WO1997034008A1 - Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas - Google Patents

Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas Download PDF

Info

Publication number
WO1997034008A1
WO1997034008A1 PCT/ES1997/000059 ES9700059W WO9734008A1 WO 1997034008 A1 WO1997034008 A1 WO 1997034008A1 ES 9700059 W ES9700059 W ES 9700059W WO 9734008 A1 WO9734008 A1 WO 9734008A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
genome
defective
dna sequence
canine
Prior art date
Application number
PCT/ES1997/000059
Other languages
English (en)
French (fr)
Inventor
Luis Enjuanes Sanchez
Juan Plana Duran
Sara Alonso Villanueva
Mª Luisa BALLESTEROS JARREÑO
Joaquin Castilla Castrillon
José Manuel Gonzalez Martinez
Ander Izeta Parmesan
Ana Mendez Zunzunegui
María MUNTION SAENZ
Zoltan Penzes
José Manuel Sanchez Morgado
Carlos Miguel Sanchez Sanchez
Cristian Smerdou Picazo
Isabel Sola Gurpegui
Original Assignee
Cyanamid Iberica, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyanamid Iberica, S.A. filed Critical Cyanamid Iberica, S.A.
Priority to AU19277/97A priority Critical patent/AU729044B2/en
Priority to PL97328791A priority patent/PL188546B1/pl
Priority to EP19970907111 priority patent/EP1008652A1/en
Priority to US09/155,003 priority patent/US7041300B1/en
Priority to JP53230497A priority patent/JP3769300B2/ja
Priority to BR9708061A priority patent/BR9708061A/pt
Priority to HU0000356A priority patent/HUP0000356A3/hu
Publication of WO1997034008A1 publication Critical patent/WO1997034008A1/es
Priority to US11/503,214 priority patent/US20070048862A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • A61K39/225Porcine transmissible gastroenteritis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/542Mucosal route oral/gastrointestinal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20041Use of virus, viral particle or viral elements as a vector
    • C12N2770/20043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20061Methods of inactivation or attenuation
    • C12N2770/20064Methods of inactivation or attenuation by serial passage

