WO1997007872A1 - Continuous adsorption apparatus and method of using the same - Google Patents

Continuous adsorption apparatus and method of using the same Download PDF

Info

Publication number
WO1997007872A1
WO1997007872A1 PCT/JP1996/002382 JP9602382W WO9707872A1 WO 1997007872 A1 WO1997007872 A1 WO 1997007872A1 JP 9602382 W JP9602382 W JP 9602382W WO 9707872 A1 WO9707872 A1 WO 9707872A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorbent
adsorption
granular
casing
Prior art date
Application number
PCT/JP1996/002382
Other languages
French (fr)
Japanese (ja)
Inventor
Hidemitsu Miura
Original Assignee
Kuraray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Engineering Co., Ltd. filed Critical Kuraray Engineering Co., Ltd.
Publication of WO1997007872A1 publication Critical patent/WO1997007872A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds

Definitions

  • the present invention relates to a continuous gas adsorption apparatus using granular activated carbon, zeolite, and other granular adsorbents, and a method for using the same. More specifically, an adsorbent structure formed by forming an annular space with a vertical annular wall having air permeability, dividing the annular space into multiple sections by vertical partition walls, and filling each section with a particulate adsorbent.
  • the present invention relates to a continuous suction device that is rotatably or fixedly installed in an airtight casing.
  • the adsorption apparatus of the present invention is an adsorption apparatus for continuously removing odorous and harmful substances from an exhaust gas containing an organic solvent or the like generated at a danigaku factory or the like, or a pretreatment apparatus of another type of processing apparatus. Mainly used as. Background art
  • an exhaust gas treatment device using an adsorbent such as granular activated carbon, fibrous activated carbon, or zeolite is mainly used. Have been. In order to maintain the adsorption capacity of these adsorbents, it is necessary to perform a regeneration operation using steam or high-temperature gas.In order to continuously treat the gas to be treated, alternately using multiple adsorption devices It is used to switch between adsorption and regeneration.
  • the adsorption device using fibrous activated carbon is formed by laminating a fibrous activated carbon felt on a gas-permeable core material, forming a cylindrical adsorbing element having one end closed and the other end open, and the element placed in a can. Switching is performed so that the adsorption and regeneration operations are performed alternately by using a large number of multiple adsorption devices. Showa 54-3097-17>. This device can easily provide a sufficient gas passage area according to the gas processing amount, and can even allow the regeneration gas to flow uniformly from the opposite direction. Can be configured.
  • fibrous activated carbon is expensive, a method that repeats adsorption and desorption in a very short cycle, usually about 10 minutes, by taking full advantage of its fast adsorption and desorption speed characteristics Adopted and used a very small amount of activated carbon. For this reason, and because the fibrous activated carbon has a sharp pore distribution mainly consisting of micropores, it is easily affected by activated carbon inferior substances such as high-boiling substances in the exhaust gas. However, it is difficult to use it for exhaust gas applications including. The substance itself is not a substance causing deterioration of activated carbon, but the same applies to the case where the substance contains a substance that deteriorates and deteriorates activated carbon in the adsorption / desorption operation.
  • fibrous activated carbon cannot be partially renewed or reactivated, and the high cost of regularly renewing the entire amount is a factor that hinders the spread of this device. and that c Meanwhile, even adsorbing device using a granular activated carbon, adsorption alternately usually by using a plurality of adsorbers in the same manner as described above, that have been switched used to perform a reproduction operation.
  • Granular activated carbon is inexpensive, one-tenth of the price of fibrous activated carbon, has the same adsorption capacity, and can have various performances such as selective adsorption to specific gases. According to this method, the adsorbent has the ability to economically and efficiently perform exhaust gas treatment using various methods of use and apparatus types.
  • the adsorption device using granular activated carbon has a disadvantage that the device is larger than the device using fibrous activated carbon.
  • Regeneration of the adsorbent is usually carried out by using steam or high-temperature gas and desorbing the adsorbed material by utilizing the difference in the amount of adsorption retained due to the temperature difference.
  • desorption of an adsorbed substance is also performed by utilizing a difference in adsorption holding amount due to a pressure difference, and efficient regeneration is also performed by using both of them (see, for example, Japanese Patent Application Laid-Open No. Hei 6-222). Japanese Patent Application Publication No. 60-229).
  • a high-temperature regeneration gas it is necessary to use a high-temperature regeneration gas.Thus, substances that are susceptible to reaction alteration may be altered during the desorption process and degrade the adsorbent. It is particularly effective to desorb at relatively low temperature under vacuum. However, this method is rarely used because large vacuum pressure devices are extremely expensive.
  • granular activated carbon in particular, has a relatively strong catalytic action that promotes the oxidation and decomposition reactions of adsorbed substances, and when activated carbon is exposed to high temperatures in the presence of air during the desorption process.
  • the reaction of the adsorbed substance is deteriorated.
  • acidic substances such as hydrochloric acid from chlorinated organic substances and acetic acid from ketone-based organic substances is recognized, so the main part of the adsorption device generally needs to be composed of high-grade corrosion-resistant materials, which makes the equipment expensive There are drawbacks.
  • fibrous activated carbon is a suitable material when recovering and reusing organic solvents and the like in exhaust gas, but as described above, activated carbon inferior substances such as high boiling substances contained in exhaust gas Has low t-order. In order to remove these substances, granular activated carbon is rather suitable. By selectively adsorbing and removing these substances in the former stage using granular activated carbon, the fibrous activated carbon of the main adsorption unit is removed. Deterioration can be prevented.
  • a concentrating apparatus in which a paper containing fibrous activated carbon or zeolite as a component is added to form a corrugated cardboard, and this is used as a honeycomb rotor has been put into practical use (see, for example, Japanese Patent Application Laid-Open No. 53-050688). Gazette).
  • a gas having a low concentration and a large air volume can be continuously concentrated, and the concentrated gas can be economically treated by a catalytic combustion device or the like.
  • a catalytic combustion device by performing the pretreatment using granular activated carbon in the same manner as described above, it is possible to prevent deterioration of the expensive two-cam rotor.
  • the above catalytic combustion In the apparatus, similarly, by performing the pretreatment using the granular activated carbon, the deterioration of the expensive catalyst can be prevented.
  • an apparatus of the type in which granular activated carbon is filled in many trays is used.
  • the purpose is to selectively remove substances that hinder the processing efficiency of the main processing equipment, such as high-boiling substances and mist.However, granular activated carbon is thrown away because there is no regeneration function. There is. For this reason, application to exhaust gas treatment where the components to be removed are extremely low is limited. It is preferable that these preprocessing apparatuses have a compact configuration as compared to the main processing apparatus, and have a reproducing function and can perform continuous processing.
  • the fluidized-bed exhaust gas treatment device as one of the methods is capable of continuous treatment and is a method of desorbing with an inert gas by performing indirect heating, so it has a low moisture content. This is an excellent method.
  • due to the high cost of the equipment and the relatively low removal rate of organic marrow and the like in the exhaust gas its use for small Si exhaust gas treatment is limited.
  • Japanese Patent Laying-Open No. 11-189324 discloses a continuous adsorption device in which a rotating drum filled with activated carbon around a dart is housed in an airtight casing.
  • the hermetic casing is divided into an adsorption zone and a desorption zone.
  • the desorption zone is sequentially performed in the desorption zone while the rotating drum is rotating, and the exhaust gas is continuously processed.
  • Japanese Patent Application Laid-Open Publication No. Hei 6-165905 discloses that, in a fixed bed filled with adsorbent in a multi-section, a gas flow path is changed by a rotary vanoleb to change the inside of the section. Continuous treatment is possible by sequentially desorbing adsorbents A novel adsorption device is disclosed.
  • an object of the present invention is to provide an adsorption apparatus using a highly efficient and industrially advantageous particulate adsorbent which has solved these problems. Disclosure of the invention
  • the present inventor has conducted intensive studies to obtain an adsorption apparatus using a highly efficient granular adsorbent which is industrially advantageous, powerful, and free of the above problems, and has reached the present invention. That is, the present invention provides an adsorbent formed by forming an annular space by a vertical annular wall having air permeability, dividing the annular space into multiple sections by a vertical partition wall, and filling each section with a particulate adsorbent.
  • the structure is erected in an air-tight casing having a gas-to-be-treated, a gas-to-be-treated, a particulate-adsorbent-supplying port, and a particulate-adsorbing-material-discharging port.
  • each section of the above-mentioned adsorbing structure is sequentially communicated with a granular adsorbent supply port and a granular adsorbent discharge port of the above-mentioned casing, and the granular adsorbent in the section is divided.
  • another invention provides the above-described adsorption device in a multi-stage series, and among the treated gases in the preceding adsorption device, a gas that has passed through a section having a short elapsed time after the renewal of the particulate adsorbent is transferred to another section.
  • This is a method for continuous adsorption treatment of gas that is separated from the gas that has passed through and removed as a sidestream, and is not supplied to the subsequent adsorption device.
  • the adsorption device is a pretreatment device of a main treatment device for a gas to be treated, and among the treated gases in the pretreatment device, a section having a short elapsed time after renewal of the particulate adsorbent. Gas passing through the other compartment This is a continuous adsorption treatment method for gases that are separated as sidestreams and removed as sidestreams, and are not supplied to the main processing unit.
  • annular space is formed by a vertical annular wall having air permeability, the annular space is divided into multiple sections by a vertical partition wall, and a granular adsorbent is filled in each section.
  • the adsorbent structure is erected in an air-tight casing having a gas-to-be-treated, a gas-to-be-treated, a particulate-adsorbent-supplying port, and a particulate-adsorbing-material-discharging port.
  • each section of the adsorbent structure is sequentially communicated with a particulate adsorbent supply port and a particulate adsorbent discharge port of the casing, and the particulate adsorbent in the section is moved.
  • This is a continuous gas adsorption treatment method in which the gas to be treated is continuously adsorbed by updating while forming a layer.
  • activated carbon impregnated activated carbon, zeolite, other organic or inorganic adsorbents, preferably processed into granules such as pellets or spheres are used.
  • the average particle size of the granular adsorbent is preferably about 1 to 8 mm from the standpoint of gas pressure loss and adsorption efficiency.
  • crushed 3 ⁇ 4 ⁇ can be used.
  • the adsorption component constituting the adsorption portion of the continuous adsorption device of the present invention is a method in which an annular space formed by a vertical annular wall having air permeability is divided into multiple sections by a vertical partition wall, and granular adsorption is performed in each section.
  • the material is filled.
  • the annular wall is formed in an annular shape with a wire mesh, a perforated plate, or the like.
  • the space between the annular walls filled with the particulate adsorbent is usually set to about 10 to 50 cm, depending on the processing conditions of the gas to be treated.
  • FIG. 1 is a sectional elevation view of an example of the suction device of the present invention.
  • FIG. 2 is a cross-sectional plan view of an example of the suction device of the present invention.
  • FIG. 3 is a cross-sectional view of a gas seal portion at an upper part of a drum of the adsorption device of the present invention.
  • FIG. 4 is a cross-sectional view of a gas seal portion below a drum of the suction device of the present invention.
  • FIG. 5 is a simplified sectional view of the suction device of the present invention.
  • FIG. 6 is a cross-sectional view of the lower part of the drum of the suction device of the present invention.
  • FIG. 7 is a front view of a drum lower control plate driving mechanism of the suction device of the present invention.
  • FIG. 8 is a sectional side view of a drum lower control plate driving mechanism of the suction device of the present invention.
  • FIG. 9 is a cross-sectional view of a gas seal portion between a casing top plate and a drum of the suction device of the present invention.
  • FIG. 10 is a sectional plan view of a suction device to which the dust collector of the present invention is connected.
  • FIG. 11 is a cross-sectional elevation view of a suction device to which the dust collector of the present invention is connected.
  • FIG. 12 is a sectional view of a granular adsorbent receiving tank of the adsorption device of the present invention.
  • FIG. 13 is a sectional elevation view of another example of the suction device of the present invention.
  • FIG. 14 is a cross-sectional plan view of another example of the suction device of the present invention.
  • FIG. 15 is a sectional view of the lower part of the drum of another example of the suction device of the present invention.
  • FIG. 16 is a cross-sectional plan view of an example in which the adsorption device of the present invention is used as a pretreatment device for a series multistage or main treatment device.
  • reference numerals are as follows. 1 is a casing, 2 is a drum, 3 is a partition, 4 is granular activated carbon, 5 is a gas seal material, 6 is a drive unit, 7 is a treated gas inlet, 8 is a treated gas outlet, and 9 is granular activated carbon.
  • Supply port 10 is a granular activated carbon discharge port
  • 11 is a tank for supplying granular activated carbon
  • 12 is a granular activated carbon receiving tank
  • 13 is a valve mechanism
  • 14 is a valve mechanism
  • 15 is a gas rectifier for regeneration
  • 1 6 is a regeneration exhaust gas cooling condenser
  • 17 is a condensate receiving tank
  • 18 is a vacuum generator
  • 19 is a desorption gas supply line
  • 20 is a regeneration exhaust gas discharge line
  • 21 is a drying and cooling gas supply line.
  • 2 is a perforated pipe
  • 2 3 is a valve mechanism
  • 2 4 is a sieve
  • 2 5 is a transfer conveyor
  • 2 6 is a drum support leg
  • 2 7 is a wheel
  • 2 8 is a rotating shaft
  • 2 9 Is a support material
  • 30 is a granular activated carbon spill prevention ring
  • 31 is a vacuum generator bypass line
  • 3 2 is a scraper
  • 3 3 is a control plate
  • 3 4 is a double ring
  • 3 5 is a renewal section
  • 3 6 is Gas induction partition wall
  • 37 is a bag filter with air pulse backwash
  • 38 is a gas blower
  • 39 is a heat exchange section
  • 40 is a valve mechanism
  • 41 is a conical passage
  • 42 is a gas induction chamber
  • 43 is a discharge nozzle
  • 44 is a scraper
  • 45 is a rotating plate-like body
  • 46 is a discharge gas line
  • 47 is a main processing unit or the subsequent a
  • the present invention will be described in detail below with reference to a continuous adsorption apparatus in which an adsorption component is erected in an airtight casing.
  • the annular space of the adsorbing structure is divided into multiple sections by vertical partition walls, and without interrupting the flow of the gas to be treated. It is configured so that the granular adsorbent inside can be updated sequentially.
  • the material of the partition wall is not particularly limited as long as it can block the movement of the filled granular adsorbent between the sections.
  • the number of sections may be set according to the processing conditions of the gas to be treated.
  • FIG. 2 shows an example in which the sections are divided into six sections.
  • the adsorbing structure is housed in a gas-tight casing by gas sealing so as to divide the space in the casing into an introduction gas zone, an adsorption treatment zone, and an exhaust gas zone.
  • the casing is provided with an inlet for gas to be treated, an outlet for gas to be treated, a supply port for granular adsorbent, and an outlet for particulate adsorbent.
  • the inlet for supplying granular adsorbent is a port for supplying recycled or new granular adsorbent and is connected to the granular adsorbent supply tank.
  • the granular adsorbent discharge port is used to discharge the used granular adsorbent and is connected to the granular adsorbent receiving tank.
  • the adsorbing structure is arranged such that the section to be renewed is aligned with a position where the granular adsorbent supply port and the granular adsorbent discharge port of the casing communicate with each other, and the granular adsorbent is supplied from the granular adsorbent supply tank, Is discharged to the granular adsorbent receiving tank and renewed. In this way, the granular adsorbent in each section is sequentially updated. It is preferable to provide an adjusting device such as a rotary valve for adjusting the discharging speed at the outlet of the particulate adsorbent.
  • the above-mentioned granular adsorbent receiving tank is provided with at least a used granular adsorbent receiving port, a regenerated granular adsorbent outlet, a regeneration gas supply port and a regeneration exhaust gas outlet, and a regeneration gas supply facility, regeneration exhaust gas cooling, Condensing equipment is connected.
  • the adsorbent discharged into the receiving tank is subsequently subjected to a regeneration treatment by a usual method and is reused.
  • regeneration gas steam or inert gas is mainly used for desorption, and inert gas or air is mainly used for drying and cooling.
  • the adsorption apparatus of the present invention if an indirect heating / cooling mechanism is added to the receiving tank, for example, regeneration with a smaller amount of regeneration gas can be performed, and when steam is used, the amount of wastewater can be reduced, which is preferable.
  • the capacity of the regeneration device may be small, and the above-mentioned mechanism ⁇ may be provided with equipment or the like. It is easy and can perform the optimal regeneration process according to the adsorbed substance.
  • efficiency can be improved by connecting the granular adsorbent transfer equipment to the granular adsorbent supply tank to the receiving tank.
  • Various means such as a bucket conveyor, a belt conveyor, and a pneumatic conveyor can be used as the transfer means. Even regenerated granular adsorbents are pulverized Waste can be discarded, a part of the regenerated particulate adsorbent can be discarded, and new particulate adsorbent can be replenished, so that the adsorption capacity of the adsorber can be kept constant for a long time. It is preferable that the transfer facility is provided with a disposal port and a replenishment port for such particulate adsorbent.
  • the granular adsorbent supply tank has at least a regenerated granular adsorbent inlet and a granular adsorbent outlet, and is connected to the granular adsorbent transfer equipment and the granular adsorbent supply port of the adsorber body.
  • the capacity of the supply tank is preferably about one to several compartments of the adsorption structure.
  • the adsorption device of the present invention is a continuous adsorption device that can renew, regenerate, and reuse the adsorbent without interrupting the flow of the gas to be treated, especially when applied to exhaust gas treatment with large air volume. Highly effective. INDUSTRIAL APPLICABILITY
  • the adsorption apparatus of the present invention can be applied to gas treatment with a large air volume, since an adsorption layer having a large gas passage area is formed as a thin layer in the annular portion.
  • the adsorbent is regenerated efficiently by discharging it to the attached granular adsorbent receiving tank one by one in the order of long usage time, the main body of the adsorber changes in temperature and pressure due to the regeneration of the adsorbent I do not receive.
  • the adsorbent to be discharged can be separately activated and regenerated to simplify the accessory equipment configuration. can do.
  • a plurality of adsorbers are used for switching use, but according to the present invention, this can be realized by one adsorber.
  • a cooling / condensing or P-acquisition facility for the gas to be treated may be provided at the preceding stage, and the processing load may be appropriately allocated to these components.
  • the regeneration is performed in a tank having a small space volume ratio with respect to the amount of the particulate adsorbent.
  • the regeneration can be performed uniformly. Since the heat capacity of devices other than the adsorbent can be reduced, the calorific value of the regeneration gas can be reduced. As mentioned above, it is easy to attach an indirect heating and cooling mechanism to the granular adsorbent receiving tank where the regeneration operation is performed, and the amount and temperature of the regeneration gas can be reduced, and steam is used as the regeneration gas. Can reduce wastewater.
  • the adsorber of the present invention may be used alone.
  • the adsorber of the present invention is provided in multiple stages in series, and the granular adsorbent of each device is provided.
  • an effective treatment can be performed. It is possible to use a combination of activities having different pore sizes, a combination of activated carbon and zeolite, or a combination of various types of impregnated activated carbon.
  • the attached granular adsorbent receiving tank has an indirect heating / cooling regeneration function in addition to normal steam or high-temperature gas regeneration.As described above, the vacuum regeneration function can be easily provided. The same applies to the fact that the activated carbon can be provided with a chemical regeneration function.
  • the adsorption device of the present invention can be suitably used as a pretreatment device of a main treatment device for exhaust gas treatment of a large air volume.
  • ADVANTAGE OF THE INVENTION According to the adsorption apparatus of this invention, since the exhaust gas of a large air volume can be processed and the adsorbent can be regenerated under the regeneration conditions suitable for the target component, it is suitable for exhaust gas with a high component concentration to be removed. Can be expanded. As a pretreatment, it is generally difficult to sufficiently remove the target components only with the equipment for cooling and condensing or absorbing the exhaust gas.
  • the present invention can also be applied to exhaust gas treatment applications in which the concentration of components to be removed is higher.
  • the adsorption device of the present invention is applied to pretreatment applications such as a fibrous activated carbon adsorption device, a honeycomb rotor monoconcentrator, or a catalyst device, which is a main treatment device, high boiling substances that hinder the treatment efficiency of these devices. , Mist or catalyst poisoning substances can be selectively removed, and the processing efficiency of these devices can be kept high for a long period of time.
  • FIG. 1 is a sectional elevation view of the present apparatus
  • FIG. 2 is a sectional plan view of the same.
  • 1 is a casing
  • 2 is a drum having an annular shape and air permeability
  • each section is filled with the granular activated carbon of 4 to constitute the adsorption component.
  • the upper and lower ends of the drum are open, and the drum can rotate intermittently together with the granular activated carbon filled by the drive device while being in contact with the top plate and the bottom plate of the casing via the gas seal material.
  • the upper part of the drum should be made of a non-permeable material at a position corresponding to the above settling amount.
  • the gas seal portion may have a structure shown in FIGS. 3 and 4. 26 is a drum supporting leg, 27 is a wheel, 28 is a rotating shaft, and 29 is a supporting material.
  • Reference numeral 30 denotes a ring for preventing the granular activated carbon from flowing out.
  • 7 is an inlet for the gas to be treated
  • Reference numeral 8 denotes a discharge port, and the gas to be treated continuously flows in the direction of the arrow and undergoes adsorption treatment.
  • Reference numeral 9 denotes a granular activated carbon supply port provided on the top plate of the casing corresponding to an opening sufficient to communicate with one section of the drum
  • 10 denotes a position on the bottom plate of the casing vertically below the granular activated carbon supply port.
  • This is a granular activated carbon outlet provided in the same manner as above. Both openings are squeezed into a five-way shape and connected to the granular activated carbon supply tank 11 and the granular activated carbon receiving tank 12 via valve mechanisms 13 and 14. Rotate one section of the drum to a position where it is difficult for the granular activated carbon supply port and granular activated carbon discharge port to open the valve mechanism 13 and adjust the opening of 14 without interrupting the flow of the gas to be treated.
  • the granular activated carbon filled in the section is gradually discharged and received in the granular activated carbon receiving tank.
  • the measurement of the amount of activated carbon received can be performed by a timer, but it can be performed more accurately if a detector such as a powder level meter or a load cell is attached to the receiving tank. In this way, the granular activated carbon in each section is sequentially renewed by rotating the drum one section at a time and performing related operations.
  • the granular activated carbon receiving tank is connected to a regeneration gas heater 15, a regeneration exhaust gas cooling condenser 16, a condensate receiving tank 17, a vacuum generator 18 and a vacuum generator bypass line 31, and receives granular activated carbon.
  • the steam is used as the desorption gas
  • the steam is supplied from the desorption gas supply line 19 to the receiving tank at normal pressure or vacuum, and the recycled exhaust gas discharge line 2
  • the desorbed steam is discharged to 0 and condensed to obtain a desorbed liquid.
  • the supply of steam is stopped, and air is introduced from the gas supply line 21 for drying and cooling to dry and cool the granular activated carbon, thereby completing the regeneration of the granular activated carbon.
  • Reference numeral 22 denotes a perforated knob, but it may be a movable perforated plate type capable of dispensing and discharging activated carbon.
  • the receiving tank It is preferable to provide a mechanism for flattening the surface of the received granular activated carbon layer.
  • the opening degree of the valve mechanism 23 is adjusted, fine powder is removed by the sieve 24, and the whole amount is transferred to the granular activated carbon supply tank by the transfer conveyor 25.
  • the adsorption capacity of the adsorption apparatus can be kept constant for a long time.
  • Fig. 2 shows a case where the granular activated carbon layer has six sections as described above. If the update, reproduction, and transfer operations are performed in about one and a half hours per block, the update and regeneration of all blocks can be completed in about nine hours. Usually, it is efficient to schedule in advance so that it is performed within this time and automate a series of operations. If the capacity of the granular activated carbon supply tank and granular activated carbon receiving tank is prepared for multiple compartment volumes, the multiple compartment volumes are updated and regenerated collectively according to changes in the concentration of components in the exhaust gas, and the regeneration cycle of all compartments is set. It can be done earlier. Also, by providing a plurality of granular activated carbon receiving tanks, the regeneration cycle can be similarly advanced.
  • the granular activated carbon in the drum comes into contact with the top and bottom plates of the casing, but rotates slowly over a short distance, causing less wear of the granular activated carbon due to contact. it can.
  • each section of the drum are tapered using a non-permeable material to prevent short paths of the gas to be treated, and the contact area between the top plate and bottom plate of the casing and the granular activated carbon is reduced to reduce wear. You may decide to prevent it.
  • the drum rotates and moves in contact with the casing top plate and bottom plate via the gas seal material. These gas seal materials are not affected by the change in temperature and pressure associated with the regeneration of the granular activated carbon, so that they do not suffer from inferiority.
  • the shape of the end portion of the adsorbing structure that is, the shape of the drum lower portion or the drum upper portion is not limited to a straight cylindrical shape, but as shown in FIG.
  • the shape may be a cone shape.
  • the contact area between the casing top plate and the bottom plate and the adsorbent such as granular activated carbon is reduced to prevent abrasion, and the sliding distance of the gas seal material is shortened, so that the sealing performance is improved. There is fruit.
  • FIG. 6 is an example in which a powder plate is relieved by providing a single-stage or multi-stage control plate composed of a perforated plate or a plate having a large number of slit-shaped openings below each section of the drum.
  • the control plate also functions as a distributor for this purpose. This is preferred.
  • the upper control plate is fixed by combining two control plates below each section of the drum, and the lower control plate is configured to be movable in the drum circumferential direction or the radial direction,
  • the adsorbent is held on the control plate using the angle of repose of the adsorbent, and the openings of the mutual control plates are formed under the control plate so that the adsorbent layer with the adjusted powder pressure is formed.
  • the lower control plate may be moved by a fixed distance to break the holding state of the adsorbent so that payout is possible.
  • a drive device (not shown) may be provided on the casing bottom plate near the renewal section so as to be automatically connected to or detached from the lower control plate and to reciprocate the lower control plate by a certain distance. .
  • an adsorbent layer is formed between the lower end of the drum and the bottom of the casing while relaxing the powder pressure of the adsorbent.
  • the adsorbent itself is used by rotating the adsorbent layer with the rotation of the drum by the lower scraper 32.
  • An effective gas seal can be made and the adsorbent can be renewed.
  • the above operation may be performed by providing the upper and lower control plates in close contact with each other, and without forming an adsorbent layer between the lower end of the drum and the bottom plate of the casing, the gas seal may be made of the above-described gas seal material. .
  • the above mechanism has a valve function in addition to a function of relaxing the powder pressure of the adsorbent and a function of the distributor.
  • FIGS. 7 and 8 show an example of a mechanism for automatically opening and closing the control plate mechanism in the update section. That is, two vertical projections are provided on the casing bottom plate near the renewal section, and the control plate mechanism 33 of each section is provided with a rotating piece 48 that enables the reciprocating operation. It is configured with projections. Due to the rotation of the drum, one horizontal projection 49 of the rotary piece rotates the rotary piece while touching the first vertical projection 51, and opens the control plate mechanism to discharge the adsorbent in the update section. Then, by rotating the drum, the other horizontal projection 50 of the rotary piece contacts the second vertical projection 52 to rotate the rotary piece in the opposite direction, thereby closing the control plate mechanism. It is.
  • FIG. 9 is a cross-sectional view showing the configuration between the upper end of the drum and the casing top plate. That is, the double ring 34 is fixed to the casing top plate all around, and the inner annular ring wall of the drum is rotated on the evening side of the double ring and the partition wall of each drum is powered. The upper end can be rotated inside the double ring, and an adsorbent layer equal to or longer than the settling length of the adsorbent layer due to the rotational movement of the drum is held in the double ring. Should be able to rotate with each partition wall. At least one supply port for the adsorbent is provided in the casing top plate section in the double ring and communicates with the adsorbent supply tank.
  • the space between the casing top plate and the upper end of the drum is provided. Since the passing gas surely passes through the adsorbent layer in the direction of the arrow, the self-sealing of the gas by the adsorbent itself becomes possible.
  • the double ring has one of the Ring shallow and the other shallow enough to prevent spillage of adsorbent
  • the wear of the adsorbent does not occur only in the sliding portion between the drum and the casing bottom plate or the top plate, but when the adsorbent is renewed in the renewal section and from the granular adsorbent receiving tank to the granular adsorbent supply tank.
  • the dust generated by these abrasions is continuously discharged mainly into the gas that has turned over the renewal section, and is mixed with the gas that has passed through the other sections.
  • dust collector such as a bag filter
  • a device that treats a large amount of exhaust gas generally requires a huge dust collector. The realization of is not easy.
  • the object can be achieved relatively easily. That is, the gas that has passed through the renewal section of the drum is guided to a separately formed dust collection chamber, and the dust collection processing is performed by a bag filter or the like in which air pulse backwashing is performed. Dust collectors can be made extremely compact if they are mixed with the gas that has passed through other sections of the empty drum and discharged. It is preferable to provide a gas blower for increasing the pressure in the above-mentioned gas circulation path for dust collection, if necessary.
  • FIGS. 10 and 11 show an example in which a dust collector is provided in the suction device of the present invention, but the present invention is not limited to this.
  • the gas is supplied from the inside of the drum and flows in the direction of the arrow, and a gas guide partition wall 36 is provided near the drum outer annular wall of the renewal section 35 to collect the gas passing through the renewal section by partitioning the casing.
  • dust is filtered through an air nozzle, a bag filter with backwash 37 °, and the pressure is increased by a gas blower 38 to increase the main exhaust gas area.
  • Dust can be collected in the lower receiving tank 54 of the dust collection chamber and periodically disposed of.
  • the generated dust has a high rate of depositing on the casing bottom plate, and it is preferable to remove the dust periodically. Also in this case, by providing a dust scraper inside and outside of the drum of the present invention, the deposited dust is removed as the drum rotates, collected at the discharge port, received by the dust receiving layer, and periodically disposed of. This can be done rationally (not shown).
  • the configuration of the annular wall that forms the drum may be cylindrical, but an appropriate mounting bracket is provided between the partition walls for each section, and the large-diameter strength support mesh is sandwiched by the small-diameter adsorbent holding mesh.
  • the unit may be manufactured by fixing a flat unit having the shape and fixing the periphery with metal fittings to the metal fitting frame with bolts or the like.
  • the small-diameter wire mesh facing the inside of the drum ring prevents the large-diameter wire mesh from being clogged with crushed pieces of the adsorbent, and also improves the slip between the adsorbent and the wire mesh for movement in the renewal section and wears out. Has the effect of preventing.
  • the function described above can be achieved even if a part of the small-diameter wire mesh is damaged by friction with the adsorbent, and the adsorbent is held by the small-diameter wire mesh on the side of the drum annular portion (not shown).
  • a plurality of drums can be arranged in the same casing to perform parallel processing.
  • investment costs can be reduced. It can be used for exhaust gas treatment of large air volume (not shown).
  • a granular adsorbent receiving tank is provided at the lower part of the casing to receive the adsorbent in the renewal section, regenerate and pay out, and when it is transferred to the granular adsorbent supply tank by the transfer means, the receiver tank is used for discharge.
  • the lower part has a cone shape. In this case, as the overall height of the receiving tank increases, the casing position increases accordingly, and the regeneration efficiency of the adsorbent in the receiving tank cone decreases.
  • the first and second gardens are examples in which the receiving tank is inclined, and the casing position can be relatively lowered, and only the straight body in the receiving tank is filled with the adsorbent to receive regeneration.
  • the regeneration efficiency of the adsorbent is good, and the adsorbent can be received and paid out rationally.
  • the inclination angle of the receiving tank may be set in consideration of this.
  • the type of the heat exchange section 39 may be a commonly used type such as a coil type, a multi-tube type or a plate type, and may be an electrothermal type as another type.
  • the adsorbent can be efficiently regenerated.
  • a mature refrigerant can be supplied to the heat exchange section of the receiving tank, and indirect heating and cooling can be performed by switching.However, when steam is used as the mature medium, steam supply is stopped after the end of heat. Then, the steam for indirect ripening remaining in the system may be removed by a vacuum device via coagulation, and the heat retained in the heat exchange section may be removed to prepare for cooling the adsorbent. Further, it goes without saying that the cooling of the granular adsorbent may be performed not only in the receiving tank but also in the granular adsorbent transfer equipment or the tank provided with the granular adsorbent.
  • a plurality of rotating drums may be concentrically formed in a single casing so as to be rotatable in the same direction or mutually opposite directions, and configured in the same manner as described above.
  • the present invention is mainly used for treating exhaust gas containing an organic solvent or the like, but it is needless to say that the present invention is also used for treating other gases.
  • the granular adsorbent receiving tank is provided just below the casing as described above.
  • the receiving tank may be provided at an arbitrary position in the circulation path of the particulate adsorbent from the particulate adsorbent discharge port of the adsorption device main body to the particulate adsorbent supply tank.
  • the receiving tank is connected to a known continuous regenerating apparatus used in the above-mentioned fluidized bed adsorption apparatus (for example, Chemical Apparatus issued by the Industrial Research Institute, October 1998, October 35, page 35, FIG. 6).
  • the regenerated exhaust gas may be treated not only by the cooling and condensing facilities described above, but also by combustion as a treatment of the concentrated gas or by other regenerating exhaust gas treatment facilities.
  • FIG. 13 is a sectional elevation view of the apparatus
  • FIG. 14 is a sectional plan view of the same.
  • Reference numeral 1 denotes a casing
  • 2 denotes an annular drum having air permeability, which is divided into multiple sections by partition walls, and each section is filled with granular activated carbon to form a P-adhering component.
  • the drum is appropriately fixed to the casing.
  • a control plate mechanism having the above-described valve function for each section, and a valve mechanism 40 having another drive control device that can be remotely opened and closed are mounted.
  • the granular activated carbon supply tank 11 is fixed to the casing top plate and communicates with each section of the drum.
  • a discharge line for the gas to be processed passing through the drum in the direction of the arrow penetrates the supply tank, and the lower part prevents stagnation of the granular activated carbon, and can supply granular activated carbon evenly to each section of the drum. In order to achieve this, it is formed in a flared annular cone shape.
  • a rectifying plate or the like for the granular activated carbon may be freely provided inside the supply tank. Exhaust gas " ⁇ " leaks into the supply tank from the upper end of the drum, but a granular activated carbon layer of sufficient height is formed. 11 so that the amount of leaked gas is negligible.
  • the gas that has passed through the renewal section is guided to a gas guide chamber 42 composed of a rotatable gas guide partition wall 36 near the drum inner annular wall, and a discharge nozzle 4 fixed to a conical passage 41. Exhausted via 3.
  • the gas induction chamber is connected to a rotating shaft 28 and is intermittently rotated by a driving device 6 to locally collect exhaust gas containing dust mainly generated in the granular activated carbon renewal section and guide the exhaust gas to a discharge nozzle. There is no gap between the gas guide chamber and the rotating connection between the discharge nozzle. It is preferable to apply a gas seal with a tucking or the like.
  • Exhaust gas discharged from the discharge nozzle may be subjected to dust collection processing by a separately disposed dust collector similarly to the above-described type of invention.
  • a separately disposed dust collector similarly to the above-described type of invention.
  • the gas guide chamber can be omitted and a suction device main body having no movable part can be configured.
  • the remote drive valve mechanism instead of the remote drive valve mechanism provided for each section of the drum, as shown in FIG. 15, it rotates together with the gas guide chamber in contact with the lower end of the drum and at least one sliding surface immediately below the lower end of the drum is provided. Has openings, and the openings The same object can be achieved by providing the rotary plate 45 having the remote drive valve mechanism 40.
  • the device height is relatively higher than in the above type of invention, but it is relatively simple because even a large device for an application with extremely large air volume does not need to rotate and move the drum.
  • Each part can be manufactured and assembled locally. That is, as shown in FIG. 13, the suction device main body and the accessory equipment can be divided into each unit and produced, and each unit can be assembled and assembled integrally on site using heavy equipment.
  • the drum unit between the units may be joined so that the tip of the drum of one unit is fitted with the tip of the other unit, and the tip of the drum of the upper unit is attached to the tip of the drum of the lower unit.
  • the joining type to be inserted is an example.
  • the gas guide chamber and the rotating shaft may be appropriately divided and produced, assembled together on site, and incorporated into the main body together with the assembly of the unit.
  • the unit may be a unit which is divided not only in a horizontal section but also in a vertical section. In the case of a large-sized device, it is possible to eliminate the difficulty in production and transportation, and it is economically particularly advantageous. Depending on the installation space and the amount of exhaust gas treatment, the device type of the present invention can be selected.
  • the present invention uses various adsorbents such as high-boiling substances contained in multicomponent exhaust gas or substances that cause deterioration of the catalyst as a pretreatment device of a subsequent main treatment device for exhaust gas treatment.
  • adsorbents such as high-boiling substances contained in multicomponent exhaust gas or substances that cause deterioration of the catalyst as a pretreatment device of a subsequent main treatment device for exhaust gas treatment.
  • components other than the high-boiling substance, which is the target removal component are adsorbed and captured by the adsorbent together with the high-boiling substance in the section of the drum that is used immediately after the renewal of the particulate adsorbent and has a short usage time. Therefore, the component is It is not included in the gas emitted from In compartments with longer use times, the components begin to leak into the gas exhausted from the compartment, and subsequently leak in large quantities and break through.
  • the use time from the section where the component starts to leak to the renewal section of the particulate adsorbent is long ⁇ Only the gas discharged from the section is supplied to the subsequent main processing unit for processing, and the other use time is reduced. The gas discharged from the short compartment may be released as it is. As a result, the amount of exhaust gas to be processed by the subsequent main processing unit can be effectively reduced.
  • the adsorption device of the present invention is used in multiple stages in series.
  • FIG. 16 shows an example of a configuration for carrying out the above-mentioned method with respect to a suction device in which a suction component is rotatably provided in a casing.
  • the above object can be easily achieved by providing a gas guiding partition wall in the casing and guiding the gas in a manner similar to the method of guiding the gas that has passed through the renewal section of the drum to the dust collection chamber described above.
  • it is free to provide a separate treatment device in the release gas line 46. If the dust collection process of the renewal section is performed at the same time, the exhaust gas zone of the casing will be divided into three by each gas guide partition wall.
  • the above-mentioned gas guide chamber for the released gas is provided in the same manner as the gas guide chamber for the exhaust gas in the renewal section.
  • a line for discharging the above-mentioned released gas from the top of the figure may be configured in the same manner as the line for discharging the exhaust gas from the renewal section from the bottom (not shown).
  • the update of the particulate adsorbent in the update section of the drum is performed in the update section of the drum V, and the update of the particulate adsorbent in each section is performed intermittently.
  • a continuous update operation can be applied to the present invention. That is, the present invention provides for adjustment so that only the lower fill of the renewal compartment is discharged for renewal, This also includes the operation of sequentially updating the lower filling amount in each section and updating the granular adsorbent uniformly and continuously from the lower part over the entire circumference of the drum.
  • the particulate adsorbent can be moved downward in a mass flow state over the entire circumference of the drum.
  • the spent particulate adsorbent discharged continuously is continuously received in the particulate adsorbent receiving tank and regenerated and dispensed, or intermittently alternately received and regenerated and dispensed in multiple particulate adsorbent receiving tanks It is treated and transferred to the granular adsorbent supply tank by the granular adsorbent transfer equipment.
  • Exhaust gas of 10 CTC containing 900 ppm of methyl ethyl ketone (MEK) and 1300 ppm of dimethylformamide (DMF) is cooled and absorbed in a water absorption tower, and 90-93% of DMF is absorbed and collected.
  • Absorption tower exhaust gas 40. C the relative humidity was adjusted to 60%, and the adsorption treatment was carried out with the apparatus shown in Fig. 2 filled with granular activated carbon having a particle size of 4 mm. The remaining amount of DMF was continuously adsorbed and removed, and 0.45 atm. 1 10 under vacuum.
  • the renewal, regeneration, and transfer operations were performed in about 1.5 hours per section by the overripened steam of C, and the condensate was supplied to the DMF recovery distillation column together with the effluent of the absorption tower to obtain purified DMF.
  • the exhaust gas after the above-mentioned adsorption treatment was supplied to a fibrous activated carbon adsorption device of a two-tank switching type, which was adsorbed for 15 minutes and regenerated with superheated steam at 120 ° C for 10 minutes to adsorb and remove the entire amount of MEK.
  • the condensate was supplied to the MEK recovery distillation column to obtain purified MEK.
  • the impurities in the effluent of the absorption tower and the condensate of each adsorption device were extremely small, and both recovered DMF and MEK were sufficiently pure enough to be reused.
  • the cloth pre-filter of the fibrous activated carbon adsorption device showed particulate activated carbon abrasion dust, but no deterioration of the fibrous activated carbon.
  • Example 13 Using the device shown in Fig. 13, the exhaust gas from the gas induction chamber was released to the atmosphere. Except for the above, the same procedure was performed as in Example 1 to obtain the same adsorption results as in Example 1, and no deterioration of the fibrous activated carbon was observed. In addition, in the cloth filter of the fibrous activated carbon adsorption device, almost no abrasion dust of granular activated carbon was recognized.
  • the flow of the to-be-processed gas can be interrupted, and the granular adsorbent in an adsorption
  • suction structure can be updated in order of a long use time, and the constant adsorption is carried out continuously Can maintain ability.
  • the adsorption device of the present invention is not only suitable as a main adsorption device for large air volume gas processing applications, but also can be effectively used as a pretreatment device for other types of main air treatment devices. It can be said that the drawbacks of the adsorption device using the granular adsorbent for treatment are largely improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

An industrially advantageous adsorption apparatus capable of replacing a granular adsorber without interrupting the passage of a gas to be treated, and capable of maintaining a predetermined adsorption capacity continuously, and a method of using the same apparatus. An adsorption structure formed by dividing the space in an annular ventilatable drum into a plurality of sections by vertical partition walls, and filling these sections with a granular adsorber is set up rotatably or fixedly in an air-tight casing having a gas-to-be-treated introduction port, a gas-to-be-treated discharge port, a granular adsorber supply port and a granular adsorber discharge port.

Description

明 細 書 連続式吸着装置及びその使用方法 技術分野  Description Continuous adsorption device and method of using the same
本発明は、 粒状活性炭、 ゼォライト、 その他の粒状吸着材を用いる連 続式ガス吸着装置及びその使用方法に関する。 さらに詳しくは、 通気性 を有する鉛直の環状壁で環状空間を形成し、 上記環状空間を鉛直の仕切 壁で多区画に区分し、 各区画内に粒状吸着材を充填してなる吸着構成体 を、 回転可能に又は固定状態で気密なケーシング内に立設した連続式吸 着装置に関する。 本発明の吸着装置は、 ィ匕学工場などで発生する有機溶 剤などを含有する排ガスから連続的に有臭 ·有害物質を除去するための 吸着装置又は他の形式の処理装置の前処理装置として主に使用される。 背景技術  The present invention relates to a continuous gas adsorption apparatus using granular activated carbon, zeolite, and other granular adsorbents, and a method for using the same. More specifically, an adsorbent structure formed by forming an annular space with a vertical annular wall having air permeability, dividing the annular space into multiple sections by vertical partition walls, and filling each section with a particulate adsorbent. The present invention relates to a continuous suction device that is rotatably or fixedly installed in an airtight casing. The adsorption apparatus of the present invention is an adsorption apparatus for continuously removing odorous and harmful substances from an exhaust gas containing an organic solvent or the like generated at a danigaku factory or the like, or a pretreatment apparatus of another type of processing apparatus. Mainly used as. Background art
従来、 ィ匕学工場などから排出される有機溶剤などを含有する排ガスを 浄ィ匕するためには、 粒状活性炭、 繊維状活性炭又はゼォライトなどの吸 着材を用いた排ガス処理装置が主に用いられている。 これらの吸着材の 吸着能力を維持するためには、 スチーム又は高温ガスによって再生操作 を行うことが必要であり、 被処理ガスを連続的に処理するために、 複数 の吸着装置を用いて交互に吸着、 再生操作を行うように切り替え使用さ れている。  Conventionally, in order to purify exhaust gas containing an organic solvent and the like discharged from the Iridani Plant, an exhaust gas treatment device using an adsorbent such as granular activated carbon, fibrous activated carbon, or zeolite is mainly used. Have been. In order to maintain the adsorption capacity of these adsorbents, it is necessary to perform a regeneration operation using steam or high-temperature gas.In order to continuously treat the gas to be treated, alternately using multiple adsorption devices It is used to switch between adsorption and regeneration.
繊維状活性炭を用いる吸着装置は、 繊維状活性炭フエルトを通気性の ある芯材に積層し、 一端が閉鎖され他端が解放されて ゝる円筒状吸着素 子となし、 該素子を缶体内に多数配設した複数の吸着装置を用いて交互 に吸着、 再生操作を行うように切り替え使用されている (例えば、 特公 昭 5 4— 3 0 9 1 7号公報〉 。 当該装置はガス処理量に応じて十分なガ ス通過面積を設け易く、 しかも再生用ガスを逆方向から均一に通流する ことができて、 大風量の排ガス処理用途に対してもコンパクトな装置に 構成することができる。 The adsorption device using fibrous activated carbon is formed by laminating a fibrous activated carbon felt on a gas-permeable core material, forming a cylindrical adsorbing element having one end closed and the other end open, and the element placed in a can. Switching is performed so that the adsorption and regeneration operations are performed alternately by using a large number of multiple adsorption devices. Showa 54-3097-17>. This device can easily provide a sufficient gas passage area according to the gas processing amount, and can even allow the regeneration gas to flow uniformly from the opposite direction. Can be configured.
しカゝしながら、 繊維状活性炭が高価であることから、 その速い吸脱着 速度特性を最大限に利用して、 通常は 1 0分程度の極めて短時間のサイ クルで吸脱着を繰り返す方式が採用され、 極めて少量の活性炭量が用い られている。 このため及び繊維状活性炭はミクロ孔を主としたシャープ な細孔分布を有することから、 排ガス中の高沸点物質などの活性炭劣ィ匕 要因物質の影響を受けやすく、 これらの劣化要因物質を微量と云えども 含む排ガス用途には使用することが難しい。 それ自体は活性炭の劣化要 因物質ではないが、 吸脱着操作において変質して活性炭を劣化させる物 質を含有する場合も同様である。 さらに、 繊維状活性炭は、 部分的な更 新、 再賦活処理などを行うことができず、 定期的に全量を更新する際に 高額の費用がかかることも、 この装置の普及を妨げる要因になっている c 一方、 粒状活性炭を用いる吸着装置も、 通常上記と同様に複数の吸着 装置を用いて交互に吸着、 再生操作を行うように切り替え使用されてい る。 粒状活性炭は、 価格が繊維状活性炭の数十分の 1と安価であり、 吸 着容量も同程度であり、 特定ガスに対する選択吸着性などの多様な性能 を持たせることが可能であり、 適当な使用方法及び装置形式を用 、るこ とによれば、 経済的かつ効率的に排ガス処理を行うことができる能力を 持つた吸着材であると云える。 しかも、 通常は数時間程度のサイクルで 吸脱着を繰り返すことにより、 比較的多量の活性炭量が用いられる上に、 マクロ孔をもつたブロードな細孔分布を有することから、 活性炭劣化要 因物質に因る影響が直ちに吸着性能に反映することがなく、 これらの物 質を含む排ガス処理用途には抵抗力が大きく好適に使用できる。 しかしながら、 粒状活性炭を用いる吸着装置は、 繊維状活性炭を用い る装置に比べて装置が大型になる欠点を持っている。 特に、 大風量の排 ガス処理用途には、 ガス圧損失を考慮して、 吸着材層厚みを比較的薄く し力つガス通過面積を広大にする装 の工夫をすることが必須である。 しかし、 このような装置形態においては、 通常被処理ガスを均一に通 流することはできても、 比較的小量の再生用ガスを均一に通流すること は困難であり、 吸着材の再生が不均一になり易い。 また、 粒状吸着材の 更新作業は容易でなく、 更新のために長く装置を停止し、 劣悪な作業環 境での更新作業を強いられる欠点がある。 However, since fibrous activated carbon is expensive, a method that repeats adsorption and desorption in a very short cycle, usually about 10 minutes, by taking full advantage of its fast adsorption and desorption speed characteristics Adopted and used a very small amount of activated carbon. For this reason, and because the fibrous activated carbon has a sharp pore distribution mainly consisting of micropores, it is easily affected by activated carbon inferior substances such as high-boiling substances in the exhaust gas. However, it is difficult to use it for exhaust gas applications including. The substance itself is not a substance causing deterioration of activated carbon, but the same applies to the case where the substance contains a substance that deteriorates and deteriorates activated carbon in the adsorption / desorption operation. In addition, fibrous activated carbon cannot be partially renewed or reactivated, and the high cost of regularly renewing the entire amount is a factor that hinders the spread of this device. and that c Meanwhile, even adsorbing device using a granular activated carbon, adsorption alternately usually by using a plurality of adsorbers in the same manner as described above, that have been switched used to perform a reproduction operation. Granular activated carbon is inexpensive, one-tenth of the price of fibrous activated carbon, has the same adsorption capacity, and can have various performances such as selective adsorption to specific gases. According to this method, the adsorbent has the ability to economically and efficiently perform exhaust gas treatment using various methods of use and apparatus types. In addition, by repeating adsorption and desorption in a cycle of about several hours, a relatively large amount of activated carbon is used, and it has a broad pore distribution with macropores. The resulting effect is not immediately reflected in the adsorption performance, and it has high resistance and can be suitably used for exhaust gas treatment applications containing these substances. However, the adsorption device using granular activated carbon has a disadvantage that the device is larger than the device using fibrous activated carbon. In particular, in exhaust gas treatment applications with large air volumes, it is essential to take into account the gas pressure loss and take measures to reduce the thickness of the adsorbent layer and widen the gas passage area. However, in such an apparatus configuration, even though the gas to be treated can normally flow uniformly, it is difficult to uniformly flow a relatively small amount of regeneration gas, and the regeneration of the adsorbent is difficult. Tends to be uneven. Also, the renewal work of the particulate adsorbent is not easy, and there is a drawback that the renewal work must be performed in a poor working environment because the equipment is stopped for a long time for renewal.
吸着材の再生は、 通常スチーム又は高温ガスを用いて、 温度差による 吸着保持量の差を利用して吸着物質を脱着することにより行われる。一 方、 圧力差による吸着保持量の差を利用して吸着物質を脱着することも 行われ、 両者を併用して効率的に再生することも行われている (例えば、 特開平 6— 2 2 6 0 2 9号公報) 。 一般に、 高沸点物質を脱着するため には高温の再生用ガスを用いる必要があり、 このため反応変質し易い物 質は脱着過程で変質し吸着材を劣化させる場合があり、 このような場合 には真空下で比較的低温で脱着することが特に有効となる。 しかし、 大 型の真空耐圧装置は極めて高価であるため、 この方法は稀に使用されて いるにすぎない。  Regeneration of the adsorbent is usually carried out by using steam or high-temperature gas and desorbing the adsorbed material by utilizing the difference in the amount of adsorption retained due to the temperature difference. On the other hand, desorption of an adsorbed substance is also performed by utilizing a difference in adsorption holding amount due to a pressure difference, and efficient regeneration is also performed by using both of them (see, for example, Japanese Patent Application Laid-Open No. Hei 6-222). Japanese Patent Application Publication No. 60-229). Generally, in order to desorb high-boiling substances, it is necessary to use a high-temperature regeneration gas.Thus, substances that are susceptible to reaction alteration may be altered during the desorption process and degrade the adsorbent. It is particularly effective to desorb at relatively low temperature under vacuum. However, this method is rarely used because large vacuum pressure devices are extremely expensive.
従来の活性炭を用いる排ガス処理装置では、 スチームによる脱着開始 時には、 吸着装置内の空気が脱着スチームと混合ガスを形成するため、 凝縮器で十分に凝縮することができず、 脱着ガス中の溶剤の一部が未回 収のまま大気に放出される。 これを防止するために、 通常は凝縮器ベン トガスを原ガス入り口側に戻し、 再度吸着処理を行うように構成されて いる。 活性炭量に対する空間容積比が大きいほど影響が大きく、 リサイ クルされる溶剤割合は 3 0 %にもなる場合があり、 吸着材の負荷が増大 するという問題がある。 また、 P及着開始時には、 吸着装置内に滞留して いるスチームが排ガス中に放出され、 大量の白煙、 ミストとなり環境面 で問題を生じている。 粒状活性炭を用いて大 の排ガス処理を行う場 合においても、 必然的に活性炭量に対する空間容積比が大きくなり、 上 記の問題が生じている。 In a conventional exhaust gas treatment device using activated carbon, at the start of desorption by steam, the air in the adsorption device forms a mixed gas with the desorption steam, so that it cannot be sufficiently condensed by the condenser, and the solvent in the desorption gas Some are released to the atmosphere uncollected. In order to prevent this, the condenser vent gas is usually returned to the raw gas inlet side, and the adsorption process is performed again. The greater the space volume ratio to the amount of activated carbon, the greater the effect, and the percentage of recycled solvent can be as high as 30%, increasing the load on the adsorbent There is a problem of doing. At the start of P deposition, the steam remaining in the adsorption device is released into the exhaust gas, resulting in a large amount of white smoke and mist, causing environmental problems. Even when a large amount of exhaust gas is treated using granular activated carbon, the space-volume ratio to the amount of activated carbon inevitably increases, and the above-described problem occurs.
さらに、 各種の吸着材の中で特に粒状活性炭は、 吸着物質の酸化、 分 解反応を促進する比較的強い触媒作用を持っており、 脱着過程で空気の 混在下で活性炭が高温に晒される際に吸着物質の反応変質が促進される。 例えば、 塩素系有機物からは塩酸が、 ケトン系有機物からは酢酸などの 酸性物質の生成が認められるために、 吸着装置の主要部は一般に高級耐 食材で構成する必要があり、 装置が高価となる欠点がある。  Furthermore, among various adsorbents, granular activated carbon, in particular, has a relatively strong catalytic action that promotes the oxidation and decomposition reactions of adsorbed substances, and when activated carbon is exposed to high temperatures in the presence of air during the desorption process. In addition, the reaction of the adsorbed substance is deteriorated. For example, the production of acidic substances such as hydrochloric acid from chlorinated organic substances and acetic acid from ketone-based organic substances is recognized, so the main part of the adsorption device generally needs to be composed of high-grade corrosion-resistant materials, which makes the equipment expensive There are drawbacks.
—方、 上記した粒状活性炭の触媒作用に比較して、 繊維状活 1¾の触 媒作用は極めて小さいことが 認されている。 従って、 排ガス中の有機 溶剤などを回収して再使用する場合には繊維状活性炭は適した素材であ るが、 上記したように排ガス中に含まれる高沸点物質などの活性炭劣ィ匕 要因物質に対する抵抗力が小さ t次点を持っている。 これらの物質を除 去するためには、 むしろ粒状活' |«が適しており、 粒状活性炭を用いて 前段でこれらの物質を選択的に吸着除去することにより、 主吸着装置の 繊維状活性炭の劣化を防止することができる。  On the other hand, it is recognized that the catalytic activity of fibrous activity 1¾ is extremely small as compared with the catalytic activity of granular activated carbon described above. Therefore, fibrous activated carbon is a suitable material when recovering and reusing organic solvents and the like in exhaust gas, but as described above, activated carbon inferior substances such as high boiling substances contained in exhaust gas Has low t-order. In order to remove these substances, granular activated carbon is rather suitable. By selectively adsorbing and removing these substances in the former stage using granular activated carbon, the fibrous activated carbon of the main adsorption unit is removed. Deterioration can be prevented.
さらに、 繊維状活性炭又はゼォライトを成分として含むペーパーを加 ェして段ボール状とし、 これをハニカムローターとした濃縮装置が実用 化されている (例えば、 特開昭 5 3— 5 0 0 6 8号公報) 。 かかる装置 によれば、 低濃度大風量のガスを連続的に濃縮することができ、 濃縮ガ スは触媒燃焼装置などで経済的に処理することができる。 この場合にも、 上記と同様にして粒状活性炭を用いて前処理を行うことにより、 高価な ノ、二カムローターの劣化を防止することができる。 また、 上記触媒燃焼 装置においても、 同様にして粒状活性炭を用いて前処理を行うことによ り、 高価な触媒の劣化を防止することができる。 Further, a concentrating apparatus in which a paper containing fibrous activated carbon or zeolite as a component is added to form a corrugated cardboard, and this is used as a honeycomb rotor has been put into practical use (see, for example, Japanese Patent Application Laid-Open No. 53-050688). Gazette). According to such a device, a gas having a low concentration and a large air volume can be continuously concentrated, and the concentrated gas can be economically treated by a catalytic combustion device or the like. Also in this case, by performing the pretreatment using granular activated carbon in the same manner as described above, it is possible to prevent deterioration of the expensive two-cam rotor. In addition, the above catalytic combustion In the apparatus, similarly, by performing the pretreatment using the granular activated carbon, the deterioration of the expensive catalyst can be prevented.
従来、 この用途には、 粒状活性炭を多数の棚段に充填した形式の装置 が用いられている。 高沸点物質、 ミストなどの主処理装置の処理効率を 妨げる物質を選択的に除去する目的であるが、 再生機能がないため粒状 活性炭は使 ゝ捨てであり、 装置を停止して更新を繰り返す必要がある。 このため、 除去すべき成分が極めて低濃度の排ガス処理用途に適用が限 られている。 これらの前処理用途の装置形式としては、 主処理装置に比 較してコンパク卜な構成で、 しかも再生機能を有して連続処理が可能な 形式であることが好ましい。  Conventionally, for this purpose, an apparatus of the type in which granular activated carbon is filled in many trays is used. The purpose is to selectively remove substances that hinder the processing efficiency of the main processing equipment, such as high-boiling substances and mist.However, granular activated carbon is thrown away because there is no regeneration function. There is. For this reason, application to exhaust gas treatment where the components to be removed are extremely low is limited. It is preferable that these preprocessing apparatuses have a compact configuration as compared to the main processing apparatus, and have a reproducing function and can perform continuous processing.
粒状活性炭を用いる排ガス処理装置として、 前述の従来の固定床式装 置の欠点を改善するものとして、 各種の連続処理形式の装置が提案され ている。 その一つとしての流動床式排ガス処理装置は、 連続処理が可能 であり、 間接加熱を行って不活性ガスにより脱着する方法であるため、 水分が少な ゝ脱着液を得ることができるなど機能的には優れた方式であ る。 し力し、 装置が高価であることと排ガス中の有機髓などの除去率 が比較的悪 L となどのために、小 Siの排ガス処理用途に利用が限ら れている。  As an exhaust gas treatment apparatus using granular activated carbon, various continuous treatment apparatuses have been proposed to improve the above-mentioned drawbacks of the conventional fixed bed apparatus. The fluidized-bed exhaust gas treatment device as one of the methods is capable of continuous treatment and is a method of desorbing with an inert gas by performing indirect heating, so it has a low moisture content. This is an excellent method. However, due to the high cost of the equipment and the relatively low removal rate of organic marrow and the like in the exhaust gas, its use for small Si exhaust gas treatment is limited.
別の例として、 特開平 1一 1 8 9 3 2 4号公報明細書に、 タト周に活性 炭を充填した回転ドラムを気密ケーシングに収容した連続吸着装置が開 示されている。 気密ケーシングが吸着ゾーンと脱着ゾーンに区分され、 回転ドラムが回転移動しながら順次脱着ゾーンで脱着を行 、 連続的に 排ガス処理を行うものである。  As another example, Japanese Patent Laying-Open No. 11-189324 discloses a continuous adsorption device in which a rotating drum filled with activated carbon around a dart is housed in an airtight casing. The hermetic casing is divided into an adsorption zone and a desorption zone. The desorption zone is sequentially performed in the desorption zone while the rotating drum is rotating, and the exhaust gas is continuously processed.
また、 別の例として、 特開平 6— 1 6 5 9 0 5号公報明細書に、 多区 画に吸着材を充填した固定床において、 回転バノレブによりガスの流路変 更を行って区画内の吸着材の脱着を順次行うことにより連続処理が可能 な吸着装置が開示されている。 As another example, Japanese Patent Application Laid-Open Publication No. Hei 6-165905 discloses that, in a fixed bed filled with adsorbent in a multi-section, a gas flow path is changed by a rotary vanoleb to change the inside of the section. Continuous treatment is possible by sequentially desorbing adsorbents A novel adsorption device is disclosed.
しかしながら、 これらはいずれも装置構造が複雑であるために、 流動 床式装置と同様に比較的小 の排ガス処理用途に利用が限られている 従来の粒状吸着材を用いる吸着装置には上記のような各種の問題がある 従って、 本発明の目的はこれらの問題を解消した高効率でかつ工業的に 有利な粒状吸着材を用 、る吸着装置を提供することにある。 発明の開示  However, because of their complicated device structure, their use is limited to relatively small exhaust gas treatment applications as in fluidized bed devices. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an adsorption apparatus using a highly efficient and industrially advantageous particulate adsorbent which has solved these problems. Disclosure of the invention
本発明者は、 上記問題のな ゝ工業的に有利で力つ高効率な粒状吸着材 を用いる吸着装置を得るため鋭意検討を重ね本発明に至った。 即ち、 本 発明は、 通気性を有する鉛直の環状壁で環状空間を形成し、 該環状空間 を鉛直の仕切壁で多区画に区分し、 各区画内に粒状吸着材を充填してな る吸着構成体を、 被処理ガス導入口、 被処理ガス排出口、 粒状吸着材供 給口及び粒状吸着材排出口を有する気密なケーシング内に立設し、 該ケ 一シング内空間を被処理ガスの導入ゾーン、 吸着処理ゾーン及び排出ゾ ーンに区分し、 上記吸着構成体の各区画を順次に上記ケーシングの粒状 吸着材供給口及び粒状吸着材排出口と連通せしめ、 該区画内の粒状吸着 材を移動層を形成させながら更新することにより被処理ガスを連続的に 吸着処理する連続式吸着装置である。  The present inventor has conducted intensive studies to obtain an adsorption apparatus using a highly efficient granular adsorbent which is industrially advantageous, powerful, and free of the above problems, and has reached the present invention. That is, the present invention provides an adsorbent formed by forming an annular space by a vertical annular wall having air permeability, dividing the annular space into multiple sections by a vertical partition wall, and filling each section with a particulate adsorbent. The structure is erected in an air-tight casing having a gas-to-be-treated, a gas-to-be-treated, a particulate-adsorbent-supplying port, and a particulate-adsorbing-material-discharging port. It is divided into an introduction zone, an adsorption treatment zone, and a discharge zone, and each section of the above-mentioned adsorbing structure is sequentially communicated with a granular adsorbent supply port and a granular adsorbent discharge port of the above-mentioned casing, and the granular adsorbent in the section is divided. Is a continuous adsorption device that continuously absorbs the gas to be treated by updating the gas while forming a moving layer.
また、 別の発明は、 前記の吸着装置を直列多段に配設し、 前段の吸着 装置における処理済みガスのうち、 粒状吸着材の更新後経過時間の短い 区画を通過したガスを、 他の区画を通過したガスと区分して側流として 除去し、 後段の吸着装置に供給しないガスの連続吸着処理方法である。 また、 更に別の発明は、 前記の吸着装置が被処理ガスの主処理装置の 前処理装置であり、 該前処理装置における処理済みガスのうち、 粒状吸 着材の更新後経過時間の短い区画を通過したガスを、 他の区画を通過し たガスと区分して側流として除去し、 主処理装置に供給しないガスの連 続吸着処理方法である。 Further, another invention provides the above-described adsorption device in a multi-stage series, and among the treated gases in the preceding adsorption device, a gas that has passed through a section having a short elapsed time after the renewal of the particulate adsorbent is transferred to another section. This is a method for continuous adsorption treatment of gas that is separated from the gas that has passed through and removed as a sidestream, and is not supplied to the subsequent adsorption device. Further, still another invention is that the adsorption device is a pretreatment device of a main treatment device for a gas to be treated, and among the treated gases in the pretreatment device, a section having a short elapsed time after renewal of the particulate adsorbent. Gas passing through the other compartment This is a continuous adsorption treatment method for gases that are separated as sidestreams and removed as sidestreams, and are not supplied to the main processing unit.
また、 更に別の発明は、 通気性を有する鉛直の環状壁で環状空間を形 成し、 該環状空間を鉛直の仕切壁で多区画に区分し、 各区画内に粒状吸 着材を充填してなる吸着構成体を、 被処理ガス導入口、 被処理ガス排出 口、 粒状吸着材供給口及び粒状吸着材排出口を有する気密なケーシング 内に立設し、 該ケーシング内空間を被処理ガスの導入ゾーン、 吸着処理 ゾーン及び排出ゾーンに区分し、 上記吸着構成体の各区画を順次に上記 ケーシングの粒状吸着材供給口及び粒状吸着材排出口と連通せしめ、 該 区画内の粒状吸着材を移動層を形成させながら更新することにより被処 理ガスを連続的に吸着処理するガスの連続吸着処理方法である◊  Further, still another invention is that an annular space is formed by a vertical annular wall having air permeability, the annular space is divided into multiple sections by a vertical partition wall, and a granular adsorbent is filled in each section. The adsorbent structure is erected in an air-tight casing having a gas-to-be-treated, a gas-to-be-treated, a particulate-adsorbent-supplying port, and a particulate-adsorbing-material-discharging port. It is divided into an introduction zone, an adsorption treatment zone, and a discharge zone, and each section of the adsorbent structure is sequentially communicated with a particulate adsorbent supply port and a particulate adsorbent discharge port of the casing, and the particulate adsorbent in the section is moved. This is a continuous gas adsorption treatment method in which the gas to be treated is continuously adsorbed by updating while forming a layer.
本発明に用いられる粒状吸着材としては、 活性炭、 添着活性炭、 ゼォ ライト、 その他の有機、 無機系吸着材を、 好ましくはペレット状又は球 状などの粒状に加工したものが用いられる。 ガス圧損失と吸着効率の鬨 係から粒状吸着材の平均粒径は 1〜8 mm程度のものが好ましい。 また、 同様にして、 破砕 ¾ ^のものも用いることができる。  As the granular adsorbent used in the present invention, activated carbon, impregnated activated carbon, zeolite, other organic or inorganic adsorbents, preferably processed into granules such as pellets or spheres are used. The average particle size of the granular adsorbent is preferably about 1 to 8 mm from the standpoint of gas pressure loss and adsorption efficiency. Similarly, crushed ¾ ^ can be used.
本発明の連続式吸着装置の吸着部分を構成する吸着構成体は、 通気性 を有する鉛直の環状壁で形成される環状空間を鉛直の仕切壁で多区画に 区分し、 各区画内に粒状吸着材が充填されたものである。 該環状壁は、 金網、 多孔板などで環状に作製される。 粒状吸着材が充填される環状壁 間の間隔は、 被処理ガスの処理条件にもよるが、 通常 1 0〜5 0 c m程 度に設定される。 該吸着構成体は、 その環状空間部分には粒状吸着材が 充填され、 ケーシングに固定されるか又は粒状吸着材と共に回転移動す るので、 適宜に補強材で補強されるのが好ましい。 図面の簡単な説明 第 1図は、 本発明の吸着装置の一例の断面立面図である。 第 2図は、 本発明の吸着装置の一例の断面平面図である。第 3図は、本発明の吸着 装置のドラム上部のガスシール部断面図である。第 4図は、 本発明の吸 着装置のドラム下部のガスシール部断面図である。第 5図は、 本発明の 吸着装置の簡易断面図である。第 6図は、本発明の吸着装置のドラム下 部の断面図である。第 7図は、本発明の吸着装置のドラム下部制御板駆 動機構の正面図である。第 8図は、本発明の吸着装置のドラム下部制御 板駆動機構の断面側面図である。第 9図は、本発明の吸着装置のケーシ ング天板とドラム間のガスシール部断面図である。 The adsorption component constituting the adsorption portion of the continuous adsorption device of the present invention is a method in which an annular space formed by a vertical annular wall having air permeability is divided into multiple sections by a vertical partition wall, and granular adsorption is performed in each section. The material is filled. The annular wall is formed in an annular shape with a wire mesh, a perforated plate, or the like. The space between the annular walls filled with the particulate adsorbent is usually set to about 10 to 50 cm, depending on the processing conditions of the gas to be treated. Since the adsorption component is filled with a particulate adsorbent in the annular space portion and fixed to the casing or rotated with the particulate adsorbent, it is preferable that the adsorbent component is appropriately reinforced with a reinforcing material. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a sectional elevation view of an example of the suction device of the present invention. FIG. 2 is a cross-sectional plan view of an example of the suction device of the present invention. FIG. 3 is a cross-sectional view of a gas seal portion at an upper part of a drum of the adsorption device of the present invention. FIG. 4 is a cross-sectional view of a gas seal portion below a drum of the suction device of the present invention. FIG. 5 is a simplified sectional view of the suction device of the present invention. FIG. 6 is a cross-sectional view of the lower part of the drum of the suction device of the present invention. FIG. 7 is a front view of a drum lower control plate driving mechanism of the suction device of the present invention. FIG. 8 is a sectional side view of a drum lower control plate driving mechanism of the suction device of the present invention. FIG. 9 is a cross-sectional view of a gas seal portion between a casing top plate and a drum of the suction device of the present invention.
第 1 0図は、本発明の集塵機を連結した吸着装置の断面平面図である。 第 1 1 11は、本発明の集塵機を連結した吸着装置の断面立面図である。 第 1 2図は、本発明の吸着装置の粒状吸着材受槽断面図である。  FIG. 10 is a sectional plan view of a suction device to which the dust collector of the present invention is connected. FIG. 11 is a cross-sectional elevation view of a suction device to which the dust collector of the present invention is connected. FIG. 12 is a sectional view of a granular adsorbent receiving tank of the adsorption device of the present invention.
第 1 3図は、本発明の吸着装置の他の例の断面立面図である。  FIG. 13 is a sectional elevation view of another example of the suction device of the present invention.
第 1 4図は、本発明の吸着装置の他の例の断面平面図である。  FIG. 14 is a cross-sectional plan view of another example of the suction device of the present invention.
第 1 5図は、本発明の吸着装置の他の例のドラム下部断面図である。 第 1 6図は、本発明の吸着装置を直列多段又は主処理装置の前処理装 置として用いた例の断面平面図である。  FIG. 15 is a sectional view of the lower part of the drum of another example of the suction device of the present invention. FIG. 16 is a cross-sectional plan view of an example in which the adsorption device of the present invention is used as a pretreatment device for a series multistage or main treatment device.
図中、符号は次のとおりである。 1はケーシング、 2はドラム、 3は 仕切壁、 4は粒状活性炭、 5はガスシール材、 6は駆動装置、 7は被処 理ガス導入口、 8は被処理ガス排出口、 9は粒状活性炭供給口、 1 0は 粒状活性炭排出口、 1 1は粒状活性炭供袷槽、 1 2は粒状活性炭受槽、 1 3は弁機構、 1 4は弁機構、 1 5は再生用ガス加熟器、 1 6は再生排 ガス冷却凝縮器、 1 7は凝縮液受槽、 1 8は真空発生装置、 1 9は脱着 用ガス供給ライン、 2 0は再生排ガス排出ライン、 2 1は乾燥、冷却用 ガス供袷ライン、 2 2は多孔パイプ、 2 3は弁機構、 2 4は篩、 2 5は 移送コンベア、 2 6はドラム支持脚、 2 7は車輪、 2 8は回転軸、 2 9 は支持材、 3 0は粒状活性炭流出防止リング、 3 1は真空発生装置バイ パスライン、 3 2はスクレーパー、 3 3は制御板、 3 4は二重リング、 3 5は更新区画、 3 6はガス誘導仕切壁、 3 7はエアーパルス逆洗付バ グフィルター、 3 8はガスブロア一、 3 9は熱交換部、 4 0は弁機構、 4 1は円錐状通路、 4 2はガス誘導室、 4 3は排出ノズル、 4 4はスク レーパー、 4 5は回転板状体、 4 6は放出ガスライン、 4 7は主処理装 置又は後段の本発明吸着装置、 4 8は回転片、 4 9は第 1水平突起、 5 0は第 2水平突起、 5 1は第 1垂直突起、 5 2は第 2垂直突起、 5 3は 集塵室、 5 4は集塵室下部受槽である。 発明を実施するための最良の形態 In the figure, reference numerals are as follows. 1 is a casing, 2 is a drum, 3 is a partition, 4 is granular activated carbon, 5 is a gas seal material, 6 is a drive unit, 7 is a treated gas inlet, 8 is a treated gas outlet, and 9 is granular activated carbon. Supply port, 10 is a granular activated carbon discharge port, 11 is a tank for supplying granular activated carbon, 12 is a granular activated carbon receiving tank, 13 is a valve mechanism, 14 is a valve mechanism, 15 is a gas rectifier for regeneration, 1 6 is a regeneration exhaust gas cooling condenser, 17 is a condensate receiving tank, 18 is a vacuum generator, 19 is a desorption gas supply line, 20 is a regeneration exhaust gas discharge line, 21 is a drying and cooling gas supply line. Line, 2 2 is a perforated pipe, 2 3 is a valve mechanism, 2 4 is a sieve, 2 5 is a transfer conveyor, 2 6 is a drum support leg, 2 7 is a wheel, 2 8 is a rotating shaft, 2 9 Is a support material, 30 is a granular activated carbon spill prevention ring, 31 is a vacuum generator bypass line, 3 2 is a scraper, 3 3 is a control plate, 3 4 is a double ring, 3 5 is a renewal section, 3 6 is Gas induction partition wall, 37 is a bag filter with air pulse backwash, 38 is a gas blower, 39 is a heat exchange section, 40 is a valve mechanism, 41 is a conical passage, 42 is a gas induction chamber, 43 is a discharge nozzle, 44 is a scraper, 45 is a rotating plate-like body, 46 is a discharge gas line, 47 is a main processing unit or the subsequent adsorption device of the present invention, 48 is a rotating piece, 49 Is a first horizontal projection, 50 is a second horizontal projection, 51 is a first vertical projection, 52 is a second vertical projection, 53 is a dust collecting chamber, and 54 is a lower receiving tank of the dust collecting chamber. BEST MODE FOR CARRYING OUT THE INVENTION
まず、本発明のうち、 吸着構成体を気密なケ一シング内に立設した連 続式吸着装置に閼して以下に詳述する。該吸着構成体の環状空間は、具 体的に第 2図に示されるように、鉛直の仕切壁で多区画に区分されてお り、被処理ガスの通流を中断することなく、 各区画内の粒状吸着材を順 次更新可能のように構成される。仕切壁の材料は、充填された粒状吸着 材の区画間の移動を遮断できるものであれば特に限定はない。 区画数は、 被処理ガスの処理条件に応じて設定すればよく、第 2図は 6区画に区分 されている例である。  First, the present invention will be described in detail below with reference to a continuous adsorption apparatus in which an adsorption component is erected in an airtight casing. As shown in FIG. 2, the annular space of the adsorbing structure is divided into multiple sections by vertical partition walls, and without interrupting the flow of the gas to be treated. It is configured so that the granular adsorbent inside can be updated sequentially. The material of the partition wall is not particularly limited as long as it can block the movement of the filled granular adsorbent between the sections. The number of sections may be set according to the processing conditions of the gas to be treated. FIG. 2 shows an example in which the sections are divided into six sections.
該吸着構成体は、気密なケーシング内に、 ケーシング内空間を導入ガ スゾーン、 吸着処理ゾーン及び排出ガスゾーンに区分するようにガスシ ールされて収容される。 ケーシングには、被処理ガス導入口、被処理ガ ス排出口、粒状吸着材供給口及び粒状吸着材排出口が設けられる。 粒状 吸着材供袷口は、再生済み又は新しい粒状吸着材を供給するための口で あり、粒状吸着材供給槽に連結される。粒状吸着材排出口は、使用済み の粒状吸着材を排出するための口であり、粒状吸着材受槽に連結される 該吸着構成体は、 更新すベき区画をケーシングの粒状吸着材供給口及び 粒状吸着材排出口と連通する位置にあわせ、 粒状吸着材供給槽から粒状 吸着材の補袷を受けながら、 当該区画の粒状吸着材が粒状吸着材受槽に 排出更新される。 このようにして、 各区画内の粒状吸着材が順次更新さ れる。 粒状吸着材排出口部分には、 排出速度を調整するためにロータリ 一バルブなどの調整装置を設けるのが好ましい。 The adsorbing structure is housed in a gas-tight casing by gas sealing so as to divide the space in the casing into an introduction gas zone, an adsorption treatment zone, and an exhaust gas zone. The casing is provided with an inlet for gas to be treated, an outlet for gas to be treated, a supply port for granular adsorbent, and an outlet for particulate adsorbent. The inlet for supplying granular adsorbent is a port for supplying recycled or new granular adsorbent and is connected to the granular adsorbent supply tank. The granular adsorbent discharge port is used to discharge the used granular adsorbent and is connected to the granular adsorbent receiving tank. The adsorbing structure is arranged such that the section to be renewed is aligned with a position where the granular adsorbent supply port and the granular adsorbent discharge port of the casing communicate with each other, and the granular adsorbent is supplied from the granular adsorbent supply tank, Is discharged to the granular adsorbent receiving tank and renewed. In this way, the granular adsorbent in each section is sequentially updated. It is preferable to provide an adjusting device such as a rotary valve for adjusting the discharging speed at the outlet of the particulate adsorbent.
上記粒状吸着材受槽には、 少なくとも使用済みの粒状吸着材受入口、 再生済みの粒状吸着材払出口、 再生用ガス供給口及び再生排ガス出口が 設けられ、 再生用ガス供給設備、 再生排ガス冷却、 凝縮設備などが連結 される。 該受槽に排出された吸着材は、 引き続き通常の手法により再生 処理を受け、 再使用に供される。 再生用ガスとしては、 脱着のためにス チーム又は不活性ガスが、 乾燥及び冷却のために不活性ガス又は空気が 主に用いられる。  The above-mentioned granular adsorbent receiving tank is provided with at least a used granular adsorbent receiving port, a regenerated granular adsorbent outlet, a regeneration gas supply port and a regeneration exhaust gas outlet, and a regeneration gas supply facility, regeneration exhaust gas cooling, Condensing equipment is connected. The adsorbent discharged into the receiving tank is subsequently subjected to a regeneration treatment by a usual method and is reused. As regeneration gas, steam or inert gas is mainly used for desorption, and inert gas or air is mainly used for drying and cooling.
本発明の吸着装置において、 上記受槽に間接的な加熱冷却機構を付す と、 例えばより小量の再生用ガスによる再生が可能となり、 スチームを 用いる場合には排水量を肖 IJ減できて好ましい。 また、 真空ラインを設け て真空発生設備に連結して使用すると、 高沸点物質などの変質を防いで 効率的に脱着して再生することができるので好ましい。 本発明の吸着装 置においては、 1区画に充填される吸着材の容量毎に再生を行うもので あるから再生設備の容量が小さくてよく、 上記の機構ある ゝは設備など を付設することが容易であり、 吸着物質に応じた最適な再生処理を行う ことができる。  In the adsorption apparatus of the present invention, if an indirect heating / cooling mechanism is added to the receiving tank, for example, regeneration with a smaller amount of regeneration gas can be performed, and when steam is used, the amount of wastewater can be reduced, which is preferable. In addition, it is preferable to use a vacuum line provided with a vacuum line and connected to a vacuum generating facility, because it can efficiently desorb and regenerate by preventing deterioration of high boiling point substances and the like. In the adsorption device of the present invention, since the regeneration is performed for each volume of the adsorbent filled in one section, the capacity of the regeneration device may be small, and the above-mentioned mechanism ゝ may be provided with equipment or the like. It is easy and can perform the optimal regeneration process according to the adsorbed substance.
さらに、 上記受槽に粒状吸着材供給槽に至る粒状吸着材移送設備を連 結すると の効率化を図ることができる。 移送手段としては、 バケツ トコンベア、 ベルトコンベア、 ニューマチックコンベアなどの各種の手 段を利用することができる。 再生済みの粒状吸着材であっても微粉化し たものは廃棄し、 さらに一部の再生済み粒状吸着材を廃棄し新たな粒状 吸着材を補充することにすれば、 長期にわたり吸着装置の吸着能力を一 定に維持できるため、 上記粒状吸着材移送設備には、 このような粒状吸 着材の廃棄口及び補充口を設けるのが好ましい。 粒状吸着材供給槽は、 少なくとも再生済み粒状吸着材受入口及び同粒状吸着材払出口を有し、 上記粒状吸着材移送設備及び吸着装置本体の粒状吸着材供給口に連結さ れる。 該供耠槽の容量としては、 上記吸着構成体の 1区画ないし数区画 容量程度であるのが好ましい。 Furthermore, efficiency can be improved by connecting the granular adsorbent transfer equipment to the granular adsorbent supply tank to the receiving tank. Various means such as a bucket conveyor, a belt conveyor, and a pneumatic conveyor can be used as the transfer means. Even regenerated granular adsorbents are pulverized Waste can be discarded, a part of the regenerated particulate adsorbent can be discarded, and new particulate adsorbent can be replenished, so that the adsorption capacity of the adsorber can be kept constant for a long time. It is preferable that the transfer facility is provided with a disposal port and a replenishment port for such particulate adsorbent. The granular adsorbent supply tank has at least a regenerated granular adsorbent inlet and a granular adsorbent outlet, and is connected to the granular adsorbent transfer equipment and the granular adsorbent supply port of the adsorber body. The capacity of the supply tank is preferably about one to several compartments of the adsorption structure.
本発明の吸着装置は、 被処理ガスの通流を中断することなく、 吸着材 の更新、 再生、 再使用が可能な連続式吸着装置であり、 特に、 大風量の 排ガス処理用途に適用した場合に効果が高い。 本発明の吸着装置は、 環 状部に薄層にして広大なガス通過面積を有する吸着層が形成されるため、 大風量のガス処理に適用することができる。 しかも、 吸着材の再生は、 使用時間が長い順序に 1区画ずつ付属する粒状吸着材受槽に排出して効 率的に行われるため、 吸着装置本体は吸着材の再生に伴う温度、 圧力変 動を受けることがない。  The adsorption device of the present invention is a continuous adsorption device that can renew, regenerate, and reuse the adsorbent without interrupting the flow of the gas to be treated, especially when applied to exhaust gas treatment with large air volume. Highly effective. INDUSTRIAL APPLICABILITY The adsorption apparatus of the present invention can be applied to gas treatment with a large air volume, since an adsorption layer having a large gas passage area is formed as a thin layer in the annular portion. In addition, since the adsorbent is regenerated efficiently by discharging it to the attached granular adsorbent receiving tank one by one in the order of long usage time, the main body of the adsorber changes in temperature and pressure due to the regeneration of the adsorbent I do not receive.
しかも、 目的吸着成分が少ない場合には、 排出される吸着材は別途に 賦活再生することにすれば付属設備構成を簡素にすることができ、 当該 成分が多くなれば付属設備で再生し再使用することができる。 従来、 吸 着材の再生を行う場合は、 切り替え使用のため複数の吸着装置が用いら れているが、 本発明によれば一つの吸着装置にてこれを実現できる。 目 的吸着成分がさらに多量の場合には、 前段に被処理ガスの冷却凝縮又は P及収設備を設け、 これらと処理負荷を適宜配分することにしてもよい。 本発明の吸着装置によれば、 粒状吸着材量に対する空間容積比が小さな 槽で再生が行われるため、 前述した大風量の排ガス処理装置の空閭容 積比に関連する欠点が生じない上に、 さらに以下の利点が得られる。 適 度の層高の粒状吸着材量に対して適量の再生用ガスを通流できるため均 一に再生を行うことができる。 吸着材以外の装置熱容量を小さくできる ため再生用ガスの熱量を少なくできる。 前述のように、 再生操作が行わ れる粒状吸着材受槽に間接的な加熱冷却機構を付すことが容易であり、 再生用ガスの量及び温度を低減できて、 再生用ガスとしてスチームを用 いる場合には排水を減少できる。 また、 同様に真空耐圧あるいは耐食性 を付すことも容易であり、 真空脱着により吸着物質の変質を防ぎつつ効 果的に脱着を行い再生することができ、 しかもスチーム脱着に伴う吸着 装置本体の腐食を防止できる。 In addition, when the target adsorbed component is small, the adsorbent to be discharged can be separately activated and regenerated to simplify the accessory equipment configuration. can do. Conventionally, when the adsorbent is regenerated, a plurality of adsorbers are used for switching use, but according to the present invention, this can be realized by one adsorber. If the target adsorbed component is in a larger amount, a cooling / condensing or P-acquisition facility for the gas to be treated may be provided at the preceding stage, and the processing load may be appropriately allocated to these components. According to the adsorption device of the present invention, the regeneration is performed in a tank having a small space volume ratio with respect to the amount of the particulate adsorbent. The following advantages are further obtained. Suitable Since an appropriate amount of the regeneration gas can flow through the amount of the granular adsorbent having a certain layer height, the regeneration can be performed uniformly. Since the heat capacity of devices other than the adsorbent can be reduced, the calorific value of the regeneration gas can be reduced. As mentioned above, it is easy to attach an indirect heating and cooling mechanism to the granular adsorbent receiving tank where the regeneration operation is performed, and the amount and temperature of the regeneration gas can be reduced, and steam is used as the regeneration gas. Can reduce wastewater. Similarly, it is easy to impart vacuum pressure resistance or corrosion resistance, and it is possible to effectively desorb and regenerate while preventing the adsorbed substance from deteriorating by vacuum desorption, and to prevent corrosion of the adsorption device itself due to steam desorption. Can be prevented.
本発明の吸着装置は単独に用いてもよ Vヽ 、 多成分の溶剤を含む排ガ スなどを処理する場合には、 本発明の吸着装置を直列多段に設け、 各装 置の粒状吸着材を目的成分に最適に設定して、 しかも各吸着装置毎に再 生条件を当該成分の脱着に最適にすることにより効果的な処理を行うこ とができる。 細孔径の異なる活 の組合わせ、 活性炭とゼォライトの 組合わせあるいは各種添着活性炭の組合わせなどの使用方法が可能であ る。 付属する粒状吸着材受槽には、 通常のスチーム又は高温ガスによる 再生に加えて、 間接的な加熱冷却再生機能ある ^は真空再生機能を容易 に付することができることは上記したとおりであるが、 さらには添着活 性炭などに対して薬液再生機能を付すことができることについても同様 である。  The adsorber of the present invention may be used alone. When treating exhaust gas containing a multi-component solvent, etc., the adsorber of the present invention is provided in multiple stages in series, and the granular adsorbent of each device is provided. By setting the temperature optimally for the target component and optimizing the regeneration conditions for each adsorption apparatus for desorption of the component, an effective treatment can be performed. It is possible to use a combination of activities having different pore sizes, a combination of activated carbon and zeolite, or a combination of various types of impregnated activated carbon. The attached granular adsorbent receiving tank has an indirect heating / cooling regeneration function in addition to normal steam or high-temperature gas regeneration.As described above, the vacuum regeneration function can be easily provided. The same applies to the fact that the activated carbon can be provided with a chemical regeneration function.
また、 本発明の吸着装置は、 大風量の排ガス処理用途の主処理装置の 前処理装置としても好適に使用できる。 本発明の吸着装置によれば、 大 風量の排ガス処理が可能な上に目的成分に適した再生条件で吸着材の再 生を行うことができるため、 除去すべき成分濃度が高い排ガスにまで適 用を拡大できる。 前処理として、 一般に排ガスの冷却凝縮又は吸収設備 のみによっては目的成分を十分に除去することは困難であるが、 前述の ようにこれらの前処理設備と本発明の吸着装置を組み合わせることによ り、 相互に負荷を調整することにより、 除去すべき成分濃度が一層高い 排ガス処理用途にも適用できる。 本発明の吸着装置を、 主処理装置であ る繊維状活性炭吸着装置、 ハニカムロータ一濃縮装置あるいは触媒 装置などの前処理用途に適用した場合には、 これらの装置の処理効率を 妨げる高沸点物質、 ミストあるいは触媒被毒物質などを選択的に除去で き、 これらの装置の処理効率を長期にわたり高く維持できる。 従来、 上 記の主処理装置の処理効率を妨げる物質を比較的多量に含んだ大風量の 排ガスを連続的に処理することは困難であつたが、 本発明はこれを解決 するものである。 In addition, the adsorption device of the present invention can be suitably used as a pretreatment device of a main treatment device for exhaust gas treatment of a large air volume. ADVANTAGE OF THE INVENTION According to the adsorption apparatus of this invention, since the exhaust gas of a large air volume can be processed and the adsorbent can be regenerated under the regeneration conditions suitable for the target component, it is suitable for exhaust gas with a high component concentration to be removed. Can be expanded. As a pretreatment, it is generally difficult to sufficiently remove the target components only with the equipment for cooling and condensing or absorbing the exhaust gas. As described above, by combining these pretreatment facilities with the adsorption apparatus of the present invention, by mutually adjusting the load, the present invention can also be applied to exhaust gas treatment applications in which the concentration of components to be removed is higher. When the adsorption device of the present invention is applied to pretreatment applications such as a fibrous activated carbon adsorption device, a honeycomb rotor monoconcentrator, or a catalyst device, which is a main treatment device, high boiling substances that hinder the treatment efficiency of these devices. , Mist or catalyst poisoning substances can be selectively removed, and the processing efficiency of these devices can be kept high for a long period of time. Conventionally, it has been difficult to continuously treat a large amount of exhaust gas containing a relatively large amount of a substance that hinders the treatment efficiency of the main processing unit described above, but the present invention solves this problem.
以下に本発明の吸着装置のうち、 粒状活性炭を用いた排ガス処理装置 の実施例を、 吸着構成体を回転可能にケーシング内に立設した吸着装置 について詳細に説明するが、 本発明はこれに限定されるものではない。 第 1図は本装置の断面立面図であり、 第 2図は同じく断面平面図である。 1はケーシングであり、 2は環状にして通気性を有したドラムであり、 Hereinafter, among the adsorption devices of the present invention, an embodiment of an exhaust gas treatment device using granular activated carbon will be described in detail with respect to an adsorption device in which an adsorption component is rotatably installed in a casing in a rotatable manner. It is not limited. FIG. 1 is a sectional elevation view of the present apparatus, and FIG. 2 is a sectional plan view of the same. 1 is a casing, 2 is a drum having an annular shape and air permeability,
3の仕切壁により多区画に区画されて各区画には 4の粒状活性炭が充填 され、 吸着構成体を構成する。 It is divided into multiple sections by the partition wall of 3, and each section is filled with the granular activated carbon of 4 to constitute the adsorption component.
当該ドラムは、 上下端が開放されており、 5のガスシール材を介して ケーシングの天板及び底板と接触しながら、 6の駆動装置により充填さ れた粒状活性炭と共に間欠的に回転移動できる。 ドラムの上端に粒状活 性炭層の沈下により空隙を生じ、 被処理ガスがこの部分をショートパス するのを防ぐために、 ドラムの上部は上記沈下量に見合う部分を非通気 性の材で作製するとよい。 また、 ガスシールをより確実にするために、 ガスシール部を第 3図及び第 4図に示す構造にしてもよい。 2 6はドラ ムの支持脚、 2 7は車輪、 2 8は回転軸、 2 9は支持材である。 3 0は 粒状活性炭の流出防止リングである。 7は被処理ガスの導入口であり、 8は排出口であり、 被処理ガスは矢印の方向に連続的に流通し吸着処理 を受ける。 The upper and lower ends of the drum are open, and the drum can rotate intermittently together with the granular activated carbon filled by the drive device while being in contact with the top plate and the bottom plate of the casing via the gas seal material. At the top of the drum, voids are formed due to the subsidence of the granular activated carbon layer, and in order to prevent the gas to be processed from short-passing this part, the upper part of the drum should be made of a non-permeable material at a position corresponding to the above settling amount. . Further, in order to further ensure the gas seal, the gas seal portion may have a structure shown in FIGS. 3 and 4. 26 is a drum supporting leg, 27 is a wheel, 28 is a rotating shaft, and 29 is a supporting material. Reference numeral 30 denotes a ring for preventing the granular activated carbon from flowing out. 7 is an inlet for the gas to be treated, Reference numeral 8 denotes a discharge port, and the gas to be treated continuously flows in the direction of the arrow and undergoes adsorption treatment.
9はケーシングの天板に、 ドラムの 1区画と連通するに十分な開口に 相当して設けた粒状活性炭供袷口であり、 1 0はケーシングの底板に、 粒状活性炭供給口の鉛直下方の位置に同様にして設けた粒状活性炭排出 口である。 両開口は、 5¾ り状に絞られて 1 1の粒状活性炭供耠槽及び 1 2の粒状活性炭受槽と弁機構 1 3、 1 4を介して連結される。 ドラム の 1区画を粒状活性炭供袷口及び粒状活性炭排出口と難する位置に回 転移動し、 被処理ガスの通流を中断することなく、 弁機構 1 3を開き 1 4の開度を調整して当該区画内に新たに粒状活性炭を補給しながら、 当 該区画内に充填されている粒状活性炭を徐々に排出し、 粒状活性炭受槽 に受ける。 活性炭の受け入れ量の測定はタィマーで行うことができるが、 該受槽に粉面計あるいはロードセルなどの検知装置を付属すれば、 より 正確に行うことができる。 このようにしてドラムを 1区画ずっ閭欠的に 回転移動し関連操作を行うことにより、 順次各区画内の粒状活性炭が更 新される。  Reference numeral 9 denotes a granular activated carbon supply port provided on the top plate of the casing corresponding to an opening sufficient to communicate with one section of the drum, and 10 denotes a position on the bottom plate of the casing vertically below the granular activated carbon supply port. This is a granular activated carbon outlet provided in the same manner as above. Both openings are squeezed into a five-way shape and connected to the granular activated carbon supply tank 11 and the granular activated carbon receiving tank 12 via valve mechanisms 13 and 14. Rotate one section of the drum to a position where it is difficult for the granular activated carbon supply port and granular activated carbon discharge port to open the valve mechanism 13 and adjust the opening of 14 without interrupting the flow of the gas to be treated. Then, while the granular activated carbon is newly replenished in the section, the granular activated carbon filled in the section is gradually discharged and received in the granular activated carbon receiving tank. The measurement of the amount of activated carbon received can be performed by a timer, but it can be performed more accurately if a detector such as a powder level meter or a load cell is attached to the receiving tank. In this way, the granular activated carbon in each section is sequentially renewed by rotating the drum one section at a time and performing related operations.
粒状活性炭受槽には、 再生用ガス加熱器 1 5、 再生排ガス冷却凝 1 6、 凝縮液受槽 1 7、 真空発生装置 1 8及び真空発生装置バイパスラ イン 3 1が連結しており、 粒状活性炭の受け入れを完了した後、 弁機構 1 4を閉じ、 脱着用ガスとしてスチームを用いる場合に、 当該受槽を常 圧又は真空として脱着用ガス供給ライン 1 9から脱着用スチームを供給 し、 再生排ガス排出ライン 2 0に脱着スチームを排出し、 凝縮して脱着 液を得る。 脱着終了後、 スチームの供給を停止し、 乾燥、 冷却用ガス供 給ライン 2 1から大気を導入して粒状活性炭の乾燥及び冷却を行い、 粒 状活性炭の再生を完了する。 2 2は多孔ノ プであるが、 活性炭の払 、 出しができる可動式多孔板形式としてもよい。 さらに、 当該受槽には、 受け入れた粒状活性炭層表面を平坦にする機構を付すと好ましい。 The granular activated carbon receiving tank is connected to a regeneration gas heater 15, a regeneration exhaust gas cooling condenser 16, a condensate receiving tank 17, a vacuum generator 18 and a vacuum generator bypass line 31, and receives granular activated carbon. When the steam is used as the desorption gas, the steam is supplied from the desorption gas supply line 19 to the receiving tank at normal pressure or vacuum, and the recycled exhaust gas discharge line 2 The desorbed steam is discharged to 0 and condensed to obtain a desorbed liquid. After the desorption, the supply of steam is stopped, and air is introduced from the gas supply line 21 for drying and cooling to dry and cool the granular activated carbon, thereby completing the regeneration of the granular activated carbon. Reference numeral 22 denotes a perforated knob, but it may be a movable perforated plate type capable of dispensing and discharging activated carbon. In addition, the receiving tank It is preferable to provide a mechanism for flattening the surface of the received granular activated carbon layer.
粒状活性炭の再生を完了した後、 弁機構 2 3の開度を調整して篩 2 4 により微粉を除去して、 移送コンベア 2 5によって粒状活性炭供給槽に 全量移送する。 この際、 一部の再生済み粒状活性炭を除去して新粒状活 性炭を補充できる設備を付すことにより (図示省略) 、 長期にわたり吸 着装置の吸着能力を一定に保持させることもできる。  After the regeneration of the granular activated carbon is completed, the opening degree of the valve mechanism 23 is adjusted, fine powder is removed by the sieve 24, and the whole amount is transferred to the granular activated carbon supply tank by the transfer conveyor 25. At this time, by providing equipment capable of removing a part of the regenerated granular activated carbon and replenishing the new granular activated carbon (not shown), the adsorption capacity of the adsorption apparatus can be kept constant for a long time.
第 2図は、 前述したように、 粒状活性炭層の区画が 6区画の場合を示 している。 1区画当たり約 1時間半で更新、 再生、 移送操作を行うこと にすれば、 約 9時間で全区画の更新再生を完了することができる。 通常 この程度の時間内に行われるように予めスケジューリングして、 一連の 操作を自動化すると効率がよい。 粒状活性炭供給槽及び粒状活性炭受槽 の容量を複数区画容量分として準備しておけば、 排ガス中の成分濃度変 化に応じて、 複数区画容量分をまとめて更新再生し、 全区画の再生周期 を早めることもできる。 また、 複数の粒状活性炭受槽を設けることによ つても同様に再生周期を早めることができる。 ドラムの上下端は開放さ れているから、 ドラム内の粒状活性炭はケーシングの天板及び底板と接 触するが、 ゆっくりと短距離を回転移動するため、 接触に伴う粒状活性 炭の磨耗は少なくできる。  Fig. 2 shows a case where the granular activated carbon layer has six sections as described above. If the update, reproduction, and transfer operations are performed in about one and a half hours per block, the update and regeneration of all blocks can be completed in about nine hours. Usually, it is efficient to schedule in advance so that it is performed within this time and automate a series of operations. If the capacity of the granular activated carbon supply tank and granular activated carbon receiving tank is prepared for multiple compartment volumes, the multiple compartment volumes are updated and regenerated collectively according to changes in the concentration of components in the exhaust gas, and the regeneration cycle of all compartments is set. It can be done earlier. Also, by providing a plurality of granular activated carbon receiving tanks, the regeneration cycle can be similarly advanced. Since the upper and lower ends of the drum are open, the granular activated carbon in the drum comes into contact with the top and bottom plates of the casing, but rotates slowly over a short distance, causing less wear of the granular activated carbon due to contact. it can.
さらに、 ドラムの各区画上下部を、 被処理ガスのショートパスを防ぐ ために非通気性の材を用いて先細り状とし、 ケーシングの天板及び底板 と粒状活性炭の接触面積を狭くして磨耗を防止することにしてもよい。 また、 ドラムはケーシング天板及び底板とガスシール材を介して接触し て回転移動する。 これらのガスシール材は粒状活性炭の再生に伴う温度、 圧力の変化を受けないため、 これによる劣ィ匕を受けることがない。  In addition, the upper and lower sections of each section of the drum are tapered using a non-permeable material to prevent short paths of the gas to be treated, and the contact area between the top plate and bottom plate of the casing and the granular activated carbon is reduced to reduce wear. You may decide to prevent it. In addition, the drum rotates and moves in contact with the casing top plate and bottom plate via the gas seal material. These gas seal materials are not affected by the change in temperature and pressure associated with the regeneration of the granular activated carbon, so that they do not suffer from inferiority.
あるいは、 上記吸着構成体の端部分、 即ちドラム下部又はドラム上部 の形状は、 直円筒形状のみならず、 第 5図に示すように、 り状の環 状コーン形状であってもよい。 この場合には、 ケーシング天板及び底板 と粒状活性炭などの吸着材との接触面積が狭くなり磨耗が防止されると 共に、 ガスシール材の摺動距離が短くなりシール性がより確実になる効 果がある。 Alternatively, the shape of the end portion of the adsorbing structure, that is, the shape of the drum lower portion or the drum upper portion is not limited to a straight cylindrical shape, but as shown in FIG. The shape may be a cone shape. In this case, the contact area between the casing top plate and the bottom plate and the adsorbent such as granular activated carbon is reduced to prevent abrasion, and the sliding distance of the gas seal material is shortened, so that the sealing performance is improved. There is fruit.
一方、 ケーシング底板と吸着材の接触による磨耗は、 P及着材の粉体圧 により加減されるから、 積極的に吸着材の粉体圧を緩和する対策を講じ ることにしてもよい。 第 6図は、 ドラム各区画下部に多孔板又は多数の スリット状開口を有する板からなる制御板を単段ないしは多段に設ける ことにより、 粉体圧を緩和する例である。 吸着材を更新する際には、 吸 着材がマスフロー ¾態で移動層を形成しながら更新されることが望まし いが、 上記制御板はこのためのデイストリビューターの機能をも兼ねる ことになり好適である。  On the other hand, the abrasion due to the contact between the casing bottom plate and the adsorbent is moderated by the powder pressure of the P and the adhering material. Therefore, measures to actively reduce the powder pressure of the adsorbent may be taken. FIG. 6 is an example in which a powder plate is relieved by providing a single-stage or multi-stage control plate composed of a perforated plate or a plate having a large number of slit-shaped openings below each section of the drum. When the adsorbent is renewed, it is desirable that the adsorbent be renewed while forming a moving layer in a mass flow state.However, the control plate also functions as a distributor for this purpose. This is preferred.
さらには、 第 6図に示すように、 ドラムの各区面下部に 2枚の制御板 を組み合わせて上部制御板を固定して下部制御板をドラム周方向又は半 径方向に移動可能に構成し、 更新区画以外では吸着材の安息角を利用し て制御板上に吸着材を保持し、 制御板下に粉体圧が調整された吸着材層 を形成するように相互の制御板の開口部の位置関係および間隔を保ち、 更新区画では下部制御板を一定距離移動させて上記の吸着材の保持状態 を崩して払い出しが可能になるように構成してもよい。 この場合には、 更新区画付近のケーシング底板に、 上記の下部制御板に自動的に接続し、 又離脱し、 該下部制御板を一定距離往復移動し得る駆動装置(図示省略) を設けるとよい。  Further, as shown in FIG. 6, the upper control plate is fixed by combining two control plates below each section of the drum, and the lower control plate is configured to be movable in the drum circumferential direction or the radial direction, In the areas other than the renewal section, the adsorbent is held on the control plate using the angle of repose of the adsorbent, and the openings of the mutual control plates are formed under the control plate so that the adsorbent layer with the adjusted powder pressure is formed. In the renewal section, the lower control plate may be moved by a fixed distance to break the holding state of the adsorbent so that payout is possible. In this case, a drive device (not shown) may be provided on the casing bottom plate near the renewal section so as to be automatically connected to or detached from the lower control plate and to reciprocate the lower control plate by a certain distance. .
更新区画以外においては、 同じく第 6図に示すように、 吸着材の粉体 圧を緩和しつつドラム下端とケーシング底扳間に吸着材層を形成し、 区 画壁又は区画毎に設けたドラム下部のスクレーパー 3 2により、 該吸着 材層をドラムの回転と共に回転移動させることにより、 吸着材自体で有 効なガスシールをさせると共に当該吸着材の更新ができる。 勿論、 上下 部制御板を密接して設けて上記操作を行い、 ドラム下端とケーシング底 板間に吸着材層を形成させずに、 ガスシールは前述のガスシール材によ ることにしてもよい。 上記機構は、 吸着材の粉体圧の緩和機能及びディ ストリビューターの機能に加えて弁機能をも有するものである。 In areas other than the renewal section, as shown in Fig. 6, an adsorbent layer is formed between the lower end of the drum and the bottom of the casing while relaxing the powder pressure of the adsorbent. The adsorbent itself is used by rotating the adsorbent layer with the rotation of the drum by the lower scraper 32. An effective gas seal can be made and the adsorbent can be renewed. Of course, the above operation may be performed by providing the upper and lower control plates in close contact with each other, and without forming an adsorbent layer between the lower end of the drum and the bottom plate of the casing, the gas seal may be made of the above-described gas seal material. . The above mechanism has a valve function in addition to a function of relaxing the powder pressure of the adsorbent and a function of the distributor.
第 7図及び第 8図は、 上記の制御板機構を、 更新区画において自動的 に開閉する機構の一例である。 即ち、 更新区画付近のケーシング底板に 2個の垂直突起を設け、 各区画の該制御板機構 3 3にその往復動作を可 能にする回転片 4 8を取り付け、 さらに該回転片の両端に水平突起を設 けて構成される。 ドラムの回転により該回転片の一方の水平突起 4 9が 上記第 1の垂直突起 5 1に触れながら該回転片を回転し、 該制御板機構 を開状態にして更新区画の吸着材の排出を行い、 さらにドラムの回転に より該回転片の他方の水平突起 5 0が上記第 2の垂直突起 5 2に触れな がら該回転片を逆方向に回転し、 該制御板機構を閉状態にするものであ る。  FIGS. 7 and 8 show an example of a mechanism for automatically opening and closing the control plate mechanism in the update section. That is, two vertical projections are provided on the casing bottom plate near the renewal section, and the control plate mechanism 33 of each section is provided with a rotating piece 48 that enables the reciprocating operation. It is configured with projections. Due to the rotation of the drum, one horizontal projection 49 of the rotary piece rotates the rotary piece while touching the first vertical projection 51, and opens the control plate mechanism to discharge the adsorbent in the update section. Then, by rotating the drum, the other horizontal projection 50 of the rotary piece contacts the second vertical projection 52 to rotate the rotary piece in the opposite direction, thereby closing the control plate mechanism. It is.
また、 第 9図は、 ドラム上端とケーシング天板間の構成を示す断面図 である。 即ち、 ケーシング天板に二重のリング 3 4を全周に固設し、 ド ラムの内夕卜環状壁が該二重リングの夕卜側を回転移動し力つドラムの各区 画仕切壁の上端部の が該二重リングの内側を回転移動できるように し、 ドラムの回転移動による吸着材層の沈降長さ相当以上の吸着材層を 該二重リング内に保持し、 該吸着材層は各区画仕切壁と共に回転移動で きるようにする。 該二重リング内のケーシング天板部の には少なく とも 1個の吸着材の供給口が設けてあり、 吸着材供給槽と連通している これによれば、 ケーシング天板とドラム上端間を通過するガスは確実に 吸着材層を矢印の方向に通過することになるため、 吸着材自体でのガス の自己シールが可能となる。 該二重リングは、 その一方を必要十分な深 いリングとし、 他方を吸着材の流出を防ぐために十分な浅い FIG. 9 is a cross-sectional view showing the configuration between the upper end of the drum and the casing top plate. That is, the double ring 34 is fixed to the casing top plate all around, and the inner annular ring wall of the drum is rotated on the evening side of the double ring and the partition wall of each drum is powered. The upper end can be rotated inside the double ring, and an adsorbent layer equal to or longer than the settling length of the adsorbent layer due to the rotational movement of the drum is held in the double ring. Should be able to rotate with each partition wall. At least one supply port for the adsorbent is provided in the casing top plate section in the double ring and communicates with the adsorbent supply tank. According to this, the space between the casing top plate and the upper end of the drum is provided. Since the passing gas surely passes through the adsorbent layer in the direction of the arrow, the self-sealing of the gas by the adsorbent itself becomes possible. The double ring has one of the Ring shallow and the other shallow enough to prevent spillage of adsorbent
た組合わせであってもよい。 Other combinations may be used.
本発明においては、 吸着材の磨耗はドラムとケーシング底板又は天板 間の摺動部においてのみ発生するものではなく、 更新区画における吸着 材の更新時及び粒状吸着材受槽から粒状吸着材供給槽に至る"^ iの吸着 材の循環経路においても発生する。 これらの磨耗により ½する粉塵は、 主に更新区画を翻したガス中に継続的に排出され、 他の区画を通過し たガスと混合して系外に排出されることになる。 単独で使用される場合 には、 周辺に粉塵を飛散させることになり、 前処理装置として使用され る場合には後段の吸着装置などを閉塞させる原因となる。 従って、 当該 排ガスはバグフィルターなどの集塵機を経由して排出することが望まし いが、 大風量の排ガスを処理する装置においては、 一般に巨大な集塵機 を必要とするためその実現は容易なことではない。  In the present invention, the wear of the adsorbent does not occur only in the sliding portion between the drum and the casing bottom plate or the top plate, but when the adsorbent is renewed in the renewal section and from the granular adsorbent receiving tank to the granular adsorbent supply tank. The dust generated by these abrasions is continuously discharged mainly into the gas that has turned over the renewal section, and is mixed with the gas that has passed through the other sections. When used alone, dust will be scattered around, and when used as a pre-treatment device, it will cause clogging of subsequent adsorption devices, etc. Therefore, it is desirable to discharge the exhaust gas through a dust collector such as a bag filter, but a device that treats a large amount of exhaust gas generally requires a huge dust collector. The realization of is not easy.
しかし、 本発明のドラムを回転する方式によれば、 比較的容易に上雪己 目的を達成することができる。 即ち、 ドラムの更新区画を通過したガス を誘導して別に形成する集塵室に導き、 該集塵室でエアーパルス逆洗付 バグフィルターなどにより集塵処理を行い、 実質的に発塵作用がないド ラムの他の区画を通過したガスと混合して排出すれば、 集塵機を極めて 小型にできる。 上記の集塵のためのガスの流通経路には、 必要に応じて 昇圧用のガスブロア一を設けるとよい。  However, according to the method of rotating the drum of the present invention, the object can be achieved relatively easily. That is, the gas that has passed through the renewal section of the drum is guided to a separately formed dust collection chamber, and the dust collection processing is performed by a bag filter or the like in which air pulse backwashing is performed. Dust collectors can be made extremely compact if they are mixed with the gas that has passed through other sections of the empty drum and discharged. It is preferable to provide a gas blower for increasing the pressure in the above-mentioned gas circulation path for dust collection, if necessary.
第 1 0図及び第 1 1図は、 本発明の吸着装置に集塵機を設けた一例で あるが、 勿論これに限るものではない。 ガスはドラム内側より供給され て矢印の方向に流れ、 更新区画 3 5のドラム外側環状壁に近接してガス 誘導仕切壁 3 6を設けて更新区画通過ガスをケーシングを仕切って形成 した集 5 3に導き、該集 でエアーノ、 °ルス逆洗付バグフィルター 3 7で粉塵を滤過分離し、 ガスブロア一 3 8で昇圧して主たる排ガス域 に返送する。 粉塵は集塵室下部受槽 5 4に受け、 定期的に廃棄処分する ことができる。 FIGS. 10 and 11 show an example in which a dust collector is provided in the suction device of the present invention, but the present invention is not limited to this. The gas is supplied from the inside of the drum and flows in the direction of the arrow, and a gas guide partition wall 36 is provided near the drum outer annular wall of the renewal section 35 to collect the gas passing through the renewal section by partitioning the casing. In this collection, dust is filtered through an air nozzle, a bag filter with backwash 37 °, and the pressure is increased by a gas blower 38 to increase the main exhaust gas area. Return to. Dust can be collected in the lower receiving tank 54 of the dust collection chamber and periodically disposed of.
また、 発生粉塵の は、 ケーシング底板上に堆積する割合が高く、 定期的に取り除くことが好ましい。 この場合にも、 本発明のドラム内外 に粉塵用スクレーパーを設けることにより、 ドラムの回転につれ堆積粉 麈を搔き取り、 排出口に集めて粉塵用受層に受け、 定期的に廃棄処分す ることが合理的に行える (図示省略) 。  Further, the generated dust has a high rate of depositing on the casing bottom plate, and it is preferable to remove the dust periodically. Also in this case, by providing a dust scraper inside and outside of the drum of the present invention, the deposited dust is removed as the drum rotates, collected at the discharge port, received by the dust receiving layer, and periodically disposed of. This can be done rationally (not shown).
ドラムを構成する環状壁の構成は、 円筒状でもよいが、 区画毎に仕切 壁間に適宜に取付用金具枠を設け、 太径の強度支持用金網を細径の吸着 材保持用金網でサンドィッチ状にして周囲を金具で固定した平面状のュ ニットを前記金具枠にボルトなどで固定して作製してもよい。 ドラム環 状部内側に面する細径の金網は、 太径の金網に吸着材の破砕片が詰まる ことを防止すると共に、 更新区画における移動のために吸着材と金網間 の滑りをよくし磨耗を防止する効果がある。 吸着材との摩擦により細径 金網の一部が 損しても上記の機能は達成でき、 吸着材の保持はドラム 環状部タト側の細径の金網により行われる (図示省略) 。  The configuration of the annular wall that forms the drum may be cylindrical, but an appropriate mounting bracket is provided between the partition walls for each section, and the large-diameter strength support mesh is sandwiched by the small-diameter adsorbent holding mesh. The unit may be manufactured by fixing a flat unit having the shape and fixing the periphery with metal fittings to the metal fitting frame with bolts or the like. The small-diameter wire mesh facing the inside of the drum ring prevents the large-diameter wire mesh from being clogged with crushed pieces of the adsorbent, and also improves the slip between the adsorbent and the wire mesh for movement in the renewal section and wears out. Has the effect of preventing. The function described above can be achieved even if a part of the small-diameter wire mesh is damaged by friction with the adsorbent, and the adsorbent is held by the small-diameter wire mesh on the side of the drum annular portion (not shown).
同一ケーシング内に複数のドラムを配置して並列処理を行うこともで きる。 この場合には、 相対する各更新区画に対して共通の粒状吸着材受 槽、 粒状吸着材移送設備、 粒状吸着材供給槽、 集塵機及び付属設備を設 けることにより、 投資コストを削減してより大風量の排ガス処理用途に 用いることができる (図示省略) 。  A plurality of drums can be arranged in the same casing to perform parallel processing. In this case, by installing a common granular adsorbent receiving tank, granular adsorbent transfer equipment, granular adsorbent supply tank, dust collector and accessory equipment for each renewal section, investment costs can be reduced. It can be used for exhaust gas treatment of large air volume (not shown).
粒状吸着材受槽を、 ケーシング下部に設けて更新区画の吸着材を受け 入れ、 再生及び払い出しを行い、 移送手段で粒状吸着材供給槽に移送す る場合には、 排出のためには、 該受槽下部をコーン形状にすることが好 ましい。 この場合には、 該受槽の全高が高くなることによりそれだけケ 一シング位置が高くなり、 また該受槽コーン部の吸着材の再生効率も低 下する欠点がある。 第 1 2園ま、 該受槽を傾斜して配置した例であり、 ケーシング位置を相対的に低くできると共に、 該受槽内の直胴部のみに 吸着材が充填されて再生を受けるために、 吸着材の再生効率が良く、 吸 着材の受け入れ及び払い出しも合理的に実施できる。 例えば、 活性炭の 安息角は約 4 0度であるので、 これを考慮して該受槽の傾斜角度を付け ればよい。 熱交換部 3 9の形式は、 コイル式、 多管式、 プレート式など の 的に用いられているものでよく、 その他の形式として電熱式であ つてもよい。 A granular adsorbent receiving tank is provided at the lower part of the casing to receive the adsorbent in the renewal section, regenerate and pay out, and when it is transferred to the granular adsorbent supply tank by the transfer means, the receiver tank is used for discharge. It is preferred that the lower part has a cone shape. In this case, as the overall height of the receiving tank increases, the casing position increases accordingly, and the regeneration efficiency of the adsorbent in the receiving tank cone decreases. There are drawbacks. The first and second gardens are examples in which the receiving tank is inclined, and the casing position can be relatively lowered, and only the straight body in the receiving tank is filled with the adsorbent to receive regeneration. The regeneration efficiency of the adsorbent is good, and the adsorbent can be received and paid out rationally. For example, since the angle of repose of activated carbon is about 40 degrees, the inclination angle of the receiving tank may be set in consideration of this. The type of the heat exchange section 39 may be a commonly used type such as a coil type, a multi-tube type or a plate type, and may be an electrothermal type as another type.
粒状吸着材受槽には、 前述したように間接的な加熱冷却機構を付すと 吸着材の再生が効率よくできる。 該受槽の熱交換部に熟冷媒を供給し、 切り替え使用して間接的に加熱冷却を行うことができるが、 熟媒にスチ ームを用いる場合には、 方 II熱終了後にスチーム供給を停止し、 系内に残 存する間接加熟用のスチームを凝 を経由して真空装置により排除し、 上記熱交換部の保有熱を除去して吸着材の冷却に備えてもよい。 また、 粒状吸着材の冷却は亥受槽のみで実施するだけではなく、 粒状吸着材移 送設備あるいは粒状吸着材供袷槽において実施してもよいことは云うま でもない。  If the granular adsorbent receiving tank is provided with an indirect heating / cooling mechanism as described above, the adsorbent can be efficiently regenerated. A mature refrigerant can be supplied to the heat exchange section of the receiving tank, and indirect heating and cooling can be performed by switching.However, when steam is used as the mature medium, steam supply is stopped after the end of heat. Then, the steam for indirect ripening remaining in the system may be removed by a vacuum device via coagulation, and the heat retained in the heat exchange section may be removed to prepare for cooling the adsorbent. Further, it goes without saying that the cooling of the granular adsorbent may be performed not only in the receiving tank but also in the granular adsorbent transfer equipment or the tank provided with the granular adsorbent.
さらに、 粒状吸着材供給設備をケーシングの直上に設け、 粒状吸着材 受糟及び付属設備をケーシンク下部空間に密接配置することにより、 占 有敷地を最小限にしてコンパクトな設備構成とすることができる。 上言己 説明例の他にも、 一つのケーシング内に同心に複数の回転ドラムを構成 し、 同一方向又は相互に逆方向に回転移動可能にして、 上述の趣旨と同 様にして構成することもできる。 また、 本発明は有機溶剤などを含有す る排ガス処理用途に主に使用されるが、 その他のガス処理用途にも用い られることは勿論である。  Furthermore, by installing the granular adsorbent supply equipment directly above the casing and arranging the granular adsorbent receiver and auxiliary equipment closely in the space below the casing, the occupied site can be minimized and a compact equipment configuration can be achieved. . In addition to the example described above, a plurality of rotating drums may be concentrically formed in a single casing so as to be rotatable in the same direction or mutually opposite directions, and configured in the same manner as described above. Can also. Further, the present invention is mainly used for treating exhaust gas containing an organic solvent or the like, but it is needless to say that the present invention is also used for treating other gases.
一方、 粒状吸着材受槽を前述のようにケーシング直下に設けるばかり でなく、 該受槽を吸着装置本体の粒状吸着材排出口から粒状吸着材供給 槽に至る粒状吸着材の循環経路内の任意の位置に設けてもよい。 さらに、 該受槽を前述の流動床式吸着装置などで用いられている公知の連続式再 生装置(例えば、 工業調査会発行化学装置 1 9 8 9年 1 0月号 3 5頁図 6 ) と同じく、 連続移動層として操作をして再生用ガスと粒状吸着材と を向流接触させることにより使用済み粒状吸着材を連続的に再生する再 生装置として用いてもよい。 また、 再生排ガスは、 前述の冷却、 凝縮設 備で処理するばかりでなく、 濃縮ガスの処理として燃焼、 その他の再生 排ガス処理設備で処理してもよい。 On the other hand, the granular adsorbent receiving tank is provided just below the casing as described above. Instead, the receiving tank may be provided at an arbitrary position in the circulation path of the particulate adsorbent from the particulate adsorbent discharge port of the adsorption device main body to the particulate adsorbent supply tank. Further, the receiving tank is connected to a known continuous regenerating apparatus used in the above-mentioned fluidized bed adsorption apparatus (for example, Chemical Apparatus issued by the Industrial Research Institute, October 1998, October 35, page 35, FIG. 6). Similarly, it may be used as a regenerating apparatus for continuously regenerating used granular adsorbents by operating as a continuous moving bed and bringing the regeneration gas and the granular adsorbents into countercurrent contact with each other. Further, the regenerated exhaust gas may be treated not only by the cooling and condensing facilities described above, but also by combustion as a treatment of the concentrated gas or by other regenerating exhaust gas treatment facilities.
次に、 本発明の吸着装置のうち、 粒状活性炭を用いた排ガス処理装置 の実施例を、 各区画下端に遠隔駆動式弁機構を設けた吸着構成体をケー シング内に立設した吸着装置につ ^ゝて詳細に説明するが、 本発明はこれ に限定されるものではない。 第 1 3図は本装置の断面立面図であり、 第 1 4図は同じく断面平面図である。 1はケーシングであり、 2は環状に して通気性を有したドラムであり、 仕切壁により多区画に区画されて各 区画内には粒状活性炭が充填され、 P及着構成体を構成する。  Next, among the adsorption devices of the present invention, the embodiment of the exhaust gas treatment device using granular activated carbon is applied to an adsorption device in which an adsorption component provided with a remotely driven valve mechanism at the lower end of each section is erected in a casing. Although described in detail, the present invention is not limited to this. FIG. 13 is a sectional elevation view of the apparatus, and FIG. 14 is a sectional plan view of the same. Reference numeral 1 denotes a casing, 2 denotes an annular drum having air permeability, which is divided into multiple sections by partition walls, and each section is filled with granular activated carbon to form a P-adhering component.
当該ドラムは、 ケーシングに適宜に固定されている。 ドラム下端には、 各区画毎に前述の弁機能を有する制御板機構、 その他の遠隔的に開閉駆 動可能な駆動制御装置を搭載した弁機構 4 0が取り付けられている。 粒 状活性炭供耠槽 1 1は、 ケーシング天板に固設されてドラム各区画との 間が連通されている。 該供給槽内にはドラムを矢印の方向へ通過し処理 されるガスの排出ラインが貫通しており、 下部は粒状活性炭の停滞を防 止し、 ドラム各区画に均等に粒状活性炭を補給可能のようにするために 末広がり状の環状コ一ン形状に構成されている。 該供給槽内部に粒状活 性炭のための整流板などを設けることは自由である。 ドラム上端から該 供給槽内に"^の排ガスが漏入するが、 十分な高さの粒状活性炭層が形 11 成されているので、 漏入ガス量は無視できる程度になる。 The drum is appropriately fixed to the casing. At the lower end of the drum, a control plate mechanism having the above-described valve function for each section, and a valve mechanism 40 having another drive control device that can be remotely opened and closed are mounted. The granular activated carbon supply tank 11 is fixed to the casing top plate and communicates with each section of the drum. A discharge line for the gas to be processed passing through the drum in the direction of the arrow penetrates the supply tank, and the lower part prevents stagnation of the granular activated carbon, and can supply granular activated carbon evenly to each section of the drum. In order to achieve this, it is formed in a flared annular cone shape. A rectifying plate or the like for the granular activated carbon may be freely provided inside the supply tank. Exhaust gas "^" leaks into the supply tank from the upper end of the drum, but a granular activated carbon layer of sufficient height is formed. 11 so that the amount of leaked gas is negligible.
ドラムの該当する区画内の粒状活性炭を更新する場合には、 当該区画 の弁機構 4 0の開度を調整し、 当該区画内に新たに粒状活性炭供給槽か ら粒状活性炭を補給しながら、 当該区画内に充填されて t、る粒状活性炭 を徐々に排出し、 ドラム各区画下端部と連通している円錐状通路 4 1及 び開放した弁機構 1 4を経由して粒状活性炭受槽に受ける。 該受槽に付 属する検知装置又はタイマーにより、 所定量の活性炭の受け入れが完了 して当該区画内の更新が終了したと判断される時点で、 当該区画の弁機 構 4 0及び弁機構 1 4を閉止する。 このようにして、 通気下で順次に各 区画内の粒状活性炭が更新される。 粒状活性炭受槽における再生操作か ら粒状活性炭供給槽への移送操作までの各操作及び設備構成は前記形式 の発明と同様である。  When renewing the granular activated carbon in the relevant section of the drum, adjust the opening of the valve mechanism 40 in the relevant section, and replenish the granular activated carbon from the granular activated carbon supply tank into the relevant section while renewing the granular activated carbon. The granular activated carbon filled in the compartment is gradually discharged, and is gradually received by the granular activated carbon receiving tank via the conical passage 41 communicating with the lower end of each compartment of the drum 41 and the open valve mechanism 14. When it is determined by the detection device or timer attached to the receiving tank that the reception of a predetermined amount of activated carbon has been completed and the renewal within the section has been completed, the valve mechanism 40 and the valve mechanism 14 of the section are turned off. Close. In this way, the granular activated carbon in each section is sequentially renewed under ventilation. The operations and equipment configuration from the regeneration operation in the granular activated carbon receiving tank to the transfer operation to the granular activated carbon supply tank are the same as those of the above-mentioned type.
更新区画を通過したガスは、 ドラム内側環状壁に近接して回転可能に 構成したガス誘導仕切壁 3 6からなるガス誘導室 4 2に導かれ、 円錐状 通路 4 1に固設した排出ノズル 4 3を経由して排出される。 該ガス誘導 室は回転軸 2 8に連結され、 駆動装置 6によって間欠的に回転され、 粒 状活性炭更新区画で主に発生する粉塵を含む排ガスを局所的に集めて排 出ノズルに誘導する。 ガス誘導室と排出ノズルの回転連結部には間隙を ノ、。ツキングなどでガスシールを施すとよい。  The gas that has passed through the renewal section is guided to a gas guide chamber 42 composed of a rotatable gas guide partition wall 36 near the drum inner annular wall, and a discharge nozzle 4 fixed to a conical passage 41. Exhausted via 3. The gas induction chamber is connected to a rotating shaft 28 and is intermittently rotated by a driving device 6 to locally collect exhaust gas containing dust mainly generated in the granular activated carbon renewal section and guide the exhaust gas to a discharge nozzle. There is no gap between the gas guide chamber and the rotating connection between the discharge nozzle. It is preferable to apply a gas seal with a tucking or the like.
上記排出ノズルから排出する排ガスは、 前記形式の発明と同様に別に 配設する集塵機で集塵処理を行えばよ、 。 更新区画で主に発生する粉塵 を局所集塵する艘がない場合には、 前記ガス誘導室を省略して可動部 がない吸着装置本体を構成できることは云うまでもない。  Exhaust gas discharged from the discharge nozzle may be subjected to dust collection processing by a separately disposed dust collector similarly to the above-described type of invention. In the case where there is no boat that locally collects dust mainly generated in the renewal section, it goes without saying that the gas guide chamber can be omitted and a suction device main body having no movable part can be configured.
また、 前記ドラム各区画毎に設ける遠隔駆動式弁機構に代えて、 第 1 5図に示すように、 ドラム下端に接して前記ガス誘導室と共に回転して ドラム下端直下の摺動面に少なくとも 1個の開口を有し、 当該開口部に 前記遠隔駆動式弁機構 4 0を有した回転板状体 4 5を設けることによつ ても同じ目的を達成することができる。 Further, instead of the remote drive valve mechanism provided for each section of the drum, as shown in FIG. 15, it rotates together with the gas guide chamber in contact with the lower end of the drum and at least one sliding surface immediately below the lower end of the drum is provided. Has openings, and the openings The same object can be achieved by providing the rotary plate 45 having the remote drive valve mechanism 40.
また、 ドラムの形状、 構成、 配置、 制御板あるいは粒状吸着材受槽の 形状、 構成、 配置など前記形式の発明で詳述した事項を本形式の発明に 応用することは自由である。 本形式の発明においては、 前記形式の発明 よりも装置高さが相対的に高くなるが、 極めて大風量の用途に対する大 型装置であってもドラムを回転移動する必要がないために比較的簡単に 各部分の作製及び現地組立が可能である。 即ち、 第 1 3図に示すように、 吸着装置本体及び付属設備を各ュニットに分割して作製し、 現地におい て重機を用いて各ユニットを組み立て一体のものに構成できる。 ュニッ ト間のドラム部分の接合は、 一方のュニットのドラム先端部が他方のュ ニットの先端部と嵌合するようにすればよく、 上部ュニットのドラム先 端部を下部ュニットのドラム先端部に挿入する接合形式はその例である。 前記ガス誘導室及び回転軸についても適宜に分割して作製し、 現地で一 体に組み立てをし、 前記ユニットの組み立てと共に本体に組み込むこと にすればよい。 上記ユニットは、 水平断面で分割するだけではなく垂直 断面で分割したュニットとしてもよく、 大型装置の場合には製作及び輸 送上の困難を解消できてしかも経済的であって特に有利となる。 設置ス ペース及び排ガス処理量に応じて本発明の tゝずれかの装置形式を選択す ることができる。  In addition, it is possible to freely apply the matters detailed in the invention of the above-described type, such as the shape, configuration, and arrangement of the drum, and the shape, configuration, and arrangement of the control plate or the granular adsorbent receiving tank, to the invention of this type. In this type of invention, the device height is relatively higher than in the above type of invention, but it is relatively simple because even a large device for an application with extremely large air volume does not need to rotate and move the drum. Each part can be manufactured and assembled locally. That is, as shown in FIG. 13, the suction device main body and the accessory equipment can be divided into each unit and produced, and each unit can be assembled and assembled integrally on site using heavy equipment. The drum unit between the units may be joined so that the tip of the drum of one unit is fitted with the tip of the other unit, and the tip of the drum of the upper unit is attached to the tip of the drum of the lower unit. The joining type to be inserted is an example. The gas guide chamber and the rotating shaft may be appropriately divided and produced, assembled together on site, and incorporated into the main body together with the assembly of the unit. The unit may be a unit which is divided not only in a horizontal section but also in a vertical section. In the case of a large-sized device, it is possible to eliminate the difficulty in production and transportation, and it is economically particularly advantageous. Depending on the installation space and the amount of exhaust gas treatment, the device type of the present invention can be selected.
本発明は、 前述のように、 排ガス処理用途に対して後続の主処理装置 の前処理装置として、 多成分系の排ガス中に含まれる高沸点物質などの 各種吸着材又は触媒の劣化要因物質を除去する目的に使用することがで きる。 この場合に、 目的除去成分である高沸点物質以外の成分は、 粒状 吸着材の更新直後であって使用時間の短いドラムの区画内においては高 沸点物質と共に吸着材に吸着捕捉される。 そのため、 該成分は該区画か ら排出されるガス中には含まれない。 更に使用時間の長い区画において は、該成分が該区画から排出されるガス中に漏洩し始め、 以後は に 力つ多量に漏洩し破過するに至る。 従って、該成分が漏洩し始める区画 から粒状吸着材の更新区画までの使用時間の長 ^区画から排出されるガ スのみを後続の主処理装置に供給して処理をし、 その他の使用時間の短 い区画から排出されるガスはそのまま放出すればよい。 これにより後続 の主処理装置が処理すべき排ガス量を効果的に低減できるのである。 本 発明の吸着装置を直列多段に使用する場合も同様である。 As described above, the present invention uses various adsorbents such as high-boiling substances contained in multicomponent exhaust gas or substances that cause deterioration of the catalyst as a pretreatment device of a subsequent main treatment device for exhaust gas treatment. Can be used for removal purposes. In this case, components other than the high-boiling substance, which is the target removal component, are adsorbed and captured by the adsorbent together with the high-boiling substance in the section of the drum that is used immediately after the renewal of the particulate adsorbent and has a short usage time. Therefore, the component is It is not included in the gas emitted from In compartments with longer use times, the components begin to leak into the gas exhausted from the compartment, and subsequently leak in large quantities and break through. Therefore, the use time from the section where the component starts to leak to the renewal section of the particulate adsorbent is long ^ Only the gas discharged from the section is supplied to the subsequent main processing unit for processing, and the other use time is reduced. The gas discharged from the short compartment may be released as it is. As a result, the amount of exhaust gas to be processed by the subsequent main processing unit can be effectively reduced. The same applies to the case where the adsorption device of the present invention is used in multiple stages in series.
本発明のうち、 ケーシング内に吸着構成体を回転可能に立設した吸着 装置について、 上記方法を実施するための構成例を第 1 6図に示す。前 述のドラムの更新区画を通過したガスを集塵室に導く方法と同様にして、 ケーシングにガス誘導仕切壁を設けて当該ガスを誘導することにより、 上記目的を簡易に達成できる。被処理ガス中の上記成分の濃度変動など を考慮して、放出ガスライン 4 6に別に処理装置を設けることは自由で ある。更新区画の集塵処理を同時に実施する場合は、各々のガス誘導仕 切壁によりケーシングの排出ガスゾーンを 3分割することになる。  Among the present invention, FIG. 16 shows an example of a configuration for carrying out the above-mentioned method with respect to a suction device in which a suction component is rotatably provided in a casing. The above object can be easily achieved by providing a gas guiding partition wall in the casing and guiding the gas in a manner similar to the method of guiding the gas that has passed through the renewal section of the drum to the dust collection chamber described above. In consideration of the concentration fluctuation of the above-mentioned components in the gas to be treated, etc., it is free to provide a separate treatment device in the release gas line 46. If the dust collection process of the renewal section is performed at the same time, the exhaust gas zone of the casing will be divided into three by each gas guide partition wall.
また、本発明の別の吸着装置を用いる場合も同様にすればよく、例え ば第 1 3図において更新区画の排出ガスのガス誘導室と同様にして上記 放出ガスのガス誘導室を設け、 図下部から更新区画の排出ガスを排出す るラインと同様にして図上部から上記放出ガスを排出するラインを構成 すればよい (図示省略) 。  The same may be applied to the case where another adsorption device of the present invention is used. For example, in FIG. 13, the above-mentioned gas guide chamber for the released gas is provided in the same manner as the gas guide chamber for the exhaust gas in the renewal section. A line for discharging the above-mentioned released gas from the top of the figure may be configured in the same manner as the line for discharging the exhaust gas from the renewal section from the bottom (not shown).
ところで、 粒状吸着材の更新操作にっ ゝては、 ドラムの更新区画で該 区画分の粒状吸着材の更新を行 V 、順次各区画内の粒状吸着材の更新を 行うところの間欠的な更新操作について説明してきたが、 本発明には連 続的な更新操作を適用することも可能である。即ち、本発明には、更新 区画の下部充填量のみが更新のために排出されるように調整し、 同様に して順次各区画内の下部充填量を更新し、 粒状吸着材をドラムの全周に わたり下部より均等に連続的に更新する操作をも含むものである。 この 際には、 ドラムの区画壁により粒状吸着材の if流が防止され、 粒状吸着 材をドラム全周にわたりマスフロー状態で下方に移動させることができ るのである。 連続的に排出された使用済み粒状吸着材は、粒状吸着材受 槽で連続的に受け入れ、 再生及び払い出し処理がされ、 または複数の粒 状吸着材受槽で交互に間欠的に受け入れ、 再生及び払い出し処理がされ、 粒状吸着材移送設備で粒状吸着材供給槽に移送される。 By the way, in the update operation of the particulate adsorbent, the update of the particulate adsorbent in the update section of the drum is performed in the update section of the drum V, and the update of the particulate adsorbent in each section is performed intermittently. Although the operation has been described, a continuous update operation can be applied to the present invention. That is, the present invention provides for adjustment so that only the lower fill of the renewal compartment is discharged for renewal, This also includes the operation of sequentially updating the lower filling amount in each section and updating the granular adsorbent uniformly and continuously from the lower part over the entire circumference of the drum. In this case, if flow of the particulate adsorbent is prevented by the partition wall of the drum, the particulate adsorbent can be moved downward in a mass flow state over the entire circumference of the drum. The spent particulate adsorbent discharged continuously is continuously received in the particulate adsorbent receiving tank and regenerated and dispensed, or intermittently alternately received and regenerated and dispensed in multiple particulate adsorbent receiving tanks It is treated and transferred to the granular adsorbent supply tank by the granular adsorbent transfer equipment.
実施例 1 Example 1
メチルェチルケトン(MEK) を 900 ppm、 ジメチルホルムアミ ド (DMF) を 1300 ppm含む 10 CTCの排ガスを、水吸収塔で冷 却吸収処理を行い DMFの 90〜93%を吸収捕集し、 吸収塔排ガスを 40。C、 関係湿度 60%に調整し、粒径 4 mmの粒状活性炭が充填され た第 2図の装置で吸着処理を行ゝ D M Fの残量を連続的に吸着除去し、 0. 45 at mの真空下で 1 10。Cの過熟スチームにより 1区画当た り約 1.5時間で更新、 再生、移送操作を行い、凝縮液は吸収塔排出 液と共に DMF回収蒸留塔に供給し精 DMFを得た。 引き続き、 上記吸 着処理後の排ガスを 2槽切り替え式の繊維状活性炭吸着装置に供給し、 1 5分間吸着、 10分間 120°Cの過熱スチームによる再生を行い ME Kの全量を吸着除去し、 凝縮液は M E K回収蒸留塔に供給し精 M E Kを 得た。 吸収塔排出液、各吸着装置凝縮液中の不純物は極めて少量であり、 回収 DMF、 MEK共に十分再使用に耐える純度が得られた。繊維状活 性炭吸着装置の布製プレフィルターには、 粒状活性炭の磨耗粉塵が認め られたが、 繊維状活性炭の劣化は認められなかった。  Exhaust gas of 10 CTC containing 900 ppm of methyl ethyl ketone (MEK) and 1300 ppm of dimethylformamide (DMF) is cooled and absorbed in a water absorption tower, and 90-93% of DMF is absorbed and collected. Absorption tower exhaust gas 40. C, the relative humidity was adjusted to 60%, and the adsorption treatment was carried out with the apparatus shown in Fig. 2 filled with granular activated carbon having a particle size of 4 mm.The remaining amount of DMF was continuously adsorbed and removed, and 0.45 atm. 1 10 under vacuum. The renewal, regeneration, and transfer operations were performed in about 1.5 hours per section by the overripened steam of C, and the condensate was supplied to the DMF recovery distillation column together with the effluent of the absorption tower to obtain purified DMF. Subsequently, the exhaust gas after the above-mentioned adsorption treatment was supplied to a fibrous activated carbon adsorption device of a two-tank switching type, which was adsorbed for 15 minutes and regenerated with superheated steam at 120 ° C for 10 minutes to adsorb and remove the entire amount of MEK. The condensate was supplied to the MEK recovery distillation column to obtain purified MEK. The impurities in the effluent of the absorption tower and the condensate of each adsorption device were extremely small, and both recovered DMF and MEK were sufficiently pure enough to be reused. The cloth pre-filter of the fibrous activated carbon adsorption device showed particulate activated carbon abrasion dust, but no deterioration of the fibrous activated carbon.
実施例 2 Example 2
第 13図の装置を用い、 ガス誘導室からの排出ガスを大気に放出した 以外は実施例 1と同様に実施したところ、実施例 1と同様の吸着結果が 得られ、繊維状活性炭の劣化も認められなかった。 また、繊維状活性炭 吸着装置の布製ァレフィルターには、 粒状活性炭の磨耗粉塵は殆ど認め られなかった。 Using the device shown in Fig. 13, the exhaust gas from the gas induction chamber was released to the atmosphere. Except for the above, the same procedure was performed as in Example 1 to obtain the same adsorption results as in Example 1, and no deterioration of the fibrous activated carbon was observed. In addition, in the cloth filter of the fibrous activated carbon adsorption device, almost no abrasion dust of granular activated carbon was recognized.
実施例 3 Example 3
第 1 3図の装置で、 ガス誘導室からの排出ガスを大気に放出し、 ドラ ムからの粒状活性炭の排出機構を第 1 5図のターンテーブル方式に改造 した以外は実施例 2と同様にして実施した。 吸着結果は実施例 2と同様 であり、 摩耗粉塵は殆ど認められず、 繊維状活性炭の劣化も認められな かった。 産業上の利用可能性  Except that the exhaust gas from the gas induction chamber was released to the atmosphere using the device shown in Fig. 13, and the mechanism for discharging granular activated carbon from the drum was modified to the turntable type shown in Fig. 15, the same operation as in Example 2 was performed. It was carried out. The results of adsorption were the same as in Example 2, with little wear dust and no deterioration of the fibrous activated carbon. Industrial applicability
本発明の連続式吸着装置によれば、 被処理ガスの通流を中断すること なく、 吸着構成体中の粒状吸着材を使用時間が長い順序に更新すること ができ、連続的に一定の吸着能力を維持することができる。 本発明の吸 着装置は、大風量のガス処理用途の主吸着装置として好適であるばかり でなく、他の形式の主処理装置の前処理装置としても有効に利用でき、 従来の大風量のガス処理用途の粒状吸着材を用いる吸着装置の欠点を大 幅に改善したものと云える。 特に、繊、維状活性炭、ハニカムローター、 燃焼用触媒などを劣化させる高沸点物質、 ミストその他の劣化要因物質 を含む大風量の排ガスから有機溶剤などの有臭 ·有害物質を経済的に除 去するための主吸着装置又は他の形式の主処理装置の前処理装置として 好適である。  ADVANTAGE OF THE INVENTION According to the continuous adsorption apparatus of this invention, the flow of the to-be-processed gas can be interrupted, and the granular adsorbent in an adsorption | suction structure can be updated in order of a long use time, and the constant adsorption is carried out continuously Can maintain ability. The adsorption device of the present invention is not only suitable as a main adsorption device for large air volume gas processing applications, but also can be effectively used as a pretreatment device for other types of main air treatment devices. It can be said that the drawbacks of the adsorption device using the granular adsorbent for treatment are largely improved. In particular, economical removal of odorous and harmful substances such as organic solvents from large-volume exhaust gas containing high-boiling substances, mist and other deteriorating substances that degrade fibers, activated carbon, honeycomb rotors, combustion catalysts, etc. It is suitable as a pre-treatment device for a main adsorption device or another type of main treatment device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 通気性を有する鉛直の環状壁で環状空間を形成し、該環状空間を 鉛直の仕切壁で多区画に区分し、各区画内に粒状吸着材を充填してな る吸着構成体を、 被処理ガス導入口、 被処理ガス排出口、 粒状吸着材 供給口及び粒状吸着材排出口を有する気密なケーシング内に立設し、 該ケーシング内空間を被処理ガスの導入ゾーン、 吸着処理ゾーン及び 排出ゾーンに区分し、 上記吸着構成体の各区画を順次に上記ケーシン グの粒状吸着材供給口及び粒状吸着材排出口と連通せしめ、該区画内 の粒状吸着材を移動層を形成させながら することにより被処理ガ スを連続的に吸着処理することを特徴とする連続式吸着装置。 1. An adsorbing structure formed by forming an annular space by a vertical annular wall having air permeability, dividing the annular space into multiple sections by vertical partition walls, and filling each section with a particulate adsorbent. The gas to be treated, the gas to be treated, the gas to be treated, the particulate adsorbent supply port and the particulate adsorbent are disposed in an airtight casing having a gas outlet, and the interior space of the casing is filled with a gas to be treated, an adsorption treatment zone, and the like. It is divided into a discharge zone, and each section of the above-mentioned adsorbing structure is sequentially communicated with the particulate adsorbent supply port and the particulate adsorbent discharge port of the above-mentioned casing, and the particulate adsorbent in this section is formed while forming a moving layer. A continuous adsorption apparatus characterized in that the gas to be treated is continuously subjected to an adsorption process.
2 . 吸着構成体をケーシング内に回転可能に立設した請求の範囲第 1 2. Claim 1 in which the suction structure is rotatably provided in the casing.
3 . 各区画下端に遠隔駆動式弁機構を備えた吸着構成体を、 各区画上 端を粒状吸着材供給口と連通してケーシング内に立設した請求の範囲 第 1項記載の吸着装置。 3. The adsorption apparatus according to claim 1, wherein an adsorption component provided with a remotely driven valve mechanism at the lower end of each section is erected in a casing such that an upper end of each section communicates with a granular adsorbent supply port.
4 . 吸着構成体を、 各区画上端を粒状吸着材供給口と連通してケーシ ング内に立設し、 上記吸着構成体下端に近接して回転可能にして少な くとも 1個の開口を有し、該開口に遠隔駆動式弁機構を備えた板状体 を上記ケーシング内に設けた請求の範囲第 1項記載の吸着装置。  4. The adsorption structure is erected in the casing with the upper end of each section communicating with the granular adsorbent supply port, and is rotatable close to the lower end of the adsorption structure to have at least one opening. 2. The suction device according to claim 1, wherein a plate-like body provided with a remotely driven valve mechanism is provided in the casing in the opening.
5 . 請求の範囲第 1項、 第 3項又は第 4項の ゝずれか 1項記載の吸着 装置において、 吸着構成体ユニットをケーシングュニット内に立設し たユニットを組み合わせて Ηφ:とした吸着装置。  5. The suction device according to any one of claims 1, 3 and 4, wherein the suction component unit is combined with a unit erected in a casing unit to obtain Ηφ: Suction device.
6 . 請求の範囲第 1項〜第 5項のいずれか 1項記載の吸着装置におい て、 吸着構成体の端部分が先細り状の環状コ一ン形状である吸着装置 c 6. Adsorber odor of any one of claims paragraph 1 - paragraph 5 Te, the end portion of the suction structure is tapered annular co Ichin shape adsorber c
7 · 請求の範囲第 1項〜第 6項の 、ずれか 1項記載の吸着装置におい て、粒状吸着材排出口から粒状吸着材供給口に至る粒状吸着材循環経 路を配管及び粒状吸着材移送設備で形成し、 該経路内に少なくとも粒 状吸着材受入口、 粒状吸着材払出口、再生用ガス供給口及び再生排ガ ス出口を設けた粒状吸着材受槽及び少なくとも粒状吸着材受入口及び I 粒状吸着材払出口を設けた粒状吸着材供袷槽を配設し、上記粒状吸着 材受槽に再生用ガス供給設備及び再生排ガス処理設備を連結した吸着 7 · The adsorption device according to any one of claims 1 to 6 A particulate adsorbent circulation path from the particulate adsorbent discharge port to the particulate adsorbent supply port is formed by piping and particulate adsorbent transfer equipment, and at least the particulate adsorbent inlet and the particulate adsorbent outlet are provided in this path. A granular adsorbent receiving tank provided with a regeneration gas supply port and a regeneration exhaust gas outlet, and a granular adsorbent supply tank provided with at least a granular adsorbent inlet and an I granular adsorbent outlet. Adsorption by connecting regeneration gas supply equipment and regeneration exhaust gas treatment equipment to the material receiving tank
8 . 請求の範囲第 7項記載の吸着装置において、粒状吸着材受槽が傾 斜して配設されたものである吸着装置。 8. The adsorption device according to claim 7, wherein the granular adsorbent receiving tank is disposed at an angle.
9 . 請求の範囲第 7項又は第 8項記載の吸着装置において、粒状吸着 材供給槽の下部が末広がり状の環状コーン形状である吸着装置。  9. The adsorption device according to claim 7 or 8, wherein a lower portion of the granular adsorbent supply tank has a flared annular cone shape.
1 0 . 請求の範囲第 1項〜第 9項の ゝずれか 1項記載の吸着装置に集塵 機を連結した吸着装置。 10. An adsorption device in which a dust collector is connected to the adsorption device according to any one of claims 1 to 9.
1 1 . 請求の範囲第 1項〜第 1 0項のいずれか 1項記載の吸着装置を直 列多段に配設し、前段の吸着装置における処理済みガスのうち、粒状 吸着材の更新後経過時間の短 Iゝ区画を通過したガスを、他の区画を通 過したガスと区分して側流として除去し、後段の吸着装置に供給しな いことを特徴とするガスの連続吸着処理方法。  11. The adsorber according to any one of claims 1 to 10 is arranged in series and in multiple stages, and the progress of renewal of the particulate adsorbent among the treated gases in the preceding adsorber is as follows. Short time I ゝ A continuous adsorption treatment method for gas, characterized in that the gas that passed through compartment I is separated from the gas that passed through other compartments and removed as a side stream, and is not supplied to the subsequent adsorption device. .
1 . 請求の範囲第 1項〜第 1 0項のいずれか 1項記載の吸着装置が被 処理ガスの主処理装置の前処理装置であり、 該前処理装置における処 理済みガスのうち、粒状吸着材の更新後経過時間の短い区画を通過し たガスを、他の区画を したガスと区分して側流として除去し、主 処理装置に供給しないことを特徴とするガスの連続吸着処理方法。 1 3 . 通気性を有する鉛直の環状壁で環状空間を形成し、該環状空間を 鉛直の仕切壁で多区画に区分し、各区画内に粒状吸着材を充填してな る吸着構成体を、被処理ガス導入口、被処理ガス排出口、粒状吸着材 供給口及び粒状吸着材排出口を有する気密なケーシング内に立設し、 該ケーシング内空間を被処理ガスの導入ゾーン、 吸着処理ゾーン及び 排出ゾーンに区分し、 上記吸着構成体の各区画を順次に上言己ケーシン グの粒状吸着材供給口及び粒状吸着材排出口と連通せしめ、 該区画内 の粒状吸着材を移動層を形成させながら更新することにより被処理ガ スを連続的に吸着処理することを特徴とするガスの連続吸着処理方法。 1. The adsorption device according to any one of claims 1 to 10, wherein the adsorption device is a pretreatment device for a main treatment device for a gas to be treated; A method for continuously adsorbing gas, characterized in that gas that has passed through a section with a short elapsed time after renewal of the adsorbent is separated from gas in other sections and removed as a sidestream, and is not supplied to the main processing unit. . 1 3. An annular space is formed by a vertical annular wall having air permeability, the annular space is divided into multiple sections by a vertical partition wall, and an adsorbing structure formed by filling a granular adsorbent in each section. , Gas inlet for processing, gas outlet for processing, granular adsorbent It is erected in an airtight casing having a supply port and a particulate adsorbent discharge port, and the interior space of the casing is divided into an introduction zone, an adsorption treatment zone, and a discharge zone for the gas to be treated, and each section of the adsorption component is sequentially arranged. The gas to be treated is continuously adsorbed by communicating with the granular adsorbent supply port and the granular adsorbent discharge port of the casing and updating the particulate adsorbent in the compartment while forming a moving layer. A method for continuously adsorbing gas.
PCT/JP1996/002382 1995-08-29 1996-08-27 Continuous adsorption apparatus and method of using the same WO1997007872A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/245557 1995-08-29
JP24555795 1995-08-29
JP6012196 1996-02-21
JP8/60121 1996-02-21

Publications (1)

Publication Number Publication Date
WO1997007872A1 true WO1997007872A1 (en) 1997-03-06

Family

ID=26401192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002382 WO1997007872A1 (en) 1995-08-29 1996-08-27 Continuous adsorption apparatus and method of using the same

Country Status (1)

Country Link
WO (1) WO1997007872A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107866129A (en) * 2017-09-22 2018-04-03 广东林顿重工股份有限公司 A kind of adsorbent equipment
CN111773924A (en) * 2020-06-22 2020-10-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Catalytic device for denitration SCR hybrid contact in diesel engine tail gas
NL2028473B1 (en) * 2021-06-17 2022-12-27 Greensanesolution B V Gas treatment device
CN116099357A (en) * 2023-04-15 2023-05-12 山西清凯环保工程有限公司 SCR denitration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673525A (en) * 1979-11-20 1981-06-18 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer
JPH02211212A (en) * 1989-02-10 1990-08-22 Mitsui Mining Co Ltd Cylindrical moving bed gas treatment apparatus and exhaust gas desulfurization and denitration apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673525A (en) * 1979-11-20 1981-06-18 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer
JPH02211212A (en) * 1989-02-10 1990-08-22 Mitsui Mining Co Ltd Cylindrical moving bed gas treatment apparatus and exhaust gas desulfurization and denitration apparatus using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107866129A (en) * 2017-09-22 2018-04-03 广东林顿重工股份有限公司 A kind of adsorbent equipment
CN111773924A (en) * 2020-06-22 2020-10-16 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Catalytic device for denitration SCR hybrid contact in diesel engine tail gas
CN111773924B (en) * 2020-06-22 2022-05-17 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Catalytic device for denitration SCR hybrid contact in diesel engine tail gas
NL2028473B1 (en) * 2021-06-17 2022-12-27 Greensanesolution B V Gas treatment device
EP4176959A1 (en) * 2021-06-17 2023-05-10 Greensanesolution B.V. Gas treatment device
CN116099357A (en) * 2023-04-15 2023-05-12 山西清凯环保工程有限公司 SCR denitration system
CN116099357B (en) * 2023-04-15 2023-06-09 山西清凯环保工程有限公司 SCR denitration system

Similar Documents

Publication Publication Date Title
JP7103226B2 (en) Organic solvent recovery system and organic solvent recovery method
US6051199A (en) Integrated catalytic/adsorption process for destroying volatile organic compounds
CA2136165C (en) Process and installation for removing solvent vapor from exhaust air
CN112387061B (en) Waste gas trapping and purifying device for activated carbon adsorption tower
WO2022011937A1 (en) Fluidized bed system capable of realizing zero emissions of waste gas
JPH10508797A (en) Method and apparatus for purifying gaseous effluent streams with contaminants
CN102091484A (en) Integrated device for removal of dusts and gaseous pollutants
CN107297112A (en) The deodorization of biological sludge pyrolysis synthesis gas and purification processes system
JPH10286426A (en) Continuous adsorption device and utilizing method of the same
JPH07108368B2 (en) Method for removing water in mixed gas
US4548623A (en) Perforated trough conditioning device
WO1997007872A1 (en) Continuous adsorption apparatus and method of using the same
CN207056224U (en) Acid gas purifying processing system in a kind of biological sludge pyrolysis synthesis gas
US7309379B2 (en) Moving bed adsorber/desorber and low flow (high yield) desorber devices and their methods of use
US6458186B1 (en) Method for regenerating electrically conducting adsorbents laden with organic substances
KR100797156B1 (en) A solvent recovery appratus
CN2412644Y (en) Moving bed purifying device
JPH0584420A (en) Method and equipment for concentration
KR100550517B1 (en) Apparatus for simultaneous removal of dust and smell
JP2000300955A (en) Facility for treatment of lean gaseous hydrocarbon contained in waste gas
CN213408171U (en) Fluidized bed adsorption purification device
JPH10337438A (en) Mobile cell type adsorption desorption device and its use method
CN204865437U (en) Extension active carbon life's device
RU2443462C1 (en) Compressed air preparation unit
JP2008207138A (en) Hydrocarbon removal/recovery device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase