する蛍光体から得、 420〜530 nm (B+BG) 、 530〜560 nm(G)、 600〜620 nm (R) に発光 ピークを有する蛍光体から発光する光束の比率 (B+BG) : G : R (%) 力 B+BG= 0〜3、 G=59〜71、 R=41〜26であることを赚とする請求項 21〜 23のレヽずれかに記載の蛍光ランプ。  24. For fluorescent lamps obtained from phosphors with emission peak wavelengths of 530 to 560 nm and 600 to 620 nm as main emission wavelengths, from fluorescent lamps with emission peaks at 420 to 530 nm as secondary emission wavelengths The ratio of the luminous flux emitted from the phosphor having emission peaks at 420 to 530 nm (B + BG), 530 to 560 nm (G), and 600 to 620 nm (R) (B + BG): G: R ( %) Force B + BG = 0-3, G = 59-71, R = 41-26, The fluorescent lamp according to any one of claims 21-23.
25. 発光波長のピ一クの範囲が 530〜 580 [nm]の蛍光体はテルピウム、 または、 テノレビゥムとセリゥムを付活した蛍光体であり、 600〜650 [nm] の蛍光体はユーロピウム、 または、 マンガンを付活した蛍光体であることを特 徴とする請求項 21〜24のいずれ力に記載の蛍光ランプ。  25. Phosphors with emission wavelength peaks in the range of 530 to 580 [nm] are terpium or phosphor activated with tenorium and cerium; phosphors with 600 to 650 [nm] are europium or 25. The fluorescent lamp according to claim 21, wherein the fluorescent lamp is a phosphor activated with manganese.
26. 発光波長のピークの範囲が 530〜 580 [nm]及び 600〜 650 [nm]の蛍光体を、 (Ce, Gd, Tb) ( g, Mn) B5O10と、 (Ce, Gd) ( g, n) B5O10で構成した 一つの蛍光体で実現したことを とする請求項 21〜25のいずれ力に記載 の蛍光ランプ。  26. Phosphors having emission wavelength peaks in the range of 530 to 580 [nm] and 600 to 650 [nm] were converted to (Ce, Gd, Tb) (g, Mn) B5O10 and (Ce, Gd) (g, n) The fluorescent lamp according to any one of claims 21 to 25, wherein the fluorescent lamp is realized by one phosphor composed of B5O10.
27. 屋外照明、 道路照明、 街路照明、 安全灯、 車両灯火、 トンネル照明、 広場 照明、 車庫照明、 倉庫照明、 又は工場照明に使用することを特徴とする請求項 1〜2 6記載の蛍光ランプ。 27. Outdoor Lighting, Road Lighting, Street Lighting, Safety Lights, Vehicle Lighting, Tunnel Lighting, Square The fluorescent lamp according to any one of claims 1 to 26, wherein the fluorescent lamp is used for lighting, garage lighting, warehouse lighting, or factory lighting.
2 8 . 請求項 1〜2 6のいずれかに記載の蛍光ランプと同等の光色と発光ス ぺクトルを持つことを特徴とするメタルノ、ライドランプ。  28. A metal / ride lamp having a light color and a light emission spectrum equivalent to those of the fluorescent lamp according to any one of claims 1 to 26.
2 9. 屋外照明、 道路照明、 街路照明、 安全灯、 車両灯火、 トンネル照明、 広場 照明、 車庫照明、 倉庫照明、 又は工場照明に使用することを糊敷とする請求項 2 8記载のメタルハライドランプ。  2 9. Metal halide according to claim 28, which is used for outdoor lighting, road lighting, street lighting, safety light, vehicle lighting, tunnel lighting, plaza lighting, garage lighting, warehouse lighting, or factory lighting. lamp.
PCT/JP1998/000548 1997-02-13 1998-02-10 Fluorescent lamp and metal halide lamp WO1998036441A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69834294T DE69834294T2 (en) 1997-02-13 1998-02-10 FLUORESCENT LAMP AND LAMP WITH METAL HALOGENIDE
CA002249613A CA2249613A1 (en) 1997-02-13 1998-02-10 Fluorescent lamp and metal halide lamp
JP10535565A JP3143127B2 (en) 1997-02-13 1998-02-10 Fluorescent lamp
US09/171,078 US6414426B1 (en) 1997-02-13 1998-02-10 High-efficiency light source
EP98901580A EP0896361B1 (en) 1997-02-13 1998-02-10 Fluorescent lamp and metal halide lamp

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/28616 1997-02-13
JP2861697 1997-02-13
JP5893197 1997-03-13
JP9/58931 1997-03-13
JP9/263204 1997-09-29
JP26320497 1997-09-29

Publications (1)

Publication Number Publication Date
WO1998036441A1 true WO1998036441A1 (en) 1998-08-20

Family

ID=27286263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000548 WO1998036441A1 (en) 1997-02-13 1998-02-10 Fluorescent lamp and metal halide lamp

Country Status (9)

Country Link
EP (1) EP0896361B1 (en)
JP (3) JP3143127B2 (en)
KR (1) KR20000042740A (en)
CN (1) CN1216153A (en)
AT (1) ATE324668T1 (en)
CA (1) CA2249613A1 (en)
DE (1) DE69834294T2 (en)
ID (1) ID19882A (en)
WO (1) WO1998036441A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0990691A2 (en) * 1998-09-30 2000-04-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescent mixture and fluorescent lamp for the illumination of food
EP1008978A2 (en) * 1998-12-07 2000-06-14 Matsushita Electric Industrial Co., Ltd. Escape light instrument
JP2006302547A (en) * 2005-04-18 2006-11-02 Osram-Melco Ltd Fluorescent lamp
EP1494263A3 (en) * 2003-06-18 2007-09-12 General Electric Company Light sources for improving visual perceptions under mesopic lighting conditions
JP2007299715A (en) * 2006-05-08 2007-11-15 Osram-Melco Ltd Fluorescent lamp
JP2009140754A (en) * 2007-11-13 2009-06-25 Nichia Corp Fluorescent lamp
JP2011049174A (en) * 2010-10-08 2011-03-10 Osram-Melco Ltd Lighting system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424566B2 (en) * 1998-09-29 2003-07-07 松下電器産業株式会社 Fluorescent lamps and lighting equipment
US6285134B1 (en) 1998-10-05 2001-09-04 Matsushita Electric Industrial Co., Ltd. Light irradiation method for varying a perceived brightness
EP1009017A3 (en) * 1998-12-07 2001-04-04 Matsushita Electric Industrial Co., Ltd. Fluorescent lamp
EP1711956A2 (en) * 2004-01-23 2006-10-18 Koninklijke Philips Electronics N.V. A low-pressure mercury discharge lamp and process for its preparation
JP2007018737A (en) * 2005-07-05 2007-01-25 Matsushita Electric Ind Co Ltd Fluorescent lamp and backlight device
DE102006052221A1 (en) * 2006-11-06 2008-05-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Fluorescent coating for highly loaded lamps with color temperatures less than 2700 Kelvin
JP4951413B2 (en) * 2007-05-25 2012-06-13 パナソニック株式会社 Brightness correction method
ATE535754T1 (en) * 2007-07-26 2011-12-15 Innolumis Public Lighting B V STREET LIGHTING ARRANGEMENT
US8044566B2 (en) 2008-01-07 2011-10-25 Samsung Electronics Co., Ltd. Fluorescent mixture for fluorescent lamp, fluorescent lamp, backlight assembly having the same and display device having the same
JP2014130688A (en) * 2012-12-28 2014-07-10 Stanley Electric Co Ltd Vehicle turn signal lighting appliance
US9030103B2 (en) * 2013-02-08 2015-05-12 Cree, Inc. Solid state light emitting devices including adjustable scotopic / photopic ratio
NL2011375C2 (en) * 2013-09-03 2015-03-04 Gemex Consultancy B V Spectrally enhanced white light for better visual acuity.
CN111795307B (en) * 2020-07-02 2023-06-27 中国计量大学 LED device for realizing low blue light hazard and high color rendering
CN113586987A (en) * 2021-07-08 2021-11-02 广东欧曼科技股份有限公司 Mesopic vision high-voltage lamp strip

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185283A (en) * 1975-01-23 1976-07-26 Tokyo Shibaura Electric Co KEIKORANPU
JPS5866247A (en) * 1981-10-15 1983-04-20 Toshiba Corp Fluorescent lamp
JPS58112239A (en) * 1981-12-25 1983-07-04 Toshiba Corp Compact metal halide lamp
JPH05225959A (en) * 1992-02-12 1993-09-03 Matsushita Electron Corp Metal halide lamp
JPH06124689A (en) * 1992-10-08 1994-05-06 Hitachi Ltd Fluorescent high-pressure mercury lamp
JPH1021883A (en) * 1996-07-04 1998-01-23 Matsushita Electric Ind Co Ltd Lamp for general illumination
JPH10116589A (en) * 1996-10-11 1998-05-06 Matsushita Electric Ind Co Ltd Illumination light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185283A (en) * 1975-01-23 1976-07-26 Tokyo Shibaura Electric Co KEIKORANPU
JPS5866247A (en) * 1981-10-15 1983-04-20 Toshiba Corp Fluorescent lamp
JPS58112239A (en) * 1981-12-25 1983-07-04 Toshiba Corp Compact metal halide lamp
JPH05225959A (en) * 1992-02-12 1993-09-03 Matsushita Electron Corp Metal halide lamp
JPH06124689A (en) * 1992-10-08 1994-05-06 Hitachi Ltd Fluorescent high-pressure mercury lamp
JPH1021883A (en) * 1996-07-04 1998-01-23 Matsushita Electric Ind Co Ltd Lamp for general illumination
JPH10116589A (en) * 1996-10-11 1998-05-06 Matsushita Electric Ind Co Ltd Illumination light source

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0990691A2 (en) * 1998-09-30 2000-04-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescent mixture and fluorescent lamp for the illumination of food
EP0990691A3 (en) * 1998-09-30 2002-01-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescent mixture and fluorescent lamp for the illumination of food
EP1008978A2 (en) * 1998-12-07 2000-06-14 Matsushita Electric Industrial Co., Ltd. Escape light instrument
EP1008978A3 (en) * 1998-12-07 2000-10-18 Matsushita Electric Industrial Co., Ltd. Escape light instrument
US6313754B1 (en) 1998-12-07 2001-11-06 Matsushita Electric Industrial Co., Ltd. Escape light instrument
EP1494263A3 (en) * 2003-06-18 2007-09-12 General Electric Company Light sources for improving visual perceptions under mesopic lighting conditions
JP2006302547A (en) * 2005-04-18 2006-11-02 Osram-Melco Ltd Fluorescent lamp
JP2007299715A (en) * 2006-05-08 2007-11-15 Osram-Melco Ltd Fluorescent lamp
JP2009140754A (en) * 2007-11-13 2009-06-25 Nichia Corp Fluorescent lamp
JP2011049174A (en) * 2010-10-08 2011-03-10 Osram-Melco Ltd Lighting system

Also Published As

Publication number Publication date
JP3143127B2 (en) 2001-03-07
ID19882A (en) 1998-08-13
DE69834294D1 (en) 2006-06-01
EP0896361A4 (en) 1999-04-14
CA2249613A1 (en) 1998-08-13
CN1216153A (en) 1999-05-05
DE69834294T2 (en) 2006-09-14
EP0896361A1 (en) 1999-02-10
KR20000042740A (en) 2000-07-15
JP2001060449A (en) 2001-03-06
JP2001060450A (en) 2001-03-06
ATE324668T1 (en) 2006-05-15
EP0896361B1 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
WO1998036441A1 (en) Fluorescent lamp and metal halide lamp
US4315192A (en) Fluorescent lamp using high performance phosphor blend which is protected from color shifts by a very thin overcoat of stable phosphor of similar chromaticity
US7129629B2 (en) Method of evaluating whiteness, method of evaluating comparative whiteness, light source and luminaire
US7670507B2 (en) Phosphor composition for a low-pressure discharge lamp with high color temperature
JP2000106138A (en) Fluorescent lamp and luminaire
US6414426B1 (en) High-efficiency light source
EP1265270B1 (en) Discharge lamp and luminaire
KR19980080243A (en) Bulb color fluorescent lamp
EP0917182B1 (en) Fluorescent lamp
US20020053868A1 (en) Fluorescent lamp
US4431942A (en) Color-corrected hid mercury-vapor lamp having good color rendering and a desirable emission color
JP2001512625A (en) Low-pressure discharge lamp with several luminescent substances
EP0030956A1 (en) Daylight fluorescent lamps employing blend.
JP2000231905A (en) Fluorescent lamp
JP3076375B2 (en) Fluorescent lamp
EP0010991A2 (en) Light source for illuminating objects with enhanced perceived coloration
JP4817704B2 (en) Fluorescent lamp
JP2000231810A (en) Guidance lamp tool
JP2004327329A (en) Fluorescent lamp and luminaire using fluorescent lamp
JP3415596B2 (en) Fluorescent lamp
JP3405044B2 (en) Light-emitting composition and fluorescent lamp using the same
EP1008978A2 (en) Escape light instrument
JP2003297291A (en) Fluorescent lamp
JPH04324241A (en) Fluorescent lamp
JP2002184358A (en) Fluorescent lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800092.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2249613

Country of ref document: CA

Ref document number: 2249613

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998901580

Country of ref document: EP

Ref document number: 1019980708171

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998901580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09171078

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019980708171

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980708171

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998901580

Country of ref document: EP