Definitions

  • This invention relates to vectors based on co-diamond defective viral genomes that express antigens suitable for the induction of systemic and secretory immune responses for the prevention of mucosal infections and their use for vaccination purposes together with a suitable complementary virus.
  • recombinant proteins using expression vectors is a long-known fact.
  • prokaryotic and yeast expression systems are highly effective and easy to use while expression systems used with higher eukaryotic cells pose some drawbacks related to low levels of protein production and limitations in the range of the nospeder.
  • baculovirus-based vectors are the most effective in terms of protein production. However, they can only be used in insect cells that, as is known, glycosylate the proteins differently than animal cells do.
  • the construction of the recombinant virus occurs through homologous recombination, which is a laborious technique especially when numerous genetic variants have to be analyzed.
  • vectors based on DNA viruses suitable for expressing necerologist genes are known.
  • DNA-based vectors has numerous drawbacks, since they replicate in the nucleus of the host cell and can become integrated into said genome, so they are unsafe.
  • the vectors Based on RNA they overcome the drawbacks associated with the use of DNA viruses since they do not replicate in the genome of the host cell but in the cytoplasm, replication takes place via RNA and not via DNA, and the chances of them being integrated into the genome They are very small, so vectors based on these RNA viruses are safer.
  • DI mferential defective particles
  • the term "DI particle” refers to defective viruses that lack a region of the RNA or DNA genome, contain the proteins and antigens of the virus, require coinfection of the infectious parental virus to replicate (complement virus) and specifically interfere with the homologous complement virus at replication at its expense [Huang and Baltimore, Nature, 226, 325-327 (1970)].
  • DI genomes arise from genome rearrangements as a result of "jumps" of the polymerase RNA from one template RNA to another or from one segment of a template RNA to another segment thereof. These DI genomes, once generated, are amplified at the expense of the parental genome or the amplifying virus that encodes the proteins involved in replication and encapsidation and that must compete with the defective genomes for such products.
  • DI particles of some coronaviruses such as the murine hepatitis C virus (MHV), the infectious bronchitis virus (IBV) and the bovine coronavirus (BCV) have been obtained and characterized, although DI particles derived from the virus of transmissible swine gastroenteritis (VGFT).
  • MHV murine hepatitis C virus
  • IBV infectious bronchitis virus
  • BCV bovine coronavirus
  • DI particles derived from the virus of transmissible swine gastroenteritis (VGFT) One of the natural DI particles of MHV has been used as the basis for developing an expression vector in which the exogenous gene is inserted under the control of an internal transcription promoter sequence [Lin and Lai, J. Virol., 6110-6118 , Oct. (1993)].
  • heterologous gene expression vectors that overcome the aforementioned drawbacks.
  • the present invention provides a solution to the existing problem comprising a vector based on a recombinant defective viral genome that expresses suitable antigens to induce an immune response and to prevent infections caused by various infectious agents of different animal species.
  • the hetercologist gene expression vectors (c DNA sequences) provided by this invention have high safety as well as high cloning capacity and can be designed so that their species specificity and tropism can be easily controlled, so said vectors are suitable for the formulation of vaccines capable of conferring protection against infections caused by different infectious agents of different animal species.
  • an object of the present invention is a vector based on a recombinant defective viral genome, which expresses at least one antigen suitable for the induction of an immune response, in particular a systemic and secretory immune response, against infectious agents. of different animal species, or an antibody that provides protection against an infectious agent, provided with high safety and cloning capacity and that can be designed so that its species specificity and tropism can be easily controlled.
  • the defective viral genome that serves as a basis for the construction of said vector is also an additional object of this invention.
  • Another additional object of this invention is a recombinant heteroioga protein expression system comprising (a) the previously described vector and (b) a c-implementing virus that facilitates the proteins involved in the replication and encapsidation of the recombinant defective viral genome.
  • Another additional object of this invention is vaccines capable of inducing protection against infections caused by different infectious agents of different animal species comprising the previously described recombinant system together with a pharmaceutically acceptable excipient.
  • These vaccines can be mono-, or multivalent depending on whether the expression vectors present in the recombinant system express binds, or more antigens capable of inducing an immune response against one, or more infectious agents or one or more antibodies that provide protection against one or more infectious agents.
  • Another objects provided by this invention comprise an animal immunization method consisting of the administration of said recombinant system or vaccine, as well as a method. It will protect the newborn animals against infectious adents that infect said species.
  • FIG. 1 shows the structure of the VGPT.
  • the virion is a spherical particle formed by a lipid envelope inside which is a 28.5 kilobase (kb) RNA molecule of single strand and positive polarity. East RNA is associated with the N protein forming the nucleocapsid.
  • the structural proteins M and sM are included in the membrane.
  • the S protein is grouped into trimers and is anchored on the outside of the shell forming the peplomers.
  • Figure 2 shows the genomic organization of the four sequenced coronaviruses: MHV, IBV, HCV229E (human coronavirus 229E) and VGPT.
  • the open reading phases encoding each protein are represented to scale.
  • the principle of mRNAs expressed by each virus is indicated with arrows.
  • the number of mRNA expressed by the MHV or VGPT viruses may vary depending on the viral strain.
  • the arrows of the VGPT correspond to the mRNAs expressed by the strain THER-1.
  • the mRNAs are 3'-coterminals and are numbered in decreasing order of size.
  • Figure 3 shows the expression of the VGPT genome, strain THER-1.
  • ORF open reading phases
  • the arrangement of the open reading phases (ORF) in the genome is indicated: Pol, polymerase; S, sM, M and N, structural proteins; nsp 3a, 3b and 7, non-structural proteins (protein 3b is not produced with this virus).
  • the genome is transcribed into an RNA of equal length but negative polarity (-) that will serve as a template for the synthesis of - mRNA (1 to 7).
  • - negative polarity
  • the common sequence, leader, of the 5 '(square) end, the stretch of polyadenine at the 3' end and the area that is translated into each of them (thick lines) is represented.
  • Figure 4 shows the evolution of the titre of the VGFT THER-1 (A) and? UR46-Mar 1CC12 (B) isolates with the high multiplicity of infection (m.d.i.) pass number in ST cells.
  • Figure 5 shows the results of the electrophoretic analysis of the RNAs produced in ST cells infected with THER-1 virus passed 46 times at high mdi.
  • the pass number is indicated above each channel while the bars on the left indicate the position of the molecular weight markers (the genomic RNA of the VGPT and GibcoBRL markers), expressed in kb.
  • the bars on the right indicate the mRNA of the VGPT and the interfering defective RNAs (DI). NI, not infected.
  • Figure 6 shows the results of the analysis in Northern-type assays of RNA from ST cells infected with the THER-1p35 virus.
  • Figure 7 shows the results of Northern-type RNA assays from diluted passes of the THER-l-STp41 virus in ST cells.
  • Figure 8 shows the effect of cell line change in the propagation of defective RNAs A, B and C.
  • the THER-1-STp46 virus was passed ten times undiluted in IPEC cells (pig intestinal epithelium), and five in PM cells (porcine macrophages).
  • Figures 8A and 8B evolution of the viral titer with the pass number in IPEC and PM cells, respectively.
  • Figure 8C RNA analysis of ST cells infected with virus from passages 1 and 10 in IPEC (by metabolic labeling with 32 P i ), or from passages 1 and 5 in PM (by hybridization with an oligonucleotide complementary to the leader RNA ).
  • Figure 9 shows the encapsidation of defective genomes A, 3 and C.
  • Figure 9A shows an agarose gel stained with ethidium bromide, in which the RNA extracted from purified virions is analyzed, by centrifugation through a 15% sucrose mattress (w / v), pass 1 and pass 41. In the channel of pass 41, RNAs A, B and Z are observed, in addition to the parental genome. The bars on the left indicate mobility markers in kb.
  • Figure 9B shows the results of the analysis of the vinon RNA of pass 41 purified by centrifugation through mattresses or a continuous sucrose gradient, in Northern-type assays with an oligonucleotide complementary to the leader RNA.
  • RNAs of GibcoBRL and RNA of virions of pass 1 were used as markers.
  • Channels by c RNA extracted from sedimented virions through 31% and 15% (w / v) sucrose mattresses, respectively.
  • Dye channels RNA extracted from purified virus through a continuous cushion of sucrose, fractions of density 1.20 and 1.15 g / ml, respectively.
  • Figure 10 shows the cloning strategy of the defective RNAs DI-3 and DI-C, where a schematic representation of the complementary DNA fragments (cDNA) obtained by RT-PCR is observed using as a template full-length genomic RNA (A ), DI-3 (B) and DI-C
  • Figure 1 shows the results of the electrophoretic analysis of the PCR products obtained in the amplification of the defective RNAs.
  • the purified virion RNA THER-ipl or THER-lp41 was used as a template in an RT-FCR reaction with oligenueleotides 1 and 2 (a), 3 and 4
  • RNAs B and C migrate very close, and were cut as a single band.
  • Figure 12 shows the complete cDNA sequence of the DI-C RNA [see SEC. ID. No. 24], obtained by sequencing the overlapping fragments of cloning a, b, c and d.
  • the DI-C RNA has maintained four discontinuous regions of the parental genome: I, II, III and IV. The junction points of these regions are indicated in the sequence by arrows.
  • the translation of the three ORFs present in the DI-C genome is indicated: the 6.7 kb chimeric ORF resulting from the fusion of the discontinuous regions I and II in phase; the three-phase mini-ORF that precedes it in phase and the ORF that begins in the AUG of the S gene.
  • FIG. 13 shows a diagram of the structure of the DI-C RNA.
  • the total genomic length is shown to the right of the boxes.
  • the DI-C RNA contains four discontinuous regions (I, II, III and IV) of the VGPT genome. These regions comprise 2.1 kb of the 5 'end of the genome, the almost complete ORFlb including the overlap zone between ORFs 1a and 1b, the principle of the S gene, the incomplete ORF7 and the 3' untranslated region.
  • the letters and numbers on the parental genome box indicate the viral genes.
  • the numbers below the box indicate the position in the parental genome of the flanking nucleotides of the discontinuous regions, taking as reference the sequence of the VGPT PUR46-PAR isolate.
  • the length of the four discontinuous regions is indicated in nucleotides.
  • the third box shows the number of nucleotides derived from each viral gene, taking into account that ORFs 1a and 1b overlap 43 nucleotides in the parental genome. Open reading phases predicted by computer analysis are indicated by arrows or arrowheads. Pnt, false loop (pseudoknot); Pol polymerase; Mib, metal binding domain (metal ion binding); Hel, helicase; Cd, conserved domain.
  • FIG 14 shows the structure of the DI-E RNA.
  • the DI-B RNA contains three discontinuous regions (I, II and III) of the VGPT genome to understand. 2.1 kb of the 5 'end of the genome, the complete ORFlb including the overlap zone between ORFs 1a and 1b, the beginning of the S gene, the end of 0RF7 and the untranslated region of the 3' end.
  • the letters and numbers on the parental genome box indicate the viral genes.
  • the numbers below the box indicate the position in the parental genome of the flanking nucleotides of the discontinuous regions, taking as reference the sequence of the VGPT PUR46-PAR isolate.
  • the heterogeneity in the size of the deletion that occurred between discontinuous regions II and III means that there is actually a population of DI-B genomes.
  • the nucieotide length of the three discontinuous regions for larger and smaller genomes, respectively is indicated.
  • the third box shows the number of nucleotides derived from each viral gene, taking into account that ORFs 1a and 1b overlap 43 nucleotides in the parental genome.
  • the open reading phases predicted by the computer analysis are indicated by arrows or arrowheads. Pnt, false loop (pseudcknot); Pol polymerase; Mib, metal binding domain .metal and on binding); Hel helicase; Cd, conserved domain.
  • Figure 15 shows the secondary and tertiary structure of the RNA in the overlap zone between ORFs 1a and 1b in the DI-C RNA.
  • A Structure predicted when considering the region closest to the hairpin structure that presents complementarity with the nucleotides of the loop to constitute the pseudoknot (nucleotides 2354 to 2358). The "slip" sequence UUUAAAC is underlined. The termination codon of the ORF1a is indicated in frame.
  • B Schematic representation of this pseudoknot, which involves two sections of sequence ownership (stems: S1 and S2). The slip sequence is plotted.
  • C An alternative model considering nucleotide sequence 2489 to 2493 in the pseudoknot folding. This structure contains an additional sequence of sequence (stem).
  • D Schematic representation of the pseudokncz, in which the three systems are indicated: S1, S2 and S3.
  • Figure 16 shows the mapping of DI RNAs by hybridization with cugonucleotides specific for the virus in Northern-type assays.
  • the THER-1-STp41 virus RNA is fractionated in a ⁇ arose gels until a clear separation of the parental genome and DI A, 3 and C RNAs.
  • the RNA was transferred to nylon filters that hybridized with several oligonucleotides labeled with 32 P i , which hybridized with the parencal genome (+), and hybridized (+) or not (-) with the defective genomes.
  • the approximate location of the oligonucleotide complementary sequences in the parental genome is indicated by arrows. Its exact sequence and position are indicated in Table 3. All oligonucleotides hybridized with the parental genome and gave the expected results with RNAs B and C.
  • Figure 17 shows a scheme for obtaining vaccine viruses by transfection of cells infected with DI-C RNA.
  • a prototype construction scheme that allowed the obtaining of DI-C RNA by in vitro transcription is illustrated. keeping the 5 'and 3' ends present in the original defective particle.
  • the bactericphage T 7 promoter sequence [PrT 7 ] and the autocatalytic ribozyme sequence of hepatitis delta virus (HDV) [Rz HDV] were cloned flanking the DI-C RNA sequence.
  • the autocatalytic cut point introduced by the ribozyme is indicated on the sequence.
  • the arrowheads indicate the positions of the internal transcription promoter sequences naturally maintained in the DI-C RNA. L, leader.
  • T7 ⁇ transcription termination signals of bacteriophage T7. Lungs that encapsidated both the complement virus and the defective genomes in which the heterologous genes had been cloned were rescued, by transfecting the RNAs transcribed in vi socre ST cells infected with the corresponding complement virus.
  • Figure 18 shows a prototype construction scheme that allowed the eDottion of pDIA-6A.C3 by in vitro transcription, keeping the 3 'and 5' ends present in the original defective oarticle.
  • the sequence of the bacteriophage T 7 promoter [T7Pr] and the presence of the autocatalytic ribozyme delta neoatitis virus (HDV) [Rz HDV] were cloned flanking the cDNA sequence encoding a self-replicating RNA.
  • the wavesmido pDIA-6A. C3 contains the gene encoding the monoclonal antibody 6A.C3 that neutralizes VGPT [see Example 4].
  • This invention provides heterologous DNA expression vectors, based on recombinant defective viral genomes that express at least one antigen suitable for the induction of an immune response against different infectious agents of different animal species, or an antibody that provides protection against a infectious agent, provided with high safety and cloning capacity and that can be designed so that its species specificity and tropism can be easily controlled.
  • infectious agent in the sense used in this description includes any viral, bacterial or parasitic infectious agent that can infect an animal and cause it a pathology.
  • animal species includes animals of any species, preferably mammals and more preferred among the eorcin, canine or feline species.
  • past expression vectors are provided in recombinant defective viral genomes that express at least one antigen suitable for the induction of a systemic and secretory immune response, for the prevention of mucosal iafections, designed to easily control the species specificity and its tropism to infect enteric or respiratory mucous membranes, so they are very suitable for inducing mucosal immunity and lactogenic immunity, especially in the protection of neonates from intestinal tract infections.
  • an expression vector used in a recombinant defective viral genome that expresses at least one antibody that provides protection against an infectious agent.
  • Expression vectors provided by this invention comprise a defective viral genome derived from a virus, preferably, a virus with RNA genome and positive polarity, which maintains the 3 'and 5' ends of the parental virus, has internal deletions and depends on a complementary virus for replication. Therefore, the invention also provides a defective viral genome comprising the genome of a parentai virus that has the viral replicase recognition signals located at the 3 'and 5' ends, which further comprises internal deletions, and wherein said defective viral genome depends on a complementary virus that facilitates functional and structural proteins for the replication and encapsidation of the recombinant defective viral genome. In a particular embodiment, the defective viral genome further comprises the complete sequence encoding the parental virus replicase.
  • the complementary virus can provide only the structural proteins necessary for encapsidation of the recombinant defective viral genome or, alternatively, the functional and structural proteins for the replication and encapsidation of the recombinant defective viral genome.
  • the expression vector comprises the DNA complementary (cDNA) to said defective RNA or a substantial cDNA complementary to said defective RNA.
  • the vectors provided by this invention have a high cloning capacity of at least 18 kb, which is the highest cloning capacity described for a vector passed in eukaryotic RNA viruses. Additionally, these vectors have high safety since (a) they are based on defective genomes, (b) they comprise RNA genomes and do not use DNA as a replicative intermediate, and (c) they are based on viruses that grow in the cytoplasm of infected cells , all of which makes the defective genome unable to recombine with the cell chromosome.
  • RNA genomes derived from coronaviruses particularly from VGPT.
  • These genomes have the additional advantage that the recombination frequency of VGPT is very low ( ⁇ 1 x 10 9 ), which means that the defective genome does not easily recombine with the complement virus genome.
  • the invention contemplates the convenience of using the same attenuated virus as both a complementary virus and a starting material for obtaining the defective genome.
  • the defective genomes that form the basis of such vectors can be obtained by undiluted sendered passes of the virus from which they are derived, in different cellular systems.
  • the frequency of generation of DI particles can vary greatly in different virus-cell systems, so it is convenient to make passes with different virus isolates in different cell lines in order to select the appropriate isolate and cell line.
  • viruses are isolated and used to analyze the intracellular RNAs produced in the infection in order to observe the possible appearance of bands that do not correspond to any viral messenger RNA (mRNA), in which case
  • mRNA viral messenger RNA
  • RNAs produced by conventional techniques are analyzed, for example, metabolic marking with 32 P i or hybridization with an appropriate oligonucleotide.
  • Example 1 describes in detail the obtaining and characterization of defective RNAs derived from VGPT.
  • complementary or substantially cDNAs can be obtained with defective RNAs complementary, to said defective RNAs, by a reverse transcriptase reaction (RT) and polymerase chain amplification (PCR), hereinafter RT-PCR.
  • cDNAs can be cloned into suitable plasmids, for example Bluescript II, under the control of effective promoters.
  • suitable plasmids for example Bluescript II
  • the resulting plasmids contain the defective viral genome under the control of regulatory elements, which contain the signals of regulation and control of repiication as well as the beginning and termination of transcription and translation.
  • these plasmids may include polyA sequences, autocatalytic or restriction enzyme recognition sequences that allow heterologous DNA insertion, and corresponding regulation, control and termination signals.
  • Plasmids containing the defective genome, or the corresponding cDNA, thus obtained can be manipulated by conventional Genetic Engineering techniques to clone at least one heterologous DNA sequence, which encodes a certain activity, under the control of the promoter of a gene that it is present in the defective genomes or any other virus promoter from which the defective genome or variant of these promoters is derived with increased efficiency, and from the regulatory sequences contained in the resulting expression vector.
  • Example 2 describes the generation of expression vectors encoding antigens that induce protection against different viruses.
  • Expression vectors provided by this invention may express one or more activities, such as one or more antigens capable of inducing immune responses against different infectious agents, or one or more antibodies that provide protection against one or more infectious agents.
  • these vectors express at least one antigen capable of inducing a systemic immune response or an immune response in mucous membranes against different agents. infectious that spread in respiratory or enteric mucous membranes.
  • said expression vectors express, at least, a gene that encodes the heavy and light chains of an antibody of any isotype, for example, IgG 1 , IgA, etc.) that provides protection against an infectious agent.
  • the expressed antibody is the monoclonal antibody identified as 6A.C3 [see Example 4] that neutralizes VGPT, expressed with IgG 1 or IgA isotypes in which the constant part of the mmunoglobulma is of porcine origin.
  • the cloning of the heterologous genes into a plasmid containing a cDNA of a defective RNA denoted from the VGPT was then done by the ORFlb, following the start codon (AUG) of the S gene, and in phase Reading with this gene (Example 2).
  • the heterologous DNA sequences can be cloned in other areas of the genome, for example in the areas corresponding to ORFs 1, 2 or 7 of the VGPT.
  • RNAs are expressed using a suitable polymerase, with the appropriate ones, appropriate cells previously infected with an attenuated coooorator virus are transformed, so that virions containing the genome of the complementary virus and viros with the defective genome can be rescued ( Figure 17).
  • the expression vectors of this invention allow the expression of one or several genes using the same strategy described above.
  • one or several promoters can be used, either a promoter and several ribosome recognition sites (IRES), or alternatively several promoters and a ribosome recognition site.
  • the invention also provides a recombinant heterelogic protein expression system comprising (a) the previously described vector and (b) a complementary virus that facilitates the proteins involved in replication and encapsidation of the recombinant defective viral genome. Therefore, a recombinant system of expression of heterologous proteins married in recombinant defective viral genomes expressing proteins with at least a certain activity is provided, comprising:
  • the recombinant heterologous protein expression system comprises an expression vector, of the type previously described, comprising the complete sequence encoding the parental virus replicase and a complementary parental virus that provides the structural proteins for encapsidation of the defective genome and , optionally, functional proteins (replicase) for replication of the defective viral genome.
  • the invention also provides vaccines capable of inducing protection against infections caused by different infectious agents of different animal species comprising (i) the recombinant system described above, consisting of (a) an expression vector based on a Defective viral genome in which the heterologous DNA sequence is cloned and (b) the complementary virus that collaborates in the replication of the defective genome, together with, optionally, (11) a pharmaceutically acceptable excipient.
  • the vaccines provided by this invention are therefore suitable for conferring immunity against different infectious agents of different animal species.
  • conferring immunity in the sense used in this description, the start-up in the receiving organism (animal to be treated), by the previously described recombinant system, of suitable mechanisms, such as antigen presenting cells, should be understood.
  • the vaccines provided by this invention can be monovalent or rultivalent depending on whether the expression vectors present in the recombinant system express one or more antigens capable of inducing an immune response against one or more infectious agents.
  • Expression vectors can be monovalent or polyvalent as expressed by anus or more antibodies that provide protection against one or more infectious agents.
  • a particular group of vaccines provided by this invention comprises as a complement virus a coronavirus, preferably a porcine, canine or feline coronavirus.
  • vaccines are especially suitable against porcine, canine and feline infectious agents, which infect the mucous membranes of these species or use them as a route of entry.
  • monovalent vaccines capable of protecting pigs, dogs and cats against various swine, canine and feline infectious agents are provided, and tropism is controlled by expressing glycoprotein S or a coronavirus.
  • Monovalent vaccines against porcine infectious agents may contain an expression vector that expresses an antigen selected from the group consisting essentially of antigens of the following porcine pathogens: Actinobacillus pieuropneumoniae, Actmobacillus suis, Haemophiius parasuis, Porcine parvovirus, eptospira, Eschericniapeliotrixatotrotrotriapathix, Pasterella multocida, Bordetella bronchiseptica, Clostridiun sp., Serpulma hydiosenteriae, Mycoplasma hyopneumoniae, porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus, rotavirus, or against the pathogens that cause porcine respiratory and reproductive syndrome, Audorau disease , swine influenza or transmissible gastroenteritis and the etiologic agent of atrophic rhinitis and proliferative ileitis.
  • Monovalent vaccines against canine infectious agents may contain an expression vector that expresses an antigen selected from the group consisting essentially of antigens of the following canine pathogens: canine herpesviruses, canine adenovirds types 1 and 2, canine parvovirus types 1 and 2, canine reovirus, canine rotavirus, canine corcnavirus, canine paramfluenza virus, canine influenza virus, distemper virus (Distemper virus), rabies virus, retrevirus and canine calicivirus.
  • an antigen selected from the group consisting essentially of antigens of the following canine pathogens: canine herpesviruses, canine adenovirds types 1 and 2, canine parvovirus types 1 and 2, canine reovirus, canine rotavirus, canine corcnavirus, canine paramfluenza virus, canine influenza virus, distemper virus (Distemper virus), rabies virus, retrevirus and canine calici
  • Monovalent vaccines against feline infectious agents may contain an expression vector that expresses an antigen selected from the group consisting essentially of antigens of the following feline pathogens: cat calicivirus, feline immunodeficiency virus, feline herpesviruses, feline panleukopenia virus , feline reovirus, Feline rotavirus, feline coronavirus, cat infectious peritonitis virus, rabies virus, feline Chlamydia psittac ⁇ , and feline leukemia virus.
  • the vectors may express an antibody that provides protection against an infectious agent, for example, a porcine, canine or feline infectious agent as previously mentioned.
  • vectors expressing the recombinant ronoclcnal antibody identified as 6A.C3 that neutralizes VGPT have been developed.
  • the vaccines provided by this invention are capable of protecting lions by inducing lactogenic immunity, which has a special interest in the protection of neonates against intestinal tract infections.
  • the vaccines provided by the invention may contain an amount of antigen capable of introducing into the animal to immunize a complementary virus titer of at least 10 8 plaque forming units (pfu).
  • a diluent such as physiological saline or other similar saline solutions can be used.
  • these vaccines may also contain an adjuvant of the hapitually used in the formulation of vaccines, both aqueous, such as aluminum hydroxide, QuilA, suspensions of alumina celes and the like, as oily, based on mmeral oils, glycerides and derivatives of fatty acid, and mixtures thereof, for example, Marcol 52 (ESSO
  • These vaccines may also contain cellular response enhancing substances (PRC), that is, substances that enhance subpopulations of T helper cells (Th 1 and Th 2 ) such as interleukin-1 (IL-1), IL-2, IL- 4, IL-5, IL-6, IL-12, g-IFN (gamma interferon), cell necrosis factor and similar substances, which could, theoretically, cause cellular immunity in vaccinated animals.
  • PRC cellular response enhancing substances
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL- 4 IL-5
  • IL-6 IL-12
  • g-IFN gamma interferon
  • cell necrosis factor gamma interferon
  • the invention provides multivalent vaccines capable of preventing and protecting animals from different infections.
  • These multivalent vaccines can be made from expression vectors in which the different sequences encoding the corresponding antigens have been inserted into the same recombinant vector or by constructing independent recombinant vectors that would later be mixed for co-inoculation together with the complement virus. . Therefore, these multivalent vaccines comprise a recombinant system in which the expression vector itself contains more than one DNA sequence that encodes more than one antigen or alternatively, the recombinant system used in making the vaccine may contain different expression vectors. that express each one of them at least one different antigen.
  • the existing limitation in this type of multivalent vaccines is that said vectors express antigens of infectious agents of the same animal species and that the complementary virus is suitable for such species.
  • sa can prepare multivalent vaccines comprising multivalent vectors using sequences encoding antibodies that provide protection against infectious agents instead of sequences encoding antigens.
  • These vectors may contain a recombinant system that comprises either an expression vector that contains more than one DNA sequence that encodes more than one antibody or different expression vectors that each express at least one antibody. different .
  • vaccines capable of conferring immunity to pigs, dogs and cats against various porcine, canine and feline infectious agents are provided, respectively.
  • the expression vectors contained in the recombinant system of the vaccine must express different antigens of the porcine, canine or feline pathogens previously mentioned.
  • the vaccines of this invention can be presented in liquid or lyophilized form and can be prepared by suspending the recombinant systems in the excipient. If such systems were in lyophilized form, the excipient itself could be the restorative.
  • the vaccines provided by this invention can be used in combination with other conventional vaccines, either as part thereof or as a diluent or lyophilized fraction to be diluted with other conventional or recombinant vaccines.
  • the vaccines provided by this invention can be administered to the animal orally, nasally, subcutaneously, mtradermally, intraperitoneally, intramuscularly or by aerosol.
  • the invention also provides a method for the immunization of animals, in particular pigs, dogs and cats, against one or more infectious agents simultaneously, comprising administration by oral, nasal, subcutaneous, intradermal, intrapentoneal, intramuscular or permuscular route.
  • aerosol medium or combined forms thereof of a vaccine containing an immunologically effective amount of a recombinant system provided by this invention.
  • the invention also provides a method of protecting newborn animals against infectious agents that infect said animals, which consists of oral, nasal administration. subcutaneous, mtradermal, mtraperitoneal, intramuscular c by means of aerosol (or combined forms of these) to mothers before or during the gestation period, or to their progeny, a vaccine that contains a mmunologically effective amount of a recombinant system provided by this invention.
  • the invention is illustrated by the following examples that describe in detail the obtaining of defective viral gen ⁇ mas, their characterization, the construction of plasmids and their manipulation to obtain the expression vectors and the induction of neutralizing antibodies against different infectious agents of different species. .
  • Enteric and Respiratory Helper, line 1] is a mutant attenuated by 20 passes in ST cell cultures derived from the strain PUR46-MAD [Sánchez et al., Virology 174, 410-417 (1990)].
  • the strain PUR46-Mar 1CC12 is also described in Sánchez et al., [Cited supra].
  • Each strain of VGPT was passed undiluted 35 times in ST cells.
  • the mdi of the first pass in each of the three cases was 100 pfu per cell.
  • the supernatant of each pass is collected between 20 and 48 hours post-mfection (hpi), when a clear cytopathic effect was observed, usually when said effect reached more than half of the cell monolayer, and half the volume of this supernatant was used in the next pass infection.
  • the variation of the viral titer with the pass number is depicted in Figure 4.
  • the viral titer ranged in a range of two logarithmic units along the serial passes of each virus. In the case of strain THER-1, the title in passes 30 to 46 was lower than that of the first thirty passes.
  • RNAs that had been passed 35 times in ST cells were used to analyze the mtracellular RNAs produced in the infection. RNAs, metabolically labeled with "P ⁇ between 6 and 9 hours post-infection, were analyzed on a denaturing agarose gel [Maniatis et al., Mol ecular Cl omng: A Lacoratory Manual, Cold Spring Harbor Laooratory, (1982)].
  • RNAs A, B and C which in Figure 5 appear as DI-A, DI-B and DI-C , respectively.
  • RNAs A, B and C which in Figure 5 appear as DI-A, DI-B and DI-C , respectively.
  • RNAs A, B and C had the standard structure of coronavirus defective RNAs, in particular, whether they conserved the 5 'and 3' ends of the wild genome and their Small size was due to internal deletions.
  • RNA of the cells infected with the THER-1-STp35 virus [THER-1 strain virus passed 35 times in ST cells] was extracted and its hybridization was analyzed with specific viral probes in a Northern [Maniatis-type] assay. et al., cited supra] using oligonucleotides complementary to the leader and sequence of the 3 'viral end.
  • RNA of cells infected with THER-1-pl virus passed 1 time in ST cells] and uninfected ST cells (NI) (channels 1 and 2 of each) filter, respectively).
  • the oligonucleotides used as a probe are complementary to the leader RNA (positions 66-91 of the 5 'end of the parental genome); to the untranslated region of the 3 'end (nucleotides 28524-28543 of the 5' end of the parental genome) and to the structural genes M and N (positions 97-116 and 5-24 from the initiating AUG of each gene, respectively).
  • the bars on the right indicate the positions of the viral mRNAs and the subgenomic RNAs A, B and C.
  • the two oligonucleotides hybridized with all parental virus mRNAs, and also detected the A, B and C RNAs, which indicates that these RNAs have suffered internal deletions and have maintained the extremes.
  • the infected cell RNA hybridized with oligonucleotides complementary to the genes of the S, M and N viral structural proteins. None of them hybridized with the defective RNAs, suggesting that the genes of the structural proteins were identified. Therefore, subgenomic RNAs A, B and C are defective genomes, maintain the ends of the parental virus and have internal deletions.
  • RNAs A, B and C are defective genomes, dependent on the parental virus for propagation in culture, ST cells were infected with the THER-1-STp41 virus [strain virus THER-1 passed 41 times in ST cells] to .dmts mdi: 10, 0.1, 0.01 and 0.001 pfu / cell. The resulting virus ce this pass, collected at 10 hpi, was titrated and amplified in a second pass in ST cells, which in turn was used to infect new cells and extract cytoplasmic RNA [Maniatis et al., Cited supra] .
  • RNA 1 genomic RNAs
  • RNA 2 defective RNAs A, B and C [represented as DI-A , DI-B, DI-C]
  • mRNA 2 the genomic RNAs (mRNA 1)
  • mRNA 3 the defective RNAs A, B and C [represented as DI-A , DI-B, DI-C]
  • mRNA 2 the one corresponding to the S gene (mRNA 2).
  • the THER-1-STp4ó virus (the THER-1 virus passed 46 times at high mdi in ST cells) underwent a new series of undiluted passes, in pig intestine epithelial cells (IPEC) and porcine macrephages P.M).
  • Figure 3 shows the variation of the title with the pass number along 10 passes in IPEC ( Figure 8A) and 5 passes in PM ( Figure 8B).
  • the viral yield in both cell lines was lower than that obtained in ST cells, and it is estimated that m.d.i. of each pass varied between 20 and 0.2 pfu / cell.
  • RNA of ST cells infected with THER-1-STp46- virus The RNA of ST cells infected with THER-1-STp46- virus
  • RNA samples were extracted from the purified vinons, and analyzed on an agarose gel by staining with ethidium bromide Figure 9A). In the virions of pass 41, the A, B and C RNAs were detected with the same intensity as the genomic RNA, indicating that the three defective RNAs are efficiently encapsulated.
  • THER-1-STp41 virus was purified by centrifugation through different sucrose mattresses densities, or through continuous sucrose gradients.
  • the RNA of the purified virions in each case was analyzed in a Northern-type assay with an oligonucleotide complementary to the leader RNA ( Figure 9B).
  • RNAs B and C had been estimated by their mobility in the electrophoresis gels, being 10.6 and 9.7 kb respectively. Due to their large size the defective RNAs could not be amplified in a single reverse transcriptase reaction and polymerase chain reaction (RT-PCR) using primers complementary to the ends of the genome.
  • RT-PCR reverse transcriptase reaction and polymerase chain reaction
  • defective genomes were amplified in four reactions. independent, using pairs of primers that give rise to four overlapping fragments that cover the total length of the genome in each case. These overlapping fragments were designated a, b, c and d, ordered from the 5 'end to the 3' end ( Figure 10).
  • the THER-1-STp41 virus RNA extracted from purified virions, containing the three defective RNAs A, 3 and C was used as a template in addition to the parental genome.
  • the amplification of the genomic lRN of the wild virus THER-1 was carried out in parallel.
  • the THER-1-STp41 virus RNA which had been used as a template, was fractionated on an agarose gel until that a clear separation of the bands corresponding to the wild genome RNAs, DI-A, DI-B and DI-C was achieved.
  • the bands corresponding to each of these four RNAs were cut independently and were used as a template in the RT-PCR amplification reaction with oligonucleotides 8 and 9. From the purified genomic band RNA no PCR product was coded.
  • the 3.5 and 4.6 kb c fragments obtained with the primers 5 and 6 were assigned to the defective RNAs C and B, respectively, since the sum of the aad fragments resulting from this assignment coincided in each case with the sizes of the B and C RNAs estimated by mobility.
  • fragment allocation was verified by amplification of each purified band RNA, using oligonucleotides flanking specific deletions. Fragment allocation was also confirmed by Northern-type assays using oligonucleotides that mapped in regions of DI-B that were not present in DI-C, and vice versa.
  • the four overlapping DNA fragments a (1.9 kb), b (2.8 kb), c (3.5 kb) and d (2.1 kb) complementary to RNA C were cloned in Bluescript SK-. At least two clones from independent RT-PCR reactions were sequenced. The sequence of those positions that did not coincide in the different clones possibly errors of Taq polymerase) were sequenced directly from the corresponding uncloned PCR products. In this way the consensus sequence of the DI-C RNA was determined. An average of Taq polymerase error was obtained every 1.2 kb copied. The complete sequence of the DI-C genome is indicated in Figure 12.
  • the primary structure of the DI-B genome was determined by sequencing the cloning fragments a and b (common to those of the DI-C genome), c (same as the parental genome) and d (specific for the DI-B genome).
  • the DI-B genome consists of three discontinuous regions of the genome ( Figure 14): a) the 2144 nucleotides of the 5 'end of the genome, common to all DI-B clones, and identical to region I of the RNA DI- C; b) a region variable in size, from 8178-8243 nucleotides that correspond to positions 12195-20369 to 20436 of the parental genome, and that includes the overlapping zone between the two open reading phases of gene 1, the complete ORF1b, and the first nucleotides of the S and c gene) 278 to 303 nucleotides of the 3 'region of the genome.
  • the clones that constitute the population designated as DI-B genomes differ in the size of the deletion that took place between regions II and III, which begins at the beginning of the S gene (between nucleotides 6 and 73) and ends at the end of the gene 7 (between nucleotides 195 and 233).
  • the sequence of the 5 'end of the parental THER-1 RNA was determined by direct sequencing of the RNA, and is 5'- NCUUUUAAAG-3'.
  • the nature of the first nucleotide "N" in the sequence has not been determined. So far, the 5 'end sequence of three VGPT virus isolates has been described: PUR46-PAR, PUR46-BRI and FS772 / 70, [Eleouet et al., Cited supra; Page et al., Virus Genes 4, 289-301 (1990); Sethna et al., J. Virol. 65, 320-325 (1991)] and all differ in the first nucleotice.
  • the sequence of the leader of the defective RNAs must be the same as that of the parent virus leader, given the exchange of leaders that occurs in a coronavirus infection [Makmo et al., J. Virol. 57, 729-737 (1986)].
  • the three defective ARXs contain polyA, since they bind to oligo dT columns (results not shown).
  • RNAs conserve the overlapping region between ORFs la and 1b that includes the motive responsible for translocation (-1 of the ribosome.
  • the open reading phase of the DI-C RNA ends at the termination codon generated at the junction site of the second regions II and III, where the internal deletion took place in the open reading phase 1b, at position 6685 of the genome DEC.
  • the successful phase of reading the DI-B genome ends in the natural termination cooon of ORF1b.
  • the two defective RNAs have maintained the overlapping zone between ORFs 1a and 1b, which includes the slip sequence and the tertiary structure motif "false loop" (pseudoknot), responsible for the translocation (-1) of the ribosome in this zone [ Eleouet et al., Cited supra].
  • Figure 15 shows the possible secondary and tertiary structures of RNA in this area.
  • Figure 16 shows the mapping of RNAs A, B and C by hybridization with specific oligonucleotides for the virus in Northern type assays.
  • the THER-1-STp41 virus RNA was fractionated in agarose gels until a clear separation of the parental genome RNAs and DI A, B and C.
  • the RNA was transferred to nylon filters that hybridized with oligonucleotide spans labeled with 32 P i , which hybridized with the parental genome (+), and hybridized (+) or not (-) with the defective genomes.
  • the approximate location of the Complementary sequences to oligonucleotides in the parental genome are indicated with arrows. Its exact sequence and position are indicated in Table 3. All oligonucleotides hybridized with the parental genome and gave the expected results with RNAs B and C.
  • the cDNA encoding the DI-C RNA was cloned into a Bluescript II plasmid, under the control of the T7 phage promoter.
  • This cDNA includes polyA sequences, a ribozyme of the nepatitis delta virus (HDV) and the T7 phage termination signals.
  • HDV nepatitis delta virus
  • One of these plasmids, whose construction is shown in Figure 17 has been called pDIC-1.
  • These plasmids can be manipulated to clone in them heterologous genes under the control of the S gene promoter that is present in the defective genome, or another VGPT promoter, or a variant thereof with increased efficiency.
  • RNAs were expressed using phage T7 polymerase, with which ST cells previously infected with the attenuated attendant THER-1 virus were transformed, whereby virions containing the genome of the complementary virus and others with the genome were rescued corresponding defect.
  • These viruses lyophilized in the presence of 2% fetal calf serum were used as a vaccine for the induction of specific antibodies against agents that infect the gastrointestinal or respiratory tract of pigs, dogs and cats.
  • the tropism of the vectors was specifically specified for the swine, canine or feline species using the appropriate attenuated complementary viruses.
  • Pigs were immunized using a recombinant system consisting of complement virus (THER-1) and the plasmid pDIC-1 in which the PEDV coronavirus S glycoprotein gene had been cloned.
  • THER-1 complement virus
  • pDIC-1 plasmid pDIC-1 in which the PEDV coronavirus S glycoprotein gene had been cloned.
  • Immunizations were made by administering 10 9 pfu per iechon orally.
  • Serums collected 45 days after immunization provided complete protection against infection by the PEDV virus (line SEG86-1) of 10-day piglets, when these sera were pre-incubated with the virulent virus before oral administration. .
  • Dogs are immunized using a recompinant system consisting of a complementary virus (canine coronavirus, Fort Dodge line) and the plasmid pDIC-1 in which the canine coronavirus S glycoprotein gene (e stirpe Fort Dcdge) had been cloned.
  • a complementary virus canine coronavirus, Fort Dodge line
  • plasmid pDIC-1 in which the canine coronavirus S glycoprotein gene (e stirpe Fort Dcdge) had been cloned.
  • Immunizations were made by administration of 10 9 pfu per dog orally.
  • the presence of neutralizing antibodies in the sera of vaccinated animals was analyzed at 15, 30, 45 and 60 days after immunization, determining the presence of specific antibodies against canine coronavirus using RlA.
  • Pigs were immunized using a recombinant system consisting of complement virus (THER-1) and plasmid pDIC-1 in which the ORF3 and ORFS of the PRRSV artenvirus (Fort Dodge lineage) had been cloned.
  • THER-1 complement virus
  • plasmid pDIC-1 in which the ORF3 and ORFS of the PRRSV artenvirus (Fort Dodge lineage) had been cloned.
  • Immunizations were made by administration of 10 9 pfu per iechon orally.
  • the presence of neutralizing antibodies in the serum of vaccinated animals was analyzed at 15, 30, 45 and 60 days after immunization, determining the presence of specific antibodies against PRRSV using RIA.
  • a cDNA encoding a self-replicating RNA has been cloned into a piasmod Bluescript II, under the control of the T7 phage promoter.
  • This cDNA includes polyA sequences, a hepatitis delta virus (HDV) ribozyme and the T7 phage termination signals.
  • HDV hepatitis delta virus
  • This plasmid contains the gene encoding the 6A.C3 monoclonal antibody that neutralizes VGPT. The characteristics of the monoclonal antibody 6A.C3 and its construction are described in the Doctoral Thesis of Dr. D.
  • RNAs were expressed using phage T7 polymerase, with ios cells transformed
  • THER-1 whereby virions containing the genome of the complementary virus and others with the corresponding defective genome were rescued.
  • viruses lyophilized in the presence of 2% fetal calf serum can be used as vectors for the expression of the recombinant monoclonal antibody 6A.C3.
  • the tropism of the vectors was made specific for the swine species using the appropriate attenuated complemer.tador virus.
  • Immunizations were made by administration of 10 9 pfu per piglet orally.
  • pDIC-1 introduced into a DH-5 bacterium derived from E. coli, [DH5 / pDIC-1], has been deposited on March 6, 1996, in the European Collection of Animal Cell Cultures (ECACC), in Porton Down, Salisbury, Whiltshire SP4 OJG (United Kingdom), corresponding access number P96030641.
  • THER-1 the attenuated complementary virus called THER-1 was deposited with the ECACC on March 5, 1996, corresponding to the access number

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Los vectores comprenden un genoma viral defectivo recombinante que expresa al menos un antígeno adecuado para la inducción de respuestas inmunes sistémicas y secretoras o un anticuerpo que proporciona protección contra un agente infeccioso. El genoma viral defectivo comprende el genoma de un virus parental que tiene las señales de reconocimiento de la replicasa viral localizadas en los extremos 3' y 5', que comprende además deleciones internas, y en donde dicho genoma viral defectivo depende de un virus complementador para su replicación y encapsidación. Estos vectores son adecuados para formar un sistema recombinante que comprende dicho vector de expresión, y un virus complementador. El sistema es adecuado para la elaboración de vacunas mono- y polivalentes frente agentes infecciosos de distintas especies animales, especialmente cerdos, perros y gatos, y como vehículos para la expresión de anticuerpos protectores frente a agentes infecciosos.

Description

VECTORES BASADOS EN GENOMAS VIRALES DEFECTIVOS RECOMBINANTES Y SU EMPLEO EN LA FORMULACION DE VACUNAS
CAMPO DE LA INVENCION
Esta invención se refiere a unos vectores basados en genomas virales defectivos recoiabmantes que expresan antigenos adecuados para la inducción de respuestas inmunes sistémicas y secretoras para la prevención de infecciones en mucosas y a su empleo con fines vacunales junto con un virus complementador adecuado.
ANTECEDENTES DE LA INVENCION
La obtención de proteínas recombinantes utilizando vectores de expresión es un hechc conocido desde hace tiempo. En general, los sistemas de expresión procarióticos y de levaduras son altamente eficaces y fáciles de usar mientras que los sistemas de expresión que se utilizan con células eucarioticas superiores plantean algunos inconvenientes relacionados con bajos niveles de producción de proteínas y con limitaciones en el rango del nospedador. De los sistemas de expresión existentes para céli as eucanóticas superiores, los vectores a base de baculovirus son ios mas eficaces en términos de producción de proteina. Sin embargo, solo se pueden utilizar en células de insecto que, como es conocido, glicosilan las proteínas de manera diferente a como lo hacen las célalas animales. Adιcιonalmente, la construcción del virus recombinante sucede a traves de una recombinación homóloga, lo cual es una técnica laboriosa especialmente cuando se tienen que analizar numerosas variantes genéticas.
Por otra parte, se conocen vectores basados en virus ADN adecuados para expresar genes necerólogos. No obstante, el empleo de vectores basados en ADN presenta numerosos inconvenientes, puesto que se replican en el núcleo de la célula huésped y pueden llegar a integrarse en dicho genoma, por lo que son poco seguros. Por el contrario, los vectores basados en ARN superan los inconvenientes asociados con el empleo de virus ADN ya que no se replican en el genoma de la célula huésped sino en el citoplasma, la replicación transcurre via ARN y no via ADN, y las posibilidades de que se integren en el genoma son muy pequeñas, por lo que los vectores basados en estos virus ARN son más seguros.
Adicionalmente, se conocen partículas defectivas mterferentes (DI), que contienen la capsida del virión y un genoma defectivo, que son unos imitantes subgenómicos de deleción generados mayoritariamente a partir de genomas virales infectivos por un error de replicación. En general, el término "partícula DI" se refiere a virus defectivos que carecen de una región del genoma ARN o ADN, contienen las proteínas y antígenos del virus, requieren la coinfección del virus parental infectivo para replicarse (virus complementador) e interfieren específicamente con el virus complementador homólogo al replicarse a sus expensas [Huang y Baltimore, Nature, 226, 325-327 (1970)]. Los genomas DI surgen por reorcenamientos del genoma como resultado de "saltos" de la ARN poiimerasa de un ARN molde a otro o de un segmento de un ARN molde a otro segmento del mismo. Estos genomas DI, una vez generados, se amplifican a expensas del genoma parental o del virus amplificador que codifica las proteínas implicadas en la replicación y encapsidación y que debe competir con los genomas defectivos por tales productos.
Se nan obtenido y caracterizado partículas DI de algunos coronavirus tales como el virus ce la Hepatitis murina (MHV), el virus de la bronquitis infecciosa (IBV) y el coronavirus bovino (BCV), aunque no se nan descrito partículas DI derivadas del virus de la gastroenteritis porcina transmisible (VGFT). Una de las partículas DI naturales del MHV se ha utilizado como base para desarrollar un vector de expresión en el que el gen exógeno se inserta bajo el control de una secuencia promotora interna de transcripción [Lin and Lai, J. Virol., 6110-6118, Oct. (l993)]. En general, ios vectores conocidos de expresión de genes heterólogos basados en partículas DI presentan una serie de inconvenientes relacionados con su especificidad de especie y órgano diana y con su limitada capacidad de clonaje, lo que restringe las posibilidades de uso de estos vectores tanto en investigación básica como en investigación aplicada a fines terapéuticos, incluyendo los fines vacunales.
Por tanto, sigue existiendo la necesidad de disponer de vectores de expresión de genes heterólogos que superen los inconvenientes mencionados. En particular, sería muy adecuado disponer de unos vectores de expresión de genes heterólogos que tuvieran una elevada seguridad y capacidad de clonaje y pudieran ser diseñados de forma que se pudiera controlar fácilmente su especificidad de especie y su tropismo.
La presente invención proporciona una solución al problema existente que comprende un vector basado en un genoma viral defectivo recombinante que expresa antígenos adecuados para inducir una respuesta inmune y para prevenir infecciones causadas por diversos agentes infecciosos de distintas especies animales. Los vectores de expresión de genes (c secuencias de ADN) heterclogos proporcionados por esta invención tienen una elevada seguridad así como una elevada capacidad de clonaje y pueden ser diseñados de forma que se puede controlar fácilmente su especificidad de especie y su tropismo, per lo que dichos vectores son adecuados para la formulación de vacunas capaces de conferir protección contra infecciones causadas por distintos agentes infecciosos de distintas especies animales.
Por consiguiente, un objeto de la presente invención lo constituye un vector basado en un genoma viral defectivo recombinante, que expresa al menos un antígeno adecuado para la inducción de una respuesta inmune, en particular, una respuesta inmune sistémica y secretora, frente a agentes infecciosos de distintas especies animales, o un anticuerpo que proporciona protección contra un agente infeccioso, provisto de elevada seguridad y capacidad de clonaje y que puede ser diseñado de forma que se puede controlar fácilmente su especificidad de especie y su tropismo.
El genoma viral defectivo que sirve de base para la construcción de dicho vector también constituye un objeto adicional de esta invención.
Otro objeto adicional de esta invención lo constituye un sistema recombinante de expresión de proteínas heteroiogas que comprende (a) el vector previamente descrito y (b) un virus ccmplementador que facilita las proteínas implicadas en la replicacion y encapsidación del genoma viral defectivo recombinante.
Otro objeto adicional de esta invención lo constituyen unas vacunas capaces de inducir protección frente a infecciones causadas por distintos agentes infecciosos de distintas especies animales que comprende el sistema recombinante previamente descrito junto con un excipiente farmacéuticamente aceptable. Estas vacunas pueden ser mono-, o multivalentes dependiendo de si los vectores de expresión presentes en el sistema recomoinante expresan une, o más antigencs capaces de inducir una respuesta inmune frente a uno, o mas agentes infecciosos o uno o mas anticuerpos que proporcionan protección contra uno o mas agentes infecciosos.
Otros objetos proporcionados por esta invención comprenden un método de inmunización de animales que consiste en la administración de dicho sistema recombinante o vacuna, asi como un método Dará proteger a los animales recién nacidos contra adentes infecciosos que infectan a dichas especies.
BREVE DESCRIPCION DE LAS FIGURAS
La Figura 1 muestra la estructura del VGPT. El virión es una partícula esférica formada por una envuelta lipídica en cuyo interior se encuentra una molécula de ARN de 28,5 kilobases (kb) de cadena sencilla y polaridad positiva. Este ARN está asociado a la proteína N formando la nucleocápsida. Las proteínas estructurales M y sM se encuentran incluidas en la membrana. La proteína S se agrupa en trímeros y está anclada en la parte externa de la envuelta formando los peplómeros.
La Figura 2 muestra la organización genómica de los cuatro coronavirus secuenciados: MHV, IBV, HCV229E (coronavirus humano 229E) y VGPT. Las fases abiertas de lectura que codifican cada proteína se representan a escala. En cada σenoma se indica con flechas el principio de los ARNm que expresa cada virus. El número de ARNm expresados por los virus MHV o VGPT puede variar dependiendo de la cepa viral. En este esquema las flechas del VGPT se corresponden con los ARNm que expresa la cepa THER-1. Los ARNm son 3'-coterminales y se numeran siguiendo un orden decreciente de tamaño.
La Figura 3 muestra la expresión del genoma del VGPT, cepa THER-1. Se indica la disposición de las fases de lectura abierta (ORF) en el genoma: Pol, polimerasa; S, sM, M y N, proteínas estructurales; nsp 3a, 3b y 7, proteínas no estructurales (la proteína 3b no se produce con este virus). El genoma se transcribe en un ARN de igual longitud pero polaridad negativa ( - ) que servirá de molde para la síntesis de los - ARNm (1 a 7). En cada ARNm se representa la secuencia común, líder, del extremo 5' (cuadrado), el tramo de poliadenina en el extremo 3' y la zona que se traduce en cada uno de ellos (lineas gruesas).
La Figura 4 muestra la evolución del titulo de los aislados del VGFT THER-1 (A) y ?UR46-mar 1CC12 (B) con el número de pase a alta multiplicidad de infección (m.d.i.) en células ST.
La Figura 5 muestra los resultados del análisis electroforético de los ARNs producidos en células ST infectadas con virus THER-1 pasado 46 veces a alta m.d.i. El número de pase se indica encima de cada canal mientras que las barras a la izquierda indican la posición de los marcadores de peso molecular (el ARN genómico del VGPT y marcadores GibcoBRL), expresados en kb. Las barras a la derecha indican ios ARNm del VGPT y los ARNs defectivos interferentes (DI). NI, no infectado.
La Figura 6 muestra los resultados del análisis en ensayos tipo Northern del ARN de células ST infectadas con el virus THER-1p35.
La Figura 7 muestra los resultados de ensayos tipo Northern del ARN procedente de pases diluidos del virus THER- l-STp41 en células ST.
La Figura 8 muestra el efecto del cambio de línea celular en la propagación de los ARNs defectivos A, B y C. El virus THER-1-STp46 se pasó diez veces sin diluir en células IPEC (epitelio intestinal de cerdo), y cinco en células PM (macrófaσos porcinos). Figuras 8A y 8B, evolución del título viral con el numero de pase en células IPEC y PM, respectivamente. Figura 8C, análisis del ARN de células ST infectadas con virus procedente de los pases 1 y 10 en IPEC (por marcado metabólico con 32Pi), o de los pases 1 y 5 en PM (por hibridación con un oligonucleótido complementario al ARN líder).
La Figura 9 muestra la encapsidación de los genomas defectivos A, 3 y C. La Figura 9A muestra un gel de agarosa teñido con bromuro de etidio, en el que se analiza el ARN extraído ce viriones purificados, por medio de centrifugación a través de un colchón de sacarosa del 15% (p/v), del pase 1 y del pase 41. En el canal del pase 41 se observan los ARNs A, B y Z, ademas del genoma parental. Las barras de la izquierda indican marcadores de movilidad en kb. La Figura 9B muestra los resultados del análisis del ARN de vinones del pase 41 purificados por centrifugación a través de colchones o de un gradiente continuo de sacarosa, en ensayos tipo Northern con un oligonucleótido complementario al ARN líder. Como marcadores se utilizaron los ARNs comerciales de GibcoBRL y ARN de viriones del pase 1 (canal a). Canales b y c, ARN extraído de viriones sedimentados a través de colchones de sacarosa del 31% y 15% (p/v), respectivamente. Canales d y e, ARN extraído de virus purificado a través de un colchón continuo de sacarosa, fracciones de densidad 1,20 y 1, 15 g/ml, respectivamente.
La Figura 10 muestra la estrategia de clonaje de los ARNs defectivos DI-3 y DI-C, donde se observa una representación esquemática de los fragmentos de ADN complementario (ADNc) obtenidos por RT-PCR utilizando como molde ARN genómico de longitud total (A), DI-3 (B) y DI-C
(C). Las líneas discontinuas indican la ausencia del fragmento previsto debido a su gran tamaño. Los ARNs defectivos se clonaron en cuatro fragmentos solapantes (a, b, c y d), representados por líneas; los números deoajo de estas líneas indican el tamaño del fragmento determinado en geles de agarosa. Los cligonucleótidos utilizados como iniciadores y su polaridad se indican mediante flechas y números. La secuencia de los oligonucleótidos se indica en la Tabla 2. Las cajas rayadas o aciertas en (A) indican la posición relativa de los genes virales: pol, polimerasa; S, M y N, genes estructurales; 3a , 3b, sM y -, ORFs pequeñas. Los cuadrados negros más estrechos indican la secuencia líder.
La Figura 1 1 muestra les resultados del análisis electroforético de los productos de PCR obtenidos en la amplificación de los ARN defectivos. El ARN de viriones purificados THER-ipl o THER-lp41 se utilizó como molde en una reacción de RT-FCR con los oligenueleótidos 1 y 2 (a), 3 y 4
(b), 5 y 6 (c) o 7 y 8 (d), cuya secuencia y posición en el genoma parental se indica en la Tabla 2. En cada caso se indica el canal correspondiente al ARN molde del pase 1 (ARN genómico parentai) o del pase 41 (ARN genómico parental, DI-
A, DI-B y DI-C), y el canal de marcadores de movilidad de DNA
(M, GibcoBRL). Les números en negrita indican el tamaño en kb de los productos de amplificación específicos de los ARNs defectivos. ARNs B+C, ARNs B y C purificados de banda en un experimento de fraccionamiento por gel de los ARNs del virus THER-1-STp41 . Los ARNs B y C migran muy próximos, y se cortaron como una banda única.
La Figura 12 muestra la secuencia completa del ADNc del ARN DI-C [véase la SEC. ID. N° 24], obtenida por secuenciación de los fragmentos solapantes de clonaje a, b, c y d. El ARN DI-C ha mantenido cuatro regiones discontinuas del genoma parental: I, II, III y IV. Los puntos de unión de estas regiones se indican en la secuencia mediante flechas. Se indica la traducción de las tres ORFs presentes en el genoma DI-C: la ORF de 6,7 kb quimérica que resulta de la fusión ce las regiones discontinuas I y II en fase; la mini- ORF de tres aminoácidos que la precede en fase y la ORF que comienza en el AUG del gen S. Se han sombreado las regiones de alta nomología con los dominios proteicos descritos en otros coronavirus como responsables de las funciones polimerasa, helicasa y sitio de unión a metales. Las secuencias promotoras de transcripción CTAAAC se indican sombreadas. La zona de solapamiento entre las ORFs la y 1b (41 nucleótιdos) se presenta combreada, y se indica la secuencia "de deslizamiento" del ribosoma subrayada, y el codón da terminación de la ORF1a encuadrado. En las posiciones 637, 6397 y 6485 se indican los cambios puntuales respecte al genoma parental. Se indican los nucleótidos presentes en el genoma parental en estas posiciones.
La Figura 13 muestra un diagrama de la estructdra del ARN DI-C. La longitud genómica total se muestra a la derecha de los recuadros. El ARN DI-C contiene cuatro regiones discontinuas (I, II, III y IV) del genoma del VGPT. Estas regiones comprenden 2,1 kb del extremo 5' del genoma, la ORFlb casi completa incluyendo la zona de solapamiento entre las ORFs 1a y 1b, el principio del gen S, la ORF7 incompleta y la región 3' no traducida. Las letras y los números sobre el recuadro del genoma parental indican los genes virales. Los números debajo del recuadro indican la posición en el genoma parental de los nucleótidos flanqueantes de las regiones discontinuas, tomando como referencia la secuencia del aislado VGPT PUR46-PAR. En el recuadro correspondiente al ARN DI-C, la longitud de las cuatro regiones discontinuas se indica en nucleótidos. En el tercer recuadro se indica el número de nucleótidos derivado de cada gen viral, teniendo en cuenta que las ORFs 1a y 1b se solapan 43 nucleótidcs en el genoma parental. Las fases abiertas de lectura que predice el análisis por ordenador se indican por flechas o cabezas de flecha. Pnt, falso lazo (pseudoknot ); Pol, polimerasa; Mib, dominio de unión a metales (metal ion binding); Hel, helicasa; Cd, dominio coservado (conserved domain) .
La Figura 14 muestra la estructura del ARN DI-E. El ARN DI-B contiene tres regiones discontinuas (I, II y III) del genoma del VGPT que comprender. 2,1 kb del extremo 5' del genoma, la ORFlb completa incluyendo la zona de solapamiento entre las ORFs 1a y 1b, el principio del gen S, el final de la 0RF7 y la región no traducida del extremo 3'. Las letras y los números sobre el recuadre del genoma parental indican los genes virales. Los números debajo del recuadro indican la posición en el genoma parental de los nucleótidos flanqueantes de las regiones discontinuas, tomando como referencia la secuencia del aislado VGPT PUR46-PAR. La heterogeneidad en el tamaño de la deleción ocurrida entre las regiones discontinuas II y III hace que en realidad exista una población de genomas DI-B. En el segundo y tercer recuadre se indica la longitud en nucieótidos de las tres regiones discontinuas para los genomas de mayor y menor tamaño, respectivamente. En el tercer recuadro se indica el número de nucleótidos derivado de cada gen viral, teniendo en cuenta que las ORFs 1a y 1b se solapan 43 nucleótidcs en el genoma parental. Las fases abiertas de lectura que predice el análisis por ordenador se indican por ilechas o cabezas de flecha. Pnt, falso lazo (pseudcknot ); Pol, polimerasa; Mib, dominio de unión a metales .metal i on binding); Hel, helicasa; Cd, dominio coservado ( conserved domain ) .
La Figura 15 muestra la estructura secundaria y terciaria del ARN en la zona de solapamiento entre las ORFs 1a y 1b en el ARN DI-C. (A) Estructura que se predice al considerar la región más cercana a la estructura de horquilla que presenta complementariedad con los nucleótidos del lazo para constituir el pseudoknot (nucleótidos 2354 a 2358). La secuencia "de deslizamiento" UUUAAAC está subrayada. El codón de terminación de la ORF1a se indica encuadrado. (B) Representación esquemática de este pseudoknot , que implica dos tramos de ccmpiementariedad de secuencias ( stems : S1 y S2). La secuencia de deslizamiento se representa encuadrada. (C) Un modelo alternativo considerando la secuencia del nucleótido 2489 al 2493 en el plegamiento del pseudoknot . Esta estructura contiene un tramo de complementariedad de secuencia (stem) adicional. D) Representación esquemática del pseudokncz , en la que se señalan los tres s tems : S1, S2 y S3.
La Figura 16 muestra el mapeo de los ARNs DI por hibridación con cugonucleotidos específicos para el virus en ensayos tipo Northern. El ARN del virus THER-1-STp41 se fraccione en geles de aσarosa hasta conseguir una separación clara de los ARNs del genoma parental y DI A, 3 y C. El ARN se transfirió a filtros de nailon que se hibridaron con varios oligonucleótidos marcados con 32Pi, que hibridaron con el genoma parencal (+), e hibridaron (+) o no (-) con los genomas defectivos. La localización aproximada de las secuencias complementarias a los olígonucieótidos en el genoma parental se indica con flechas. Su secuencia y posición exactas se indican en la Tabla 3. Todos los oligonucíeotidos hibridaron con el genoma parental y dieron los resultados esperados con los ARNs B y C.
La Figura 17 muestra un esquema de obtención de virus vacunales por transfección de células infectadas con ARN DI- C. Se ilustra un esquema prototipo de la construcción que permitió la obtención de ARN DI-C por transcripción in vi tro, manteniendo los extremos 5' y 3' presentes en la partícula defectiva original. La secuencia del promotor del bactericfago T7 [PrT7] y la secuencia del ribozima autocatalitico del virus de la hepatitis delta (HDV) [Rz HDV] se clonaron flanqueando la secuencia del ARN DI-C. Sobre la secuencia se señala el punto de corte autocatalitico introducido por la ribozíma. Las puntas de flecha indican las posiciones de las secuencias promotoras de transcripción interna mantenidas de forma natural en el ARN DI-C. L, líder. T7φ, señales de terminación de transcripción del bacteriófago T7. Se rescataron vmones que encapsidaron tanto el virus complementador como los genomas defectivos en los que se habían clonado ios genes heterólogos, al transfectar los ARNs transcritos in vi tro socre células ST infectadas con el virus complementador correspondiente.
La Figura 18 muestra un esquema prototipo de la construcción que permitió la eotencion de pDIA-6A.C3 por transcripción in vi tro, manteniendo los extremos 3' y 5' presentes en la oarticdla defectiva original. La secuencia del promotor del bacteriófago T7 [T7Pr] y la presencia del ribozima autocatalitice del virus de la neoatitis delta (HDV) [Rz HDV] se clonaron flanqueando la secuencia del ADNc que codifica un ARN autoreplicativo. El olasmido pDIA-6A. C3 contiene el gen que codifica el anticuerpo monoclonal 6A.C3 que neutraliza el VGPT [véase el Ejemplo 4]. El clonaje del gen heterologo se hizo después de la ORFlb, siguiendo el codon iniciador (AUG) del gen S, y en fase de lectura con este gen [IGS: secuencia intergénica; L: secuencia líder; D: región D tdiversity redion); J: Región J (joinmg región); VH: Módulo variable de la cadena pesada de inmunoglobulina; CH: Módulo constante de la cadena pesada de inmunoglobulina; VK: Módulo variable de la cadena ligera de inmunoglobulina; CK: Módulo constante de la cadena ligera de inmunoglobulina; poliA: secuencia poliA; T7Φ: terminador de la transcripción de T7]. DESCRIPCION DETALLADA DE LA INVENCION
Esta invención proporciona vectores de expresión de ADNs heterólogos, basados en genomas virales defectivos recombinantes que expresan, al menos, un antigeno adecuado para la inducción de una respuesta inmune frente a distintos agentes infecciosos de distintas especies animales, o un anticuerpo que proporciona protección contra un agente infeccioso, provistos de elevada seguridad y capacidad de clonaje y que pueden ser diseñados de forma que se puede controlar fácilmente su especificidad de especie y su tropismo.
El término "agente infeccioso" en el sentido utilizado en esta descripción incluye a cualquier agente infectivo viral, bacteriano o parasitario que puede infectar a un animal y ocasionarle una patología.
Baje el termino "especie animal" se incluye a animales de cualquier especie, preferentemente mamíferos v mas preferente nte de las especies eorcina, canina o felina.
En ana realización particdiar de esta invención se proporcionan vectores de expresión pasados en genomas virales defectivos recombinantes que expresan al menos un antígeno adecuado para la inducción de una respuesta inmune sistémica y secretora, para la prevención de iafecciones en mucosas, diseñados para poder controlar fácilmente la especificidad de especie y su tropismo para infectar mucosas entéricas o respiratorias, por lo que son muy adecuados para inducir inmunidad en mucosas e inmunidad lactogenica, de especial ínteres en la protección de neonatos trente a infecciones del tracto intestinal. En otra realización particular de esta invención se proporciona un vector de expresión oasado en un genoma viral defectivo recombinante que expresa, al menos, un anticuerpo que proporciona protección contra un agente infeccioso.
Los vectores de expresión proporcionados por esta invención comprenden un genoma viral defectivo derivado de un virus, preferentemente, un virus con genoma ARN y polaridad positiva, que mantiene los extremos 3' y 5' del virus parental, tiene deleciones internas y depende de un virus complementador para su replicación. Por tanto, la invención proporciona, además, un genoma viral defectivo que comprende el genoma de un virus parentai que tiene las señales de reconocimiento de la replicasa viral localizadas en los extremos 3' y 5', que comprende además deleciones internas, y en donde dicho genoma viral defectivo depende de un virus complementador que facilita las proteínas funcionales y estructurales para la replicacicn y encapsidación del genoma viral defectivo recombinante. En una realización particular, el genoma viral defectivo comprende, además, la secuencia completa que codifica la replicasa del virus parental. En este caso, si se desea, el virus complementador puede facilitar sólo las proteínas estructurales necesarias para la encapsidación del genoma viral defectivo recombinante o, alternativamente, las proteínas funcionales y estructurales para la replicación y encapsidación del genoma viral defectivo recomcinante. Cuando el virus del que deriva el genoma defectivo es un virus con genoma ARN, el vector de expresión comprende el ADN complementario (ADNc) a dicho ARN defectivo o un ADNc sustanciair.ente complementario a dicho ARN defectivo.
Los vectores proporcionados por esta invención tienen una elevada capacidad de clonaje, de al menos 18 kb, que es la mayor capacidad de clonaje descrita para un vector pasado en virus eucarioticos ARN. Adicionalmente, estos vectores tienen una elevada seguridad puesto que (a) están basados en genomas defectivos, (b) comprenden genomas ARN y no utilizan ADN como intermedio replicativo, y (c) están basados en virus que crecen en el citoplasma de las células infectadas, todo lo cual hace que el genoma defectivo no pueda recombinar con el cromosoma celular.
En una realización particular de esta invención se describe la obtención de genomas ARN defectivos derivados de coronavirus, particularmente, del VGPT. Estos genomas tienen la ventaja adicional de que la frecuencia de recombinación del VGPT es muy baja (<1 x 109) lo que hace que el genoma defectivo no recombine con facilidad con el genoma del virus complementador. No obstante, aunque se diese esta recombinación, se obtendría un virus atenuado puesto que la invención contempla la conveniencia de utilizar el mismo virus atenuado tanto como virus complementador como material de partida para la obtención del genoma defectivo.
Los genomas defectivos que constituyen la base de tales vectores pueden obtenerse por pases senados sin diluir del virus del que derivan, en distintos sistemas celulares. La frecuencia de generación de partículas DI puede variar mucho en distintos sistemas virus-célula, por lo que es conveniente efectuar los pases con distintos aislados del virus en distintas líneas celulares al objeto de seleccionar el aislado y la línea celular adecuados. Al cabo de un cierto numero de pases, se aíslan los virus y se utilizan para analizar ios ARNs intracelulares producidos en la infección con el fin de observar la posible aparición de bandas que no correspondan a ningún ARN mensajero (ARNm) viral, en cuyo caso, para analizar la naturaleza de esos nuevos ARNs, subgenómicos o defectivos, se continúan los pases seriados sin diluir con el virus parentai. Al cabo de unos pases, se analiza la evolución del patrón de ARNs a lo largo de los pases senados para le cual se infectan células del sistema celular adecuado con virus procedentes de distintos pases y se analizan los ARNs producidos por técnicas convencionales, por ejemplo, mareaje metabólico con 32Pi o hibridación con un oligonucleótido apropiado. En el Ejemplo 1 se describe de forma detallada la obtención y caracterización de unos ARNs defectivos derivados del VGPT.
Con los ARN defectivos se pueden obtener los ADNc correspondientes, complementarios o sustancialmente complementarios, a dichos ARN defectivos, mediante una reacción de transcriptasa inversa (RT) y amplificación en cadena de la polimerasa (PCR), en adelante RT-PCR. A continuación, los ADNc se pueden clonar en plásmidos adecuados, por ejemplo Bluescript II, bajo el control de promotores eficaces. Los plásmidos resultantes contienen el genoma viral defectivo bajo el control de unos elementos reguladores, que contienen las señales de regulación y control de la repiicación así como del inicio y terminación de la transcripción y traducción. Así, estos plásmidos pueden incluir secuencias poliA, secuencias de corte auto-catalítico o de reconocimiento de enzimas de restricción que permiten la inserción del ADN heterólogo, y las señales de regulación, control y terminación correspondientes.
Los plásmidos ccnteniendo el genoma defectivo, o el ADNc correspondiente, asi obtenidos se pueden manipular por técnicas de Ingeniería Genética convencionales para clonar, al menos, una secuencia de ADN heterólogo, que codifica una determinada actividad, bajo el control del promotor de un gen que este presente en los genomas defectivos u cualquier otro promotor del virus dei que deriva el genoma defectivo o variante de estos promotores con eficiencia aumentada, y de las secuencias reguladoras contenidas en el vector de expresión resultante. En el Ejemplo 2 se describe la generación de vectores de expresión que codifican antigenos que inducen protección frente a distintos virus.
Los vectores de expresión proporcionados por esta invención pueden expresar una o mas actividades, tales como uno o mas antígenos capaces de inducir respuestas inmunes frente a distintos agentes infecciosos, o uno o más anticuerpos que proporcionan protección contra uno o más agentes infecciosos. En una realización particular y preferida, estos vectores expresan, al menos, un antígeno capaz de inducir una respuesta inmune sistémica o una respuesta inmune en mucosas frente a distintos agentes infecciosos que se propagan en mucosas respiratorias o entéricas. En otra realización particular y preferida, dicnos vectores de expresión expresan, ai menos, un gen que codifica las cadenas pesada y ligera de un anticuerpo de cualquier isotipo ipor ejemplo, IgG1, lgA, etc.) que proporciona protección contra un agente infeccioso. En un caso particular el anticuerpo expresado es el anticuerpo monoclonal identificado como 6A.C3 [véase el Ejemplo 4] que neutraliza el VGPT, expresado con isotipos IgG1 o IgA en el que la parte constante de la mmunoglobulma es de origen porcino.
En ana realización particular de esta invención, el clonaje de los genes heterólogos en un plásmido que contenía un ADNc de un ARN defectivo denvado del VGPT, se hizo después ce la ORFlb, siguiendo el codon iniciador (AUG) del gen S, y en fase de lectura con este gen (Ejemplo 2). Alternativamente, las secuencias de ADN heterólogas se pueden clonar en otras zonas del genoma, por ejemplo en las zonas correspondientes a las ORFs 1, 2 ó 7 del VGPT. A partir de los plasmidos resultantes se expresan ARNs utilizando una polimerasa adecuada, con los due se transforman células apropiadas previamente infectacas con un virus coiaoorador atenuado, con lo que se pueden rescatar viriones conteniendo el genoma del virus complementador y viros con el genoma defectivo (Figura 17).
Alternativamente, los vectores de expresión de esta invención permiten la expresión de uno o vanes genes utilizando la misma estrategia arriba descrita. Para ello, se pueden utilizar uno o varios promotores, o bien un promotor y varios sitios de reconocimiento del ribosoma (IRES), o alternativamente varios promotores y un sitio de reconocimiento del ribosoma.
La invención también proporciona un sistema recombinante de expresión de proteínas heterelogas que comprende (a) el vector previamente descrito y (b) un virus complementador que facilita las proteínas implicadas en la replicacion y encapsidación del genoma viral defectivo recombinante . Por tanto, se proporciona un sistema recombmante de expresión de proteínas heterólogas casado en genomas virales defectivos recombinantes que expresan proteínas con al menos una determinada actividad, que comprende:
a) un vector recombinante que contiene un genoma viral defectivo para el que, en su caso, se ha obtenido un ADNc manipulabie por Ingeniería Genética convencional que tiene las señales de reconocimiento para la replicasa viral localizadas en los extremos 3' y 5', comprende además unas deleciones internas, y al menos una secuencia de ADN que codifica una actividad, por ejemplo, un antígeno capaz de conferir inmunidad sistémica y en mucosas, o un anticuerpo que proporciona protección contra un agente infeccioso; y b) un virus complementador que proporciona las proteínas funcionales y estructurales para la replicación y encapsidación del gencma defectivo.
Alternativamente, el sistema recombinante de expresión de proteínas heteróloσas comprende un vector de expresión, del tipo previamente descrito, que comprende la secuencia completa que codifica la replicasa del virus parental y un virus parental complementador que proporciona las proteínas estructurales para la encapsidadcion del genoma defectivo y, opcionalmente, las proteínas funcionales (replicasa) para la replicacien del genoma viral defective.
Estes sistemas permiten la expresión bien de antigenos capaces ce inducir una respuesta inmune o bien de anticuerpos que proporcionan protección contra agentes infecciosos, por lo que son adecuados para su empleo con fines vacunales y de protección frente a infecciones.
La invención también proporciona unas vacunas capaces de inducir protección frente a infecciones causadas por distintos agentes infecciosos de distintas especies animales que comprenden (i) el sistema recombinante arriba descrito, constituido por (a) un vector de expresión basado en un genoma viral defectivo en el que se clona la secuencia de ADN heterologa y (b) el virus complementacor que colabora en la replicacion del genoma defectivo, junto con, opcionalmente, (11) un excipiente farmacéuticamente aceptable. Las vacunas proporcionadas por esta invención son adecuadas, por tanto, para conferir inmunidad contra distintos agentes infecciosos de distintas especies animales.
Por "conferir inmunidad", en ei sentido utilizado en esta descripción, debe entenderse la puesta en marcha en el organismo receptor (animal a tratar), por parte del sistema recombinante previamente descrito, de los mecanismos adecuados, tales como células presentadoras de antigenos, linfocitos B y T, anticuerpos, sustancias potenciadoras de la respuesta celular ( mterleuquinas, mterferones, etc.), factores de necrosis celulares v sustancias similares que hacen que el animal quede protegido frente a infecciones causadas por agentes patógenos.
Las vacunas proporcionadas por esta invención pueden ser monovalentes o rultivalentes dependiendo de si los vectores de expresión presentes en el sistema recombinante expresan uno o mas antigenos capaces de inducir una respuesta inmune frente a uno o mas agentes infecciosos. Los vectores de expresión pueden ser monovalentes o polivalentes según expresen ano o mas anticuerpos que proporcionan protección contra uno o mas agentes infecciosos.
La especificidad de especie se controla de forma que el virus complementador exprese la protema de la envuelta adecuada para ser reconocida por ios receptores celulares de la especie correspondiente. Un σrupo particular de vacunas proporcionadas por esta invención comprende como virus complementador un coronavirus, preferentemente, un coronavirus porcino, canino o felino.
Estas vacunas son especialmente adecuadas contra agentes infecciosos porcinos, caninos y felinos, que infecten las mucosas de estas especies o las utilicen como vía de entrada. En una realización particular de esta invención se proporcionan vacunas monovalentes capaces de proteger cerdos, perros y gatos contra distintos agentes infecciosos porcinos, caninos y felinos, y el tropismo se controla expresando la glicoproteina S oe un coronavirus.
Las vacunas monovalentes contra agentes infecciosos porcinos pueden contener un vector de expresión que exprese un antígeno seleccionado del grupo esencialmente constituido por antigenos de los siguientes patógenos porcinos: Actinobacillus pieuropneumoniae, Actmobacillus suis, Haemophiius parasuis, Parvovirus porcino, eptospira, Eschericnia coli, Erysipelotrix rnusiopathiae, Pasterella multocida, Bordetella bronchiseptica, Clostridiun sp., Serpulma hydiosenteriae, Mycoplasma hyopneumoniae, virus de la diarrea epidémica porcina (PEDV), coronavirus respiratorio porcino, rotavirus, o contra les patógenos causantes del síndrome respiratorio y reproductivo porcino, la enfermedad de Aujeszky Pseudorabies), influenza porcina o gastroenteritis transmisible y el agente etiologice de la rinitis atrófica y de la íleitis proliferativa.
Las vacunas monovalentes contra agentes infecciosos caninos pueden contener un vector de expresión que exprese un antigeno seleccionado del grupo esencialmente constituido por antigenos de los siguientes patógenos caninos: herpesvirus caninos, adenovirds canino tipos 1 y 2, parvovirus canino tipos 1 y 2, reovirus canino, rotavirus canino, corcnavirus canino, virus de la paramfluenza canina, virus de la influenza canina, virus del moquillo (Distemper virus), virus de la rabia, retrevirus y calicivirus canino.
Las vacunas monovalentes contra agentes infecciosos felinos pueden contener un vector de expresión que exprese un antigeno seleccionado del grupo esencialmente constituido por antígenos de los siguientes patógenos felinos: calicivirus del gato, virus de la inmuno-deficiencia felina, herpesvirus felinos, virus de la panleucopenia felina, reovirus felino, rotavirus felino, coronavirus felino, virus de la peritonitis infecciosa del gato, virus de la rabia, Chlamydia psittací felina, y virus de la leucemia felina.
Los vectores pueden expresar un anticuerpo que proporciona protección contra un agente infeccioso, por ejemplo, un agente infeccioso porcino, canino o felino como los citados previamente. En una realización particular, se han elaborado unos vectores que expresan el anticuerpo ronoclcnal recombinante identificado como 6A.C3 que neutraliza el VGPT.
Las vacunas proporcionadas por esta invención son capaces de proteσer a los lecnones mediante la inducción de una inmunidad lactogénica, lo que tiene un especial interes en la protección de neonatos frente a infecciones del tracto intestinal.
En σeneral, las vacunas proporcionadas por la invención pueden contener una cantidad de antigeno capaz de introducir en el animal a inmunizar un titulo de virus complementador de, al menos, 108 unidades formaderas de placa (ufp).
Como excipiente puede utilitarse un diluyente tal como suero salino fisiológico u otras soluciones salinas similares. Asimismo, estas vacunas pueden contener tamoien un adyuvante de los hapitualmente utilizados en la formulación de vacunas, tanto acuoso, tal tomo hidroxido de aluminio, QuilA, suspensiones de celes de alumina v similares, como oleoso, a base de aceites mmerales, gliceridos y derivados de acide graso, y sus mezclas, oor ejemplo, Marcol 52 (ESSO
Española S.A.), Simulsol 51C (SEPIC) y Montamoe 888
(SEPIC).
Estas vacunas también pueden contener sustancias potenciadoras de la respuesta celular (PRC), es decir, sustancias potenciadoras de subpoblaciones de células T helper (Th1 y Th 2) tales como interleuquina-1 (IL-1), IL-2, IL-4, IL-5, IL-6, IL-12, g-IFN (gamma interferón), factor de necrosis celular y sustancias similares, que podrían, teóricamente, provocar inmunidad celular en los animales vacunados. Estas sustancias PRC podrían utilizarse en formulaciones vacunales con adyuvantes acuosos u oleosos. También pueden utilizarse otro tipo de adyuvantes que modulan e inmunoestimulan la respuesta celular tales como el MDP (muramil dipéptido), ISCOM (Immuno Stimulant Complex) o liposomas.
La invención proporciona vacunas multivalentes capaces de prevenir y proteger animales de distintas infecciones. Estas vacunas multivalentes pueden elaborarse a partir de vectores de expresión en los que se han insertado las distintas secuencias que codifican los antigenos correspondientes en el mismo vector recombinante o bien construyendo vectores recombinantes independientes que posteriormente se mezclarían para su co-inoculación junto con el virus complementador. Por tanto, estas vacunas multivalentes comprenden un sistema recombinante en el que el propio vector de expresión contiene mas de una secuencia de ADN que codifica mas de un antigeno o alternativamente, el sistema recombinante utilizado en la elaboración de la vacuna puede contener distintos vectores de expresión que expresen cada une de ellos al menos un antigeno distinto. La limitación existente en este tipo de vacunas multivalentes radica en que dichos vectores expresen antígenos de agentes infecciosos de una misma especie animal y que el virus complementador sea el adecuado para tal especie.
Análogamente, sa pueden preparar vacunas multivaientes que comprenden vectores multιvalentes utilizando secuencias que codifican anticuerpos que proporcionan protección contra agentes infecciosos en lugar de secuencias que codifican los antígenos. Estos vectores pueden contener un sistema recombinante que comprende bien un vector de expresión que contiene más de una secuencia de ADN que codifica mas de un anticuerpo o bien distintos vectores de expresión que expresan, cada uno de ellos, al menos, un anticuerpo distinto .
En una realización particular de esta invención se proporcionan vacunas capaces de conferir inmunidad a cerdos, perros y gatos contra distintos agentes infecciosos porcinos, caninos y felinos, repectivamente. Para ello, los vectores de expresión contenidos en el sistema recombinante de la vacuna deben expresar distintos antígenos de los patógenos porcinos, caninos o felinos previamente mencionados.
Las vacunas de sta invención pueden presentarse en forma líquida o liofilizada y pueden prepararse suspendiendo los sistemas recombinantes en el excipiente. Si dichos sistemas estuvieran en forma liofilizada, el propio excipiente podría ser el reconstituyente.
Alternativamente, las vacunas proporcionadas por esta invención se pueoen utilizar en combinación con otras vacunas convencionales, ya sea formando parte de las mismas o bien como diluyente o fracción liofilizada para diluirse con otras vacunas ya sean convencionales o recombinantes.
Las vacunas proporcionadas por esta invención pueden administrarse al animal por vía oral, nasal, subcutánea, mtradérmica, intraperitoneal, intramuscular o por medio de aerosol.
La invención tamoien proporciona un método para la inmunización de animales, en particular, cerdos, perros y gatos, contra uno o varios agentes infecciosos de forma simultanea, que comprende la administración por vía oral, nasal, subcutánea, intradermica, intrapentoneal, intramuscular o per medio de aerosol (o formas combinadas de éstas) de una vacuna que contiene una cantidad inmunológicamente eficaz de un sistema recombinante proporcionado por esta invención.
Adicionalmente, la invención también proporciona un método para proteger a los animales recién nacidos contra agentes infecciosos que infectan a dichos animales, que consiste en la administración por vía oral, nasal. subcutánea, mtradérmica, mtraperitoneal, intramuscular c por medio de aerosol ( o formas combinadas de éstas) a las madres antes de o durante el periodo de gestación, o a su progenie, una vacuna que contiene una cantidad mmunológicamente eficaz de un sistema recombinante proporcionado por esta invención.
La invención se ilustra mediante los siguientes ejemplos que describen de forma detallada la obtención de genσmas virales defectivos, su caracterización, la construcción de plásmidos y su manipulación para obtener los vectores de expresión y la inducción de anticuerpos neutralizantes frente a diferentes agentes infecciosos de ditmtas especies.
EJEMPLO 1
GENERACION DE PARTlCULAS DEFECTIVAS DERIVADAS DEL VGPT
1.1 Pases seriados a alta m.d.i., sin diluir, de cepas de VGPT
Con la finalidad de promover la generación de partículas defectivas, o la imposición de las ya existentes en pequeña proporción en la población viral, se dieron pases seriados de distintos aislados del VGPT sin diluir en distintos sistemas celulares. Debido a que la frecuencia de generación de partículas DI puede variar mucho en distintos sistemas virus- célula, los pases se llevaron a cabo con distintos aislados del VGPT THER-i y PUR46-mar 1CC12) en las lineas celulares
ST ( swine zestis, células epiteliales de testículo de cerdo).
La cepa THER-i [Transmisible gastroenteritis coronavirus
Helper Entérico y Respiratorio, estirpe 1] es un mutante atenuado por 20 pases en cultivos de células ST derivado de la cepa PUR46-MAD [Sánchez y col., Virology 174, 410-417 (1990)]. La cepa PUR46-mar 1CC12 también se describe en Sánchez y col., [citado supra ] .
Cada cepa de VGPT se pasó sin diluir 35 veces en células ST. La m.d.i. del primer pase en cada uno de los tres casos fue de 100 ufp por célula. El sobrenadante de cada pase se recogió entre las 20 y las 48 horas post-mfeccion (h.p.i.), cuando se observó un efecto citopático claro, normalmente cuando dicho efecto alcanzaba a más de la mitad de la monocapa celular, y la mitad del volumen de este sobrenadante se utilizo en la infección del pase siguiente. La variación del título viral con el número de pase se representa en la Figura 4. El título viral osciló en un rango de dos unidades logarítmicas a lo largo de los pases seriados de cada virus. En el caso de la cepa THER-1, el título en los pases 30 a 46 fue menor que el de los treinta primeros pases.
Los virus que habían sido pasados 35 veces en células ST se utilizaron para analizar los ARNs mtracelulares producidos en la infección. Los ARNs, marcados metabólicamente con "P^ entre las horas 6 y 9 postmfeccion, se analizaron en un gel de agarosa desnaturalizante [Maniatis et al., Mol ecular Cl omng: A Lacoratory Manual , Cold Spring Harbor Laooratory, (1982)]. En la infección por el virus THER-1-p35 [virus de la cepa THER-1 pasados 35 veces a alta m.d.i.] se apreciaron tres bandas intensas que no correspondían a ningún ARNm vira-, situadas entre las pandas correspondientes al ARN genomieo y al mensajero del gen S iFigura 5' . Para analizar la naturaleza de estos nuevos ARNs subgenomieos se continuaron los cases seriados sin diluir con la cepa THER-1. Al cabo de 46 pases, se analizo la evolución del patrón de ARNs a lo largo de los pases senados. Para ello, se infectaron células ST con virus procedentes de varios pases y los ARNs produciaos, marcados metabolicamente, se analizaron en un gel de agarosa desnaturalizante Figura 5). Mientras que en los primeros pases solamente se detectaron los ARNs genomico y mensajeros subgenomicos virales, en el pase 30 se detectaron tres nuevos ARNs de 22, 10,6 y 9,7 kb (ARNs A, B y C, que en la Figura 5 aparecen como DI-A, DI-B y DI-C, respectivamente). Estos ARNs subgenómicos se mantuvieron de forma estable a lo largo de los 15 pases siguientes, interfiriendo notablemente con la replicación del ARN genómico y la síntesis de los ARNm del virus complementador (Figura 5, canales 30 a 45). Estos resultados indican que los tres ARNs generados o amplificados en los pases seriados sin diluir son estables y que al menos uno de ellos es interférente.
1.2 Caracterización de los ARNs subgenómicos
1.2.1 Análisis de los extremos y las regiones internas Para determinar si los ARNs subgenómicos A, B y C tenían la estructura estándar de los ARNs defectivos de coronavirus, en particular, si conservaban los extremos 5' y 3' del genoma silvestre y su pequeño tamaño era debido a deleciones internas, se hicieron varios ensayos de hibridación con sondas específicas para el virus. Para ello, el ARN de las células infectadas con el virus THER-1-STp35 [virus de la cepa THER-1 pasados 35 veces en células ST] se extrajo y se analizó su hibridación con sondas específicas virales en un ensayo tipo Northern [Maniatis et al., citado supra ] usando oligonucieótidos complementarios al líder y a la secuencia del extremo 3' viral. En cada caso se llevó como control el ARN de células infectadas con virus THER-1-pl [virus de la cepa THER-1 pasados 1 vez en células ST] y de células ST sin infectar (NI) (canales 1 y 2 de cada filtro, respectivamente). Los oligonucleotidos utilizados como sonda son complementarios al ARN líder (posiciones 66-91 del extremo 5' del genoma parental); a la región no traducida del extremo 3' (nucleótidos 28524-28543 del extremo 5' del genoma parental) y a los genes estructurales M y N (posiciones 97- 116 y 5-24 a partir del AUG iniciador de cada gen, respectivamente). Las barras de la derecha indican las posiciones de los ARNm virales y los ARNs subgenómicos A, B y C.
Como puede apreciarse en la Figura 6, los dos oligonucleótidos hibridaron con todos los ARNm del virus parental, y también detectaron los ARNs A, B y C, lo que indica que estos ARNs han sufrido deleciones internas y han mantenido los extremos. Como una primera aproximación al estudio de que secuencias genomicas estaban presentes en estos ARNs, el ARN de células infectadas se híbrido con oligonucleótidos complementarios a los genes de las proteínas estructurales virales S, M y N. Ninguno de ellos híbrido con los ARNs defectivos, sugiriendo que los genes de las proteínas estructurales estaban oeíecionados. Por tanto, los ARNs subgenómicos A, B y C, son genomas defectivos, mantienen los extremos del virus parental y tienen deleciones internas.
1.2.2. Propagación de los ARNs A, B y C Para comprobar que los ARNs A, B y C son genomas defectivos, dependientes del virus parental para su propagación en cultivo, se infectaron células ST con el virus THER-1-STp41 [virus de la cepa THER-1 pasados 41 veces en células ST] a .istmtas m.d.i.: 10, 0,1, 0,01 y 0,001 ufp/célula. El virus resultante ce este pase, recogido a las 10 h.p.i., se tituló y se amplifico en un segundo pase en células ST, que a su vez se utilizo para infectar nuevas células y extraer el ARN citcplásmico [Maniatis et al., citado supra ] . El ARN se analizo en un ensayo tipo Nortnern con un oligonucleotioo complementario al ARN líder. En la Figura 7 se muestran los resultados obtenidos. Las m.d.i. se indican soore caca canal (10-3,10-2, 10-1 y 10 ufp/célula). Como control negativo se incluyo el ARN procedente de una mfeccicn de células ST con el virus THER-I-pl, que no contiene ARN suogenomicos, a una m.d.i. de 10 ufp/celula (primer canal). En el canal correspondiente a la infección del virus THER-1-STp41 a una m.d.i. de 10 ufp/célula, control positivo, se señalan los ARNs genómico (ARNm 1), los ARN defectivos A, B y C [representados como DI-A, DI-B, DI-C] y el correspondiente al gen S (ARNm 2).
Se puede observar que cuando la m.d.i. del primer pase (el "cuello de botella" en este experimento, ya que los pases siguientes son ce amplificación) es de 0,1 ufp/célula c menor, los ARNs A, B y C se pierden, en condiciones en que el ARN genómico y los ARNm del virus se detectan en las proporciones esperadas (Figura 7). Los tres ARΝs defectivos se mantienen cuando la m.d.i. es de 10 ufp/célula. Dado que los ARΝs A, B y C se encuentran en mayor proporción que el ARΝ genómico en el virus THER-1-p41 utilizado en la infección, estes resultados mdican que la replicación o propagación de estos ARΝs requiere que las células sean infectadas por virus defectivo y también por el virus complementador. los ARΝs A, B y C requieren, por tanto, funciones del virus complementador que han de ser aportadas en trans . Por consiguiente, los ARΝs A, B y C son genomas defectivos, que dependen de un virus complementador para su propagación.
1.2.3 Generación, amplificación, propagación e interferencia i n vi tro de los ARΝ DI en otra linea celular,
Debido a que la generación, amplificación, propagación e interferencia in vi tro de los ARΝ DI es específica de la línea celular se na estudiado el efecto que podría tener un cambio de línea celular en los ARΝs defectivos. Para ello, el virus THER-1-STp4ó ( el virus THER-1 pasado 46 veces a alta m.d.i. en células ST) se sometió a una nueva serie de pases sin diluir, en células epiteliales de intestino de cerdo (IPEC) y macrefagos porcinos PM). En la Figura 3 se representa la variación del titule con el numero de pase a lo largo de 10 pases en IPEC (Figura 8A) y 5 pases en PM (Figura 8B). El rendimiento viral en ambas líneas celulares fue menor que el obtenido en células ST, y se estima que la m.d.i. de cada pase vario entre 20 y 0,2 ufp/celula.
El ARΝ producido en células ST infectadas con THER-1- STp46-IPECpl [virus THER-1-STp46 pasado 1 vez en células IPEC] y THER-1-STp46-IPECp10 [virus THER-1-STp46 pasado 10 veces en células IPEC] se marcó con 32Pi y se analizó en un gel de agarosa desnaturalizante (Figura 8C).
El ARN de células ST infectadas con virus THER-1-STp46-
PMpl [virus THER-1-STp46 pasado 1 vez en células PM] y THER-
1-STp46-PMp5 [virus THER-1-STp46 pasado 5 veces en células PM] se analizo en un ensayo tipo Northern con un oligonucleotido complementario al ARN líder (Figura 8C).
Los resultados se muestran en la Figura 8C, donde puede apreciarse que los tres ARNs defectivos se mantuvieron en el primer pase en ampas lineas celulares, pero solamente el ARN A persistió a lo largo de, al menos, cinco pases en PM, y de diez pases en IPEC. En ambos casos se señalan las posiciones de los ARNs correspondientes al genoma silvestre (1), ARNs A, B y C (DI-A, DI-3 y DI-C respectivamente) y ARNm 2 (protema S). En el canal correspondiente al ARN del virus THER-1- STp46-PMp5 se indica la posición del ARN genomico, que sólo se observo cuando el tiempo de exposición de la autorradiografía fue diez veces mayor que el de la que se muestra en la Figura 8C. 1.3 Encapsidacion de los genomas defectivos
Para estudiar si los ARNs defectivos tienen la capacidad de encapsidarse, se hizo una purificacion parcial en paralelo de los virus THEP-1-STpl [virus THER-1 pasado 1 vez en células ST] y THER-1-3Tp41 [virus THER-1 pasado 41 veces en células ST] mediante centrifugación a través de un coicnon de sacarosa del 15% oeso/volumen. Se extrajo el ARN de los vinones purificados, y se analizo en un gel de agarosa por tinción con bromuro de etidio Figura 9A). En los viriones del pase 41 se detectaron los ARNs A, B y C con la misma intensidad que ei ARN genomico, lo que indica que los tres ARNs defectivos se encapsidan eficientemente.
Para determinar si los genomas defectivos co-encapsidan con el genoma completo o si por el contrario se encapsidan independientemente, se purifico virus THER-1-STp41 por centrifugación a través de colchones de sacarosa de distintas densidades, o a través de gradientes continuos de sacarosa. El ARN de los viriones purificados en cada caso se analizó en un ensayo de tipo Northern con un oligonucieótido complementario al ARN líder (Figura 9B). Cuando la centrifugación se hizo a través de un colchón de sacarosa del 31% (p/v) (d=1,19 g/ml), sólo se detectó genoma silvestre en ios virienes sedimentados. Sin embargo, cuando se empleó un colchón de sacarosa de menor densidad, 15% (p/v) (d=1,11 g/ml), se detectaron los tres ARNs defectivos ademas del genoma completo. En un gradiente continuo de sacarosa (15- 421, p/v) se logró el enriquecimiento de viriones defectivos en las fracciones superiores del gradiente (densidad cercana a 1,15 g/ml), y de los viriones estándar en las fracciones inferiores (densidad cercana a 1,20 g/ml) como se observa en la Figura 9B, canales d y e. La panda superior en caca canal corresponde a los genomas silvestre y genoma defective A (DI- A), y la banda inferior a los genomas defectivos B y Z (DI-B y DI-C). Estos resultados indican que los ARNs A, B y C se encapsidan eficientemente, y que los genomas DI-B y DI-C ( 10 , 6 y 9,7 kb) lo hacen independientemente del genoma silvestre, en viriones defectivos que son más ligeros que los vinones estándar.
1.4 Clonare y seσuenciación de los ARN defectivos B y C.
Determinación de su estructura primaria.
1.4.1 Síntesis de ADN complementario y amplificación de los ARNs B y C.
El tamaño de los ARNs defectivos B y C se había estimado por su movilidad en los geles de electroforesis, siendo de 10,6 y 9,7 kb respectivamente. Debido a su gran tamaño los ARNs defectivos no pudieron ser amplificados en una sola reacción de transcriptasa inversa y reacción en cadena de la polimerasa (RT-PCR) utilizando iniciadores complementarios a los extremos del genoma. Para superar esta limitación, los genomas defectivos se amplificaron en cuatro reacciones independientes, utilizando parejas de iniciadores que diesen lugar a cuatro fragmentos solapantes que cubriesen la longitud total del genoma en cada caso. Estos fragmentos solapantes se designaron a, b, c y d, ordenados desde el extremo 5' al extremo 3' (Figura 10). Se utilizó como molde el ARN del virus THER-1-STp41, extraído de viriones purificados, que contiene los tres ARNs defectivos A, 3 y C además del genoma parental. Como control se llevó a cabo en paralele la amplificación del lRN genómico del virus silvestre THER-1.
La secuencia y posición de los oligonucieótidos utilizados como iniciadores en la reacción de RT-PCR se indica en la Tabla 2.
a
Figure imgf000032_0001
La amplificación por RT-PCR con los iniciadores 1 y 2, del ARN del virus THER-1-STp41 y del ARN del virus parental THER dio lugar a un producto de PCR mayoritario de 1,9 kb (Figura 11, fragmento a) . Las bandas minoritarias observadas en esta reacción son debidas a hibridaciones mespecíficas, ya que aparecen en los dos canales. Esta misma reacción de RT-PCR se hizo a partir de un fragmento de agarosa que contenía los ARNs DI-B y DI-C juntos procedentes de una purificación por gel, obteniéndose el mismo resultado. Esto indica que el fragmento a es común a todos los ARNs DI, y corresponde a la región de 1,9 kb del extremo 5' del genoma silvestre del VGFT.
La amplificación con los oligonucleótidos 3 y 4 dio lugar a un producto de PCR único de 2,3 kb a partir del ARN del virus THER-1-STp41 (Figura 11, fragmento b) . No se obtuvo ningún producto de PCR a partir del ARN del virus THER-1 control, ya que el tamaño del producto esperado era de 12 kb. De estos datos se deduce que al menos un genoma defectivo tiene un fragmento b de 2,8 kb, y los otros tienen este mismo fragmento o uno mayor que no es detectable en las reacciones de PCR por su gran tamaño.
Los eligonucleótidos 5 y 6, separados 4,6 kb en ei genoma parental, dieron lugar a dos productos diferentes de 3,5 y 4,6 kb a partir del ARN del virus THER-1-STp41 (Figura 11, fragmento c ) . El producto de 4,6 Kb se obtuvo también a partir del ARN del virus silvestre llevado como control. Estos resultados sugieren que el fragmento c en al menos un genoma defectivo probablemente en el genoma defectivo mas abundante, DI-C) contiene una delecion, dando lugar por PCR a un fragmento de 3,5 kb. El fragmento de 4,6 kb se deriva del genoma parental presente en la población de ARNs del virus THER-1-STp41, y de aquellos genomas defectivos que hayan conservado esta región del genoma.
La amplificación por RT-PCR con los iniciadores 7 y 8 del ARN genomico del virus parental no generó ninguna banda (Figura 11, fragmento d), ya que la separación entre estos oligonucleotidos es de 9,5 kb en el genoma completo (Figura 10). En contraste, se observaron dos bandas muy intensas de 1,9 y de 2,1 kb cuando se utilizo como molde el ARN del virus THER-1-STp41. Estas bandas se observan como una banda ancha continua, correspondiente al fragmento d (Figura 11), probablemente porque co-migran con un conjunto de bandas minoritarias en el entorno de la banda de 1,9 kb, que dificultan la resolución en los geles. Se ha observado heterogeneidad de tamaños en el fragmento d de clonaje (véase mas adelante).
1.4.2 Asignación de los productos de amplificación [a, b , c v d] a los distintos ARNs defectivos.
Con objeto de asignar los fragmentos d de tamaño variable entre 1,9 y 2,1 kb a los distintos genomas defectivos, el ARN del virus THER-1-STp41, que se había utilizado como molde, se fracciono en un gel de agarosa hasta que se logró una separación clara de las bandas correspondientes a los ARNs del genoma silvestre, DI-A, DI-B y DI-C. Las bandas correspondientes a cada uno de estos cuatro ARNs se cortaren independientemente y se usaron como molde en la reacción de amplificación de RT-PCR con los oligonucleotidos 8 y 9. A partir del ARN genomico purificado de banda no se cotuvo ningún producto de PCR. A partir del ARN DI-B se obtuvo un producto de PCR predominante de 1,9 kb, aunque se obtuvieron también DNAs menos abundantes, de tamaño variable próximo a 1,9 kb, que indican una cierta heterogeneidad en esta zona. La amplificación del ARN DI-C dio lugar a un producto de PCR mayoritario de 2,1 kb. Estos resultados permitieron asignar el fragmento de 1,9 kb al ARN defectivo B, y el fragmento de 2,1 kb al ARN DI-C.
Una vez asignados los fragmentos d, los fragmentos c de 3,5 y 4,6 kb obtenidos con los iniciadores 5 y 6 se asignaron a los ARNs defectivos C y B, respectivamente, ya que la suma de los fragmentos a a d resultantes de esta asignación coincidía en cada caso con los tamaños de los ARNs B y C estimados por movilidad.
Una vez determinada la secuencia completa de los genomas B y C, se comprobó la asignación de fragmentos mediante la amplificación de cada ARN purificado de banda, utilizando oligonucleotidos que flanqueaban deleciones específicas. La asignación de fragmentos se confirmo también mediante ensayos tipo Northern usando oligonucleotidos que mapeaban en las regiones de la DI-B que no estaban presentes en la DI-C, y viceversa.
1.4.3 Clonaj e y secuenciación de los fragmentos solapantes a, b, c y d,
Los cuatro fragmentos de ADN solapantes a (1,9 kb), b (2,8 kb), c (3,5 kb) y d (2,1 kb) complementarios al ARN C se clonaron en Bluescript SK-. Se secuenciaron al menos dos clones procedentes de reacciones de RT-PCR independientes. La secuencia de aquellas posiciones que no coincidían en los distintos clones posiblemente errores de la polimerasa Taq) se secuenciaron directamente de los productos de PCR correspondientes no clonados. De esta forma se determino la secuencia consenso del ARN DI-C. Se obtuvo una media de I error de la polimerasa Taq cada 1,2 kb copiadas. La secuencia completa del genoma DI-C se indica en la Figura 12.
La secuencia completa del ARN DI-C que se obtuvo de esta forma se comparo con la secuencia de las ORFs la y Ib del virus PUR46-PAR, [Eleouet et al., Virology 206, 817-822 (1995)], y con la secuencia determinada en nuestro laboratorio de las otras ORFs del virus THER-1. En la secuencia del ARN DI-C completo se encontraron 14 diferencias de nucleótido respecto a la secuencia de la cepa PUR46-PAR. Estas posiciones fueron secuenciadas en la cepa THER-1, el virus parental de los genomas defectivos, para definir los cambios puntuales del ARN genomico defectivo DI-C. La secuencia del ARN DI-C sólo presentó tres diferencias de nucleótido respecto a la secuencia correspondiente del virus parental, y una inserción en la posición 9189, que no afecta a ninguna fase abierta de lectura (Figura 12).
1.4.4 Estructura primaria de los genomas DI-C v DI-B,
Los datos de secuencia indicaron que el genoma DI-C estaba formado por cuatro regiones discontinuas del genoma parental (Figura 13) que comprenden: a) los 2144 nucleótidos del extremo 5' del genoma; b) 4540 nucleótidos que corresponden a la región entre las posiciones 12195-16734 del genoma parental, que incluye la zona solapante entre las fases abiertas de lectura 1a y 1b, y aproximadamente la mitad 5' de la fase abierta de lectura 1b; c) ana región de 2531 nucleótidos que corresponde a las posiciones 17843-20372 del genoma silvestre, y que comprende la mitad 3' de la ORF1b y los 8 primeros nucleótidos del gen S, y d) los 493 nucleótidos del extremo 3' viral.
La estructura primaria del genoma DI-B se determinó por secuenciación de los fragmentos de clonaje a y b (comunes a los del genoma DI-C ), c (igual al del genoma parental) y d (específico del genoma DI-B). El genoma DI-B está formado por tres regiones discontinuas del genoma (Figura 14): a) los 2144 nucleótidos del extremo 5' del genoma, común a todos los clones de DI-B, e idéntica a la región I del ARN DI-C; b) una región variable en tamaño, de 8178-8243 nucleótidos que corresponden a las posiciones 12195-20369 a 20436 del genoma parental, y que incluye la zona de solapamiento entre las dos fases abiertas de lectura del gen 1, la ORF1b completa, y los primeros nucleótidos del gen S y c) los 278 a 303 nucleótidos de la región 3' del genoma.
Los clones que constituyen la población designada como genomas DI-B difieren en el tamaño de la deleción que tuvo lugar entre las regiones II y III, que comienza al principio del gen S (entre los nucleótidos 6 y 73) y acaba al final del gen 7 (entre los nucleótidos 195 y 233).
La secuencia del extremo 5' del ARN THER-1 parental se determinó por secuenciación directa del ARN, y es 5'- NCUUUUAAAG-3'. La naturaleza del primer nucleotido "N" de la secuencia no se na determinado. Hasta ahora se ha descrito la secuencia del extremo 5' de tres aislados del virus VGPT: PUR46-PAR, PUR46-BRI y FS772/70, [Eleouet et al., citado supra ; Page et al., Virus Genes 4, 289-301 (1990); Sethna et al., J. Virol. 65, 320-325 (1991)] y todas difieren en el primer nucleotice. La secuencia del líder de los ARNs defectivos debe ser la misma que la del líder del virus parental, dado el intercambio de líderes que se produce en una infección por coronavirus [Makmo et al., J. Virol. 57, 729-737 (1986)].
Los tres ARXs defectivos contienen poliA, dado que se unen a columnas de oligo dT (resultados no mostrados).
1.4.5 Los ARNs 3 C conservan la región solapante entre las ORFs la y 1b que incluye el motivo responsable de la traslocación (-1 del ribosoma.
De acuerdo cen las secuencias asiσnadas a los genomas DI-C y DI-3, cabe predecir fases aciertas de lectura de 6370 y 10003 nucleotidos respectivamente, que comienzan en el nucleótido 315, contado desde el extremo 5' del genoma. La fase abierta de lectura del ARN DI-C termina en el codón de terminacicn generado en el sitie de unión de las regiones discontmuas II y III, donde tuve lugar la delecion interna en la fase abierta de lectura 1b, en la posición 6685 del genoma DI-C. La fase acierta de lectura del genoma DI-B termina en el cooon de terminación natural de la ORF1b.
Los dos ARNs defectivos han mantenido la zona solapante entre las ORFs 1a y 1b, que incluye la secuencia de deslizamiento y el motivo de estructura terciaria "lazo falso" (pseudoknot ), responsables de la traslocación (-1) del ribosoma en esta zona [Eleouet y col., citado supra ] . En la Figura 15 se representan las posibles estructuras secundarias y terciarias del ARN en esta zona. La estructura propuesta para el pseudoknct en esta zona por Eleouet y col., es la que se indica en C y D, sin embargo hay otras estructuras posibles (como la indicada en A y B) y se desconoce cuál es la correcta.
Se ha descrito que la traslocación ocurre con una eficiencia del 20% en el VGPT [Eleouet y col., citado supra ] y permite la traduccicn continua del gen 1. El hecho de que los ARNs DI-B y DI-C (y probablemente el ARN DI-A) hayan mantenido esta región del genoma parental, sugiere que ésta pueda ser necesaria para la replicación del ARN o para la propagación de les genomas.
Hay otras dos fases abiertas de lectura pequeñas en los genomas defectivos DI-C y DI-B. Una de ellas, previa a la fase oe lectura larga, codifica un péptido de tres aminoácidos que se encuentra también en el genoma silvestre y de la que se desconoce su función. La otra fase abierta de lectura comienza en les dos casos en el AUG del gen S, y codifica un peptido de 16 aminoácidos en la DI-C, y un péptido de tamaño variable en la DI-B. No se sabe si estas ORFs son funcionales. Las dos únicas secuencias consenso promotoras de transcripción (CUAAAC) del virus que se han mantenido son precisamente las que preceden al gen 1 y al gen S, en los ARNs defectivos B y C. Estas secuencias se señalan en la Figura 12.
L la Figura 16 se muestra el mapeo de los ARNs A, B y C por hibridación con oligonucleótidos específicos para el virus en ensayos tipo Northern. El ARN del virus THER-1-STp41 se fracciono en geles de agarosa hasta conseguir una separación clara de los ARNs del genoma parental y DI A, B y C. El ARN se transfirió a filtros de nailon que se hibridaron con vanos oligonucleotidos marcados con 32Pi, que hibridaron con el genoma parental (+), e hibridaron (+) o no (-) con los genomas defectivos. La localización aproximada de las secuencias complementarias a los oligonucleótidos en el genoma parental se indica con flechas. Su secuencia y posición exactas se indican en la Tabla 3. Todos los oligonucieótidos hibridaron con el genoma parental y dieron los resultados esperados con los ARNs B y C.
Figure imgf000039_0001
a: La posición en el genoma se indica como el numero de bases desde el extremo 5' del genoma viral silvestre para los oligonucleotidos (ON) complementarios al gen 1 (ORF1a y ORF1b) y la región no traducida del extremo 3' (3'-UTR); y desde el primer nucleotido del ATG iniciador del gen correspondiente, al nucleotido 5' del ON en el caso de los que mapean en los genes S, M y N. EJEMPLO 2
GENERACION DE VECTORES DE EXPRESION
Se na clonado el ADNc que codifica el ARN DI-C en un plásmido Bluescript II, bajo el control del promotor del fago T7. Este ADNc incluye secuencias poliA, una ribozíma del virus de la nepatitis delta (HDV) y las señales de terminación del fago T7. Uno de estos plásmidos, cuya construcción se muestra en la Figura 17 ha sido denominado pDIC-1. Estos plásmidos se pueden manipular para clonar en ellos les genes heterólogos bajo el control del promotor del gen S que esta presente en el genoma defectivo, u otro promotor del VGPT, o una variante de estos con eficiencia aumentada.
El clonaje de los genes heterologos se hizo después de la ORFlb, siguiendo el codon iniciador (AUG) del gen S, y en fase de lectura con este gen.
A partir de estos ADNc se expresaron ARNs utilizando la polimerasa del fago T7, con los que se transformaron células ST previamente infectadas con el virus colaborador atenuado THER-1, con lo que se rescataren viriones conteniendo el genoma del virus complementador y otros con el genoma defectivo correspondiente. Estos virus, liofilizados en presencia de 2% de suero fetal de ternera se utilizaron como vacuna para la inducción de anticuerpos específicos frente agentes que infectan el tracto gastrointestinal o respiratorio de cerdos, perros y gatos.
El tropismo de los vectores se nizo especifico para las especies porcina, canina o felina utilizando los virus complementadores atenuados adecuados.
EJEMPLO 3
Inducción de anticuerpos neutralizantes 3.1 Inducción de protección frente al coronavirus PEDV
Se inmunizaron cerdos utilizando un sistema recombinante constituido por virus complementador (THER-1) y el plásmido pDIC-1 en el que se había clonado el gen de la glicoproteína S del coronavirus PEDV.
Las inmunizaciones se hicieron por administración de 109 ufp por iechón por vía oral.
Se analizó la presencia de anticuerpos neutralizantes en el suero de los animales vacunados a los 15, 30, 45 y 60 días después de la inmunización, determinándose la presencia de anticuerpos específicos para el virus PEDV utilizando un radioinmunoensayo (RlA) [Manιatιs et al., citado supra ] .
Con los sueros recogidos a los 45 días después de la inmunización se proporcionó protección completa frente a la infección por el virus PEDV (estirpe SEG86-1) de lechones de 10 días, cuando estos sueros se preincubaron con el virus virulento antes de la administración oral.
3.2 Inducción de protección frente al coronavirus canino
Se inmunizaren perros utilizando un sistema recompinante constituido por virus complementador (coronavirus canino estirpe Fort Dodge) y el plasmido pDIC-1 en el que se había clonado el gen de la glicoproteina S del coronavirus canino (e stirpe Fort Dcdge).
Las inmunizaciones se hicieren por administración de 109 ufp por perro por vía oral.
Se analizó la presencia de anticuerpos neutralizantes en el suero de los animales vacunadcs a los 15, 30, 45 y 60 días despues de la inmunización, determinándose la presencia de anticuerpos específicos frente al coronavirus canino utilizando RlA.
Con los sueros recogidos a los 45 días después de la inmunización se proporcionó protección completa frente a la infección por el coronavirus canino (estirpe Fort Dodge) de perros de 10 días, cuando estos sueros se premcubaron con el virus virulento antes de la administración oral. 3.3 Inducción de protección frente a infecciones causadas por el arterivirus PRRSV
Se inmunizaron cerdos utilizando un sistema recombinante constituido por virus complementador (THER-1) y el plásmido pDIC-1 en el que se había clonado la ORF3 y la ORFS del artenvirus PRRSV (estirpe Fort Dodge).
Las inmunizaciones se hicieron por administración de 109 ufp por iechon por vía oral.
Se analizo la presencia de anticuerpos neutralizantes en el suero de los animales vacunados a los 15, 30, 45 y 60 días después de la inmunización, determinándose la presencia de anticuerpos específicos frente a PRRSV utilizando RÍA.
Con los sueros recogidos a los 45 días después de la inmunización se proporciono protección completa frente a la infección por el PRRSV estirpe Fort Dodge) de lechones de 10 días, cuando estos sueros se premcubaron con el virus virulento antes de la administración oral.
EJEMPLO 4
GENERACION DE VECTORES DE EXPRESION
Siguiendo un procedimiento similar al descrito en el Ejemplo 2 se ha clonado un ADNc que codifica un ARN autoreplicativo en un piasmιdo Bluescript II, bajo el control del promotor del fago T7. Este ADNc incluye secuencias poliA, una ribozima del virus de la hepatitis delta (HDV) y las señales ce terminación del fago T7. Uno de estos plasmidos, cuya construcción se muestra en la Figura 18 na sido denominado pDIA-6A.C3. Este plasmido contiene el gen que codifica el anticuerpo monoclonal 6A.C3 que neutraliza el VGPT. Las características del anticuerpo monoclonal 6A.C3 y su construcción se describen en la Tesis Doctoral del Dr. D. Joaquín Castilla Castrillón, titulada "Construcción de animales transgenices secretores de anticuerpos neutralizantes para ceronavirus", Universidad Autónoma de Madrid, Facultad de Ciencias, Diciembre 1996, páginas 43-52, 05-79. El cíonaje del gen heterólogo se hizo después de la ORFlb, siguiendo el codon iniciador (AUG) del gen S, y en fase de lectura con este gen.
A partir de este ADNc se expresaron ARNs utilizando la polimerasa del fago T7, con ios que se transformaron células
ST previamente infectadas con el virus colaborador atenuado
THER-1, con lo que se rescataron viriones conteniendo el genoma del virus complementador y otros con el genoma defectivo correspondiente. Estos virus, liofilizados en presencia de 2 % de suero fetal de ternera pueden utilizarse como vectores para la expresión del anticuerpo monoclonal recombinante 6A.C3. El tropismo de los vectores se hizo específico para la especie porcina utilizando el virus complemer.tador atenuado adecuado.
EJEMPLO 5
Expresión de anticuerpos neutralizantes Se _nmunιzaron cerdos utilizando un sistema recombinante constituαdo por virus complementador (THER-1) y el piásmido pDIA-6A.33 (Ejemplo 4) que contiene la secuencia que codifica el anticuerpo monoclonal recomomante 6A.C3 que neutraliza el VGPT.
Las inmunizaciones se hicieron por administración de 109 ufp por lechón per vía oral.
Se analizo la presencia de anticuerpos 6A.C3 neutralizantes en el suero de los animales vacunados a los 15, 30, 45 y 60 oías después de la inmunización utilizando un RÍA [Maniatis et al., citado supra ] . Los anticuerpos recombinantes tenian unos títulos RlA superiores a 103 y pueden reducir el título del virus infeccioso en mas de 104 veces.
DEPOSITO DE MICROORGANISMOS
El plásmido denominado pDIC-1, introducido en una bacteria DH-5 derivada de E. coli , [DH5/pDIC-1], ha sido depositado el 6 de Marzo de 1996, en la European Collection of Animal Cell Cultures (ECACC), en Porton Down, Salisbury, Whiltshire SP4 OJG (Reino Unido), correspondiéndole el número de acceso P96030641.
Adicionalmente, el virus complementador atenuado denominado THER-1 ha sido depositado en la ECACC el 5 de Marzo de 1996, correspondiéndole el número de acceso
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001

Claims

REIVINDICACIONES
1. Un genoma viral defectivo que comprende el genoma de un virus parental que tiene las señales de reconocimiento ce la replicasa viral localizadas en los extremos 3' y 5', que comprende además deleciones internas, y en el que dicho genoma viral defectivo depende de un virus compiementador para su replicación. 2. Un genoma según la reivindicación 1, que comprende, ademas, la secuencia completa que codifica la replicasa del virus parental.
3. Un genoma según las reivindicaciones anteriores, en el que dicho virus parental es un coronavirus.
4. Un gencma según las reivindicaciones anteriores, que comprende un genoma defectivo de un coronavirus porcino, canino o felino.
5. Un genoma según la reivindicación 4, que comprende un genoma defectivo del virus de la gastroenteritis porcina transmisible (VGPT). 6. Un genoma según cualquiera de las reivindicaciones anteriores, en el que dicho virus complementador es el virus parental.
7. Un vector de expresión basado en un genoma viral defectivo recombinante que expresa al menos un antigeno capaz de inducir respuestas inmunes sistémicas y secretoras, que comprende un genoma viral defectivo según las reivindicaciones 1 a 6, o su correspondiente ADN complementario (ADNc), y al menos, una secuencia de ADN que codifica un antígeno capaz de conferir inmunidad sistémica y en mucosas.
8. Un vector según la reivindicación 7, que comprende más de una secuencia de ADN, cada una de las cuales codifica un antigeno distinto capaz de conferir inmunidad sistémica y en mucosas.
9. Un vector de expresión basado en un genoma viral defectivo recomeinante que expresa al menos un anticuerpo que proporciona protección contra un agente infeccioso, que cemprende un genoma viral defectivo según las reivindicaciones 1 a 6, o su correspondiente ADN complementario ADNc), y al menos, una secuencia de ADN que codifica un anticuerpo que proporciona protección contra un agente infeccioso.
10. Un vector según la reivindicación 9, que comprende más de una secuencia de ADN, cada una de las cuales codifica un anticuerpo que proporciona protección contra un agente infeccioso.
11. Un sistema recombinante basado en virus defectivos recemoinantes que expresan, al menos, un antígeno capaz de inducir inmunidad sistemica y en mucosas, que comprende:
a) un vector de expresión recomeinante basado en un genoma viral defectivo según las reivindicaciones 7 u 8, que contiene, al nenos, una secuencia de ADN que codifica un antigeno capaz de conferir inmunidad sistemica y en mucosas; y
b) un virus complementador.
12. Un sistema según la reivindicación 11, en el que dicho vector de expresión comprende mas de una secuencia de ADN, cada una de las cuales codifica un antígeno distinto capaz de conferir inmunidad sistémica y en mucosas.
13. Un sistema según la reivindicación 11, que comprende distintos vectores de expresión cada uno de los cuales contiene una secuencia de ADN distinta que codifica un antígeno distinto capaz de conferir inmunidad sistémica y en mucosas. 14. Un sistema según cualquiera de las reivindicaciones 11 a 13, en el que dicho virus complementador es el virus parental del que deriva el genoma viral defectivo. 15. Un sistema según la reivindicación 14, en el que dicho virus complementador proporciona las proteínas funcionales y estructurales para la replicación y encapsidación del genoma defectivo. le. Un sistema según la reivindicación 14, en el que dicho virus ccmplementador proporciona las proteínas estructurales para la encapsidacion del genoma defectivo.
17. Un sistema recombinante basado en virus defectivos recembinantes que expresan, al menos, un anticuerpo que proporciona protección contra un agente infeccioso, que comprende:
a) un vector de expresión recombinante basado en un genoma viral defectivo según las reivindicaciones 9 ó 10, que contiene, al menos, una secuencia de ADN que codifica un anticuerpo que proporciona protección contra un agente infeccioso, y
b) un virus complementador. 18. Un sistema según la reivindicación 17, en el que dicho vector de expresión comprende más de una secuencia de ADN, cada una de las cuales codifica un anticuerpo que proporciona protección contra un agente infeccioso.
19. Un sistema según la reivindicación 17, que comprende distintos vectores de expresión cada uno ce los cuales contiene una secuencia de ADN distinta que codifica un anticuerpo que proporciona protección contra un agente infeccioso.
20. Un sistema según cualquiera de las reivindicaciones 17 a 19, en el que dicho virus complementador es el virus parental del que deriva el genoma viral defectivo.
21. Un sistema según la reivindicación 20, en el que dicho virus complementador proporciona las proteínas funcionales y estructurales para la replicacien y encapsidación del genoma defectivo.
22 . Un sistema según la reivindicación 20, en el que dicho virus complementador proporciona las proteínas estructurales para la encapsidación del genoma defectivo. 23. Una vacuna capaz de inducir protección en animales frente a un agente infeccioso, que comprende una cantidad adecuada de un sistema recombinante según cualquiera de las reivindicaciones 11 a 22, junto con un excipiente farmacéuticamente aceptable.
24. Una vacuna según la reivindicación 23, en la que dicho sistema recombinante comprende un vector de expresión que contiene una secuencia de ADN que codifica un antigeno capaz de conferir inmunidad sistémica y en mucosas.
25. Una vacuna según la reivindicación 23, en la que dicho sistema recombinante comprende un vector de expresión que contiene mas de una secuencia de ADN, cada una de las cuales codifica un antígeno distinto capaz de conferir inmunidad sistémica y en mucosas.
26. Una vacuna según la reivindicación 23, en la que dicho sistema recombinante comprende distintos vectores de expresión cada ano de los cuales ccntiene al menos una secuencia de ADN distinta que codifica un antigeno distinto capaz de conferir inmunidad sistémica y en mucosas.
27. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos porcinos, en la que el sistema recombinante comprende al menos un vector de expresión que contiene al menos una secuencia de ADN que codifica un antigeno de un patógeno porcino.
28. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos porcinos, en la que el sistema recomoinante comprende un vector de expresión que contiene más de una secuencia de ADN, cada una de las cuales codifica un antígeno distinto de un patógeno porcino.
29. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos porcinos, en la que el sistema recombinante comprende distintos vectores de expresión cada uno de los cuales contiene al menos una secuencia de ADN que codifica un antígeno de un patógeno porcino. 30. Una vacuna según las reivindicaciones 27 a 29, en la que dicho patógeno porcino se selecciona de un grupo constituido esencialmente por: Actinobacillus suis, Actinobacillus pleuropneumoniae, Haemophilus parasuis, Parvovirus porcino, Leptospira, Escherichia coli, Erysipeiotrix rhusiopathiae, Pasterella multocida, Bordetella bronchiseptica, Clostridium sp., Serpulma hydiosenteriae, Mycoplasma hyopneumoniae, virus de la diarrea epidémica porcina (PEDV), coronavirus respiratorio porcino, rotavirus, o contra los patógenos causantes del síndrome respiratorio y reproductivo porcino, la enfermedad de Aujeszky (Pseudorabies), influenza porcina o gastroenteritis transmisible y el agente etiológico de la rinitis atrofica y de la ileitis prcliferativa. 31. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos caninos, en la que el sistema recombinante comprende al menos un vector de expresión que contiene al menos una secuencia de ADN que codifica un antigeno de un patógeno canino.
32. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos caninos, en la que el sistema recombinante comprende un vector de expresión que contiene mas de una secuencia de ADN, caca una de las cuales codifica un antigeno distinto de un patógeno canino.
33. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos caninos, en la que el sistema recombinante comprende distintos vectores de expresión cada uno de los cuales contiene al menos una secuencia de ADN que codifica un antígeno de un patógeno canino.
34. Una vacuna según las reivindicaciones 31 a 33, en la que dicho patógeno canino se selecciona de un grupo constituido esencialmente por: herpesvirus caninos, adenovirus canino tipos 1 y 2, parvovirus canino tipos 1 y 2, reovirus canino, rotavirus canino, coronavirus canino, virus de la paramfluenza canina, virus de la influenza canina, virus del moquillo (Distemper virus), virus de la rabia, retrovirus y calicivirus canino. 35. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos felinos, en la que el sistema recombinante comprende al menos un vector de expresión que contiene al menos una secuencia de ADN que codifica un antigeno de un patógeno felino.
36. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra agentes infecciosos felinos, en la que el sistema recombinante comprende un vector de expresión que contiene mas de una secuenca de ADN, caca una de las cuaies codifica un antigeno distinto de un patógeno felino.
37. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad centra aσentes infecciosos felinos, en xa que el sistema recombinante comprende distintos vectores de expresien cada uno de los cαales contiene al menos una secuencia de ADN que codifica un antigeno de un patógeno felino.
38. Una vacuna seσun las reivindicaciones 35 a 37, en la que dicho patógeno felino se selecciona de un grupo esencialmente constituido por: calicivirus del gato, virus de la inmuno-deficiencia felina, herpesvirus felinos, virus de la panleucopema felina, reovirus felino, rotavirus felino, coronavirus felino, virus de la peritonitis infecciosa del gato, virus de la rabia, Chlamydia psittaci felina y virus de la leucemia felina. 39. Una vacuna según la reivindicación 23, en la que dicho sistema recombinante comprende un vector de expresión que contiene una secuencia de ADN que codifica un anticuerpo que proporciona protección contra un agente infeccioso.
40. Una vacuna según la reivindicación 23, en la que dicho sistema recombinante comprende un vectcr de expresión que contiene más de una secuencia de ADN, cada una de las cuales codifica un anticuerpo que proporciona protección contra un agente infeccioso.
41. Una vacuna según la reivindicación 23, en la que dicho sistema recombinante comprende distintos vectores de expresión cada uno de los cuales contiene al menos una secuencia de ADN distinta que codifica un anticuerpo que proporciona protección contra un agente infeccioso.
42. Una vacuna según la reivindicación 23, adecuada para conferir inmunidad contra un agente infeccioso porcino, en la que el sistema recombinante comprence al menos un vector de expresión que contiene al menos una secuencia de ADN que codifica un anticuerpo que proporciona protección contra dicho agente infeccioso porcino.
43. Una vacuna según la reivindicación 42, en la que el sistema recombinante comprende al menos un vector de expresión que contiene al menos una secuencia de ADN que codifica el anticuerpo monoclonal identificado como 6A.C3 capaz de neutralizar el virus de la gastroenteritis porcina transmisible (VGPT).
44. Una vacuna según la reivindicación 23, en la que el virus complementador del sistema recombinante comprende un coronavirus.
45. Una vacuna según la reivindicación 44, en la que dicho coronavirus se selecciona del grupo formado por coronavirus porcinos, caninos y felinos.
Figure imgf000067_0001
Figure imgf000068_0001
PCT/ES1997/000059 1996-03-14 1997-03-12 Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas WO1997034008A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU19277/97A AU729044B2 (en) 1996-03-14 1997-03-12 Vectors based on recombinant defective viral genomes, and their use in the formulation of vaccines
PL97328791A PL188546B1 (pl) 1996-03-14 1997-03-12 Wektor ekspresyjny antygenów lub przeciwciał, rekombinacyjny układ ekspresyjny i szczepionka do ochrony zwierząt
EP19970907111 EP1008652A1 (en) 1996-03-14 1997-03-12 Vectors based on recombinant defective viral genomes, and their use in the formulation of vaccines
US09/155,003 US7041300B1 (en) 1996-03-14 1997-03-12 Vectors based on recombinant defective viral genomes, and their use in the formulation of vaccines
JP53230497A JP3769300B2 (ja) 1996-03-14 1997-03-12 組換え欠陥ウイルスゲノムに基づくベクター及びワクチン製剤におけるそれらの使用
BR9708061A BR9708061A (pt) 1996-03-14 1997-03-12 Vetores baseados em genomas virais defeituosos recombinantes, e seu uso na formação de vacinas.
HU0000356A HUP0000356A3 (en) 1996-03-14 1997-03-12 Vectors based on recombinant defective viral genomes,and their use in the formulation of vaccines
US11/503,214 US20070048862A1 (en) 1996-03-14 2006-08-14 Vectors based on recombinant defective viral genomes and their use in the formulation of vaccines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9600620A ES2109189B1 (es) 1996-03-14 1996-03-14 Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas.
ESP9600620 1996-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/155,003 A-371-Of-International US7041300B1 (en) 1996-03-14 1997-03-12 Vectors based on recombinant defective viral genomes, and their use in the formulation of vaccines
US10/444,059 Division US20040052775A1 (en) 1996-03-14 2003-05-23 Vectors based on recombinant defective viral genomes and their use in the formulation of vaccines

Publications (1)

Publication Number Publication Date
WO1997034008A1 true WO1997034008A1 (es) 1997-09-18

Family

ID=8294176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1997/000059 WO1997034008A1 (es) 1996-03-14 1997-03-12 Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas

Country Status (13)

Country Link
US (3) US7041300B1 (es)
EP (2) EP1008652A1 (es)
JP (1) JP3769300B2 (es)
KR (1) KR100360327B1 (es)
CN (1) CN1318596C (es)
AU (1) AU729044B2 (es)
BR (1) BR9708061A (es)
CA (1) CA2248978A1 (es)
ES (1) ES2109189B1 (es)
HU (1) HUP0000356A3 (es)
PL (1) PL188546B1 (es)
RU (1) RU2199584C2 (es)
WO (1) WO1997034008A1 (es)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039797A2 (en) * 1999-12-03 2001-06-07 Consejo Superior De Investigaciones Cientificas Artificial chromosome constructs containing nucleic acid sequences capable of directing the formation of a recombinant rna-virus
US6764685B1 (en) 2000-03-21 2004-07-20 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression systems and vaccines
WO2007062851A2 (en) 2005-12-01 2007-06-07 Consejo Superior De Investigaciones Cientificas Nucleic acids encoding tgev and prrsv sequences for improved expression of prrsv sequences
US7449324B2 (en) 2002-02-21 2008-11-11 Vironovative Bv Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US7531342B2 (en) 2001-01-19 2009-05-12 Medimmune, Llc Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US7682619B2 (en) 2006-04-06 2010-03-23 Cornell Research Foundation, Inc. Canine influenza virus
US7704720B2 (en) 2003-04-25 2010-04-27 Medimmune, Llc Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences and methods for propagating virus
EP2295590A1 (en) 2004-09-03 2011-03-16 Consejo Superior De Investigaciones Cientificas Nucleic acid sequences encoding proteins capable of associating into a virus-like particle
US7959929B2 (en) 2005-04-21 2011-06-14 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US8715922B2 (en) 2001-01-19 2014-05-06 ViroNovative Virus causing respiratory tract illness in susceptible mammals
CN104262488A (zh) * 2014-09-24 2015-01-07 普莱柯生物工程股份有限公司 一种融合蛋白及其疫苗组合物的制备与应用
US11865172B2 (en) 2005-04-21 2024-01-09 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL210451B1 (pl) * 1999-06-10 2012-01-31 Merial Sas Szczepionka DNA przeciwko wirusowi nosówki psów (CDV)
ES2208051B1 (es) * 2002-01-24 2005-08-16 Consejo Sup. Investig. Cientificas Secuencia de acido nucleico que comprende la señal de encapsidacion del rna de un coronavirus del grupo 1 y sus aplicaciones.
EP1650308A1 (en) * 2004-09-03 2006-04-26 Consejo Superior De Investigaciones Cientificas Nucleic acid sequences encoding proteins capable of associating into a virus-like particle
US20090304738A1 (en) * 2005-06-16 2009-12-10 Moran Thomas M Methods for Enhancing Immune Responses
BRPI0800485B8 (pt) * 2008-01-17 2021-05-25 Univ Minas Gerais vetores virais recombinantes, composição vacinal para leishmaniose e método de vacinação para leishmaniose
BRPI0822947B1 (pt) * 2008-11-19 2018-09-18 Laboratorio Avi Mex S A De Cv vacina recombinante.
US20230346917A1 (en) * 2020-04-12 2023-11-02 Novoscope Ip Limited Particles, dna & rna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003552A1 (en) * 1989-08-28 1991-03-21 The Mount Sinai School Of Medicine Of The City University Of New York Recombinant negative strand rna virus expression systems and vaccines
WO1994017098A1 (es) * 1993-01-23 1994-08-04 Inmunologia Y Genetica Aplicada, S.A. Peptidos y vacunas sinteticos contra parvovirus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003552A1 (en) * 1989-08-28 1991-03-21 The Mount Sinai School Of Medicine Of The City University Of New York Recombinant negative strand rna virus expression systems and vaccines
WO1994017098A1 (es) * 1993-01-23 1994-08-04 Inmunologia Y Genetica Aplicada, S.A. Peptidos y vacunas sinteticos contra parvovirus

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANA MENDEZ ET AL.: "Molecular characterization of transmissible gastroenteritis Coronavirus defective interfering genomes: Packaging and heterogeneity", VIROLOGY, vol. 217, no. 2, 15 March 1996 (1996-03-15), ORLANDO US, pages 495 - 507, XP002034208 *
GHING-LEN LIAO: "Coronavirus Defective-Interfering RNA as an expression vector: The generation of a pseudorecombinant Mouse Hepatitis Virus expressing Hemagglutinin-Esterase", VIROLOGY, vol. 208, no. 1, 1 April 1995 (1995-04-01), ORLANDO US, pages 319 - 327, XP002034204 *
MENDEZ, ANA ET AL: "Structure and encapsidation of transmissible gastroenteritis coronavirus (TGEV) defective interfering genomes", ADV. EXP. MED. BIOL. (1995), 380(CORONA- AND RELATED VIRUSES), 583-9 CODEN: AEMBAP;ISSN: 0065-2598, 1995, XP002034205 *
RUEY-YI CHANG ET AL.: "A cis-acting function for the Coronavirus leader in defective interfering RNA replication", JOURNAL OF VIROLOGY, vol. 68, no. 12, December 1994 (1994-12-01), pages 8223 - 8231, XP002034207 *
VAN DER MOST, ROBBERT G. ET AL: "A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs", J. VIROL. (1991), 65(6), 3219-26 CODEN: JOVIAM;ISSN: 0022-538X, 1991, XP002034206 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368557B2 (en) 1999-12-03 2008-05-06 Consejo Superior De Investigationes Cientificas Polynucleotides encoding porcine transmissible gastroenteritis virus
US7445928B2 (en) 1999-12-03 2008-11-04 Consejo Superior De Investigationes Cientificas Bacterial artificial chromosome construct encoding recombinant coronavirus
WO2001039797A2 (en) * 1999-12-03 2001-06-07 Consejo Superior De Investigaciones Cientificas Artificial chromosome constructs containing nucleic acid sequences capable of directing the formation of a recombinant rna-virus
EP1437400A2 (en) * 1999-12-03 2004-07-14 Consejo Superior De Investigaciones Cientificas Artificial chromosome constructs containing nucleic acid sequences capable of directing the formation of a recombinant rna-virus
AU2006203327B2 (en) * 1999-12-03 2009-09-10 Consejo Superior De Investigaciones Cientificas Infectious clones
EP1437400A3 (en) * 1999-12-03 2004-10-20 Consejo Superior De Investigaciones Cientificas Artificial chromosome constructs containing nucleic acid sequences capable of directing the formation of a recombinant rna-virus
CZ302785B6 (cs) * 1999-12-03 2011-11-09 Consejo Superior De Investigaciones Cientificas Zpusob prípravy DNA odvozené od koronaviru, príslušné infekcní klony, vektory a vakcíny
KR100755814B1 (ko) * 1999-12-03 2007-09-07 콘세호수페리오르데인베스티가시오네스시엔티피카스 감염성 클론
ES2170622A1 (es) * 1999-12-03 2002-08-01 Consejo Superior Investigacion Clones y vectores infectivos derivados de coronavirus y sus aplicaciones.
WO2001039797A3 (en) * 1999-12-03 2002-01-24 Consejo Superior Investigacion Artificial chromosome constructs containing nucleic acid sequences capable of directing the formation of a recombinant rna-virus
AU785081B2 (en) * 1999-12-03 2006-09-14 Consejo Superior De Investigaciones Cientificas Artificial chromosome constructs containing nucleic acid sequences capable of directing the formation of a recombinant RNA-virus
US7341729B2 (en) 2000-03-21 2008-03-11 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression systems and vaccines
US7678376B2 (en) 2000-03-21 2010-03-16 Medimmune, Llc Recombinant parainfluenza virus expression systems and vaccines
US6764685B1 (en) 2000-03-21 2004-07-20 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression systems and vaccines
US8084037B2 (en) 2000-03-21 2011-12-27 Medimmune, Llc Recombinant parainfluenza virus expression systems and vaccines
US6811784B2 (en) 2000-03-21 2004-11-02 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression system and vaccines
US7238481B2 (en) 2000-03-21 2007-07-03 Medimmune Vaccines, Inc. Recombinant parainfluenza virus expression systems and vaccines
US9593386B2 (en) 2001-01-19 2017-03-14 Erasmus Universiteit Medical Center Rotterdam Virus causing respiratory tract illness in susceptible mammals
US10167524B2 (en) 2001-01-19 2019-01-01 Erasmus University Medical Center Rotterdam Virus causing respiratory tract illness in susceptible mammals
US11162148B2 (en) 2001-01-19 2021-11-02 Erasmus University Medical Center Rotterdam Virus causing respiratory tract illness in susceptible mammals
US10519517B2 (en) 2001-01-19 2019-12-31 Vironovative Bv Virus causing respiratory tract illness in susceptible mammals
US9803252B2 (en) 2001-01-19 2017-10-31 Erasmus University Medical Center Rotterdam Virus causing respiratory tract illness in susceptible mammals
US9376726B2 (en) 2001-01-19 2016-06-28 Erasmus University Medical Center Rotterdam Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US9334543B2 (en) 2001-01-19 2016-05-10 Erasmus University Medical Center Rotterdam Virus causing respiratory tract illness in susceptible mammals
US8927206B2 (en) 2001-01-19 2015-01-06 Vironovative B.V. Virus causing respiratory tract illness in susceptible mammals
US8722341B2 (en) 2001-01-19 2014-05-13 Vironovative B.V. Metapneumovirus strains and their use in vaccine formulations and sequences
US7531342B2 (en) 2001-01-19 2009-05-12 Medimmune, Llc Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US8715922B2 (en) 2001-01-19 2014-05-06 ViroNovative Virus causing respiratory tract illness in susceptible mammals
US11220718B2 (en) 2002-02-21 2022-01-11 Erasmus University Medical Center Rotterdam Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US8841433B2 (en) 2002-02-21 2014-09-23 Vironovative Bv Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US10287640B2 (en) 2002-02-21 2019-05-14 Erasmus University Medical Center Rotterdam Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US7449324B2 (en) 2002-02-21 2008-11-11 Vironovative Bv Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US9944997B2 (en) 2002-02-21 2018-04-17 Erasmus University Medical Center Rotterdam Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US9834824B2 (en) 2002-02-21 2017-12-05 Erasmus University Medical Center Rotterdam Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US9567653B2 (en) 2002-02-21 2017-02-14 Erasmus University Medical Center Rotterdam Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences
US7704720B2 (en) 2003-04-25 2010-04-27 Medimmune, Llc Metapneumovirus strains and their use in vaccine formulations and as vectors for expression of antigenic sequences and methods for propagating virus
EP2295590A1 (en) 2004-09-03 2011-03-16 Consejo Superior De Investigaciones Cientificas Nucleic acid sequences encoding proteins capable of associating into a virus-like particle
US10258686B2 (en) 2005-04-21 2019-04-16 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US9913892B2 (en) 2005-04-21 2018-03-13 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US9345758B2 (en) 2005-04-21 2016-05-24 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US11160859B2 (en) 2005-04-21 2021-11-02 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US7959929B2 (en) 2005-04-21 2011-06-14 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US11865172B2 (en) 2005-04-21 2024-01-09 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
WO2007062851A2 (en) 2005-12-01 2007-06-07 Consejo Superior De Investigaciones Cientificas Nucleic acids encoding tgev and prrsv sequences for improved expression of prrsv sequences
EP2275565A3 (en) * 2005-12-01 2011-04-27 Consejo Superior De Investigaciones Científicas Nucleic acids encoding TGEV and PRRSV sequences for improved expression of PRRSV sequences
EP2316960A1 (en) 2005-12-01 2011-05-04 Consejo Superior de Investigaciones Cientificas Nucleic acids encoding TGEV and PRRSV sequences for improved expression of PRRSV sequences
EP2275565A2 (en) 2005-12-01 2011-01-19 Consejo Superior De Investigaciones Científicas Nucleic acids encoding TGEV and PRRSV sequences for improved expression of PRRSV sequences
EP2327787A1 (en) 2005-12-01 2011-06-01 Consejo Superior de Investigaciones Cientificas Nucleic acids encoding TGEV and PRRSV sequences for improved expression of PRRSV sequences
US7682619B2 (en) 2006-04-06 2010-03-23 Cornell Research Foundation, Inc. Canine influenza virus
CN104262488A (zh) * 2014-09-24 2015-01-07 普莱柯生物工程股份有限公司 一种融合蛋白及其疫苗组合物的制备与应用

Also Published As

Publication number Publication date
PL188546B1 (pl) 2005-02-28
US7041300B1 (en) 2006-05-09
ES2109189B1 (es) 1998-05-16
ES2109189A1 (es) 1998-01-01
US20070048862A1 (en) 2007-03-01
HUP0000356A3 (en) 2001-09-28
US20040052775A1 (en) 2004-03-18
EP1008652A1 (en) 2000-06-14
JP3769300B2 (ja) 2006-04-19
RU2199584C2 (ru) 2003-02-27
CN1318596C (zh) 2007-05-30
HUP0000356A2 (hu) 2000-06-28
BR9708061A (pt) 2000-01-04
KR19990087724A (ko) 1999-12-27
KR100360327B1 (ko) 2003-03-28
PL328791A1 (en) 1999-02-15
AU729044B2 (en) 2001-01-25
JP2000513565A (ja) 2000-10-17
CN1218513A (zh) 1999-06-02
AU1927797A (en) 1997-10-01
CA2248978A1 (en) 1997-09-18
EP1741789A1 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
WO1997034008A1 (es) Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas
ES2218276T5 (es) Constructos de cromosomas artificiales que contienen secuencias de acidos nucleicos capaces de dirigir la formacion de un virus recombinante de arn.
US7534559B2 (en) Feline polynucleotide vaccine formula
RU2305559C2 (ru) Вакцина свиней против респираторных патологий и патологий репродукции свиней
RU2319504C2 (ru) Вакцина собак против бешенства (варианты), способ вакцинации (варианты), набор для вакцинации (варианты)
ES2348600T3 (es) Partículas similares a coronavirus que comprenden genomas funcionalmente suprimidos.
ES2212798T3 (es) Vacuna viva recombinante aviar, que utiliza como vector un virus del herpes de pavas.
ES2320938T3 (es) Vacuna viva recombinate a base de virus herpes felino de tipo 1, particularmente contra la peritonitis infeccion felina.
Sakaguchi et al. Protection of chickens with or without maternal antibodies against both Marek's and Newcastle diseases by one-time vaccination with recombinant vaccine of Marek's disease virus type 1
AU2002311668A1 (en) Corona-virus-like particles comprising functionally deleted genomes
KR20110123725A (ko) Pcv 2―기반의 돼지 치료 방법 및 조성물
ES2213743T3 (es) Vacuna de subunidad de coronavirus canino.
GB2282601A (en) Coronavirus vaccines
WO1997020036A1 (es) Adenovirus recombinantes que expresan antigenos del virus de la gastroenteritis porcina transmisible (vgpt) y su empleo en la formulacion de vacunas
ES2208051B1 (es) Secuencia de acido nucleico que comprende la señal de encapsidacion del rna de un coronavirus del grupo 1 y sus aplicaciones.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97194614.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 532304

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980707192

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2248978

Country of ref document: CA

Ref document number: 2248978

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/007466

Country of ref document: MX

Ref document number: 09155003

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997907111

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019980707192

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997907111

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980707192

Country of ref document: KR