WO1997042133A1 - Cement-based self-leveling aqueous composition - Google Patents

Cement-based self-leveling aqueous composition Download PDF

Info

Publication number
WO1997042133A1
WO1997042133A1 PCT/JP1996/001207 JP9601207W WO9742133A1 WO 1997042133 A1 WO1997042133 A1 WO 1997042133A1 JP 9601207 W JP9601207 W JP 9601207W WO 9742133 A1 WO9742133 A1 WO 9742133A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
weight
fluidity
aqueous composition
parts
Prior art date
Application number
PCT/JP1996/001207
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Yamada
Hiroshi Hayashi
Katsuo Hosono
Koichi Soeda
Original Assignee
Chichibu Onoda Cement Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corporation filed Critical Chichibu Onoda Cement Corporation
Priority to PCT/JP1996/001207 priority Critical patent/WO1997042133A1/en
Publication of WO1997042133A1 publication Critical patent/WO1997042133A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions

Definitions

  • the present invention relates to a self-pelling aqueous composition for building a horizontal floor in a building, and more particularly, to maintain a fluidity that can be applied for a long time after production and has sufficient strength after curing.
  • the present invention relates to a cement-based self-leveling aqueous composition having excellent surface flatness and exhibiting excellent dimensional stability even in a dry or wet state over a long period of time.
  • a method using trowel finishing has been adopted to obtain a flat floor with a flat structure, but in recent years, a self-leveling aqueous composition has been used, and construction with a flatter floor or high efficiency It is possible.
  • One of such self-leveling aqueous compositions is a cement-based self-leveling aqueous composition.
  • Cement-based self-leveling aqueous compositions have the characteristic of having excellent water resistance, but have a long working life until production and construction (meaning the time during which sufficient fluidity can be maintained after production to obtain a flat surface). There are problems such as insufficient sampling, large temperature dependence of the pot life, large material separation, many initial cracks, and large drying shrinkage.
  • Japanese Patent Publication No. 5-35100 states that if a mixture of granulated blast furnace slag powder, gypsum and cement is slurried together with other usual additives, it can flow freely and be easily and easily poured or pumped. It is disclosed that a horizontal surface can be formed quickly and accurately.
  • Japanese Patent Publication No. 2-40624 discloses that hardening and drying shrinkage can be reduced by adding 5 to 10% by weight of gypsum to a cement and further adding an amide compound of a specific component. .
  • Japanese Patent Publication No. 01-053226 discloses that the use of a specific hydroxycarboxylic acid and a specific component of an alkali metal salt in combination with a self-leveling material can suppress the deterioration of high fluidity over time. It is disclosed that if such a self-leveling material is mixed with an inorganic filler such as silica sand, calcium carbonate, fly ash, blast furnace slag, etc., an increase in economic effect and abrasion resistance will be improved.
  • an inorganic filler such as silica sand, calcium carbonate, fly ash, blast furnace slag, etc.
  • the present invention provides a cement-based self-leveling aqueous composition which has water resistance while maintaining fluidity, surface smoothness, and strength, can secure a long pot life, and has a small amount of shrinkage upon drying. It is intended to provide. Disclosure of the invention
  • the present inventor has conducted extensive research, and as a result, has been able to achieve the above object by blending anhydrous gypsum and a specific fluidity improving material with cement in specific ratios. It has been found that it is possible to obtain a cement-based self-pelling aqueous composition.
  • a specific amount of inorganic powder having no hydraulic or latent hydraulic properties should be blended as a fluidity improving material at the initial stage of cement hydration.
  • gypsum used as a base
  • a specific amount of anhydrous gypsum which has the property of slowly setting and showing a slight expansion, is used in a specific amount or more.
  • the present invention relates to a cement-based self-leveling aqueous composition containing cement, anhydrous gypsum, a fluidity improving material, a polycarboxylic acid-based dispersant, and water, wherein the water-free gypsum Z cement (weight ratio) or the 5Z 9 5 or more and less than 20 Z 80, and the fluidity improving material is 0.5 / ⁇ !
  • the water-free gypsum Z cement (weight ratio) or the 5Z 9 5 or more and less than 20 Z 80 and the fluidity improving material is 0.5 / ⁇ !
  • the initial stage of cement hydration it is composed of an inorganic powder having no hydraulic or latent hydraulic properties, and has a flowability improving material of Z cement (weight ratio) of 5 to 9 mm.
  • the polycarboxylic acid-based dispersant is contained in an amount of 0.1 to 3 parts by weight based on 100 parts by weight of the total amount of cement, anhydrite and the fluidity improving material.
  • a cement-based self-pelling aqueous composition BEST MODE FOR CARRYING OUT THE INVENTION
  • the cement used in the present invention is not particularly limited, and examples thereof include ordinary cement, early-strength cement, moderate heat cement, ultra-high-strength cement, portland cement of sulfate-resistant cement, and mixed cement.
  • the compounding amount of the cement is 55 to 90% by weight, preferably 60 to 82% by weight, based on the total weight of the cement, the anhydrous gypsum and the fluidity improving material. If it is less than 55% by weight, the strength is insufficient, and if it exceeds 90% by weight, drying shrinkage becomes large. However, fly ash and silica in the mixed cement are excluded from the weight of the cement.
  • anhydrous gypsum used in the present invention examples include, but are not particularly limited to, natural type II anhydrous gypsum and by-product anhydrous gypsum.
  • Gypsum dihydrate, hemihydrate gypsum, etc. do not have a long-term shrinkage reduction effect because of the high rate of hydration reaction with cement.
  • the mixing amount of anhydrous gypsum should be such that the ratio of anhydrous gypsum Z cement (weight ratio) should be at least 5 955 and less than 20 Z80, and 8 Z92 to 14 Z86. Power, cement Dry shrinkage can be compensated for well by swelling, and excessive hydration reaction can be suppressed, and stabilization can be performed for a long period without swelling and separation.
  • the inorganic powder that does not show hydraulic or latent hydraulic properties is replaced with cement in J IS R5201 ⁇ Physical test method of cement ''. Except that a mixed powder of an inorganic powder sample (90 parts by weight) and calcium hydroxide (10 parts by weight) is used, the initial setting time of coagulation obtained by the same method is 6 hours or more, preferably 8 hours or more. Refers to the inorganic powder shown. That is, the above mixed powder was kneaded with an appropriate amount of water (water injection), placed in a container of 80 cm in height and 40 countries in height, and lowered to a standard size of 10 strokes using a Vicat needle device.
  • water injection water injection
  • a paste of standard softness is obtained so that the distance from the bottom is 6 mm and 1 mm.
  • the time when the tip of the needle stops at one stroke from the bottom surface is the first time, and the time (h) from the time when the mixed powder is injected to the first time is the first time.
  • the fluidity improving material used in the present invention an inorganic powder showing a starting time of 6 hours or more by the method is determined to be suitable. If the initial time is less than 6 hours, the fluidity is reduced, the transport time is restricted, and it is difficult to finish a large area flat.
  • k hydraulic property refers to the property of hardening by reacting with water when coexisting with water
  • latent hydraulic property refers to the power that does not exhibit the property of hardening even when coexisting with water.
  • the fluidity improving material used in the present invention needs to have an average particle size of 0.5 m to 0.1 mra.
  • the average particle size exceeds 0.1 fraction 1, the effect of improving fluidity is lost, and material separation is increased. If the average particle size is less than 0.5 / m, the fluidity is deteriorated.
  • the fluidity improving material used in the present invention is not particularly limited as long as it is an inorganic powder that satisfies the above properties, unless it has harmful properties as a self-leveling aqueous composition. , Coal ash, fly ash, limestone powder (charcoal powder), silica stone powder, crushed stone powder, alumina powder, gypsum and the like.
  • blast furnace slag When blast furnace slag is used, the behavior is the same as when the amount of cement is increased, The pot life is shortened, drying shrinkage increases, and it leads to cracks, which is not preferable.
  • a powder exhibiting a pozzolanic reaction that does not adversely affect the fluidity improvement described above, for example, a hydration-solidification reaction that lags behind the cement hydration reaction, does not adversely affect the pot life. Rather, it is preferable in terms of long-term strength enhancement.
  • a reaction between soluble silica and the like contained in fly ash and the like and calcium hydroxide generated by hydration of the cement examples include a reaction between soluble silica and the like contained in fly ash and the like and calcium hydroxide generated by hydration of the cement.
  • the fluidity improving material preferably contains as little carbon as possible in the coal ash and does not contain an organic substance that adsorbs a dispersing material such as organic impurities in crushed stone powder.
  • the compounding amount of the fluidity improving material used in the present invention is as follows.
  • Weight ratio is 5 to 95 to 40 Z 60, and particularly preferably 5 to 95 to 30 Z 70. If it is less than 5 Z95, there will be no fluidity improving effect, and if it exceeds 40/60, the strength will be adversely affected. When using a fluidity improving material, it is preferable to use it after mixing it with cement in advance.
  • the polycarboxylic acid-based dispersant used in the present invention is not particularly limited, but the following ones can ensure sufficient fluidity required for construction and can easily obtain a floor surface having excellent smoothness. Is preferred.
  • Dispersant d1 having the following structure is preferable because it has excellent flowability at high temperatures and keeps the working life in summer.
  • R 1 and R 4 each represent a hydrogen atom or a tyl group
  • R 2 represents an alkylene group having 2 to 4 carbon atoms
  • R 3 represents a hydrogen atom ⁇ Represents 1 to 5 alkyl groups
  • M! Represents a hydrogen atom, an alkali metal, an alkaline metal, ammonium or an organic amine, and 0 represents an integer of 1 to 100.
  • a structural unit (a) derived from a monomer copolymerizable with these monomers wherein the formula (1) is 10 to 95% by weight in all the structural units. %, Preferably 50 to 80% by weight, formula (2) is 95 to 5% by weight, preferably 20 to 50% by weight, and the structural unit (i) is a polycarboxylic acid based on 0 to 50% by weight. Powder.
  • the dispersant having the following structure is preferable because it has excellent performance in ensuring the pot life in summer and also has excellent fluidity at low temperatures, and can ensure pot life in winter. That is, the following formulas)-(7)
  • R 5 to R S are the same as R 1 , R ′ ° and R 11 each represent an alkyl group having i to 3 carbon atoms, and M 2 represents an alkali metal, an alkaline earth metal, ammonium or organic. Represents an amine, and X 1 is a sulfonic acid group or a compound of the formula (8) 10 S0 3 M 3 (8)
  • formula (3) or 45 to 65 mol% formula (4) is 8 to 23 mol%
  • formula (5) is 3 to 25 mol%
  • a polypyrrolic acid-based dispersant comprising Formula (6) in a proportion of 5 to 25 mol% and Formula (7) in a proportion of 3 to 15 mol%
  • the dispersant d3 having the following structure has high resistance to material separation in addition to the ability to secure the pot life in summer, and is particularly suitable for construction of a thick floor.
  • R 12 to R 16 are the same as R 1 , R 17 represents an alkyl group having 1 to 5 carbon atoms, X 2 represents a methylene group, an ethyleneoxy group or a propyleneoxy group, and X 3 represents an acryl group.
  • Ami de group and 2 _ acrylamide - 2 salt of methyl sulfonic acid showed a polymer block obtained by radical copolymerization, M 4 and M 5 are same as the M 2, r from 0 to 1 0 And s represents an integer of 0 to 30.
  • the formula (9) is 40 to 80 mol%
  • the formula (10) is 1 to 30 mol%
  • the formula (11) is 1 to 20 mol%
  • the dispersant d4 having the following structure is extremely excellent in maintaining fluidity at high and low temperatures, and has a performance capable of ensuring a sufficient pot life even under severe low temperature conditions of about 0 ° C.
  • R 1S , R 2 ⁇ R 21 and R 22 are the same as R 1
  • R IS is a phenyl group or a benzyl group
  • M 6 , M 7 and M 8 are the same as M 2
  • t is 10 is an integer of 30 to 30
  • u is an integer of 7 to 50
  • V is an integer of 1 to 20.
  • Consisting of the structural units represented by Formula (13) + Formula (14) is 25 to 45% by weight, preferably 30 to 40% by weight
  • Formula (14) + Formula (15) is 25 to 50% by weight, preferably 30% ⁇ 45% by weight
  • Formula (16) + Formula (17) is 5 to 25% by weight, preferably 5 to 20% by weight, and
  • Equation (18) + Equation (19) is the remainder, and each is a weight ratio
  • Formula (14) / Formula (13 is 15/8 / 5-4 0/60, preferably 15Z8 5-35Z65
  • Formula (15) / Formula (14) is 64/3 6-85Z15, Preferably, 7 ⁇ 30 to 85/15, a polycarboxylic acid dispersion comprising the formula (17) and the formula (16) in a ratio of 25/75 to 75/25, preferably 40/60 to 75Z25. Agent.
  • polycarboxylic acid-based dispersant those having a number average molecular weight of 2000 to 2000 (GPC method, in terms of pullulan) are preferable.
  • GPC method in terms of pullulan
  • Aquaqual PM-06 Korean Chemical Co., Ltd.
  • Pozoris NP-20R Long Term Evolution (Lot)
  • Leobuild SP-8N both manufactured by Nisso Master I-Builders
  • 7-750 manufactured by Zeon Corporation
  • OF-8 manufactured by Onoda
  • HP -8 Takemoto Yushi
  • a melamine-based dispersant in addition to the polycarboxylic acid-based dispersant, a melamine-based dispersant, a naphthylene-based dispersant, a lignin-based dispersant, or the like can be used alone or as a mixture of two or more kinds.
  • the blending amount of the polycarboxylic acid-based dispersant is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of cement, anhydrous gypsum and the fluidity improving material, and particularly preferably 0 to 3 parts by weight. 5 to 1.5 parts by weight is more preferable. If the amount is less than 0.1 part by weight, the dispersing effect is inferior.
  • the amount of water used in the present invention is such that the flow value specified in JAS S 15M-103 “Self-leveling material quality standards” of the Architectural Institute of Japan is 19 cm or more. It is preferable to use 30 to 80 parts by weight, more preferably 34 to 70 parts by weight, based on 100 parts by weight of the base material.
  • the cement-based self-leveling aqueous composition of the present invention may further comprise, as necessary, a setting accelerator for anhydrous gypsum, a shrinkage reducing agent, an antifoaming agent, a thickener, an aggregate, etc., in addition to the above essential components. Can be used.
  • setting accelerators for anhydrous gypsum include alkali metal salts and sulfur earth metal salts of sulfuric acid. Of these, potassium sulfate is preferred.
  • the setting amount of the setting accelerator for anhydrous gypsum is 0.05 to 5 parts by weight based on 100 parts by weight of cement, anhydrous gypsum and flow improver. The amount is preferably 1 part by weight, particularly preferably 0.2 to 1 part by weight.
  • shrinkage reducing agent examples include polyoxypropylene glycol having the number of repeating propylene units or 2 to 12; the number of repeating oxypropylene units is 2 to 12, and the number of repeating oxyethylene units is 2 to 12.
  • a polyoxypropylenepolyoxyethylene glycol having 6; an alkoxypolyoxy group having 1 to 6 carbon atoms, wherein the number of repeating ⁇ -pyrene units is 2 to 12, and the number of repeating oxyethylene units is 2 to 6, of this c propylene polyoxyethylene da recall include, Poriokishipuro propylene glycol are preferred repetition number of O carboxymethyl propylene units is from 2 to 1 2.
  • the compounding amount of the shrinkage reducing agent is usually 0.2 to 6 parts by weight, especially 0.5 to 2 parts by weight, based on 100 parts by weight of cement, anhydrous gypsum and flowability improving material. It is preferable because shrinkage due to drying is reduced.
  • the antifoaming agent examples include a silicone-based surfactant and a nonionic surfactant. Of these, nonionic surfactants are preferred.
  • the compounding amount of the antifoaming agent is preferably 0.01 to 0.6 parts by weight, more preferably 0.01 part by weight, based on 100 parts by weight of the total of cement, anhydrous gypsum and the flowability improving material. It is preferably from 5 to 0.4 parts by weight.
  • the thickener is not particularly restricted but includes methylcellulose, hydroquinethyl cellulose and carboxymethylcellulose. Of these, methyl cellulose is preferred. Use of such a thickener improves the resistance of the cured product to drying shrinkage.
  • the compounding amount of the thickener is preferably 0.01 to 0.6 parts by weight, more preferably 0.1 to 0.6 parts by weight, based on 100 parts by weight of cement, anhydrous gypsum, flowability improving material and aggregate. It is preferable to use 0.5 to 0.4 parts by weight from the viewpoint of reducing material separation during production.
  • the aggregate examples include, but are not limited to, river sand, sea sand, land sand, crushed sand, and artificial aggregate.
  • the particle size of the aggregate varies depending on the thickness of the self-leveling aqueous composition, but generally, it is preferably 5 fine or less and the coarse particle ratio is 1.5 to 3.0.
  • Aggregates can be used alone or in combination of two or more.
  • the amount of the aggregate is preferably 60 to 150 parts by weight, preferably 75 to 125 parts by weight, based on 100 parts by weight of the total of cement, anhydrous stone, and flowability improving material. It is more preferable to use parts by weight. When the amount of aggregate is less than 60 parts by weight, the drying shrinkage becomes large, and If it exceeds, appropriate fluidity cannot be obtained.
  • the initial setting time (h) of the setting is based on JIS R5201 “Physical test method for cement” using a mixture (90Z10 weight ratio) of a fluidity improver and calcium hydroxide reagent instead of cement. Except for I and T, the same method was used.
  • Dispersant Poly-L-uronic acid-based dispersant d 1 to d 4: Table 2
  • the average particle size was determined by optical, microscopic or electron microscopic observation.
  • coal ash, fly ash, silica stone powder, limestone powder, crushed stone powder, dihydrate gypsum, alumina powder, and silica powder do not show hydraulicity at the initial stage of hydration, and slag, hemi-gypsum, and ordinary cement Shows hydraulic properties.
  • silica fume has a preferable range of latent hydraulic property but an unfavorable range of particle size.
  • the flow value specified in the Architectural Institute of Japan JASS15M-103 (quality standard of self-leveling material) was measured. The measurement was performed immediately after production at 20 ° C, and at 3 hours and 6 hours after production, and at 30 ° C, 5 ° C, and 0 ° C at 6 hours after production, and kneaded for about 1 minute with a kneading spoon. Thereafter, the flow value was measured.
  • indicates a value of 210 or more
  • indicates a value of 190 to 209
  • X indicates a value of less than 190.
  • the termination time at 20 ° C was measured according to the physical test method of cement (J [SR 5201]). ⁇ indicates less than 12 hours, ⁇ indicates 12 to 14 hours, and X indicates more than 14 hours.
  • Judgment was evaluated as ⁇ when all the evaluation items were ⁇ , ⁇ when the evaluation consisted of ⁇ and ⁇ , and X when there was at least one X.
  • ffiS 1 ⁇ 2S (ran), attached J3 ⁇ 4fi) IR.
  • the abbreviation of ffiS indicates one.
  • Example 14 From the fluidity characteristics and material separation characteristics of Example 14 and Comparative Examples 3 and 4, when the average particle size exceeds 0.1, a large amount of water is required to secure the initial fluidity, If there is a problem in material separation (Comparative Example 3), and a large amount of very small particles having a mean particle size of less than 0.5 m is added to the fluidity improving material, it is qualified in the qualification test. Even so, a large amount of water is required to secure the initial fluidity, and it is thought that this is due to the gradual water absorption after kneading, but the fluidity declines quickly (Comparative Example 4). Inorganic powders having an average particle size of not more than 0.1 and not more than 0.5 / m are suitable (Examples 1, 8 to 14).
  • a polycarboxylic acid-based dispersant is suitable as a dispersant. More specifically, when a dispersant other than a polycarboxylic acid is used (Comparative Example 10), a sufficient pot life cannot be secured to obtain the initial fluidity.
  • the dispersant (d 1) can extend the pot life to 6 hours and shows excellent pot life characteristics even at high temperatures (Example 16).
  • Dispersant (d 2) shows excellent pot life characteristics even at low temperatures (Example 17), dispersant (d 3) has excellent material separation properties (Example 18), dispersant (d 4) Is particularly excellent in the pot life characteristic in all temperature ranges (Example 1).
  • the cement-based self-pelling aqueous composition of the present invention maintains fluidity that allows work for a long time after production, maintains sufficient strength after curing, and is dried or wet for a long period of time. It has excellent dimensional stability even if it is in a flat state, and is a very excellent flooring material in both aspects of quality and construction.

Abstract

A cement-based self-leveling aqueous composition comprising anydrous gypsum, a fluidity improver, a polycarboxylic acid dispersant, and water, wherein the anhydrous gypsum to cement ratio by weight is 5:95 to less than 20:80, the fluidity improver has an average particle diameter of 0.5 νm to 0.1 mm and comprises an inorganic powder exhibiting neither hydraulicity nor latent hydraulicity in an early stage of hydration of cement, the fluidity improver to cement ratio by weight is 5:95 to 40:60, and the polycarboxylic acid dispersant, is contained in an amount of 0.1 to 3 parts by weight based on 100 parts by weight in total of the cement, anhydrous gypsum and fluidity improver. This composition has a fluidity high enough to permit execution of work over a long period of time after the production thereof, can maintain satisfactory strength after curing, and has an excellent dimensional stability over a long period of time.

Description

明 細 書 セメント系セルフレベリング性水性組成物 技術分野  Description Cement-based self-leveling aqueous composition Technical field
本発明は、 建築物において水平な床を作るためのセルフレペリング性水性組成 物に関し、 更に詳しくは、 製造後、 長時間にわたり施工作業可能な流動性を維持 し、 硬化後は、 十分な強度を保持し、 かつ長期間にわたる乾燥状態又は湿潤状態 においても優れた寸法安定性を示す表面平坦性に優れたセメント系セルフレベリ ング性水性組成物に関する。 背景技術  TECHNICAL FIELD The present invention relates to a self-pelling aqueous composition for building a horizontal floor in a building, and more particularly, to maintain a fluidity that can be applied for a long time after production and has sufficient strength after curing. The present invention relates to a cement-based self-leveling aqueous composition having excellent surface flatness and exhibiting excellent dimensional stability even in a dry or wet state over a long period of time. Background art
建築物にぉレ、て水平な床を得るため、 従来はこて仕上げによる方法が採られて いたが、 近年ではセルフレべリング性水性組成物が使用され、 より平坦な床か高 効率で施工可能となっている。 かかるセルフレベリング性水性組成物の一つとし てセメント系セルフレベリング性水性組成物がある。  Conventionally, a method using trowel finishing has been adopted to obtain a flat floor with a flat structure, but in recent years, a self-leveling aqueous composition has been used, and construction with a flatter floor or high efficiency It is possible. One of such self-leveling aqueous compositions is a cement-based self-leveling aqueous composition.
セメント系セルフレベリ ング性水性組成物は、 耐水性に優れるという特徴を持 つが、 製造後施工までの可使時間 (製造後、 平坦面を得るために十分な流動性を 維持できる時間をいう) が十分に採れない、 可使時間の温度依存性が大きい、 材 料分離が大きい、 初期ひび割れが多い、 乾燥収縮が大きい等の問題がある。 特公平 5- 35100号公報には、 高炉水砕スラグ粉、 石膏及びセメン トの混合物を 他の通常の添加剤と共にスラリー状とすれば、 自由に流動し、 流し込み又はボン プ打ちにより容易にかつ迅速に精度よく水平面を形成できることが開示されてい しかしながら、 該公報記載のように多量のスラグを使用すると実際には可使時 間が十分確保できず、 流動性が短時間で低下する。 このため、 長時間の搬送及び 打設に時間を要する広い面積への適用には、 施工途中で流動性が低下し、 床を平 坦に仕上げることはできない。 また、 スラグを使用したセメン ト系セルフレペリ ング性水性組成物は初期ひび割れも多く発生する傾向にある。 また、 特公平 2- 40624号公報には、 セメン トに石膏を 5〜 1 0重量%添加し、 更に特定成分のアミ ド化合物を添加すれば、 硬化乾燥収縮を低減できることが開 示されている。 Cement-based self-leveling aqueous compositions have the characteristic of having excellent water resistance, but have a long working life until production and construction (meaning the time during which sufficient fluidity can be maintained after production to obtain a flat surface). There are problems such as insufficient sampling, large temperature dependence of the pot life, large material separation, many initial cracks, and large drying shrinkage. Japanese Patent Publication No. 5-35100 states that if a mixture of granulated blast furnace slag powder, gypsum and cement is slurried together with other usual additives, it can flow freely and be easily and easily poured or pumped. It is disclosed that a horizontal surface can be formed quickly and accurately. However, when a large amount of slag is used as described in the publication, a sufficient working time cannot be actually secured, and the fluidity is reduced in a short time. For this reason, when applied to a large area that requires time for long-term transport and casting, the fluidity decreases during construction and the floor cannot be finished flat. In addition, a cement-based self-perfusing aqueous composition using slag tends to generate many initial cracks. In addition, Japanese Patent Publication No. 2-40624 discloses that hardening and drying shrinkage can be reduced by adding 5 to 10% by weight of gypsum to a cement and further adding an amide compound of a specific component. .
しかしながら、 アミ ド化合物の添加により硬化乾燥収縮を低減できても可使時 間が確保できず、 短時間で流動性が失われるという問題がある。  However, even if the curing and drying shrinkage can be reduced by the addition of the amide compound, there is a problem that the pot life cannot be secured and the fluidity is lost in a short time.
また、 特公平 01 -053226号公報には、 セルフレベリング材に特定のヒドロキシ カルボン酸と特定成分のアル力リ金属塩とを併用使用すれば、 高流動性の経時低 下を抑制できること、 更に、 斯かるセルフレべリ ング材に珪砂、 炭酸カルシウム、 フライアッシュ、 高炉スラグ等の無機充塡材を配合すれば、 増量的な経済効果と 耐摩耗性が改善されることが開示されている。  In addition, Japanese Patent Publication No. 01-053226 discloses that the use of a specific hydroxycarboxylic acid and a specific component of an alkali metal salt in combination with a self-leveling material can suppress the deterioration of high fluidity over time. It is disclosed that if such a self-leveling material is mixed with an inorganic filler such as silica sand, calcium carbonate, fly ash, blast furnace slag, etc., an increase in economic effect and abrasion resistance will be improved.
しかしながら、 斯かるセルフレべリング材は可使時間を確保できても、 凝結か 遅く、 硬化に時間がかかり、 次工程に進めないという問題がある。 また、 例示さ れた無機充墳材であっても、 種類又は大きさによっては增量的効果を示さないも の、 可使時間の短縮、 初期ひび割れの増加、 乾燥収縮の増大等をきたすものがあ る。  However, such a self-leveling material has a problem that even if the pot life can be ensured, the setting is slow, the curing takes a long time, and the process cannot proceed to the next step. In addition, even if the inorganic filler material shown in the examples does not show a quantitative effect depending on the type or size, it causes a reduction in pot life, an increase in initial cracks, an increase in drying shrinkage, etc. There is.
従って、 本発明は、 流動性、 表面平滑性、 強度を保ちながら、 耐水性を有し、 かつ長時間にわたる可使時間が確保でき、 乾燥による収縮量が小さいセメント系 セルフレベリ ング性水性組成物を提供することを目的とするものである。 発明の開示  Therefore, the present invention provides a cement-based self-leveling aqueous composition which has water resistance while maintaining fluidity, surface smoothness, and strength, can secure a long pot life, and has a small amount of shrinkage upon drying. It is intended to provide. Disclosure of the invention
このような実情において、 本発明者は銳意研究を行った結果、 無水石膏及び特 定の流動性改善材をセメントに対し、 それぞれ特定の比率で配合することによつ て、 上記目的にかなったセメント系セルフレペリング性水性組成物を得ること力 S できることを見出した。  Under these circumstances, the present inventor has conducted extensive research, and as a result, has been able to achieve the above object by blending anhydrous gypsum and a specific fluidity improving material with cement in specific ratios. It has been found that it is possible to obtain a cement-based self-pelling aqueous composition.
すなわち、 平均粒径が 0 . 5 m〜0 . 1瞧であって、 セメン ト水和初期段階 において、 水硬性又は潜在水硬性を有さない無機質粉末を流動性改善材として特 定量配合することにより、 長時間にわたる可使時間が確保できること、 また、 基 材として用いる石膏に、 凝結が緩慢に進行し、 しかも僅かに膨張を示す特性があ る無水石膏を特定量以上使用することによりセメントの乾燥収縮の問題を解決で き、 更に、 水分が継続して供給される環境条件では、 過剰の無水石膏が存在する と、 セメントとの水和反応に次いで生じる二水石膏 (通常使用されるポルトラン ドセメント中に数重量%程度含まれる) への水和反応が進行し、 更に膨張が継続 するといつた問題を、 セメン卜に対し無水石膏を特定量以下とすることにより解 決でき、 長期間にわたる乾燥状態又は湿潤状態においても、 優れた寸法安定性を 維持できることを見出した。 In other words, at the initial stage of cement hydration, a specific amount of inorganic powder having no hydraulic or latent hydraulic properties should be blended as a fluidity improving material at the initial stage of cement hydration. By using gypsum used as a base, a specific amount of anhydrous gypsum, which has the property of slowly setting and showing a slight expansion, is used in a specific amount or more. Solve the problem of drying shrinkage In addition, under environmental conditions where moisture is continuously supplied, if there is an excess of anhydrous gypsum, dihydrate gypsum that forms next to the hydration reaction with cement (a few weight percent in the normally used Portland cement) The hydration reaction progresses and the expansion continues, and the problem can be solved by reducing the amount of anhydrous gypsum to a specific amount of cement or less, even in a dry or wet state over a long period of time. It has been found that excellent dimensional stability can be maintained.
すなわち、 本発明は、 セメント、 無水石膏、 流動性改善材、 ポリカルボン酸系 分散剤及び水を含有するセメント系セルフレべリング性水性組成物において、 無 水石膏 Zセメント (重量比) か 5 Z 9 5以上 2 0 Z 8 0未満であり、 流動性改善 材が、 0 . 5 /π!〜 0 , 1 mmの平均粒径を有し、 セメン ト水和初期段階において、 水硬性又は潜在水硬性を有さない無機質粉末からなり、 流動性改善材 Zセメン卜 (重量比) が 5 9 5〜4 0 / 6 0であり、 ポリカルボン酸系分散剤をセメン卜、 無水石膏及び流動性改善材の合計量 1 0 0重量部に対し 0 . 1〜 3重量部含有す ることを特徴とするセメント系セルフレペリング性水性組成物を提供するもので ある。 発明を実施するための最良の形態  That is, the present invention relates to a cement-based self-leveling aqueous composition containing cement, anhydrous gypsum, a fluidity improving material, a polycarboxylic acid-based dispersant, and water, wherein the water-free gypsum Z cement (weight ratio) or the 5Z 9 5 or more and less than 20 Z 80, and the fluidity improving material is 0.5 / π! In the initial stage of cement hydration, it is composed of an inorganic powder having no hydraulic or latent hydraulic properties, and has a flowability improving material of Z cement (weight ratio) of 5 to 9 mm. 5 to 40/60, characterized in that the polycarboxylic acid-based dispersant is contained in an amount of 0.1 to 3 parts by weight based on 100 parts by weight of the total amount of cement, anhydrite and the fluidity improving material. And a cement-based self-pelling aqueous composition. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において用いられるセメントとしては、 特に制限されないが、 普通セメ ント、 早強セメン卜、 中庸熱セメント、 超早強セメン卜、 耐硫酸塩セメントのポ ルトランドセメント ;混合セメント等が挙げられる。 セメントの配合量は、 セメ ント、 無水石膏及び流動性改善材の合計重量中、 5 5〜 9 0重量%、 好ましくは 6 0〜8 2重量%とするのがよい。 5 5重量%未満では強度が不足し、 9 0重量 %を超えると乾燥収縮が大きくなる。 ただし、 混合セメン ト中のフライアッシュ、 シリカは当該セメン卜重量から除外される。  The cement used in the present invention is not particularly limited, and examples thereof include ordinary cement, early-strength cement, moderate heat cement, ultra-high-strength cement, portland cement of sulfate-resistant cement, and mixed cement. The compounding amount of the cement is 55 to 90% by weight, preferably 60 to 82% by weight, based on the total weight of the cement, the anhydrous gypsum and the fluidity improving material. If it is less than 55% by weight, the strength is insufficient, and if it exceeds 90% by weight, drying shrinkage becomes large. However, fly ash and silica in the mixed cement are excluded from the weight of the cement.
本発明において用いられる無水石膏としては、 特に制限されないが天然 II型無 水石膏、 副産無水石膏等が挙げられる。 二水石膏、 半水石膏等は、 セメントとの 水和反応速度か速いため、 長期にわたる収縮低減効果は得られない。 無水石膏の 配合量は、 無水石膏 Zセメント (重量比) の割合が 5ノ 9 5以上 2 0 Z 8 0未満 とすることが必要であり、 更に 8 Z 9 2〜 1 4 Z 8 6とすること力、 セメン トの 乾燥収縮を膨張によりバランスよく補償できるとともに、 過度の水和反応を抑制 し、 膨れゃ剝離が生じることなく長期間にわたり安定化できる。 Examples of the anhydrous gypsum used in the present invention include, but are not particularly limited to, natural type II anhydrous gypsum and by-product anhydrous gypsum. Gypsum dihydrate, hemihydrate gypsum, etc., do not have a long-term shrinkage reduction effect because of the high rate of hydration reaction with cement. The mixing amount of anhydrous gypsum should be such that the ratio of anhydrous gypsum Z cement (weight ratio) should be at least 5 955 and less than 20 Z80, and 8 Z92 to 14 Z86. Power, cement Dry shrinkage can be compensated for well by swelling, and excessive hydration reaction can be suppressed, and stabilization can be performed for a long period without swelling and separation.
本発明において用いられる流動性改善材において、 セメント水和初期段階にお いて、 水硬性又は潜在水硬性を示さない無機質粉末とは、 J IS R5201 「セメント の物理試験方法」 において、 セメントの代わりに無機質粉末試料 ( 9 0重量部) と水酸化カルシウム ( 1 0重量部) の混合粉末を用いる以外は、 同様の方法に従 つて求められる凝結の始発時間が 6時間以上、 好ましくは 8時間以上を示す無機 質粉末を言う。 すなわち、 上記混合粉末を適当量の水と共に (注水) 混練し、 怪 8 0咖、 高さ 4 0國の容器に入れ、 ビカー針装置を用い、 径 1 0画の標準捧を降 下させたときに、 底面との間隔が 6土 1 mmとなるような標準軟度のペース卜を得 る。 次に、 ビカー針装置の標準棒を径 1 . 1 3隱の始発用標準針に代え、 総重量 を 3 0 0 gとし、 ペースト中に降下させる。 この時、 針の先端が底面から 1画の ところに止まるときを始発とし、 上記混合粉末に注水したときから始発までの時 間 (h ) を始発時間とする。 本発明で用いる流動性改善材としては、 当該方法に よる始発時問が 6時間以上を示す無機質粉末が好適なものと判定される。 斯かる 始発時間が 6時間未満のものは、 流動性を低下させ、 搬送時間が制限されたり、 大面積を平坦に仕上げることが困難となる。  In the fluidity improving material used in the present invention, in the initial stage of cement hydration, the inorganic powder that does not show hydraulic or latent hydraulic properties is replaced with cement in J IS R5201 `` Physical test method of cement ''. Except that a mixed powder of an inorganic powder sample (90 parts by weight) and calcium hydroxide (10 parts by weight) is used, the initial setting time of coagulation obtained by the same method is 6 hours or more, preferably 8 hours or more. Refers to the inorganic powder shown. That is, the above mixed powder was kneaded with an appropriate amount of water (water injection), placed in a container of 80 cm in height and 40 countries in height, and lowered to a standard size of 10 strokes using a Vicat needle device. Occasionally, a paste of standard softness is obtained so that the distance from the bottom is 6 mm and 1 mm. Next, replace the standard bar of the Vicat needle device with a standard needle for the initial diameter of 1.13 and set the total weight to 300 g and lower it into the paste. At this time, the time when the tip of the needle stops at one stroke from the bottom surface is the first time, and the time (h) from the time when the mixed powder is injected to the first time is the first time. As the fluidity improving material used in the present invention, an inorganic powder showing a starting time of 6 hours or more by the method is determined to be suitable. If the initial time is less than 6 hours, the fluidity is reduced, the transport time is restricted, and it is difficult to finish a large area flat.
また、 上; k水硬性とは、 水と共存した場合、 水と反応することで硬化する性質 を言い、 上記潜在水硬性とは、 単独では水と共存しても硬化する性質を示さない 力 アル力リ刺激等が存在する場合は水中で硬化する性質を言う。  In addition, k; hydraulic property refers to the property of hardening by reacting with water when coexisting with water, and the latent hydraulic property refers to the power that does not exhibit the property of hardening even when coexisting with water. When there is an irritating stimulus or the like, it means a property of curing in water.
また、 本発明で用いられる流動性改善材は、 平均粒径が 0 . 5 m〜0 . l mra であることが必要である。 平均粒径が 0 . 1画 1を超えると流動性改善効果がなく なり、 また材料分離が大きくなる。 また、 平均粒径が 0 . 5 / m 未満のものは、 流動性を悪化させる。  Further, the fluidity improving material used in the present invention needs to have an average particle size of 0.5 m to 0.1 mra. When the average particle size exceeds 0.1 fraction 1, the effect of improving fluidity is lost, and material separation is increased. If the average particle size is less than 0.5 / m, the fluidity is deteriorated.
本発明で用いられる流動性改善材としては、 上記の性質を満たす無機質粉末で あれば、 別にセルフレベリ ング性水性組成物として有害な性質を有しない限り特 に制限されず、 斯かる無機質粉末としては、 石炭灰、 フライアッシュ、 石灰石粉 末 (炭カル粉末) 、 珪石粉末、 砕石粉末、 アルミナ粉末、 二水石膏等が挙げられ る。 高炉スラグを使用すると、 セメント量を増大させた場合と同様の挙動を示し、 可使時間が短縮され、 乾燥収縮が増大し、 ひび割れにつながり好ましくない。 本発明において、 上記流動性改善に悪影響を与えない反応、 例えばセメ ン トの 水和反応よりも遅れて水和固化するポゾラン反応を呈する粉末を使用することは、 可使時間に悪影響を与えず、 むしろ長期的強度増進の点から好ましい。 斯かる反 応としては、 フライアツシュ等に含まれる可溶性の珪酸等とセメ ン卜の水和によ り生成される水酸化カルシウムとの反応等が挙げられる。 The fluidity improving material used in the present invention is not particularly limited as long as it is an inorganic powder that satisfies the above properties, unless it has harmful properties as a self-leveling aqueous composition. , Coal ash, fly ash, limestone powder (charcoal powder), silica stone powder, crushed stone powder, alumina powder, gypsum and the like. When blast furnace slag is used, the behavior is the same as when the amount of cement is increased, The pot life is shortened, drying shrinkage increases, and it leads to cracks, which is not preferable. In the present invention, the use of a powder exhibiting a pozzolanic reaction that does not adversely affect the fluidity improvement described above, for example, a hydration-solidification reaction that lags behind the cement hydration reaction, does not adversely affect the pot life. Rather, it is preferable in terms of long-term strength enhancement. Examples of such a reaction include a reaction between soluble silica and the like contained in fly ash and the like and calcium hydroxide generated by hydration of the cement.
また、 当該流動性改善材中には、 石炭灰中の未然カーボンは出来る限り少なく、 又砕石粉中の有機不純物等分散材を吸着する有機質物質を含まないことが好まし い。  In addition, the fluidity improving material preferably contains as little carbon as possible in the coal ash and does not contain an organic substance that adsorbs a dispersing material such as organic impurities in crushed stone powder.
本発明で用いられる流動性改善材の配合量としては、 流動性改善材 セメ ン卜 The compounding amount of the fluidity improving material used in the present invention is as follows.
(重量比) が 5ノ9 5〜4 0 Z 6 0であり、 特に 5 Z 9 5〜3 0 Z 7 0とするの が好ましい。 5 Z 9 5未満では、 流動性改善効果がなく、 4 0 / 6 0を超えると 強度に悪影響を及ぼす。 なお、 流動性改善材を使用する場合は、 予めセメントと 混合してから使用することが好ましい。 (Weight ratio) is 5 to 95 to 40 Z 60, and particularly preferably 5 to 95 to 30 Z 70. If it is less than 5 Z95, there will be no fluidity improving effect, and if it exceeds 40/60, the strength will be adversely affected. When using a fluidity improving material, it is preferable to use it after mixing it with cement in advance.
本発明で用いるポリカルボン酸系分散剤としては、 特に制限されないが次に举 げるものが施工に必要な十分な流動性を確保でき、 平滑性に優れた床面を容易に 得ることができることから好ましい。  The polycarboxylic acid-based dispersant used in the present invention is not particularly limited, but the following ones can ensure sufficient fluidity required for construction and can easily obtain a floor surface having excellent smoothness. Is preferred.
(分散剤 d 1 )  (Dispersant d 1)
次に示す構造を有する分散剤 d 1は、 高温下での流動' I生保持に優れており、 夏 期における可使時間を確保する点から好ましい。  Dispersant d1 having the following structure is preferable because it has excellent flowability at high temperatures and keeps the working life in summer.
すなわち、 下記式 (1 )〜(2) That is, the following equations (1) to (2)
R1 R 1
斗 CH2-C Doo CH 2 -C
(1)  (1)
C0(R20)„R3 C0 (R 2 0) „R 3
II  II
o  o
R4 R 4
- CH2-C -CH 2 -C
(2)  (2)
COOM  COOM
(式 (1)〜式 (2)中、 R1 及び R4 は水素原子又は チル基を示し、 R2 は炭素数 2 〜 4個のアルキレン基を示し、 R3 は水素原子乂は炭素数 1〜 5個のアルキル基 を示し、 M! は水素原子、 アルカリ金属、 アルカリ上類金厲、 アンモニゥム又は 有機アミンを示し、 0は 1〜1 00の整数を示す。 ) (In the formulas (1) and (2), R 1 and R 4 each represent a hydrogen atom or a tyl group, R 2 represents an alkylene group having 2 to 4 carbon atoms, and R 3 represents a hydrogen atom 乂Represents 1 to 5 alkyl groups, M! Represents a hydrogen atom, an alkali metal, an alkaline metal, ammonium or an organic amine, and 0 represents an integer of 1 to 100.)
で表わされる構成単位及びこれらの単量体と共重合可能な単量体から誘導された 構成単位 (ィ) を少量含有してなり、 全構成単位中、 式 (1)が 1 0〜95重量%、 好ましくは 50〜 80重量%、 式 (2)が 95〜 5重量%、 好ましくは 20〜 50重 量%、 構成単位 (ィ) が 0〜50重量%の割合で構成されるボリカルボン酸系分 散剤。 And a small amount of a structural unit (a) derived from a monomer copolymerizable with these monomers, wherein the formula (1) is 10 to 95% by weight in all the structural units. %, Preferably 50 to 80% by weight, formula (2) is 95 to 5% by weight, preferably 20 to 50% by weight, and the structural unit (i) is a polycarboxylic acid based on 0 to 50% by weight. Powder.
(分散剤 d 2)  (Dispersant d 2)
次に示す構造を有する分散剤は、 夏期の可使時間確保の性能に加え、 低温下で の流動性確保に優れており、 冬季における可使時問を確保する点から好ましい。 すなわち、 下記式 )〜 (7) The dispersant having the following structure is preferable because it has excellent performance in ensuring the pot life in summer and also has excellent fluidity at low temperatures, and can ensure pot life in winter. That is, the following formulas)-(7)
R5 R 5
-CH2-C--CH 2 -C-
(3) (3)
COOM2 COOM 2
CH3
Figure imgf000009_0001
CH 3
Figure imgf000009_0001
R6 R 6
+ CH2- C + CH 2 -C
(5)  (Five)
CH20^CH2CH30^-R7 CH 2 0 ^ CH 2 CH 3 0 ^ -R 7
R8 R 8
+ CH2- C + + CH 2 -C +
(6)  (6)
COO CH2CH30" R9 COO CH 2 CH 3 0 "R 9
R〗0 R〗 0
+ CH2-+ CH 2-
(7) (7)
COOR  COOR
〔式中、 R5 〜RS は R 1 と同じ、 R '°及び R 1 1は炭素数 i〜3のアルキル基を 示し、 M2 はアルカリ金属、 アル リ土類金属、 アンモニゥ厶又は有機アミンを 示し、 X1 はスルホン酸基又は式 (8) 一 0 S03M3 (8)[Wherein, R 5 to R S are the same as R 1 , R ′ ° and R 11 each represent an alkyl group having i to 3 carbon atoms, and M 2 represents an alkali metal, an alkaline earth metal, ammonium or organic. Represents an amine, and X 1 is a sulfonic acid group or a compound of the formula (8) 10 S0 3 M 3 (8)
Figure imgf000009_0002
Figure imgf000009_0002
(式中、 M3 は M2 と同じ。 ) (Where M 3 is the same as M 2 )
で表わされる有機基を示し、 pは 1〜 3 0の整数、 qは 5〜 5 0の整数を示 す。 〕 Wherein p represents an integer of 1 to 30 and q represents an integer of 5 to 50. ]
で表わされる構成単位からなり、 全構成単位中、 式 (3)か 4 5〜6 5モル%、 式 (4) が 8〜2 3モル%、 式 (5)が 3〜2 5モル%、 式 (6)が 5〜 2 5モル%、 式 (7)が 3〜 1 5モル%の割合で構成されるポリ力ルポン酸系分散剤、 Of formula (3) or 45 to 65 mol%, formula (4) is 8 to 23 mol%, formula (5) is 3 to 25 mol%, A polypyrrolic acid-based dispersant comprising Formula (6) in a proportion of 5 to 25 mol% and Formula (7) in a proportion of 3 to 15 mol%,
(分散剤 d 3) 次に示す構造を有する分散剤 d 3は、 夏期の可使時間確保の性能に加え、 材料 分離に対する抵抗性が高く、 特に厚みの大きな床の施工に好適である。 (Dispersant d 3) The dispersant d3 having the following structure has high resistance to material separation in addition to the ability to secure the pot life in summer, and is particularly suitable for construction of a thick floor.
すなわち、 下記式 (9)〜(12)  That is, the following equations (9) to (12)
R12 R 12
+ CH2- C + + CH 2 -C +
(9)  (9)
4 Picture 4
R13 R 13
- CH2-C- - 14 -CH 2 -C-- 14
(10)  (Ten)
C00X2,CH2C0H C00X 2 , CH 2 C0H
X3 X 3
RIS R IS
+ CH2-C-+ CH 2 -C-
(11) (11)
CH2S03Ms CH 2 S0 3 M s
R16 R 16
+ CH2- C + (123 + CH 2 -C + (123
C00-^CH2CH20 ^R17 C00- ^ CH 2 CH 2 0 ^ R 17
(式中、 R 12〜R 16は R 1 と同じ、 R 17は炭素数 1〜 5のアルキル基を示 し、 X2 はメチレン基、 エチレンォキシ基又はプロピレンォキシ基を示し、 X3 はアクリルアミ ド基と 2 _アクリルアミ ド— 2—メチルプロパンスルホン酸の塩 をラジカル共重合して得られる重合体ブロックを示し、 M4 及び M5 は M2 と同 じ、 rは 0〜 1 0の整数、 sは 0〜 3 0の整数を示す。 ) (In the formula, R 12 to R 16 are the same as R 1 , R 17 represents an alkyl group having 1 to 5 carbon atoms, X 2 represents a methylene group, an ethyleneoxy group or a propyleneoxy group, and X 3 represents an acryl group. Ami de group and 2 _ acrylamide - 2 salt of methyl sulfonic acid showed a polymer block obtained by radical copolymerization, M 4 and M 5 are same as the M 2, r from 0 to 1 0 And s represents an integer of 0 to 30.)
で表わされる構成単位からなり、 全構成単位中、 式 (9)が 4 0〜8 0モル%、 式 (10) 力 1〜 3 0モル%、 式 (11)が 1〜 2 0モル%、 式 (12)が 5〜 3 0モル%の割合で構成 されるポリ力ルボン酸系分散剤。 Wherein the formula (9) is 40 to 80 mol%, the formula (10) is 1 to 30 mol%, the formula (11) is 1 to 20 mol%, A polycarboxylic acid-based dispersant represented by the formula (12) at a ratio of 5 to 30 mol%.
(分散剤 d 4)  (Dispersant d 4)
次に示す構造を有する分散剤 d 4は、 高温及び低温下での流動性保持に非常に 優れており、 0 °C前後の厳しい低温度条件下でも可使時間が十分確保できる性能 を有する。  The dispersant d4 having the following structure is extremely excellent in maintaining fluidity at high and low temperatures, and has a performance capable of ensuring a sufficient pot life even under severe low temperature conditions of about 0 ° C.
すなわち、 下記式 (13)〜 9) R'8 CH3 That is, the following equations (13) to (9) R ' 8 CH 3
+ CH-C - (13)  + CH-C-(13)
H 圆 6 H 圆6
c CH3 c CH 3
- CH2-C (14) -CH 2 -C (14)
C0 -CH2CH; 0 CH: C0 -CH 2 CH ; 0 CH :
II  II
0  0
CH2-C (15) CH 2 -C (15)
CO- CH2CH20 -R1 CO- CH 2 CH 2 0 -R 1
II  II
0  0
Figure imgf000011_0001
Figure imgf000011_0001
(18) (18)
CH20+CH2CH20 ½-R21 CH 2 0 + CH 2 CH 2 0 ½-R 21
R22 R 22
CH2-C (19)
Figure imgf000011_0002
CH 2 -C (19)
Figure imgf000011_0002
(式中、 R1S、 R2\ R21及び R22は R1 に同じ、 RISはフヱニル基又はべンジ ル基を示し、 M6 、 M7 及び M8 は M2 と同じ、 tは 1 0〜30の整数、 uは 7 〜50の整数、 Vは 1〜20の整数を示す。 ) (Wherein, R 1S , R 2 \ R 21 and R 22 are the same as R 1 , R IS is a phenyl group or a benzyl group, M 6 , M 7 and M 8 are the same as M 2, and t is 10 is an integer of 30 to 30, u is an integer of 7 to 50, and V is an integer of 1 to 20.)
で表わされる構成単位からなり、 全構成単位中、 式 (13) +式 (14)が 2 5〜 4 5重量%、 好ましくは 3 0〜 4 0重量%、 式 (14)+式 (15)が 2 5〜 5 0重量%、 好ましくは 3 0〜 4 5重量%、 Consisting of the structural units represented by Formula (13) + Formula (14) is 25 to 45% by weight, preferably 30 to 40% by weight, Formula (14) + Formula (15) is 25 to 50% by weight, preferably 30% ~ 45% by weight,
式 (16)+式 (17)が 5〜 2 5重量%、 好ましくは 5〜 2 0重量%、 及び Formula (16) + Formula (17) is 5 to 25% by weight, preferably 5 to 20% by weight, and
式 (18)+式 (19)が残部、 かつ、 各々重量比で Equation (18) + Equation (19) is the remainder, and each is a weight ratio
式 (14)/式 (13が 1 5/8 5-4 0 / 6 0 , 好ましくは 1 5Z8 5〜3 5Z6 5、 式 (15)/式 (14)が 6 4/3 6〜85Z1 5、 好ましくは 7 θΖ30〜8 5/ 1 5、 式 (17)Z式 (16)が 25/75〜 75/25、 好ましくは 4 0/6 0〜75Z25の割 合で構成されるポリカルボン酸系分散剤。 Formula (14) / Formula (13 is 15/8 / 5-4 0/60, preferably 15Z8 5-35Z65, Formula (15) / Formula (14) is 64/3 6-85Z15, Preferably, 7θΖ30 to 85/15, a polycarboxylic acid dispersion comprising the formula (17) and the formula (16) in a ratio of 25/75 to 75/25, preferably 40/60 to 75Z25. Agent.
上述のポリカルボン酸系分散剤としては、 その数平均分子量が 2 0 0 0〜2 0 0 0 0 ( G P C法、 プルラン換算) のものが好ましく、 例えばァクアロック P M - 0 0 6 (日本触媒化学工業社製) 、 ポゾリス NP— 2 0 R、 レオビルド S P— 8 N (共に日曹マスタ一ビルダース社製) 、 7— 7 5 0 0 (日本ゼオン社製) 、 OF- 8 (小野田社製) 、 HP - 8 (竹本油脂製) 等の市販品が挙げられる。 また、 ポリカルボン酸系分散剤に加えて、 メラミン系分散剤、 ナフ夕レン系分 散剤、 リグニン系分散剤等を単独又は 2種以上添加混合して使用することができ る。 ポリカルボン酸系分散剤の配合量としては、 セメ ン ト、 無水石膏及び流動性 改善材の合計量 1 0 0重量部に対して 0. 1〜3重量部とするのが好ましく、 特 に 0. 5〜 1. 5重量部がより好ま'しい。 0. 1重量部未満では分散効果が劣り、 3重量部を超えて添加しても凝結時問が延びるのみで分散効果の向上は望めない。 本発明に用いられる水の配合量としては、 社団法人曰本建築学会の J AS S 1 5M- 1 0 3 「セルフレベリング材の品質基準」 に定められたフロー値が 1 9 cm以上となる量を使用することが好ましく、 具体的には、 基材 1 0 0重量部に対 し、 3 0〜8 0重量部、 特に 3 4〜7 0重量部とするのが好ましい。  As the above-mentioned polycarboxylic acid-based dispersant, those having a number average molecular weight of 2000 to 2000 (GPC method, in terms of pullulan) are preferable. For example, Aquaqual PM-06 (Nippon Shokubai Chemical Co., Ltd.) Pozoris NP-20R, Leobuild SP-8N (both manufactured by Nisso Master I-Builders), 7-750 (manufactured by Zeon Corporation), OF-8 (manufactured by Onoda), HP -8 (Takemoto Yushi) and other commercial products. Further, in addition to the polycarboxylic acid-based dispersant, a melamine-based dispersant, a naphthylene-based dispersant, a lignin-based dispersant, or the like can be used alone or as a mixture of two or more kinds. The blending amount of the polycarboxylic acid-based dispersant is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of cement, anhydrous gypsum and the fluidity improving material, and particularly preferably 0 to 3 parts by weight. 5 to 1.5 parts by weight is more preferable. If the amount is less than 0.1 part by weight, the dispersing effect is inferior. If the amount is more than 3 parts by weight, the dispersing effect is not improved because only the setting time is extended. The amount of water used in the present invention is such that the flow value specified in JAS S 15M-103 “Self-leveling material quality standards” of the Architectural Institute of Japan is 19 cm or more. It is preferable to use 30 to 80 parts by weight, more preferably 34 to 70 parts by weight, based on 100 parts by weight of the base material.
本発明のセメ ン ト系セルフレべリ ング性水性組成物は、 上記必須成分の他、 必 要に応じ、 無水石膏の凝結促進剤、 収縮低減剤、 消泡剤、 増粘剤、 骨材などを使 用することができる。  The cement-based self-leveling aqueous composition of the present invention may further comprise, as necessary, a setting accelerator for anhydrous gypsum, a shrinkage reducing agent, an antifoaming agent, a thickener, an aggregate, etc., in addition to the above essential components. Can be used.
無水石膏の凝結促進剤としては、 硫酸のアル力リ金属塩及びアル力リ土類金属 塩がある。 なかでも硫酸力リウムが好ましい。 無水石膏の凝結促進剤の配合量は、 セメ ン ト、 無水石膏及び流動性改善材の合計量 1 0 0重量部に対し、 0. 0 5〜 1重量部とするのが好ましく、 特に 0. 2〜 1重量部とするのが好ましい。 Examples of setting accelerators for anhydrous gypsum include alkali metal salts and sulfur earth metal salts of sulfuric acid. Of these, potassium sulfate is preferred. The setting amount of the setting accelerator for anhydrous gypsum is 0.05 to 5 parts by weight based on 100 parts by weight of cement, anhydrous gypsum and flow improver. The amount is preferably 1 part by weight, particularly preferably 0.2 to 1 part by weight.
収縮低減剤としては、 ォキシプロピレン単位の繰り返し数か 2〜 1 2であるポ リオキシプロピレングリコール;ォキシプロピレン単位の繰り返し数が 2〜 1 2 であって、 ォキシエチレン単位の繰り返し数が 2〜 6であるポリォキシプロピレ ンポリオキシエチレングリコール;ォキシプ αピレン単位の繰り返し数が 2 〜 1 2であり、 ォキシエチレン単位の繰り返し数が 2〜6である、 炭素数 1〜6 のアルコキシポリオキシプロピレンポリオキシエチレンダリコールが挙げられる c このうち、 ォキシプロピレン単位の繰り返し数が 2〜 1 2であるポリオキシプロ ピレングリコールが好ましい。 収縮低減剤の配合量は、 セメン ト、 無水石膏及び 流動性改善材の合計量 1 0 0重量部に対し、 通常 0. 2〜6重量部、 特に 0. 5 〜 2重量部とするのが乾燥による収縮を低減することから好ましい。 Examples of the shrinkage reducing agent include polyoxypropylene glycol having the number of repeating propylene units or 2 to 12; the number of repeating oxypropylene units is 2 to 12, and the number of repeating oxyethylene units is 2 to 12. A polyoxypropylenepolyoxyethylene glycol having 6; an alkoxypolyoxy group having 1 to 6 carbon atoms, wherein the number of repeating α-pyrene units is 2 to 12, and the number of repeating oxyethylene units is 2 to 6, of this c propylene polyoxyethylene da recall include, Poriokishipuro propylene glycol are preferred repetition number of O carboxymethyl propylene units is from 2 to 1 2. The compounding amount of the shrinkage reducing agent is usually 0.2 to 6 parts by weight, especially 0.5 to 2 parts by weight, based on 100 parts by weight of cement, anhydrous gypsum and flowability improving material. It is preferable because shrinkage due to drying is reduced.
消泡剤としては、 シリコーン系界面活性剤、 非イオン系界面活性剤が举げられ る。 このうち、 非イオン系界面活性剤が好ましい。 消泡剤の配合量は、 セメン ト、 無水石膏及び流動性改善材の合計量 1 0 0重量部に対して、 0. 0 1〜0. 6重 量部とするのか好ましく、 特に 0. 0 5〜0. 4重量部とするのか好ましい。 増粘剤としては、 特に制限されず、 メチルセルロース、 ヒ ドロキンェチルセル ロース、 カルポキシメチルセルロースが挙げられる。 このうち、 メチルセルロー スが好ましい。 かかる増粘剤の使用により硬化体の乾燥収縮に対する抵抗性が向 上する。 増粘剤の配合量は、 セメント、 無水石膏、 流動性改善材及び骨材の合計 量 1 0 0重量部に対し、 0. 0 1 〜 0. 6重量部とするのが好ましく、 特に 0. 0 5〜0. 4重量部とするのが製造時に材料分離を低減することから好まし い。  Examples of the antifoaming agent include a silicone-based surfactant and a nonionic surfactant. Of these, nonionic surfactants are preferred. The compounding amount of the antifoaming agent is preferably 0.01 to 0.6 parts by weight, more preferably 0.01 part by weight, based on 100 parts by weight of the total of cement, anhydrous gypsum and the flowability improving material. It is preferably from 5 to 0.4 parts by weight. The thickener is not particularly restricted but includes methylcellulose, hydroquinethyl cellulose and carboxymethylcellulose. Of these, methyl cellulose is preferred. Use of such a thickener improves the resistance of the cured product to drying shrinkage. The compounding amount of the thickener is preferably 0.01 to 0.6 parts by weight, more preferably 0.1 to 0.6 parts by weight, based on 100 parts by weight of cement, anhydrous gypsum, flowability improving material and aggregate. It is preferable to use 0.5 to 0.4 parts by weight from the viewpoint of reducing material separation during production.
骨材としては、 特に制限されないか、 川砂、 海砂、 陸砂、 砕砂、 人工骨材等が 挙げられる。 かかる骨材の粒度としては、 セルフレベリング性水性組成物の打設 厚さにより異なるが、 一般には 5細以下で、 粗粒率か 1. 5〜3. 0のものが好 ましい。 骨材は単独又は 2種以上を混合して使用することができる。 また、 骨材 の配合量は、 セメント、 無水石耷及び流動性改善材の合計量 1 0 0重量部に対し、 6 0〜 1 5 0重量部とするのが好ましく、 7 5〜 1 2 5重量部とするのが更に好 ましい。 骨材が 6 0重量部以下では乾燥収縮が大きくなり、 また、 1 5 0重量部 を超えると適性な流動性が得られなレ、。 実施例 Examples of the aggregate include, but are not limited to, river sand, sea sand, land sand, crushed sand, and artificial aggregate. The particle size of the aggregate varies depending on the thickness of the self-leveling aqueous composition, but generally, it is preferably 5 fine or less and the coarse particle ratio is 1.5 to 3.0. Aggregates can be used alone or in combination of two or more. The amount of the aggregate is preferably 60 to 150 parts by weight, preferably 75 to 125 parts by weight, based on 100 parts by weight of the total of cement, anhydrous stone, and flowability improving material. It is more preferable to use parts by weight. When the amount of aggregate is less than 60 parts by weight, the drying shrinkage becomes large, and If it exceeds, appropriate fluidity cannot be obtained. Example
以下に実施例を挙げて本発明を具体的に説明するが、 本発明はこれらの実施例 に限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
なお、 実施例及び比較例において使用した材料は次に示す通りである。  The materials used in the examples and comparative examples are as follows.
セメント :普通ポルトランドセメン卜 (ブレーン比表面積 2850 cm2 /g) 無水石膏:天然 I型無水石膏 (ブレーン比表面積 2520 cm2 Zg) 流動性改善材:表 1 Cement: Normal Portland cement (Brain specific surface area 2850 cm 2 / g) Anhydrite: Natural type I anhydrous gypsum (Brain specific surface 2520 cm 2 Zg) Flowability improving material: Table 1
但し、 表 1中、 凝結の始発時間 (h) は、 JIS R5201 「セメン トの物理試験方法」 において、 セメントの代わりに流動性改善 材と水酸化カルシウム試薬の混合物 (90Z1 0重量比) を用 I、た以外は同様の方法に従し、求めた。  However, in Table 1, the initial setting time (h) of the setting is based on JIS R5201 “Physical test method for cement” using a mixture (90Z10 weight ratio) of a fluidity improver and calcium hydroxide reagent instead of cement. Except for I and T, the same method was used.
分散剤: ポリ力ルポン酸系分散剤 d 1〜 d 4 :表 2  Dispersant: Poly-L-uronic acid-based dispersant d 1 to d 4: Table 2
水:水道水  Water: tap water
増粘剤: メチルセルロース  Thickener: methylcellulose
収縮低減剂: ポリオキシプロピレングリコール (ォキシプロピレンの繰り返し 数 7)  Shrinkage reduction: Polyoxypropylene glycol (oxypropylene repeat number 7)
骨剤: FM= 2. 1の川砂 Aggregate: FM = 2.1 river sand
表 1 table 1
Figure imgf000015_0001
Figure imgf000015_0001
*平均粒径は光学、顕微鏡又は電 顕微鏡観察によった。  * The average particle size was determined by optical, microscopic or electron microscopic observation.
表 1 より石炭灰、 フライアッシュ、 珪石粉末、 石灰石粉末、 砕石粉末、 二水石 膏、 アルミナ粉末、 シリカフユ一厶は水和初期段階において、 水硬性を示さず、 スラグ、 半石石膏、 普通セメントは水硬性を示す。 ただし、 シリカフュームは、 潜在水硬性は好ましい範囲であるが粒径が好ましくない範囲である。 From Table 1, coal ash, fly ash, silica stone powder, limestone powder, crushed stone powder, dihydrate gypsum, alumina powder, and silica powder do not show hydraulicity at the initial stage of hydration, and slag, hemi-gypsum, and ordinary cement Shows hydraulic properties. However, silica fume has a preferable range of latent hydraulic property but an unfavorable range of particle size.
表 2 Table 2
Figure imgf000016_0001
Figure imgf000016_0001
*は重量割合を示す  * Indicates weight ratio
実施例 1〜 2 0、 比較例 1〜 1 2 Examples 1-20, Comparative Examples 1-12
表 3及び表 4に示す配合割合の全材料をホバートミキサーを用い、 0で、 5 °C、 2 0で、 3 0 °Cで 3分間混練し、 セルフレべリ ング性水性組成物を製造した。 こ れらセルフレべリ ング性水性組成物について、 以下に示す評価を実施し、 その結 果を表 3及び表 4に示した。  Using a Hobart mixer, all materials having the mixing ratios shown in Tables 3 and 4 were kneaded at 0, 5 ° C, 20 and 30 ° C for 3 minutes to produce a self-leveling aqueous composition. . The following evaluations were carried out on these self-leveling aqueous compositions, and the results are shown in Tables 3 and 4.
( 1 ) 流動性  (1) Liquidity
社団法人日本建築学会 JASS15M- 103 (セルフレベリ ング材の品質基準) に規定 されるフロー値を測定した。 測定は 2 0 °Cでは製造直後と、 製造後 3時間及び 6 時間、 3 0 °C、 5 °C、 0 °Cでは製造後 6時間の時点で、 練り匙にて約 1分間練り 混ぜた後、 フロー値を測定した。 2 1 0以上の値を示すものを◎、 1 9 0〜 2 0 9の値を示すものを〇、 1 9 0未満のものを Xとした。 ( 2 ) 凝結時間 The flow value specified in the Architectural Institute of Japan JASS15M-103 (quality standard of self-leveling material) was measured. The measurement was performed immediately after production at 20 ° C, and at 3 hours and 6 hours after production, and at 30 ° C, 5 ° C, and 0 ° C at 6 hours after production, and kneaded for about 1 minute with a kneading spoon. Thereafter, the flow value was measured. ◎ indicates a value of 210 or more, Δ indicates a value of 190 to 209, and X indicates a value of less than 190. (2) Setting time
セメントの物理試験方法 (J【S R 5201) に従って 2 0°Cでの終結時間を測定し た。 1 2時間以下のものを◎、 1 2〜 1 4時間のものを〇、 1 4時間を超えるも のを Xとした。  The termination time at 20 ° C was measured according to the physical test method of cement (J [SR 5201]). ◎ indicates less than 12 hours, 〇 indicates 12 to 14 hours, and X indicates more than 14 hours.
( 3) 乾燥収縮と水中膨張  (3) Dry shrinkage and underwater expansion
コンパレータ法により 2 0 、 6 0 %RH、 及び 2 0°C、 水中の環境下に静置 した試験片 (4 X 4 X 1 6cm) の長さ変化を測定した。 2 8日の乾燥収縮か、 一 7 X 1 0— 6未満のものを ©、 一 Ί - 8 X 1 0 -6のものを〇、 — 8 X 1 0 -6を超 えるものを Xとした。 水中膨張は 1年で 2 0 X 1 (Ke未満のものを◎、 2 0 x 1 0一6〜 3 0 X 1 0— 6のものを〇、 3 0 X 1 0—6を超えるものを Xとした。 2 0, 6 0% RH, and 2 0 ° C, length was measured change in standing test piece under a water environment (4 X 4 X 1 6cm) by the comparator method. Drying shrinkage of 2 08, © those Fractions of 7 X 1 0- 6, one Ί - 8 X 1 0 - a 〇 ones 6, - 8 X 1 0 - 6 ultra obtain what was the X . Water expansion a of less than 2 0 X 1 (K e at 1 year ◎, 2 0 x 1 0 one 6-3 0 〇 those X 1 0- 6, those of more than 3 0 X 1 0- 6 X
( 4 ) 圧縮強度  (4) Compressive strength
セメ ン卜の物理試験方法 (J1S R 5201) に従って測定した。 ただし、 2 0°C気 中養生とした。 2 8日で 2 5MPa以上のものを◎、 2 0〜2 5MPa のものを〇、 2 0 MPa未満のものを Xとした。  It was measured according to the cement physical test method (J1S R 5201). However, air curing was performed at 20 ° C. Those with 25 MPa or more in 28 days were rated as ◎, those with 20 to 25 MPa as Δ, and those with less than 20 MPa as X.
( 5 ) 材料分離  (5) Material separation
流動性の経時変化を则定するため、 練り匙で練り返す際の骨材の分離状態を調 ベた。 骨材の分離が全くなく均一であるものを◎、 極少量骨材の沈降が認められ るものを〇、 骨材が多量に沈降し固まっているものを Xとした。  In order to measure the change over time in fluidity, the state of separation of the aggregate when kneading with a kneading spoon was examined.も の indicates that the aggregate was uniform without any separation of the aggregate, 〇 indicates that a very small amount of aggregate had settled, and X indicates that the aggregate had settled in large amounts.
判定はすべての評価項目がすべて ©のものを◎、 ©と〇からなるものを〇、 一 つでも Xがあるものを Xとした。 Judgment was evaluated as ◎ when all the evaluation items were ©, Δ when the evaluation consisted of © and 〇, and X when there was at least one X.
Figure imgf000018_0001
Figure imgf000018_0001
表 4 Table 4
Να 配 量 流 動 性 缩 水中 圧麟度 判 定 Να metering flowability 缩 Judgment of underwater penetration
C G F" D" V H S ϊ§ 。c 20 20 20 30 5 0 20°C 10 c (28d 106 MPaCGF "D" VHS ϊ§. c 20 20 20 30 5 0 20 ° C 10 c ( 28d 10 6 MPa
- (™) m n n  -(™) m n n
hr 20 C60¾ 20C 1年 28o日  hr 20 C60¾ 20C 1 year 28oday
B糊 hr 0 3 6 6 6 6  B glue hr 0 3 6 6 6 6
1 76 2 FAO.01 22 d4 0.7 0.2 48 100 225 224 219 209 222 220 11.4 -10.1 3 29 ◎ X 比 2 60 22 FAO.01 18 d4 0.7 0.2 48 100 225 223 216 206 218 210 12.9 -6.0 60 26 ◎ X  1 76 2 FAO.01 22 d4 0.7 0.2 48 100 225 224 219 209 222 220 11.4 -10.1 3 29 ◎ X ratio 2 60 22 FAO.01 18 d4 0.7 0.2 48 100 225 223 216 206 218 210 12.9 -6.0 60 26 ◎ X
3 70 10 SP0.2 20 d4 0.7 0.2 55 100 210 190 176 X X 3 70 10 SP0.2 20 d4 0.7 0.2 55 100 210 190 176 X X
4 70 10 SF0.2//B 20 (J4 0.7 0.2 55 100 212 205 185 ◎ X 校 5 70 10 SI agO.01 20 d4 0.7 0.2 48 100 225 195 159 © X 4 70 10 SF0.2 // B 20 (J4 0.7 0.2 55 100 212 205 185 ◎ School X 5 70 10 SI agO.01 20 d4 0.7 0.2 48 100 225 195 159 © X
6 70 10 h0.02 20 d4 0.7 0.2 48 100 225 170 X 6 70 10 h 0.02 20 d4 0.7 0.2 48 100 225 170 X
7 92 4 FAO.01 4 d4 0.7 0.2 48 100 225 192 181 ◎ X 例 8 87 11 FAO.01 2 d4 0.7 0.2 48 LOO 218 190 162 X 7 92 4 FAO.01 4 d4 0.7 0.2 48 100 225 192 181 ◎ X Example 8 87 11 FAO.01 2 d4 0.7 0.2 48 LOO 218 190 162 X
9 50 8 FAO.01 42 d4 0.7 0.2 48 100 230 228 225 17 ◎ X 9 50 8 FAO.01 42 d4 0.7 0.2 48 100 230 228 225 17 ◎ X
10 70 10 FAO.01 20 0.7 0.2 48 100 225 200 160 ® X10 70 10 FAO.01 20 0.7 0.2 48 100 225 200 160 ® X
11 70 10 FAO.01 20 d4 0.07 0.2 53 100 212 185 X X11 70 10 FAO.01 20 d4 0.07 0.2 53 100 212 185 X X
12 70 10 FAO.01 20 d4 3.5 0.2 48 100 230 230 228 225 231 230 20.9 X X 表中、 c:セメント、 G: «*石 F: isiw生改 w D:分 ¾¾ιΐ, V: m. H: is i w:水、 s:骨剤であり、 r一 Jは 淀 。 12 70 10 FAO.01 20 d4 3.5 0.2 48 100 230 230 228 225 231 230 20.9 XX In the table, c: cement, G: «* stone F: isiw raw modified w D: min ¾¾ιΐ, V: m. H: is iw: Water, s: Bone, r-J is Yodo.
1) ffiS ½S (ran)、添 J¾fiの) IRて^:す。 ffiSの略号は衷 1のものを示す。  1) ffiS ½S (ran), attached J¾fi) IR. The abbreviation of ffiS indicates one.
2 ) ®Sと添 を示す。 M:メラミン »«  2) ® Indicates S and index. M: Melamine »«
3) D V H W Sは C + G + Fを 10 OfiS部とした の SftSfio 3) DVHWS uses C + G + F as 10 OfiS section SftSfio
表 3及び表 4より、 セメント量について; From Table 3 and Table 4, the amount of cement;
実施例 1〜7、 比較例 7及び 9の強度と乾燥収縮及び流動性の結果より、 セメ ント量が 5 5重量%未満では強度が不足 (比較例 9 ) し、 9 0重量%を超えると 可使時間が短くなり (比較例 7 ) 、 5 5〜9 0重量%では強度、 乾燥収縮ともに 適切 (実施例 1〜7 ) である。  From the results of the strength, drying shrinkage, and fluidity of Examples 1 to 7 and Comparative Examples 7 and 9, the strength was insufficient when the amount of cement was less than 55% by weight (Comparative Example 9), and when the amount of cement exceeded 90% by weight. The pot life becomes shorter (Comparative Example 7), and at 55 to 90% by weight, both strength and dry shrinkage are appropriate (Examples 1 to 7).
無水石膏量について: About the amount of anhydrous gypsum:
実施例 1〜7、 比較例 1及び 2の乾燥収縮と水中膨張の結果より、 無水石 膏量がセメン ト重量に対し 5重量%未満では乾燥収縮が過大となり (比較例 1 ) 、 2 0重量%を超えると水中膨張が非常に大きくなる (比較例 2 ) ことから 5 〜2 0重量%が適している (実施例 1〜7 ) 。  From the results of drying shrinkage and swelling in water of Examples 1 to 7 and Comparative Examples 1 and 2, when the amount of anhydrous gypsum is less than 5% by weight with respect to the weight of cement, the drying shrinkage becomes excessive (Comparative Example 1) and 20% by weight. %, The swelling in water becomes very large (Comparative Example 2), so that 5 to 20% by weight is suitable (Examples 1 to 7).
流動性改善材について: About fluidity improving material:
表 3及び表 4の実施例し 8〜 1 4、 比較例 5及び 6の流動性特性から、 石炭 、 フライアッシュ、 珪石粉末、 石灰石粉末、 砕石粉末、 無水石膏、 二水石膏及 びアルミナ粉末の適性評価において水硬性がな 、ことが示されたものは、 流動性 改善材として適する。 また、 潜在水硬性を持つスラグ、 水硬性を有する半水石膏 など流動性改善材としての適性評価試験で不適格となったものは (比較例 5 〜6 ) 、 粘度上昇が大きく、 可使時間が十分取れないため流動性改善材としては 適さない。  From the fluidity characteristics of Examples 8 to 14 in Tables 3 and 4 and Comparative Examples 5 and 6, it was found that coal, fly ash, silica powder, limestone powder, crushed stone powder, anhydrous gypsum, gypsum and gypsum Those showing no hydraulic property in the suitability evaluation are suitable as fluidity improving materials. In addition, slags with latent hydraulic properties, hemihydrate gypsum with hydraulic properties, etc., which were disqualified in the suitability evaluation test as a fluidity improving material (Comparative Examples 5 and 6), showed a large increase in viscosity and a pot life. It is not suitable as a fluidity improving material because of insufficient removal.
実施例し 8 - 1 4 , 比較例 3及び 4の流動性特性と材料分離特性より、 平均 粒径か 0 . 1關を超える場合には初期流動性を確保するため多量の水を必要 とし、 材料分離に問題があり (比較例 3 ) 、 また、 流動性改善材の平均粒径 力 0 . 5 m を下回るような非常に細かいものを多量に添加した場合は、 適性評 価試験では適格となっても、 初期流動性を確保するため多量の水を必要とし、 か つ混練後のゆるやかな吸水のためと思われるが流動性の低下が早まる (比較 例 4 ) 。 平均粒径か 0 . 1隱以下 0 . 5 /m以上である無機質粉末が適している (実施例 1、 8〜 1 4 ) 。  From the fluidity characteristics and material separation characteristics of Example 14 and Comparative Examples 3 and 4, when the average particle size exceeds 0.1, a large amount of water is required to secure the initial fluidity, If there is a problem in material separation (Comparative Example 3), and a large amount of very small particles having a mean particle size of less than 0.5 m is added to the fluidity improving material, it is qualified in the qualification test. Even so, a large amount of water is required to secure the initial fluidity, and it is thought that this is due to the gradual water absorption after kneading, but the fluidity declines quickly (Comparative Example 4). Inorganic powders having an average particle size of not more than 0.1 and not more than 0.5 / m are suitable (Examples 1, 8 to 14).
実施例 1〜 7、 比較例 8及び 9の流動性特性及び強度特性より、 流動性改善材 の添加割合はセメント重量に対し 5重量%未満では流動性の低下が大きく改善効 果が不十分であり (比較例 8 ) 、 また 4 0重量%を超える場合は強度が低くなり (比較例 9 ) 、 5〜 4 0重量%が適している (実施例 1〜 7 ) 。 According to the fluidity characteristics and strength characteristics of Examples 1 to 7 and Comparative Examples 8 and 9, when the addition ratio of the fluidity improving material is less than 5% by weight with respect to the cement weight, the fluidity is greatly reduced and the effect of improvement is insufficient. Yes (Comparative Example 8), and if it exceeds 40% by weight, the strength is low. (Comparative Example 9), 5 to 40% by weight is suitable (Examples 1 to 7).
分散性について: About dispersibility:
実施例し 1 6〜1 8、 比較例 1 0の流動性特性より、 分散剤としてはポリ力 ルボン酸系分散剤が適している。 より詳細には、 ポリカルボン酸系以外の分散剤 を使用した場合 (比較例 1 0) は初期流動性は得られる力 可使時間を確保でき ない。 これに対し、 分散剤 (d 1 ) は可使時間を 6時間にまで延ばすことが出来、 高温下でも優れた可使時間特性を示す (実施例 1 6) 。 分散剤 (d 2) は低温下 でも優れた可使時間特性を示し (実施例 1 7) 、 分散剤 (d 3) は材料分離特性 に優れ (実施例 1 8) 、 分散剤 (d 4) はすべての温度領域で可使時間特性に特 に優れる (実施例 1 ) 。 更に、 ポリカルボン酸系分散剤に加え他の成分系の分散 剤を併用した場合 (実施例 1 5) にも、 組み合わせにより優れた諸性能を示す。 添加量については、 実施例し 1 9及び 20、 及び比較例 1 1及び 1 2から、 過少添加では初期流動性を得るための水量が増加するため材料分離が生じ (比較 例 1 1 ) 、 過多添加では凝結時間が長くなるため (比較例 1 2) 、 適切なポリ力 ルボン酸系分散剤添加量はセメント、 無水石膏及び流動性改善材の合計重量に対 し 0. 1〜3重量% (実施例し 1 9及び 2 0) である。 産業上の利用可能性  From the fluidity characteristics of Examples 16 to 18 and Comparative Example 10, a polycarboxylic acid-based dispersant is suitable as a dispersant. More specifically, when a dispersant other than a polycarboxylic acid is used (Comparative Example 10), a sufficient pot life cannot be secured to obtain the initial fluidity. On the other hand, the dispersant (d 1) can extend the pot life to 6 hours and shows excellent pot life characteristics even at high temperatures (Example 16). Dispersant (d 2) shows excellent pot life characteristics even at low temperatures (Example 17), dispersant (d 3) has excellent material separation properties (Example 18), dispersant (d 4) Is particularly excellent in the pot life characteristic in all temperature ranges (Example 1). Furthermore, even when a dispersant of another component is used in combination with the polycarboxylic acid-based dispersant (Example 15), excellent performance is exhibited by the combination. As for the amount of addition, from Examples 19 and 20, and Comparative Examples 11 and 12, when the amount of addition is too small, the amount of water for obtaining the initial fluidity increases, so that material separation occurs (Comparative Example 11). Since the setting time becomes longer with the addition (Comparative Example 12), the appropriate amount of the polycarboxylic acid-based dispersant added is 0.1 to 3% by weight (based on the total weight of cement, anhydrous gypsum and flow improver). Examples are 19 and 20). Industrial applicability
本発明のセメン卜系セルフレペリング性水性組成物は製造後、 長時間にわたり 施工作業が可能な流動性を維持し、 硬化後は十分な強度を保持し、 かつ長期間に わたる乾燥状態又は湿潤伏態にぉレ、ても優れた寸法安定性を有しており、 品質面、 施工面のいずれの点においても非常に優れた床材である。  After production, the cement-based self-pelling aqueous composition of the present invention maintains fluidity that allows work for a long time after production, maintains sufficient strength after curing, and is dried or wet for a long period of time. It has excellent dimensional stability even if it is in a flat state, and is a very excellent flooring material in both aspects of quality and construction.

Claims

請 求 の 範 囲 The scope of the claims
1 . セメント、 無水石膏、 流動性改善材、 ポリカルボン酸系分散剤及び水を含有 するセメント系セルフレベリ ング性水性組成物におし、て、 無水石膏 zセメント1. In a cement-based self-leveling aqueous composition containing cement, anhydrous gypsum, flow improver, polycarboxylic acid-based dispersant and water, anhydrous gypsum z cement
(重量比) が 5 / 9 5以上 2 0 Z 8 0未満であり、 流動性改善材が、 0 . 5 Ι1 Ά〜0 . 1謹の平均粒径を有し、 セメント水和初期段階において水硬性又は 潜在水硬性を有さない無機質粉末からなり、 流動性改善材 Ζセメ ン ト (重量 比) が 5 / 9 5〜 4 0 / 6 0であり、 ポリカルボン酸系分散剤をセメン卜、 無 水石育及び流動性改善材の合計量 1 0 0重量部に対し 0 . 1〜 3重量部含有す ることを特徴とするセメン ト系セルフレベリ ング性水性組成物。 (Weight ratio) is 5/95 or more and less than 20 Z80, and the fluidity improving material has an average particle size of 0.5Ι1Ά0.1. It is composed of an inorganic powder having no hardness or latent hydraulic property, and has a flowability improving material Ζ cement (weight ratio) of 5/95 to 40/60, and a cement containing a polycarboxylic acid dispersant. A cement-based self-leveling aqueous composition characterized by containing 0.1 to 3 parts by weight based on 100 parts by weight of a total of water-free stone growing and fluidity improving materials.
2. 上記無機質粉末が、 石炭灰、 フライアッシュ、 珪石粉末、 石灰石粉末及び砕 石粉末から選ばれる 1種又は 2種以上である請求項 1記載のセメント系セルフ レペリング性水性組成物。  2. The cement-based self-repelling aqueous composition according to claim 1, wherein the inorganic powder is at least one selected from coal ash, fly ash, silica stone powder, limestone powder, and crushed stone powder.
3 . セメン トの配合量が、 組成物中 5 5〜 9 0重量%である請求項 1又は 2記載 のセメント系セルフレベリ ング性水性組成物。  3. The cement-based self-leveling aqueous composition according to claim 1, wherein the amount of the cement is 55 to 90% by weight in the composition.
PCT/JP1996/001207 1996-05-02 1996-05-02 Cement-based self-leveling aqueous composition WO1997042133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001207 WO1997042133A1 (en) 1996-05-02 1996-05-02 Cement-based self-leveling aqueous composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001207 WO1997042133A1 (en) 1996-05-02 1996-05-02 Cement-based self-leveling aqueous composition

Publications (1)

Publication Number Publication Date
WO1997042133A1 true WO1997042133A1 (en) 1997-11-13

Family

ID=14153262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001207 WO1997042133A1 (en) 1996-05-02 1996-05-02 Cement-based self-leveling aqueous composition

Country Status (1)

Country Link
WO (1) WO1997042133A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129052A (en) * 1986-11-15 1988-06-01 株式会社トクヤマ Cementitious self-leveling material composition
JPS641425B2 (en) * 1983-04-28 1989-01-11 Ube Kosan Kk
JPH0153226B2 (en) * 1982-06-30 1989-11-13 Denki Kagaku Kogyo Kk
JPH07267704A (en) * 1994-03-31 1995-10-17 Chichibu Onoda Cement Corp Self-leveling aqueous composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0153226B2 (en) * 1982-06-30 1989-11-13 Denki Kagaku Kogyo Kk
JPS641425B2 (en) * 1983-04-28 1989-01-11 Ube Kosan Kk
JPS63129052A (en) * 1986-11-15 1988-06-01 株式会社トクヤマ Cementitious self-leveling material composition
JPH07267704A (en) * 1994-03-31 1995-10-17 Chichibu Onoda Cement Corp Self-leveling aqueous composition

Similar Documents

Publication Publication Date Title
CA2625836C (en) Slump retention in cementitious compositions
JP5130205B2 (en) Polyether-containing copolymer
KR20010034109A (en) Process for producing dispersant for powdery hydraulic composition
WO1995011204A1 (en) Self-leveling water-base composition
JP2001294466A (en) Admixture for hydraulic composition and hydraulic composition
JP2002518283A (en) Air entrainment with polyoxyalkylene copolymers for concrete subjected to treatment with oxyalkylene SRA
JP4014240B2 (en) Improved dry shrink cement mixture
KR101610146B1 (en) Admixtures composition and mortar and concrete composition for revealing high early strength including the same
JP2022502328A (en) Activation of blast furnace slag fine powder
US20240018046A1 (en) Early strength slag-based cementitious binder
KR20030036392A (en) Crack retardant mixture made from flyash and its application to concrete
JP4772004B2 (en) One-component cement additive composition and cement composition having both shrinkage reducing function and water reducing function
JPH11349367A (en) Production of high-durability cement composition
JP2002047051A (en) Composition having self-leveling ability
JP3135781B2 (en) Self-leveling aqueous composition
JP3500877B2 (en) Cement composition with reduced autogenous shrinkage and method for reducing autogenous shrinkage of cement
WO1997042133A1 (en) Cement-based self-leveling aqueous composition
JPH0558696A (en) Additive for cement and production of concrete using the same
JP4709359B2 (en) Hydraulic composition
JPS63129052A (en) Cementitious self-leveling material composition
JP7158825B2 (en) cement composition
JP2004091259A (en) Cement blend and method for using the same
JPH0535100B2 (en)
JPS59102853A (en) Admixing agent for hydraulic cement blend
JPH072557A (en) Concrete composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CZ JP KR NO PL TR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase