WO1998034068A1 - Gas turbine installation with a ceramic-covered combustion chamber housing - Google Patents

Gas turbine installation with a ceramic-covered combustion chamber housing Download PDF

Info

Publication number
WO1998034068A1
WO1998034068A1 PCT/DE1998/000324 DE9800324W WO9834068A1 WO 1998034068 A1 WO1998034068 A1 WO 1998034068A1 DE 9800324 W DE9800324 W DE 9800324W WO 9834068 A1 WO9834068 A1 WO 9834068A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
gas turbine
coating
combustion chamber
layer
Prior art date
Application number
PCT/DE1998/000324
Other languages
German (de)
French (fr)
Inventor
Andreas Neidel
Klaus Raschke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to UA99074363A priority Critical patent/UA41485C2/en
Priority to DE59802328T priority patent/DE59802328D1/en
Priority to EP98909340A priority patent/EP0960308B1/en
Priority to JP53245998A priority patent/JP4294736B2/en
Publication of WO1998034068A1 publication Critical patent/WO1998034068A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components

Definitions

  • the invention relates to a gas turbine system with a combustion chamber housing which is lined on the inside with solid ceramic stones, with a rotor provided with rotor blades and with a housing provided with guide vanes, in particular at least the first blades on the turbine side carrying a ceramic thermal barrier coating.
  • Such a gas turbine is known for example from DE-OS 43 43 319.
  • the combustion chamber housings in particular their flame tubes, are designed to be extremely heat-resistant in modern gas turbines.
  • the inner walls can be covered with ceramic insulation layers or provided with a shield made of solid ceramic stones.
  • the blades of the turbine part of the gas turbine systems are often provided with ceramic thermal barrier layers as thermal protective layers, which consist, for example, of yttrium oxide-stabilized zirconium oxide layers.
  • the present invention is therefore based on the object of taking measures in a gas turbine of the type mentioned at the outset, on the one hand to protect the combustion chamber and the blades from thermal overload and on the other hand to extend the life of the turbine blades.
  • the object is achieved in that the ceramic stones are provided on their surface with a coating.
  • the ceramic stones have the advantage over heat shield plates made of other materials, for example super alloys, that higher material temperatures are possible and permissible. Only the stone fasteners need to be cooled. Because of the higher permissible material temperatures, for example, this leads to incomplete combustion of the combustion chamber lining
  • Shovels act on these like projectiles and have a strong abrasive effect.
  • the coating of the ceramic stones according to the invention effectively prevents the detachment of such particles from the surface of the ceramic stones. It seems particularly favorable here to coat the ceramic stones before installation in the combustion chamber housing. For this purpose, the coating must be such that good adhesion to the ceramic stones and good cohesion of the layer is ensured in order to avoid flaking off under thermal alternating stresses.
  • the coating of the ceramic stones thus forms a layer for fixing the surface particles. This enables the use of ceramic thermal barrier layers on the blades in combination with solid ceramic stones as the combustion chamber lining.
  • An embodiment of the invention provides that the coating consists of a metallic material and is applied in particular by means of vacuum plasma spraying (VPS).
  • VPS vacuum plasma spraying
  • Different corrosion protection layers which can be processed by VPS can be used for this purpose, e.g. B. the type M Cr A1Y, where M is Ni or Co.
  • a combination coating consisting of a metallic bond coat as an adhesion promoter with an overlying ceramic cover layer could also be used.
  • the ceramic cover layer can be partially applied by air plasma spraying.
  • the slight difference in the thermal expansion coefficients between ceramic stones and a ceramic APS coating has a favorable effect on the resistance to alternating thermal stress.
  • the execution of a ceramic layer as a thermal barrier layer has the additional advantage that the cooling air requirement of the combustion chamber lining is further reduced.
  • Conventional thermal insulation layers such as Yr 2 0 3 - stabilized Zr0 2 or Si0 2 or Al 2 0 3 are conceivable as ceramic coatings.
  • the invention can also be advantageously configured in that the ceramic cover layer is applied by means of the air plasma spraying process (APS).
  • APS air plasma spraying process
  • the APS procedure is a cheaper alternative to the VPS procedure.
  • the multilayer coating of the ceramic stones can also be advantageous for thermal reasons or for reasons of better cohesion of the layer.
  • both the binding layer and the outer coating can be designed as a graded layer, at that the thermal expansion behavior and the chemical composition change constantly over the layer thickness.
  • FIG. 1 schematically shows a longitudinal section of part of a gas turbine
  • Figure 2 schematically shows a section of the combustion chamber housing wall with distorted proportions in order to make the coating recognizable.
  • FIG. 1 schematically shows a gas turbine system according to the invention in a longitudinal section with a housing 1, in which fixed guide blades 3, 4 are fastened, and a rotor 2, to which rotor blades 5, 6 are fastened.
  • the fuel injected via the burners 14, 15 is burned with the air from the compressor 16.
  • Compressor 16 is the input part of the gas turbine system in which incoming air (arrows 17, 18) is compressed before it flows into combustion chamber 7.
  • a generator 20 for generating electrical energy is driven by means of the connecting shaft 19.
  • FIG. 2 the surface area of the annular combustion chamber is shown in simplified cross-section.
  • ceramic stones 10 are attached to the combustion chamber housing wall 11, which consists for example of metal.
  • the ceramic stones 10 consist for example of silicon or aluminum oxide.
  • a coating of the ceramic stones 10 is shown enlarged in two layers, of which the lower layer forms a binding layer (bond coat) 12, the upper layer forms a ceramic layer 13 which adheres particularly well to the binding layer 12.
  • the layers 12 and 13 together form a solid layer covering the ceramic stones 10, which binds any particles detached from the surface of the ceramic stones 10. Such particles can therefore have no erosive effect on the thermal barrier layer of the turbine blades of the housing or of the rotor.
  • the adhesion-promoting layer 12 preferably consists of a metal-chromium-aluminum-yttrium alloy (MCrAlY), while the heat insulation layer 13 preferably consists of yttrium oxide-stabilized zirconium oxide, SiO 2 or Al 2 O 3 .
  • a single-layer coating 22 of a ceramic stone is shown as an example in area 21 of FIG. 2, the coating consisting of ceramic.

Abstract

The invention relates to a gas turbine installation whose combustion chamber housing (7) located between the compressor and the turbine is fitted with solid ceramic material (10) and whose rotor (2) and covering housing sections (1) are provided with blades (3, 4, 5, 6). On the side of the turbine, at least the first rows of blades (3, 5) support ceramic heat-insulating layers. According to the invention, the ceramic material (10) is provided on its surface with a coating (12, 13) which prevents the ceramic surfaces from being 'sanded down' thereby avoiding the related destruction of the heat insulating layers.

Description

Beschreibungdescription
Gasturbinenanlage mit einem mit Keramiksteinen ausgekleideten BrennkammergehäuseGas turbine system with a combustion chamber casing lined with ceramic stones
Die Erfindung bezieht sich auf eine Gasturbinenanlage mit einem Brennkammergehäuse, das auf der Innenseite mit massiven Keramiksteinen ausgekleidet ist, mit einem mit Laufschaufeln versehenen Rotor und mit einem mit Leitschaufeln versehenen Gehäuse, wobei insbesondere wenigstens die ersten Schaufeln auf der Turbinenseite eine keramische Wärmedämmschicht tragen.The invention relates to a gas turbine system with a combustion chamber housing which is lined on the inside with solid ceramic stones, with a rotor provided with rotor blades and with a housing provided with guide vanes, in particular at least the first blades on the turbine side carrying a ceramic thermal barrier coating.
Eine derartige Gasturbine ist beispielsweise aus der DE-OS 43 43 319 bekannt. Zur Realisierung sehr hoher Eintrittstemperaturen werden die Brennkammergehäuse, insbesondere deren Flammrohre bei modernen Gasturbinen thermisch extrem belastbar ausgeführt. Zu diesem Zweck können die Innenwände mit keramischen Dämmschichten bedeckt oder mit einem Schild aus massiven Keramiksteinen versehen sein.Such a gas turbine is known for example from DE-OS 43 43 319. In order to achieve very high inlet temperatures, the combustion chamber housings, in particular their flame tubes, are designed to be extremely heat-resistant in modern gas turbines. For this purpose, the inner walls can be covered with ceramic insulation layers or provided with a shield made of solid ceramic stones.
Zudem sind die Schaufeln des Turbinenteils der Gasturbinenanlagen, insbesondere die Schaufeln der der Brennkammer benachbarten Stufen oft mit keramischen Thermobarriereschichten als thermischen Schutzschichten versehen, die beispielsweise aus yttriumoxidstabilisierten Zirkoniumoxidschichten bestehen.In addition, the blades of the turbine part of the gas turbine systems, in particular the blades of the stages adjacent to the combustion chamber, are often provided with ceramic thermal barrier layers as thermal protective layers, which consist, for example, of yttrium oxide-stabilized zirconium oxide layers.
Versuche haben gezeigt, daß bei der Verwendung massiver Keramiksteine für die Auskleidung der Brennkammer in Zusammenhang mit Turbinenschaufeln, welche mit empfindlichen keramischen Thermobarriereschichten versehen sind, diese Thermobarriereschichten starkem mechanischen Verschleiß ausgesetzt sind.Experiments have shown that when using massive ceramic stones for the lining of the combustion chamber in connection with turbine blades which are sensitive to ceramic Thermal barrier layers are provided, these thermal barrier layers are exposed to heavy mechanical wear.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, bei einer Gasturbine der eingangs genannten Art Maßnahmen zu treffen, um einerseits die Brennkammer und die Schaufeln vor thermischer Überlastung zu schützen und andererseits die Lebensdauer der Turbinenschaufeln zu verlängern.The present invention is therefore based on the object of taking measures in a gas turbine of the type mentioned at the outset, on the one hand to protect the combustion chamber and the blades from thermal overload and on the other hand to extend the life of the turbine blades.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Keramiksteine an ihrer Oberfläche mit einer Beschichtung versehen sind.The object is achieved in that the ceramic stones are provided on their surface with a coating.
Die keramischen Steine haben gegenüber Hitzeschildplatten aus anderen Materialien, beispielsweise Superlegierungen den Vorteil, daß höhere Materialtemperaturen möglich und zulässig sind. Nur die Befestigungselemente der Steine müssen gekühlt werden. Dies führt beispielsweise wegen der höheren zulässigen Werkstofftemperaturen dazu, daß auf die Oberfläche der Brennkammerauskleidung gelangende unvollständig verbrannteThe ceramic stones have the advantage over heat shield plates made of other materials, for example super alloys, that higher material temperatures are possible and permissible. Only the stone fasteners need to be cooled. Because of the higher permissible material temperatures, for example, this leads to incomplete combustion of the combustion chamber lining
Rauchgaspartikel dort vollständig verbrannt werden und hierdurch weniger toxisches CO (Kohlenmonoxyd) im Abgas entsteht, da dies in ungiftiges C02 (Kohlendioxyd) umgewandelt wird. Hinzu kommt, daß die im Vergleich zu metallischen Auskleidun- gen weniger benötigte Kühlluft nun für die Verbrennung zusätzlich zur Verfügung steht. Hierdurch werden eine tiefere Flammtemperatur und merklich weniger Stickoxyde gebildet, die aus bekannten Gründen die Umwelt zusätzlich belasten. Es ist somit sowohl aus Gründen des Wirkungsgrades als auch aus Um- weltgründen die Auskleidung der Brennkammer mit massiven Keramiksteinen wünschenswert. Bei der Verwendung solcher Ke- ramikbausteine entsteht jedoch das Problem, daß Partikel sich von deren Oberfläche lösen können, die wegen der hohenFlue gas particles are completely burned there and this results in less toxic CO (carbon monoxide) in the exhaust gas, since this is converted into non-toxic C0 2 (carbon dioxide). In addition, the cooling air, which is less required in comparison to metallic linings, is now additionally available for combustion. As a result, a lower flame temperature and noticeably fewer nitrogen oxides are formed, which, for known reasons, also pollute the environment. It is therefore desirable both for reasons of efficiency and for environmental reasons to line the combustion chamber with solid ceramic stones. When using such keys Ceramic blocks, however, creates the problem that particles can detach from their surface because of the high
Relativgeschwindigkeit zwischen der Rauchgasströmung und denRelative speed between the flue gas flow and the
Schaufeln auf diese wie Geschosse wirken und eine starke ab- rasive Wirkung haben.Shovels act on these like projectiles and have a strong abrasive effect.
Durch die erfindungsgemäße Beschichtung der Keramiksteine wird die Ablösung solcher Partikel von der Oberfläche der Keramiksteine wirksam verhindert. Besonders günstig erscheint hierbei, die Keramiksteine vor dem Einbau in das Brennkammergehäuse zu beschichten. Die Beschichtung muß hierzu so beschaffen sein, daß eine gute Haftung zu den Keramiksteinen und ein guter Zusammenhalt der Schicht gewährleistet ist, um ein Abplatzen bei thermischen Wechselbeanspruchungen zu ver- meiden. Die Beschichtung der Keramiksteine bildet somit eine Schicht zur Fixierung der Oberflächenpartikel . Somit wird die Verwendung keramischer Thermobarriereschichten an den Schaufeln in Kombination mit massiven Keramiksteinen als Brennkammerauskleidung ermöglicht.The coating of the ceramic stones according to the invention effectively prevents the detachment of such particles from the surface of the ceramic stones. It seems particularly favorable here to coat the ceramic stones before installation in the combustion chamber housing. For this purpose, the coating must be such that good adhesion to the ceramic stones and good cohesion of the layer is ensured in order to avoid flaking off under thermal alternating stresses. The coating of the ceramic stones thus forms a layer for fixing the surface particles. This enables the use of ceramic thermal barrier layers on the blades in combination with solid ceramic stones as the combustion chamber lining.
Eine Ausgestaltung der Erfindung sieht vor, daß die Beschichtung aus einem metallischen Material besteht und insbesondere mittels Vakuum-Plasmaspritzen (VPS) aufgebracht ist.An embodiment of the invention provides that the coating consists of a metallic material and is applied in particular by means of vacuum plasma spraying (VPS).
Hierzu können unterschiedliche mittels VPS verarbeitbare Korrosionsschutzschichten verwendet werden, z. B. der Art M Cr A1Y, wobei M für Ni oder Co steht.Different corrosion protection layers which can be processed by VPS can be used for this purpose, e.g. B. the type M Cr A1Y, where M is Ni or Co.
Auch eine Kombinationsbeschichtung aus einem metallischen Bondcoat als Haftvermittler mit darüberliegender Keramikdeckschicht wäre einsetzbar. Die Keramikdeckschicht kann vor- teilhaft mittels Air-Plasma-Spraying-Verfahren aufgebracht sein.A combination coating consisting of a metallic bond coat as an adhesion promoter with an overlying ceramic cover layer could also be used. The ceramic cover layer can be partially applied by air plasma spraying.
Falls auf ein VPS-Bondcoat verzichtet werden kann, ist auch das unmittelbare Beschichten der Steine mit Keramikschichten denkbar .If a VPS bond coat can be dispensed with, the direct coating of the stones with ceramic layers is also conceivable.
Der geringe Unterschied der thermischen Ausdehnungskoeffizienten zwischen Keramiksteinen und einer keramischen APS-Be- Schichtung wirkt sich dabei günstig auf die Beständigkeit gegen thermische Wechselbeanspruchung aus. Die Ausführung einer Keramikschicht als Thermobarriereschicht hat den zusätzlichen Vorteil, daß der Kühlluftbedarf der Brennkammerauskleidung noch weiter gesenkt wird. Als Keramikbeschich- tungen sind dabei übliche Wärmedämmschichten, wie z.B. Yr203- stabilisiertes Zr02 oder aber Si02 bzw. Al203 denkbar.The slight difference in the thermal expansion coefficients between ceramic stones and a ceramic APS coating has a favorable effect on the resistance to alternating thermal stress. The execution of a ceramic layer as a thermal barrier layer has the additional advantage that the cooling air requirement of the combustion chamber lining is further reduced. Conventional thermal insulation layers such as Yr 2 0 3 - stabilized Zr0 2 or Si0 2 or Al 2 0 3 are conceivable as ceramic coatings.
Die Erfindung kann auch vorteilhaft dadurch ausgestaltet werden, daß die Keramikdeckschicht mittels Air-Plasma-Spraying- Verfahren (APS) aufgebracht ist.The invention can also be advantageously configured in that the ceramic cover layer is applied by means of the air plasma spraying process (APS).
Das APS-Verfahren stellt eine kostengünstigere Alternative zu dem VPS-Verfahren dar.The APS procedure is a cheaper alternative to the VPS procedure.
Insbesondere kann auch die mehrlagige Beschichtung der Keramiksteine aus thermischen Gründen oder aus Gründen eines besseren Zusammenhalts der Schicht vorteilhaft sein.In particular, the multilayer coating of the ceramic stones can also be advantageous for thermal reasons or for reasons of better cohesion of the layer.
Generell kann sowohl die Bindeschicht als auch die außenlie- gende Beschichtung als gradierte Schicht ausgeführt sein, bei der das Wärmeausdehnungsverhalten und die chemische Zusammensetzung sich über die Schichtdicke stetig verändern.In general, both the binding layer and the outer coating can be designed as a graded layer, at that the thermal expansion behavior and the chemical composition change constantly over the layer thickness.
Im folgenden wird die Erfindung anhand eines Ausführungsbei- spiels in einer Zeichnung gezeigt und anschließend beschrieben.In the following, the invention is shown on the basis of an exemplary embodiment in a drawing and then described.
Dabei zeigtIt shows
Figur 1 schematisch einen Längsschnitt eines Teils einer Gasturbine,FIG. 1 schematically shows a longitudinal section of part of a gas turbine,
Figur 2 schematisch einen Schnitt der Brennkammergehäusewand mit verzerrten Größenverhältnissen, um die Beschichtung erkennbar zu machen.Figure 2 schematically shows a section of the combustion chamber housing wall with distorted proportions in order to make the coating recognizable.
Die Figur 1 zeigt schematisch erfindungsgemäße Gasturbinenanlage in einem Längsschnitt mit einem Gehäuse 1, in dem feststehende Leitschaufeln 3, 4 befestigt sind sowie einem Rotor 2, an dem Laufschaufeln 5, 6 befestigt sind. In dem Brennkammergehäuse 7 wird der über die Brenner 14, 15 einge- spritzte Brennstoff mit der Luft aus dem Verdichter 16 verbrannt. Als Verdichter 16 wird dabei der Eingangsteil der Gasturbinenanlage bezeichnet, in dem einströmende Luft (Pfeile 17, 18) vor dem Einströmen in die Brennkammer 7 komprimiert wird.1 schematically shows a gas turbine system according to the invention in a longitudinal section with a housing 1, in which fixed guide blades 3, 4 are fastened, and a rotor 2, to which rotor blades 5, 6 are fastened. In the combustion chamber housing 7, the fuel injected via the burners 14, 15 is burned with the air from the compressor 16. Compressor 16 is the input part of the gas turbine system in which incoming air (arrows 17, 18) is compressed before it flows into combustion chamber 7.
Die Expansion der Verbrennungsgase treibt die Turbine an. Mittels der Verbindungswelle 19 wird ein Generator 20 zur Erzeugung elektrischer Energie angetrieben.The expansion of the combustion gases drives the turbine. A generator 20 for generating electrical energy is driven by means of the connecting shaft 19.
In der Figur 2 ist der Oberflächenbereich der Ringbrennkammer vereinfacht im Querschnitt dargestellt. Mittels Befesti- gungselementen 8, 9 sind Keramiksteine 10 an der Brennkammergehäusewand 11 befestigt, welche beispielsweise aus Metall besteht. Die Keramiksteine 10 bestehen beispielsweise aus Silizium- oder Aluminiumoxyd.In FIG. 2, the surface area of the annular combustion chamber is shown in simplified cross-section. By means of supply elements 8, 9 ceramic stones 10 are attached to the combustion chamber housing wall 11, which consists for example of metal. The ceramic stones 10 consist for example of silicon or aluminum oxide.
In der Figur 2 ist eine Beschichtung der Keramiksteine 10 vergrößert in zwei Schichten dargestellt, von denen die untere Schicht eine Bindeschicht (Bondcoat) 12, die obere Schicht eine Keramikschicht 13 bildet, die auf der Binde- schicht 12 besonders gut haftet. Zusammen bilden die Schichten 12 und 13 eine in sich feste, die Keramiksteine 10 bedeckende Schicht, die etwaige von der Oberfläche der Keramiksteine 10 gelöste Partikel bindet. Solche Teilchen können somit keine erosive Wirkung auf die Thermobarriereschicht der Turbinenschaufeln des Gehäuses oder auch des Rotors ausüben. Die Haftvermittlungsschicht 12 besteht dabei vorzugsweise aus einer Metall -Chrom-Aluminium-Yttrium-Legierung (MCrAlY) , während die Wärmedämmschicht 13 vorzugsweise aus yttriumoxidstabilisiertem Zirkoniumoxid, Si02 oder Al203 be- steht.In FIG. 2, a coating of the ceramic stones 10 is shown enlarged in two layers, of which the lower layer forms a binding layer (bond coat) 12, the upper layer forms a ceramic layer 13 which adheres particularly well to the binding layer 12. The layers 12 and 13 together form a solid layer covering the ceramic stones 10, which binds any particles detached from the surface of the ceramic stones 10. Such particles can therefore have no erosive effect on the thermal barrier layer of the turbine blades of the housing or of the rotor. The adhesion-promoting layer 12 preferably consists of a metal-chromium-aluminum-yttrium alloy (MCrAlY), while the heat insulation layer 13 preferably consists of yttrium oxide-stabilized zirconium oxide, SiO 2 or Al 2 O 3 .
In dem Bereich 21 der Figur 2 ist beispielhaft eine einschichtige Beschichtung 22 eines Keramiksteines dargestellt, wobei die Beschichtung aus Keramik besteht . A single-layer coating 22 of a ceramic stone is shown as an example in area 21 of FIG. 2, the coating consisting of ceramic.

Claims

Patentansprüche claims
1. Gasturbinenanlage mit einem Brennkammergehäuse (7), das auf der Innenseite mit massiven Keramiksteinen (10) ausge- kleidet ist, mit einem mit Laufschaufeln (5, 6) versehenen Rotor (2) und mit einem mit Leitschaufeln (3, 4) versehenen Gehäuse (1) , wobei insbesondere wenigstens die ersten Schaufeln auf der Turbinenseite eine keramische Wärmedämmschicht tragen, d a d u r c h g e k e n n z e i c h n e t , daß die Keramiksteine (10) an ihrer Oberfläche mit einer Beschichtung (12, 13) versehen sind.1. Gas turbine system with a combustion chamber housing (7), which is lined on the inside with solid ceramic stones (10), with a rotor (2) provided with rotor blades (5, 6) and with a rotor with guide vanes (3, 4) Housing (1), in particular at least the first blades on the turbine side carrying a ceramic thermal barrier coating, characterized in that the ceramic stones (10) are provided with a coating (12, 13) on their surface.
2. Gasturbinenanlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Beschichtung (12, 13) aus einem metallischen Material besteht und insbesondere mittels Vakuum-Plasmaspritzen (VPS) aufgebracht ist .2. Gas turbine system according to claim 1, that the coating (12, 13) consists of a metallic material and is applied in particular by means of vacuum plasma spraying (VPS).
3. Gasturbinenanlage nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Beschichtung aus einem Bondcoat und einer Keramikdeckschicht besteht und daß die Keramikdeckschicht (13) insbesondere mittels Air-Plasma-Spraying-Verfahren (APS) aufgebracht ist.3. Gas turbine system according to claim 2, that the coating consists of a bond coat and a ceramic cover layer and that the ceramic cover layer (13) is applied in particular by means of the air plasma spraying method (APS).
4. Gasturbinenanlage nach Anspruch 1 oder einem der folgenden, d a d u r c h g e k e n n z e i c h n e t , daß die Beschichtung als keramische Schicht ausgebildet ist. 4. Gas turbine system according to claim 1 or one of the following, characterized in that the coating is designed as a ceramic layer.
5. Gasturbinenanlage nach Anspruch 1 oder einem der folgenden, g e k e n n z e i c h n e t d u r c h eine mehrlagige Beschichtung der Keramiksteine (10) . 5. Gas turbine system according to claim 1 or one of the following, a multi-layer coating of the ceramic stones (10).
PCT/DE1998/000324 1997-01-29 1998-01-29 Gas turbine installation with a ceramic-covered combustion chamber housing WO1998034068A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
UA99074363A UA41485C2 (en) 1997-01-29 1998-01-29 Gas-turbine unit with body of combustion chamber the inner side of which is covered with massif ceramic bricks
DE59802328T DE59802328D1 (en) 1997-01-29 1998-01-29 GAS TURBINE SYSTEM WITH A COMBUSTION HOUSING LINED WITH CERAMIC STONES
EP98909340A EP0960308B1 (en) 1997-01-29 1998-01-29 Gas turbine installation with a ceramic-covered combustion chamber housing
JP53245998A JP4294736B2 (en) 1997-01-29 1998-01-29 Gas turbine equipment with combustion chamber lined with ceramic blocks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19704976.1 1997-01-29
DE19704976A DE19704976C2 (en) 1997-01-29 1997-01-29 Gas turbine system with a combustion chamber casing lined with ceramic stones

Publications (1)

Publication Number Publication Date
WO1998034068A1 true WO1998034068A1 (en) 1998-08-06

Family

ID=7819815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000324 WO1998034068A1 (en) 1997-01-29 1998-01-29 Gas turbine installation with a ceramic-covered combustion chamber housing

Country Status (6)

Country Link
EP (1) EP0960308B1 (en)
JP (1) JP4294736B2 (en)
DE (2) DE19704976C2 (en)
RU (1) RU2178530C2 (en)
UA (1) UA41485C2 (en)
WO (1) WO1998034068A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072573A1 (en) 1999-07-30 2001-01-31 Siemens Aktiengesellschaft Method of making a refractory body and ceramic combustion chamber stone
PL200773B1 (en) * 2003-04-18 2009-02-27 System Spo & Lstrok Ka Akcyjna Method for applying anticorrosive coating on furnace waterwalls
WO2009065625A1 (en) * 2007-11-23 2009-05-28 Siemens Aktiengesellschaft Burner element and burner having aluminum oxide coating and method for coating a burner element
EP2169311A1 (en) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Material mixture for producing a fire-retardant material, fire-retardant moulding body and method for its manufacture
EP2233835A1 (en) * 2009-03-23 2010-09-29 Siemens Aktiengesellschaft Combustion chamber brazed with ceramic inserts
ITMI20111519A1 (en) 2011-08-08 2013-02-09 Ansaldo Energia Spa TILE OF CERAMIC MATERIAL FOR THE COATING OF COMBUSTION CHAMBERS, IN PARTICULAR OF GAS TURBINES, AND ITS RELATED MANUFACTURING METHOD
RU2554690C1 (en) * 2014-07-01 2015-06-27 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения"(АО"ВПК"НПО машиностроения") Cruise missile engine combustion chamber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB602149A (en) * 1946-01-09 1948-05-20 Anglo Saxon Petroleum Co Improvements in and relating to combustion chamber linings
US2763919A (en) * 1950-07-28 1956-09-25 Thompson Prod Inc Coated refractory body
DE2630247A1 (en) * 1976-07-06 1978-01-19 Daimler Benz Ag Exhaust gas pipe for internal combustion engines - lined with thermal insulation so gas has high temp. when it meets purificn. catalyst
US4159357A (en) * 1975-03-13 1979-06-26 Motoren- Und Turbinen-Union Munchen Gmbh Process for surface treating parts made of ceramic material
DE3638658C1 (en) * 1986-11-12 1988-04-21 Daimler Benz Ag Heat-insulating lining for a gas turbine
EP0310043A2 (en) * 1987-10-01 1989-04-05 Gte Laboratories Incorporated Oxidation resistant, high temperature thermal cycling resistant coating on silicon-based substrates and process for the production thereof
US5169674A (en) * 1990-10-23 1992-12-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of applying a thermal barrier coating system to a substrate
DE4343319A1 (en) 1993-12-18 1995-06-22 Abb Patent Gmbh Combustion chamber with a ceramic lining
US5496644A (en) * 1993-03-15 1996-03-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma sprayed mullite coatings on silicon-base ceramics
WO1997001436A1 (en) * 1995-06-26 1997-01-16 General Electric Company Protected thermal barrier coating composite with multiple coatings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3446649A1 (en) * 1984-12-20 1986-06-26 G + H Montage Gmbh, 6700 Ludwigshafen Lining for high-temperature gas turbines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB602149A (en) * 1946-01-09 1948-05-20 Anglo Saxon Petroleum Co Improvements in and relating to combustion chamber linings
US2763919A (en) * 1950-07-28 1956-09-25 Thompson Prod Inc Coated refractory body
US4159357A (en) * 1975-03-13 1979-06-26 Motoren- Und Turbinen-Union Munchen Gmbh Process for surface treating parts made of ceramic material
DE2630247A1 (en) * 1976-07-06 1978-01-19 Daimler Benz Ag Exhaust gas pipe for internal combustion engines - lined with thermal insulation so gas has high temp. when it meets purificn. catalyst
DE3638658C1 (en) * 1986-11-12 1988-04-21 Daimler Benz Ag Heat-insulating lining for a gas turbine
EP0310043A2 (en) * 1987-10-01 1989-04-05 Gte Laboratories Incorporated Oxidation resistant, high temperature thermal cycling resistant coating on silicon-based substrates and process for the production thereof
US5169674A (en) * 1990-10-23 1992-12-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of applying a thermal barrier coating system to a substrate
US5496644A (en) * 1993-03-15 1996-03-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma sprayed mullite coatings on silicon-base ceramics
DE4343319A1 (en) 1993-12-18 1995-06-22 Abb Patent Gmbh Combustion chamber with a ceramic lining
WO1997001436A1 (en) * 1995-06-26 1997-01-16 General Electric Company Protected thermal barrier coating composite with multiple coatings

Also Published As

Publication number Publication date
EP0960308A1 (en) 1999-12-01
RU2178530C2 (en) 2002-01-20
DE59802328D1 (en) 2002-01-17
EP0960308B1 (en) 2001-12-05
JP2001509874A (en) 2001-07-24
DE19704976C2 (en) 1999-02-25
UA41485C2 (en) 2001-09-17
JP4294736B2 (en) 2009-07-15
DE19704976A1 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
DE60307379T2 (en) Fail-safe film-cooled wall
DE3151413A1 (en) "SHOVEL OF A FLUID MACHINE, IN PARTICULAR GAS TURBINE"
EP1500790B1 (en) Shroud segment for a turbomachine
DE3407945C2 (en)
DE112017002907T5 (en) Thermal insulation layer, turbine element and gas turbine
DE1521393A1 (en) Process for the production of oxidation and heat-resistant protective layers
DE3413534A1 (en) HOUSING OF A FLUID MACHINE
DE102005060243A1 (en) Process for coating hollow internally cooled gas turbine blades with adhesive-, zirconium oxide ceramic- and Cr diffusion layers useful in gas turbine engine technology has adhesive layer applied by plasma or high rate spraying method
EP0374603A1 (en) Heat insulation for cast pieces conveying hot gases
WO2007082823A1 (en) Component for arrangement in the duct of a turbine engine and spray method for production of a coating
EP1522604B1 (en) Layer system and process for its production
EP0960308B1 (en) Gas turbine installation with a ceramic-covered combustion chamber housing
EP3121307A1 (en) Wear resistance layer and process for its manufacturing
EP1741980A1 (en) Ceramic element with hot gas resistant surface and manufacturing method
EP1382707A1 (en) Layer system
DE102009060570A1 (en) Method for producing a rotor / stator seal of a gas turbine
WO2013068159A1 (en) Production method for a coating system
EP1948836A1 (en) Alloy, protective layer for protecting a component from corrosion and/or oxidation at high temperatures and component
DE102018112353A1 (en) Process for coating a substrate with a cavity structure
EP2031183B1 (en) Steam turbine shaft with heat insulation layer
EP1692322B1 (en) Metal protective coating
EP2957718A1 (en) Turbine
DE102020000848A1 (en) Process for coating the blades of compressors, turbines and propellers
EP1561542A1 (en) Process of removing of component layer
EP2661541B1 (en) Method for producing a protective layer for a rotor blade

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998909340

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 532459

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09355531

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998909340

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998909340

Country of ref document: EP