WO1997018691A1 - Plasma stream generation method and device therefor - Google Patents

Plasma stream generation method and device therefor Download PDF

Info

Publication number
WO1997018691A1
WO1997018691A1 PCT/CH1996/000402 CH9600402W WO9718691A1 WO 1997018691 A1 WO1997018691 A1 WO 1997018691A1 CH 9600402 W CH9600402 W CH 9600402W WO 9718691 A1 WO9718691 A1 WO 9718691A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
autonomous
treated
flow
plasma
Prior art date
Application number
PCT/CH1996/000402
Other languages
French (fr)
Inventor
Pavel Koulik
Vladimir Enguelcht
Rudolph Konavko
Anatolii Saitshenko
Mikhail Samsonov
Lilia Larkina
Original Assignee
Ist Instant Surface Technology S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ist Instant Surface Technology S.A. filed Critical Ist Instant Surface Technology S.A.
Publication of WO1997018691A1 publication Critical patent/WO1997018691A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases

Definitions

  • the present invention relates to a method for generating a plasma flow. It also relates to the device for implementing the method.
  • This generator can be used in particular in surface treatment processes (sterilization, cleaning, pickling, modification, film deposition) of monolithic and dispersed materials, of obtaining chemicals, in medicine, electronics, chemical, food industries , automotive, aviation, etc
  • the solution proposed by the present invention consists in proposing the generation of a quasi-circular (axisymmetric in the form of a funnel or cylinder) or almost flat (planisy ⁇ netric, in the form of a curtain) plasma flow with scit injection of active products of materials to be treated in the central part of the flow along its axis of symmetry or its plane of symmetry, while acting on the flow by carrying out an autonomous discharge and a non-autonomous discharge consecutively.
  • Such a process is described in the two publications: (1) "Method of control of Plasma Stream and Plasma apparatus", International Patent application, WO 93/16573, of 19.08.1993, Ivanov VV, Koulik PP, Logoshin AN and (2 ) "HF and Radio-frequency plasmatrons", Novosibirsk Nauka SO 1992, 319 p. (Low Temperature Plasma, vol 6), Dresvm SV, Bobrov AA, Lelievkm VM et al.
  • This process makes it possible to introduce the active product or the material to be treated into the relatively uniform central part of the plasma flow.
  • an autonomous discharge is used
  • the plasma flow is formed by a high frequency discharge with a developed "skm" effect
  • the central temperature of the plasma varies around 10,000 degrees.
  • the advantage of this method is that the chemical is introduced into the central part, which is relatively uniform, which, on the one hand, ensures a practically identical action of the plasma on the entire product, and, on the other hand, protects the space surrounding the plasma from the appearance of the chemical thanks to the high temperature and the speed of the plasma, the product introduced is heated, possibly vaporized, dissociated, ionized and accelerated
  • the almost circular plasma flow thus obtained, containing the chemical in its central part, is used for surface treatment and obtaining new products
  • the disadvantages of this method consist in that the generation of the plasma, made by an autonomous discharge, and ⁇ onc the state of the plasma, is close to the thermal equilibrium This means that a large part of the energy is dep € ' nsée 1 heating of the product introduced in addition to the formation of chemically activated particles (atoms, ions, radicals Er besides, the chemical activity of such a plasma falls rapidly with temperature, due to the process of recombma-scr. This is why the treatment of materials is carried out, either at relatively high surface temperature, which is not possible for many technologies and non-refractory products, or at high speeds and short interaction time, which poses serious problems with the productivity of such treatments.
  • the method consists in applying an electric field to a partially ionized gas, the magnitude of which is less than that necessary for an autonomous discharge to form.
  • a partially ionized gas the magnitude of which is less than that necessary for an autonomous discharge to form.
  • the conditions are met to obtain active chemical particles without appreciable heating of the gas.
  • the non-autonomous discharge unlike the autonomous discharge, does not contract and, therefore, does not change the geometric structure, the velocity field, or the temperatures of the plasma flow which passes through the non-discharging zone. autonomous.
  • the object of the present invention is to provide a device which allows the processing of chemicals and materials in a plasma flow in two stages: heating and acceleration in the autonomous plasma flow and subsequent activation in a non-discharging autonomous.
  • the invention relates to a method for generating a plasma flow in which, by means of an autonomous discharge, a plasma flow is created which is almost circular with an axisymmetric configuration, either quasi-planar with a planosymmetric configuration, or another more complex configuration, usable for introducing a chemical or a body to be treated into the central part of the flow, the process being characterized by the additional creation in downstream of the flow of a non-autonomous cargo
  • the non-autonomous discharge can be created using a continuous electric field, using an alternating electric field of industrial frequency or using a high frequency electric field.
  • an external electrode of the non-autonomous discharge it is possible to use the body to be treated, connected to the negative potential or to the positive potential.
  • the body to be treated can be used, which is subjected to high frequency, the interior electrode being earthed.
  • the invention also relates to a device for generating a plasma flow, comprising a current source, a generator based on an independent decarge creating a plasma flow with either a quasi circular (axisymmetric) or quasi-planar (planosymmetric) configuration, or another, more complex, and a device for introducing chemicals or materials to be treated into a central part of said stream, the generator comprising two electrodes arranged downstream of the stream, one after the other along the flux, intended for the creation between said electrodes of a non-autonomous discharge, generated by a high voltage electric field.
  • the solution proposed by the present invention consists in the main lines of treating the chemical introduced into the plasma consecutively in two stages carried out in two types of scavenging, one autonomous, the other non-autonomous.
  • Autonomous discharge heats, accelerates, ionizes gas and chemical components beforehand and provides the non-autonomous discharge zone in particles non-self-contained unloading excites the active components of the flow
  • FIG. 1 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, in the form of two electrodes connected to a high voltage current source; the references relating to FIG. 1 are as follows:
  • Non-autonomous discharge electrode 6 Non-autonomous discharge zone
  • FIG. 1 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, in the form of two circular electrodes connected to a high voltage current source and high frequency; the references relating to FIG. 1 are as follows:
  • FIG. 3 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, for the case where the treated surface is conductive and can be used as a second nor autonomous discharge electrode, the references relative to figure 1 are as follows
  • FIG. 4 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, in the form of a circular electrode connected to a high current source voltage and high frequency, in the case where the treated surface is connected to this source of courart via the earth; the marks relative to the figure
  • FIG. 5 is a perspective view of an example of a plasma generator with two planosymmetrical stages containing one of the solutions for creating the complementary non-autonomous discharge (2nd stage) in the form of two linear electrodes connected to a current source at high voltage, direct, alternating or high frequency; the references relating to FIG. 1 are as follows
  • any discharge configuration can be used in which the product and the materials to be treated are introduced into the central part of the plasma flow. This ensures the optimal action of the plasma on the product and reduces the presence of the latter. in neighboring areas surrounding the plasma.
  • Typical examples of such a configuration could be the four-nozzle plasmatron (1) or the high-frequency discharge (2).
  • the plasma flow from these discharges has a lowered temperature in its central part, which makes it possible to introduce the product more efficiently into the plasma flow.
  • a non-autonomous discharge located downstream of the plasma flow coming from the autonomous discharge.
  • the non-autonomous discharge is achieved by imposing a high voltage electric field on the plasma flow from the cooled and particularly deionized autonomous discharge due to radiation, thermal conduction and convection effects.
  • the high voltage electric field can be continuous or AC, industrial frequencies or high frequencies.
  • the continuous electric field with other equal conditions, creates the highest level of plasma non-equilibrium
  • the electrodes can be located on the periphery of the plasma flow One can also, as an electrode, use the body treated by the flow of plasma II would in this case be more efficient to connect the negative pole to the treated body. In this case, on the surface of the treated body, a space charge layer is created in the electric field from which the ions are accelerated. Thanks to the charge transfer effects, atoms and radicals are also accelerated.
  • the high energy particles act with the treated surface more efficiently.
  • we want to avoid the structural defects caused by the high energy ions it will be preferable to adopt the reverse polarity
  • the electrodes in the case of a high frequency cnamp can be located outside a dielectric tube containing the plasma flow and separating it from the surrounding medium, technologically . If the electrode downstream of the plasma flow is earthed, the non-autonomous discharge can be exerted so that on the surface of the treated body a layer of space charge is formed in which the ions and, by As a result, atoms, radicals and molecules are accelerated and bombard the treated surface, increasing the efficiency of the technology. In a high frequency field, it is possible to treat metallic materials as well as dielectric (in particular films deposited on the treated surface).

Abstract

A method for generating an axisymmetrical or planosymmetrical plasma stream, useful for delivering a chemical or a body to be treated into the central portion of the stream, and a device therefor, are disclosed. An additional non-self-maintained discharge is generated downstream from the main plasma stream by means of a direct, alternating or high-frequency electric field. The main discharge heats, accelerates and preionises the gas and the delivered chemical components, and the non-self-maintained discharge enables excitation of the active components of the stream. The method and device may be used in processes for treating surfaces and preparing chemicals.

Description

Procédé dp génération d'un flux de plasma et dispositif de mi se er. oeuyre du procédé Process for generating a plasma flow and mixing device. process work
La présente invention concerne un procédé de génération d'un flux de plasma. Elle concerne également le dispositif de mise en oeuvre du procédé .The present invention relates to a method for generating a plasma flow. It also relates to the device for implementing the method.
Ce générateur peut être utilisé notamment dans les processus de traitement de surfaces (stérilisation, nettoyage, décapage, modification, dépôt de film) des matériaux monolithes et dispersés, d'obtention de produits chimiques, dans la médecine, les industries électronique, chimique, alimentaire, automobile, aviation, etcThis generator can be used in particular in surface treatment processes (sterilization, cleaning, pickling, modification, film deposition) of monolithic and dispersed materials, of obtaining chemicals, in medicine, electronics, chemical, food industries , automotive, aviation, etc
La solution proposée par la présente invention consiste à proposer la génération d'un flux de plasma quasi circulaire (axisymétrique sous forme d'entonnoir ou de cylindre) ou quasi plat (planisyτnétrique , sous forme de rideau) avec injection scit de produits actifs, soit de matériaux à traiter dans la partie centrale du flux le long de son axe de symétrie ou de son plan de symétrie, tout en agissant sur le flux en effectuant consécutivement une décharge autonome et une décharge non autonome .The solution proposed by the present invention consists in proposing the generation of a quasi-circular (axisymmetric in the form of a funnel or cylinder) or almost flat (planisyτnetric, in the form of a curtain) plasma flow with scit injection of active products of materials to be treated in the central part of the flow along its axis of symmetry or its plane of symmetry, while acting on the flow by carrying out an autonomous discharge and a non-autonomous discharge consecutively.
On connaît un procédé de création d'un flux où le plasma a une configuration circulaire avec une température surbaissée dans la région centrale, par rapport à la périphérie. Un tel procédé est décrit dans les deux publications: (1) "Method of control of Plasma Stream and Plasma apparatus", International Patent application, WO 93/16573, du 19.08.1993, Ivanov V.V., Koulik P. P., Logoshin A. N. et (2) "HF and Radio-frequency plasmatrons" , Novosibirsk Nauka S.O. 1992, 319 p. (Low Température Plasma, vol 6) , Dresvm S.V., Bobrov A.A , Lelievkm V.M. et al. Ce procédé permet d'introduire le produit actif ou le matériau à traiter dans la partie centrale, relativement uniforme, du flux de plasma. Dans les deux cas, une décharge autonome est utilisée Dans le premier cas, le flux de plasma est formé par une décharge à haute fréquence avec un effet "skm" développé Dans les deux cas, la température centrale du plasma varie autour des 10'000 degrés.A process is known for creating a flow in which the plasma has a circular configuration with a lowered temperature in the central region, relative to the periphery. Such a process is described in the two publications: (1) "Method of control of Plasma Stream and Plasma apparatus", International Patent application, WO 93/16573, of 19.08.1993, Ivanov VV, Koulik PP, Logoshin AN and (2 ) "HF and Radio-frequency plasmatrons", Novosibirsk Nauka SO 1992, 319 p. (Low Temperature Plasma, vol 6), Dresvm SV, Bobrov AA, Lelievkm VM et al. This process makes it possible to introduce the active product or the material to be treated into the relatively uniform central part of the plasma flow. In both cases, an autonomous discharge is used In the first case, the plasma flow is formed by a high frequency discharge with a developed "skm" effect In both cases, the central temperature of the plasma varies around 10,000 degrees.
L'avantage de cette méthode consiste en ce que le produit chimique est introduit dans la partie centrale, relativement uniforme, ce qui, d'une part, assure une action pratiquement identique du plasma sur tout l'ensemble du produit, et, d'autre part, protège l'espace entourant le plasma de l'apparition du produit chimique Grâce à la haute température et à la vitesse du plasma, le produit introduit est réchauffé, éventuellement vaporisé, dissocié, ionisé et accéléré Le flux du plasma quasi circulaire ainsi obtenu, contenant le produit chimique dans sa partie centrale, est utilisé pour le traitement des surfaces et l'obtention de nouveaux produitsThe advantage of this method is that the chemical is introduced into the central part, which is relatively uniform, which, on the one hand, ensures a practically identical action of the plasma on the entire product, and, on the other hand, protects the space surrounding the plasma from the appearance of the chemical thanks to the high temperature and the speed of the plasma, the product introduced is heated, possibly vaporized, dissociated, ionized and accelerated The almost circular plasma flow thus obtained, containing the chemical in its central part, is used for surface treatment and obtaining new products
Les désavantages de cette méthode consistent en ce que la génération du plasma, fait par une décharge autonome, et αonc l'état du plasma, est proche de l'équilibre thermique Cela signifie qu'une grande partie de l'énergie est dép€'nsée à 1 ' échauffement du produit introduit en plus de la formation de particules chimiquement activées (atomes, ions, radicaux Er outre, l'activité chimique d'un tel plasma tombe rapidement avec la température, à cause du processus de recombma-scr. C'est pourquoi le traitement des matériaux est effectué, soit à relativement haute température de surface, ce qui n'est pas possible pour beaucoup de technologies et de produits non réfractaires, soit à hautes vitesses et court temps d'interaction, ce qui pose des problèmes sérieux quant à la productivité de tels traitements.The disadvantages of this method consist in that the generation of the plasma, made by an autonomous discharge, and αonc the state of the plasma, is close to the thermal equilibrium This means that a large part of the energy is dep € ' nsée 1 heating of the product introduced in addition to the formation of chemically activated particles (atoms, ions, radicals Er besides, the chemical activity of such a plasma falls rapidly with temperature, due to the process of recombma-scr. This is why the treatment of materials is carried out, either at relatively high surface temperature, which is not possible for many technologies and non-refractory products, or at high speeds and short interaction time, which poses serious problems with the productivity of such treatments.
On sait d'autre part, du document "Physics of cnemically active plasma", Rusanov V.D. , Fridman A.A. , Moscou Nauka, 1984, 416 p. , qu'un des moyens les plus économiques pour obtenir des plasmas chimiquement actifs est d'util; ser les plasmas hors d'éσuilibre Les hauts champs électriαues et la grande valeur de l'énergie cinétique des électrons font que les réactions chimiques (dissociation, formation de radicaux et autres) s'effectuent lors de l'excitation des états de vibration avec des pentes minimes d'énergies dues à 1 'échauffement du gaz. L'utilisation des décharges non autonomes est un des moyens les plus efficaces pour la formation de plasmas hors d'équilibre thermique. La méthode consiste à appliquer à un gaz partiellement ionisé un champ électrique dont la grandeur est inférieure à celle nécessaire pour qu'une décharge autonome se forme. Dans les décharges non autonomes, les conditions sont réalisées pour obtenir des particules chimiques actives sans échauffement sensible du gaz. En outre, la décharge non autonome, contrairement à la décharge autonome ne se contracte pas et, par conséquent, ne change pas la structure géométrique, le champ de vitesse, ni les températures du flux du plasma qui passe à travers la zone de décharge non autonome.We also know, from the document "Physics of cnemically active plasma", Rusanov VD, Fridman AA, Moscow Nauka, 1984, 416 p. , that one of the most economical means to obtain chemically active plasmas is to use; be the plasmas out of balance The high electric fields and the the high value of the kinetic energy of the electrons means that chemical reactions (dissociation, formation of radicals and the like) take place during the excitation of the vibrational states with minimal slopes of energies due to the heating of the gas. The use of non-autonomous discharges is one of the most effective means for the formation of plasmas out of thermal equilibrium. The method consists in applying an electric field to a partially ionized gas, the magnitude of which is less than that necessary for an autonomous discharge to form. In non-autonomous landfills, the conditions are met to obtain active chemical particles without appreciable heating of the gas. In addition, the non-autonomous discharge, unlike the autonomous discharge, does not contract and, therefore, does not change the geometric structure, the velocity field, or the temperatures of the plasma flow which passes through the non-discharging zone. autonomous.
Il faut souligner que l'obtention de particules chimiquement actives à partir d'une décharge non autonome n'est possible que sur un flux de produits chimiques gazeux partiellement ionisés. Pour les produits et ies matériaux qui nécessitent, pour réaliser la technologie, une accélération, un échauffement ou une vaporisation préalable, il est nécessaire d'avoir une zone relativement grande de hautes température et vitesse qui ne peut être créée pratiquement qu'à l'aide de décharges autonomes .It should be emphasized that obtaining chemically active particles from a non-autonomous discharge is only possible on a flow of partially ionized gaseous chemicals. For products and materials which require acceleration, heating or prior vaporization to achieve the technology, it is necessary to have a relatively large area of high temperature and speed which can only be created practically at using autonomous landfills.
Le but de la présente invention est de proposer un dispositif qui permette la réalisation d'un traitement de produits chimiques et de matériaux dans un flux de plasma en deux étapes: échauffement et accélération dans le flux du plasma autonome et activation consécutive dans une décharge non autonome.The object of the present invention is to provide a device which allows the processing of chemicals and materials in a plasma flow in two stages: heating and acceleration in the autonomous plasma flow and subsequent activation in a non-discharging autonomous.
A cet effet l'invention concerne un procédé pour la génération d'un flux de plasma dans lequel, à l'aide d'une décharge autonome, on crée un flux de plasma soit quasi circulaire avec une configuration axisymétrique, soit quasi planaire avec une configuration planosymétrique , soit d'une autre configuration plus complexe, utilisable pour introduire un produit chimique ou un corps à traiter dans la partie centrale du flux, le procédé étant caractérisé par la création supplémentaire en aval du flux d'une décnarge non autonomeTo this end, the invention relates to a method for generating a plasma flow in which, by means of an autonomous discharge, a plasma flow is created which is almost circular with an axisymmetric configuration, either quasi-planar with a planosymmetric configuration, or another more complex configuration, usable for introducing a chemical or a body to be treated into the central part of the flow, the process being characterized by the additional creation in downstream of the flow of a non-autonomous cargo
La décharge non autonome peut être créée à l'aide d'un champ électrique continu, à l'aide d'un champ électrique alternatif de fréquence industrielle ou à l'aide d'un champ électrique à haute fréquence. Dans le premier cas, en tant qu'électrode extérieure de la décharge non autonome, on peut utiliser le corps à traiter, branché au potentiel négatif ou au potentiel positif. Dans le dernier cas, en tant qu'électrode de la décnarge non autonome, on peut utiliser le corps à traiter, lequel est soumis à la haute fréquence, l'électrode intérieure étant mise à la terre.The non-autonomous discharge can be created using a continuous electric field, using an alternating electric field of industrial frequency or using a high frequency electric field. In the first case, as an external electrode of the non-autonomous discharge, it is possible to use the body to be treated, connected to the negative potential or to the positive potential. In the latter case, as a non-self-contained ignition electrode, the body to be treated can be used, which is subjected to high frequency, the interior electrode being earthed.
L'invention concerne également un dispositif de génération d'un flux de plasma, comportant une source de courant, un générateur basé sur une décnarge autonome créant un flux de plasma oe configuration soit quasi circulaire (axisymétrique) , soit quasi planaire (planosymétrique) , soit autre, plus complexe, et un dispositif d ' introduct: on de produits chimiques ou de matériaux à traiter dans une partie centrale dudit flux, le générateur comportant deux électrodes disposées en aval du flux, l'une après l'autre le long du flux, destinées à la création entre les dites électrodes d'une décharge non autonome, engendrée par un champ électrique à haute tension.The invention also relates to a device for generating a plasma flow, comprising a current source, a generator based on an independent decarge creating a plasma flow with either a quasi circular (axisymmetric) or quasi-planar (planosymmetric) configuration, or another, more complex, and a device for introducing chemicals or materials to be treated into a central part of said stream, the generator comprising two electrodes arranged downstream of the stream, one after the other along the flux, intended for the creation between said electrodes of a non-autonomous discharge, generated by a high voltage electric field.
La solution proposée par la présente invention consiste dans les grandes lignes à traiter le produit chimique introduit dans le plasma consécutivement en deux étapes effectuées dans deux types de décnarges, l'une autonome, l'autre non autonome. La décharge autonome échauffe, accélère, ionise préalablement le gaz et les composants chimiques et fournit la zone de décharge non autonome en particules chargées La décnarge non autonome excite les composantes actives du fluxThe solution proposed by the present invention consists in the main lines of treating the chemical introduced into the plasma consecutively in two stages carried out in two types of scavenging, one autonomous, the other non-autonomous. Autonomous discharge heats, accelerates, ionizes gas and chemical components beforehand and provides the non-autonomous discharge zone in particles non-self-contained unloading excites the active components of the flow
On décrit ci-après le procédé selon l'invention, en se référant au dessin annexé illustrant plusieurs exemple de dispositifs pour sa mise oeuvre et sur lequel:The method according to the invention is described below, with reference to the accompanying drawing illustrating several example devices for its implementation and in which:
- la figure 1 est une vue en perspective d'un exemple de générateur de plasma à deux étages, axisymétrique, montrant le dispositif de décharge non autonome selon l'invention, sous forme de deux électrodes reliées à une source de courant à haute tension; les repères relatifs à la figure 1 sont les suivants :- Figure 1 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, in the form of two electrodes connected to a high voltage current source; the references relating to FIG. 1 are as follows:
1 Introduction du produit chimique et/ou du matériau à traiter1 Introduction of the chemical and / or the material to be treated
2. Introduction du gaz2. Gas introduction
3 Flux de plasma circulaire de la décharge autonome3 Circular plasma flow from the autonomous discharge
4 Flux du gaz accompagnant4 Flow of accompanying gas
5. Electrode de la décharge non autonome 6 Zone de décnarge non autonome5. Non-autonomous discharge electrode 6 Non-autonomous discharge zone
7. Source de courant continu ou alternatif à haute tension7. High voltage direct or alternating current source
8. Surface à traiter8. Surface to be treated
- la figure 2 est une vue en perspective d'un exemple de générateur de plasma à deux étages, axisymétrique, montrant le dispositif de décharge non autonome selon l'invention, sous forme de deux électrodes circulaires reliées à une source de courant à haute tension et haute fréquence; les repères relatifs à la figure 1 sont les suivants:- Figure 2 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, in the form of two circular electrodes connected to a high voltage current source and high frequency; the references relating to FIG. 1 are as follows:
1. Introduction du produit chimique et/ou du matériau à traiter1. Introduction of the chemical and / or the material to be treated
2 Introduction du gaz2 Gas introduction
3. Flux de plasma circulaire à la décharge autonome3. Circular plasma flow at autonomous discharge
4. Flux du gaz accompagnant4. Flow of accompanying gas
5a.Electrode de la décharge non autonome en amont du flux 5b. Electrode de la décharge non autonome en aval du flux 6 Zone de la décharαe non autonome - 6 -5a. Electrode of the non-autonomous discharge upstream of the flow 5b. Non-autonomous discharge electrode downstream of flow 6 Non-autonomous discharge zone - 6 -
7. Système haute tension à haute fréquence7. High frequency high voltage system
8. Corps (surface) à traiter8. Body (surface) to be treated
- la figure 3 est une vue en perspective d'un exemple de générateur de plasma à deux étages, axisymétrique, montrant le dispositif de décharge non autonome selon l'invention, pour le cas où la surface traitée est conductrice et peut être utilisée comme seconde électrode de la décharge nor autonome, les repères relatifs à la figure 1 sont les suivants- Figure 3 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, for the case where the treated surface is conductive and can be used as a second nor autonomous discharge electrode, the references relative to figure 1 are as follows
1. Introduction du produit chimique et/ou du matériau à traiter 2 Introduction du gaz1. Introduction of the chemical and / or the material to be treated 2 Introduction of the gas
3. Flux circulaire du plasma créé par la décharge autonome3. Circular plasma flow created by the autonomous discharge
4. Flux de gaz accompagnant4. Accompanying gas flow
5. Electrode de la décharge non autonome 6. Zone de la décharge non autonome5. Non-autonomous landfill electrode 6. Non-autonomous landfill area
7. Courant continu à haute tension7. High voltage direct current
8. Corps à traiter8. Body to be treated
- la figure 4 est une vue en perspective d'un exemple de générateur de plasma à deux étages, axisymétrique, montrant le dispositif de décharge non autonome selon l'invention, sous forme d'une électrode circulaire reliée à une source de courant à haute tension et naute fréquence, dans le cas où la surface traitée est reliée à cette source de courart par l'intermédiaire de la terre; les repères relatifs à la figure- Figure 4 is a perspective view of an example of a two-stage plasma generator, axisymmetric, showing the non-autonomous discharge device according to the invention, in the form of a circular electrode connected to a high current source voltage and high frequency, in the case where the treated surface is connected to this source of courart via the earth; the marks relative to the figure
1 sont les suivants :1 are:
1. Introduction du produit chimique et/ou du matériau à traiter1. Introduction of the chemical and / or the material to be treated
2. Introduction du gaz2. Gas introduction
3. Flux circulaire du plasma de la décharge autonome 4 Flux de gaz accompagnant3. Circular flow of the plasma from the autonomous discharge 4 Accompanying gas flow
5. Electrode de la décharge non autonome5. Non-autonomous discharge electrode
6. Zone de décharge non autonome6. Non-autonomous discharge area
7. Haute tension haute fréquence7. High voltage high frequency
8. Corps à traiter8. Body to be treated
9 Film diélectriσue - la figure 5 est une vue en perspective d'un exemple de générateur de plasma à deux étages planosymétrique contenant une des solutions de création de la décharge non autonome complémentaire (2ème étage) sous forme de deux électrodes linéaires reliées à une source de courant à haute tension, continu, alternatif ou de haute fréquence; les repères relatifs à la figure 1 sont les suivants9 Dielectric film FIG. 5 is a perspective view of an example of a plasma generator with two planosymmetrical stages containing one of the solutions for creating the complementary non-autonomous discharge (2nd stage) in the form of two linear electrodes connected to a current source at high voltage, direct, alternating or high frequency; the references relating to FIG. 1 are as follows
1 Introduction du produit chimique et/ou du matériau à traiter1 Introduction of the chemical and / or the material to be treated
2 Introduction du gaz2 Gas introduction
3 Flux planaire du plasma de la décharge autonome3 Planar flow of plasma from the autonomous discharge
4 Flux du gaz accompagnant4 Flow of accompanying gas
5 Electrodes de la décharge non autonome5 Non-autonomous discharge electrodes
6 Zone de décharge non autonome6 Non-autonomous discharge area
7 Haute tension (courant continu ou alternatif ou haute fréquence)7 High voltage (direct or alternating current or high frequency)
8 Corps à traiter8 Body to be treated
En temps que décharge autonome, on peut utiliser toute configuration de décharge dans laquelle le produit et les matériaux à traiter sont introduits dans la partie centrale du flux de plasma Cela assure l'action optimale du plasma sur le produit et réduit la présence de ce dernier oans les zones voisines entourant le plasma.As an autonomous discharge, any discharge configuration can be used in which the product and the materials to be treated are introduced into the central part of the plasma flow. This ensures the optimal action of the plasma on the product and reduces the presence of the latter. in neighboring areas surrounding the plasma.
Des exemples typiques d'une telle configuration pourraient être le plasmatron à quatre buses (1) ou la décharge à haute fréquence (2) . Le flux de plasma de ces décharges a une température surbaissée dans sa partie centrale, ce qui permet d'introduire de manière plus efficace le produit dans le flux de plasma. On peut aussi utiliser en temps que décharge autonome d'autres types de décharges, par exemple, une décharge à haute fréquence du type E ou une décharge consumante (glow discharge) , à pression atmosphérique de préférence, avec une structure analogue à celle décrite ci- dessus (température surbaissée dans la zone centrale) Pour ie deuxième stade de préparation du flux de gaz cnimiquement actif, il est proposé d'utiliser une décharge non autonome, située en aval du flux de plasma venant de la décharge autonome. Dans cette décharge, non autonome, grâce à la haute valeur du champ électrique accélérant les électrons, il se forme de grandes concentrations de particules chimiques activées (atomes, ions, radicaux, molécules, clusters) à des faibles températures du gaz. Ici, outre les hautes concentrations de particules chimiques activées, obtenues en quantités moindres dans la zone de décharge autonome, il peut se former d'autres types de radicaux et de particules métastables notamment dans les ions négatifs, de l'ozone, etc Cette formation est due à la grande énergie des électrons et la basse température du gaz qui sont caractéristiques de la décnarge non autonome.Typical examples of such a configuration could be the four-nozzle plasmatron (1) or the high-frequency discharge (2). The plasma flow from these discharges has a lowered temperature in its central part, which makes it possible to introduce the product more efficiently into the plasma flow. One can also use as autonomous discharge other types of discharges, for example, a high frequency discharge of type E or a consuming discharge (glow discharge), at atmospheric pressure preferably, with a structure similar to that described here. - above (lowered temperature in the central area) For the second stage of preparation of the chemically active gas flow, it is proposed to use a non-autonomous discharge, located downstream of the plasma flow coming from the autonomous discharge. In this non-autonomous discharge, thanks to the high value of the electric field accelerating the electrons, large concentrations of activated chemical particles (atoms, ions, radicals, molecules, clusters) are formed at low gas temperatures. Here, in addition to the high concentrations of activated chemical particles, obtained in smaller quantities in the autonomous discharge zone, other types of radicals and metastable particles can be formed, in particular in negative ions, ozone, etc. This formation is due to the high energy of the electrons and the low temperature of the gas which are characteristic of non-autonomous discharge.
La décharge non autonome se réalise en imposant un champ électrique de haute tension au flux du plasma issu de la décharge autonome refroidi et particulièrement déionisé suite à la radiation, la conduction thermique et les effets de convection Le champ électrique de haute tension peut être continu ou alternatif, de fréquences industrielles ou de hautes fréquences. Le champ électrique continu, à autres conditions égales, crée le plus haut niveau de non équilibre du plasma Les électrodes peuvent être situées à la périphérie du flux de plasma On peut aussi, en qualité d'électrode, utiliser le corps traité par le flux de plasma II serait cans ce cas plus efficace de brancher le pôle négatif sur le corps traité. Dans ce cas, à la surface du corps traité, il se crée une couche de charge d'espace dans le champ électrique duquel les ions sont accélérés. Grâce aux effets de transfert de charge, les atomes et les radicaux sont aussi accélérés. Dans beaucoup de cas, les particules de haute énergie agissent avec la surface traitée de manière plus efficace Si, par contre, on veut éviter les défauts de structure occasionnés par les ions de haute énergie, il sera préférable d'adopter la polarité inverse L'utilisation d'un champ électrique de fréquence industrielle simplifie le dispositif technique, puisqu'il ne nécessite pas de redressement de courant .The non-autonomous discharge is achieved by imposing a high voltage electric field on the plasma flow from the cooled and particularly deionized autonomous discharge due to radiation, thermal conduction and convection effects. The high voltage electric field can be continuous or AC, industrial frequencies or high frequencies. The continuous electric field, with other equal conditions, creates the highest level of plasma non-equilibrium The electrodes can be located on the periphery of the plasma flow One can also, as an electrode, use the body treated by the flow of plasma II would in this case be more efficient to connect the negative pole to the treated body. In this case, on the surface of the treated body, a space charge layer is created in the electric field from which the ions are accelerated. Thanks to the charge transfer effects, atoms and radicals are also accelerated. In many cases, the high energy particles act with the treated surface more efficiently. On the other hand, we want to avoid the structural defects caused by the high energy ions, it will be preferable to adopt the reverse polarity The use of an industrial frequency electric field simplifies the technical device, since it does not require current rectification.
L'utilisation de haute fréquence crée de nouvelles possibilités: techniquement, les électrodes dans le cas d'un cnamp à haute fréquence peuvent être situés à l'extérieur d'un tube diélectrique contenant le flux de plasma et le séparant du milieu environnant, technologiquement. Si l'électrode en aval du flux de plasma est mise à la terre, la décharge non autonome peux s'exercer de manière qu'à la surface du corps traité se forme une couche de charge d'espace dans laquelle les ions et, par conséquent, les atomes, les radicaux et les molécules sont accélérés et bombardent la surface traitée, augmentant l'efficacité de la technologie. Dans un champ à haute fréquence, il est possible de traiter des matériaux métalliques tout comme diélectriques (en particulier des films déposés sur la surface traitée) . The use of high frequency creates new possibilities: technically, the electrodes in the case of a high frequency cnamp can be located outside a dielectric tube containing the plasma flow and separating it from the surrounding medium, technologically . If the electrode downstream of the plasma flow is earthed, the non-autonomous discharge can be exerted so that on the surface of the treated body a layer of space charge is formed in which the ions and, by As a result, atoms, radicals and molecules are accelerated and bombard the treated surface, increasing the efficiency of the technology. In a high frequency field, it is possible to treat metallic materials as well as dielectric (in particular films deposited on the treated surface).

Claims

REVENDICATIONS
1. Procédé pour la génération d'un flux de plasma dans lequel, à l'aide d'une décharge autonome, on crée un flux de plasma soit quasi circulaire avec une configuration axisymétrique, soit quasi planaire avec une configuration planosymétrique, soit d'une autre configuration plus complexe, utilisable pour introduire un produit chimique ou ui corps à traiter dans la partie centrale du flux, caractérisé par la création supplémentaire en aval du flux d'une décharge non autonome .1. Process for the generation of a plasma flow in which, by means of an autonomous discharge, a plasma flow is created either quasi circular with an axisymmetric configuration, or quasi planar with a planosymmetric configuration, or another more complex configuration, usable for introducing a chemical or body to be treated in the central part of the flow, characterized by the additional creation downstream of the flow of a non-autonomous discharge.
2. Procédé selon la revendications 1, caractérisé en ce que l'on crée la décharge non autonome à l'aide d'ui champ électrique continu.2. Method according to claims 1, characterized in that the non-autonomous discharge is created using a continuous electric field.
3. Procédé seion la revendication 1, caractérisé en ce que l'on crée la décharge non autonome à l'aide d'ui champ électrique alternatif de fréquence industrielle.3. Method according to claim 1, characterized in that the non-autonomous discharge is created using an alternating electric field of industrial frequency.
4. Procédé selon la revendication 1, caractérisé en ce que l'on crée la décharge non autonome à l'aide d'ui champ électrique à haute fréquence.4. Method according to claim 1, characterized in that the non-autonomous discharge is created using a high frequency electric field.
5. Procédé selon l'une des revendications 1 ou 2 , caractérisé en ce que, en tant qu'électrode extérieure de la décharge non autonome, on utilise le corps à traiter, branché au potentiel négatif.5. Method according to one of claims 1 or 2, characterized in that, as the external electrode of the non-autonomous discharge, the body to be treated is used, connected to the negative potential.
6. Procédé selon l'une des revendications 1 ou 2 , caractérisé en ce que, en tant qu'électrode extérieure de la décharge non autonome, on utilise le corps à traiter, branché au potentiel positif.6. Method according to one of claims 1 or 2, characterized in that, as the external electrode of the non-autonomous discharge, the body to be treated is used, connected to the positive potential.
7. Procédé selon l'une des revendications 1 ou 4 , caractérisé par le fait, qu'en tant qu'électrode de la décharge non autonome, on utilise le corps à traiter, lequel est soumis à la haute fréquence et que l'électrode intérieure est mise à la terre.7. Method according to one of claims 1 or 4, characterized in that, as an electrode of the non-autonomous discharge, the body to be treated is used, which is subjected to high frequency and the indoor electrode is grounded.
8. Dispositif de génération d'un flux de plasma pour la mise en ouvre du procédé selon l'une des revendications 1 à 7, comportant une source de ccurant , un générateur basé sur une décnarge autonome créant un flux de plasma de configuration soit quasi circulaire (axisymétrique) , soit quasi planaire (planosymétrique) , soit autre, plus complexe, et un dispositif d'introduction de produits chimiques ou de matériaux à traiter dans une partie centrale dudit flux, caractérisé en ce qu'il comporte deux électrodes disposées en aval du flux, l'une après l'autre le long du flux, destinées à la création entre les dites électrodes d'une décharge non autonome, engendrée par un champ électrique à haute tension. 8. Device for generating a plasma flow for implementing the method according to one of claims 1 to 7, comprising a source of fuel, a generator based on an independent discharge creating a plasma flow of configuration that is almost circular (axisymmetric), or almost planar (planosymmetric), or other, more complex, and a device for introducing chemicals or materials to be treated into a central part of said flow, characterized in that it comprises two electrodes arranged in downstream of the flux, one after the other along the flux, intended for the creation between said electrodes of a non-autonomous discharge, generated by a high voltage electric field.
PCT/CH1996/000402 1995-11-13 1996-11-12 Plasma stream generation method and device therefor WO1997018691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3209/95 1995-11-13
CH320995 1995-11-13

Publications (1)

Publication Number Publication Date
WO1997018691A1 true WO1997018691A1 (en) 1997-05-22

Family

ID=4251025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000402 WO1997018691A1 (en) 1995-11-13 1996-11-12 Plasma stream generation method and device therefor

Country Status (1)

Country Link
WO (1) WO1997018691A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084272A (en) * 2013-01-23 2013-05-08 浙江宇光照明科技有限公司 Plasma micro-dust purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476907A (en) * 1966-01-07 1969-11-04 Centre Nat Rech Scient Process for obtaining a permanent flow of plasma
US3714390A (en) * 1968-12-31 1973-01-30 Anvar Processes for producing plasma streams within flows of fluids
WO1986006923A1 (en) * 1985-05-03 1986-11-20 The Australian National University Method and apparatus for producing large volume magnetoplasmas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476907A (en) * 1966-01-07 1969-11-04 Centre Nat Rech Scient Process for obtaining a permanent flow of plasma
US3714390A (en) * 1968-12-31 1973-01-30 Anvar Processes for producing plasma streams within flows of fluids
WO1986006923A1 (en) * 1985-05-03 1986-11-20 The Australian National University Method and apparatus for producing large volume magnetoplasmas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEN-ICHI YOSHIE: "NOVEL METHOD FOR C60 SYNTHESIS: A THERMAL PLASMA AT ATMOSPHERIC PRESSURE", APPLIED PHYSICS LETTERS, vol. 61, no. 23, 7 December 1992 (1992-12-07), pages 2782 - 2783, XP000335069 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084272A (en) * 2013-01-23 2013-05-08 浙江宇光照明科技有限公司 Plasma micro-dust purifier

Similar Documents

Publication Publication Date Title
Fanelli et al. Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials
EP1420876B1 (en) Method of producing powder with composite grains and the device for carrying out said method
US7510632B2 (en) Plasma treatment within dielectric fluids
US5221427A (en) Plasma generating device and method of plasma processing
US4152625A (en) Plasma generation and confinement with continuous wave lasers
US20070148368A1 (en) Apparatus for plasma treatment of dielectric bodies
WO1994006263A1 (en) High pressure magnetically assisted inductively coupled plasma
EP2929933B1 (en) Powder plasma treatment apparatus
US20080280065A1 (en) Method and Device for Generating a Low-Pressure Plasma and Applications of the Low-Pressure Plasma
AU2003224204B2 (en) Method for the plasma cleaning of the surface of a material coated with an organic substance and the installation for carrying out said method
Asadullin et al. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification
JP2942138B2 (en) Plasma processing apparatus and plasma processing method
EP0685143B1 (en) Linear microwave source for the plasma treatment of surfaces
JPH1116696A (en) Plasma generating method under atmospheric pressure, its device and surface treatment method
WO1997018691A1 (en) Plasma stream generation method and device therefor
Zhang et al. Hydrophilicity improvement of quartz glass surface by a large-area atmospheric pressure plasma generator
Akhmadullina et al. Electrolyte-plasma product treatment
RU2486719C1 (en) Gas cleaning, destruction and conversion method
Vasiliev et al. New applications of beam-plasma systems for the materials production
Gurevich et al. Intense growth of ozone concentration in subcritical fields in oxygen plasma
US20100203253A1 (en) Plasma system and method of producing a functional coating
JP2002506128A (en) Heat treatment method for metal members
Uhm Atmosheric pressure plasma research activity in Korea
Dinescu et al. Cold Atmospheric Pressure Plasma Jets and Their Applications
KR100488359B1 (en) Atmospheric Pressure Parallel Plate Bulk Plasma Generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97518473

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase