WO1997012392A1 - Process for cleaning and drying semiconductors and equipment therfor - Google Patents

Process for cleaning and drying semiconductors and equipment therfor Download PDF

Info

Publication number
WO1997012392A1
WO1997012392A1 PCT/JP1996/000164 JP9600164W WO9712392A1 WO 1997012392 A1 WO1997012392 A1 WO 1997012392A1 JP 9600164 W JP9600164 W JP 9600164W WO 9712392 A1 WO9712392 A1 WO 9712392A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
water
layer
inert gas
supply
Prior art date
Application number
PCT/JP1996/000164
Other languages
French (fr)
Japanese (ja)
Inventor
Kanichi Kadotani
Makio Tsubota
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997012392A1 publication Critical patent/WO1997012392A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/005Drying solid materials or objects by processes not involving the application of heat by dipping them into or mixing them with a chemical liquid, e.g. organic; chemical, e.g. organic, dewatering aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to a semiconductor cleaning and drying method and a semiconductor cleaning and drying apparatus, and more particularly to a technique for cleaning and drying a semiconductor device such as a semiconductor wafer and a semiconductor device.
  • resist patterns are formed by photolithography, and selective processing such as etching using the same is often used.
  • a resist pattern by photolithography is performed in three steps: resist coating, selective exposure using an exposure mask, and development.
  • Unexposed areas depend on the current image. It is necessary to perform cleaning and drying after removing the resist.
  • an automatic developing device for spraying a developer of a desired concentration for a desired time is used, and a clean semiconductor wafer is obtained through washing and drying.
  • an isopropyl alcohol (I ⁇ ⁇ ) solution is sprayed on the semiconductor layer 1 as shown in FIG. And then drying.
  • I ⁇ ⁇ isopropyl alcohol
  • a method of spraying 2 g of IPA vapor as shown in Fig. 6 has also been proposed. Since IPA is flammable, there is a problem that equipment for explosion-proof or safety measures is required.
  • an aqueous layer 3 is disposed in the lower layer and an organic dry liquid layer 4 is disposed in the upper layer, and the semiconductor layer immersed in the lower aqueous layer is placed in the rinse layer.
  • a method has also been proposed in which the material is pulled up through an organic dry liquid layer, and drying is performed during this pulling process.
  • decane, 2-nonanone (butylmethylketone), etc. are used as the organic dry liquid layer, all of which are insoluble in water and have a specific gravity of less than 1, so that they are separated into upper layers.
  • An organic dry liquid layer is formed on the substrate. However, both have high boiling points, are difficult to evaporate, and are insoluble in water.
  • IPA is an organic material that has a low boiling point and is easy to dry. However, it is difficult to handle as steam because it is flammable and explosive.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor cleaning / drying apparatus which is safe in handling and can achieve good cleaning and drying in a short time. Disclosure of the invention
  • a semiconductor substrate is placed in a treatment tank, and the washing water is supplied into the treatment tank to a level where a water surface sufficiently covers the semiconductor substrate to form a washing water layer.
  • An inert gas supply step of supplying an inert gas to an upper portion of the processing tank so that an atmosphere above the water surface of the processing tank becomes an inert atmosphere;
  • An organic solvent supply step of instantaneously supplying a water-soluble organic solvent at a desired speed along the water surface so as to form a three-layer coexistence state of the layer and the inert gas layer;
  • a pulling step of pulling up the semiconductor substrate from the cleaning water layer to the inert gas layer at a certain moment, and a drying step of drying in the inert gas layer.
  • the organic solvent is isopropyl alcohol (IPA).
  • the organic solvent supply step comprises: moving the organic solvent supply port in a desired direction along the washing water table 20 at a predetermined distance upward from the surface of the washing water; On the surface of the washing water.
  • the _________________________________________________________________________________ either a moving the organic solvent supply nozzle in the desired direction along the washing water surface in the state which was above the washing water surface at a predetermined interval,
  • the method is characterized in that the organic solvent is supplied from the solvent supply nozzle in a direction different from the above direction, and the organic solvent is supplied to the surface of the cleaning water.
  • the organic solvent supply step comprises: moving the organic solvent supply nozzle in a desired direction along the surface of the washing water at a predetermined interval above the surface of the washing water; ⁇
  • the process is characterized in that the organic solvent is supplied from the supply nozzle in the same direction as the above direction, and is supplied to the washing water table 20 (ft supply).
  • the organic solvent supplying step comprises moving the organic solvent supply port in a desired direction along the surface of the cleaning water while gradually increasing the distance upward from the surface of the cleaning water, and supplying the organic solvent.
  • the process is a step of supplying to the surface of washing water.
  • a processing tank for transferring a semiconductor substrate in the processing tank, a cleaning water supply unit configured to supply cleaning water into the processing tank to form a cleaning water layer
  • An inert gas supply unit for supplying an inert gas to an upper portion of the processing tank; and a cleaning water layer instantaneously along a surface of the cleaning water supplied to a height sufficient to cover the semiconductor substrate in the processing tank.
  • An organic solvent supply means for instantaneously supplying a water-soluble organic solvent at a desired speed along the water surface so as to form a three-layer coexistence state of an organic solvent layer and an inert gas layer.
  • the organic solvent supply means includes: an organic solvent supply nozzle having a supply port for supplying the organic solvent in a desired direction; and a moving mechanism for moving the organic solvent supply nozzle.
  • An organic solvent layer is formed on the surface of the washing water layer through a nozzle, and the organic solvent layer is supplied while moving to the surface of the washing water layer.
  • the organic solvent supply means is formed such that the organic solvent supply port of the organic solvent supply nozzle faces the surface of the washing water layer.
  • the organic solvent supply means includes an organic solvent storage unit integrated with an organic solvent supply nozzle.
  • the apparatus further comprises cleaning water discharge means attached to the bottom of the processing tank, and after forming the three-layer coexistence state, drives the cleaning water discharge means to cover the semiconductor substrate with an inert gas layer.
  • the water level of the washing tank is gently lowered together with the organic solvent layer until the washing is completed.
  • the third feature of the present invention is that a part of the side wall is located inside! :
  • a treatment tank configured to form a double structure consisting of a first wall and a second wall located outside; a treatment tank provided with a washing water supply pipe on the bottom surface; First and second openings respectively disposed on the wall and the second wall; and an organic solvent it ⁇ -disposed so as to penetrate the ⁇ 1 interface and engage with the second opening.
  • a discharge pipe connected between the first and second openings, and disposed above the first and second openings to supply an inert gas into the processing tank.
  • An inert gas supply unit for supplying the semiconductor substrate into the processing bath, and a supply of cleaning water in a state where the organic solvent supply pipe is attached to the second opening.
  • the organic solvent supply pipe is moved to the position of the first opening while overflowing from the discharge pipe and maintaining the water surface at the position of the first wall, and supplying the organic solvent to the second opening.
  • a pipe is connected, and the organic solvent is supplied from the pipe lined with the organic solvent along the surface of the washing water.
  • the washing water layer, the organic solvent layer, and the inert gas layer are instantaneously formed. That is, a three-layer coexistence state is formed.
  • a fourth feature of the present invention is that a part of the side wall is configured to have a double structure including a first wall located inside and a second wall located outside, and a cleaning water supply
  • a processing tank provided with a pipe, and a first opening and a second wall provided on the first and second walls of the processing tank, respectively.
  • First and second openings formed to be lower than the lower wall of the drain, a discharge pipe connected between the first and second openings, and disposed above the first and second openings
  • An inert gas supply unit for supplying an inert gas into the processing tank, a transporting means for transporting the semi-finished substrate into the processing tank, and supplying the organic solvent in a desired direction.
  • An organic solvent supply nozzle having a supply nozzle that can be adjusted to a desired height from the position of the lower surface of the first wall, and the organic solvent supply nozzle And a moving mechanism for moving the door, previously for washing purification plant layer.
  • An organic solvent supply means configured to form an organic solvent layer on the surface of the washing water layer while moving the organic solvent supply nozzle, and the first and second openings for closing the first or second opening.
  • T / J changing means that can be attached to the first or second opening.
  • the washing water is supplied in a state where the switching means is attached to the second opening, and While the water level is maintained at the lower surface position S of the second wall, the switching means is attached to the first opening, and the organic solvent ffi lined nozzle is removed from the water surface. While setting the desired height, the organic solvent is supplied from the preceding organic solvent supply nozzle along the surface of the cleaning water while moving the organic solvent supply nozzle, and a layer of the cleaning water is instantaneously formed, A three-layer coexistence state of the solvent layer and the inert gas layer
  • the organic solvent supply nozzle is configured so that the height from the water surface and the moving direction with respect to the water surface can be adjusted. Also preferably, the organic solvent supply nozzle is provided so as to penetrate the switching means.
  • the organic solvent supplying means includes a liquid storage in the treatment tank.
  • a three-layer coexistence state of a cleaning water layer, an organic solvent and an inert gas is instantaneously formed in the treatment tank, and the semiconductor substrate is drawn from the cleaning water layer toward the inert gas.
  • water and an organic solvent are instantaneously replaced on the surface of the semiconductor substrate, so that the surface is quickly dried in an inert gas layer. Since a water-soluble organic solvent is used, replacement with washing water is easy. However, on the other hand, there is a problem that it is mixed with washing water. Therefore, in the present invention, as shown in FIG.
  • a water-soluble organic solvent 0 is caused to flow at high speed along the surface of the washing water W, and an organic solvent layer is instantaneously formed on the washing water layer.
  • the purpose is achieved by vertically lifting the semiconductor substrate 1 and guiding it to the inert gas layer G in the upper layer. At this time, water is efficiently removed from the surface of the semiconductor substrate by the Marangoni effect, as shown in FIG.
  • the organic solvent dissolved in the washing water at the boundary I between the semiconductor substrate surface and the washing water surface is small because the amount of the washing water is small.
  • the solvent concentration is high and the surface tension is low.
  • the concentration of organic solvent dissolved in the cleaning water is low due to the large amount of cleaning water, and the surface is close to (high) water. It will have tension. For this reason, the dissolved concentration of the organic solvent, that is, the surface tension, is generated between the portion I and the portion II, and from the portion I located on the side of the semiconductor substrate having the small surface tension, the surface tension of the II is increased.
  • the flow due to the difference in surface tension that is, Marango double flow, occurs in the part, and water flows and is efficiently removed from the temporary surface.
  • the flash point of I ⁇ 1 is 10 to 2 CTC.
  • the gas phase is air, oxygen and IPA will be mixed. In this case, only a few percent of IPA will be present in the air, causing an explosion due to static electricity etc.
  • the gas phase is made into an inert gas as in the wood invention, there is no danger of explosion even at high temperatures, and high-speed drying becomes "nj capability.
  • nitrogen gas as an inert gas 80 ⁇ : L It is desirable to set to about 50 ° C.
  • the semiconductor substrate refers to both a semiconductor device and a semiconductor device during or after an element forming step.
  • the semiconductor device during or after the element forming process has grooves or irregularities on the surface, and water easily stays in the concave portion.
  • the semiconductor device is very efficiently replaced by the Marangoni effect. A dry state can be obtained.
  • the nozzle is moved in order to decrease the relative speed between the water surface and the solvent by moving the nozzle to the water surface while moving the nozzle. Since the method of moving the nozzle and the supply direction of the melt are opposite, the speed at which the respective speeds are canceled with each other and reaches the water surface can be reduced to zero. Therefore, it is possible to form a three-layer coexistence state without roughening the water surface and without diffusing the solvent.
  • the thickness of the solvent layer can be adjusted. For example, if the lowermost part of the supply nozzle is supplied so as to be in contact with the uppermost surface of the molten layer, it is possible to form a very thin molten layer. Further, by moving the nozzle upward, the thickness of the solvent layer can be kept large. It is desirable that the thickness of the solvent layer be about 0.11 cm.
  • the moving speed of the nozzle is preferably 1 mn / scc 5 cm / sec.
  • the solvent reaches the washing surface along this slope and is gently supplied without being diffused into the washing water.
  • methyl alcohol (CH 3 OH), ethyl alcohol (C 2 ⁇ ⁇ ) OH), acetate (CH 3 COCHg), Freon R—113 (CC 1 2 FCC 1 F. may be used.
  • FIG. 1 is a diagram showing a washing and drying apparatus according to an embodiment of the present invention.
  • Fig. 2 is an enlarged sectional view of the main part of the device.
  • FIG. 3 is a conceptual explanatory view of the cleaning device of the present invention.
  • Figure 4 is a diagram for explaining the Marangoni effect
  • Figure 5 shows the conventional washing and drying method.
  • Figure 6 shows the conventional washing and drying method.
  • Figure 7 shows the conventional washing and drying method.
  • Figure 8 shows the conventional washing and drying method.
  • FIG. 9 is a diagram showing a conventional washing and drying method.
  • Figure 10 shows the conventional washing and drying method.
  • FIG. 11 is an enlarged sectional view of a main part of a cleaning / drying apparatus according to a second embodiment of the present invention.
  • Fig. 12 is an illustration of the main parts
  • Fig. 13 is a sectional view taken along the line B-B in Fig. 12.
  • Figure 14 shows a modification of the organic solvent supply port of the device
  • Fig. 15 shows a modification of the organic solvent supply port of the device.
  • Fig. 16 shows a modified example of the organic solvent supply port of the device.
  • Fig. 17 shows the relationship between the moving direction of the machine melt supply nozzle and the direction of organic solvent supply in S
  • Fig. 18 shows the relationship between the moving direction of the melt supply nozzle and the organic solvent supply direction.
  • Figure 19 shows the relationship between the moving direction of the organic solvent supply nozzle and the organic solvent supply direction.
  • FIG. 20 is a diagram showing a modification of the moving direction of the organic solvent supply nozzle of the device.
  • FIG. 21 is a diagram showing an organic solvent supply nozzle moving means of the device.
  • Fig. 22 is a diagram showing the stage of moving the organic solvent supply nozzle of the apparatus.
  • Fig. 23 shows an example of supplying organic solvent to the organic solvent supply nozzle of the same device.
  • Fig. 24 shows an example of supplying organic solvent to the organic solvent supply nozzle of S.
  • Transport section 20 for transporting semiconductor wafers to and from the tank; pure water supply and discharge section 30 for supplying and discharging pure water as cleaning water to and from processing tank 1; and IPA to supply and discharge IPA as an organic solvent to and from processing tank 11
  • It consists of a supply / discharge unit 40 and a nitrogen gas supply / discharge unit 5 ° that supplies and discharges nitrogen gas as an inert gas into the treatment tank.
  • a nitrogen gas supply / discharge unit 5 that supplies and discharges nitrogen gas as an inert gas into the treatment tank.
  • the semiconductor pump is pulled up in a direction perpendicular to these layers, guided to the nitrogen gas layer and dried.
  • the cleaning / drying section 10 is composed of a processing shackle 11 in which a part of the side wall forms a double-structured section.
  • An inner cylinder 13 which is connected to the supply pipe 34 and is made of quartz glass and has a first opening 12, and a second cylinder formed outside thereof and located at a position corresponding to the first opening 12.
  • An outer cylinder 15 having an opening 14 and an ultrasonic oscillator 16 attached to the outside of the processing tank 11 and generating ultrasonic vibration in the processing tank 11 are provided.
  • the transport section 20 flies a cassette handler 21 that can be moved in the horizontal and vertical directions so that the cassette 22 can be mounted in the cassette handler 21.
  • 2 are arranged at predetermined intervals in the cassette 2, and when the cassette 2 2 is mounted in the cassette handler 21 from an exposure apparatus or the like, the cassette handler 21 is processed by the cassette handler 21. It moves horizontally upwards, is mounted on the processing unit 11, and the cassette 2 2 descends to the I-J of the control unit 11, and the force set 2 2 is synchronized with the ift supply of the IPA. It is designed so that pulling is carried out.
  • the pure water ift supply / discharge unit 30 is connected to the pure water heater 3 3 equipped with a pure water outlet 3 1, a heating ffl pi-gen lamp 3 2, and the pure water heater 3. It is provided with a pure water pipe 34 for supplying pure water from the bottom of the treated shrink 11, and a discharge port 35.
  • a pure water heater may not be required.
  • the IPA supply discharge section 40 includes an IPA supply pipe 41 configured to be able to engage with the first and second openings 12 and 14 of the treatment tank 11, A stainless steel bellows 42 whose length in the direction can be adjusted, and an engagement connection portion 43 formed so as to be in close contact with the first or second opening 12, 14.
  • the engagement connection portion 43 disengages from the first opening 12 and moves to the second opening 14, whereupon the second connection 14 and Are engaged.
  • the pure water and IPA in the processing tank 11 are located between the inner cylinder 13 and the outer cylinder 15 of the processing tank 11 Drained to drain 17.
  • the engagement connection portion 43 at the tip of the IPA supply pipe 41 is engaged with the second opening 14.
  • the cassette 22 on which the semiconductor wafer 1 has been set is mounted on the cassette handler 21 of the transfer section 20, and the cassette handler 21 is horizontally moved to above the processing tank 11 to perform processing.
  • ⁇ 1 1 1 Upper part of ⁇ 3 ⁇ 4?
  • the cassette handler 21 is operated and lowered until the cassette 22 reaches the bottom of the process i3 ⁇ 4U 11 1.
  • nitrogen gas is supplied from a gas supply pipe 54 to fill the upper part of the processing tank 11 with nitrogen gas, and a treatment is performed from a pure water supply pipe 34 connected to the bottom of the processing tank 1.
  • the pure water supplied by (ft) is supplied to the pure water inlet 31 and the pure water heater 33 is heated to a predetermined temperature by the halogen lamp 32 in the pure water heater 33, and the processing tank 11
  • pure water is supplied so that the cassette 22 is completely below the surface of the water in the treatment tank 1 ⁇ , and overflows from the opening 1 2 through the drain 17.
  • the ultrasonic oscillator 16 is driven and an ultrasonic battle is conducted with pure water.
  • the bellows 42 is moved to connect the engagement connection portion 43 so as to be in close contact with the first opening 12, and the IPA (liquid) is supplied from the IPA supply pipe 41.
  • the water is fed horizontally along the water surface at a constant flow rate for a certain period of time.
  • a three-layer structure state of a layer of pure water, a layer 1 of pure water and a layer G of nitrogen gas is instantaneously formed.
  • the cassette handler Upon receiving an IPA supply end signal from the IPA supply pipe 41, the cassette handler is driven, and the cassette 22 is raised to the nitrogen gas! IG at a desired speed.
  • the flow rate of the nitrogen gas is increased as necessary, and the semiconductor wafer is dried in a nitrogen gas layer for a predetermined time.
  • the concentration of IPA dissolved in the pure water is high due to the small amount of pure water at the boundary between the semiconductor surface and the pure water surface.
  • the tension is small, the surface of the pure water layer in a region slightly distant from the surface of the semiconductor pen has a surface tension close to that of water, causing a difference in surface tension. From the part located on the side, a flow due to a difference in surface tension, that is, a Marango double flow is generated, and water flows and is efficiently removed from the semiconductor menu surface.
  • the cassette is disposed in the process 1 and then the cassette is disposed in a state in which the cleaning water is supplied in a state where the cleaning water is supplied. Needless to say, this may be done.
  • the nitrogen gas introduction may be performed before the washing water is shared, the washing water may be introduced after the washing water, or the IPA supply S It may be later.
  • the cassette handler may be set so that one cassette is in the drying process and the other is in the washing process, continuous operation can be performed. It becomes possible.
  • the apparatus can be integrated with a developing apparatus after exposure or with an etching apparatus. That is, by attaching a developing solution supply unit or the like having the same function as the pure water supply unit to the processing tank 11, the developing solution is supplied, and the cassette in which the semiconductor wafer after exposure is set is kept for a predetermined time. After rinsing in the developer and discharging the developer, pure water may be supplied from a pure water supply unit, and washing and drying may be performed in the same manner as in the above embodiment.
  • the etching liquid supply section and the resist stripping liquid supply section are similarly set in the processing tank 11 described above, the semiconductor wafer after exposure is set, and only the supply and discharge of the liquid are performed. The cleaning, etching, cleaning, resist stripping, cleaning, and drying are performed consistently, and a dry and clean semiconductor chip having a desired pattern can be obtained.
  • nitrogen gas is used as the inert gas.
  • the present invention is not limited to nitrogen, and another inert gas such as argon gas may be used.
  • the conductor layer was lifted from the hot pure water layer toward the IPA layer and the inert gas II.
  • a water outlet was provided at the bottom of the treatment tank 11 and the solenoid valve 100 was opened.
  • the semiconductor ⁇ is kept static and the pure water is drained, the I ⁇ ⁇ ® on the 3 ⁇ 4 ⁇ surface will decrease, and finally the semiconductor wafer will become improper. Exposure to the active gas IS 'produces the same effect as lifting the half wafer.
  • FIG. 11 is a partially enlarged cross-sectional view of the semiconductor washing machine of the embodiment.
  • FIG. 12 is an enlarged explanatory view of an IPA ift supply means used in the apparatus.
  • the IPA supply means is provided with an IPA supply nozzle 141 that supplies the IPA layer while moving with respect to the washing water layer. Things.
  • This device is different from the first embodiment in that the engagement connection portion 43 engaging with the first and second openings and the IPA supply pipe 41 (see FIG. 2) are integrally formed.
  • the second embodiment is characterized in that it is separated into an engagement connection portion 43 and an IPA supply means. The configuration of the other portions is formed in the same manner as in the first embodiment.
  • the washing / drying unit 10 provided with the processing tank 11 ⁇ , so as to supply IPA in a desired direction, the lower surface of the first opening 12 provided in the inner cylinder 13 (the first wall).
  • the IPA supply nozzle 141 which has a supply port 144 that can be adjusted to a desired height from the position of the lower surface of the IPA supply nozzle, is provided by a moving means (not shown).
  • the organic solvent layer 0 is formed on the surface of the washing water layer W via the IPA supply nozzle while moving the 141 with respect to the surface of the washing water layer.
  • the bellows 42 and the IPA supply pipe 41 are attached to the first and second openings at the bellows 42 and the engagement connection part 43 in the first embodiment.
  • the engagement connection portion 43 provided as a means, and with this engagement connection portion 43 attached to the second opening 14, the washing water is supplied, and the overflow from the drain 17 is performed.
  • the cradle connecting portion 43 is attached to the opening 12 of the ⁇ 1, and the IPA ift supply nozzle is Set the desired height from the water surface, and move the IPA supply nozzle forward while moving along the washing water table ffij; EIPA iJi; IPA ift-supply of supply nozzle ⁇ ⁇ (circle) I? And instantaneously form a 3 ⁇ coexistence state with JS'W of washing water, IPA I1 I, and inert gas J1G.
  • the steps up to the formation of the washing water lg are performed by supplying pure water to the treatment tank 11 in the same procedure as described in the first embodiment, and cleaning is performed.
  • the bellows 42 is moved to connect the engagement connection portion 43 to the first opening 12 so as to be in close contact therewith.
  • the nitrogen gas was heated to 80 to 150 and supplied.
  • the flow rate of the nitrogen gas is increased as necessary, and the semiconductor wafer is dried while being held in the nitrogen gas layer for a predetermined time.
  • the concentration of IPA dissolved in pure water is high at the boundary between the semiconductor surface and the pure water surface due to the small amount of pure water.
  • the surface tension is small, the surface of the pure water layer in a region slightly away from the surface of the semiconductor pen has a surface tension close to that of water, causing a difference in surface tension, and a semiconductor having a small surface tension.
  • a flow due to a difference in surface tension that is, a Marango double flow is generated from the portion located on the surface of the semiconductor menu, and water flows efficiently from the semiconductor menu surface and is removed.
  • the bellows 42 is moved to connect the tie connection portion 43 to the second opening 4 so that the pure water supply pipe is connected.
  • the pure water ift supply is performed from 34 to overflow, and the pure water is discharged together with the IPA from the drain 17 again.
  • the IPA supply port is formed with a plurality of round holes.
  • the shape is not limited to this, and as shown in FIGS. Deformable.
  • FIG. 4 is a view using slit-shaped IPA supply port 1 43.
  • the IPA can be more easily guided to the water surface. is there.
  • the IPA supply port 144 may be turned downward. According to such a configuration, the IPA supply port can be brought close to the water surface. If the lowermost part of the supply port is brought into contact with the uppermost surface of the IPA layer, an extremely thin solvent layer can be formed. In this structure, the thickness of the IPA layer (solvent layer) is easily controlled.
  • the moving direction of the nozzle and the supply direction may be reversed.
  • This nozzle structure is effective when it is desired to increase the supply amount of IPA.
  • the jet flow will be like a jet flow and the water surface will be roughened.
  • the direction of movement of the nozzle is reversed, only the movement speed of the nozzle with respect to the water surface will be The speed of this jet flow is small, and the speed of IPA reaching the water surface can be reduced.
  • the moving direction of the IPA supply nozzle 1441 may be the same as the IPA supply direction. In this case, there is a guide effect since the IPA runs below the supply port, and the IPA is supplied to the surface of the water quietly.
  • the IPA supply nozzle may be gradually moved upward. Even when the IPA is supplied to the surface of the water, the IPA may not immediately spread to the entire surface of the water, but may penetrate under the nozzle.If the nozzle is moved in parallel with the surface of the water, the nozzle may return to the right angle. There is a force; ', and if you move it upwards, such a dead end disappears.
  • nozzle moving means will be described as a modification of the present invention.
  • the IPA supply nozzle 1441 may be moved in parallel to the water surface using the bellows 144.
  • the tip of the nozzle may be moved by a transfer member 147 traveling on the rail 146.
  • the supply of the IPA to the IPA supply nozzle 141 may be performed via a flexible tube 148 as shown in FIG.
  • the supply of IPA to the IPA Where the reservoir is at the top of the processing tank 1 1
  • the force which is located in the gas phase of the process may be provided outside the processing tank.
  • the IPA supply nozzle 14 1 is provided separately from the engagement connection portion 43, but the flexible tube 14 9 shown in FIG.
  • the IPA supply nozzle 141 may be extended through the connection portion 43 from the side of the engagement connection portion.
  • pure water may be discharged from the bottom of the processing tank 11 to move the pure water layer and the IPA layer.
  • the cleaning / drying apparatus of the present invention high cleanliness can be achieved with a small and extremely simple configuration, and the apparatus is dried as it is in this inert gas layer, and the throughput is extremely low. high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A process for cleaning and drying a semiconductor is provided together with safely handleable equipment therefor permitting excellent cleaning and drying in a shorter time, which process comprises the step of putting a semiconductor substrate (1) in a treating bath and feeding wash water into the bath (11) up to such a level as to immerse the semiconductor substrate therein completely, the step of feeding an inert gas into the upper zone above the surface of the wash water so as to make the atmosphere of the zone inert, the step of instantaneously feeding a water-soluble organic solvent into the bath at a desired rate along the surface of the wash water so as to form instantaneously a coexistent state of the wash water phase W, the organic solvent phase O, and the inert gas phase G, the step of pulling up the semiconductor substrate from the wash water phase toward the inert gas phase the instant that the coexistent state of the three phases is formed, and the step of drying the semiconductor substrate in the inert gas phase.

