WO1997039245A1 - Device for moving spool of control valve - Google Patents

Device for moving spool of control valve Download PDF

Info

Publication number
WO1997039245A1
WO1997039245A1 PCT/JP1997/001202 JP9701202W WO9739245A1 WO 1997039245 A1 WO1997039245 A1 WO 1997039245A1 JP 9701202 W JP9701202 W JP 9701202W WO 9739245 A1 WO9739245 A1 WO 9739245A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
spool
chamber
pressure
pressure reducing
Prior art date
Application number
PCT/JP1997/001202
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Hori
Taketoshi Sakamoto
Naoki Ishizaki
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997039245A1 publication Critical patent/WO1997039245A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves

Definitions

  • the present invention relates to a device for moving a spool of an operation valve for supplying hydraulic oil from a hydraulic source to a hydraulic actuator to a neutral position, a first position, and a second position.
  • a spool As an operation valve for supplying the hydraulic oil from the hydraulic source to the hydraulic actuator, a spool is slidably formed in a spool hole of the valve body, and the spool is moved to a neutral position, a first position, and a second position. It is known to supply hydraulic oil from a hydraulic power source to a hydraulic actuator overnight.
  • a pump port, first and second actuation ports and a tank port are formed in the valve body, and the spool is held at a neutral position where each port is shut off by a spring, and the spool is separated from the neutral position. If the first port is located on one side, the pump port communicates with the first actuator port, the second port communicates with the tank port, and the spool is connected to the other side from the neutral position.
  • an operation valve in which the pump port communicates with the second actuator port when it is in the second position, and the tank port communicates with the first actuator port.
  • the spool With this operating valve, the spool can be moved to the first position by energizing the solenoid of the first proportional electromagnetic pressure reducing valve, and the spool can be moved to the second position by energizing the solenoid of the second proportional electromagnetic reducing valve. You can move.
  • the proportional control valve is mounted on both ends of the valve body, the entire control valve becomes large, and when the control valve is mounted on the vehicle body, etc., the mounting area becomes large. The position is restricted.
  • an object of the present invention is to provide a spool valve moving device for an operation valve which can solve the above-mentioned problem.
  • FIG. 1 is a sectional view of an operation valve showing an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a part for moving a spool.
  • FIG. 3 is a front view of the pressure reducing valve spool.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is an explanatory view showing a state where the pressure reducing valve spool has moved.
  • FIG. 6 is an explanatory view of an operation lever. Disclosure of the invention
  • the spool 3 is inserted into the spool hole 2 of the valve body 1, and the pump port 7, the first actuator port 8, and the second actuator port 9 are shut off.
  • the pump port 7 communicates with the second work port 9 and in the first position, which connects the first work port 8 and the tank port.
  • the port 7 communicates with the first actuator port 8 and the second actuator port 9 is movably inserted into the second position connecting the tank port, and the spool 3 is moved to the neutral position by the spring 13.
  • the proportional electromagnetic pressure reducing valve 32 is cut off from the first chamber 24 and the second chamber 25 to the hydraulic pressure source, and communicates with the low-pressure side.
  • the first chamber 24 and the second chamber 25 are connected to a hydraulic power source, and the pressure in the second chamber 25 is increased as the amount of current increases from the set minimum current value to the set maximum current value.
  • a spool moving device for an operation valve characterized in that the pressure is sequentially reduced and the first chamber 24 is kept in communication with a hydraulic pressure source.
  • the first chamber 24 and the second chamber 25 have the tank pressure, so that the spool 3 is in the neutral position.
  • the set minimum current value is applied, the pressure oil of the hydraulic power source is supplied to the first chamber 24 and the second chamber 25, and both pressures become equal, and the pressure of the first chamber 24 and the second chamber 25 is received. Due to the difference in the area, the spool 3 moves a full stroke toward the second position. If the energization amount is larger than the set minimum current value, the pressure in the second chamber 25 will be sequentially reduced, so the force for moving the spool 3 toward the second position will decrease, and the spool 3 will be neutralized from the second position. When the pressure in the second chamber 25 reaches a certain pressure, the spool 3 becomes the neutral position, and when the pressure further decreases, the spool 3 moves to the first position by the pressure in the first chamber 24. To the full stroke at the maximum current value.
  • the spool 3 can be moved to the first position in one direction and the second position in the other direction with the neutral position as a boundary.
  • the energization amount of the proportional electromagnetic pressure reducing valve 32 in the first invention is a set intermediate current value between the set minimum current value and the set maximum current value
  • the inside of the second chamber 25 is set.
  • Pressure in the second chamber 25 The force for moving the spool 3 toward the second position and the force for moving the spool 3 toward the first position by the pressure in the first chamber 24 are made equal to each other.
  • This is a spool moving device for an operation valve in which the intermediate current value set to 2 is supplied to hold the spool 3 at the neutral position.
  • the spool 3 since the spool 3 is held at the neutral position by energizing the intermediate current value set to the proportional electromagnetic pressure reducing valve 32, the amount of energization is reduced so that the spool 3 Spool 3 moves to the first position by moving toward the position and increasing.
  • the piston 3 is provided on the spool 3 in the first and second inventions.
  • the first and second chambers 24 and 25 are connected to form a first chamber 24 and a second chamber 25, which are connected to a plunger 30 having a thrust proportional to the amount of electricity of the coil 31, a pressure reducing valve spool 28, and a hydraulic pressure source.
  • Proportional electromagnetic pressure reducing valve 3 2 between first port 33, second port 34 communicating with first chamber 24, third port 35 communicating with second chamber 25, and drain hole 45
  • the pressure reducing valve spool 28 is set to the first position by the second spring 43, and the pressure reducing valve spool 28 is pushed to the second position by the small thrust of the plunger 30, and the plunger
  • the pressure reducing valve spool 28 By increasing the thrust of 30, the pressure reducing valve spool 28 is pushed to the third position, and a first spring 42 is provided between the pressure reducing valve spool 28 and the piston 23. 4 With panel power of 2 The pressure reducing valve spool 28 in the third position is pushed toward the second position, and when the pressure reducing valve spool 28 is in the first position, the first port 33 is shut off, and the second port 3 4 and 3rd port 35 are connected to drain hole 45, and when pressure reducing valve spool 28 is in the 2nd position, 1st port 33, 2nd port 34 and 3rd port 35 are connected.
  • the pressure reducing valve spool 28 when the amount of current to the coil 31 is zero, the pressure reducing valve spool 28 is reliably moved to the first position by the second spring 43, so that, for example, an engine that drives a hydraulic pump
  • the spool 3 can be maintained at the neutral position when the hydraulic oil of the hydraulic pump is not supplied to the first chamber 24 and the second chamber 25 when the engine is started.
  • a spool 3 is slidably inserted into a spool hole 2 of a valve body 1.
  • the valve body 1 has a pump port 7 composed of a main pump port 4, a first pump port 5, and a second pump port 6, and a first actuating port 8 and a first port 8 on both sides of the pump port 7.
  • the 2 port 1, the first tank port 10, and the second tank port 11 are formed to open in the spool holes 2, respectively.
  • the first pump port 5 and the second pump port 6 are in communication.
  • a spring tube 12 is attached to one end surface 1 a of the valve body 1, and a spool 3 is illustrated by a spring 13, a first spring receiver 14, and a second spring receiver 15 provided in the spring tube 12. It is held in the neutral position.
  • the spool 3 has a first small-diameter portion 16, a second small-diameter portion 17, a third small-diameter portion 18, and a slit 19 opened at each small-diameter portion, and the spool 3 is in the neutral position shown in the drawing. And each port is shut off.
  • the spool 3 moves to the right from the neutral position shown to the second position.
  • the main pump port 4 and the second pump port 6 _ , the first pump port 5 and the first actuator port 8, which are always in communication with the second pump port 6, the second actuator port 9 and the second tank port The pump oil at pump port 7 is supplied to port 1 of the first actuator and the oil at port 9 of the second actuator flows out to the second tank port 11.
  • a block 20 is attached to the other end surface 1 b of the valve body 1.
  • the block 20 communicates with the spool hole 2 and has a piston hole 21 from which the spool 3 protrudes and a pressure reducing valve hole 22 formed concentrically, and a piston fitted into the piston hole 21
  • Reference numeral 23 is connected to the spool 3 to form a first chamber 24 and a second chamber 25.
  • the small diameter portion 23a of the piston 23 projects into the pressure reducing valve hole 22.
  • a sleeve 27 provided on a plate 26 is fitted in the pressure reducing valve hole 22, and a pressure reducing valve spool 28 is fitted in the sleeve 27.
  • the pressure reducing valve spool 28 is pushed by a plunger 30 of a proportional solenoid 29, and the plunger 30 is pushed with a thrust proportional to the amount of electricity supplied to the coil 31 to produce a proportional electromagnetic pressure reducing valve 32. Is composed.
  • a first port 33, a second port 34, and a third port 35 are formed in the sleeve 27 as shown in FIG.
  • the first port 33 communicates with the pilot oil pressure source at the first oil hole 36
  • the second port 34 communicates with the first chamber 24 at the second oil hole 37
  • the third port 35 Is in communication with the second chamber 25 through a third oil hole 38.
  • a plurality of slits 39 are formed at an intermediate portion in the longitudinal direction of the outer peripheral surface of the pressure reducing valve spool 28 at intervals in the circumferential direction.
  • a plurality of depressurizing slits 40 are formed at an end of the outer peripheral surface of the pool 28 from the third port 35 at intervals in the circumferential direction.
  • a first spring 42 is provided between the spring receiver 41 abutting the sleeve 27 and the piston 23, and a second sprig 43 is provided between the sprig receiver 41 and the pressure reducing valve spool 28. It is provided.
  • the second spring 43 has a lower panel force than the first spring 42.
  • the pressure reducing valve spool 28 has a blind hole 44 opened in the pressure reducing valve hole 22, and the blind hole 44 is opened in the outer peripheral surface through a drain hole 45.
  • An opening is formed at one end face at a port 46, and the pressure reducing valve hole 22 communicates with the first tank port 10 at a drain oil hole 47.
  • the amount of current to coil 31 is set to zero, and the thrust of plunger 30 is set to zero.
  • the pressure reducing valve spool 28 is pushed to the left by the second spring 43 to the position shown in FIG. 2, the spring receiver 41 contacts the sleeve 27, and the spring receiver 41 and the pressure reducing valve spool 28 are connected to each other. Separate. As a result, the first port 33 is shut off without communication between the slit 39 and the first port 33, the second port 34 and the third port 35 are communicated with the slit 39, and the drain is closed. Hole 45 opens into the second port 34.
  • the first chamber 24 has the second oil hole 37, the second port 3.4, the drain hole 45, the blind hole 44, the pressure reducing valve hole 22, the drain oil hole 47, and the first tank port 1
  • the second chamber 25 has a third oil hole 38, a third port 35, a slit 39, a drain hole 45, a blind hole 44, a pressure reducing valve hole 22, Drain oil hole 47 communicates with first tank port 10. Because of this, the first chamber 24 and the second chamber 25 have the tank pressure, and no force acts on the spool 3 by the piston 23, so that the spool 3 is in the neutral position by the spring 13.
  • the first port 33 shuts off the discharge pressure oil of the pilot hydraulic pump. Not supplied to the first chamber 24 and the second chamber 25. Therefore, the spool 3 does not move when the engine is started.
  • the pressure oil in the first oil hole 36 is supplied to the first chamber 24 via the first port 33, the slit 39, the second port 34, and the second oil hole 37, and the first chamber
  • the pressure P 1 in 24 becomes the pressure P 0 in the first oil hole 36.
  • the pressure oil in the first oil hole 36 is supplied to the second chamber 25 via the first port 33, the slit 39, the third port 35, and the third oil hole 38, and the second chamber 25 is supplied to the second chamber 25.
  • the pressure P 2 in 35 is the pressure P 0 in the first oil hole 36, which is P 1 -P 2.
  • PA is the pressure receiving area of the first pressure receiving chamber 24
  • PB is the pressure receiving area of the second pressure receiving chamber 25.
  • a rightward force of (F2—F1) acts on the piston 23 to push the spool 3 rightward against the spring 13.
  • the spring force of the spring 13 increases, and the spool 3 is pushed rightward until the panel force of the spring 13 and the rightward force (F2-F1) are balanced.
  • the rightward force (F2-F1) is the largest, and eventually the spool 3 moves a full stroke toward the second position. (Refer to the phantom line in Fig. 2.)
  • the first spring 42 expands to reduce the panel force, but the spring force at that time is set to be larger than the spring force of the second spring 43. 41 does not move.
  • the plunger 30 causes the pressure reducing valve spool 28 to stake on the first spring 42 via the panel receiver 41 and move further to the right, as shown in FIG. 5, to allow the slit 39 and the third port 35 to move. Is shut off, and the third port 35 communicates with the pressure reducing valve hole 22 through the pressure reducing slit 40.
  • the pressure oil in the first chamber 24 continues to be supplied, but the pressure oil in the second chamber 25 is supplied to the third port 35, the pressure reducing slit 40, the port 46, the blind hole 44, the pressure reducing valve hole 22, Since the fluid flows out to the first tank port 10 through the drain oil hole 47, the pressure P2 in the second chamber 25 is reduced. As the pressure P2 in the second chamber 25 decreases, the rightward force F2 decreases, and the difference F2—F1 (P2X PB—P) XPA between the rightward force F2 and the leftward force F1 decreases. Therefore, the spool 3 is moved to the left (neutral position) by the spring 13.
  • the pressure P2 in the second chamber 25 is uniquely determined by the thrust of the plunger 30 and the spring force of the first spring 42 depending on the position of the spool 3. Therefore, the spool 3 stops accurately at a position corresponding to the amount of current supplied to the coil 31.
  • the thrust of the plunger 30 is increased by making the current flowing through the coil 31 larger than the intermediate current value set above. Since the pressure reducing valve spool 28 moves rightward to open the pressure reducing slit 40 and the third port 35, the pressure P2 in the second chamber 25 further decreases.
  • the spool 3 moves toward the first position by sequentially increasing the energization amount of the coil 31 from the set intermediate current value, and moves the full stroke at the set maximum current value.
  • the pressure reducing valve spool 28 communicates and shuts off the first chamber 24 and the second chamber 25 with the pilot hydraulic power source and the drain, and reduces the pressure in the second chamber 25. Has functions.
  • the operation lever 50 can be swung from the neutral position N to the first position A and the second position B, and when the operation lever 50 is in the neutral position N, the coil 31 is connected.
  • a predetermined current value is applied and swinging toward the first position A, the amount of current to the coil 31 increases, and when swinging toward the second position B, the amount of current to the coil 31 decreases. It becomes possible to make it.
  • the spool 3 of the operation valve can be moved with the same operation feeling as when the operation valve is switched and operated by a general hydraulic pilot valve.
  • the potentiometer 51 is rotated by the operation lever 50, and the potentiometer 51
  • the amount of current to the coil 31 may be controlled by a control or the like according to the output value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Servomotors (AREA)
  • Sliding Valves (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

A single proportional solenoid pressure reducing valve enables a spool to move to first and second positions with a neutral position as a boundary. A spool (3) is moved to first and second positions with a neutral position as a boundary by connecting a piston (23) to the spool (3) to define a first chamber (24) having a larger pressure receiving area and a second chamber (25) having a smaller pressure receiving area, permitting a proportional solenoid pressure reducing valve (32) to supply the first chamber (24) and the second chamber (25) with a pressure oil, increasing an amount of electric current supplied to the proportional solenoid pressure reducing valve (32) to gradually reduce a pressure in the second chamber (25), and moving the piston (23) in one direction and the other direction due to the difference between the pressure receiving areas of the first chamber (24) and the second chamber (25) and reduction of pressure in the second chamber (25).

Description

明細書 操作弁のスプール移動装置  Description Spool moving device for operating valve
技術分野 Technical field
本発明は、 油圧源の圧油を油圧ァクチユエ一夕に供給する操作弁 のスプールを中立位置、 第 1位置、 第 2位置に移動する装置に関す る。 背景技術  The present invention relates to a device for moving a spool of an operation valve for supplying hydraulic oil from a hydraulic source to a hydraulic actuator to a neutral position, a first position, and a second position. Background art
油圧源の圧油を油圧ァクチユエ一夕に供給する操作弁としては、 弁本体のスプール孔にスプールを摺動自在に形成し、 そのスプール を中立位置、 第 1位置、 第 2位置に移動して油圧源の圧油を油圧ァ クチユエ一夕に供給するものが知られている。  As an operation valve for supplying the hydraulic oil from the hydraulic source to the hydraulic actuator, a spool is slidably formed in a spool hole of the valve body, and the spool is moved to a neutral position, a first position, and a second position. It is known to supply hydraulic oil from a hydraulic power source to a hydraulic actuator overnight.
例えば、 弁本体にポンプポートと第 1、 第 2ァクチユエ一夕ポー トとタンクポ一トを形成し、 スプールをスプリングによって各ポー トを遮断する中立位置に保持し、 スプールをその中立位置を境とし て一側方の第 1位置とするとポンプポートと第 1 ァクチユエ一夕 ポー卜が連通し、 かつ第 2ァクチユエ一夕ポートとタンクポートが 連通し、 スプールを前記中立位置を境として他側方の第 2位置とす るとポンプポートと第 2ァクチユエ一夕ポー卜が連通し、 かつ第 1 ァクチユエ一夕ポートとタンクポ一卜が連通するようにした操作弁 が知られている。  For example, a pump port, first and second actuation ports and a tank port are formed in the valve body, and the spool is held at a neutral position where each port is shut off by a spring, and the spool is separated from the neutral position. If the first port is located on one side, the pump port communicates with the first actuator port, the second port communicates with the tank port, and the spool is connected to the other side from the neutral position. There is known an operation valve in which the pump port communicates with the second actuator port when it is in the second position, and the tank port communicates with the first actuator port.
前述の操作弁のスプールを移動するには、 例えば実開平 4 一 1 0 6 5 0 3号公報に開示された様に、 スプールの両端部に第 1室と第 2室を形成し、 その第 1室に圧油を供給する第 1比例電磁減圧弁と、 第 2室に圧油を供給する第 2比例電磁減圧弁を設けたものが知られ ている。 In order to move the spool of the above-mentioned operation valve, for example, as disclosed in Japanese Utility Model Laid-Open Publication No. It is known that two chambers are formed and a first proportional electromagnetic pressure reducing valve for supplying pressure oil to a first chamber and a second proportional electromagnetic pressure reducing valve for supplying pressure oil to a second chamber are provided.
この操作弁であれば、 第 1比例電磁減圧弁のソレノィ ドに通電す ることでスプールを第 1位置に移動できるし、 第 2比例電磁減圧弁 のソレノイドに通電すればスプールを第 2位置に移動できる。  With this operating valve, the spool can be moved to the first position by energizing the solenoid of the first proportional electromagnetic pressure reducing valve, and the spool can be moved to the second position by energizing the solenoid of the second proportional electromagnetic reducing valve. You can move.
前述の操作弁であると、 スプールを中立位置を境として第 1位置 と第 2位置に移動するために 2つの比例電磁減圧弁を用いているの で、 高価な比例電磁減圧弁を弁本体に 2個取付けることになり、 大 変高価な操作弁となる。  In the case of the aforementioned operating valve, two proportional solenoid valves are used to move the spool to the first and second positions with the neutral position as a boundary. Two of them will be installed, making the valve extremely expensive.
また、 弁本体の両端部にそれぞれ比例電磁減圧弁を取付けるため に操作弁全体が大型となり、 その操作弁を車体等に取付ける際に、 その取付場所の面積が大となるので、 操作弁の取付位置に制約を受 ける。  Also, since the proportional control valve is mounted on both ends of the valve body, the entire control valve becomes large, and when the control valve is mounted on the vehicle body, etc., the mounting area becomes large. The position is restricted.
また、 2つの比例電磁減圧弁のソレノィ ドにそれぞれ電気信号線 を結線するので、 その電気信号線の本数が多くなるし、 結線箇所が 多くなつて結線作業が面倒となるばかりか、 断線等の故障が発生し 易く信頼性が悪いものとなる。  In addition, since electric signal lines are connected to the solenoids of the two proportional electromagnetic pressure reducing valves, the number of electric signal lines increases, and the number of connection points increases the trouble of connection work, as well as disconnection. Failures are likely to occur and reliability will be poor.
そこで、 本発明は前述の課題を解決できるようにした操作弁のス プール移動装置を提供することを目的とする。 図面の簡単な説明  Therefore, an object of the present invention is to provide a spool valve moving device for an operation valve which can solve the above-mentioned problem. BRIEF DESCRIPTION OF THE FIGURES
この発明は、 以下の詳細な説明及びこの発明の実施例を示す添付 図面により、 より良く理解されるものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定することを意図するものではなく、 単に 説明及び理解を容易とするものである。 The invention will be better understood from the following detailed description and the accompanying drawings, which illustrate embodiments of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but merely It is intended to facilitate explanation and understanding.
図 1 本発明の実施例を示す操作弁の断面図である。  FIG. 1 is a sectional view of an operation valve showing an embodiment of the present invention.
図 2 スプールを移動する部分の拡大断面図である。  FIG. 2 is an enlarged sectional view of a part for moving a spool.
図 3 減圧弁スプールの正面図である。  FIG. 3 is a front view of the pressure reducing valve spool.
図 4 図 3の IV— I V断面図である。  FIG. 4 is a sectional view taken along the line IV-IV in FIG.
図 5 減圧弁スプールが移動した状態を示す説明図である。  FIG. 5 is an explanatory view showing a state where the pressure reducing valve spool has moved.
図 6 操作レバーの説明図である。 発明の開示  FIG. 6 is an explanatory view of an operation lever. Disclosure of the invention
第 1の発明は、 弁本体 1のスプール孔 2にスプール 3を、 ポンプ ポート 7と第 1ァクチユエ一夕ポート 8、 第 2ァクチユエ一夕ポー ト 9を遮断する中立位置と、 この中立位置を境とした一方向でボン プポート 7と第 2ァクチユエ一夕ポート 9を連通し、 第 1ァクチュ エー夕ポート 8とタンクポートを連通する第 1位置と、 前記中立位 置を境とした他方向でポンプポート 7と第 1ァクチユエ一夕ポート 8を連通し、 第 2ァクチユエ一夕ポート 9とタンクポートを連通す る第 2位置とに移動自在に嵌挿し、 そのスプール 3をスプリング 1 3で中立位置に保持した操作弁において、 前記スプール 3を第 1位 置に向けて移動する第 1室 2 4と、 前記スプール 3を第 2位置に向 けて移動し、 かつ第 1室 2 4よりも受圧面積が大きな第 2室 2 5と、 比例電磁減圧弁 3 2を設け、 前記比例電磁減圧弁 3 2を、 通電量が ゼロの時には第 1室 2 4、 第 2室 2 5を油圧源と遮断し、 かつ低圧 側に連通し、 通電量が設定した最小電流値の時には第 1室 2 4、 第 2室 2 5を油圧源に連通し、 通電量が設定した最小電流値から設定 した最大電流値まで順次大きくなるにつれて第 2室 2 5内の圧力を 順次減圧すると共に、 第 1室 2 4を油圧源に連通し続けるものとし たことを特徵とする操作弁のスプール移動装置である。 In the first invention, the spool 3 is inserted into the spool hole 2 of the valve body 1, and the pump port 7, the first actuator port 8, and the second actuator port 9 are shut off. In one direction, the pump port 7 communicates with the second work port 9 and in the first position, which connects the first work port 8 and the tank port. The port 7 communicates with the first actuator port 8 and the second actuator port 9 is movably inserted into the second position connecting the tank port, and the spool 3 is moved to the neutral position by the spring 13. In the held operation valve, a first chamber 24 that moves the spool 3 toward the first position, and a spool that moves the spool 3 toward the second position and has a pressure receiving area larger than the first chamber 24 Large chamber 2 5 and proportional solenoid valve 3 2 When the amount of electricity is zero, the proportional electromagnetic pressure reducing valve 32 is cut off from the first chamber 24 and the second chamber 25 to the hydraulic pressure source, and communicates with the low-pressure side. In this case, the first chamber 24 and the second chamber 25 are connected to a hydraulic power source, and the pressure in the second chamber 25 is increased as the amount of current increases from the set minimum current value to the set maximum current value. A spool moving device for an operation valve, characterized in that the pressure is sequentially reduced and the first chamber 24 is kept in communication with a hydraulic pressure source.
第 1の発明によれば、 比例電磁減圧弁 3 2の通電量がゼロの時に は第 1室 2 4、 第 2室 2 5がタンク圧となるからスプール 3が中立 位置となる。 設定した最小電流値を通電した時には第 1室 2 4、 第 2室 2 5に油圧源の圧油が供給されて両方の圧力が等しくなり、 第 1室 2 4と第 2室 2 5の受圧面積差によってスプール 3が第 2位置 に向けてフルストロ一ク移動する。 通電量を設定した最小電流値よ り大きくすると第 2室 2 5内の圧力が順次減圧されるからスプール 3を第 2位置に向けて移動する力が小さくなり、 スプール 3が第 2 位置から中立位置に向けて移動し、 第 2室 2 5内の圧力がある圧力 となるとスプール 3が中立位置となり、 それ以上に圧力が低下する と第 1室 2 4内の圧力でスプール 3が第 1位置に向けて移動して最 大電流値でフルストローク移動する。  According to the first invention, when the amount of electricity to the proportional electromagnetic pressure reducing valve 32 is zero, the first chamber 24 and the second chamber 25 have the tank pressure, so that the spool 3 is in the neutral position. When the set minimum current value is applied, the pressure oil of the hydraulic power source is supplied to the first chamber 24 and the second chamber 25, and both pressures become equal, and the pressure of the first chamber 24 and the second chamber 25 is received. Due to the difference in the area, the spool 3 moves a full stroke toward the second position. If the energization amount is larger than the set minimum current value, the pressure in the second chamber 25 will be sequentially reduced, so the force for moving the spool 3 toward the second position will decrease, and the spool 3 will be neutralized from the second position. When the pressure in the second chamber 25 reaches a certain pressure, the spool 3 becomes the neutral position, and when the pressure further decreases, the spool 3 moves to the first position by the pressure in the first chamber 24. To the full stroke at the maximum current value.
このようであるから、 1つの比例電磁減圧弁を用いることでス ブール 3を中立位置を境として一方向の第 1位置と他方向の第 2位 置に移動できる。  Thus, by using one proportional electromagnetic pressure reducing valve, the spool 3 can be moved to the first position in one direction and the second position in the other direction with the neutral position as a boundary.
したがって、 高価な比例電磁減圧弁が 1つであるから安価な操作 弁となるし、 操作弁全体が小型となって操作弁の取付場所の面積が 小さくなつて取付位置に制約をうけない。 しかも、 電気信号線の本 数が少なく結線作業が容易であるし、 断線などが発生し難くなつて 信頼性が向上する。  Therefore, since there is only one expensive proportional electromagnetic pressure reducing valve, it becomes an inexpensive operating valve, and the entire operating valve is small, and the area of the mounting place for the operating valve is small, so that the mounting position is not restricted. In addition, the number of electric signal lines is small and the connection work is easy, and disconnection is less likely to occur, improving reliability.
第 2の発明は、 第 1の発明における比例電磁減圧弁 3 2の通電量 が設定した最小電流値と設定した最大電流値との中間の設定した中 間電流値の時に第 2室 2 5内の圧力が、 その第 2室 2 5内の圧力に よりスプール 3を第 2位置に向けて移動する力と第 1室 2 4内の圧 力によりスプール 3を第 1位置に向けて移動する力が同一となるよ うにし、 前記比例電磁減圧弁 3 2に設定した中間電流値を通電して スプール 3を中立位置に保持するようにした操作弁のスプール移動 装置である。 In the second invention, when the energization amount of the proportional electromagnetic pressure reducing valve 32 in the first invention is a set intermediate current value between the set minimum current value and the set maximum current value, the inside of the second chamber 25 is set. Pressure in the second chamber 25 The force for moving the spool 3 toward the second position and the force for moving the spool 3 toward the first position by the pressure in the first chamber 24 are made equal to each other. This is a spool moving device for an operation valve in which the intermediate current value set to 2 is supplied to hold the spool 3 at the neutral position.
第 2の発明によれば、 比例電磁減圧弁 3 2に設定した中間電流値 を通電してスプール 3を中立位匱に保持しているので、 その通電量 を減少することでスプール 3が第 2位置に向けて移動し、 増加する ことでスプール 3が第 1位置に移動する。  According to the second invention, since the spool 3 is held at the neutral position by energizing the intermediate current value set to the proportional electromagnetic pressure reducing valve 32, the amount of energization is reduced so that the spool 3 Spool 3 moves to the first position by moving toward the position and increasing.
これにより、 操作レバ一を中立位置を境として一方向と他方向に 揺動することで出力信号を増加、 減少することでスプール 3を移動 できるから、 通常の油圧パイロッ ト弁と同様に操作することでス ブール 3を中立位置を境として一方向の第 1位置、 他方向の第 2位 置に移動できる。  This allows the spool 3 to move by increasing and decreasing the output signal by swinging the operating lever in one direction and the other direction with the neutral position as a boundary, so that it is operated in the same manner as a normal hydraulic pilot valve This makes it possible to move Subur 3 from the neutral position to the first position in one direction and the second position in the other direction.
第 3の発明は、 第 1 ·第 2の発明におけるスプール 3にピストン In the third invention, the piston 3 is provided on the spool 3 in the first and second inventions.
2 3を連結して第 1室 2 4と第 2室 2 5を形成し、 コイル 3 1の通 電量に比例した推力となるプランジャ 3 0と、 減圧弁スプール 2 8 と、 油圧源に連通した第 1ポート 3 3と、 第 1室 2 4に連通した第 2ポート 3 4と、 第 2室 2 5に連通した第 3ポート 3 5と、 ドレー ン穴 4 5とで比例電磁減圧弁 3 2とし、 前記減圧弁スプール 2 8を 第 2スプリング 4 3で第 1の位置とし、 プランジャ 3 0の小さな推 力によって減圧弁スプール 2 8が第 2の位置に押され、 ブランジャThe first and second chambers 24 and 25 are connected to form a first chamber 24 and a second chamber 25, which are connected to a plunger 30 having a thrust proportional to the amount of electricity of the coil 31, a pressure reducing valve spool 28, and a hydraulic pressure source. Proportional electromagnetic pressure reducing valve 3 2 between first port 33, second port 34 communicating with first chamber 24, third port 35 communicating with second chamber 25, and drain hole 45 The pressure reducing valve spool 28 is set to the first position by the second spring 43, and the pressure reducing valve spool 28 is pushed to the second position by the small thrust of the plunger 30, and the plunger
3 0の推力が大きくなることによって減圧弁スプール 2 8が第 3の 位置に押されようにし、 減圧弁スプール 2 8とピストン 2 3との間 に第 1スプリング 4 2を設け、 この第 1スプリング 4 2のパネ力で 第 3の位置の減圧弁スプール 2 8を第 2の位置に向けて押すように し、 前記減圧弁スプール 2 8が第 1の位置の時には第 1ポ一卜 3 3 を遮断し、 第 2ポート 3 4と第 3ポート 3 5をドレ一ン穴 4 5に連 通し、 減圧弁スプール 2 8が第 2の位置の時には第 1ポート 3 3と 第 2ポート 3 4と第 3ポート 3 5を連通し、 ドレーン穴 4 5を閉じ、 減圧弁スプール 2 8が第 3の位置の時には第 1ポート 3 3と第 2 ポート 3 4を連通し、 第 1ポート 3 3と第 3ポ一ト 3 5を遮断し、 かつ第 3ポート 3 5を減圧部を経て低圧側に連通し、 スプール 3が 他方向ストロークェンド位置から一方向に移動するストロ一クに応 じて第 1スプリング 4 2のバネ力が順次大きくなるようにした操作 弁のスプール移動装置である。 By increasing the thrust of 30, the pressure reducing valve spool 28 is pushed to the third position, and a first spring 42 is provided between the pressure reducing valve spool 28 and the piston 23. 4 With panel power of 2 The pressure reducing valve spool 28 in the third position is pushed toward the second position, and when the pressure reducing valve spool 28 is in the first position, the first port 33 is shut off, and the second port 3 4 and 3rd port 35 are connected to drain hole 45, and when pressure reducing valve spool 28 is in the 2nd position, 1st port 33, 2nd port 34 and 3rd port 35 are connected. When the pressure reducing valve spool 28 is in the third position, the first port 33 and the second port 34 are connected, and the first port 33 and the third port 35 are closed. Shut off and connect the third port 35 to the low-pressure side via the pressure reducing section, and the spring force of the first spring 42 in response to the stroke in which the spool 3 moves in one direction from the stroke end position in the other direction. Is a spool moving device for an operation valve in which is sequentially increased.
第 3の発明によれば、 コイル 3 1への通電量がゼロの時には第 2 スプリング 4 3で減圧弁スプール 2 8を確実に第 1の位置に移動す るので、 例えば油圧ポンプを駆動するエンジンを始動した時に油圧 ポンプの圧油が第 1室 2 4、 第 2室 2 5に供給されることがなぐ スプール 3を中立位置に保持できる。 またコイル 3 1への通電量を 中間の値としてプランジャ 3 0の推力で減圧弁スプール 2 8を第 3 の位置としてスプール 3を他方向ストロ一クェンド位置から一方向 に移動する時に、 そのスプール 3のストローク (位置) が第 1スプ リング 4 2のバネ力としてフィードバックされて滅圧弁プール 2 8 を第 2の位置に押すので、 コイル 3 1への通電量に比例したプラン ジャ 3 0の推力とスプール 3の位置による第 1スプリング 4 2のバ ネカによってスプール 3の位置が決定されるので、 スプール 3をコ ィル 3 1への通電量に応じた所定の位置に精度良く停止することが できる。 発明を実施するための最良の形態 According to the third aspect, when the amount of current to the coil 31 is zero, the pressure reducing valve spool 28 is reliably moved to the first position by the second spring 43, so that, for example, an engine that drives a hydraulic pump The spool 3 can be maintained at the neutral position when the hydraulic oil of the hydraulic pump is not supplied to the first chamber 24 and the second chamber 25 when the engine is started. When the amount of electricity supplied to the coil 31 is set to an intermediate value and the pressure reducing valve spool 28 is moved to the third position by the thrust of the plunger 30 to move the spool 3 in one direction from the other direction stroke position, the spool 3 The stroke (position) is fed back as the spring force of the first spring 42 and pushes the decompression valve pool 28 to the second position, so that the thrust of the plunger 30 proportional to the amount of electricity to the coil 31 Since the position of the spool 3 is determined by the squeezing force of the first spring 42 based on the position of the spool 3, the spool 3 can be accurately stopped at a predetermined position corresponding to the amount of electricity to the coil 31. . BEST MODE FOR CARRYING OUT THE INVENTION
図 1に示すように、 弁本体 1のスプール孔 2にスプール 3が擋動 自在に嵌挿してある。 弁本体 1には主ポンプポート 4と第 1ポンプ ポート 5と第 2ポンプポート 6より成るポンプポート 7と、 このポ ンプポ一卜 7を境とした両側位置に第 1 ァクチユエ一夕ポート 8 、 第 2ァクチユエ一夕ポー卜 9、 第 1タンクポート 1 0、 第 2タンク ポート 1 1がそれぞれスプール孔 2に開口して形成してある。 前記 第 1ポンプポート 5と第 2ポンプポート 6は連通している。  As shown in FIG. 1, a spool 3 is slidably inserted into a spool hole 2 of a valve body 1. The valve body 1 has a pump port 7 composed of a main pump port 4, a first pump port 5, and a second pump port 6, and a first actuating port 8 and a first port 8 on both sides of the pump port 7. The 2 port 1, the first tank port 10, and the second tank port 11 are formed to open in the spool holes 2, respectively. The first pump port 5 and the second pump port 6 are in communication.
前記弁本体 1 の一端面 1 aにスプリング筒 1 2が取付けてあり、 このスプリング筒 1 2内に設けたスプリング 1 3と第 1スプリング 受け 1 4、 第 2スプリング受け 1 5でスプール 3を図示の中立位置 に保持してある。  A spring tube 12 is attached to one end surface 1 a of the valve body 1, and a spool 3 is illustrated by a spring 13, a first spring receiver 14, and a second spring receiver 15 provided in the spring tube 12. It is held in the neutral position.
スプール 3には第 1小径部 1 6、 第 2小径部 1 7、 第 3小径部 1 8及び各小径部に開口したスリッ ト 1 9が形成してあり、 スプール 3が図示の中立位置であると各ポー卜が遮断される。  The spool 3 has a first small-diameter portion 16, a second small-diameter portion 17, a third small-diameter portion 18, and a slit 19 opened at each small-diameter portion, and the spool 3 is in the neutral position shown in the drawing. And each port is shut off.
スプール 3が図示の中立位置から左方に移動して第 1位置となる と主ポンプポー卜 4と第 1ポンプポー卜 5、 第 1ポンプポート 5と 常時連通している第 2ポンプポート 6と第 2ァクチユエ一夕ポート 9、 第 1ァクチユエ一夕ポート 8と第 1タンクポート 1 0がそれぞ れ連通し、 ポンプポート 7の圧油が第 2ァクチユエ一夕ポート 9に 供給され、 第 1ァクチユエ一夕ポート 8の圧油が第 1タンクポート 1 0に流出する。  When the spool 3 moves to the left from the illustrated neutral position to the first position, the second pump port 6 and the second pump port 6, which are always in communication with the main pump port 4, the first pump port 5, and the first pump port 5, The first actuator port 9, the first actuator port 8 and the first tank port 10 communicate with each other, and the pressure oil of the pump port 7 is supplied to the second actuator port 9 and the first actuator port 9 The pressure oil in port 8 flows out to the first tank port 10.
スプール 3が図示の中立位置から右方に移動して第 2位置となる と主ポンプポート 4と第 2ポンプポー卜 6 _、 第 2ポンプポート 6と 常時連通している第 1ポンプポート 5と第 1ァクチユエ一夕ポート 8、 第 2ァクチユエ一夕ポート 9と第 2タンクポート 1 1がそれぞ れ連通し、 ポンプポート 7の圧油が第 1ァクチユエ一夕ポート 8に 供給され、 第 2ァクチユエ一夕ポート 9の圧油が第 2タンクポート 1 1に流出する。 The spool 3 moves to the right from the neutral position shown to the second position. And the main pump port 4 and the second pump port 6 _ , the first pump port 5 and the first actuator port 8, which are always in communication with the second pump port 6, the second actuator port 9 and the second tank port The pump oil at pump port 7 is supplied to port 1 of the first actuator and the oil at port 9 of the second actuator flows out to the second tank port 11.
前記弁本体 1の他端面 1 bにブロック 2 0が取付けてある。 この ブロック 2 0にはスプール孔 2と連通し、 かつスプール 3が突出す るピストン孔 2 1と減圧弁用孔 2 2が同心状に形成してあり、 その ピストン孔 2 1に嵌挿したピストン 2 3がスプール 3に連結されて 第 1室 2 4と第 2室 2 5を形成している。 このピストン 2 3の小径 部 2 3 aは減圧弁用孔 2 2内に突出している。  A block 20 is attached to the other end surface 1 b of the valve body 1. The block 20 communicates with the spool hole 2 and has a piston hole 21 from which the spool 3 protrudes and a pressure reducing valve hole 22 formed concentrically, and a piston fitted into the piston hole 21 Reference numeral 23 is connected to the spool 3 to form a first chamber 24 and a second chamber 25. The small diameter portion 23a of the piston 23 projects into the pressure reducing valve hole 22.
前記減圧弁用孔 2 2にはプレー卜 2 6に設けたスリーブ 2 7が嵌 挿してあり、 そのスリーブ 2 7内に減圧弁スプール 2 8が嵌揷して ある。 この減圧弁スプール 2 8は比例ソレノイ ド 2 9のプラン ジャー 3 0によって押され、 そのプランジャ 3 0はコイル 3 1への 通電量に比例した推力で押されるようになって比例電磁減圧弁 3 2 を構成している。  A sleeve 27 provided on a plate 26 is fitted in the pressure reducing valve hole 22, and a pressure reducing valve spool 28 is fitted in the sleeve 27. The pressure reducing valve spool 28 is pushed by a plunger 30 of a proportional solenoid 29, and the plunger 30 is pushed with a thrust proportional to the amount of electricity supplied to the coil 31 to produce a proportional electromagnetic pressure reducing valve 32. Is composed.
前記スリーブ 2 7には図 2に示すように第 1ポート 3 3、 第 2 ポート 3 4、 第 3ポート 3 5が形成してある。 第 1ポート 3 3は第 1油孔 3 6でパイ口ッ ト油圧源に連通し、 第 2ポート 3 4は第 2油 孔 3 7で第 1室 2 4に連通し、 第 3ポート 3 5は第 3油孔 3 8で第 2室 2 5に連通している。  A first port 33, a second port 34, and a third port 35 are formed in the sleeve 27 as shown in FIG. The first port 33 communicates with the pilot oil pressure source at the first oil hole 36, the second port 34 communicates with the first chamber 24 at the second oil hole 37, and the third port 35 Is in communication with the second chamber 25 through a third oil hole 38.
前記減圧弁スプール 2 8の外周面における長手方向中間部には複 数のスリッ ト 3 9が周方向に間隔を置いて形成してあり、 減圧弁ス プール 2 8の外周面における第 3ポート 3 5よりも端部には複数の 減圧用スリット 4 0が周方向に間隔を置いて形成してある。 A plurality of slits 39 are formed at an intermediate portion in the longitudinal direction of the outer peripheral surface of the pressure reducing valve spool 28 at intervals in the circumferential direction. A plurality of depressurizing slits 40 are formed at an end of the outer peripheral surface of the pool 28 from the third port 35 at intervals in the circumferential direction.
前記スリーブ 2 7に当接したスプリング受 4 1 とピストン 2 3と の間に第 1スプリング 4 2が設けられ、 このスプリグ受 4 1 と減圧 弁スプール 2 8との間に第 2スブリグ 4 3が設けてある。 この第 2 スプリング 4 3は第 1スプリング 4 2よりも弱いパネ力である。  A first spring 42 is provided between the spring receiver 41 abutting the sleeve 27 and the piston 23, and a second sprig 43 is provided between the sprig receiver 41 and the pressure reducing valve spool 28. It is provided. The second spring 43 has a lower panel force than the first spring 42.
前記減圧弁スプール 2 8は図 3と図 4に示すように減圧弁用孔 2 2に開口した盲穴 4 4を有し、 その盲穴 4 4はドレーン穴 4 5で外 周面に開口し、 かつポート 4 6で一端面に開口し、 その減圧弁用孔 2 2はドレ一ン油孔 4 7で第 1タンクポート 1 0に連通している。  As shown in FIGS. 3 and 4, the pressure reducing valve spool 28 has a blind hole 44 opened in the pressure reducing valve hole 22, and the blind hole 44 is opened in the outer peripheral surface through a drain hole 45. An opening is formed at one end face at a port 46, and the pressure reducing valve hole 22 communicates with the first tank port 10 at a drain oil hole 47.
次に作動とともに各部の詳細を説明する。  Next, details of each part together with the operation will be described.
(スプール 3を中立位置とする場合)  (When spool 3 is in neutral position)
コイル 3 1への通電量をゼロとし、 プランジャ 3 0の推力をゼロ とする。  The amount of current to coil 31 is set to zero, and the thrust of plunger 30 is set to zero.
減圧弁スプール 2 8は第 2スプリング 4 3で左方に押されて図 2 の位置となり、 スプリング受け 4 1はスリーブ 2 7に当接し、 スプ リ ング受け 4 1 と減圧弁スプール 2 8 とは離隔する。 これにより、 スリッ ト 3 9と第 1ポート 3 3が連通せずに第 1ポート 3 3が遮断 され、 第 2ポート 3 4と第 3ポート 3 5がスリ ッ ト 3 9で連通し、 ドレ一ン穴 4 5が第 2ポート 3 4に開口する。  The pressure reducing valve spool 28 is pushed to the left by the second spring 43 to the position shown in FIG. 2, the spring receiver 41 contacts the sleeve 27, and the spring receiver 41 and the pressure reducing valve spool 28 are connected to each other. Separate. As a result, the first port 33 is shut off without communication between the slit 39 and the first port 33, the second port 34 and the third port 35 are communicated with the slit 39, and the drain is closed. Hole 45 opens into the second port 34.
第 1室 2 4は第 2油孔 3 7、 第 2ポート 3 .4、 ドレ一ン穴 4 5、 盲穴 4 4、 減圧弁用孔 2 2、 ドレーン油孔 4 7で第 1タンクポート 1 0に連通し、 第 2室 2 5は第 3油孔 3 8、 第 3ポート 3 5、 ス リ ッ ト 3 9、 ドレ一ン穴 4 5、 盲穴 4 4、 減圧弁用孔 2 2、 ドレー ン油孔 4 7で第 1タンクポート 1 0に連通する。 このようであるから、 第 1室 2 4、 第 2室 2 5はタンク圧となり、 ピストン 2 3によりスプール 3に力が作用しないので、 スプール 3 はスプリング 1 3で中立位置となる。 The first chamber 24 has the second oil hole 37, the second port 3.4, the drain hole 45, the blind hole 44, the pressure reducing valve hole 22, the drain oil hole 47, and the first tank port 1 The second chamber 25 has a third oil hole 38, a third port 35, a slit 39, a drain hole 45, a blind hole 44, a pressure reducing valve hole 22, Drain oil hole 47 communicates with first tank port 10. Because of this, the first chamber 24 and the second chamber 25 have the tank pressure, and no force acts on the spool 3 by the piston 23, so that the spool 3 is in the neutral position by the spring 13.
なお、 この状態でパイ口ット油圧源となるパイ口ッ ト油圧ポンプ を駆動するエンジンを始動しても、 そのパイロッ ト油圧ポンプの吐 出圧油は第 1ポート 3 3が遮断しているから第 1室 2 4、 第 2室 2 5に供給されない。 したがって、 エンジン始動時にスプール 3が移 動することがない。  In this state, even if the engine that drives the pilot hydraulic pump, which is the pilot hydraulic power source, is started, the first port 33 shuts off the discharge pressure oil of the pilot hydraulic pump. Not supplied to the first chamber 24 and the second chamber 25. Therefore, the spool 3 does not move when the engine is started.
(スプール 3を第 2位置とする場合)  (When spool 3 is in the second position)
コイル 3 1に弱い電流を通電し、 ブランジャ 3 0の推力 (右向き の力) を小とする。  Apply a weak current to the coil 31 to reduce the thrust (rightward force) of the plunger 30.
ブランジャ 3 0の推力で減圧弁スプール 2 8が第 2プリング 4 3 に杭して右方に若干 (ストローク S 1 ) 移動してバネ受 4 1に当接 する。 これにより第 1ポート 3 3と第 2ポート 3 4がスリッ ト 3 9 で連通すると共に、 スリット 3 9と第 3ポート 3 5の開口面穣が減 少し、 ドレーン穴 4 5が第 2ポート 3 4と遮断する。 滅圧弁スプー ル 2 8が移動すると第 2スプリング 4 3の力が大きくなるので、 結 局減圧弁スプール 2 8はブランジャ 3 0の推力に比例したストロー クだけ移動する。  With the thrust of the plunger 30, the pressure reducing valve spool 28 is piled on the second pulling 43 and moves slightly (stroke S 1) to the right to contact the spring receiver 41. As a result, the first port 33 and the second port 34 communicate with each other through the slit 39, the opening of the slit 39 and the third port 35 decrease, and the drain hole 45 becomes the second port 34. And shut off. When the decompression valve spool 28 moves, the force of the second spring 43 increases, so that the pressure reducing valve spool 28 eventually moves by a stroke proportional to the thrust of the plunger 30.
第 1室 2 4には第 1ポート 3 3、 スリッ ト 3 9、 第 2ポート 3 4、 第 2油孔 3 7を経て第 1油孔 3 6内の圧油が供給され、 その第 1室 2 4内の圧力 P 1 は第 1油孔 3 6の圧力 P 0 となる。  The pressure oil in the first oil hole 36 is supplied to the first chamber 24 via the first port 33, the slit 39, the second port 34, and the second oil hole 37, and the first chamber The pressure P 1 in 24 becomes the pressure P 0 in the first oil hole 36.
第 2室 2 5には第 1ポート 3 3、 スリッ ト 3 9、 第 3ポート 3 5、 第 3油孔 3 8を経て第 1油孔 3 6内の圧油が供給され、 その第 2室 3 5内の圧力 P 2は第 1油孔 3 6の圧力 P 0で、 P 1 - P 2となる。 ピストン 2 3には (P 1 X PA) の左向きの力 F 1と、 (P2X PB ) の右向きの力 F 2が作用する。 P Aは第 1受圧室 2 4の受圧面積、 PBは第 2受圧室 25の受圧面積であり、 PAぐ PBとなっている。 The pressure oil in the first oil hole 36 is supplied to the second chamber 25 via the first port 33, the slit 39, the third port 35, and the third oil hole 38, and the second chamber 25 is supplied to the second chamber 25. The pressure P 2 in 35 is the pressure P 0 in the first oil hole 36, which is P 1 -P 2. A leftward force F1 of (P1XPA) and a rightward force F2 of (P2XPB) act on the piston 23. PA is the pressure receiving area of the first pressure receiving chamber 24, and PB is the pressure receiving area of the second pressure receiving chamber 25.
第 1室 24の圧力 P 1と第 2室 2 5の圧力 P 2は等しいので、 P A < PBであるから左向きの力 F 1 (P 1 X PA) よりも右向きの力 F2 (P2X PB) が大きくなる。  Since the pressure P1 in the first chamber 24 and the pressure P2 in the second chamber 25 are equal, PA <PB, so that the rightward force F2 (P2X PB) is greater than the leftward force F1 (P1XPA). growing.
これによつてピストン 2 3には (F2— F1) の右向きの力が作用 してスプール 3をスプリング 1 3に抗して右方に押す。 これにより、 スプリング 1 3のバネ力が大きくなり、 そのスプリング 1 3のパネ 力と右向きの力 (F2— F1) がバランスするまでスプール 3は右方 に押される。 この時の右向きの力 (F2— F1) が最大であるから結 局スプール 3は第 2位置に向けてフルストロ一ク移動する。 (図 2 の仮想線参照) この時、 第 1スプリング 4 2は伸びてパネ力が小さ くなるが、 その時のバネカは第 2スプリング 43のバネ力よりも大 きく設定してあるから、 パネ受け 41が移動することがない。  As a result, a rightward force of (F2—F1) acts on the piston 23 to push the spool 3 rightward against the spring 13. As a result, the spring force of the spring 13 increases, and the spool 3 is pushed rightward until the panel force of the spring 13 and the rightward force (F2-F1) are balanced. At this time, the rightward force (F2-F1) is the largest, and eventually the spool 3 moves a full stroke toward the second position. (Refer to the phantom line in Fig. 2.) At this time, the first spring 42 expands to reduce the panel force, but the spring force at that time is set to be larger than the spring force of the second spring 43. 41 does not move.
前述の状態からコイル 3 1への電流値を大きくするとプランジャ 30の推力が大きくなる。  When the current value to the coil 31 is increased from the state described above, the thrust of the plunger 30 increases.
プランジャ 3 0によって減圧弁スプール 2 8がパネ受け 4 1を介 して第 1スプリング 4 2に杭してさらに右方に移動して図 5に示す ようにスリッ ト 3 9と第 3ポート 3 5が遮断し、 第 3ポート 3 5は 減圧用スリット 40で減圧弁用孔 22に連通する。  The plunger 30 causes the pressure reducing valve spool 28 to stake on the first spring 42 via the panel receiver 41 and move further to the right, as shown in FIG. 5, to allow the slit 39 and the third port 35 to move. Is shut off, and the third port 35 communicates with the pressure reducing valve hole 22 through the pressure reducing slit 40.
第 1室 24内には圧油が供給され続けるが第 2室 2 5内の圧油は 第 3ポート 3 5、 減圧用スリッ ト 40、 ポート 46、 盲穴 44、 減 圧弁用孔 2 2、 ドレーン油孔 4 7を経て第 1タンクポート 1 0に流 出するので第 2室 25内の圧力 P2は減圧される。 第 2室 2 5内の圧力 P 2が低下することで右向きの力 F2が小さく なり、 右向きの力 F2と左向きの力 F1の差 F2— F 1 (P2X PB— P】 X PA) が小さくなるので、 スプール 3はスプリング 1 3で左方 (中立位置) に向けて移動される。 これにより、 第 1スプリング 4 2のパネ力が大きくなって減圧弁スプール 2 8はプランジャ 3 0の 推力に抗して第 3ポート 3 5と減圧用スリッ ト 4 0を遮断し、 ス リッ ト 3 9と第 3ポート 3 5を連通する位置に移動し、 第 2室 2 5 内の圧力 P2が高くなつてピストン 2 3でスプール 3を第 2位置に 向けて押す。 The pressure oil in the first chamber 24 continues to be supplied, but the pressure oil in the second chamber 25 is supplied to the third port 35, the pressure reducing slit 40, the port 46, the blind hole 44, the pressure reducing valve hole 22, Since the fluid flows out to the first tank port 10 through the drain oil hole 47, the pressure P2 in the second chamber 25 is reduced. As the pressure P2 in the second chamber 25 decreases, the rightward force F2 decreases, and the difference F2—F1 (P2X PB—P) XPA between the rightward force F2 and the leftward force F1 decreases. Therefore, the spool 3 is moved to the left (neutral position) by the spring 13. As a result, the panel force of the first spring 42 becomes large, and the pressure reducing valve spool 28 shuts off the third port 35 and the pressure reducing slit 40 against the thrust of the plunger 30, and the slit 3 Move to the position where 9 communicates with the third port 35, and when the pressure P2 in the second chamber 25 increases, push the spool 3 with the piston 23 toward the second position.
この動作を繰り返して前記第 2室 2 5内の圧力 P2はプランジャ 3 0の推力とスプール 3の位置による第 1スプリング 42のバネカ によって一義的に決定する。 したがって、 スプール 3はコイル 3 1 への通電量に応じた位置に精度良く停止する。  By repeating this operation, the pressure P2 in the second chamber 25 is uniquely determined by the thrust of the plunger 30 and the spring force of the first spring 42 depending on the position of the spool 3. Therefore, the spool 3 stops accurately at a position corresponding to the amount of current supplied to the coil 31.
これにより、 コイル 3 1の電流値を大きくするにつれてスブール 3の中立位置に向けて移動するスト□一夕が長くなり、 設定した中 間電流値でスプール 3は中立位置となる。  As a result, as the current value of the coil 31 increases, the stroke that moves toward the neutral position of the suburb 3 becomes longer, and the spool 3 becomes the neutral position at the set intermediate current value.
この設定した電流値とは、 第 2室 2 5の圧力 P 2が ( P 2 X P B ) = (P1XPA) となる時の減圧部開口面積になる値である。 The set current value is a value that becomes the opening area of the decompression portion when the pressure P2 of the second chamber 25 becomes (P2XPB) = (P1XPA).
以上の様に、 コイル 3 1 に設定した最小電流値を通電するとス プール 3は第 2位置に向けてフルストローク移動し、 その状態から 電流値を順次大きくするとスプール 3は中立位置に向けて移動し、 設定した中間電流値でスプ一ル 3は中立位置となる。  As described above, when the minimum current value set to coil 31 is applied, spool 3 moves full stroke toward the second position, and when the current value is gradually increased from that state, spool 3 moves toward the neutral position Then, the spool 3 becomes the neutral position at the set intermediate current value.
(スプール 3を第 1位置に移動する場合)  (When moving spool 3 to the 1st position)
コイル 3 1への通電流を前述の設定した中間電流値よりも大きく し、 プランジャ 30の推力を大きくする。 減圧弁スプール 2 8が右方に移動して減圧用スリッ 卜 4 0と第 3 ポート 3 5が開口するから、 第 2室 2 5内の圧力 P2がさらに低下 する。 The thrust of the plunger 30 is increased by making the current flowing through the coil 31 larger than the intermediate current value set above. Since the pressure reducing valve spool 28 moves rightward to open the pressure reducing slit 40 and the third port 35, the pressure P2 in the second chamber 25 further decreases.
これによつて、 右向きの力 F2 (P2X PB) が左向きの力 Fl (P 1 X P A) よりも小さくなり、 スプール 3には (F 1— F2) の左向き の力が作用してスプール 3は第 1位置に向けて移動する。 このスト ロークはコイル 3 1への通電量に比例し、 設定した最大電流値でス プール 3は第 1位置に向けてフルストローク移動する。  As a result, the rightward force F2 (P2X PB) becomes smaller than the leftward force Fl (P1 XPA), and the leftward force of (F1-F2) acts on the spool 3 so that the spool 3 Move toward one position. This stroke is proportional to the amount of current supplied to the coil 31, and the spool 3 moves a full stroke toward the first position at the set maximum current value.
つまり、 コイル 3 1の通電量を設定した中間電流値より順次大き くすることでスプール 3は第 1位置に向けて移動し、 設定した最大 電流値でフルストローク移動する。  That is, the spool 3 moves toward the first position by sequentially increasing the energization amount of the coil 31 from the set intermediate current value, and moves the full stroke at the set maximum current value.
以上の説明のように、 減圧弁スプール 2 8は第 1室 2 4、 第 2室 2 5をパイロッ ト油圧源とドレ一ンに連通 ·遮断すると共に、 第 2 室 25内の圧力を減圧する機能を有する。  As described above, the pressure reducing valve spool 28 communicates and shuts off the first chamber 24 and the second chamber 25 with the pilot hydraulic power source and the drain, and reduces the pressure in the second chamber 25. Has functions.
次に本発明の第 2実施例を説明する。  Next, a second embodiment of the present invention will be described.
コイル 3 1に前述の設定した中間電流値を通電して (P 1 X PA) = (P2XPB) としてスプール 3を中立位置に保持する。 Energize the coil 31 with the above-mentioned intermediate current value to set (P1XPA) = (P2XPB) and hold the spool 3 in the neutral position.
スプール 3を第 2位置に移動する時には前述の状態からコイル 3 1への通電量を減少することで第 2室 2 5の圧力 P 2を高くし、 (P1 X PA) < (P2 X PB) としてスプール 3を右方 (第 2位置) に向 けて移動する。  When the spool 3 is moved to the second position, the pressure P 2 in the second chamber 25 is increased by reducing the amount of electricity to the coil 31 from the above-mentioned state, and (P1 X PA) <(P2 X PB) To move the spool 3 to the right (second position).
スプール 3を第 1位置に移動する時には前述の状態からコイル 3 1への通電量を大きく して第 2室 2 5内の圧力 P 2を低くし、 (P 1 X P A) く (P2 X PB) としてスプール 3を左方 (第 1位置) に向 けて移動する。 このようにすれば、 図 6に示すように操作レバー 5 0を中立位置 Nから第 1位置 A、 第 2位置 Bに揺動自在とし、 操作レバー 5 0が 中立位置 Nの時にはコイル 3 1 に所定の電流値を通電し、 第 1位置 Aに向けて揺動するとコイル 3 1への通電量が増加し、 第 2位置 B に向けて揺動するとコイル 3 1への通電量が減少するようにするこ とが可能となる。 When the spool 3 is moved to the first position, the amount of electricity to the coil 31 is increased from the above-mentioned state to decrease the pressure P2 in the second chamber 25, and (P1 XPA) to (P2 X PB) To move the spool 3 to the left (first position). In this way, as shown in FIG. 6, the operation lever 50 can be swung from the neutral position N to the first position A and the second position B, and when the operation lever 50 is in the neutral position N, the coil 31 is connected. When a predetermined current value is applied and swinging toward the first position A, the amount of current to the coil 31 increases, and when swinging toward the second position B, the amount of current to the coil 31 decreases. It becomes possible to make it.
これにより、 通常一般の油圧パイロッ ト弁により操作弁を切換え 操作するのと同様な操作感覚で操作弁のスプール 3を移動すること ができる。  Thus, the spool 3 of the operation valve can be moved with the same operation feeling as when the operation valve is switched and operated by a general hydraulic pilot valve.
なお、 前述のように操作レバ一 5 0の揺動によりコイル 3 1に通 電制御するには、 操作レバ一 5 0でポテンショメ一夕 5 1を回転し、 そのポテンショメ一夕 5 1の出力値によってコイル 3 1への通電量 をコントロール等によって制御すれば良い。  As described above, in order to control the conduction of the coil 31 by swinging the operation lever 50, the potentiometer 51 is rotated by the operation lever 50, and the potentiometer 51 The amount of current to the coil 31 may be controlled by a control or the like according to the output value.

Claims

言 求の範囲 Scope of request
1. 弁本体 1のスプール孔 2にスプール 3を、 ポンプポー卜 7 と 第 1ァクチユエ一夕ポート 8、 第 2ァクチユエ一夕ポート 9を遮断 する中立位置と、 この中立位置を境とした一方向でポンプポー卜 7 と第 2ァクチユエ一夕ポー卜 9を連通し、 第 1ァクチユエ一夕ポー ト 8とタンクポートを連通する第 1位置と、 前記中立位置を境とし た他方向でポンプポート 7と第 1ァクチユエ一夕ポート 8を連通し、 第 2ァクチユエ一夕ポー卜 9とタンクポートを連通する第 2位置と に移動自在に嵌挿し、 そのスプール 3をスプリング 1 3で中立位置 に保持した操作弁において、 前記スプール 3を第 1位置に向けて移 動する第 1室 2 4と、 前記スプール 3を第 2位置に向けて移動し、 かつ第 1室 2 4よりも受圧面積が大きな第 2室 2 5と、 比例電磁減 圧弁 3 2を設け、 前記比例電磁減圧弁 3 2を、 通電量がゼロの時に は第 1室 2 4、 第 2室 2 5を油圧源と遮断し、 かつ低圧側に連通し、 通電量が設定した最小電流値の時には第 1室 2 4、 第 2室 2 5を油 圧源に連通し、 通電量が設定した最小電流値から設定した最大電流 値まで順次大きくなるにつれて第 2室 2 5内の圧力を順次減圧する と共に、 第 1室 2 4を油圧源に連通し続けるものとしたことを特徴 とする操作弁のスプール移動装置。  1. The spool 3 is inserted into the spool hole 2 of the valve body 1, and the pump port 7 and the first actuator port 8 and the second actuator port 9 are shut off in one direction. The pump port 7 communicates with the second actuator port 9 and the first port 8 communicates with the tank port, and the pump port 7 communicates with the pump port 7 in the other direction from the neutral position. (1) An operating valve that communicates with the actuator port (8) and is movably inserted into the second port (9) and the tank port (2) that communicates with the tank port.The spool (3) is held at the neutral position by the spring (13). A first chamber 24 for moving the spool 3 toward the first position; and a second chamber for moving the spool 3 toward the second position and having a larger pressure receiving area than the first chamber 24. 2 5 and proportional solenoid pressure reducing valve 3 2 When the energization amount is zero, the proportional electromagnetic pressure reducing valve 32 shuts off the first chamber 24 and the second chamber 25 from the hydraulic pressure source, and communicates with the low pressure side when the energization amount is the set minimum current value. The first chamber 24 and the second chamber 25 are connected to a hydraulic pressure source, and the pressure in the second chamber 25 is sequentially reduced as the amount of current increases from the set minimum current value to the set maximum current value. A spool moving device for an operation valve, wherein the first chamber 24 is kept in communication with a hydraulic pressure source.
2 .前記比例電磁減圧弁 3 2の通電量が設定した最小電流値と設 定した最大電流値との中間の設定した中間電流値の時に第 2室 2 5 内の圧力が、 その第 2室 2 5内の圧力によりスプール 3を第 2位置 に向けて移動する力と第 1室 2 4内の圧力によりスプール 3を第 1 位置に向けて移動する力が同一となるようにし、 前記比例電磁減圧 弁 3 2に設定した中間電流値を通電してスプール 3を中立位置に保 持するようにした請求項 1記載の操作弁のスプール移動装置。 2.When the energizing amount of the proportional electromagnetic pressure reducing valve 32 is an intermediate current value between the set minimum current value and the set maximum current value, the pressure in the second chamber 25 is increased. 25, the force for moving the spool 3 toward the second position by the pressure in the first chamber 24 and the force for moving the spool 3 toward the first position by the pressure in the first chamber 24 are the same. Decompression 2. The spool moving device for an operation valve according to claim 1, wherein an intermediate current value set to the valve 32 is supplied to hold the spool 3 at the neutral position.
3 . 前記スプール 3にピス トン 2 3を連結して第 1室 2 4 と第 2室 2 5を形成し、 コイル 3 1の通電量に比例した推力となるブラ ンジャ 3 0と、 減圧弁スプール 2 8と、 油圧源に連通した第 1ポー ト 3 3と、 第 1室 2 4に連通した第 2ポート 3 4と、 第 2室 2 5に 連通した第 3ポート 3 5 と、 ドレ一ン穴 4 5とで比例電磁減圧弁 3 2 とし、 前記減圧弁スプール 2 8を第 2スブリング 4 3で第 1の位 置とし、 プランジャ 3 0の小さな推力によって減圧弁スプール 2 8 が第 2スプリング 4 3に抗して第 2の位置に押され、 ブランジャ 3 0の推力が大きくなることによって減圧弁スプール 2 8が第 3の位 置に押されようにし、 減圧弁スプール 2 8とピストン 2 3との間に 第 1スプリング 4 2を設け、 この第 1スプリング 4 2のパネ力で第 3の位置の減圧弁スプール 2 8を第 2の位置に向けて押すようにし、 前記減圧弁スプール 2 8が第 1の位置の時には第 1ポート 3 3を遮 断し、 第 2ポート 3 4と第 3ポート 3 5をドレーン穴 4 5に連通し、 減圧弁スプール 2 8が第 2の位置の時には第 1ポー ト 3 3 と第 2 ポート 3 4と第 3ポート 3 5を連通し、 ドレ一ン穴 4 5を閉じ、 減 圧弁スプール 2 8が第 3の位置の時には第 1ポート 3 3と第 2ポー ト 3 4を連通し、 第 1ポート 3 3と第 3ポート 3 5を遮断し、 かつ 第 3ポート 3 5を減圧部を経て低圧側に連通し、 スプール 3が他方 向ス トロークェンド位置から一方向に移動するストロ一クに応じて 第 2スプリング 4 2のパネ力が順次大きくなるようにした請求項 1 又は 2記載の操作弁のスブール移動装置。  3. A piston 23 is connected to the spool 3 to form a first chamber 24 and a second chamber 25, and a plunger 30 having a thrust proportional to the amount of current supplied to the coil 31 and a pressure reducing valve spool 28, a first port 33 communicating with the hydraulic pressure source, a second port 34 communicating with the first chamber 24, a third port 35 communicating with the second chamber 25, and a drain. The pressure reducing valve spool 28 is set to the first position by the second spring 43 with the hole 45 and the proportional electromagnetic pressure reducing valve 32 with the hole 45, and the pressure reducing valve spool 28 is moved to the second spring 4 by the small thrust of the plunger 30. 3 is pushed to the second position, and the thrust of the plunger 30 is increased, so that the pressure reducing valve spool 28 is pushed to the third position, and the pressure reducing valve spool 28 and the piston 23 are connected to each other. The first spring 42 is provided between the first spring 42 and the pressure reducing valve spool 28 at the third position is moved to the second position by the panel force of the first spring 42 When the pressure reducing valve spool 28 is in the first position, the first port 33 is shut off, the second port 34 and the third port 35 communicate with the drain hole 45, and the pressure is reduced. When the valve spool 28 is in the second position, the first port 33, the second port 34, and the third port 35 are communicated, the drain hole 45 is closed, and the pressure reducing valve spool 28 is moved to the third position. When the position is, the first port 33 and the second port 34 are connected, the first port 33 and the third port 35 are shut off, and the third port 35 is connected to the low pressure side via the pressure reducing part. 3. The sub-bulb moving device for an operating valve according to claim 1, wherein the panel force of the second spring 42 is sequentially increased according to a stroke in which the spool 3 moves in one direction from the other-side stroke position. 4. .
PCT/JP1997/001202 1996-04-17 1997-04-08 Device for moving spool of control valve WO1997039245A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/95127 1996-04-17
JP09512796A JP3726924B2 (en) 1996-04-17 1996-04-17 Operation valve spool moving device

Publications (1)

Publication Number Publication Date
WO1997039245A1 true WO1997039245A1 (en) 1997-10-23

Family

ID=14129167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001202 WO1997039245A1 (en) 1996-04-17 1997-04-08 Device for moving spool of control valve

Country Status (2)

Country Link
JP (1) JP3726924B2 (en)
WO (1) WO1997039245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058011A1 (en) * 1999-06-02 2000-12-06 Robert Bosch Gmbh Multiple-way valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545451C2 (en) * 2021-03-31 2023-09-12 Parker Hannifin Emea Sarl A method and valve arrangement for controlling motion of a spool of a directional control valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140379U (en) * 1982-03-17 1983-09-21 豊興工業株式会社 Solenoid directional valve
JPS61153005A (en) * 1984-12-27 1986-07-11 Hitachi Constr Mach Co Ltd Displacement controller for hydraulic machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140379U (en) * 1982-03-17 1983-09-21 豊興工業株式会社 Solenoid directional valve
JPS61153005A (en) * 1984-12-27 1986-07-11 Hitachi Constr Mach Co Ltd Displacement controller for hydraulic machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058011A1 (en) * 1999-06-02 2000-12-06 Robert Bosch Gmbh Multiple-way valve

Also Published As

Publication number Publication date
JPH09280387A (en) 1997-10-28
JP3726924B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP4160530B2 (en) Control valve device and pressure circuit
JP2000516885A (en) Electro-hydraulic control device
JP2551538Y2 (en) Pilot valve
US7766042B2 (en) Direct operated cartridge valve assembly
WO1994015128A1 (en) Control valve with electromagnetic type proportional pressure reducing valve
JP2003314736A (en) Valve device with electromagnetic actuation
WO1997039245A1 (en) Device for moving spool of control valve
JPH06193606A (en) Operation valve having pressure compensation valve
JPH10220409A (en) Directional control valve device
EP3928004A1 (en) Coaxial valves
JPH0755031A (en) Directional control valve for flow rate assistance
JP3534324B2 (en) Pressure compensating valve
US4479514A (en) Float positioning assembly for pilot operated valve
JP4036174B2 (en) Clutch operating device
JPH0310443Y2 (en)
JP2844504B2 (en) Electromagnetic proportional control valve
JP2518164Y2 (en) Pilot type solenoid valve with manual operation
JP2510475Y2 (en) Solenoid pressure control valve
JP2801583B2 (en) Flow control device for variable displacement pump
JPS6123985Y2 (en)
JPS603419Y2 (en) select valve
JP3888081B2 (en) Clutch operating device
JPH10205503A (en) Valve and operating device therefor
JP3752153B2 (en) Pressure compensation hydraulic circuit
WO1995023291A1 (en) Pressure oil supply device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase