WO1998018978A1 - Method and composition for diffusion alloying of ferrous materials - Google Patents

Method and composition for diffusion alloying of ferrous materials Download PDF

Info

Publication number
WO1998018978A1
WO1998018978A1 PCT/US1997/019278 US9719278W WO9818978A1 WO 1998018978 A1 WO1998018978 A1 WO 1998018978A1 US 9719278 W US9719278 W US 9719278W WO 9818978 A1 WO9818978 A1 WO 9818978A1
Authority
WO
WIPO (PCT)
Prior art keywords
approximately
chromium
ferrochromium
components
recited
Prior art date
Application number
PCT/US1997/019278
Other languages
French (fr)
Inventor
Inna Isaakovna Zaetz
Lidia Omovna Chunayeva
Grigory Anatolyevich Tkach
Original Assignee
Jamar Venture Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jamar Venture Corporation filed Critical Jamar Venture Corporation
Priority to CA002269735A priority Critical patent/CA2269735A1/en
Priority to US09/284,365 priority patent/US6197436B1/en
Priority to EP97911922A priority patent/EP0946784A4/en
Priority to AU49188/97A priority patent/AU4918897A/en
Publication of WO1998018978A1 publication Critical patent/WO1998018978A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • C23C10/32Chromising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface

Definitions

  • the present invention relates to a composition and method for diffusion coating ferrous metals, and more particularly to a method for diffusion coating ferrous metals using a pulverous coating composition including chromium and ferrochromium.
  • Carbon steels are frequently used in various industries due to their high plasticity, that is, their ability to deform inelastically without rupture at high stresses. This high plasticity, in turn, makes carbon steels relatively easy to machine, process and treat.
  • compositions have been proposed for the diffusion coating of ferrous base metals.
  • One such composition has the following components: Chromium 50 wt% Aluminum Oxide 43-45 wt%
  • the diffusion coating of carbon-containing ferrous base metals with this composition produces a surface layer comprising a solid solution of chromium in iron with a discontinuous chromium carbide phase.
  • Such surface layers have been found to be susceptible to fracture, leading to a relatively short coating life. This is believed to be due to the failure of the coating.
  • Such surface layers also have been found to be insufficiently resistant to corrosion, especially in weak acidic or chloridic solutions at high temperatures.
  • Another proposed diffusion coating composition uses ferrochromium:
  • the wear resistance of ferrous base metals diffusion-coated with this composition is very low.
  • German Patent No. 36 04 309 proposed the following composition for use in diffusion coating metal:
  • microadditives tend to enhance the formation of a continuous upper surface carbide layer and thereby meaningfully increase the corrosion resistance and wear resistance of the finished part.
  • coatings formed on carbon-containing ferrous base metals from chromium-based compositions including boron or molybdenum microadditives lack sufficient resistance to aggressively corrosive solutions such as calcium chloride, sulfur-containing petroleum and mineral oil.
  • prior art coating compositions have required relatively large amounts of these relatively expensive microadditives (from approximately 2-5 wt%) which significantly increased the cost of the coatings.
  • Tantalum carbide which is synthesized by the direct carbidization of tantalum powder and soot, or by the reaction of tantalum oxide with carbon at 1900°C in an inert gas atmosphere, is known to possess high hardness and high resistance to corrosion except at elevated temperatures.
  • Tantalum metal is widely used in sheet form in the manufacture of different kinds of apparatus including vessels, heaters, steam condensers and pipe heat exchangers. Tantalum is rarely used for coating other metals, however. Though tantalum coatings might be formed by explosion or by precipitation from the vapor phase, these processes are expensive and do not guarantee sufficiently continuous, unbroken coverage of the base metals.
  • German Patent No. 42 38 220 proposed a composition for the diffusion coating of ferrous metals such as cast iron: Chromium 50-60 wt%
  • the present invention provides a composition and method for use in diffusion protection of ferrous workpieces.
  • the composition or mixture comprises both chromium and ferrochromium in combination with an ammonium halide and aluminum oxide.
  • a preferred form of the composition also includes between 0.75 wt% and 1.35 wt% of microadditives selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof.
  • the composition comprises:
  • the preferred ammonium halide is ammonium chloride.
  • the invention also provides a relatively simple coating method which can be performed using conventional equipment.
  • the components, in powdered form, are weighed and mixed in a container.
  • the workpieces are preferably degreased, for example in a weak acid solution, and then placed in the container. Careful cleaning or scouring of the workpiece is not required.
  • the container is hermetically sealed and heated to a temperature of 1000°-1050°C. No protective atmosphere is required.
  • the workpieces and the composition are kept at that temperature for a predetermined period, on the order of forty-five minutes or longer, of sufficient duration to permit a surface layer of desired thickness to form.
  • the container is then cooled in a conventional cooling chamber and the workpieces are removed.
  • the diffusion coating of workpieces of carbon steel or cast iron with the preferred coating composition forms a protective surface layer having mechanical properties akin to those of highly alloyed steels, with improved plasticity characteristics. More specifically, the preferred coating composition serves to form an ultra-hard surface layer. As a result of chemical and thermal processing of the base metal, the surface acquires high wear and corrosion resistance characteristics to satisfy the requirements for long-term performance in various environments.
  • the composition and method of the invention are preferably applied to high carbon and medium carbon steels. While less preferred, the composition and method of the invention do provide coatings with desirable properties on low carbon steels.
  • the inclusion of both chromium and ferrochromium in the composition of the present invention is believed to be unique.
  • the waste products of metallurgical smelting typically include 68-70 wt% ferrochromium.
  • the use of such waste products as a source of ferrochromium is believed to result in significant cost savings.
  • the mixture of ferrochromium with chromium improves the alloying characteristics of the composition and provides for a better treatment of the base metal. If the percentage of ferrochromium added is less than approximately
  • the composition does not produce a pore-free carbide layer which reduces the protective capability of the coating. If the percentage of ferrochromium is greater than approximately 37 wt% (or if the total percentage of chromium and ferrochromium exceeds the preferred limits of the invention), oversaturation occurs and the resulting surface is brittle and prone to fracture.
  • tantalum carbide in the range of 0.40-0.65 wt% increases the wear resistance of the surface layer.
  • vanadium in the range of 0.35-0.70 wt% improves the plasticity properties of the surface layer. If insufficient amounts of tantalum carbide and vanadium are used, the composition does not produce a pore-free surface layer. If excessive amounts of the microadditives are used, the cost of the composition is increased without significantly improving the properties of the surface layer.
  • the structure of the surface layer is formed by the diffusion of tantalum carbide and chromium carbide into vacancies in the surface.
  • the vanadium fills the space between the carbides to form a continuous layer.
  • the chromium carbides diffuse farther into the matrix of the base metal and fill deeper vacancies.
  • the carbides making up the solid, pore-free coatings produced by the composition and method of the invention have low diffusion mobility at room temperature.
  • the diffusion mobilities of chromium carbides and tantalum carbides are on the order of magnitude often times lower than the diffusion mobilities of pure chromium and tantalum in the crystalline structure of metal.
  • the chromium and tantalum carbides formed on the workpiece surface as a result of the diffusion treatment are not inclined to diffuse into the structure of the base metal once the surface layer is formed.
  • composition and method of the present invention are effective to form on carbon steels and cast irons diffusion coatings having Vickers hardnesses up to approximately 2200-2500 kg/mm 2 with porosities less than 0.1%. Further increases in hardness are possible, but may lead to undesirably low plasticity.
  • Workpieces of any geometric shape may be treated by the method of the invention.
  • the only practical size limitation on the parts which can be treated by the method of the invention is the size of the furnace.
  • the preferred surface layer thickness, 8-500 ⁇ m, is independent of the dimensions of the workpiece.
  • the diffusion coating method of the present invention is believed to be cheaper than electrodeposition methods. Unlike electrodeposition methods, the diffusion coating method of the present invention does not generate significant fumes harmful to workers or the environment.
  • One significant advantage of the method of the invention is that the coating composition may be continuously refreshed and recycled, and the process may be operated so as to generate practically no waste.
  • the coating process of the present invention is believed to be applicable in many fields, including the engineering, chemical, oil and gas, agricultural, automotive, shipbuilding, electronics and communications industries. The process may also find application in the construction and consumer goods industries. Therefore, it is one object of the invention to provide a composition and method for diffusion coating ferrous base metals to form surface layers having good wear and corrosion resistance while maintaining desirable plasticity characteristics.
  • the invention will be further described in conjunction with the following detailed description. Detailed Description of the Preferred Embodiment The invention will be further explained in conjunction with the following examples which are included as being illustrative of the invention and should not be construed to limit the scope of the invention.
  • EXAMPLE 1 A mixture of the following components was weighed out and placed in a sealed container with a prismatic workpiece (65 cm x 15 cm x 3 cm) of carbon steel and three test samples of the same steel:
  • the container was heated in a furnace at a temperature of 1050°C for ninety minutes and then placed in a cooling chamber.
  • the test samples with the newly-formed protective surface layers were tested by means of (1) X-ray structural analysis and (2) Vickers micro-hardness analysis.
  • the thickness of the diffused carbide layer was 12 ⁇ m.
  • An upper portion of the surface layer was comprised of tantalum carbide, chromium carbide and vanadium.
  • a lower portion of the surface layer was comprised of chromium carbides and a solid solution of chromium in iron.
  • the microhardness of the surface layer was 1900 kg/mm 2 Vickers. A scratch test using different degrees of pressure revealed the absence of cracks and showed that the surface possessed good wear resistance and plasticity characteristics.
  • the porosity of the surface layer was determined by placing a sheet of filter paper saturated in Vokker's reagent, a mixture of
  • EXAMPLE 2 Additional ferrous workpieces were coated according to the method of Example 1 using various pulverous coating compositions. The results are shown in Table 1 below:
  • C-42 Low Alloy Steel includes 13.5 wt% chromium, 0.6 wt% silicon and 0.6 wt% manganese.
  • test results set forth in Table 1 showed the desirable properties of surface layers formed on carbon steels and cast irons by the method and composition of the invention.
  • Tests Nos. 1, 2, 4-11, 13 and 14 the method of the present invention resulted in surface layers having Vickers hardnesses of 1550 kg/mm 2 or greater without porosity or brittleness.
  • the test results set forth in Table 1 also showed the significance of the chromium/ferrochromium composition on the properties of the coating.
  • the coating in Test No. 3 formed using a composition including 50 wt% chromium, 39 wt% ferrochromium, and microadditions was brittle.
  • the coating in Test No. 12 formed using a composition including 45 wt% chromium, 22 wt% ferrochromium, 0.38 wt% tantalum carbide, and 0.35% vanadium was porous and relatively soft.

Abstract

A method for diffusion coating workpieces of ferrous base metals such as carbon steel and cast iron includes the step of weighing and mixing the following components, in powdered form: Chromium 40-50 wt.%, Ferrochromium 25-37 wt.%, Tantalum Carbide 0.40-0.65 wt.%, Vanadium 0.35-0.70 wt.%, Ammonium Halide 4-5 wt.%, Aluminum Oxide remainder. The workpieces are preferably degreased and then placed in a container with the mixed components. The container is sealed and heated to a temperature of 1000-1050 °C. The workpieces and the composition are kept at that temperature for a predetermined period, on the order of forty-five minutes or longer, to permit a surface layer of desired thickness to form. The container is then cooled in a conventional cooling chamber and the workpieces are removed. The method produces coatings having good wear and corrosion resistance.

Description

METHOD AND COMPOSITION FOR DIFFUSION ALLOYING OF FERROUS MATERIALS
Background of the Invention 1. Field of the Invention
The present invention relates to a composition and method for diffusion coating ferrous metals, and more particularly to a method for diffusion coating ferrous metals using a pulverous coating composition including chromium and ferrochromium.
2. Description of Related Art
Carbon steels are frequently used in various industries due to their high plasticity, that is, their ability to deform inelastically without rupture at high stresses. This high plasticity, in turn, makes carbon steels relatively easy to machine, process and treat.
One drawback to the use of carbon steels and cast iron is their low wear resistance and low corrosion resistance. For this reason, these materials are often subjected to surface treatments to increase their resistance to wear and corrosion. Prior investigations have shown that the diffusion coating of parts with alloys of the transition metals, especially alloys of chromium, produces dense protective layers which are connected reliably to the base metals of the parts.
Various compositions have been proposed for the diffusion coating of ferrous base metals. One such composition has the following components: Chromium 50 wt% Aluminum Oxide 43-45 wt%
Ammonium Chloride 5-7 wt%.
The diffusion coating of carbon-containing ferrous base metals with this composition produces a surface layer comprising a solid solution of chromium in iron with a discontinuous chromium carbide phase. Such surface layers have been found to be susceptible to fracture, leading to a relatively short coating life. This is believed to be due to the failure of the coating. Such surface layers also have been found to be insufficiently resistant to corrosion, especially in weak acidic or chloridic solutions at high temperatures.
Another proposed diffusion coating composition uses ferrochromium:
Ferrochromium 70 wt% Aluminum Oxide 29 wt%
Chromium Ammonia 1 wt%
The wear resistance of ferrous base metals diffusion-coated with this composition is very low.
Various microadditions, such as boron and molybdenum, have been proposed for increasing the wear resistance of chromium-based diffusion coatings. For example. German Patent No. 36 04 309 proposed the following composition for use in diffusion coating metal:
Chromium 67 wt%
Molybdenum Boride 3 wt%
Aluminum Oxide 29 wt%
Ammonium Chloride 1 wt%.
Such microadditives tend to enhance the formation of a continuous upper surface carbide layer and thereby meaningfully increase the corrosion resistance and wear resistance of the finished part. Nonetheless, coatings formed on carbon-containing ferrous base metals from chromium-based compositions including boron or molybdenum microadditives lack sufficient resistance to aggressively corrosive solutions such as calcium chloride, sulfur-containing petroleum and mineral oil. Furthermore, prior art coating compositions have required relatively large amounts of these relatively expensive microadditives (from approximately 2-5 wt%) which significantly increased the cost of the coatings.
Pure tantalum is widely known to be inert with respect to many corrosive agents, including hydrochloric, nitric and acetic acids; lye; sea water; and chloridic solutions. Tantalum carbide, which is synthesized by the direct carbidization of tantalum powder and soot, or by the reaction of tantalum oxide with carbon at 1900°C in an inert gas atmosphere, is known to possess high hardness and high resistance to corrosion except at elevated temperatures.
Tantalum metal is widely used in sheet form in the manufacture of different kinds of apparatus including vessels, heaters, steam condensers and pipe heat exchangers. Tantalum is rarely used for coating other metals, however. Though tantalum coatings might be formed by explosion or by precipitation from the vapor phase, these processes are expensive and do not guarantee sufficiently continuous, unbroken coverage of the base metals.
Soviet Author's Certificate No. 10 66 537 proposed a coating composition including 4 wt% nickel, 4 wt% chromium and 17 wt% tantalum. Coatings formed from this composition showed improved wear resistance but were relatively brittle. Furthermore, such coatings did not provide sufficient resistance to corrosion.
German Patent No. 42 38 220 proposed a composition for the diffusion coating of ferrous metals such as cast iron: Chromium 50-60 wt%
Tantalum Carbide 0.75-2.5 wt%
Ammonium Chloride 1-3 wt%
Aluminum Oxide Remainder
This composition produced coatings with high wear and corrosion resistance. Nonetheless, the relatively large percentages of pure chromium and tantalum carbide required by the formulation raised the costs of the coated parts.
There remains a need in the art for an economical diffusion coating method and composition for forming effective wear and corrosion resistant surface layers over ferrous base metals.
Summary of the Invention The present invention provides a composition and method for use in diffusion protection of ferrous workpieces. The composition or mixture comprises both chromium and ferrochromium in combination with an ammonium halide and aluminum oxide. A preferred form of the composition also includes between 0.75 wt% and 1.35 wt% of microadditives selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof. In an especially preferred form, the composition comprises:
Chromium 40-50 wt%
Ferrochromium 25-37 wt% Tantalum Carbide 0.40-0.65 wt%
Vanadium 0.35-0.70 wt%
Ammonium Halide 4-5 wt%
Aluminum Oxide Remainder, the sum of all the components being 100 wt%. The preferred ammonium halide is ammonium chloride.
The invention also provides a relatively simple coating method which can be performed using conventional equipment. The components, in powdered form, are weighed and mixed in a container. The workpieces are preferably degreased, for example in a weak acid solution, and then placed in the container. Careful cleaning or scouring of the workpiece is not required.
The container is hermetically sealed and heated to a temperature of 1000°-1050°C. No protective atmosphere is required. The workpieces and the composition are kept at that temperature for a predetermined period, on the order of forty-five minutes or longer, of sufficient duration to permit a surface layer of desired thickness to form. The container is then cooled in a conventional cooling chamber and the workpieces are removed.
It has been found that the diffusion coating of workpieces of carbon steel or cast iron with the preferred coating composition forms a protective surface layer having mechanical properties akin to those of highly alloyed steels, with improved plasticity characteristics. More specifically, the preferred coating composition serves to form an ultra-hard surface layer. As a result of chemical and thermal processing of the base metal, the surface acquires high wear and corrosion resistance characteristics to satisfy the requirements for long-term performance in various environments. The composition and method of the invention are preferably applied to high carbon and medium carbon steels. While less preferred, the composition and method of the invention do provide coatings with desirable properties on low carbon steels.
The inclusion of both chromium and ferrochromium in the composition of the present invention is believed to be unique. The waste products of metallurgical smelting typically include 68-70 wt% ferrochromium. The use of such waste products as a source of ferrochromium is believed to result in significant cost savings. Furthermore, the mixture of ferrochromium with chromium improves the alloying characteristics of the composition and provides for a better treatment of the base metal. If the percentage of ferrochromium added is less than approximately
25 wt%, the composition does not produce a pore-free carbide layer which reduces the protective capability of the coating. If the percentage of ferrochromium is greater than approximately 37 wt% (or if the total percentage of chromium and ferrochromium exceeds the preferred limits of the invention), oversaturation occurs and the resulting surface is brittle and prone to fracture.
The addition of tantalum carbide in the range of 0.40-0.65 wt% increases the wear resistance of the surface layer. Likewise, the addition of vanadium in the range of 0.35-0.70 wt% improves the plasticity properties of the surface layer. If insufficient amounts of tantalum carbide and vanadium are used, the composition does not produce a pore-free surface layer. If excessive amounts of the microadditives are used, the cost of the composition is increased without significantly improving the properties of the surface layer.
Without wishing to be bound by any theory of operation, it is believed that, during chemical and thermal processing, the structure of the surface layer is formed by the diffusion of tantalum carbide and chromium carbide into vacancies in the surface. The vanadium fills the space between the carbides to form a continuous layer. During layer formation, the chromium carbides diffuse farther into the matrix of the base metal and fill deeper vacancies.
The carbides making up the solid, pore-free coatings produced by the composition and method of the invention have low diffusion mobility at room temperature. For example, the diffusion mobilities of chromium carbides and tantalum carbides are on the order of magnitude often times lower than the diffusion mobilities of pure chromium and tantalum in the crystalline structure of metal. As a result, the chromium and tantalum carbides formed on the workpiece surface as a result of the diffusion treatment are not inclined to diffuse into the structure of the base metal once the surface layer is formed.
The composition and method of the present invention are effective to form on carbon steels and cast irons diffusion coatings having Vickers hardnesses up to approximately 2200-2500 kg/mm2 with porosities less than 0.1%. Further increases in hardness are possible, but may lead to undesirably low plasticity. Workpieces of any geometric shape may be treated by the method of the invention. The only practical size limitation on the parts which can be treated by the method of the invention is the size of the furnace. The preferred surface layer thickness, 8-500 μm, is independent of the dimensions of the workpiece.
The diffusion coating method of the present invention is believed to be cheaper than electrodeposition methods. Unlike electrodeposition methods, the diffusion coating method of the present invention does not generate significant fumes harmful to workers or the environment. One significant advantage of the method of the invention is that the coating composition may be continuously refreshed and recycled, and the process may be operated so as to generate practically no waste. The coating process of the present invention is believed to be applicable in many fields, including the engineering, chemical, oil and gas, agricultural, automotive, shipbuilding, electronics and communications industries. The process may also find application in the construction and consumer goods industries. Therefore, it is one object of the invention to provide a composition and method for diffusion coating ferrous base metals to form surface layers having good wear and corrosion resistance while maintaining desirable plasticity characteristics. The invention will be further described in conjunction with the following detailed description. Detailed Description of the Preferred Embodiment The invention will be further explained in conjunction with the following examples which are included as being illustrative of the invention and should not be construed to limit the scope of the invention.
EXAMPLE 1 A mixture of the following components was weighed out and placed in a sealed container with a prismatic workpiece (65 cm x 15 cm x 3 cm) of carbon steel and three test samples of the same steel:
Chromium 45 wt%
Ferrochromium 30 wt%
Tantalum Carbide 0.55 wt%
Vanadium 0.60 wt%
Ammonium Chloride 4.5 wt%
Aluminum Oxide Remainder
The container was heated in a furnace at a temperature of 1050°C for ninety minutes and then placed in a cooling chamber.
The test samples with the newly-formed protective surface layers were tested by means of (1) X-ray structural analysis and (2) Vickers micro-hardness analysis. The thickness of the diffused carbide layer was 12 μm. An upper portion of the surface layer was comprised of tantalum carbide, chromium carbide and vanadium. A lower portion of the surface layer was comprised of chromium carbides and a solid solution of chromium in iron.
The microhardness of the surface layer was 1900 kg/mm2 Vickers. A scratch test using different degrees of pressure revealed the absence of cracks and showed that the surface possessed good wear resistance and plasticity characteristics. In addition, the porosity of the surface layer was determined by placing a sheet of filter paper saturated in Vokker's reagent, a mixture of
K3[Fe(CN)6] and NaCl, over the surface layer. Were the surface layer porous, [Fe(CN)6]3" ions from the reagent would combine with iron from the base metal to form Turnbull Blue, Fe3[Fe(CN)6], creating blue spots on the filter paper over the locations of the pores, and the porosity of the surface layer could be characterized by the number of such blue spots per square centimeter. When the workpiece coated in the present example was tested, an absence of blue spots showed that the coating formed on the workpiece was pore-free.
EXAMPLE 2 Additional ferrous workpieces were coated according to the method of Example 1 using various pulverous coating compositions. The results are shown in Table 1 below:
Figure imgf000011_0001
"C-42 Low Alloy Steel" includes 13.5 wt% chromium, 0.6 wt% silicon and 0.6 wt% manganese.)
The test results set forth in Table 1 showed the desirable properties of surface layers formed on carbon steels and cast irons by the method and composition of the invention. In Tests Nos. 1, 2, 4-11, 13 and 14, the method of the present invention resulted in surface layers having Vickers hardnesses of 1550 kg/mm2 or greater without porosity or brittleness.
The test results set forth in Table 1 also showed the significance of the chromium/ferrochromium composition on the properties of the coating. The coating in Test No. 3, formed using a composition including 50 wt% chromium, 39 wt% ferrochromium, and microadditions was brittle. On the other hand, the coating in Test No. 12, formed using a composition including 45 wt% chromium, 22 wt% ferrochromium, 0.38 wt% tantalum carbide, and 0.35% vanadium was porous and relatively soft. These two tests suggest that compositions including 40-50 wt% chromium and 25-37 wt% ferrochromium are preferred to obtain optimum surface layer properties. The preceding description is intended to be illustrative of the invention and not limiting. Various other modifications and applications will be apparent to one skilled in the art without departing from the true spirit and scope of the invention as defined in the following claims.

Claims

-CLAIMS-
1. A method for forming a coating on a ferrous workpiece comprising the steps of: a) forming a mixture including chromium, ferrochromium, ammonium halide and aluminum oxide; b) exposing the ferrous workpiece to the mixture; and c) heating the ferrous workpiece and the mixture.
2. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium halide and aluminum oxide, the sum of all the components being 100 wt%.
3. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including chromium, ferrochromium, ammonium halide, aluminum oxide and a metallic additive selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof.
4. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium halide, aluminum oxide and an additive selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof, the sum of all the components being 100 wt%.
5. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium halide, aluminum oxide, and approximately 0.75-1.35 wt% microadditive selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof, the sum of all the components being 100 wt%.
6. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including chromium, ferrochromium, ammonium halide. aluminum oxide, tantalum carbide and vanadium.
7. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium chloride, approximately 0.40-0.65 wt% tantalum carbide, approximately 0.35-0.70 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
8. The method as recited in claim 1 wherein the step a) includes forming the mixture from components including approximately 45 wt% chromium, approximately 30 wt% ferrochromium, approximately 4.5 wt% ammonium chloride, approximately 0.55 wt% tantalum carbide, approximately 0.60 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
9. The method as recited in any one of claims 1-8 wherein the step a) includes forming the mixture from powdered components.
10. The method as recited in any one of claims 1-8 wherein the step c) includes heating the workpiece and the mixture to a temperature of approximately 1000°-1050°C.
11. A method for forming a coating on a carbon steel workpiece comprising the steps of: a) forming a mixture from components including approximately 40- 50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium chloride, approximately 0.40-0.65 wt% tantalum carbide, approximately 0.35-0.70 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%; b) exposing the carbon steel workpiece to the mixture in a container; and c) heating the ferrous workpiece and the mixture in the container to a temperature of approximately 1000°-1050°C to induce diffusion of at least part of the components into the carbon steel workpiece.
12. The method as recited in claim 1 1 wherein the step a) includes forming the mixture from components including approximately 45 wt% chromium, approximately 30 wt% ferrochromium, approximately 4.5 wt% ammonium chloride, approximately 0.55 wt% tantalum carbide, approximately 0.60 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
13. A coating formed by the method recited in any one of claims 1-8.
14. A coating formed by the method recited in any one of claims 11-12.
15. A carbon steel workpiece having a coating formed by the method recited in any one of claims 1-8.
16. A carbon steel workpiece having a coating formed by the method recited in an one of claims 1 1-12.
17. A composition for use in coating ferrous workpieces, the composition being a mixture of powdered components comprising chromium, ferrochromium, ammonium halide and aluminum oxide.
18. The composition as recited in claim 17 wherein the powdered components include approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium. approximately 4-5 wt% ammonium halide and aluminum oxide, the sum of all the components being 100 wt%.
19. The composition as recited in claim 17 wherein the powdered components including chromium, ferrochromium, ammonium halide. aluminum oxide and a metallic additive selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof.
20. The composition as recited in claim 17 wherein the powdered components include approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium halide, aluminum oxide and an additive selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof, the sum of all the components being 100 wt%.
21. The composition as recited in claim 17 wherein the powdered components include approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium. approximately 4-5 wt% ammonium halide, aluminum oxide, and no more than approximately 1.35 wt% an additive selected from the group consisting of vanadium, tantalum, their alloys and mixtures thereof, the sum of all the components being 100 wt%.
22. The composition as recited in claim 17 wherein the powdered components include chromium, ferrochromium, ammonium halide, aluminum oxide, tantalum carbide and vanadium.
23. The composition as recited in claim 17 wherein the powdered components include approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium chloride, approximately 0.40- 0.65 wt% tantalum carbide, approximately 0.35-0.70 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
24. The composition as recited in claim 17 wherein the powdered components include approximately 45 wt% chromium, approximately 30 wt% ferrochromium, approximately 4.5 wt% ammonium chloride, approximately 0.55 wt% tantalum carbide, approximately 0.60 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
25. A composition for forming a diffusion coating on a carbon steel workpiece, the composition being a mixture of powdered components comprising approximately 40-50 wt% chromium, approximately 25-37 wt% ferrochromium, approximately 4-5 wt% ammonium chloride, approximately 0.40-0.65 wt% tantalum carbide, approximately 0.35-0.70 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
26. The composition as recited in claim 25 wherein the powdered components include approximately 45 wt% chromium, approximately 30 wt% ferrochromium, approximately 4.5 wt% ammonium chloride, approximately 0.55 wt% tantalum carbide, approximately 0.60 wt% vanadium, and aluminum oxide, the sum of all the components being 100 wt%.
PCT/US1997/019278 1996-10-25 1997-10-23 Method and composition for diffusion alloying of ferrous materials WO1998018978A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002269735A CA2269735A1 (en) 1996-10-25 1997-10-23 Method and composition for diffusion alloying of ferrous materials
US09/284,365 US6197436B1 (en) 1997-10-23 1997-10-23 Method and composition for diffusion alloying of ferrous materials
EP97911922A EP0946784A4 (en) 1996-10-25 1997-10-23 Method and composition for diffusion alloying of ferrous materials
AU49188/97A AU4918897A (en) 1996-10-25 1997-10-23 Method and composition for diffusion alloying of ferrous materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2916396P 1996-10-25 1996-10-25
US60/029,163 1996-10-25

Publications (1)

Publication Number Publication Date
WO1998018978A1 true WO1998018978A1 (en) 1998-05-07

Family

ID=21847585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/019278 WO1998018978A1 (en) 1996-10-25 1997-10-23 Method and composition for diffusion alloying of ferrous materials

Country Status (4)

Country Link
EP (1) EP0946784A4 (en)
AU (1) AU4918897A (en)
CA (1) CA2269735A1 (en)
WO (1) WO1998018978A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002843A2 (en) * 2000-06-29 2002-01-10 Borg Warner, Inc. Carbide coated steel articles and method of making them
RU2481936C1 (en) * 2011-09-13 2013-05-20 Александр Александрович Веселовский Method of reconditioning worn-out layer on iron gear wheel teeth
US9080235B2 (en) 2012-04-17 2015-07-14 Jamar International Corporation Composition and method for diffusion alloying of ferrocarbon workpiece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234668A (en) * 1978-04-20 1980-11-18 General Electric Company Composite sulfur electrode container and method of manufacture
GB2206898A (en) * 1987-07-01 1989-01-18 Electric Power Res Inst Chromized coatings containing vanadium
US4963395A (en) * 1988-06-24 1990-10-16 Combustion Engineering, Inc. Method of chromizing large size articles
DE4238220C1 (en) * 1992-11-12 1993-05-27 Inna Isaakowna Sajez Mixt. for diffusion coating ferrous material - contains chromium@, tantalum carbide, ammonium chloride, and alumina

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB906884A (en) * 1960-05-04 1962-09-26 Deutsche Edelstahlwerke Ag The use of a steel for the production of smooth-surfaced parts which are to be chromised
DE1278741B (en) * 1964-06-09 1968-09-26 Deutsche Edelstahlwerke Ag Use of a steel containing nickel for chrome plating purposes
US4099993A (en) * 1973-01-26 1978-07-11 Hermann Muller Process for producing an extremely hard mixed carbide layer on ferrous materials to increase their resistance to wear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234668A (en) * 1978-04-20 1980-11-18 General Electric Company Composite sulfur electrode container and method of manufacture
GB2206898A (en) * 1987-07-01 1989-01-18 Electric Power Res Inst Chromized coatings containing vanadium
US4963395A (en) * 1988-06-24 1990-10-16 Combustion Engineering, Inc. Method of chromizing large size articles
DE4238220C1 (en) * 1992-11-12 1993-05-27 Inna Isaakowna Sajez Mixt. for diffusion coating ferrous material - contains chromium@, tantalum carbide, ammonium chloride, and alumina

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0946784A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002843A2 (en) * 2000-06-29 2002-01-10 Borg Warner, Inc. Carbide coated steel articles and method of making them
WO2002002843A3 (en) * 2000-06-29 2002-05-30 Borgwarner Inc Carbide coated steel articles and method of making them
US6582765B2 (en) 2000-06-29 2003-06-24 Borgwarner, Inc. Carbide coated steel articles and method of making them
RU2481936C1 (en) * 2011-09-13 2013-05-20 Александр Александрович Веселовский Method of reconditioning worn-out layer on iron gear wheel teeth
US9080235B2 (en) 2012-04-17 2015-07-14 Jamar International Corporation Composition and method for diffusion alloying of ferrocarbon workpiece

Also Published As

Publication number Publication date
EP0946784A4 (en) 2002-01-30
EP0946784A1 (en) 1999-10-06
AU4918897A (en) 1998-05-22
CA2269735A1 (en) 1998-05-07

Similar Documents

Publication Publication Date Title
Dearnley et al. Engineering the surface with boron based materials
Arai Carbide coating process by use of molten borax bath in Japan
Kulka et al. Trends in thermochemical techniques of boriding
Chen et al. Thermal reactive deposition coating of chromium carbide on die steel in a fluidized bed furnace
US7553517B1 (en) Method of applying a cerium diffusion coating to a metallic alloy
US3770512A (en) Method for surface hardening steel and cemented carbides
US6197436B1 (en) Method and composition for diffusion alloying of ferrous materials
US5589220A (en) Method of depositing chromium and silicon on a metal to form a diffusion coating
JPH01152254A (en) Gradually changed multiphase oxycarburizing and oxycarbrizing/nitriding material
GB1593958A (en) Coating ferrous alloys
JPH06116707A (en) Heat-resistant stainless steel diffusion-coated with aluminum and method of coating same
US2157594A (en) Method of chromizing
EP0946784A1 (en) Method and composition for diffusion alloying of ferrous materials
Voisey et al. Inhibition of metal dusting using thermal spray coatings and laser treatment
MXPA99003818A (en) Method and composition for diffusion alloying of ferrous materials
Bahadur Structural studies of calorized coatings on mild steel
Casteletti et al. Pack and salt bath diffusion treatments on steels
JPS61253358A (en) Surface treatment of sintered mechanical parts
CA1128378A (en) Process for producing vanadium carbide layers on iron
US5939144A (en) Method and composition for diffusion treatment of ceramic materials
WO2014081463A2 (en) Composition and method for diffusion alloying of ferrocarbon workpiece
US4256490A (en) Composition for diffusion coating of ferrous metals
KR100312134B1 (en) Spray coating material having superior corrosion resistance to molten zinc in zinc pot
Dovydenkov et al. Methods of production and properties of sintered stainless steels for machine components—a review
Matijević A low temperature aluminizing treatment of hot work tool steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09284365

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2269735

Country of ref document: CA

Ref country code: CA

Ref document number: 2269735

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/003818

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997911922

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997911922

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997911922

Country of ref document: EP