Description

明細書 半導体洗浄乾燥方法および半導体洗浄乾燥装置 技術分野  Description Semiconductor cleaning and drying method and semiconductor cleaning and drying apparatus
本発明は、 半導体洗浄乾燥方法および半導体洗浄乾燥装置に係り、 特に半導体 ウェハーや半導体デバイスなどの半導体装置を洗浄し乾燥する技術に関するもの である。 背景技術  The present invention relates to a semiconductor cleaning and drying method and a semiconductor cleaning and drying apparatus, and more particularly to a technique for cleaning and drying a semiconductor device such as a semiconductor wafer and a semiconductor device. Background art
半導体装置の微細化および高集積化に ί半い、 素子パターンの微細化は高まる一 方である。 したがって半導体装置の製造工程では小さな埃やよごれについてもパ ターン精度の劣化原因となるため、 入念な清浄化処理が必要となる。 さらにまた、 金属イオンの残留や、 水分の残留などによって、 半導体表面が劣化したりするな どさまざまな領域でさまざまな問題が生じるため、 半導体装置の製造工程におい て、 半導体ゥュハーの洗浄および乾燥は極めて重要な課題となっている。  With the miniaturization and high integration of semiconductor devices, the miniaturization of element patterns is on the rise. Therefore, in the semiconductor device manufacturing process, even small dust and dirt can cause deterioration of pattern accuracy, so that careful cleaning treatment is required. Furthermore, since various problems occur in various areas such as deterioration of the semiconductor surface due to residual metal ions and residual water, cleaning and drying of a semiconductor wafer in a semiconductor device manufacturing process is difficult. It is a very important issue.
特に、 種々の処 ίϊ工程においてフオ ト リ ソグラフィ によるレジス トバターンの 形成、 これを用いたエツ千ングなどの選択的処理がたびたび用いられる。  In particular, in various processing steps, resist patterns are formed by photolithography, and selective processing such as etching using the same is often used.
フォ ト リ ソグラフィ によるレジス トパターンの形成においては、 レジス ト塗布、 露光マスクを用いた選択的露光、 現像という 3つのステップで実行される力く、 現 像により未露光領域 (ポジでは露光領域) のレジス ト剁離がなされる力《、 レジス 卜剥離後洗浄乾燥を行う必要がある。 通常、 所望の濃度の現像液を所望の時間吹 き付ける自動現像装置が用いられ、 洗浄、 乾燥を経て清净な状態の半導体ゥュハ 一が得られる。  The formation of a resist pattern by photolithography is performed in three steps: resist coating, selective exposure using an exposure mask, and development. Unexposed areas (exposed areas in the positive) depend on the current image. It is necessary to perform cleaning and drying after removing the resist. Normally, an automatic developing device for spraying a developer of a desired concentration for a desired time is used, and a clean semiconductor wafer is obtained through washing and drying.
從来、 このような装置において乾燥のために、 純水による洗浄を行った後、 図 5に説明図を示すように半導体ゥェ 1にィソプロピルアルコール ( I Ρ Α ) 液を吹き付け、 水と S換して、 乾燥するという方法がある。 この方法では複数の 半導体ウェハ一 1 に冏時に均一に I Ρ Α液 2 1 を吹き付けるのは困難であるとい う P 題があつた。 また図 6に示すように I P A蒸気 2 g を吹き付けるという方法も提案されてい る。 I P Aは可燃性であるため、 防爆対策すなわち安全対策のための設備が必要 であるという問題がある。 Therefore, after washing with pure water for drying in such an apparatus, an isopropyl alcohol (I Ρ Α) solution is sprayed on the semiconductor layer 1 as shown in FIG. And then drying. In this method, it was difficult to uniformly spray the IΡ solution 21 onto a plurality of semiconductor wafers 11 at the time of agitation. In addition, a method of spraying 2 g of IPA vapor as shown in Fig. 6 has also been proposed. Since IPA is flammable, there is a problem that equipment for explosion-proof or safety measures is required.
さらにまた図 7に示すように容器から純水 3を排出しこの後、 容器内に I P A 液 2 1を充填し、 半導体ゥュ 1をこの I P A液に浸漬するという方法もある c この方法では I P A液が大量に必要であり、 また I P A液出し入れのために要す るプロセス時間が長いという問題があ た。 Thereafter further also discharged pure water 3 from the container as shown in FIG. 7, filled with IPA liquid 2 1 into the container, IPA is also c This method method of immersing the semiconductor © Interview 1 This IPA solution There was a problem in that a large amount of liquid was required, and the process time required for taking in and out the IPA liquid was long.
さらにまた図 8に示すように容器から純水 3を排出しこの後、 容器内に I P A 蒸気 2 g を充填し、 半導体ウェハ一 1をこの I P A蒸気に接触させるという方法 もある。 この方法では出し入れのために要するプロセス時間が長い上防爆対策が 必要であるという問題があ た。  Further, as shown in FIG. 8, there is a method in which pure water 3 is discharged from a container, and thereafter, the container is filled with 2 g of IPA vapor, and the semiconductor wafer 11 is brought into contact with the IPA vapor. This method had problems that the process time required for taking in and out was long and that explosion-proof measures were required.
また図 9に示すように、 半導体ゥュ 1を純水と I P Aとの混台液に浸漬す るという方法も提案されている。 この方法では乾燥しにく く、 またしみが残った りするという問題がある。  Further, as shown in FIG. 9, a method has been proposed in which the semiconductor menu 1 is immersed in a mixed solution of pure water and IPA. This method has a problem that it is difficult to dry and stains are left.
そこで、 図 1 0に示すように、 リ ンス浴内に、 下層に水性層 3、 上層に有機乾 燥液層 4とを配設し、 下層の水性屨に浸漬された半導体ゥ を、 水性層から 有機乾燥液層を通って引上げ、 この引上げ過程で乾燥をおこなう方法も提案され ている。 ここでは有機乾燥液層としては、 デカンや 2—ノナノ ン (ぺプチルメチ ルケ ト ン) などが用いられており、 いずれも水に不溶であり、 かつ比重が 1より も小さいため、 分離して上層に有機乾燥液層が形成される。 しかしながらいずれ も沸点が高く蒸発しにく く また水に不溶の物 Sであるため、 乾燥しにくいという 問題がある。  Therefore, as shown in FIG. 10, an aqueous layer 3 is disposed in the lower layer and an organic dry liquid layer 4 is disposed in the upper layer, and the semiconductor layer immersed in the lower aqueous layer is placed in the rinse layer. A method has also been proposed in which the material is pulled up through an organic dry liquid layer, and drying is performed during this pulling process. Here, decane, 2-nonanone (butylmethylketone), etc. are used as the organic dry liquid layer, all of which are insoluble in water and have a specific gravity of less than 1, so that they are separated into upper layers. An organic dry liquid layer is formed on the substrate. However, both have high boiling points, are difficult to evaporate, and are insoluble in water.
I P Aは、 沸点が低く乾燥しやすい有機涫剂であるが、 可燃性で爆発しやすい ため蒸気としての取扱いは難しいという P¾題がある。  IPA is an organic material that has a low boiling point and is easy to dry. However, it is difficult to handle as steam because it is flammable and explosive.
また、 デカンや 2—ノナノ ン (ぺプチルメチルケ トン) などを用いて 2餍 造 にし引上げ時に有機溶剂を通過するようにした方法も提案されている力 < この方 法では表面に ¾を有する半導体装 Sでは溝に水が残留し易いという問題がある。 また水に対して不溶性であることは 2層構造は形成し易い反面、 引上げ時に水を 置換しにくいという問題がある。 一方、 I P Aは水溶性であるため、 水と置換し易い反面、 2層構造は生成し難 いため図 1 0のような装置には適用が困難であるという問題がある。 In addition, a method has been proposed in which decane or 2-nonanone (butylmethylketone) is used to form a two-layer structure so that the organic solvent can pass through when pulled up. Then, there is a problem that water easily remains in the groove. Also, being insoluble in water has the problem that while a two-layer structure is easy to form, it is difficult to displace water during pulling. On the other hand, IPA is water-soluble and therefore easily replaces water, but has a problem that it is difficult to apply it to the apparatus shown in FIG. 10 because it is difficult to form a two-layer structure.
本発明は前記実情に鑑みてなされたもので、 取扱いが安全で、 短時間で良好な 洗浄および乾燥を達成することのできる半導体洗浄乾燥装置を提 iftすることを目 的とする。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor cleaning / drying apparatus which is safe in handling and can achieve good cleaning and drying in a short time. Disclosure of the invention
そこで本発明の半導体洗净乾燥方法では、 処理槽内に、 半導体基板を設置す るとともに、 水面が前記半導体基板を十分に覆う高さまで前記処理槽内に洗浄水 を供給し洗浄水層を形成する工程と、 前記処理槽の前記水面より上が不活性雰囲 気となるように前記処理槽の上部に不活性ガスを供給する不活性ガス供給工程と、 瞬間的に洗浄水層と有機溶剂層と不活性ガス層との 3層共存状態を形成するよう に、 前記水面に沿って所望の速度で水溶性の有機溶剤を瞬間的に供給する有機溶 剤供給工程と、 前記 3層共存状態にある瞬間に前記半導体基板を洗浄水層から不 活性ガス層にむけて引き上げる引上げ工程と、 前記不活性ガス層内で乾燥する乾 燥工程とを含むことを特徴とする。  Therefore, in the semiconductor washing / drying method of the present invention, a semiconductor substrate is placed in a treatment tank, and the washing water is supplied into the treatment tank to a level where a water surface sufficiently covers the semiconductor substrate to form a washing water layer. An inert gas supply step of supplying an inert gas to an upper portion of the processing tank so that an atmosphere above the water surface of the processing tank becomes an inert atmosphere; An organic solvent supply step of instantaneously supplying a water-soluble organic solvent at a desired speed along the water surface so as to form a three-layer coexistence state of the layer and the inert gas layer; A pulling step of pulling up the semiconductor substrate from the cleaning water layer to the inert gas layer at a certain moment, and a drying step of drying in the inert gas layer.
望ましく は、 前記有機溶剂は、 イソプロビルアルコール ( I P A ) であること を特徴とする。  Preferably, the organic solvent is isopropyl alcohol (IPA).
望ましく は、 前記有^溶剂^給工程は、 前記洗净水表面から上方に所定の間隔 を隔てた状態で洗净水表 20に沿って所望の方向に有機溶剤供給口を移動しつつ、 有機溶剤を洗浄水表面に ^する工程であることを特徴とする。  Desirably, the organic solvent supply step comprises: moving the organic solvent supply port in a desired direction along the washing water table 20 at a predetermined distance upward from the surface of the washing water; On the surface of the washing water.
望ましく は、 前記 _ 溶剂供給工程は、 前記洗净水表面から上方に所定の間隔 を隔てた状態で洗净水表面に沿って所望の方向に有機溶剂供^ノズルを移動しつ つ、 該有機溶剤供給ノズルから前記方向とは異なる方向に有機溶剤を供給し、 洗 浄水表面に供袷する工程であることを特徴とする。  Preferably, the _______________________________________________________________________________ either a moving the organic solvent supply nozzle in the desired direction along the washing water surface in the state which was above the washing water surface at a predetermined interval, The method is characterized in that the organic solvent is supplied from the solvent supply nozzle in a direction different from the above direction, and the organic solvent is supplied to the surface of the cleaning water.
さらに望ましくは、 前記有機溶剤供給工程は、 前記洗浄水表面から上方に所定 の間隔を隔てた状態で洗^水表面に沿って所望の方向に有機溶剤供給ノズルを移 動しつつ、 該有機溶剤^給ノズルから前記方向と同一方向に有機溶剤を供給し、 洗浄水表 20に (ft給する工程であることを特徴とする。 望ましく は、 前記有機溶剤供耠工程は、 前記洗浄水表面から上方への前記間隔 を次第に大きく しながら、 洗浄水表面に沿って所望の方向に有機溶剤供給口を移 動しつつ、 有機溶剤を洗净水表面に供給する工程であることを特徴とする。 本発明の第 2によれば、 処理槽と、 前記処理槽内で半導体基板を搬送する搬送 手段と、 前記処理槽内に洗浄水を供給し洗浄水層を形成する洗浄水供給手段と、 前記処理槽の上部に不活性ガスを供給する不活性ガス供耠手段と、 前記処理槽内 で半導体基板を十分に覆う高さまで供給された洗浄水の水面に沿って、 瞬間的に 洗浄水層と有機溶剤層と不活性ガス層との 3層共存状態を形成するように、 前記 水面に沿って所望の速度で水溶性の有機溶剂を瞬間的に供給する有機溶剤供給手 段とを具備している。 More preferably, the organic solvent supply step comprises: moving the organic solvent supply nozzle in a desired direction along the surface of the washing water at a predetermined interval above the surface of the washing water; ^ The process is characterized in that the organic solvent is supplied from the supply nozzle in the same direction as the above direction, and is supplied to the washing water table 20 (ft supply). Desirably, the organic solvent supplying step comprises moving the organic solvent supply port in a desired direction along the surface of the cleaning water while gradually increasing the distance upward from the surface of the cleaning water, and supplying the organic solvent. The process is a step of supplying to the surface of washing water. According to a second aspect of the present invention, there is provided a processing tank, a transfer unit for transferring a semiconductor substrate in the processing tank, a cleaning water supply unit configured to supply cleaning water into the processing tank to form a cleaning water layer, An inert gas supply unit for supplying an inert gas to an upper portion of the processing tank; and a cleaning water layer instantaneously along a surface of the cleaning water supplied to a height sufficient to cover the semiconductor substrate in the processing tank. An organic solvent supply means for instantaneously supplying a water-soluble organic solvent at a desired speed along the water surface so as to form a three-layer coexistence state of an organic solvent layer and an inert gas layer. I have.
望ましくは、 前記有機溶剤供給手段は、 所望の方向に有機溶剤を供袷する供給 口を備えた有機溶剤供給ノズルと、 前記有機溶剤供袷ノズルを移動する移動機構 とを備え、 前記有機溶剂供給ノズルを介して洗净水層表面に有機溶剤層を形成す るように構成されており、 洗浄水層表面に対して移動しながら有機溶剂層を供袷 する。  Preferably, the organic solvent supply means includes: an organic solvent supply nozzle having a supply port for supplying the organic solvent in a desired direction; and a moving mechanism for moving the organic solvent supply nozzle. An organic solvent layer is formed on the surface of the washing water layer through a nozzle, and the organic solvent layer is supplied while moving to the surface of the washing water layer.
また望ま しくは、 前記有機溶剤供給手段は、 前記有機溶剤供給ノズルの前記有 機溶剤供給口が洗浄水層表面に対向するように形成されている。  Also preferably, the organic solvent supply means is formed such that the organic solvent supply port of the organic solvent supply nozzle faces the surface of the washing water layer.
さらに望ましくは、 前記有機溶剂供給手段は、 有機溶剤供給ノズルに ¾統され た有機溶剤貯溜部を具 (i!Sしている。  More preferably, the organic solvent supply means includes an organic solvent storage unit integrated with an organic solvent supply nozzle.
望ましくは、 さらに前記処理槽の底部にとりつけられた洗浄水排出手段を具備 し、 前記 3層共存状態を形成した後、 前記洗浄水排出手段を駆動し、 前記半導体 基板が不活性ガス層で覆われるまで、 静かに前記洗净水槽の水面を前記有機溶剤 層とともに低下せしめるようにしている。  Preferably, the apparatus further comprises cleaning water discharge means attached to the bottom of the processing tank, and after forming the three-layer coexistence state, drives the cleaning water discharge means to cover the semiconductor substrate with an inert gas layer. The water level of the washing tank is gently lowered together with the organic solvent layer until the washing is completed.
本発明の第 3の特徴は、 側壁の一部が内側に位!:する第 1の壁と外側に位置す る第 2の壁とからなる二重構造をなすように構成され、 底面に洗浄水供給管を具 備した処理槽と、 前記処理槽の^ 1の壁および第 2の壁にそれぞれ配設された第 1 および第 2の開口と、 前記筇 1の問口を貫通して第 2の開口に係合するように 配設された有機溶剤 it ^ -と、 前記第 1および第 2の開口の間に接続された排出 管と、 前記第 1および第 2の開口の上方に配 ¾され、 処理槽内に不活性ガスを供 給する不活性ガス供給部と、 前記処理槽内に半導体基板を搬送する搬送手段とを 具備し、 前記第 2の開口に前記有機溶剤供給管を装着した状態で、 洗浄水を供袷 し、 前記排出管からオーバーフローさせ、 前記第 1の壁の位置に水面を維持した 状態で、 前記第 1の開口の位置まで前記有機溶剂供給管を移動し、 前記第 2の開 口に前記有機溶剤供給管を接続し、 前記洗浄水表面に沿って前記有機溶剤 ί共袷管 から前記有機溶剤を供給し、 瞬間的に洗浄水の層と、 有機溶剤の層と、 不活性ガ スの層との 3層共存状態を形成するようにしたことにある。 The third feature of the present invention is that a part of the side wall is located inside! : A treatment tank configured to form a double structure consisting of a first wall and a second wall located outside; a treatment tank provided with a washing water supply pipe on the bottom surface; First and second openings respectively disposed on the wall and the second wall; and an organic solvent it ^-disposed so as to penetrate the 問 1 interface and engage with the second opening. And a discharge pipe connected between the first and second openings, and disposed above the first and second openings to supply an inert gas into the processing tank. An inert gas supply unit for supplying the semiconductor substrate into the processing bath, and a supply of cleaning water in a state where the organic solvent supply pipe is attached to the second opening. The organic solvent supply pipe is moved to the position of the first opening while overflowing from the discharge pipe and maintaining the water surface at the position of the first wall, and supplying the organic solvent to the second opening. A pipe is connected, and the organic solvent is supplied from the pipe lined with the organic solvent along the surface of the washing water. The washing water layer, the organic solvent layer, and the inert gas layer are instantaneously formed. That is, a three-layer coexistence state is formed.
本発明の第 4の特徴は、 側壁の一部が内側に位置する第 1の壁と外側に位置す る第 2の壁とからなる二重構造をなすように構成され、 底面に洗浄水供給管を具 備した処理槽と、 前記処理槽の第 1の壁および第 2の壁にそれぞれ配設され、 前 記処理槽の内側に位置する第 1の開口の下方の壁が第 2の開口の下方の壁よりも 低く形成された第 1および第 2の開口と、 前記第 1および第 2の開口の間に接続 された排出管と、 前記第 1および第 2の開口の上方に配設され、 処理槽内に不活 性ガスを供铪する不活性ガス供铪部と、 前記処理槽内に半尊体基板を搬送する搬 送手段と、 所望の方向に有機溶剤を供袷すべく、 前記第 1の壁の下面の位置から 所望の高さとなるように調整可能な供铪ロを備えた有機溶剤供給ノズルと、 前記 有機溶剂供給ノズルとを移動する移動機構とを備え、 洗净水層表面に対して前。己 有機溶剤供給ノズルを移動しながら洗浄水層表面に有機溶剤層を形成するように 構成された有機溶剂 .給手段と、 前記第 1または第 2の開口を塞ぐべく、 前記第 A fourth feature of the present invention is that a part of the side wall is configured to have a double structure including a first wall located inside and a second wall located outside, and a cleaning water supply A processing tank provided with a pipe, and a first opening and a second wall provided on the first and second walls of the processing tank, respectively. First and second openings formed to be lower than the lower wall of the drain, a discharge pipe connected between the first and second openings, and disposed above the first and second openings An inert gas supply unit for supplying an inert gas into the processing tank, a transporting means for transporting the semi-finished substrate into the processing tank, and supplying the organic solvent in a desired direction. An organic solvent supply nozzle having a supply nozzle that can be adjusted to a desired height from the position of the lower surface of the first wall, and the organic solvent supply nozzle And a moving mechanism for moving the door, previously for washing purification plant layer. An organic solvent supply means configured to form an organic solvent layer on the surface of the washing water layer while moving the organic solvent supply nozzle, and the first and second openings for closing the first or second opening.
1または第 2の開口に係台可能な t/Jり替え手段とを具 (1し、 前記第 2の開口に前 記切り替え手段を装着した状態で、 洗浄水を供給し、 前記排出管からオーバーフ ローさせ、 前記第 ]の壁の下面位 Sに洗浄水の水面を維持した状態で、 前記切り 替え手段を前記第 1の開口に装着し、 前記有機溶剂 ffi袷ノ ズルを、 前記水面から 所望の高さに設定し、 前記有機溶剂供 ¾ノズルを移動しながら、 前記洗浄水表面 に沿って前 S有機溶剂供铪ノズルから前記有機溶剤を供給し、 瞬間的に洗浄水の 層と、 宵攛溶剤の層と、 不活性ガスの餍との 3層共存状態を形成するようにしたT / J changing means that can be attached to the first or second opening. (1) The washing water is supplied in a state where the switching means is attached to the second opening, and While the water level is maintained at the lower surface position S of the second wall, the switching means is attached to the first opening, and the organic solvent ffi lined nozzle is removed from the water surface. While setting the desired height, the organic solvent is supplied from the preceding organic solvent supply nozzle along the surface of the cleaning water while moving the organic solvent supply nozzle, and a layer of the cleaning water is instantaneously formed, A three-layer coexistence state of the solvent layer and the inert gas layer
^ こ あ O o ^ This is o o
望ましくは、 前記有機溶剤供給ノズルは、 水面からの高さおよび水面に対する 移動方向を調整可能となるように構成されている。 また望ま しくは、 前記有機溶剂供給ノズルは、 前記切り替え手段を貫通するよ うに設けられていることを特徴とする。 Desirably, the organic solvent supply nozzle is configured so that the height from the water surface and the moving direction with respect to the water surface can be adjusted. Also preferably, the organic solvent supply nozzle is provided so as to penetrate the switching means.
また望ま しく は、 前記有機溶剤供袷手段は、 前記処理槽内に、 貯液溜を具備し ていることを特徴とする。  Preferably, the organic solvent supplying means includes a liquid storage in the treatment tank.
本発明によれば、 処理槽内で瞬間的に洗浄水層と有機溶剤雇と不活性ガス雇と の 3層共存状態を形成し、 半導体基板を洗浄水層から不活性ガス雇に向けて引上 げ、 この引上げ時に、 半導体基板表面で瞬間的に水と有機溶剤とを置換し、 不活 性ガス層で速やかに乾燥するようにしたものである。 水溶性の有機溶剤を用いて いるため、 洗浄水との置換はなされやすい。 しかしながらその反面、 洗浄水と混 台されてしまうという問題がある。 そこで本発明では、 図 3に示すように洗浄水 Wの水面に沿つて高速で水溶性の有機溶剤 0を流し、 瞬間的に洗浄水層上に有機 溶剂層を形成し、 これらの層に対して垂直に半導体基板 1を引き上げ、 上層の不 活性ガス雇 Gまで導く ことによって目的を達成している。 このとき、 半導体基板 表面では図 4に説明図を示すように、 マランゴニ効果により水が効率よく除去さ れる。 すなわち、 洗浄水の層 Wから有機溶剂層 0にむけて半導体基板を引き上げ る際、 半導体基板表面と洗浄水閽表面との境界 I においては洗浄水の量が少ない ために洗浄水中に溶解する有機溶剤の濃度は高く表面張力は小さくなる。 これに 対し、 半導体基板表面からやや離れた領域での洗浄水層表面 I I においては洗浄 水の量が多いために洗净水屮に溶解する有機溶剂の濃度は低く、 水に近い (高い) 表面張力をもつことになる。 このため Iの部分と I Iの部分とでは有機溶剂の溶 解濃度すなわち表 ΪΒ張力に ¾が生じ、 表 E張力の小さい半導体基板表而側に位置 する Iの部分から ¾面張力の大きい I Iの部分に表面張力差による流動すなわち マランゴ二流が生じ、 水は' 導休基仮表面から効率よく流動し除去される。  According to the present invention, a three-layer coexistence state of a cleaning water layer, an organic solvent and an inert gas is instantaneously formed in the treatment tank, and the semiconductor substrate is drawn from the cleaning water layer toward the inert gas. In addition, at the time of pulling up, water and an organic solvent are instantaneously replaced on the surface of the semiconductor substrate, so that the surface is quickly dried in an inert gas layer. Since a water-soluble organic solvent is used, replacement with washing water is easy. However, on the other hand, there is a problem that it is mixed with washing water. Therefore, in the present invention, as shown in FIG. 3, a water-soluble organic solvent 0 is caused to flow at high speed along the surface of the washing water W, and an organic solvent layer is instantaneously formed on the washing water layer. The purpose is achieved by vertically lifting the semiconductor substrate 1 and guiding it to the inert gas layer G in the upper layer. At this time, water is efficiently removed from the surface of the semiconductor substrate by the Marangoni effect, as shown in FIG. In other words, when the semiconductor substrate is lifted from the washing water layer W to the organic solvent layer 0, the organic solvent dissolved in the washing water at the boundary I between the semiconductor substrate surface and the washing water surface is small because the amount of the washing water is small. The solvent concentration is high and the surface tension is low. In contrast, on the surface II of the cleaning water layer, which is slightly away from the surface of the semiconductor substrate, the concentration of organic solvent dissolved in the cleaning water is low due to the large amount of cleaning water, and the surface is close to (high) water. It will have tension. For this reason, the dissolved concentration of the organic solvent, that is, the surface tension, is generated between the portion I and the portion II, and from the portion I located on the side of the semiconductor substrate having the small surface tension, the surface tension of the II is increased. The flow due to the difference in surface tension, that is, Marango double flow, occurs in the part, and water flows and is efficiently removed from the temporary surface.
從つて、 小型でかつ極めて ί¾単な構成で、 ^清净化をはかることができ、 この 不活性ガス層でそのまま乾燥され、 スループッ トは極めて高くなる。 例えば I Ρ Αの引火点は 1 0〜2 CTCであり、 気相を空気にすれば酸素と I P Aとが混じり、 この場合数%の I P Aが空気中に存在しただけで静電気などにより爆発が起こる 危険があるが、 木発明のように気相を不活性ガスにすれば、 高温にしても爆発の おそれもなく、 高速乾燥が" nj能となる。 例えば不活性ガスとして窒素ガスを用い る場台、 80〜: L 50°C程度にするのが望ましい。 Therefore, it is small and extremely simple, can be purified, and is dried as it is in this inert gas layer, and the throughput becomes extremely high. For example, the flash point of I Ρ 1 is 10 to 2 CTC. If the gas phase is air, oxygen and IPA will be mixed. In this case, only a few percent of IPA will be present in the air, causing an explosion due to static electricity etc. Although there is a danger, if the gas phase is made into an inert gas as in the wood invention, there is no danger of explosion even at high temperatures, and high-speed drying becomes "nj capability. For example, using nitrogen gas as an inert gas , 80 ~: L It is desirable to set to about 50 ° C.
なおここで半導体基板とは、 半導体ゥ あるいは、 素子形成工程中あるい は形成工程後の半導体装置の両方をさすものとする。 特に、 素子形成工程中ある いは工程後の半導体装置は表面に溝あるいは凹凸を有しており、 この凹部に水が 滞留しやすいが本発明によればマランゴニ効果により極めて効率よく、 置換され 良好な乾燥状態を得ることができる。  Here, the semiconductor substrate refers to both a semiconductor device and a semiconductor device during or after an element forming step. In particular, the semiconductor device during or after the element forming process has grooves or irregularities on the surface, and water easily stays in the concave portion. However, according to the present invention, the semiconductor device is very efficiently replaced by the Marangoni effect. A dry state can be obtained.
また、 水面に溶剤層を瞬間的に形成しょうとすると、 所望の溶剤を最適な速度 でで水面に供給する必要があるが、 ノズルを固定して供給すると、 水面と溶剤と の間の相対速度が大きくなり供袷時に水面が荒立ち、 溶剤が水中に拡散するとい う問題がある。  In addition, if a solvent layer is to be formed instantaneously on the water surface, it is necessary to supply the desired solvent to the water surface at an optimum speed. However, if the nozzle is fixed and supplied, the relative speed between the water surface and the solvent will increase. And the water surface becomes rough when the line is ready, and there is a problem that the solvent diffuses into the water.
そこで木発明では、 ノズルを移動させながら水面に供袷していく ことにより水 面と溶剤との相対速度を小さくするためにノズルの方を移動させるようにしてい る。 ノズルの移動方法と溶剂の供給方向が逆であるため、 それぞれのスピー ドが 互いにキヤ ンセルされて水面に到達する溶剤の供袷スピー ドをゼロにすることが できる。 したがって、 水面が荒れず、 溶剤が拡散することなく 3層共存状態を形 成することが可能となる。  Therefore, according to the wood invention, the nozzle is moved in order to decrease the relative speed between the water surface and the solvent by moving the nozzle to the water surface while moving the nozzle. Since the method of moving the nozzle and the supply direction of the melt are opposite, the speed at which the respective speeds are canceled with each other and reaches the water surface can be reduced to zero. Therefore, it is possible to form a three-layer coexistence state without roughening the water surface and without diffusing the solvent.
また、 有機溶剤供給ノズルを、 水面からの高さおよび水面に対する移動方向を 調整可能となるように^成すれば、 溶剤層の厚さを調整することができる。 例え ば、 供給ノズルの最下部を溶剂層の最上面と接触するように供給すれば、 非常に 薄い溶剂層を形成する二とがきる。 また、 ノズルを上向きに移勦させることによ り、 溶剤層の厚みを厚く保 f することができる。 溶剤層の厚みは 0. 1 1 c m 程度とするのが望ましい。  Further, if the organic solvent supply nozzle is formed so that the height from the water surface and the moving direction with respect to the water surface can be adjusted, the thickness of the solvent layer can be adjusted. For example, if the lowermost part of the supply nozzle is supplied so as to be in contact with the uppermost surface of the molten layer, it is possible to form a very thin molten layer. Further, by moving the nozzle upward, the thickness of the solvent layer can be kept large. It is desirable that the thickness of the solvent layer be about 0.11 cm.
またノズルの移動速度は 1 mn/scc 5cm/secとするのが望ましい。  The moving speed of the nozzle is preferably 1 mn / scc 5 cm / sec.
さらにノズルの先端に斜め下方に向かうガイ ドを取り付けることにより、 この 傾斜に沿って溶剤が洗 水面に到達するため洗净水中に拡散されることなく静か に 給される。  In addition, by attaching a guide that goes diagonally downward at the tip of the nozzle, the solvent reaches the washing surface along this slope and is gently supplied without being diffused into the washing water.
なお、 有機溶剤としては、 I P Aの他、 メチルアルコール (C H3 OH) 、 ェ チルアルコール (C2 ΗΓ) OH) 、 アセ ト ン (CH3 C OCHg ) 、 フロン R— 1 1 3 ( C C 12 F C C 1 F。 などを用いるようにしてもよい。 図面の簡単な説明 In addition, as the organic solvent, in addition to IPA, methyl alcohol (CH 3 OH), ethyl alcohol (C 2 Η Γ) OH), acetate (CH 3 COCHg), Freon R—113 (CC 1 2 FCC 1 F. may be used. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明実施例の洗净乾燥装置を示す図  FIG. 1 is a diagram showing a washing and drying apparatus according to an embodiment of the present invention.
図 2は、 同装置の要部拡大断面図  Fig. 2 is an enlarged sectional view of the main part of the device.
図 3は、 本発明の洗浄装置の概念説明図  FIG. 3 is a conceptual explanatory view of the cleaning device of the present invention.
図 4は、 マランゴニ効果を説明するための図  Figure 4 is a diagram for explaining the Marangoni effect
図 5は、 従来の洗浄乾燥方法を示す図  Figure 5 shows the conventional washing and drying method.
図 6は、 従来の洗浄乾燥方法を示す図  Figure 6 shows the conventional washing and drying method.
図 7は、 従来の洗浄乾燥方法を示す図  Figure 7 shows the conventional washing and drying method.
図 8は、 従来の洗浄乾燥方法を示す図  Figure 8 shows the conventional washing and drying method.
図 9は、 従来の洗净乾燥方法を示す図  FIG. 9 is a diagram showing a conventional washing and drying method.
図 1 0は、 従来の洗浄乾燥方法を示す図  Figure 10 shows the conventional washing and drying method.
図 1 1は、 本発明の第 2の実施例の洗浄乾燥装置の要部拡大断面図  FIG. 11 is an enlarged sectional view of a main part of a cleaning / drying apparatus according to a second embodiment of the present invention.
図 1 2は、 同装置の要部説明図  Fig. 12 is an illustration of the main parts
図 1 3は、 図 1 2の B - B断面図  Fig. 13 is a sectional view taken along the line B-B in Fig. 12.
図 1 4は、 同装置の有機溶剤供給口の変形例  Figure 14 shows a modification of the organic solvent supply port of the device
図 1 5は、 同装置の有機溶剤供給口の変形例  Fig. 15 shows a modification of the organic solvent supply port of the device.
図 1 6は、 同装置の有機溶剂供給口の変形例  Fig. 16 shows a modified example of the organic solvent supply port of the device.
図 1 7は、 同装 Sの^機溶剂供給ノズルの移動方向と有機溶剤供給方向との関 係を示す図  Fig. 17 shows the relationship between the moving direction of the machine melt supply nozzle and the direction of organic solvent supply in S
図 1 8は、 同装置の^機溶剂供給ノズルの移動方向と有機溶剤供給方向との関 係を示す図  Fig. 18 shows the relationship between the moving direction of the melt supply nozzle and the organic solvent supply direction.
図 1 9は、 同装 の有機溶剤供給ノズルの移動方向と有機溶剂供^方向との関 係を示す図  Figure 19 shows the relationship between the moving direction of the organic solvent supply nozzle and the organic solvent supply direction.
図 2 0は、 同装置の有機溶剂供給ノズルの移動方向の変形例を示す図 図 2 1は、 同装置の有機溶剂供給ノズル移動手段を示す図  FIG. 20 is a diagram showing a modification of the moving direction of the organic solvent supply nozzle of the device. FIG. 21 is a diagram showing an organic solvent supply nozzle moving means of the device.
図 2 2は、 同装置の有機溶剂供^ノズル移動 段を示す図  Fig. 22 is a diagram showing the stage of moving the organic solvent supply nozzle of the apparatus.
図 2 3は、 同装置の有機溶剂供給ノズルへの有機溶剂の供給例を示す図 図 2 4は、 同装 Sの ¾溶剂供給ノズルへの有機溶剤の供給例を示す図 発明を実施するための最良の形態 Fig. 23 shows an example of supplying organic solvent to the organic solvent supply nozzle of the same device. Fig. 24 shows an example of supplying organic solvent to the organic solvent supply nozzle of S. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第 1の実施例について図面を参照しつつ詳細に説明する。 本発明実施例の半導体洗浄装置は、 図 1に全体図、 図 2に図 1の部分拡大断面 図を示すように、 処理槽 1 1を具備した洗浄乾燥部 1 0と、 洗浄乾燥部 1 0に半 導体ウェハーを搬送供給する搬送部 2 0と、 処理槽 1 に洗浄水として純水を供給 排出する純水供給排出部 3 0と、 処理槽 1 1に有機溶剤として I P Aを供給排出 する I P A供給排出部 4 0と、 処理槽内に不活性ガスとして窒素ガスを供給排出 する窒素ガス供給排出部 5◦とから構成され、 瞬間的に純水層、 I P A層、 窒素 ガス層の 3層構造を形成し、 純水雇から窒素ガス層に向け、 これらの層に対して 垂直方向に半導体ゥュ を引上げ、 窒素ガス層に導き乾燥するようにしたこと を特徴とする。 Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1 for an overall view and FIG. 2 for a partial enlarged cross-sectional view of FIG. Transport section 20 for transporting semiconductor wafers to and from the tank; pure water supply and discharge section 30 for supplying and discharging pure water as cleaning water to and from processing tank 1; and IPA to supply and discharge IPA as an organic solvent to and from processing tank 11 It consists of a supply / discharge unit 40 and a nitrogen gas supply / discharge unit 5 ° that supplies and discharges nitrogen gas as an inert gas into the treatment tank.Three-layer structure consisting of a pure water layer, an IPA layer, and a nitrogen gas layer instantaneously From the pure water employment to the nitrogen gas layer, the semiconductor pump is pulled up in a direction perpendicular to these layers, guided to the nitrogen gas layer and dried.
洗浄乾燥部 1 0は、 図 2に拡大図を示すように側壁の一部が二重構造部をなす ように構成された処理梏 1 1からなり、 この処理槽 1 1 は、 底面で純水供給管 3 4に接続されるとともに、 石英ガラスからなり第 1の開口 1 2を備えた内筒 1 3 と、 この外側に形成され、 該第 1の開口 1 2に符合する位置に第 2の開口 1 4を 備えた外筒 1 5と、 前記処理槽 1 1の外側にとりつけられ、 処理槽 1 1内で超音 波振動を生ぜしめる超音波発振器 1 6とを具備している。  As shown in the enlarged view of FIG. 2, the cleaning / drying section 10 is composed of a processing shackle 11 in which a part of the side wall forms a double-structured section. An inner cylinder 13 which is connected to the supply pipe 34 and is made of quartz glass and has a first opening 12, and a second cylinder formed outside thereof and located at a position corresponding to the first opening 12. An outer cylinder 15 having an opening 14 and an ultrasonic oscillator 16 attached to the outside of the processing tank 11 and generating ultrasonic vibration in the processing tank 11 are provided.
また搬送部 2 0は、 水平および上下方向に移動可能なカセッ トハン ドラー 2 1 を fli し、 このカセッ 卜ハン ドラ一 2 1内にカセッ 卜 2 2が装着できるようにな つており、 カセッ ト 2 2に所定の 隔で半 ¾ί本ゥヱ 1が配列され、 露光装置 などからカセッ 卜 2 2ごとカセッ 卜ハン ドラー 2 1内に装着すると、 カセッ トハ ン ドラー 2 1が処理 ί§ 1 ] の ¾上に水平移動し、 処理^ 1 1上に装着され、 カセ ッ 卜 2 2が ^理槽 1 1の I人 J ¾まで下降するとともに、 I P Aの ift給に同期して力 セッ ト 2 2の引上げが宾行されるように 成されている。  In addition, the transport section 20 flies a cassette handler 21 that can be moved in the horizontal and vertical directions so that the cassette 22 can be mounted in the cassette handler 21. 2 are arranged at predetermined intervals in the cassette 2, and when the cassette 2 2 is mounted in the cassette handler 21 from an exposure apparatus or the like, the cassette handler 21 is processed by the cassette handler 21. It moves horizontally upwards, is mounted on the processing unit 11, and the cassette 2 2 descends to the I-J of the control unit 11, and the force set 2 2 is synchronized with the ift supply of the IPA. It is designed so that pulling is carried out.
純水 ift給排出部 3 0は、 純水取り人れ口 3 1 と、 加熱 fflのハ πゲンランプ 3 2 を備えた純水加熱器 3 3と、 この純水加熱器 3 に接統され、 前記処理榴 1 1底 部から純水を供給する純水 管 3 4と、 排出口 3 5とを具備している。 なお、 こ こで純水加熱器はなくてもよい。 I P A供袷排出部 4 0は、 前記処理槽 1 1の第 1および第 2の開口 1 2 , 1 4 に係合可能なように構成された I P A供給管 4 1 と、 ひだを有して水平方向の長 さを調整可能なステンレス製のベロー 4 2と、 第 1または第 2の開口 1 2, 1 4 に密着するように形成された係合接続部 4 3とを具備し、 第 1の開口 1 2に接続 されて処理槽 1 1内の純水表面に沿って高速で I P Aを供給するように構成され ている。 そしてカセッ 卜の処理槽からの引上げが終了すると、 係合接続部 4 3は 第 1の開口 1 2との係合を解いて第 2の開口 1 4まで移動し、 第 2の開口 1 4と 係合するようになつている。 このとき、 第 1の開口 1 2との係台が解かれると、 処理槽 1 1内の純水および I P Aは処理槽 1 1の内筒 1 3と外筒 1 5との間に位 置する ドレイン 1 7に向けて排出される。 The pure water ift supply / discharge unit 30 is connected to the pure water heater 3 3 equipped with a pure water outlet 3 1, a heating ffl pi-gen lamp 3 2, and the pure water heater 3. It is provided with a pure water pipe 34 for supplying pure water from the bottom of the treated shrink 11, and a discharge port 35. Here, a pure water heater may not be required. The IPA supply discharge section 40 includes an IPA supply pipe 41 configured to be able to engage with the first and second openings 12 and 14 of the treatment tank 11, A stainless steel bellows 42 whose length in the direction can be adjusted, and an engagement connection portion 43 formed so as to be in close contact with the first or second opening 12, 14. It is connected to the opening 12 and configured to supply IPA at high speed along the surface of pure water in the treatment tank 11. When the pulling of the cassette from the processing tank is completed, the engagement connection portion 43 disengages from the first opening 12 and moves to the second opening 14, whereupon the second connection 14 and Are engaged. At this time, when the platform with the first opening 12 is released, the pure water and IPA in the processing tank 11 are located between the inner cylinder 13 and the outer cylinder 15 of the processing tank 11 Drained to drain 17.
窒素ガス供給排出部 5 0は、 窒素ガス取り入れ口 5 1 と、 フィ ルタ 15 2と、 窒 素ガス加熱器 5 3と、 加熱された窒素ガスを、 処理槽 1 1の上方に設けられた窒 素ガス供給口 5 5に導く窒素ガス供耠管 5 4と、 窒素ガス排出部 5 6とから構成 されている Nitrogen gas supply discharge part 5 0, the nitrogen gas inlet 5 1, a filter 1 5 2, the nitrogen gas heater 5 3, the heated nitrogen gas, provided above the treating tank 1 1 It is composed of a nitrogen gas supply pipe 54 leading to a nitrogen gas supply port 55, and a nitrogen gas discharge section 56.
次に、 この装置を用いた半導体ウェハーの洗浄乾燥方法について説明する。 まず、 I P A供給管 4 1先端の係合接続部 4 3は第 2の開口 1 4と係台した状 態にする。 この状態で、 搬送部 2 0のカセッ トハン ドラー 2 1に、 半導体ウェハ 一をセッ 卜したカセッ 卜 2 2を装着し、 カセッ トハン ドラ一 2 1を処理槽 1 1 の 上まで水平移動し、 処^ 1 1 1の上部 ί¾口に? 7 させて固定する。 そしてカセ ッ 卜ハン ドラー 2 1を操作し、 処 i¾U 1 1の底 ^近^にカセヅ 卜 2 2が到達する まで下降させる。  Next, a method for cleaning and drying a semiconductor wafer using this apparatus will be described. First, the engagement connection portion 43 at the tip of the IPA supply pipe 41 is engaged with the second opening 14. In this state, the cassette 22 on which the semiconductor wafer 1 has been set is mounted on the cassette handler 21 of the transfer section 20, and the cassette handler 21 is horizontally moved to above the processing tank 11 to perform processing. ^ 1 1 1 Upper part of ί¾? Then, the cassette handler 21 is operated and lowered until the cassette 22 reaches the bottom of the process i¾U 11 1.
そして^ ¾ガス供^管 5 4から窒素ガスを供給し処 IS槽 1 1 の上部を窒素ガス で満たすとともに、 この処理懵 1 〗 の底面に接铳された純水供給管 3 4から、 処 m 1 】 に純水を供給する。 ここで (ft給される純水は純水取り入れ口 3 1力、ら取 り入れられ純水加熱器 3 3でハロゲンラ ンプ 3 2によって所定の温度に加熱され た状態で、 処 ΪΪ槽 1 1にあ される。 ここでは処理槽 1 〗 内でカセッ ト 2 2が完 全に水面下になるように純水は供^され、 1の開口 1 2から ドレイ ン 1 7を通 つてオーバーフローする。 この状態で超音波発振器 1 6を駆動し、 純水で超音波 ί争を行う このようにして純水による洗浄が終了すると、 ベロー 4 2を動かし係合接続部 4 3を第 1の開口 1 2に密着するように接続し、 I P A供給管 4 1から I P A (液体) を所望の流速で一定時間、 水面に沿って水平方向に供給する。 このとき 瞬間的に純水の層 と、 1 ? 層0と、 窒素ガス層 Gとの 3層構造状態が形成さ れる。 この I P A供給管 4 1から I P Aの供給終了信号を得て、 カセッ トハン ド ラーが駆動され、 所望の速度でカセッ ト 2 2が窒素ガス !I Gまで上昇せしめられ る。 そして、 窒素ガス流量を必要に応じて増大し、 所定時間窒素ガス層中に保持 し半導体ゥヱハ一を乾燥させる。 純水の層から I P A lgにむけて半導体ゥヱ を引き上げる際、 半導体ゥュ 表面と純水表面との境界においては純水の量が 少ないために純水中に溶解する I P Aの濃度は高く表面張力は小さいのに対し、 半導体ゥニ 表面からやや離れた領域での純水層表面においては水に近い表面 張力をもつことになり、 表面張力に差が生じ、 表面張力の小さい半導体ゥュ 表面側に位置する部分から、 表面張力差による流動すなわちマランゴ二流が生じ、 水は半導体ゥュ 表面から効率よく流動し除去される。 Then, nitrogen gas is supplied from a gas supply pipe 54 to fill the upper part of the processing tank 11 with nitrogen gas, and a treatment is performed from a pure water supply pipe 34 connected to the bottom of the processing tank 1. Supply pure water to m 1]. Here, the pure water supplied by (ft) is supplied to the pure water inlet 31 and the pure water heater 33 is heated to a predetermined temperature by the halogen lamp 32 in the pure water heater 33, and the processing tank 11 Here, pure water is supplied so that the cassette 22 is completely below the surface of the water in the treatment tank 1 、, and overflows from the opening 1 2 through the drain 17. In this state, the ultrasonic oscillator 16 is driven and an ultrasonic battle is conducted with pure water. When the cleaning with pure water is completed in this way, the bellows 42 is moved to connect the engagement connection portion 43 so as to be in close contact with the first opening 12, and the IPA (liquid) is supplied from the IPA supply pipe 41. The water is fed horizontally along the water surface at a constant flow rate for a certain period of time. At this time, a three-layer structure state of a layer of pure water, a layer 1 of pure water and a layer G of nitrogen gas is instantaneously formed. Upon receiving an IPA supply end signal from the IPA supply pipe 41, the cassette handler is driven, and the cassette 22 is raised to the nitrogen gas! IG at a desired speed. Then, the flow rate of the nitrogen gas is increased as necessary, and the semiconductor wafer is dried in a nitrogen gas layer for a predetermined time. When the semiconductor layer is lifted from the pure water layer toward the IPA lg, the concentration of IPA dissolved in the pure water is high due to the small amount of pure water at the boundary between the semiconductor surface and the pure water surface. Although the tension is small, the surface of the pure water layer in a region slightly distant from the surface of the semiconductor pen has a surface tension close to that of water, causing a difference in surface tension. From the part located on the side, a flow due to a difference in surface tension, that is, a Marango double flow is generated, and water flows and is efficiently removed from the semiconductor menu surface.
この状態で窒素ガス層屮におかれ効率よく乾燥される。  In this state, it is placed in a nitrogen gas layer and dried efficiently.
一方、 カセッ 卜が引上げられると同時に、 ベロー 4 2を動かし係合接統部 4 3 を第 2の ^口 1 4に帟 ¾·するように接続し、 純水供給管 3 4から純水の供給を続 行しオーバーフローさせ、 び、 ドレイ ン 1 7から I P Aとともに純水を排出す る。 これにより窒素ガス^で ^が ί冬了するころ、 処理螬 1 ] では次の洗净処理 に向けて jl が完了することになる。 従って、 カセッ 卜ハンドラーが駆動され力 セッ 卜が上昇して取り出され次の力セッ 卜が取り付けられて下降してく ると、 即 時に ¾ が ίΗΪ始できるようになつている。  On the other hand, at the same time as the cassette is pulled up, the bellows 42 is moved to connect the engagement connection section 43 to the second opening 14 so as to be in contact with the second connection port 14. Continue supply, overflow, and drain pure water from drain 17 with IPA. As a result, by the end of winter with nitrogen gas, jl will be completed in the process 1] for the next washing process. Therefore, when the cassette handler is driven, the force set rises and is taken out, and the next force set is attached and descends, ¾ can be started immediately.
從つて、 小型でかっ^めて簡単な構成で、 iE清浄化をはかることができ、 この 窒素ガス ΙΕ·でそのまま乾燥され、 スループッ 卜が極めて高い。  Therefore, it is possible to purify the iE with a small, compact and simple structure, and it is dried as it is with this nitrogen gas, and the throughput is extremely high.
なお、 前記実施例では処 ίϊ^ Ι 1内にカセッ トを配 gしてから、 洗浄水を供^ した力 <、 ^ 1 1内に ¾浄水を供給した状態でカセッ 卜を配 sするようにして もよいことはいうまでもない。  In the above-described embodiment, the cassette is disposed in the process 1 and then the cassette is disposed in a state in which the cleaning water is supplied in a state where the cleaning water is supplied. Needless to say, this may be done.
また、 前;]己实施例では、 窒素ガスの導入を、 洗净水の ί共給に先立ち行うように した力'、 ^净水の -¾後でもよいし、 また、 I P Aの ¾給 S後でもよい。 また、 カセッ トハン ドラーのカセッ 卜を 2つ以上セツ トできるようにしておき、 1つのカセッ 卜が乾燥工程にあるとき、 もう一方のカセッ 卜は洗浄工程にあるよ うにすれば、 連続的操作が可能となる。 In addition, before;] In the actual embodiment, the nitrogen gas introduction may be performed before the washing water is shared, the washing water may be introduced after the washing water, or the IPA supply S It may be later. In addition, if two or more cassettes of the cassette handler are set so that one cassette is in the drying process and the other is in the washing process, continuous operation can be performed. It becomes possible.
また、 前記実施例では、 洗浄乾燥専用の装置について説明したが、 露光後の現 像装置と一体化したり、 エッチング装置と一体化したりすることも可能である。 すなわち、 純水供給部と同様の機能を備えた、 現像液供給部などを処理槽 1 1 にとりつけることにより、 現像液を供給して、 露光後の半導体ウェハーをセッ 卜 したカセッ トを所定時間該現像液に浸清し、 現像液を排出した後、 純水供給部か ら純水を供給して、 前記実施例と同様に洗净乾燥を行うようにすればよい。  Further, in the above-described embodiment, an apparatus dedicated to cleaning and drying has been described. However, the apparatus can be integrated with a developing apparatus after exposure or with an etching apparatus. That is, by attaching a developing solution supply unit or the like having the same function as the pure water supply unit to the processing tank 11, the developing solution is supplied, and the cassette in which the semiconductor wafer after exposure is set is kept for a predetermined time. After rinsing in the developer and discharging the developer, pure water may be supplied from a pure water supply unit, and washing and drying may be performed in the same manner as in the above embodiment.
このようにすれば 1つの装匮で、 現像から洗浄乾燥まで行うことができる。 さらにまたエツチング液供給部およびレジス ト剥離液供給部まで同様にして前 記処理槽 1 1に設置すれば、 露光後の半導体ウェハ—をセッ 卜すれば、 液体の供 給および排出のみで、 現像、 洗浄、 エッチング、 洗浄、 レジス ト剥離、 洗浄、 乾 燥までを一貫して行い、 所望のパターンを形成した乾燥された清浄な半導体ゥュ を得ることができる。  In this way, it is possible to perform from development to washing and drying with one apparatus. Furthermore, if the etching liquid supply section and the resist stripping liquid supply section are similarly set in the processing tank 11 described above, the semiconductor wafer after exposure is set, and only the supply and discharge of the liquid are performed. The cleaning, etching, cleaning, resist stripping, cleaning, and drying are performed consistently, and a dry and clean semiconductor chip having a desired pattern can be obtained.
また、 前記実施例では有機溶 njとして I p Aを用いたがメチルアルコール (c In the above embodiment, I p A was used as the organic solvent nj, but methyl alcohol (c
H 3 O H ) 、 エチルアルコール (C H r O H ) 、 アセ ト ン ( C H 3 C O C H o ) 、 フロン R — 1 1 3 ( C C 1 2 F C C 1 F 3 ) など、 他の水溶性の有機溶剂にも 適用可能である。 H 3 OH), ethanol (CH r OH), acetone tons (CH 3 COCH o), Freon R - applying such 1 1 3 (CC 1 2 FCC 1 F 3), also other water-soluble organic溶剂It is possible.
さらにまた、 前記実施例では、 不活性ガスとして窒素ガスを fflいたが、 窒素に 限定されることなく、 アルゴンガスなど他の不活性ガスを用いてもよい。  Furthermore, in the above-described embodiment, nitrogen gas is used as the inert gas. However, the present invention is not limited to nitrogen, and another inert gas such as argon gas may be used.
加えて、 前記実施例では、 導体ゥ を温純水層から I P A層、 不活性ガ ス IIにむけて引き上げるようにしたが、 処理槽 1 1 の底部に俳水口を設け、 電磁 弁 1 0 0によって くようにし、 半導体ゥヱ は静 II·.したまま、 ^かに純水を 排出するようにすれば、 ¾ ^面の (¾下とともに I Ρ Α ®は低下し、 最後に半導体 ウェハ一は不活性ガス IS'にさらされ、 半 体ウェハーを引き上げたのと じ効粜 を奏効する。  In addition, in the above embodiment, the conductor layer was lifted from the hot pure water layer toward the IPA layer and the inert gas II. However, a water outlet was provided at the bottom of the treatment tank 11 and the solenoid valve 100 was opened. In this way, if the semiconductor 静 is kept static and the pure water is drained, the I Ρ Α ® on the ¾ ^ surface will decrease, and finally the semiconductor wafer will become improper. Exposure to the active gas IS 'produces the same effect as lifting the half wafer.
木発明の^ 2の実施例について説明する。 实施例の半導体洗净装 ϋは、 図 1 1 に部分拡大断面図、 図 1 2にこの装置で用いられる I P A ift給手段の拡大説明図、 図 1 3に I P A供給口の説明図を示すように、 I P A供給手段が、 洗净水層に対 して移動しながら I P A層を供給する I P A供給ノズル 1 4 1を具備したことを 特徴とするものである。 この装置では、 前記第 1の実施例において第 1および第 2の開口に係合する係合接続部 4 3と I P A供給管 4 1 (図 2参照) とが一体的 に形成されていたものを、 係合接続部 4 3と、 I P A供給手段とに分離したこと を特徴とするもので、 他部の構成については、 前記第 1の実施例と同様に形成さ れている。 A second embodiment of the present invention will be described. FIG. 11 is a partially enlarged cross-sectional view of the semiconductor washing machine of the embodiment. FIG. 12 is an enlarged explanatory view of an IPA ift supply means used in the apparatus. As shown in the explanatory view of the IPA supply port in FIG. 13, the IPA supply means is provided with an IPA supply nozzle 141 that supplies the IPA layer while moving with respect to the washing water layer. Things. This device is different from the first embodiment in that the engagement connection portion 43 engaging with the first and second openings and the IPA supply pipe 41 (see FIG. 2) are integrally formed. The second embodiment is characterized in that it is separated into an engagement connection portion 43 and an IPA supply means. The configuration of the other portions is formed in the same manner as in the first embodiment.
すなわち、 処理槽 1 1を具備した洗浄乾燥部 1 0力《、 所望の方向に I P Aを供 給すべく、 前記内筒 1 3に設けられた第 1の開口 1 2の下面 (第 1の壁の下面) の位置から所望の高さとなるように調整可能な供給口 1 4 3を備えた I P A供铪 ノズル 1 4 1を具備しており、 移動手段 (図示せず) によって、 この I P A供給 ノズル 1 4 1を洗浄水層表面に対して移動しながら前記 I P A供給ノズルを介し て洗浄水層 W表面に有機溶剂層 0を形成する。  That is, the washing / drying unit 10 provided with the processing tank 11 <<, so as to supply IPA in a desired direction, the lower surface of the first opening 12 provided in the inner cylinder 13 (the first wall). The IPA supply nozzle 141, which has a supply port 144 that can be adjusted to a desired height from the position of the lower surface of the IPA supply nozzle, is provided by a moving means (not shown). The organic solvent layer 0 is formed on the surface of the washing water layer W via the IPA supply nozzle while moving the 141 with respect to the surface of the washing water layer.
また、 第 1および第 2の開口には前記第 1の実施例ではべロー 4 2および係合 接铳部 4 3に I P A供給管 4 1が取り付けられたが、 この例では移動可能な切り 替え手段としての係合接続部 4 3のみが設けられて、 第 2の開口 1 4にこの係合 接铳部 4 3を装着した状態で、 洗浄水を供給し、 ドレイ ン 1 7からオーバーフロ 一させ、 前記第 ] の ra n i 2の下面位置に洗浄水の水面を維持した状態で、 前記 係台接铳部 4 3を前記笫 1 の開口 1 2に装着し、 前記 I P A ift給ノズルを、 前記 水面から 望の高さに設定し、 前 ϋ己 I P A供給ノズルを移動しながら、 前記洗浄 水表 ffijに沿って前; E I P A iJi;給ノズルの I P A ift-給 Π (円形) 1 4 3から前記 I ?八を供^し、 瞬問的に洗 水の JS'Wと、 I P A I1 I と、 不活性ガス J1 Gとの 3 ^共存状態を形成する。  In addition, the bellows 42 and the IPA supply pipe 41 are attached to the first and second openings at the bellows 42 and the engagement connection part 43 in the first embodiment. With only the engagement connection portion 43 provided as a means, and with this engagement connection portion 43 attached to the second opening 14, the washing water is supplied, and the overflow from the drain 17 is performed. In a state where the level of the washing water is maintained at the lower surface position of the second rani 2, the cradle connecting portion 43 is attached to the opening 12 of the 笫 1, and the IPA ift supply nozzle is Set the desired height from the water surface, and move the IPA supply nozzle forward while moving along the washing water table ffij; EIPA iJi; IPA ift-supply of supply nozzle 円 形 (circle) I? And instantaneously form a 3 ^ coexistence state with JS'W of washing water, IPA I1 I, and inert gas J1G.
次に、 この装 gを用いた^導体ゥュハーの冼浄乾燥方法について説明する。 洗净水 lgを形成するまでの工程は前記第 1の実施例で説明したのとまつたく同 様の手順で処理槽 1 1 に純水を供給して洗浄を実行し、 純水による洗浄が終了す ると、 ベロー 4 2を動かし係合接続部 4 3を第 1 の開口 1 2に密着するように接 統する。 なおここで窒素ガスは 8 0〜 1 5 0てに加熱して供給した。  Next, a method of purifying and drying a conductive conductor using this device will be described. The steps up to the formation of the washing water lg are performed by supplying pure water to the treatment tank 11 in the same procedure as described in the first embodiment, and cleaning is performed. When the operation is completed, the bellows 42 is moved to connect the engagement connection portion 43 to the first opening 12 so as to be in close contact therewith. Here, the nitrogen gas was heated to 80 to 150 and supplied.
そして、 I P ノズル 1 4 1.を矢印 Aの方向に速度 1 mm八 sec~ 5cm/sec で 移動しながら、 この I P A供铪ノズル 1 4 1の供給口 1 4 3力、ら I P A (液体) を所望の流速で一定時間、 水面に沿って水平方向に供給する。 このとき瞬間的に 純水の層 Wと、 厚さ 0 . 5 mn!〜 1 c m程度の I P A層 0と、 窒素ガス層 Gとの 3 層構造状態が形成される。 この I P A供給手段から I P Aの供給終了信号を得て. カセッ トハン ドラーが駆動され、 所望の速度でカセッ 卜が窒素ガス層 Gまで上昇 せしめられる。 そして、 窒素ガス流量を必要に応じて増大し、 所定時間窒素ガス 層中に保持し半導体ゥュハ一を乾燥させる。 純水の層から I P A層にむけて半導 体ゥュ を引き上げる際、 半導体ゥ 表面と純水表面との境界においては 純水の量が少ないために純水中に溶解する I P Aの濃度は高く表面張力は小さい のに対し、 半導体ゥニ 表面からやや離れた領域での純水層表面においては水 に近い表面張力をもつことになり、 表面張力に差が生じ、 表面張力の小さい半導 体ゥュ 表面側に位置する部分から、 表面張力差による流動すなわちマランゴ 二流が生じ、 水は半導体ゥュ 表面から効率よく流動し除去される。 Then, move the IP nozzle 1 4 1. in the direction of arrow A at a speed of 1 mm 8 sec to 5 cm / sec. While moving, supply the IPA (liquid) at a desired flow rate for a certain period of time horizontally along the water surface at the supply port 144 of the IPA supply nozzle 144. At this moment, a layer of pure water W and a thickness of 0.5 mn! A three-layer structure of an IPA layer 0 of about 1 cm and a nitrogen gas layer G is formed. An IPA supply end signal is obtained from this IPA supply means. The cassette handler is driven, and the cassette is raised to the nitrogen gas layer G at a desired speed. Then, the flow rate of the nitrogen gas is increased as necessary, and the semiconductor wafer is dried while being held in the nitrogen gas layer for a predetermined time. When pulling up the semiconductor window from the pure water layer to the IPA layer, the concentration of IPA dissolved in pure water is high at the boundary between the semiconductor surface and the pure water surface due to the small amount of pure water. While the surface tension is small, the surface of the pure water layer in a region slightly away from the surface of the semiconductor pen has a surface tension close to that of water, causing a difference in surface tension, and a semiconductor having a small surface tension. A flow due to a difference in surface tension, that is, a Marango double flow is generated from the portion located on the surface of the semiconductor menu, and water flows efficiently from the semiconductor menu surface and is removed.
この状態で窒素ガス層中におかれ効率よく乾燥される。  In this state, it is placed in a nitrogen gas layer and dried efficiently.
—方、 前記第〗の実施例と同様、 カセッ 卜が引上げられると同時に、 ベロー 4 2を動かし係台接続部 4 3を第 2の開口 ] 4に密着するように接続し、 純水供給 管 3 4から純水の ift給を铳行してオーバーフローさせ、 再び、 ドレイ ン 1 7から I P Aとともに純水を排出する。 これにより窒素ガス層で乾燥が終了するころ、 処理槽 1 1では次の ¾净処 f¾に向けて準備が完了することになる。 従って、 カセ ッ 卜ハン ドラーが駆動されカセッ 卜が上界して取り出され次のカセッ 卜が取り付 けられて下降してく ると、 即 Π?ίに洗浄が開始できるようになっている。  On the other hand, as in the case of the second embodiment, at the same time as the cassette is pulled up, the bellows 42 is moved to connect the tie connection portion 43 to the second opening 4 so that the pure water supply pipe is connected. The pure water ift supply is performed from 34 to overflow, and the pure water is discharged together with the IPA from the drain 17 again. By this, by the end of the drying in the nitrogen gas layer, the preparation in the processing tank 11 is completed for the next processing f. Therefore, when the cassette handler is driven and the cassette is taken out with the upper bound, the next cassette is mounted and descends, the washing can be started immediately.
このようにして、 小型でかっ^めて簡単な構成で、 高清浄化をはかることがで きる力 前記第 1 の実施例の装- gに比べ、 I P Aが静かに ί共給されるため、 さら に水面の荒立ちがなく、 良好な I Ρ Α層が形成されるという効果を奏効する。 なお、 前記実施例では、 I P A供給口は丸い穴が複数個形成されているが、 こ の形状に限定されるものではなく、 図 1 4 至図 1 6に変形例を示すように、 適 宜変形可能である。 図 ] 4はスリ ッ ト状の I P A供給口 1 4 3を用いたもの、 図 In this way, a power that can be highly purified with a small, compact and simple configuration, compared to the device of the first embodiment, since the IPA is supplied quietly, and This has the effect that the water surface is not rough and a good I Ρ Α layer is formed. In the above embodiment, the IPA supply port is formed with a plurality of round holes. However, the shape is not limited to this, and as shown in FIGS. Deformable. [Fig. 4] is a view using slit-shaped IPA supply port 1 43.
5は切り欠け状にしたもの図 1 6はスリ ッ ト状の I P A供給 Π 1 4 3にガイ ド5 is cut-out Figure 16 is a slit-shaped IPA supply Π Guide to 1 43
4 4を付加し、 より かに水面に I P Aを導く ことができるようにしたもので ある。 With the addition of 4 to 4, the IPA can be more easily guided to the water surface. is there.
また、 図 1 7に示すように、 I P A供袷口 1 4 3を下向きにしてもよい。 かか る構成によれば、 水面近く まで I P A供給口を近付けることができる。 また供給 口の最下部を、 I P A層の最上面と接触させるようにすれば極めて薄い溶剤層を 形成することができる。 またこの構造では I P A層 (溶剤層) の厚さを制御しや すい。  Further, as shown in FIG. 17, the IPA supply port 144 may be turned downward. According to such a configuration, the IPA supply port can be brought close to the water surface. If the lowermost part of the supply port is brought into contact with the uppermost surface of the IPA layer, an extremely thin solvent layer can be formed. In this structure, the thickness of the IPA layer (solvent layer) is easily controlled.
さらにまた、 図 1 8に示すようにノズルの移動方向と供給方向を反対にしても よい。 このノズル構造は I P Aの供給量を増大したいときに有効である。 すなわ ち、 供給量を增大するとジェッ ト流のようになり水面を荒立ててしまう力 <、 この ようにノズルの移動方向と反対にすると、 水面に対してはノズルの移動速度分だ け、 このジュッ ト流の速度が'减少し、 水面に到達する I P Aの速度を小さくする ことができる。  Furthermore, as shown in FIG. 18, the moving direction of the nozzle and the supply direction may be reversed. This nozzle structure is effective when it is desired to increase the supply amount of IPA. In other words, if the supply amount is large, the jet flow will be like a jet flow and the water surface will be roughened. <In this way, if the direction of movement of the nozzle is reversed, only the movement speed of the nozzle with respect to the water surface will be The speed of this jet flow is small, and the speed of IPA reaching the water surface can be reduced.
また図 1 9に示すように、 I P A供給ノズル 1 4 1の移動方向と I P A供袷方 向とを同じにしておよい。 この場合は I P Aが供給口の下部をったうのでガイ ド 効果があり、 I P Aは静かに水面に供給される。  Further, as shown in FIG. 19, the moving direction of the IPA supply nozzle 1441 may be the same as the IPA supply direction. In this case, there is a guide effect since the IPA runs below the supply port, and the IPA is supplied to the surface of the water quietly.
さらにまた図 2 0に示すように、 I P A供給ノズルを徐々に上向きに移動させ るようにしてもよい。 I P Aは水面に供給されてもすぐに水面全表面に拡散する ことなく ノズルの下に冋り込むことがあり、 そのままノズルを水面に平行に移動 させるとノズルが^?剂) に损 を えることがある力;'、 上向きに移動させると、 このような不郁台はなくなる。  Furthermore, as shown in FIG. 20, the IPA supply nozzle may be gradually moved upward. Even when the IPA is supplied to the surface of the water, the IPA may not immediately spread to the entire surface of the water, but may penetrate under the nozzle.If the nozzle is moved in parallel with the surface of the water, the nozzle may return to the right angle. There is a force; ', and if you move it upwards, such a dead end disappears.
次に、 本発明の変形例としてノズルの移動手段について説明する。  Next, nozzle moving means will be described as a modification of the present invention.
図 2 1に示すように、 ベローズ 1 4 5を用いて、 I P A供給ノズル 1 4 1を水 面に対して平行移動するようにしてもよい。  As shown in FIG. 21, the IPA supply nozzle 1441 may be moved in parallel to the water surface using the bellows 144.
また図 2 2に示すようにレール 1 4 6上を走行する搬送部材 1 4 7によってノ ズルの先端を移動するようにしてもよい。  Alternatively, as shown in FIG. 22, the tip of the nozzle may be moved by a transfer member 147 traveling on the rail 146.
また、 I P A供給ノズル 1 4 1 への I P Aの供給は図 2 3に示すようにフレキ シブルチューブ 1 4 8を介して行うようにしてもよい。  In addition, the supply of the IPA to the IPA supply nozzle 141 may be performed via a flexible tube 148 as shown in FIG.
さらに図 2 4に示すように ^め 1 4 9を介して、 I P A .給ノズル 1 4 1へ の I P Aの 給を違成するようにしてもよい。 ここで液溜めは処理槽 1 1の上部 の気相に位置するようにしている力;'、 処理槽の外に設けてもよい。 Further, as shown in FIG. 24, the supply of IPA to the IPA. Where the reservoir is at the top of the processing tank 1 1 The force which is located in the gas phase of the process may be provided outside the processing tank.
さらに、 前記第 2の実施例では、 係合接铳部 4 3とは分離して I P A供給ノズ ル 1 4 1を設けたが、 図 2 3に示したようなフレキシブルチューブ 1 4 9を係合 接続部 4 3に貫通せしめ、 係合接続部の側から I P A供給ノズル 1 4 1が伸長し ていくようにしてもよい。  Furthermore, in the second embodiment, the IPA supply nozzle 14 1 is provided separately from the engagement connection portion 43, but the flexible tube 14 9 shown in FIG. The IPA supply nozzle 141 may be extended through the connection portion 43 from the side of the engagement connection portion.
さらにこの構成においても、 半導体ウェハーを引き上げるのではなく、 処理槽 1 1の底部から純水を排出し、 純水層、 I P A層を移動するようにしてもよい。 産業上の利用可能性  Further, also in this configuration, instead of lifting the semiconductor wafer, pure water may be discharged from the bottom of the processing tank 11 to move the pure water layer and the IPA layer. Industrial applicability
以上説明してきたように、 本発明の洗浄乾燥装置によれば、 小型でかつ極め て簡単な構成で、 高清浄化をはかることができ、 この不活性ガス層中でそのまま 乾燥され、 スループッ 卜が極めて高い。  As described above, according to the cleaning / drying apparatus of the present invention, high cleanliness can be achieved with a small and extremely simple configuration, and the apparatus is dried as it is in this inert gas layer, and the throughput is extremely low. high.

Claims

請求の範囲 The scope of the claims
( 1 ) 処理槽内に、 半導体基板を設置するとともに、 水面が前記 導体基板を 十分に覆う高さまで前記処理槽内に洗净水を供給し洗浄水層を形成する工程と、 前記処理槽の前記水面より上が不活性雰囲気となるように前記処理槽の上部に 不活性ガスを供給する不活性ガス供給工程と、 (1) placing a semiconductor substrate in a treatment tank, supplying washing water into the treatment tank to a height such that a water surface sufficiently covers the conductor substrate, and forming a washing water layer; An inert gas supply step of supplying an inert gas to an upper portion of the processing tank so that an atmosphere above the water surface becomes an inert atmosphere;
瞬間的に洗浄水層と有機溶剂雇と不活性ガス層との 3層共存状態を形成するよ うに、 前記水面に沿って所望の速度で水溶性の有機溶剂を瞬間的に供袷する有機 溶剤供給工程と、  An organic solvent that instantaneously supplies a water-soluble organic solvent at a desired speed along the water surface so as to instantaneously form a three-layer coexistence state of a washing water layer, an organic solvent, and an inert gas layer. A supply process;
前記 3層共存状態にある瞬間に前記半導体基板を洗浄水層から不活性ガス層に むけて引き上げる引上げ工程と、  A pulling step of pulling up the semiconductor substrate from the cleaning water layer toward the inert gas layer at the moment when the three layers coexist;
前記不活性ガス層内で乾燥する乾燥工程とを含むことを特徴とする半導体洗浄 ψ乙探方法。  Drying the semiconductor gas in the inert gas layer.
( 2 ) 前記有機溶剤は、 イソプロビルアルコール ( I P A ) であることを特 徴とする請求の範囲 1に記載の半導体洗^乾燥方法。  (2) The semiconductor washing and drying method according to claim 1, wherein the organic solvent is isopropyl alcohol (IPA).
( 3 ) 前記有機溶剂供 工程は、 前記洗浄水表面から上方に所定の間隔を隔 てた状態で洗浄水表面に沿つて所望の方向に有機溶剤供铪口を移動しつつ、 有機 溶剂を洗 水表面に供铪する工程であることを特徴とする詰求の範囲 1 に記載の - ¾休 ^净乾燥方 。  (3) In the organic solvent supply step, the organic solvent is washed while moving the organic solvent supply port in a desired direction along the surface of the wash water at a predetermined interval above the surface of the wash water. The method according to claim 1, characterized in that it is a step of supplying to the surface of water.
( 4 ) 前記有機溶剤 工程は、 前記洗净水表面から上方に所定の間隔を隔 てた状態で ¾净水表面に沿って所望の方向に有機溶剂 給ノズルを移動しつつ、 (4) In the organic solvent step, while moving the organic solvent supply nozzle in a desired direction along the surface of the washing water at a predetermined interval above the surface of the washing water,
¾有 ^溶剂 (ft給ノズルから前記方向とは異なる方向に有機溶剂を ii 合し、 洗净水 表面に供 ¾する工程であることを特徴とする, 求の $5121 3に記載の半導休 ¾净乾 燥方 。 剂 有 ^ 溶剂 (ft) The organic solvent is combined in a direction different from the above direction from the feed nozzle and applied to the surface of the washing water. ¾ 净 How to dry.
( 5 ) 前記有機溶剂供給ェ¾は、 前記洗^水表面から上方に所定の問隔を隔 てた状態で^浄水表面に沿って所望の方向に有機溶剤供铪ノズルを移動しつつ、 該有^溶剤供給ノズルから前記方向と同一方向に有機溶剂を供給し、 洗浄水表面 に供給するェ¾であることを特徴とする請求の範囲 3に記載の半^体洗浄乾燥方 法。 (5) The organic solvent supply nozzle moves the organic solvent supply nozzle in a desired direction along the purified water surface in a state of being separated from the water surface by a predetermined distance upward from the water surface. 4. The semi-solid washing and drying method according to claim 3, wherein the organic solvent is supplied from the solvent supply nozzle in the same direction as the above direction and supplied to the surface of the washing water.
( 6 ) 前記有機溶剤供給工程は、 前記洗浄水表面から上方への前記間隔を次第 に大きく しながら、 洗浄水表面に沿って所望の方向に有機溶剤供給口を移動しつ つ、 有機溶剤を洗浄水表面に供給する工程であることを特徴とする請求の範囲 3 に記載の半導体洗浄乾燥方法。 (6) In the organic solvent supply step, the organic solvent supply port is moved in a desired direction along the surface of the cleaning water while gradually increasing the distance upward from the surface of the cleaning water. The method for cleaning and drying a semiconductor according to claim 3, wherein the method is a step of supplying the cleaning water to a surface of the cleaning water.
( 7 ) 処理槽と、  (7) a treatment tank,
前記処理槽内で半導体基板を搬送する搬送手段と、  Conveying means for conveying the semiconductor substrate in the processing tank,
前記処理槽内に洗浄水を供給し洗浄水層を形成する洗浄水供铪手段と、 前記処理槽の上部に不活性ガスを供給する不活性ガス供給手段と、  Cleaning water supply means for supplying cleaning water into the processing tank to form a cleaning water layer; inert gas supply means for supplying an inert gas to an upper portion of the processing tank;
前記処理槽内で半導体基板を十分に Sう高さまで ift給された洗浄水の水面に沿 つて、 瞬間的に洗浄水層と有機溶剤層と不活性ガス層との 3層共存状態を形成す るように、 前記水面に沿って所望の速度で水溶性の有機溶剤を瞬間的に供給する 有機溶剂供給手段とを 備したことを特徴とする半導体洗^乾燥装置。  Along the surface of the cleaning water ift-supplied to a sufficient height of the semiconductor substrate in the processing tank, a three-layer coexistence state of a cleaning water layer, an organic solvent layer, and an inert gas layer is instantaneously formed. An organic solvent supply means for instantaneously supplying a water-soluble organic solvent at a desired speed along the water surface.
( 8 ) 前記有機溶剂供給手段は、 所望の方向に有機溶剂を供給する供給口を 備えた有機溶剤供給ノズルと、 前記有機溶剂供給ノズルとを移動する移動機構と を備え、 前記有機溶剂供 ¾ノズルを介して洗净水層表面に有機溶剤層を形成する ように構成されており、  (8) The organic solvent supply means includes: an organic solvent supply nozzle having a supply port for supplying the organic solvent in a desired direction; and a moving mechanism for moving the organic solvent supply nozzle. It is configured to form an organic solvent layer on the washing water layer surface through a nozzle,
洗浄水層表面に対して移動しながら有機溶剂層を供給するように構成されてい る二とを特徴とする^求の fiiffl第 7项記載の半導体洗浄乾燥装置。  The semiconductor cleaning / drying apparatus according to Item 7, wherein the organic solvent layer is supplied while moving with respect to the surface of the cleaning water layer.
( 9 ) 前記有機溶剂 ^手段は、 前記有^溶剂 給ノズルの前記有機溶剤供 ^口が洗净水層表 に ί向するように形成されていることを特徴とする請求の範 囲第 8项 ^戦の ^導体洗净乾燥装置。  (9) The organic solvent supply means is characterized in that the organic solvent supply port of the organic solvent supply nozzle is formed so as to face a washing water layer surface.戦 ^ Battle ^ conductor washing and drying equipment.
( 1 0 ) 前記有機 給手 は、 有機溶剂供給ノズルに接続された有機溶 剤貯^部を Ajgしたことを特徴とする; ¾求の範囲笫 8項記載の半 体洗^乾燥装  (10) The organic supplier is characterized in that an organic solvent storage section connected to an organic solvent supply nozzle is Ajg;
( 1 1 ) さらに前^処理 1 の底部にとりつけられた洗浄水排出手段を具備し、 前記 3層共存状態を形成した後、 (11) Further comprising a washing water discharge means attached to the bottom of the pre-treatment 1 and forming the three-layer coexistence state,
前記洗浄水排出手段を駆動し、 前記半導体基板が不活性ガス層で われるまで、 静かに前記洗净水槽の水面を前記有機溶剤層とともに低下せしめるようにした - とを特徴とする ¾求の範囲 7に記截の半導体洗^乾燥装置。 ( 1 2 ) 側壁の一部が内側に位置する第 1の壁と外側に位置する第 2の壁と からなる二重構造をなすように構成され、 底面に洗浄水供給管を具備した処理槽 と、 The cleaning water discharging means is driven to gently lower the water surface of the cleaning water tank together with the organic solvent layer until the semiconductor substrate is covered with the inert gas layer. 7 Semiconductor washing and drying equipment. (12) A treatment tank configured to have a double structure including a first wall in which a part of a side wall is located inside and a second wall located outside, and a washing water supply pipe on a bottom surface When,
前記処理槽の第 1の壁および第 2の壁にそれぞれ配設された第 1および第 2の 開口と、  First and second openings respectively disposed on a first wall and a second wall of the processing tank;
前記第 1の開口を貫通して第 2の開口に係合するように配設された有機溶剤供 給管と、  An organic solvent supply pipe disposed to penetrate the first opening and engage with the second opening;
前記第 1および第 2の開口の間に接続された排出管と、  A discharge pipe connected between the first and second openings;
前記第 1および第 2の開口の上方に配設され、 処理槽内に不活性ガスを供給す る不活性ガス供給部と、  An inert gas supply unit disposed above the first and second openings and configured to supply an inert gas into the processing tank;
前記処理槽内に半導体基板を搬送する搬送手段とを具備し、  Transport means for transporting the semiconductor substrate into the processing tank,
前記第 2の開口に前記有機溶剂供給管を装着した状態で、 洗净水を供給し、 前 記排出管からオーバーフローさせ、 前記第 1の壁の位置に水面を維持した状態で、 前記第 1の開口の位 Sまで前記有機溶剤供袷管を移動し、 前記第 1の開口に前 記有機溶剤供給管を接続し、 前記洗浄水表面に沿って前記有機溶剂供給管から前 記有機溶剤を供給し、 瞬 (¾]的に洗净水の層と、 有機溶剤の層と、 不活性ガスの曆 との 3層共存伏態を形成するようにしたことを特徴とする半導体洗浄乾燥装置。  The washing water is supplied in a state where the organic solvent supply pipe is attached to the second opening, overflows from the discharge pipe, and the first water is maintained at the position of the first wall. The organic solvent supply pipe was moved to the position S of the organic solvent supply pipe, the organic solvent supply pipe was connected to the first opening, and the organic solvent was supplied from the organic solvent supply pipe along the surface of the washing water. A semiconductor cleaning / drying apparatus characterized in that a three-layer coexistence state of a washing water layer, an organic solvent layer, and an inert gas layer is instantaneously (supplied) formed.
( 1 3 ) 側壁の一部が内側に位 Sする第 1の壁と外側に位 ϋする第 2の壁と からなる二 Μ ί をなすように 成され、 底 に洗浄水 itt給管を ^した処理槽 と、  (13) A part of the side wall is formed so as to form a double wall composed of the first wall located on the inside and the second wall located on the outside, and the washing water itt supply pipe is provided at the bottom ^ Processing tank and
前 S己処理槽の第〗の壁および^ 2の壁にそれぞれ配設され、 前記処理槽の内側 に位 Sする第 1の開口のド方の^が第 2の開门の下方の壁よりも低く形成された 第 1および ^ 2の開口と、  The front side of the first opening, which is disposed on the first wall and the second wall of the self-treatment tank, respectively, and is located inside the processing tank, is located above the lower wall of the second opening. The first and ^ 2 openings also formed lower,
前記第 1および第 2の開口の間に接続された排出管と、  A discharge pipe connected between the first and second openings;
前記第 1および第 2の開口の上方に配設され、 処理槽内に不活性ガスを供袷す る不活性ガス供給部と、  An inert gas supply unit disposed above the first and second openings, for supplying an inert gas into the processing tank;
前記処理^内に半導休蓖板を搬送する搬送手段と、  Transport means for transporting the semi-conducting cast plate into the processing ^;
所望の方向に有機^^を供^すべく、 前記第 1の壁の下面の位置から所望の高 さとなるように ^整可能な ^¾口を備えた有捣溶剂 (ft給ノズルと、 前記有機溶剤 供給ノズルを移動する移動機構とを備え、 洗净水雇表面に対して前記有機溶剤供 袷ノズルを移動しながら洗浄水層表面に有機溶剤層を形成するように構成された 有機溶剤供給手段と、 In order to supply the organic liquid in a desired direction, an organic solvent (ft-feed nozzle having the ft-feed nozzle and the 可能 な -feed nozzle, which can be adjusted to a desired height from the lower surface of the first wall to a desired height. Organic solvent A moving mechanism for moving a supply nozzle, an organic solvent supply means configured to form an organic solvent layer on the surface of the washing water layer while moving the nozzle for supplying the organic solvent with respect to the surface of the washing water. ,
前記第 1の開口または前記第 2の開口を塞ぐべく、 前記第 1の開口または前記 第 2の開口に係合可能な切り替え手段とを具備し、  Switching means engagable with the first opening or the second opening so as to close the first opening or the second opening,
前記第 2の開口に前記切り替え手段を装着した状態で、 洗浄水を供袷し、 前記 排出管からオーバ—フローさせ、 前記第 1の壁の下面位 gに洗浄水の水面を維持 した状態で、 前記切り替え手段を前記第 1の開口に装着し、  In the state where the switching means is attached to the second opening, the cleaning water is supplied and overflowed from the discharge pipe, and the water level of the cleaning water is maintained at the lower surface position g of the first wall. Attaching the switching means to the first opening,
前記有機溶剤供給ノズルを前記水面から所望の高さに設定し、 前記有機溶剤供 袷ノズルを移動しながら、 前記洗浄水表面に沿って前記有機溶剤供給ノズルから 前記有機溶剤を供給し、 瞬間的に洗净水の層と、 有機溶剤の層と、 不活性ガスの 層との 3層共存状態を形成するようにしたことを特徴とする半導体洗浄乾燥装置 c The organic solvent supply nozzle is set at a desired height from the water surface, and while moving the organic solvent supply nozzle, the organic solvent is supplied from the organic solvent supply nozzle along the surface of the cleaning water. A semiconductor washing / drying apparatus c characterized by forming a three-layer coexistence state of a washing water layer, an organic solvent layer, and an inert gas layer.
( 1 4 ) 前記有機溶剂供給ノズルは、 水面からの高さおよび水面に対する移動 方向を調整可能となるように構成されていることを特徴とする請求の範囲 1 3に 記載の半導体洗浄乾燥装置。 (14) The semiconductor cleaning / drying apparatus according to claim 13, wherein the organic solvent supply nozzle is configured to be capable of adjusting a height from a water surface and a moving direction with respect to the water surface.
( 1 ) 前記有機溶剤供給ノズルは、 前記切り替え手段を貫通するように設け られていることを特徴とする 求の範 ffl 1 3に記載の半導体洗^乾崁装置。  (1) The semiconductor cleaning / drying apparatus according to (13), wherein the organic solvent supply nozzle is provided so as to penetrate the switching means.
( 1 6 ) 前記有機溶剤供½手段は、 前記処理槽内に、 貯液溜を具備しているこ とを特徴とする 求の範囲〗 3に記載の半 体洗净乾燥装置。  (16) The apparatus for washing and drying a semiconductor according to claim 3, wherein the means for supplying an organic solvent includes a liquid storage in the processing tank.
PCT/JP1996/000164 1995-09-27 1996-01-29 Process for cleaning and drying semiconductors and equipment therfor WO1997012392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/249698 1995-09-27
JP24969895 1995-09-27

Publications (1)

Publication Number Publication Date
WO1997012392A1 true WO1997012392A1 (en) 1997-04-03

Family

ID=17196879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000164 WO1997012392A1 (en) 1995-09-27 1996-01-29 Process for cleaning and drying semiconductors and equipment therfor

Country Status (2)

Country Link
TW (1) TW301013B (en)
WO (1) WO1997012392A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328080A (en) * 1997-08-08 1999-02-10 Nec Corp Method for rinsing and drying a wafer
US5954888A (en) * 1998-02-09 1999-09-21 Speedfam Corporation Post-CMP wet-HF cleaning station
CN102446702A (en) * 2010-10-15 2012-05-09 中芯国际集成电路制造(上海)有限公司 Wet processing method and pull back method
JPWO2021205909A1 (en) * 2020-04-07 2021-10-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104225A (en) * 1989-09-19 1991-05-01 Taiyo Sanso Co Ltd Method of cleaning and drying solid surface
JPH03218014A (en) * 1990-01-23 1991-09-25 Matsushita Electron Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104225A (en) * 1989-09-19 1991-05-01 Taiyo Sanso Co Ltd Method of cleaning and drying solid surface
JPH03218014A (en) * 1990-01-23 1991-09-25 Matsushita Electron Corp Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328080A (en) * 1997-08-08 1999-02-10 Nec Corp Method for rinsing and drying a wafer
US5938857A (en) * 1997-08-08 1999-08-17 Nec Corporation Method for rinsing and drying a substrate
GB2328080B (en) * 1997-08-08 2002-09-04 Nec Corp Improved method for rinsing and drying a wafer
US5954888A (en) * 1998-02-09 1999-09-21 Speedfam Corporation Post-CMP wet-HF cleaning station
US6125861A (en) * 1998-02-09 2000-10-03 Speedfam-Ipec Corporation Post-CMP wet-HF cleaning station
CN102446702A (en) * 2010-10-15 2012-05-09 中芯国际集成电路制造(上海)有限公司 Wet processing method and pull back method
JPWO2021205909A1 (en) * 2020-04-07 2021-10-14
WO2021205909A1 (en) * 2020-04-07 2021-10-14 東京エレクトロン株式会社 Substrate processing method, and substrate processing device

Also Published As

Publication number Publication date
TW301013B (en) 1997-03-21

Similar Documents

Publication Publication Date Title
JP3914842B2 (en) Method and apparatus for removing organic coating
KR101506203B1 (en) Substrate processing apparatus, substrate processing method and storage medium
US3869313A (en) Apparatus for automatic chemical processing of workpieces, especially semi-conductors
KR101447759B1 (en) Application processing method and application processing apparatus
US5227001A (en) Integrated dry-wet semiconductor layer removal apparatus and method
US8563230B2 (en) Substrate processing method and substrate processing system
KR100791864B1 (en) Cleaning device, cleaning system, treating device and cleaning method
JP3993496B2 (en) Substrate processing method and coating processing apparatus
US6620260B2 (en) Substrate rinsing and drying method
CN101005024B (en) Method of treatment of porous dielectric films to reduce damage during cleaning
JP2002050600A (en) Substrate-processing method and substrate processor
WO1997012392A1 (en) Process for cleaning and drying semiconductors and equipment therfor
US20030136429A1 (en) Vapor cleaning and liquid rinsing process vessel
JPS61247034A (en) Cleaning method of semiconductor slice
JP3237386B2 (en) Cleaning / drying method and cleaning equipment
US6255225B1 (en) Method of forming a resist pattern, a method of manufacturing semiconductor device by the same method, and a device and a hot plate for forming a resist pattern
JPH09153475A (en) Semiconductor cleaning/drying method and device
JPH09162156A (en) Treating method and treating system
JP3892787B2 (en) Substrate processing equipment
KR101052821B1 (en) Substrate processing apparatus and method
JP2008103769A (en) Substrate treatment apparatus and substrate treatment method
US6513996B1 (en) Integrated equipment to drain water-hexane developer for pattern collapse
KR940008366B1 (en) Cleaning and drying method and processing apparatus therefor
JPS62198126A (en) Processor
JPS60163436A (en) Method for cleaning and drying of semiconductor material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase