WO1997045482A1 - Preparation of alkylthiopropionic pentaerythritol esters - Google Patents

Preparation of alkylthiopropionic pentaerythritol esters Download PDF

Info

Publication number
WO1997045482A1
WO1997045482A1 PCT/US1996/008253 US9608253W WO9745482A1 WO 1997045482 A1 WO1997045482 A1 WO 1997045482A1 US 9608253 W US9608253 W US 9608253W WO 9745482 A1 WO9745482 A1 WO 9745482A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylthiopropionic
pentaerythritol
alpha
olefin
ptm
Prior art date
Application number
PCT/US1996/008253
Other languages
French (fr)
Inventor
Kenneth L. Avery
Richard P. Woodbury
Original Assignee
Hampshire Chemical Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hampshire Chemical Corp. filed Critical Hampshire Chemical Corp.
Priority to PCT/US1996/008253 priority Critical patent/WO1997045482A1/en
Priority to AU59627/96A priority patent/AU5962796A/en
Publication of WO1997045482A1 publication Critical patent/WO1997045482A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/18Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by addition of thiols to unsaturated compounds

Definitions

  • the present invention relates to the preparation of alkylthiopropionic pentaerythritol esters.
  • Such pentaerythritol esters derived from alkylthioalkanoic acids are useful as stabilizers of materials otherwise sensitive to thermal or oxidative degradation, such as polymer resins.
  • Several different methods are known in the art for preparing the alkylthiopropionic acid starting materials, as well as the pentaerythritol ester derivatives thereof. For example, U.S. Patent No.
  • 4,349,468 discloses the preparation of pentaerythritol tetrakis (3-laurylthiopropionate) by heating an alpha-olefin such as l-dodecene with a beta- mercaptopropionic acid or ester in the presence of an azonitrile or peroxide catalyst.
  • the resulting alkylthiopropionic acid is then esterified with pentaerythritol to produce the polyolefin stabilizer.
  • EP 0413 562 discloses the preparation of a 3- alkylthiopropionic acid by reacting an alkyl mercaptan with an alkali metal acrylate in the presence of a strong base catalyst. The reaction is then acidified to recover the acid, which can then be esterified with pentaerythritol.
  • EP 0 413 563 discloses a purification process for esters so prepared, or for esters prepared by other methods. More specifically, unreacted acid and tris ester components of the reaction are removed from the desired tetraester product by solvent refinement with a blend of at least two organic solvents.
  • JP 63-077854 discloses the manufacture of pentaerythritol tetrakis (3-alkylthiopropionate) by the Michael addition of C 8 -
  • the present invention provides a process of the preparation of alkylthiopropionic pentaerythritol esters from pentaerythritol tetra-3-mercaptopropionate.
  • pentaerythritol tetra-3- mercaptopropionate and an alpha-olefin are caused to react in the presence of a radical initiator.
  • pentaerythritol tetra-3-mercaptopropionate and an alpha-olefin are caused to react photochemically.
  • the process utilized is an inexpensive, simple method to prepare the esters from a commercially available starting material. Recrystallization can be used to further purify the product.
  • the starting material for the instant process is pentaerythritol tetra-3-mercaptopropionate (PTM) , which is a commercially available product.
  • PTM pentaerythritol tetra-3-mercaptopropionate
  • the PTM can be prepared by any suitable means, such as by the vacuum esterification of 3- mercaptopropionic acid and pentaerythritol withmethanesulfonic acid as a catalyst.
  • commercially available PTM is typically washed with water to remove residual 3- mercaptopropionic acid and esterification catalyst prior to packaging.
  • Suitable radical initiators include azonitriles, such as azo-tert-butane, azobisisobutyronitrile, 2,2' -azobis (2- methylbutyro-nitrile) , 2,2' -azobis- (2-methylpropionitrile) and 2,2' -azobis(2,4-dimethylvaleronitrile) , and organic peroxides, such as peroxides having 1 to 2 peroxide groups and 4 to 40 carbon atoms.
  • azonitriles such as azo-tert-butane, azobisisobutyronitrile, 2,2' -azobis (2- methylbutyro-nitrile) , 2,2' -azobis- (2-methylpropionitrile) and 2,2' -azobis(2,4-dimethylvaleronitrile)
  • organic peroxides such as peroxides having 1 to 2 peroxide groups and 4 to 40 carbon atoms.
  • Suitable organic peroxides include t-alkyl and aralkyl peroxides such as t-butylhydroperoxide, cumyl-t-butyl peroxide, 2,5-dimethyl-2, 5-di(t-butylperoxy hexane) , di-tubutylperoxide and dicumyl peroxide, monoperesters such as t-butyl peracetate, t-butyl peroxylisobutyrate, t- butylperbenzoate, t-butylperpivalate, t-butylper-2- ethylhexoate, t-butylperoxyneodecanoate, t-butylperlaurate, and mono-tubutylperoxymaleic acid, diperesters such as 2,5-bis(2- ethylhexanoylperoxy) - 2 , 5 -dimethylhexane , di
  • the radical initiator is used in an amount ranging from about 0.1 to about 10 mole % based on PTM, most preferably 0.6 to 1 mole %.
  • alpha-olefins examples include hexene-l, 2-methylpentene-l, 4-methylpentene-l, heptene-1-, octene-1, 2-ethylhexene-l, nonene-1, decene-1, 2,4,4- trimethylpentene-1, dodecene-1, octadecene-1, hexadecene-l-, eicosene-1-, tetracosene-1- and octacosene-1.
  • Preferred alpha- olefins are 1-dodecene and 1-octadecene.
  • the amount of alpha-olefin used is a function of the thiol or "SH" content of the starting pentaerythritol tetra-3- mercaptopropionate.
  • an analysis should be carried out to determine the thiol content of the PTM to be used. This can be accomplished by titrating the PTM acidified with concentrated HC1, for example, with iodine to the first permanent yellow endpoint.
  • the alpha-olefin should be used in an amount sufficient to react with all of the thiol groups present. The amount ranges from 3.5-4.5 equivalents based on PTM, preferably 3.6 to 3.9 equivalents.
  • the PTM, alpha-olefin, and a first charge of initiator are combined and heated to about 40-90°C.
  • the batch is heated to 80°C and allowed to exotherm.
  • the batch is then held at a temperature from about 40 to about 190°C, preferably about 130°C, for 1-10 hours, preferably 1-4 hours.
  • the remaining initiator charges can be added slowly during the reaction (such as small portions every hour) , or can be added at the end of the reaction.
  • the batch is then held for about 4 hours at 40 - 190°C, preferably 130°C, and the resulting product is analyzed for thiol content (such as by titration as discussed above) .
  • thiol content is not 0.22 or lower, more initiator can be added to complete the reaction. Yields greater than 95% (based on starting material ester distribution and thio groups present) can be easily obtained.
  • the resulting material contains lower levels of 3-mercaptopropionic acid, alkyl thioalkanoic acid, and esterification catalyst than product made by conventional methods .
  • the material can be recrystallized using conventional methods well known to those skilled in the art if even purer product is desired.
  • the alkylthiopropionic pentaerythritol esters are formed using photochemistry instead of a radical initiator.
  • PTM and the alpha-olefin are combined in a reaction vessel and subjected to photochemical reaction, such as by exposure to UV light at a temperature above the melting range of the specific derivative, preferably from about 60-100°C.
  • the UV light is maintained for about four hours, or until the thiol content is reduced to an acceptable level, typically less than 0.22 milliequivalents per gram.
  • a suitable source of UV light is a mercury vapor lamp.
  • Thiyl radicals are known to be generated at 253.7 nm.
  • V Volume of iodine to titrate sample
  • N Normality of the iodine
  • the PTM, 1-octadecene and a first initiator charge were combined in the 100 ml flask.
  • the batch was heated to 80°C and allowed to exotherm for approximately 15 minutes.
  • the batch was then heated to 130°C and held for 1 hour.
  • Three remaining equal portions of initiator charges were added at one hour intervals at 130°C.
  • the reaction medium was held at 130°C for an additional four hours, and was then titrated for thiol content in accordance with the procedure of Example 1.
  • the product was a hard solid which melted at 54-58°C.
  • the PTM was charged to the 500 ml flask and titrated for milliequivalents SH/gram in accordance with the procedure set forth in Example 1.
  • the dodecene charge was adjusted by the following calculation:
  • the dodecene and the first initiator charge were added to the reaction vessel.
  • the batch was heated to 80°C and allowed to exotherm for approximately 15 minutes.
  • the batch was then heated to 130°C and the three remaining equal portions of initiator charges were added at one hour intervals at 130°C.
  • the reaction medium was held at 130°C for an additional four hours, and was then titrated for thiol content in accordance with the procedure of Example 1.
  • the product was a semi-soft solid which became fluid at 40°C.
  • the PTM and dodecene were combined in the photochemical reactor.
  • the UV light was turned on and the reactor was heated with hot water to 60°C.
  • the reaction was held at 60°C for four hours or until the thio content was less than 0.22 milliequivalents per gram.
  • the product had a melting point range of 47-49°C.
  • the PTM and 1-octadecene were combined in the photochemical reactor.
  • the UV light was turned on and the reactor was heated with hot water to 60°C.
  • the reaction was held at 60°C for four hours or until the thiol content was less than 0.22 milliequivalents per gram.
  • the product had a melting point range of 59-62°C.

Abstract

A process of the preparation of alkylthiopropionic pentaerythritol esters from pentaerythritol tetra-3-mercaptopropionate. In a first embodiment of the invention, pentaerythritol tetra-3-mercaptopropionate and an alpha-olefin are caused to react in the presence of a radical initiator. In a second embodiment of the invention, pentaerythritol tetra-3-mercaptopropionate and an alpha-olefin are caused to react photochemically.

Description

PREPARATION OF ALKYLTHIOPROP IONIC PENTAERYTHRITOL ESTERS
BACKGROUND OF THE INVENTION
The present invention relates to the preparation of alkylthiopropionic pentaerythritol esters. Such pentaerythritol esters derived from alkylthioalkanoic acids are useful as stabilizers of materials otherwise sensitive to thermal or oxidative degradation, such as polymer resins. Several different methods are known in the art for preparing the alkylthiopropionic acid starting materials, as well as the pentaerythritol ester derivatives thereof. For example, U.S. Patent No. 4,349,468 discloses the preparation of pentaerythritol tetrakis (3-laurylthiopropionate) by heating an alpha-olefin such as l-dodecene with a beta- mercaptopropionic acid or ester in the presence of an azonitrile or peroxide catalyst. The resulting alkylthiopropionic acid is then esterified with pentaerythritol to produce the polyolefin stabilizer.
Similarly, EP 0413 562 discloses the preparation of a 3- alkylthiopropionic acid by reacting an alkyl mercaptan with an alkali metal acrylate in the presence of a strong base catalyst. The reaction is then acidified to recover the acid, which can then be esterified with pentaerythritol. EP 0 413 563 discloses a purification process for esters so prepared, or for esters prepared by other methods. More specifically, unreacted acid and tris ester components of the reaction are removed from the desired tetraester product by solvent refinement with a blend of at least two organic solvents. JP 63-077854 discloses the manufacture of pentaerythritol tetrakis (3-alkylthiopropionate) by the Michael addition of C8 -
C30 alkyl mercaptans to acrylic acid esters or amides, followed by hydrolysis of the resulting adducts to 3-alkylthiopropionic acid, and subsequent esterification with pentaerythritol.
As the foregoing demonstrates, conventional processes for preparing the pentaerythritol esters result in impure product, and generally require further purification procedures which add to the cost of the final product. It therefore would be desirable to provide a process for the preparation of pentaerythritol esters of alkylthiopropionic acids that is simple and more direct, thereby resulting in a relatively pure product without the necessity for additional purification steps.
It is therefore an object of the present invention to provide a novel process for the preparation of pentaerythritol esters of alkylthiopropionic acids.
It is a further object of the present invention to provide a direct process for preparing alkylthiopropionic pentaerythritol esters of acceptable purity without a recrystallization step.
These and other objects of the present invention will become apparent upon consideration of the following detailed description of the invention.
SUMMARY OF THE INVENTION
The problems of the prior art have been overcome by the present invention, which provides a process of the preparation of alkylthiopropionic pentaerythritol esters from pentaerythritol tetra-3-mercaptopropionate. In a first embodiment of the invention, pentaerythritol tetra-3- mercaptopropionate and an alpha-olefin are caused to react in the presence of a radical initiator. In a second embodiment of the invention, pentaerythritol tetra-3-mercaptopropionate and an alpha-olefin are caused to react photochemically. The process utilized is an inexpensive, simple method to prepare the esters from a commercially available starting material. Recrystallization can be used to further purify the product.
DETAILED DESCRIPTION OF THE INVENTION
The starting material for the instant process is pentaerythritol tetra-3-mercaptopropionate (PTM) , which is a commercially available product. The PTM can be prepared by any suitable means, such as by the vacuum esterification of 3- mercaptopropionic acid and pentaerythritol withmethanesulfonic acid as a catalyst. In general, commercially available PTM is typically washed with water to remove residual 3- mercaptopropionic acid and esterification catalyst prior to packaging.
Suitable radical initiators include azonitriles, such as azo-tert-butane, azobisisobutyronitrile, 2,2' -azobis (2- methylbutyro-nitrile) , 2,2' -azobis- (2-methylpropionitrile) and 2,2' -azobis(2,4-dimethylvaleronitrile) , and organic peroxides, such as peroxides having 1 to 2 peroxide groups and 4 to 40 carbon atoms. Examples of suitable organic peroxides include t-alkyl and aralkyl peroxides such as t-butylhydroperoxide, cumyl-t-butyl peroxide, 2,5-dimethyl-2, 5-di(t-butylperoxy hexane) , di-tubutylperoxide and dicumyl peroxide, monoperesters such as t-butyl peracetate, t-butyl peroxylisobutyrate, t- butylperbenzoate, t-butylperpivalate, t-butylper-2- ethylhexoate, t-butylperoxyneodecanoate, t-butylperlaurate, and mono-tubutylperoxymaleic acid, diperesters such as 2,5-bis(2- ethylhexanoylperoxy) - 2 , 5 -dimethylhexane , di-t- butylperoxyphthalate, and 2, 5-bis (benzoylperoxy) -2, 5- dimethylhexane, aromatic diacyl peroxides such as 2,4- dichlorobenzoylperoxide, benzoyl peroxide and o- toluoylperoxide, ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and 1, 1-bis (t-butylperoxy) - 3, 3, 5-trimethylcyclohexane, and peroxycarbonate esters such as di - s e c - butylperoxydi carbona t e , di - t - butylcyclohexylperoxydicarbonate and t - butylperoxyisopropylcarbonate, and aliphatic diacyl peroxides such as acetyl peroxide, acetylpropionic peroxide, acetyl 2- ethylhexanoyl peroxide, 3,5,5-trimethylhexanoylperoxide, lauroyl peroxide, octanoyl peroxide, stearoyl peroxide, propionyl hexacosanoyl peroxide and succininc acid peroxide.
Preferably the radical initiator is used in an amount ranging from about 0.1 to about 10 mole % based on PTM, most preferably 0.6 to 1 mole %.
Suitable alpha-olefins include alpha-olefins of the formula CH2=R, wherein R represents an alkyl group having from 5 to 27 carbon atoms. These alpha-olefins are commercially available, and can be prepared by conventional means well known to those skilled in the art. Examples of alpha-olefins include hexene-l, 2-methylpentene-l, 4-methylpentene-l, heptene-1-, octene-1, 2-ethylhexene-l, nonene-1, decene-1, 2,4,4- trimethylpentene-1, dodecene-1, octadecene-1, hexadecene-l-, eicosene-1-, tetracosene-1- and octacosene-1. Preferred alpha- olefins are 1-dodecene and 1-octadecene.
The amount of alpha-olefin used is a function of the thiol or "SH" content of the starting pentaerythritol tetra-3- mercaptopropionate. In case the starting PTM is not the fully substituted ester, an analysis should be carried out to determine the thiol content of the PTM to be used. This can be accomplished by titrating the PTM acidified with concentrated HC1, for example, with iodine to the first permanent yellow endpoint. The alpha-olefin should be used in an amount sufficient to react with all of the thiol groups present. The amount ranges from 3.5-4.5 equivalents based on PTM, preferably 3.6 to 3.9 equivalents.
The PTM, alpha-olefin, and a first charge of initiator are combined and heated to about 40-90°C. Preferably the batch is heated to 80°C and allowed to exotherm. The batch is then held at a temperature from about 40 to about 190°C, preferably about 130°C, for 1-10 hours, preferably 1-4 hours. The remaining initiator charges can be added slowly during the reaction (such as small portions every hour) , or can be added at the end of the reaction. The batch is then held for about 4 hours at 40 - 190°C, preferably 130°C, and the resulting product is analyzed for thiol content (such as by titration as discussed above) . If the thiol content is not 0.22 or lower, more initiator can be added to complete the reaction. Yields greater than 95% (based on starting material ester distribution and thio groups present) can be easily obtained. The resulting material contains lower levels of 3-mercaptopropionic acid, alkyl thioalkanoic acid, and esterification catalyst than product made by conventional methods . The material can be recrystallized using conventional methods well known to those skilled in the art if even purer product is desired.
In an alternative embodiment of the present invention, the alkylthiopropionic pentaerythritol esters are formed using photochemistry instead of a radical initiator. Specifically, PTM and the alpha-olefin are combined in a reaction vessel and subjected to photochemical reaction, such as by exposure to UV light at a temperature above the melting range of the specific derivative, preferably from about 60-100°C. The UV light is maintained for about four hours, or until the thiol content is reduced to an acceptable level, typically less than 0.22 milliequivalents per gram. A suitable source of UV light is a mercury vapor lamp. Thiyl radicals are known to be generated at 253.7 nm.
EXAMPLE 1
DETERMINATION OF THIOL CONTENT IN PTM AND ALKYLTHIOPROPIONIC PENTAERYTHRITOL ESTERS
About 0.300g of PTM or alkylthiopropionic pentaerythritol ester was accurately weighted into a 250 ml. standard taper
Erlenmeyer flask. 100 ml of 2-propanol (reagent grade) and 10 ml of concentrated hydrochloric acid were added. The mixture was heated to 55-60°C with stirring, and was then titrated with 0.IN iodine to the first permanent yellow color. The amount of thiol in the sample was calculated as follows.-
Millequiv. SH/gram = V(N) /grams of sample
where: V = Volume of iodine to titrate sample N = Normality of the iodine
EXAMPLE 2
PREPARATION OF PENTAERYTHRITOL TETRA KIS(3- STEARYLTHIOPROPIONATE)
The following materials and equipment were used:
Material M.W. Moles Grams
PTM 488.39 0.0522 25.5
1-octadecene 252.49 0.2089 52.75
Butanenitrile, 2-methyl,
2,2' -azobis (Initiator) 192.26 0.0003 0.0608 (0.0152x4)
Equipment
3 neck 100 ml flask, condenser, thermometer, heating mantle, magnetic stirrer and stirring plate.
The PTM, 1-octadecene and a first initiator charge were combined in the 100 ml flask. The batch was heated to 80°C and allowed to exotherm for approximately 15 minutes. The batch was then heated to 130°C and held for 1 hour. Three remaining equal portions of initiator charges were added at one hour intervals at 130°C. The reaction medium was held at 130°C for an additional four hours, and was then titrated for thiol content in accordance with the procedure of Example 1. The product was a hard solid which melted at 54-58°C. EXAMPLE 3
PREPARATION OF PENTAERYTHRITOL TETRA KIS(3- LAURYLTHIOPROPIONATE) 162
The following materials and equipment were used:
Material M.W. Moles Grams
PTM 488.39 0.2096 102.4
Dodecene 168.32 0.7761 130.64
Butanenitrile, 2-methyl,
2,2'-azobis (Initiator) 192.26 0.0013 0.2432 (0.0608x4)
Equipment
3 neck 500 ml flask, condenser, thermometer, heating mantle, magnetic stirrer and stirring plate.
The PTM was charged to the 500 ml flask and titrated for milliequivalents SH/gram in accordance with the procedure set forth in Example 1. The dodecene charge was adjusted by the following calculation:
A = ;rcc∑:cr-.
Y = grams ofFTM
( X Meq. 5H \ / 1 eq \ ( Yg PTM \ / 168.32g \ P
V e FTM J ^ 100G- Meq ; ^ 1 M i Eq dcd-tcene ^ " srams Gt dodsceae charge
The dodecene and the first initiator charge were added to the reaction vessel. The batch was heated to 80°C and allowed to exotherm for approximately 15 minutes. The batch was then heated to 130°C and the three remaining equal portions of initiator charges were added at one hour intervals at 130°C. The reaction medium was held at 130°C for an additional four hours, and was then titrated for thiol content in accordance with the procedure of Example 1. The product was a semi-soft solid which became fluid at 40°C.
EXAMPLE 4
PHOTOCHEMICAL PREPARATION OF PENTAERYTHRITOL TETRA KIS(3- LAURYLTHIOPROPIONATE
The following materials and equipment were used:
Material M.W. Moles Grams
PTM 488.39 0.1573 76.8
Dodecene 168.32 0.5821 97.98
Equipment
250 ml photochemical jacketed reactor with quartz cell and UV light, thermocouple, heating and cooling unit, magnetic stirring and nitrogen sparge for mixing.
The PTM and dodecene were combined in the photochemical reactor. The UV light was turned on and the reactor was heated with hot water to 60°C. The reaction was held at 60°C for four hours or until the thio content was less than 0.22 milliequivalents per gram. The product had a melting point range of 47-49°C.
EXAMPLE 5
PHOTOCHEMICAL PREPARATION OF PENTAERYTHRITOL TETRA KIS(3- STEARYLTHIOPROPIONATE
The following materials and equipment were used: Material M.W. Moles Grams
PTM 488.39 0.4176 204.0
1-octadecene 252.49 1.6712 422.0
Equipment
1000 ml photochemical jacketed reactor with quartz cell and UV light, thermocouple, heating and cooling unit, magnetic stirring and nitrogen sparge for mixing.
The PTM and 1-octadecene were combined in the photochemical reactor. The UV light was turned on and the reactor was heated with hot water to 60°C. The reaction was held at 60°C for four hours or until the thiol content was less than 0.22 milliequivalents per gram. The product had a melting point range of 59-62°C.

Claims

What is claimed is:
1. A process for preparing alkylthiopropionic pentaerythritol esters, comprising reacting pentaerythritol tetra-3-mercaptopropionate with an alpha-olefin in the presence of a radical initiator.
2. The process of claim 1, wherein said alpha-olefin is selected from the group consisting of dodecene and 1- octadecene.
3. The process of claim 1, wherein said radical initiator is an azonitrile.
4. The process of claim 3, wherein said radical initiator is selected from the group consisting of azo-tert-butane, azobis-isobutyronitrile, 2,2' -azobis(2-methylbutyro-nitrile) , 2,2' -azobis- (2-methylpropionitrile) and 2,2' -azobis(2,4- dimethylvaleronitrile) .
5. The process of claim 1, wherein said radical initiator is an organic peroxide.
6. The process of claim 1 wherein said reaction is carried out at a temperature from about 40°C to about 190°C.
7. The process of claim l wherein the reaction is carried out at a temperature of about 130°C.
8. The process of claim 1, further comprising subjecting the resulting alkylthiopropionic pentaerythritol ester to recrystallization to purify the product.
9. A process for preparing alkylthiopropionic pentaerythritol esters, comprising combining pentaerythritol tetra-3-mercapto-propionate with an alpha-olefin and exposing the combination to UV light.
10. The process of claim 9, wherein said alpha-olefin is selected from the group consisting of dodecene and 1- octadecene.
11. The process of claim 9, wherein said reaction is carried out at a temperature of from about 60°C to about 100°C.
12. The process of claim 9, further comprising subjecting the resulting alkylthiopropionic pentaerythritol ester to recrystallization to purify the product.
PCT/US1996/008253 1996-05-31 1996-05-31 Preparation of alkylthiopropionic pentaerythritol esters WO1997045482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US1996/008253 WO1997045482A1 (en) 1996-05-31 1996-05-31 Preparation of alkylthiopropionic pentaerythritol esters
AU59627/96A AU5962796A (en) 1996-05-31 1996-05-31 Preparation of alkylthiopropionic pentaerythritol esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1996/008253 WO1997045482A1 (en) 1996-05-31 1996-05-31 Preparation of alkylthiopropionic pentaerythritol esters

Publications (1)

Publication Number Publication Date
WO1997045482A1 true WO1997045482A1 (en) 1997-12-04

Family

ID=22255193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/008253 WO1997045482A1 (en) 1996-05-31 1996-05-31 Preparation of alkylthiopropionic pentaerythritol esters

Country Status (2)

Country Link
AU (1) AU5962796A (en)
WO (1) WO1997045482A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022776B2 (en) 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
CN103724241A (en) * 2013-12-20 2014-04-16 天津利安隆新材料股份有限公司 Preparation method of pentaerythritol tetra(3-n-dodecylthiopropionate)
CN104529845A (en) * 2015-01-15 2015-04-22 北京极易化工有限公司 Preparation method for pentaerythritol tetra (3-R-alkyl thiopropionic acid)
CN108358821A (en) * 2018-01-15 2018-08-03 广州合成材料研究院有限公司 One kind four(3- dodecyl propane thioic acids)The preparation method of pentaerythritol ester antioxidant
CN108484459A (en) * 2018-05-21 2018-09-04 烟台新特路新材料科技有限公司 A kind of pentaerythrite four(3- lauryl thiopropionates)Preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728240A (en) * 1971-12-06 1973-04-17 Grace W R & Co Curable liquid polyene-polythiol compositions containing acrylic acid copolymers
US4080364A (en) * 1976-09-27 1978-03-21 Argus Chemical Corporation Stabilization of polyolefins against degradative deterioration as a result of exposure to light and air at elevated temperatures
US4349468A (en) * 1977-12-23 1982-09-14 Adeka Argus Chemical Co., Ltd. Stabilizer for polyolefin resin
US5250391A (en) * 1990-05-10 1993-10-05 Hughes Aircraft Company Photopolymer composition and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728240A (en) * 1971-12-06 1973-04-17 Grace W R & Co Curable liquid polyene-polythiol compositions containing acrylic acid copolymers
US4080364A (en) * 1976-09-27 1978-03-21 Argus Chemical Corporation Stabilization of polyolefins against degradative deterioration as a result of exposure to light and air at elevated temperatures
US4349468A (en) * 1977-12-23 1982-09-14 Adeka Argus Chemical Co., Ltd. Stabilizer for polyolefin resin
US5250391A (en) * 1990-05-10 1993-10-05 Hughes Aircraft Company Photopolymer composition and its use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022776B2 (en) 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
CN103724241A (en) * 2013-12-20 2014-04-16 天津利安隆新材料股份有限公司 Preparation method of pentaerythritol tetra(3-n-dodecylthiopropionate)
CN103724241B (en) * 2013-12-20 2016-02-03 天津利安隆新材料股份有限公司 The preparation method of tetramethylolmethane four (3-dodecyl thiopropionate)
CN104529845A (en) * 2015-01-15 2015-04-22 北京极易化工有限公司 Preparation method for pentaerythritol tetra (3-R-alkyl thiopropionic acid)
CN108358821A (en) * 2018-01-15 2018-08-03 广州合成材料研究院有限公司 One kind four(3- dodecyl propane thioic acids)The preparation method of pentaerythritol ester antioxidant
CN108484459A (en) * 2018-05-21 2018-09-04 烟台新特路新材料科技有限公司 A kind of pentaerythrite four(3- lauryl thiopropionates)Preparation method

Also Published As

Publication number Publication date
AU5962796A (en) 1998-01-05

Similar Documents

Publication Publication Date Title
US3956269A (en) Azo free radical initiators containing ultraviolet light stabilizing groups
US4743657A (en) Method for preparing polymer bound stabilizers made from non-homopolymerizable stabilizers
US6218536B1 (en) 1,2-bis-adducts of stable nitroxides with substituted ethylenes and stabilized compositions
US5973200A (en) Process for the preparation of 2-hydroxy-4-(methylthio) butanoic acid or methionine by mercaptan addition
WO1997045482A1 (en) Preparation of alkylthiopropionic pentaerythritol esters
US5290956A (en) Latent thiol monomers
JPS63119456A (en) Manufacture of retinoylchloride
US5055606A (en) Alkylthiopropionic pentaerythritol esters and solvent refining thereof
US4894187A (en) Flame resistant compositions and method of using same
US5922910A (en) Synthesis of carboxyalkylthiosuccinic acids
JPH03264549A (en) Production of unsaturated monomer
EP0591025B1 (en) Process for the manufacture of glutarimide copolymers and intermediate compounds thereof
EP0589621B1 (en) Substituted styrenes
EP0782566A1 (en) Compositions containing pentaerythritol tetraesters and process for production thereof
US3742047A (en) Preparation of acid chlorides
JPH0770050A (en) Mixed ester of pentaerythritol or like compound with s-alkylthiopropionic acid
CA2019769C (en) S-alkylthiopropionic acids and derivatives
EP0414396B1 (en) N-hydroxyalkyl-mercaptoalkanamides
JP2002522524A (en) Peroxides, their production and use
US4539159A (en) Process for reaction of mercaptophenols with vinyl compounds
US4670520A (en) Method for modifying polyfumaric acid diester
JPS62124102A (en) Production of polymer or copolymer containing unsaturated group
EP0413563B1 (en) Solvent refining alkylthiopropionic pentaerythritol esters
JP2000327658A (en) Stabilized 2,2,6,6-tetramethyl-4-hydroxypiperidine-n-oxyl composition
US5247125A (en) Thiol-terminated hydroxyamides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KP KR MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97542274

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase