WO1997005607A1 - Substrate, recording medium including the substrate, cartridge and reproduction apparatus - Google Patents

Substrate, recording medium including the substrate, cartridge and reproduction apparatus Download PDF

Info

Publication number
WO1997005607A1
WO1997005607A1 PCT/JP1996/002157 JP9602157W WO9705607A1 WO 1997005607 A1 WO1997005607 A1 WO 1997005607A1 JP 9602157 W JP9602157 W JP 9602157W WO 9705607 A1 WO9705607 A1 WO 9705607A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
cartridge
substrate
disk
recording
Prior art date
Application number
PCT/JP1996/002157
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Ohnuki
Norio Ohta
Katsusuke Shimazaki
Masafumi Yoshihiro
Toshinori Sugiyama
Takeshi Ohnuki
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Publication of WO1997005607A1 publication Critical patent/WO1997005607A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/03Containers for flat record carriers
    • G11B23/0301Details
    • G11B23/0313Container cases
    • G11B23/0316Constructional details, e.g. shape
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/1058Flying heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/03Containers for flat record carriers
    • G11B23/0301Details
    • G11B23/0307Positioning or centering features

Definitions

  • the present invention is suitable for accommodating a recording medium substrate that is thin but has high rigidity and is suitable for high-density recording, an optical recording medium or a magnetic recording medium using the same, and those thin recording media.
  • the present invention relates to a recording medium and a reproducing apparatus suitable for reproducing or recording / reproducing a thin optical recording medium.
  • NA numerical aperture
  • spherical aberration is proportional to the fourth power of NA
  • coma is proportional to the cube of NA
  • astigmatism is proportional to the square of NA.
  • NA can be increased by reducing the thickness of the substrate of the optical recording medium (see T. SUGAYA et al., IS OM / ODS, 93 Diest, pp. 164 to 165).
  • a method using a thin substrate for example, a method in which two substrates having a thickness of 0.6 mm are laminated as one of the digital video disc standards has been proposed.
  • the most common magneto-optical recording method is currently used as the recording method for such a two-layered optical recording medium.
  • the optical magnetic field modulation recording method described in JP-A-11-229263 and the magnetic field modulation overwriting method put to practical use in MD and the like cannot be applied. It hinders speeding up.
  • the productivity of a two-layered board is low. Therefore, a single-substrate substrate having a small thickness for an optical recording medium is desired.
  • the thickness of a substrate used for an optical disk is about 1.2 mm.
  • the rigidity of the substrate is reduced.
  • the vertical oscillation (surface oscillation) and the tilt angle are particularly deteriorated, and it becomes difficult to record and reproduce the recording medium in a stable state.
  • the magnetic head is positioned at an interval of several tens of nm with respect to the magnetic disk.
  • Fig. 17 shows the cross-sectional structure of a conventional magneto-optical disk-tridge.
  • the drive unit has an automatic focus control mechanism for maintaining the optical head at a fixed distance from the information recording surface of the medium. Equipped.
  • a first object of the present invention is to provide a recording medium substrate suitable for high-density recording even though it is thin, and a recording medium such as an optical recording medium and a magnetic recording medium using the same. It is in.
  • a second object of the present invention is to provide a reproducing apparatus and a reproducing apparatus suitable for reproducing a thin recording medium.
  • An object of the present invention is to provide a recording and reproducing device.
  • a third object of the present invention is to provide a cartridge suitable for a thin recording medium having a function of holding a surface of a rotating thin recording medium at a predetermined position.
  • a portion corresponding to a recording region of the recording medium and a portion corresponding to a region outside the recording region are different.
  • a substrate for a recording medium wherein the substrates have different thicknesses.
  • the substrate thickness of the portion corresponding to the recording region of the recording medium is made different from the substrate thickness of the portion corresponding to the region outside the recording region. The rigidity of the whole substrate can be maintained even if the substrate thickness in the recording area is as thin as 0.85 mm or less, for example.
  • a portion corresponding to a recording region of the recording medium, a portion corresponding to a region outside the recording region, and a portion corresponding to a region inside the recording region are mutually different from each other on the substrate.
  • the thickness can be different.
  • a portion corresponding to a recording region of the recording medium is larger than a portion corresponding to a region inside the recording region.
  • a substrate for a recording medium, wherein the substrate has a large thickness is provided.
  • this recording medium substrate can maintain the rigidity of the entire substrate even if the substrate thickness of the recording area is reduced to 0.85 mm or less for higher density.
  • a reinforcing member having a Young's modulus equal to or higher than the Young's modulus of the substrate is fixed to at least a part of the substrate surface.
  • a substrate for a recording medium comprising:
  • the reinforcing member can be fixed to a portion corresponding to a region other than the recording region on the inner peripheral portion or the outer peripheral portion of the substrate.
  • the present invention provides a recording medium suitable for high-density recording manufactured using the substrate according to the first, second or third aspect of the present invention.
  • an optical recording medium or a magnetic recording medium using a plastic substrate is suitable.
  • a reproducing apparatus for an optical recording medium which irradiates a light beam onto the optical recording medium and detects a change in reflected light from the optical recording medium as a change in light amount.
  • an air gear forming member which forms an air gear having the same width during rotation with respect to the upper and lower surfaces of the optical recording medium.
  • the reproducing apparatus of the present invention uses a slider 66 a, 66 b, 66 c, 66 d as an air gear groove forming member for recording and reproducing with the disk 61 interposed therebetween. Provide near heads 65 and 67.
  • the sliders are arranged so as to form air gaps 68 a, 68 b, 68 c, 68 d of the same width between the upper surface and the lower surface (both are designed positions) of the disk (optical recording medium) 61. I do. If the position of the disk surface deviates from the designed position when the disk 61 is rotated, the air gap between the air gap 68 a (68 c) and the air gap 68 b (68 d) should be equalized. On top or bottom A lift is generated, and the lift forces the disk 61 to be restrained at an intermediate position between the sliders 66a and 66b (and the sliders 66c and 66d).
  • the air gap forming member is a pair of sliders opposed to each other with the optical recording medium interposed therebetween, and the pair of slider members is an optical head and a magnetic head of the reproducing apparatus. It is preferable that each of them is fixed to each of them. Further, it is preferable that the air gap forming member is disposed with respect to the optical recording medium such that the air gap is 0.5 mm or less.
  • the reproducing apparatus of the present invention is not limited to a reproducing-only optical recording medium, for example, a reproducing apparatus for an optical disk, and a recording / reproducing apparatus having a recording function for a write-once or rewritable optical recording medium, for example, a magneto-optical disk. It is a concept that also includes According to the fifth aspect of the present invention, at least in a recording medium power cartridge accommodating a disk-shaped recording medium having a substrate thickness of 0.85 mm or less in a signal recording area, a rotating circle A recording medium cartridge having a support means for supporting upper and lower surfaces of an outer peripheral portion of a plate-shaped recording medium is provided.
  • the force cartridge according to the present invention has an outer peripheral portion of a recording medium in order to stabilize the surface position of the recording medium by suppressing surface runout during rotation of a thin recording medium having a substrate thickness of 0.85 mm or less.
  • supporting means for supporting the upper and lower surfaces.
  • the outer peripheral portion of the medium may be a roller member rotatable with the rotation of the recording medium or a sliding member that slides on the upper and lower surfaces of the outer peripheral portion of the rotating disk-shaped recording medium.
  • the cartridge of the present invention preferably further includes dust collecting means for collecting dust or the like generated by contact between the roller-shaped member or the sliding member and the medium.
  • a convex portion for adjusting the flow of air during rotation of the recording medium is provided on the inner surface of the cartridge.
  • a recording medium cartridge is provided, wherein at least one of the concave portions is formed symmetrically on the upper surface and the lower surface of the inner surface of the force cartridge, respectively.
  • a convex portion or a concave portion for adjusting the flow of air when the recording medium rotates is formed symmetrically on the inner surface of the cartridge.
  • the convex or concave portion changes the flow velocity of the air flow flowing through the space between the convex or concave portion and the surface of the recording medium, and the change in the flow velocity causes a pressure fluctuation in the space.
  • the signal recording surface of the recording medium is subjected to a force from above or below the disc so that the fluctuating air pressure is equal on the upper and lower surfaces of the disc, whereby the signal recording surface is at a fixed position (height position). Will be maintained.
  • a laser beam is focused on a transparent substrate in a non-contact and remote manner, and recording / reproducing is performed on a recording medium, it is necessary to execute the autofocus function within an effective range.
  • the technique of the present invention for holding the signal recording surface of the disk at a fixed position by the air flow is effective.
  • the distance between the projection and the inner surface of the force cartridge is preferably 0.8 mm or less, and more preferably 0.6 mm or less.
  • a window for accessing a head for signal recording or reproduction is formed in the cartridge, and the protrusion is formed at least on an inlet side of the window recording medium. It is preferable that they are formed symmetrically on the upper surface and the lower surface inside the bridge.
  • the air pressure between the convex portion formed on the upper surface inside the cartridge and the upper surface of the recording medium and the air pressure between the convex portion formed on the lower surface inside the cartridge and the lower surface of the recording medium become equal.
  • the recording / reproducing area is positioned at an intermediate position between the two convex portions before recording / reproducing by the head.
  • a seventh aspect of the present invention in a recording medium cartridge accommodating a disc-shaped recording medium having a substrate thickness of 0.85 mm or less at least in a signal recording area, The distance between the lower surface of the recording medium and the inner lower surface of the cartridge is equal to the distance between the lower surface of the recording medium and the inner lower surface of the cartridge in the radial direction of the recording medium, and the distance between the upper surface of the recording medium and the inner upper surface of the force cartridge;
  • a force cartridge for a recording medium is provided, wherein the distance between the lower surface of the recording medium and the inner lower surface of the cartridge is smaller on the outer peripheral side than on the inner peripheral side of the recording medium.
  • the cartridge of the present invention similarly to the cartridge of the sixth aspect, equally rectifies the air flows above and below the recording medium during rotation of the recording medium, and particularly adjusts the surface position of the outer peripheral portion of the recording medium. It can be held in a fixed position.
  • FIG. 1 is a schematic view of an optical disk according to the present invention.
  • FIG. 2A is a sectional view of the carbonate substrate for manufacturing an optical disc shown in FIG. 2B to 2G are cross-sectional views showing various structures of the recording medium substrate of the present invention
  • FIG. 2H is a cross-sectional view showing the structure of a conventional recording medium substrate.
  • Fig. 3 is a graph showing the results of measurement of the amount of runout of the substrate having the cross-sectional structure shown in Figs. 2A, 2B, 2C, and 2H when rotating on a drive.
  • FIGS 4A to 4H are cross-sectional views showing another structure of the recording medium substrate according to the present invention.
  • 5A to 5G are sectional views showing still another structure of the recording medium substrate according to the present invention.
  • FIG. 6 is a principle diagram of the optical recording medium reproducing device according to the present invention.
  • FIG. 7 is a conceptual diagram showing an example of attaching the slider members 66b and 66d to the light head in the embodiment 2-11.
  • FIG. 8 is a conceptual diagram showing an example of attaching the slider members 66a and 66c to the magnetic head in the embodiment 2-1.
  • FIG. 9 is a schematic configuration diagram of an optical recording medium reproducing apparatus according to Embodiment 2-2.
  • FIG. 10 is a schematic configuration diagram of a recording medium cartridge of the present invention.
  • FIG. 11 is a partial cross-sectional view showing the structure of a mouthpiece member used in the recording medium cartridge of the present invention.
  • FIG. 12 is a partial cross-sectional view of a cartridge showing the structure of a liner used in the recording medium cartridge of the present invention.
  • FIG. 13 is a partial sectional view of the cartridge showing the structure of the dust collection chamber used in the recording medium cartridge of the present invention.
  • FIG. 14 is a partial cross-sectional view showing the structure of another roller member used for the recording medium power cartridge of the present invention.
  • FIG. 15 shows the structure of the sliding member used in the recording medium cartridge of the present invention. It is a fragmentary sectional view showing structure.
  • FIG. 16 is a graph illustrating the effect of the cartridge according to the third embodiment of the present invention.
  • FIG. 17 is a sectional view showing the structure of a conventional magneto-optical disk drive.
  • FIGS. 18 and 18 are a plan view and a sectional view taken along line AA, respectively, showing the structure of a recording medium cartridge according to Embodiment 41 of the present invention.
  • FIGS. 19A and 19B are a plan view and a sectional view taken along line AA, respectively, showing the structure of a recording medium cartridge according to Embodiment 412 of the present invention.
  • FIGS. 2OA and 20B are a plan view and a cross-sectional view taken along line AA, respectively, showing the structure of the recording medium cartridge of Embodiments 4-13 of the present invention.
  • 20 is a sectional view showing a modification of the sectional structure of FIG. 20B.
  • FIG. 21 is a cross-sectional view showing a structure of a force cartridge according to Example 4-4 of the present invention.
  • FIGS. 22A and 22B are a plan view and a sectional view taken along line AA, respectively, showing the structure of a recording medium cartridge according to Examples 4-5 of the present invention.
  • FIG. 1 is a schematic view of an optical disk according to the present invention.
  • the outer and inner diameters of the optical disc 1 are 120 mm and 15 mm, respectively.
  • the portion where information is not recorded / reproduced that is, the substrate thickness of the inner area 16 (the clamping area) of the lead-in 2 and the outer area 12 of the lead-out 4 is 1.2 mm.
  • the substrate thickness of the in 2 and the lead out 4 and the program area 14 sandwiched between them is 0.6 mm.
  • the portion connecting the lead-in 2 to the inner region 16, that is, the side wall portion of the inner region 16 is formed at about 20 ° so that a plastic substrate having good shape, optical properties and mechanical properties can be easily manufactured by injection molding. It is inclined.
  • the portion connecting the lead-out 4 to the outer region 12, that is, the side wall portion of the outer region 16 is also inclined at about 20 °. This inclination angle is preferably 450 or less.
  • the optical recording medium of the present invention can cope with high-density recording by making the recording / reproducing area thinner, and at least the outer peripheral portion where recording / reproducing is not performed.
  • the optical disk shown in FIG. 1 is obtained by, for example, injection molding a polycarbonate resin into a mold as shown in FIG. 1 in a mold equipped with a stamper on which a preform mat pattern is formed, and forming the mold on the obtained polycarbonate substrate. It can be manufactured by sequentially laminating a metal reflective film and a protective layer on the substrate.
  • FIG. 2A shows a cross-sectional view of the polycarbonate substrate 10 used for manufacturing the optical disc 1 of FIG.
  • FIG. 2A The cross-sectional view in Figure 2A is exaggerated to clarify the position of the inner region 16a and the outer region 12a, and the difference in thickness between those regions and the region 14a where recording and reproduction are performed.
  • FIG. 2B to 2G show modified examples of the cross-sectional structure of the optical recording medium substrate of the present invention.
  • Fig. 2B shows a case where only the thickness of the outer region 12b is larger than the thickness of the inner region 16b and the recording / reproducing region 14b compared to the case of Fig. 2A, and the thickness of the outer region 12b is 1.
  • the thickness of the area 14b where recording and reproduction are performed and the inner area 16mm are 0.6 mm.
  • FIG. 2C shows a case where the thickness of the inner area 16c is smaller than the thickness of the outer area 12c and the area of the recording / reproducing area 14c, and the thickness of the inner area 16b is 0.3 mm.
  • the thickness of the area 14b where recording and reproduction are performed and the outer area 1213 are 0.6 mm.
  • Figure 2D shows the case where the thickness of the outer area 12d is smaller than the thickness of the inner area 16d and the recording area 14d.
  • the thickness of the outer area 12d is 0.3 mm
  • the thickness of the region 14d to be performed and the inner region 16d is 0.6 mm.
  • FIG.2E shows a case where the thickness of the outer region 12e and the inner region 16e is smaller than the thickness of the recording / reproducing region 14e, and the thickness of the outer region 12e and the inner region 12e is 0.3 mm.
  • the thickness of the recording / reproducing area 14 e is 0.6 mm.
  • Figure 2F shows the case where the thickness of the outer area 12f, the inner area 16f, and the recording / reproducing area 14f are different from each other.
  • the thickness of the outer area 12f is 1.2 mm, and the thickness of the inner area 12f.
  • the thickness of the recording / reproducing area 14 f is 0.6 mm.
  • Figure 2G shows the case where the outer area 12 g, the inner area 16 g, and the recording / reproducing area 14 g have different thicknesses.
  • the outer area 12 g has a thickness of 0.3 mm and the inner area 12 g has a thickness of 12 g. Is 1.2 mm, and the thickness of the recording / reproducing area 14 g is 0.6 mm.
  • Figure 2H shows the cross-sectional structure of a conventional optical disk, where the disk thickness is 1. Shows the uniform case of 2 mm. 2A to 2G, the inclination angle at the step between the respective regions is 20 ° as in FIGS. 1 and 2A. The substrate having the cross-sectional structure shown in FIGS.
  • 2A to 2G can be easily manufactured by injection molding a resin such as polycarbonate using a mold having a shape corresponding to the cross-sectional structure. . It should be noted that either the upper surface or the lower surface of the substrate shown in FIGS. 2A to 2G may constitute the signal surface, and during the injection molding, the bit of the preformat pattern is formed on the desired surface by using a stamper. Groups can be formed. Next, with respect to the substrate having the cross-sectional structure shown in FIGS. 2A, 2B, and 2C, the amount of surface runout during rotation on the drive was measured.
  • the amount of runout was measured using an optical disk mechanical property measurement device (LM-1200, manufactured by Ono Sokki Co., Ltd.) during one rotation of the optical disk at a rotation speed of 180 O rpm (0 to 360.). Of the disk surface was examined. The results are shown in Figure 3. In the figure, curves A, B, and C show the measurement results for the substrates shown in FIGS. A, 2B, and 2C, and curve P shows the results for the conventional substrate shown in FIG. 2H. From FIG. 3, it can be seen that the substrate of the present invention has an extremely small surface runout. Although the optical disc substrate according to the present invention shown in FIGS. 2A to 2G has a thin recording / reproducing area as thin as 0.6 mm, the thickness of other areas is different.
  • LM-1200 manufactured by Ono Sokki Co., Ltd.
  • the rigidity of the substrate can be improved as compared with that of the substrate. Therefore, the optical recording medium and the magnetic recording medium manufactured by using the recording medium substrate of the present invention can reduce the deformation of the substrate during the rotation of the disk, thereby enabling good recording and reproduction.
  • the structures shown in FIGS. 2A, 28 and 20 are particularly preferable.
  • Example 11 4A to 4H show another sectional structure of the recording medium substrate according to the present invention. In FIGS. 2A to 2G, the thickness was changed by adjusting the height of at least one of the outer region 12, the recording / reproducing region 14, and the inner region 16 on the upper surface of the optical disc. As shown in FIGS.
  • each region can be changed so that the upper surface and the lower surface of the optical disc are symmetrical. Even when such a structure is employed, a predetermined level of rigidity of the thin substrate can be maintained as in the case of the embodiment 11.
  • FIG. 5A shows another configuration example of the substrate for a recording medium of the present invention.
  • the substrate 50 has an annular rigid reinforcing member 5 2 concentric with the substrate 54 in an outer region 12 on the upper surface of a flat optical disk substrate for an optical disk having a thickness of 0.6 mm and a diameter of 120 mm. a is fixed by an adhesive or the like.
  • the thickness of the rigid reinforcing member 52a can be adjusted so that the total thickness of the disk where the rigid reinforcing member 52a is mounted is about 1.2 mm. It is preferable that the side wall on the inner side of the disc of the rigidity reinforcing member is inclined at 45 ° or less similarly to the optical disc substrate of the embodiment 11.
  • the same material as that of the substrate such as a bolt-on-bottle, aluminum, iron, aluminum oxide, silicon oxide, titanium oxide, silicon nitride, titanium nitride, silicon carbide and the like are suitable.
  • a material having a higher Young's modulus than the material of the substrate it is preferable to use a material having a higher Young's modulus than the material of the substrate.
  • 5B to 5G show modified examples of the substrate of FIG. 5A.
  • an annular rigid reinforcing member 52 b concentric with the substrate 54 is fixed to an inner region 16 on the upper surface of the optical disk substrate 54 with an adhesive or the like.
  • FIG. 5B an annular rigid reinforcing member 52 b concentric with the substrate 54 is fixed to an inner region 16 on the upper surface of the optical disk substrate 54 with an adhesive or the like.
  • annular rigid reinforcing members 52c and 52c ' are respectively fixed by an adhesive or the like.
  • annular rigid reinforcing members 52 d and 52 d concentric with the substrate 54 are respectively fixed to the outer regions 12 on the upper and lower surfaces of the optical disk substrate 54 by an adhesive or the like. I have.
  • an annular rigid reinforcing member 52 e concentric with the substrate 54 is fixed to the inner region 16 on the upper and lower surfaces of the optical disk substrate 54 by an adhesive or the like.
  • FIG. 5E an annular rigid reinforcing member 52 e concentric with the substrate 54 is fixed to the inner region 16 on the upper and lower surfaces of the optical disk substrate 54 by an adhesive or the like.
  • FIG. 5G shows an example of a substrate in which the outermost periphery of the substrate of FIG. 5B is made of a vibration absorbing material 56.
  • the vibration absorbing material include elastic materials such as urethane, silicon resin, rubber materials such as vinyl chloride and butyl rubber, and various polymer materials.
  • the substrate structure shown in FIG. 5G is effective for a recording medium accommodated in a force cartridge of Example 3 described later.
  • the vibration absorbing material is attached to the rigid reinforcing member 52 and the inner area 16 used in each of FIGS. 5A to 5F in various shapes and arrangements to prevent various vibration modes. It is possible to cause vibration.
  • an optimal configuration can be obtained by selecting the shape of the substrate shown in each of FIGS. 2 and 4 by combining the elastic modulus and shape of the vibration absorbing material. 5B to 5G, the material of the reinforcing member 52 and the material and thickness of the substrate 54 are the same as those in FIG. 5A.
  • the rigidity of the substrate 54 is improved by fixing the rigidity reinforcing member 52 to an area other than the area where recording and reproduction are performed. can do.
  • the amount of surface runout during rotation of the substrates was measured in the same manner as in Example 11-11.
  • the substrates of FIGS. 5A to 5G suppressed the surface vibration. Accordingly, when an optical recording medium such as an optical disk or a magneto-optical recording medium manufactured from such a substrate is mounted on a drive and driven to rotate, the surface vibration of the disk surface can be reduced.
  • various optical recording media can be manufactured by a method generally used according to the type of the optical recording medium.
  • the optical disk in the case of an optical disk such as a CD, can be manufactured by applying a reflective layer and a protective layer on the substrate manufactured in the embodiment.
  • a magneto-optical disk it can be manufactured by laminating an enhancement layer, a recording layer, an intermediate layer, a metal layer, and the like on the substrate manufactured in the embodiment in various orders by sputtering or the like.
  • Embodiments 11 to 11 have been described by taking an optical disk and an optical disk substrate as examples, but the present invention can also be applied to a magnetic disk using a plastic substrate. For example, it is particularly effective to apply the present invention to a magnetic disk using an embossed plastic substrate as described in Japanese Patent Application Laid-Open No. 2-218010.
  • the dimensions of the plastic substrate for the magnetic disk can be, for example, an outer diameter of 95 mm, an inner diameter of 25 mm, and a thickness of 1.2 mm.
  • the material of the substrate is not particularly limited.
  • a material such as amorphous polyolefin can be used.
  • FIG. 6 is a diagram conceptually showing a portion near an optical head when the reproducing apparatus for an optical recording medium of the present invention is applied to a magneto-optical disk recording / reproducing apparatus.
  • This magneto-optical disk recording / reproducing apparatus like a normal magneto-optical disk recording / reproducing apparatus, has a magnetic head 65 and an optical head on the upper and lower sides of the magneto-optical disk 61 during recording and reproduction, respectively.
  • the optical head 67 has a built-in autofocusing mechanism 64 for moving the objective lens 62 closer to or away from the surface of the magneto-optical disk 61 using permanent magnets 63a and 63b. Can be done.
  • the reproducing apparatus for a recording medium according to the present invention opposes the front side and the rear side of the magnetic head 65 and the optical head 67 with respect to the illustrated moving direction of the disk so as to sandwich the disk 61 therebetween.
  • the two sets of slider members 66a, 66b and 66c, 66d are arranged.
  • Each of the slider members 66a, 66b and 66c, 66d is formed by processing a rectangular parallelepiped member into a shape such that opposing corners have different inclinations or curvatures, as shown in the drawing.
  • the slider members 66a, 66b and 66c, 66d vertically symmetrically with respect to the magneto-optical disk 61 as shown in Fig. 6, the slider members 66a, 66b 3 Air gaps 68a, 68b, 68c, 6 at the same interval between 66c, 66d and the upper and lower surfaces of the magneto-optical disk. 8 d can be formed.
  • the disk inlet side space in the disk moving direction front side
  • the disk outlet disk moving direction
  • the air gap is formed at a wider interval than the space on the rear side.
  • the air gap 68a and the air gap 68 Since the air pressures in b differ, forces (lift) act on the upper and lower surfaces of the disk to equalize the air pressures of those air gaps.
  • the lift allows the disk surface to be positioned at the design position. Therefore, even when the disk becomes thin, the surface position thereof can be automatically held by the air gap forming member during rotation, and the disk surface of the thin disk is prevented from contacting the inner wall of the cartridge.
  • the disk 61 is automatically positioned at an intermediate position between the slider members 66c and 66d during rotation.
  • the position of the slider member is determined by adding a half of the thickness of the disk to the position where the middle position of the opposing slider member is a predetermined distance from the height of the spindle that rotates the disk, that is, the disk installation reference height. It is preferable to design so that it is located at the right position.
  • the slider member is fixed at a predetermined position by being fixed to the magnetic head 65 and the optical head 67 as in a specific example described later. Can be placed on the table.
  • FIGS. 7 and 8 show examples of attaching the slider members 66a, 66b, 66c: 66d shown in FIG. 6 to the magneto-optical disk reproducing device.
  • FIG. 7 shows the slider member 66 b and 66 d forming the air gap 68 b and 68 d on the lower surface side of the disk 61, and the optical head 67 mounted on the support 70 of the optical head 67. It is a perspective view.
  • the slider members 66b and 66d were manufactured by processing a ceramic member having a length of 3 cm, a width of 8 mm, and a height of 8 mm so as to have a sectional shape as shown in FIG.
  • FIG. 8 shows a magnetic head 67 in which slider members 66 a and 66 c forming air gaps 68 a and 68 c on the upper surface side of the disk 61 are mounted on a support 69 of the magnetic head 65. It is a perspective view.
  • the slider members 66a and 66c were arranged parallel to each other at positions 2 cm away from the center of the magnetic head 65 with the magnetic head 65 interposed therebetween.
  • the slider members 66a and 66c are ceramic members having the same dimensions and shape as the slider members 66b and 66d.
  • the optical head 67 equipped with the slider members 66b and 66d shown in FIG. 7 and the magnetic head 67 equipped with the slider members 66a and 66c shown in FIG. 0.1mm air gap is incorporated into the magneto-optical disc recording / reproducing device to form I do.
  • the magnetic head 67 itself was made movable by an actuator (not shown) so that it could be retracted upward when a disk was attached or detached.
  • a magneto-optical disk having a substrate thickness of 0.6 mm is mounted on the magneto-optical disk recording / reproducing apparatus, and the magneto-optical disk can be driven at, for example, a rotation speed of 3600 rpm to record / reproduce data. As a result, the stability of the focus servo can be increased.
  • the slider members 66a, 66b, 66c, and 66d are not fixed to the optical head 67 and the magnetic head 65, and the head of the main body of the magneto-optical disk recording / reproducing apparatus is accessed.
  • the following shows an example of mounting on the fixed part of Linear Work.
  • the slider members 66 a, 66 b, 66 c, and 66 d are arranged so as to sandwich the outermost peripheral portion of the magneto-optical disk 61.
  • a predetermined position based on the height of a spindle that is, (the installation height of the magneto-optical disk 61 on the recording / reproducing apparatus) + (the thickness of the magneto-optical disk 61 X0.5)
  • the slider members 66a, 66b, 66c, 66d were positioned so that an air gap of 0.1 mm was formed in the vertical direction at each height (position).
  • the slider members 66a, 66b, 66c, and 66d are connected to the loading module or electromagnetic actuator by connecting them to the upper surface (the surface opposite to the surface facing the disk). Can be retracted upward and downward when the disc is attached or detached.
  • each slider member After the disk is rotated, each slider member can be brought close to the disk by a loading mode or the like to a distance that gives a gap of 0.1 mm on the upper and lower surfaces of the disk.
  • a loading mode or the like As in the case of Embodiment 2-1, since the disk surface is positioned at the intermediate position of the slider member by air gap, Even if the disk itself has a deformation such as distortion during molding, it is corrected at the time of recording / reproduction, that is, the vertical fluctuation of the rotating disk is suppressed. Therefore, recording and reproduction can be reliably performed even with a thin recording medium, and the stability of the focus servo can be increased.
  • a magneto-optical disk and its recording / reproducing apparatus have been described as examples of the optical recording medium.
  • the present invention is not limited to this, and can be applied to various optical recording media such as CD, CD-R, DVD, and MD. Further, the material, shape, arrangement, and the like of the slider member described in the embodiment are not limited to those specific examples, and any member may be used as long as it has the function and effect of the air gap forming member according to the principle description. Can be used in any position.
  • Third embodiment
  • FIG. Example 3 1
  • FIG. 10 shows a schematic configuration of a force cartridge when the force cartridge of the present invention is applied to a magneto-optical disk cartridge.
  • the magneto-optical disk drive 100 has a cartridge main body 101 composed of an upper shell 101a and a lower shell 101b, and a magneto-optical disk 103 housed therein.
  • the upper shell consists mainly of a shirt that opens and closes a shutter window of 106 la.
  • As the magneto-optical disk 103 a thin disk having a substrate thickness of 0.6 mm and an outer diameter of 120 mm is used.
  • roller members 105a and 105b In order to suppress deformation of the thin disk by supporting the upper and lower surfaces of the outer periphery of the rotating magneto-optical disk 103, roller members 105a and 105b, which will be described later, are driven by the force cartridge body.
  • the shirts in 101 are located on both sides of the evening window 106.
  • the magneto-optical head (not shown) for recording and reproduction approaches the area of the window 106, the position of the portion where the recording or reproduction is performed on the disk 103 is changed.
  • a liner for wiping off any abrasion powder generated by contact between the mouthpiece members 105a, 105b and the magneto-optical disk 103 is provided inside the cartridge body 101.
  • One 120a is provided on the side opposite to the roller member 105b with respect to the center of the disk.
  • the liners 120a and 120b slide on the disk surface by the rotation of the disk 103 and serve as means for supporting the upper and lower surfaces of the outer periphery of the rotating magneto-optical disk. Also works.
  • the structure of the liner 120a and the positional relationship with the disk 103 will be described later with reference to FIG.
  • FIG. 11 is a cross-sectional view of the force cartridge when the cartridge 100 shown in FIG.
  • the 10 is broken along a line connecting the center of the disk and the center of the roller member 105a.
  • the disc 103 is rotatably supported by a clamping plate 104.
  • the disk 103 is attracted to the spindle 114 of the magneto-optical disk reproducing device and is driven by the rotation of the motor shaft 109 when rotating.
  • the roller member 105a is a cylindrical roller, and the rotating shaft 107 is embedded at the center of the roller.
  • a groove 111 is formed on the outer periphery of the center of the roller.
  • roller groove 1 1 1 The upper and lower surfaces of the disk 103 are supported by being engaged with the outermost peripheral portion of the disk 103, that is, by supporting the upper and lower surfaces of the disk 103 by the roller grooves 111, so that the height direction of the surface of the disk 103 (rotating shaft Direction) can be suppressed.
  • the groove width of the roller member 105a was 0.7 mm with respect to the disk thickness of 0.6 mm. It is desirable that the groove width is set to be 0.05 to 0.15 mm wider than the disk thickness in order to ensure smooth rotation of the disk 105.
  • the bottom (depth) of the groove 111 is set to the disc in the cartridge body 101. It can be configured to be located outside the outermost design position of the.
  • the roller rotating shaft 107 has an end formed by a hole 1 formed inside the paper shell 101 a and the mouth shell 101 b of the power cartridge body 101. It is rotatably supported by 12a and 11b.
  • the material of the mouthpiece member 105a is preferably a material excellent in lubricity and abrasion resistance in order to reduce abrasion and frictional force caused by contact with the disc 103, such as polyacetal, polypropylene, and the like. Fluororesin is preferred.
  • the mouth member 103b has the same structure as the roller member 103a, and is made of the same material.
  • two roller members are provided in the cartridge body 101, but three or more roller members identical to the roller members 103a and 103b can be installed on the outer periphery of the disk. .
  • FIG. 12 is a partial cross-sectional view of the force cartridge in which the force cartridge main body 101 is broken by a line connecting the rotation center of the disc 103 and the center of the liner 120 in FIG.
  • Liner 1 2 0 a and 1 2 0 b are each Are fixed to the di-body 1 0
  • the liners 120a and 120b are provided so that the outermost peripheral portion of the disk is sandwiched between them, and the liners 120a and 120b are in contact with the roller members 105a and 105b and the disk 103.
  • the dust collecting chamber 130 provided in the force cartridge main body 101 of Fig. 10 will be described with reference to Fig. 13.
  • the dust collecting chamber 130 is a cartridge. This is a room formed in a corner of the main body 101, and an entrance 1 34 is provided on the outermost extension of the disk 103.
  • the entrance 1 3 4 of the dust collection chamber 130 has a wedge shape to prevent dust and the like collected in the dust collection chamber 130 from scattering again from there and adhering to the disc 103.
  • a silicon-based adhesive material 13 2 is applied to a part of the inner wall of the dust collection chamber 130, and the adhesive material 13 2 is a dust collection chamber 13 It sticks dust etc. that has entered 0.
  • an antistatic coating is applied to the inner wall of the force cartridge and the liners 120a, b.It is also effective to mold the cartridge with a resin mixed with the antistatic material.
  • FIG. 14 shows the force cartridge body 101 shown in Figs. An example in which different types of roller members are used will be described.
  • FIG. 14 is a sectional view of the force cartridge 100 shown in FIG. 10 cut at the same position as that of FIG.
  • the outermost periphery of the disc 103 is engaged by a pair of mouthpiece members 140a and 140b that respectively contact the upper and lower surfaces of the disc 103.
  • the shape of the mouthpiece members 140a and 140b can be cylindrical or barrel-shaped.
  • the roller rotating shafts 142a and 142b are rotatably supported by roller rotating shaft supporting members 146 formed inside the upper shell 101a and the lower shell 101b, respectively.
  • the distance between the roller member 140a and the mouth member 140b is the same as the groove width of the roller member shown in FIG.
  • the configuration of the disk 103 and other force cartridges is the same as in Example 3-1.
  • Example 3-3
  • FIG. 15 shows an example in which the sliding members 150a and 150b are used instead of the roller members in the force cartridge 100 shown in FIGS.
  • FIG. 15 shows a sectional view of the force cartridge 100 shown in FIG. 10 cut at the same position as that of FIG.
  • the outermost peripheral portion of the disk 103 is supported by a pair of hemispherical sliding members 150a and 150b that contact the upper and lower surfaces of the disk 103, respectively.
  • the coefficient of friction between the disk 103 and the sliding members 150a and 150b is preferably 0.3 or less, more preferably 0.2 or less.
  • the material of the sliding members 150a and 150b is desirably made of polyacetate, polypropylene, fluorine resin or the like in order to reduce the coefficient of friction and improve the activity and wear resistance. It is desirable that at least either the contact portion of the disk 103 with the sliding member or the sliding member itself be coated with a lubricant, for example, a silicon-based lubricant.
  • the sliding members 150a and 150b are upper It is mounted so as to face the end of the U-shaped support member 152 joined to the shell 101a and the lower shell 101b. The distance between the sliding member 150a and the sliding member 150b is the same as the groove width of the roller shown in FIG.
  • the configurations of the disc 103 and other force cartridges are the same as those of the embodiment 3-1 and the embodiment 2-2.
  • the force using the sliding members 150a and 150Ob also stabilizes the rotation of the thin disk by maintaining the position of the disk surface, thereby ensuring recording and reproduction. be able to.
  • the vertical run-out of the rotating disk surface was measured.
  • the same optical disk mechanical property measuring apparatus as used in Example 1 was used.
  • a conventional magneto-optical disk cartridge having no member for engaging the disk as shown in FIG. 17 was used. The results are shown in FIG. In Fig.
  • the measurement result of the force cartridge of Example 3-1 is curve 162
  • the measurement result of the cartridge of Example 3-3 is curve 163
  • the measurement result of the conventional force cartridge is curve 1.
  • the fluctuation (width of the runout) in one round of the disk was 0.5 mm at the maximum
  • Example 3-1 it was 0.12 mm at the maximum
  • Example 3-3 was the maximum. It was reduced to 0.13 mm.
  • the result of the force cartridge of Example 3-2 was not shown, a curve substantially equivalent to that of Example 3-1 was obtained, and the maximum surface runout was 0.11 mm.
  • the cartridge of the present invention is effective for a disk accommodated in the cartridge having an outer diameter of 80 mm or more and a disk substrate having a thinnest portion of 0.85 mm or less. 100 mm or more, -21-Effective when the minimum thickness of the disk substrate is 0.65 mm or less.
  • the cartridge accommodating the magneto-optical disk is described.
  • the type of the disk accommodated in the cartridge is not particularly limited, and may be a CD, a CD-ROM, a CD-R, a phase-change optical disk, an MD, and a DVD. And the like can be applied to various optical recording media.
  • the present invention can be applied to a magnetic disk using a plastic substrate, and is effective, for example, for a magnetic disk cartridge of a removable type.
  • the type of recording medium to be accommodated in the force cartridge is not particularly limited, and the cartridge of the present invention is applicable to any recording medium as long as the recording medium uses a thin substrate having a thickness of 0.85 mm or less. Can be. Fourth embodiment
  • the air flow during rotation of the disk is adjusted by providing a convex portion or a concave portion on the inner surface of the cartridge accommodating the recording medium, and the adjusted air flow adjusts the signal recording surface of the disk during recording and reproduction.
  • a cartridge for urging the cartridge to a certain height position will be described.
  • Fig. 18A is a plan view of a magneto-optical disk cartridge 181, in which a projection 1885a is provided radially from the center of the disk 181, which contains a magneto-optical disk 183. It is. In FIG. 18A, for convenience of explanation, the shape of the disk 183 accommodated in the cartridge 181, and the projection 1885a on the inner surface of the cartridge (upper shell) are seen through.
  • Fig. 18B shows a cross section of the force cartridge 18 1 taken along the line A-A in Fig. 18A.
  • Cartridge 1 8 1 is upper shell 1 8
  • FIG. 18A is a plan view of the upper shell 181a as viewed from above.
  • the upper shell 181a is formed with a shirt window 187 (not shown) so that the optical head can access the disk 183 during recording and reproduction.
  • the magneto-optical disk 183 having a diameter of 120 mm and a substrate thickness of 0.6 mm is housed in the force cartridge 181.
  • the inner surfaces of the upper shells 181a and 181b of the cartridge 181 respectively have strip-shaped convex portions 185a and 185b extending radially from the center of the disk. It is formed symmetrically with respect to 183.
  • the width of the convex portions 185a and 185b increases in a fan shape toward the outer side in the radial direction, and the heights of the convex portions 185a and 185b from the inner surfaces of the aperture shell 181a and the mouth shell 181b respectively.
  • 0.5 mm The distance between the convex portion 185a of the upper shell 181a and the upper surface of the disk 183 and the distance between the convex portion 185b of the mouth shell 181b and the lower surface of the disk 183 are preferably 0.8 mm or less, respectively, and more preferably. It is 0.6 mm or less, and in this embodiment, it is 0.5 mm.
  • the convex portions 185a and 185b are formed so as to have a divergence angle of 20 ° from the center of the disk, and are provided at 45 ° intervals on the circumference of the disk.
  • the convex portions 185a and 185b extend from the position of the radius of the disk 183 of 20 mm (the edge of the opening 189 for the clamping plate) to a position of a radius of up to 61 mm.
  • FIGS. 19A and 19B show modifications of the cartridges shown in FIGS. 18A and 18B.
  • the cartridge 1991 shown in Fig. 19A and its A-A cross-sectional view 19B is the upper shell 1991a and 1991b similarly to the cartridge 181 of the embodiment 4-11.
  • the cartridge 191 houses a magneto-optical disk 183 having a diameter of 120 mm and a substrate thickness of 0.6 mm.
  • the protrusions 1995a and 1995b are formed on the inner surface of the upper shell 19 la and the mouth shell 19 lb. It is formed radially so as to draw an arc 196 in the direction of rotation.
  • the arc 196 that defines the convex portions 195a and 195b is centered on the circumference (diameter of 120mm) of the disk and is drawn with a radius of 60mm. A total of 16 arcs were drawn with the center of arc 196 set at every 1/16 lap on the circumference of the disc.
  • the cross-sectional shape of the protrusion defined by the arc 196 has a saw-tooth shape as shown in Fig. 19B, protrudes at the position of the arc 196, and the space between the cartridge inner surface and the disk surface at that portion Is minimized, and the interval gradually increases until the next arc.
  • Example 4 a step is generated between the adjacent convex portions at the position of the arc 196, and the protruding height at the position of the arc c forming the boundary between the convex portions 195 is 0.5 mm,
  • the distance between the projections 195a, 195b and the surface of the disk 183 at that position is 0.5 mm as in the case of Example 4-1.
  • FIGS. 20A and 20B show modified examples of the force cartridge shown in FIGS. 19A and 19B.
  • FIG. 2 OA and its cartridge 201 shown in FIG. 20B which is a cross-sectional view taken along line A—A, are similar to the cartridge 191 of the embodiment 4-2, and have convex portions 205a and 205b. Are formed radially on the inner surface of the upper shell 210a and the mouth shell 201b so as to draw an arc in the rotation direction of the disk from the center of the disk toward the outer periphery. .
  • the cross-sectional shapes of the convex portions 205a and 205b are symmetrical to each other with respect to the disk 183, as shown in FIG.
  • FIGS. 20C and 20D similar to the cartridge 201 shown in FIGS. 20A and 20B, the convex portions are formed on the inner surface of the upper shell of the force cartridge and the inner shell.
  • the cross-sectional structure of a cartridge radially formed so as to draw an arc in the rotation direction of the disk from the center of the disk toward the outer periphery is shown.
  • the method of drawing the arc is the same as that described in Embodiment 4-2, but the cross-sectional shape of the convex (or concave) sectioned by the arc is different.
  • the center of the arc 206 is set every 1/16 of the circumference of the disk in the upper shell 201c and the lower shell 201d, but the circumference of the disk is set to 18 circumferences.
  • the convex portion 202a and the convex portion 202b were formed such that the arc portion drawn by the center of the arc set every time had the maximum height and the adjacent arc portion had the lowest height.
  • FIG. 20D in contrast to the case of FIG. 20B, on the inner surface of the x-ray shell 201 e and the mouth shell 201 f.
  • the arc portion 206 forms the concave portions 203 a and 203 b (the distance between the convex portion on the inner surface of the cartridge and the disk surface is preferably 0.8 mm or less, more preferably In the cartridges shown in FIGS. 20A to 20D, the height of the projection is 0.5 mm, and the distance between the disk and the projection is 0.5 mm.
  • the air flow generated in the circumferential direction of the disk by the rotation of the disk 183 can be reduced in the radial direction.
  • By increasing the pressure on the outer peripheral portion of the disk and applying the increased pressure evenly from the upper and lower surfaces of the disk it is possible to stabilize the surface position of the outer peripheral portion of the disk, which has particularly large fluctuations.
  • FIG. 21 shows a cross-sectional view of the force cartridge taken along a plane passing through the center axis of the disk 183.
  • the cartridge 210 accommodates, for example, a magneto-optical disk having a diameter of 120 mm and a substrate thickness of 0.6 mm.
  • the thicknesses of the upper shell 210 and the lower shell 210b constituting the force cartridge 210 are equivalent at the disk radial position, and gradually from the inner peripheral side to the outer peripheral side of the disk 183. It is thick.
  • a conical space is formed by the inner surface of the upper shell 210a and the upper surface of the disk, and similarly, a conical space is formed by the inner surface of the mouth shell 210b and the lower surface of the disk.
  • An interval is formed.
  • Example 21 can be used in combination with the structure shown in Example 41-1, 4-2 or 413 in which the projections (or depressions) on the inner surface of the cartridge are radially provided.
  • the stabilization of the surface position of the thin disk can be further improved.
  • Figure 22A shows a plan view of a force cartridge employing this structure
  • Figure 22B shows a cross-sectional view of the force cartridge taken along the line AA in the plan view of Figure 22A.
  • the cartridge 220 accommodates a magneto-optical disk 183 (not shown in FIG. 22A), and is formed by joining an aperture shell 220a and an aperture shell 220b.
  • a shutter window 187 is formed in the upper shell 220a so that the optical head can access when recording or reproducing the magneto-optical disk 183.
  • the magneto-optical disk 18 3 rotates in the direction from the edge 2 26 to the edge 2 25 out of the longitudinally opposite edges 2 2 5 and 2 2 6 which define the shirt evening window 18 7. .
  • the inner surface of the upper shell 220 a is an edge portion 2 25, 2 defining the shutter window 187.
  • the protrusion protruding toward the disc 183 near the edge 225 in the rotation direction (the arrow in the figure) of the disc 183 (the side of the disc enters the cartridge from the area of the window 187).
  • 222 a are formed, and a narrow air gear 228 a is formed between the disk 183 and the disk 183.
  • the inner surface of the mouth shell 2 20b forms a convex portion 222b which is symmetrical to the convex portion 222a of the upper shell 220a and the disk 183, and is formed between the convex portion 222b and the disk 183.
  • An air gap 228b is formed.
  • b was set to 0.5 mm each.
  • Such an air gap is at most 0.8 mm, more preferably at most 0.6 mm, in order to achieve the effects of the present invention.
  • the inner surface of the upper shell 220a has an edge 226 at the front of the rotating direction of the disk 183 (the disk surface exits from the area of the shutter window 187), and the inner surface of the upper shell 220a has the disk 18 3 Is formed, and the distance between the protrusion 22 la and the upper surface of the disk 183 is 0.5 mm, which is the same as that of the air gap.
  • Such an air gap is at most 0.8 mm, more preferably at most 0.6 mm, in order to achieve the effects of the present invention.
  • the wall thickness of the upper shell 220a becomes smaller toward the rear in the disk traveling direction from the convex portion 22la, and the distance between the inner surface of the upper shell 220a and the upper surface of the disk 183 gradually increases.
  • a convex portion 221b is formed symmetrically with the convex portion 221a of the upper shell 220a, and a 0.5 mm air gap is formed between the inner surface of the mouth shell 220b and the lower surface of the disk 183. are doing. So -n-As in the case of the inner surface of the upper shell 220a, the wall thickness of the lower shell 220b becomes thinner as it goes from the convex portion 221b to the rear in the disk traveling direction.
  • the projections 2 2 2 a, 2 2 2 b and 2 2 1 a, 2 2 1 b extend over the edges 2 2 5 and 2 2 6 of the shirt 1 8 7 Regardless of the position (in the radial direction of the disk) of the shutter window 187 where the optical head is located, stable recording / reproducing characteristics can be obtained by a disk surface position control operation described later.
  • the distance between the inner surface of the cartridge and the surface of the disk is narrower at the protruding portions 22a and 22b than at the other portions. The pressure due to the airflow can be increased.
  • the inner surface structure of the force ridge is made symmetrical with respect to the disk by the upper shell and the lower shell, and the disk surface has a convex portion formed on the inner surface of the upper shell and a convex portion formed on the inner surface of the mouth shell. In the middle point of, the increased air pressure is equal on the upper and lower sides of the disk.
  • the surface position is corrected when the disk 18 3 passes between the convex portions 222 a and 222 b.
  • Recording and playback are performed by scanning the disk surface with a light head in the area of the shirt window 187, so the pressure applied to the upper and lower surfaces of the disk before the shutter window 187 must be increased. Is desirable.
  • the pressure between the inner surface of the cartridge and the disk surface can be reduced to increase the pressure applied to the disk surface.
  • a disc having a substrate thickness of 0.6 mm was used as the disc 18 3.
  • the cartridge of the present invention has a substrate thickness of 0.85 mm or less, preferably 0.65 mm. Especially effective for disks thinner than mm. Further, as such a thin disk, a disk (recording medium) in which the substrate thickness described in the first embodiment is different between the recording area and other areas is preferable.
  • the cartridge structure of this embodiment can be used in combination with the structure of the embodiment 41-1, 412, 413 or 414, so that the position of the disk surface during recording or reproduction can be determined. It can be further stabilized.
  • Fourth Embodiment In the fourteenth to fourteenth and fifth embodiments the description has been made by taking the magneto-optical disk power storage as an example. Applicable to power cartridges.
  • the present invention can be effectively used not only for optical recording media but also for cartridges containing magnetic recording media whose substrates are made of plastic, for example, rim-bubble type magnetic disk cartridges.
  • the material and dimensions of the cartridge body are not particularly limited, and the cartridges currently used are not limited. Any material can be used, including the 3 ⁇ -di material.
  • the substrate for a recording medium of the present invention and a recording medium using the same are optical recording media for high-density recording, for example, CD, CD-Rs, CD-ROM, MD, DVD, MO, and rim-bubble type magnetic recording. It is effective for media, especially for thin high-density recording media with a substrate thickness of 0.85 mm or less.
  • the reproducing apparatus for an optical recording medium of the present invention includes an air gap forming member that acts to hold the surface position of the thin optical recording medium at a constant position, the thin optical recording medium can be stably used. Recording and reproduction can be performed in the state.
  • the cartridge of the present invention is suitable for accommodating a thin high-density recording medium, and can maintain a signal recording surface at a constant height during recording and reproduction.
  • the thickness of the cartridge can be further reduced, and a thin recording medium can be recorded and reproduced in a more stable state.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

An optical head (67) and a magnetic head (65) for magnetooptical disk recording/reproduction are placed between sliders (66a to 66d) that serve to form narrow air gaps (68) between the heads and a disk. When air flows in directions tangential to tracks because of the rotation of a disk (61), the pressure in the air gaps increases, and the disk surface can be kept at a predetermined position so that the pressure in the vertical direction of the disk (61) becomes uniform. This construction is effective for a thin disk having a substrate thickness of not greater than 0.85 mm. A disk cartridge (101) effective for a thin disk includes a roller member (111) which engages with the disk periphery. Radial protuberances (157a and 157b) are formed on the inner surface of the cartridge so as to regulate the air flow between the cartridge and the disk surface. The disk substrate (10) accomodated in the cartridge is thicker in the periphery (12) than the recording region (14) to increase rigidity.

Description

明 細 書 基板及びそれを含む記録媒体、 カー卜リッジ並びに再生装置 技術分野  Technical Field Substrate, recording medium including the same, cartridge, and reproducing apparatus
本発明は、 薄型であるにもかかわらず剛性が高く高密度記録に適した 記録媒体用基板及びそれを用いた光記録媒体または磁気記録媒体、 それ らの薄型の記録媒体を収容するのに好適な記録媒体力一トリッジ、 並び に薄型の光記録媒体の再生または記録再生に好適な再生装置に関する。 背景技術  INDUSTRIAL APPLICABILITY The present invention is suitable for accommodating a recording medium substrate that is thin but has high rigidity and is suitable for high-density recording, an optical recording medium or a magnetic recording medium using the same, and those thin recording media. The present invention relates to a recording medium and a reproducing apparatus suitable for reproducing or recording / reproducing a thin optical recording medium. Background art
コンパク トディスクや光磁気ディスク等の光記録媒体を高密度化する ためのひとつのアプローチとして、 光記録媒体にレーザ光ビームを絞り 込む対物レンズの開口数 N A (Numerical Aperture) を大きくする方法 がある。 しかしながら、 対物レンズの NAを大きくするとレンズの収差 が大きくなり、 例えば、 球面収差は N Aの 4乗に、 コマ収差は N Aの 3 乗に、 非点収差は N Aの 2乗にそれぞれ比例する (尾上守夫監修の 「光 ディスク技術」 、 ラジオ技術社、 第 6 1〜63頁参照) 。 そのため、 光 記録媒体用の再生装置または記録再生装置においては、 一般に、 NA = 0. 5〜0. 55の対物レンズが用いられてきた。 一方、 光記録媒体の 基板の厚みを薄くすることにより NAを大きくできることが知られてお り (T. S UGA Y Aらの I S OM/OD S, 93 D i e s t 第 1 64〜 1 65頁参照) 、 薄型基板を用いる方式として、 例えば、 デジ タルビデオディスク規格の 1つとして 0. 6 mm厚の基板を 2枚張り合 わせた方式が提案されている。 しかしながら、 かかる 2枚張り合わせ方 式の光記録媒体に、 記録方式として現在最も一般的な光磁気記録方式を 用いた場合、 特開平 1一 2 9 2 6 0 3等に記載された光磁界変調記録や M D等で実用化されている磁界変調オーバーライ ト方式が適用できず、 記録時の実効転送レートの高速化の妨げとなる。 また、 2枚張り合わせ 方式の基板は生産性が低い。 このため、 単枚方式で且つ薄い板厚の光記 録媒体用の基板が望まれる。 現在、 光ディスクに使用されている基板の厚みは、 1 . 2 mm程度で あるが、 上記のように記録密度を向上するために基板の厚みを薄くする と、 基板の剛性が低下する。 このため、 光ディスク等の記録媒体をドラ イブで回転駆動したときに、 特に上下振れ (面振れ) や傾き角を悪化さ せ、 安定な状態で記録媒体を記録再生することが困難になる。 一方、 磁気ディスクを記録または再生する際に、 磁気へッ ドを磁気デ イスクに対して数十 n mの間隔で位置付けている。 このため、 磁気ディ スクの回転時に面振れをできるかぎり小さくする必要がある。 近年、 光 ディスクと同様に量産性に優れたプラスチック基板を用いた磁気ディス クが考案されているが、 かかる基板はアルミ等の金属基板に比べて剛性 は低いため、 基板の板厚を薄くした場合に上記のような面振の問題がさ らに深刻化する。 光記録媒体や磁気記録媒体の基板の薄型化に伴って、 記録媒体用の力 —ト リツジを薄型化する要求も高まっている。 従来の光磁気ディスク力 —トリッジの断面構造を図 1 7に示す。 光磁気ディスク 1 0 3の記録ま たは再生中は、 力一トリヅジ 1 0 1の内壁と光磁気ディスク 1 0 3の表 面は、 充分な空隙が確保されており、 光磁気ディスク 1 0 3は力一トリ ッジ 1 0 1の内壁に対して非接触の状態で回転している。 薄型のカート リッジを作製するには、 力一トリッジの内壁とディスク基板との空隙を より狭くする必要がある。 しかし、 前述のように基板の薄型化すると、 基板の剛性の低下や成型の困難性により基板が変形し易くなり、 デイス クと力一トリッジの内壁が接触して、 定常な回転ができなくなる可能性 がある。 ディスクとカートリッジ内壁との接触が生じると、 情報記録領 域に傷を発生させ、 正常な記録再生ができなくなるという問題もある。 前述のように光記録媒体やプラスチック基板を用いた磁気記録媒体の 基板が薄型化されると、 基板成型時の熱応力やその上に形成される金属 薄膜からの応力により基板が変形し、 媒体の回転駆動時に面振れが生じ やすくなる。 かかる面振が生じた場合でも、 良好な記録再生を確保する ために、 駆動装置には、 光ヘッ ドを媒体の情報記録面に対して一定の間 隔で維持させるための自動焦点制御機構が装備されている。 かかる自動 焦点機構では、 媒体表面からの反射光等の信号強度が一定になるように 光へッ ドの位置が制御される。 しかしこのような自動焦点機構にも対応 限度があるため、 例えば、 面振がある範囲を超えると記録再生を行う際 の誤りが非常に多くなつてしまう。 このため、 自動焦点機構を正常に動 作させるためにも、 記録媒体の情報記録面が駆動装置の基準位置に対し て一定の範囲内に位置するように記録媒体を回転駆動させることが必要 となる。 One approach to increasing the density of optical recording media such as compact disks and magneto-optical disks is to increase the numerical aperture (NA) of the objective lens that focuses the laser light beam on the optical recording medium. . However, increasing the NA of the objective lens increases the aberration of the lens. For example, spherical aberration is proportional to the fourth power of NA, coma is proportional to the cube of NA, and astigmatism is proportional to the square of NA. (See “Optical Disc Technology,” supervised by Morio, Radio Engineering, pages 61-63.) Therefore, in a reproducing apparatus or a recording / reproducing apparatus for an optical recording medium, an objective lens having NA of 0.5 to 0.55 has been generally used. On the other hand, it is known that NA can be increased by reducing the thickness of the substrate of the optical recording medium (see T. SUGAYA et al., IS OM / ODS, 93 Diest, pp. 164 to 165). As a method using a thin substrate, for example, a method in which two substrates having a thickness of 0.6 mm are laminated as one of the digital video disc standards has been proposed. However, the most common magneto-optical recording method is currently used as the recording method for such a two-layered optical recording medium. When this method is used, the optical magnetic field modulation recording method described in JP-A-11-229263 and the magnetic field modulation overwriting method put to practical use in MD and the like cannot be applied. It hinders speeding up. In addition, the productivity of a two-layered board is low. Therefore, a single-substrate substrate having a small thickness for an optical recording medium is desired. At present, the thickness of a substrate used for an optical disk is about 1.2 mm. However, when the thickness of the substrate is reduced to improve the recording density as described above, the rigidity of the substrate is reduced. For this reason, when a recording medium such as an optical disk is rotationally driven by a drive, the vertical oscillation (surface oscillation) and the tilt angle are particularly deteriorated, and it becomes difficult to record and reproduce the recording medium in a stable state. On the other hand, when recording or reproducing a magnetic disk, the magnetic head is positioned at an interval of several tens of nm with respect to the magnetic disk. For this reason, it is necessary to minimize the runout during rotation of the magnetic disk. In recent years, magnetic disks using plastic substrates, which are excellent in mass productivity like optical disks, have been devised.However, since such substrates have lower rigidity than metal substrates such as aluminum, the thickness of the substrate has been reduced. In such a case, the above-mentioned surface vibration problem becomes more serious. As substrates for optical recording media and magnetic recording media have become thinner, there has been an increasing demand for thinner force-triggers for recording media. Fig. 17 shows the cross-sectional structure of a conventional magneto-optical disk-tridge. During recording or reproduction of the magneto-optical disk 103, a sufficient gap is secured between the inner wall of the force cartridge 101 and the surface of the magneto-optical disk 103. Is rotating without contact with the inner wall of the force grid 101. Thin cart To make a ridge, it is necessary to make the gap between the inner wall of the force ridge and the disk substrate narrower. However, as described above, when the thickness of the substrate is reduced, the substrate is easily deformed due to the reduced rigidity of the substrate and the difficulty of molding, and the disk and the inner wall of the force cartridge may come into contact with each other, preventing steady rotation. There is a nature. If the disc and the inner wall of the cartridge come into contact with each other, there is a problem that the information recording area is damaged and normal recording and reproduction cannot be performed. As described above, when the substrate of an optical recording medium or a magnetic recording medium using a plastic substrate is thinned, the substrate is deformed due to thermal stress during molding of the substrate and stress from a metal thin film formed thereon, and the medium is deformed. Runout is more likely to occur during the rotation drive of. In order to ensure good recording / reproducing even when such a wobble occurs, the drive unit has an automatic focus control mechanism for maintaining the optical head at a fixed distance from the information recording surface of the medium. Equipped. In such an automatic focusing mechanism, the position of the light head is controlled so that the signal intensity of light reflected from the medium surface or the like becomes constant. However, since such an autofocus mechanism has a limit, for example, if the surface vibration exceeds a certain range, errors in recording / reproducing are extremely increased. Therefore, in order for the autofocus mechanism to operate normally, it is necessary to rotate the recording medium so that the information recording surface of the recording medium is located within a certain range with respect to the reference position of the driving device. Become.
本発明の第 1の目的は、 薄型であるにもかかわらず剛性が高く、 高密 度記録に適した記録媒体用基板及びそれを用いた光記録媒体及び磁気記 録媒体等の記録媒体を提供することにある。 A first object of the present invention is to provide a recording medium substrate suitable for high-density recording even though it is thin, and a recording medium such as an optical recording medium and a magnetic recording medium using the same. It is in.
本発明の第 2の目的は、 薄型の記録媒体の再生に好適な再生装置及び 記録再生装置を提供することにある。 本発明の第 3の目的は、 回転中の薄型の記録媒体の面を所定の位置に 保持する機能を備えた、 薄型の記録媒体に好適なカートリッジを提供す とにあ O o 発明の開示 A second object of the present invention is to provide a reproducing apparatus and a reproducing apparatus suitable for reproducing a thin recording medium. An object of the present invention is to provide a recording and reproducing device. A third object of the present invention is to provide a cartridge suitable for a thin recording medium having a function of holding a surface of a rotating thin recording medium at a predetermined position.
本発明の第 1の態様に従えば、 記録媒体に使用される円板状基板にお いて、 上記記録媒体の記録領域に相当する部分と該記録領域より外側め の領域に相当する部分とでは互いに基板の厚さが異なることを特徴とす る記録媒体用基板が提供される。 本発明の記録媒体用基板では、 記録媒 体の記録領域に相当する部分の基板厚みを該記録領域より外側の領域に 相当する部分の基板厚みと異なるようにしたので、 高密度化のために記 録領域の基板厚みを、 例えば 0 . 8 5 mm以下のような薄さにしても基 板全体の剛性を維持することができる。 上記記録媒体用基板において、 記録媒体の記録領域に相当する部分と、 該記録領域より外側の領域に相 当する部分と、 該記録領域より内側の領域に相当する部分とでは、 互い に基板の厚さが異なるようにすることができる。 本発明の第 2の態様に従えば、 記録媒体に使用される円板状基板にお いて、 上記記録媒体の記録領域に相当する部分が、 該記録領域より内側 の領域に相当する部分よりも基板の厚さが厚いことを特徴とする記録媒 体用基板が提供される。 この記録媒体用基板もまた第 1の態様と同様に、 高密度化のために記録領域の基板厚みを 0 . 8 5 mm以下に薄く しても 基板全体の剛性を維持することができる。 本発明の第 3の態様に従えば、 記録媒体に使用される円板状基板にお いて、 上記基板面上の少なくとも一部に、 基板のヤング率以上のヤング 率を有する補強部材を固着してなることを特徴とする記録媒体用基板が 提供される。 本発明では補強部材を基板上に設けることにより高密度記 録化のための薄型基板の剛性を維持することができる。 補強部材は、 基 板内周部または外周部の記録領域以外の領域に相当する部分に固着する ことができる。 本発明では本発明の第 1、 第 2または第 3の態様に従う基板を用いて 製造された高密度記録に好適な記録媒体が提供される。 記録媒体として は光記録媒体またはブラスチック基板を用いた磁気記録媒体が好適であ る。 本発明の第 4の態様に従えば、 光ビームを光記録媒体に照射し、 該光 記録媒体からの反射光の変化を光量変化として検出する光記録媒体用の 再生装置において、 上記光記録媒体を挟んで対向し且つ該光記録媒体の 上下面に対して回転中に同一幅のエアギヤブを形成するエアギヤブ形成 部材を備えることを特徴とする光記録媒体用再生装置が提供される。 本 発明の再生装置は、 後述する図 6に示したように、 対向するエアギヤブ 形成部材としてのスライダ 6 6 a , 6 6 b , 6 6 c , 6 6 dをディスク 6 1を挟んで記録再生用へッ ド 6 5 , 6 7近傍に設ける。 スライダはデ イスク (光記録媒体) 6 1の上面及び下面 (いずれも設計位置) との間 に同一幅のエアギヤプ 6 8 a , 6 8 b , 6 8 c , 6 8 dを形成するよう に配置する。 ディスク 6 1を回転させたときにディスク面の位置が設計 位置からずれていると、 エアギヤプ 6 8 a ( 6 8 c ) とエアギヤプ 6 8 b ( 6 8 d ) の空気圧が等しくなるように、 ディスク上面または下面に 揚力が発生し、 かかる揚力によりディスク 6 1は強制的にスライダ 6 6 aとスライダ 6 6 b (及びスライダ 6 6 cとスライダ 6 6 d ) 間の中間 位置に拘束させれる。 これにより、 記録再生時のディスク面位置の上下 変動を抑制でき、 記録再生を確実に行えるとともに、 フォーカスサーボ の安定度を増すことができる。 さらに、 光磁気ディスクを記録する場合 には、 記録磁界強度のばらつきを低減することができる。 本発明の光記録媒体の再生装置において、 エアギヤップ形成部材が、 上記光記録媒体を挟んで対向する一対のスライダであり、 該一対のスラ イダ部材が上記再生装置の光へッ ド及び磁気へッ ドにそれそれ固着され ていることが好ましい。 さらに、 上記エアギャップが 0 . 5 mm以下と なるようにエアギャップ形成部材が光記録媒体に対して配置しているこ とが好ましい。 本発明の再生装置は、 再生専用の光記録媒体、 例えば、 光ディスク用の再生装置のみならず、 追記型又は書換え型光記録媒体、 例えば、 光磁気ディスク用等の記録機能を備えた記録再生装置をも含む 概念である。 本発明の第 5の態様に従えば、 少なくとも信号記録領域内での基板厚 みが 0 . 8 5 mm以下の円板状記録媒体が収容されている記録媒体力一 トリッジにおいて、 回転中の円板状記録媒体の外周部の上下面を支持す る支持手段を有する記録媒体カートリッジが提供される。 本発明の力一 トリッジは、 基板厚みが 0 . 8 5 mm以下の薄型記録媒体面の回転時の 面振れを抑制して記録媒体の面位置を安定化するために、 記録媒体の外 周部の上下面を支持する支持手段を備える。 支持手段として、 媒体外周 部を記録媒体の回転に伴って回動可能なローラ部材または回転中の円板 状記録媒体の外周部の上下面を摺動する摺動部材にすることができる。 本発明のカートリッジは、 ローラ状部材または摺動部材と媒体との接触 等により生じた麈等を回収するための集塵手段をさらに有することが好 ましい。 本発明の第 6の態様に従えば、 円板状記録媒体が収容されている記録 媒体力一トリッジにおいて、 上記カー トリッジ内面に、 記録媒体回転時 の空気の流れを調整するための凸部及び凹部の少なくとも一方が力一ト リッジ内面の上面と下面とにそれそれ対称に形成されていることを特徴 とする記録媒体カートリッジが提供される。 本発明のカートリッジは、 記録媒体回転時の空気の流れを調整するための凸部または凹部がカート リッジ内面に対称に形成されている。 この凸部または凹部は、 凸部また は凹部と記録媒体表面との空間を流れる空気流の流速を変化させ、 この 流速変化はその空間における圧力変動をもたらす。 記録媒体の信号記録 面は、 その変動した空気圧がディスクの上下面において均等になるよう にディスク上方または下方から力を受け、 それによつて信号記録面は一 定の位置 (高さ方向位置) に維持される。 特に透明基板に対し、 非接触 で且つ遠隔的にレーザ光束を集光し、 記録媒体に記録再生を行う光記録 再生方式においては、 そのォ一トフォ一カス機能を有効範囲で実行させ るために、 本発明の空気流によるディスクの信号記録面を一定の位置に 保持させる手法が有効である。 前記凸部と力一トリッジ内面との間隔は 0 . 8 mm以下が好ましく、 より好ましくは 0 . 6 mm以下である。 本発明のカートリッジにおいて、 上記凸部及び凹部のすくなくとも一 方が、 カートリッジ内面において、 カートリッジ内に収容された記録媒 体の中心から放射状に形成されていることが好ましい。 また、 本発明の力一卜リッジは、 カートリツジに信号記録または再生 用のへッ ドがアクセスするためのウインドウが形成され、 上記ウインド ゥの記録媒体の少なくとも入口側に、 上記凸部が力一トリッジ内側の上 面及び下面に互いに対称に形成されていることが好ましい。 かかる構造 を有することにより、 カートリツジ内側の上面に形成された凸部と記録 媒体の上面と間の空気圧とカートリッジ内側の下面に形成された凸部と 記録媒体の下面と間の空気圧とが等しくなるように、 記録再生領域は、 へッ ドによって記録再生される前に、 二つの凸部間の中間位置に位置づ けられる。 本発明の第 7の態様に従えば、 少なくとも信号記録領域内での基板厚 みが 0 . 8 5 mm以下の円板状記録媒体が収容されている記録媒体カー トリッジにおいて、 前記記録媒体の上面と力一トリッジの内側上面の間 隔が記録媒体の下面とカートリッジの内側下面の間隔と記録媒体半径方 向に渡って等しく、 且つ該記録媒体の上面と力一卜リッジの内側上面の 間隔及び該記録媒体の下面とカートリッジの内側下面の間隔が、 記録媒 体の内周側より外周側の方が小さいことを特徴とする記録媒体の力—ト リッジが提供される。 本発明のカートリッジは、 第 6の態様のカートリ ッジと同様に、 上記記録媒体回転時の記録媒体の上方及び下方の空気の 流れを等価に整流して、 特に記録媒体外周部の面位置を一定位置に保持 させることができる。 図面の簡単な説明 According to the first aspect of the present invention, in a disk-shaped substrate used for a recording medium, a portion corresponding to a recording region of the recording medium and a portion corresponding to a region outside the recording region are different. There is provided a substrate for a recording medium, wherein the substrates have different thicknesses. In the recording medium substrate of the present invention, the substrate thickness of the portion corresponding to the recording region of the recording medium is made different from the substrate thickness of the portion corresponding to the region outside the recording region. The rigidity of the whole substrate can be maintained even if the substrate thickness in the recording area is as thin as 0.85 mm or less, for example. In the recording medium substrate, a portion corresponding to a recording region of the recording medium, a portion corresponding to a region outside the recording region, and a portion corresponding to a region inside the recording region are mutually different from each other on the substrate. The thickness can be different. According to the second aspect of the present invention, in a disc-shaped substrate used for a recording medium, a portion corresponding to a recording region of the recording medium is larger than a portion corresponding to a region inside the recording region. A substrate for a recording medium, wherein the substrate has a large thickness is provided. As in the first embodiment, this recording medium substrate can maintain the rigidity of the entire substrate even if the substrate thickness of the recording area is reduced to 0.85 mm or less for higher density. According to the third aspect of the present invention, in a disk-shaped substrate used for a recording medium, a reinforcing member having a Young's modulus equal to or higher than the Young's modulus of the substrate is fixed to at least a part of the substrate surface. There is provided a substrate for a recording medium, comprising: In the present invention, by providing the reinforcing member on the substrate, the rigidity of the thin substrate for high-density recording can be maintained. The reinforcing member can be fixed to a portion corresponding to a region other than the recording region on the inner peripheral portion or the outer peripheral portion of the substrate. The present invention provides a recording medium suitable for high-density recording manufactured using the substrate according to the first, second or third aspect of the present invention. As the recording medium, an optical recording medium or a magnetic recording medium using a plastic substrate is suitable. According to a fourth aspect of the present invention, there is provided a reproducing apparatus for an optical recording medium, which irradiates a light beam onto the optical recording medium and detects a change in reflected light from the optical recording medium as a change in light amount. And an air gear forming member which forms an air gear having the same width during rotation with respect to the upper and lower surfaces of the optical recording medium. As shown in FIG. 6, which will be described later, the reproducing apparatus of the present invention uses a slider 66 a, 66 b, 66 c, 66 d as an air gear groove forming member for recording and reproducing with the disk 61 interposed therebetween. Provide near heads 65 and 67. The sliders are arranged so as to form air gaps 68 a, 68 b, 68 c, 68 d of the same width between the upper surface and the lower surface (both are designed positions) of the disk (optical recording medium) 61. I do. If the position of the disk surface deviates from the designed position when the disk 61 is rotated, the air gap between the air gap 68 a (68 c) and the air gap 68 b (68 d) should be equalized. On top or bottom A lift is generated, and the lift forces the disk 61 to be restrained at an intermediate position between the sliders 66a and 66b (and the sliders 66c and 66d). As a result, vertical fluctuation of the disk surface position during recording / reproduction can be suppressed, recording / reproduction can be performed reliably, and the stability of the focus servo can be increased. Further, when recording on a magneto-optical disk, it is possible to reduce variations in the recording magnetic field intensity. In the reproducing apparatus for an optical recording medium of the present invention, the air gap forming member is a pair of sliders opposed to each other with the optical recording medium interposed therebetween, and the pair of slider members is an optical head and a magnetic head of the reproducing apparatus. It is preferable that each of them is fixed to each of them. Further, it is preferable that the air gap forming member is disposed with respect to the optical recording medium such that the air gap is 0.5 mm or less. The reproducing apparatus of the present invention is not limited to a reproducing-only optical recording medium, for example, a reproducing apparatus for an optical disk, and a recording / reproducing apparatus having a recording function for a write-once or rewritable optical recording medium, for example, a magneto-optical disk. It is a concept that also includes According to the fifth aspect of the present invention, at least in a recording medium power cartridge accommodating a disk-shaped recording medium having a substrate thickness of 0.85 mm or less in a signal recording area, a rotating circle A recording medium cartridge having a support means for supporting upper and lower surfaces of an outer peripheral portion of a plate-shaped recording medium is provided. The force cartridge according to the present invention has an outer peripheral portion of a recording medium in order to stabilize the surface position of the recording medium by suppressing surface runout during rotation of a thin recording medium having a substrate thickness of 0.85 mm or less. And supporting means for supporting the upper and lower surfaces. As the support means, the outer peripheral portion of the medium may be a roller member rotatable with the rotation of the recording medium or a sliding member that slides on the upper and lower surfaces of the outer peripheral portion of the rotating disk-shaped recording medium. The cartridge of the present invention preferably further includes dust collecting means for collecting dust or the like generated by contact between the roller-shaped member or the sliding member and the medium. According to a sixth aspect of the present invention, in the recording medium cartridge accommodating the disc-shaped recording medium, a convex portion for adjusting the flow of air during rotation of the recording medium is provided on the inner surface of the cartridge. A recording medium cartridge is provided, wherein at least one of the concave portions is formed symmetrically on the upper surface and the lower surface of the inner surface of the force cartridge, respectively. In the cartridge of the present invention, a convex portion or a concave portion for adjusting the flow of air when the recording medium rotates is formed symmetrically on the inner surface of the cartridge. The convex or concave portion changes the flow velocity of the air flow flowing through the space between the convex or concave portion and the surface of the recording medium, and the change in the flow velocity causes a pressure fluctuation in the space. The signal recording surface of the recording medium is subjected to a force from above or below the disc so that the fluctuating air pressure is equal on the upper and lower surfaces of the disc, whereby the signal recording surface is at a fixed position (height position). Will be maintained. In particular, in an optical recording / reproducing method in which a laser beam is focused on a transparent substrate in a non-contact and remote manner, and recording / reproducing is performed on a recording medium, it is necessary to execute the autofocus function within an effective range. The technique of the present invention for holding the signal recording surface of the disk at a fixed position by the air flow is effective. The distance between the projection and the inner surface of the force cartridge is preferably 0.8 mm or less, and more preferably 0.6 mm or less. In the cartridge of the present invention, it is preferable that at least one of the convex portion and the concave portion is formed radially on the inner surface of the cartridge from the center of the recording medium accommodated in the cartridge. Further, in the force cartridge of the present invention, a window for accessing a head for signal recording or reproduction is formed in the cartridge, and the protrusion is formed at least on an inlet side of the window recording medium. It is preferable that they are formed symmetrically on the upper surface and the lower surface inside the bridge. With this structure, the air pressure between the convex portion formed on the upper surface inside the cartridge and the upper surface of the recording medium and the air pressure between the convex portion formed on the lower surface inside the cartridge and the lower surface of the recording medium become equal. As described above, the recording / reproducing area is positioned at an intermediate position between the two convex portions before recording / reproducing by the head. According to a seventh aspect of the present invention, in a recording medium cartridge accommodating a disc-shaped recording medium having a substrate thickness of 0.85 mm or less at least in a signal recording area, The distance between the lower surface of the recording medium and the inner lower surface of the cartridge is equal to the distance between the lower surface of the recording medium and the inner lower surface of the cartridge in the radial direction of the recording medium, and the distance between the upper surface of the recording medium and the inner upper surface of the force cartridge; A force cartridge for a recording medium is provided, wherein the distance between the lower surface of the recording medium and the inner lower surface of the cartridge is smaller on the outer peripheral side than on the inner peripheral side of the recording medium. The cartridge of the present invention, similarly to the cartridge of the sixth aspect, equally rectifies the air flows above and below the recording medium during rotation of the recording medium, and particularly adjusts the surface position of the outer peripheral portion of the recording medium. It can be held in a fixed position. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に従う光ディスクの概観図である。  FIG. 1 is a schematic view of an optical disk according to the present invention.
図 2 Aは、 図 1に示した光ディスク製造用のカーボネート基板の断面 図である。 図 2 B〜Gは本発明の記録媒体用基板の種々の構造を示す断面図であ り、 図 2 Hは従来の記録媒体用基板の構造を示す断面図である。 FIG. 2A is a sectional view of the carbonate substrate for manufacturing an optical disc shown in FIG. 2B to 2G are cross-sectional views showing various structures of the recording medium substrate of the present invention, and FIG. 2H is a cross-sectional view showing the structure of a conventional recording medium substrate.
図 3は、 図 2 A, 図 2 B, 図 2 C及び図 2 Hに示した断面構造を有す る基板について、 ドライブ上での回転時における面振れ量の測定結果を 示すグラフである。  Fig. 3 is a graph showing the results of measurement of the amount of runout of the substrate having the cross-sectional structure shown in Figs. 2A, 2B, 2C, and 2H when rotating on a drive.
図 4 A〜図 4 Hは、 本発明に従う記録媒体用基板の別の構造を示す断 面図である。  4A to 4H are cross-sectional views showing another structure of the recording medium substrate according to the present invention.
図 5 A〜図 5 Gは、 本発明に従う記録媒体用基板のさらに別の構造を 示す断面図である。  5A to 5G are sectional views showing still another structure of the recording medium substrate according to the present invention.
図 6は、 本発明に従う光記録媒体再生装置の原理図である。  FIG. 6 is a principle diagram of the optical recording medium reproducing device according to the present invention.
図 7は、 実施例 2一 1において、 スライダ部材 6 6 b , 6 6 dの光へ ッ ドへの取付け例を示す概念図である。  FIG. 7 is a conceptual diagram showing an example of attaching the slider members 66b and 66d to the light head in the embodiment 2-11.
図 8は、 実施例 2— 1において、 スライダ部材 6 6 a , 6 6 cの磁気 へッ ドへの取付け例を示す概念図である。  FIG. 8 is a conceptual diagram showing an example of attaching the slider members 66a and 66c to the magnetic head in the embodiment 2-1.
図 9は、 実施例 2— 2における光記録媒体再生装置の概略構成図であ る。  FIG. 9 is a schematic configuration diagram of an optical recording medium reproducing apparatus according to Embodiment 2-2.
図 1 0は、 本発明の記録媒体カートリッジの概略構成図である。 図 1 1は、 本発明の記録媒体カートリッジに使用される口一ラ部材の 構造を示す部分断面図である。  FIG. 10 is a schematic configuration diagram of a recording medium cartridge of the present invention. FIG. 11 is a partial cross-sectional view showing the structure of a mouthpiece member used in the recording medium cartridge of the present invention.
図 1 2は、 本発明の記録媒体カートリッジに使用されるライナ一の構 造を示すカートリッジの部分断面図である。  FIG. 12 is a partial cross-sectional view of a cartridge showing the structure of a liner used in the recording medium cartridge of the present invention.
図 1 3は、 本発明の記録媒体カートリッジに使用される集塵室の構造 を示すカートリッジの部分断面図である。  FIG. 13 is a partial sectional view of the cartridge showing the structure of the dust collection chamber used in the recording medium cartridge of the present invention.
図 1 4は、 本発明の記録媒体力一トリッジに使用される別のローラ部 材の構造を示す部分断面図である。  FIG. 14 is a partial cross-sectional view showing the structure of another roller member used for the recording medium power cartridge of the present invention.
図 1 5は、 本発明の記録媒体カートリッジに使用される摺動部材の構 造を示す部分断面図である。 FIG. 15 shows the structure of the sliding member used in the recording medium cartridge of the present invention. It is a fragmentary sectional view showing structure.
図 1 6は、 本発明の第 3実施例に従うカートリッジの効果を説明する グラフである。  FIG. 16 is a graph illustrating the effect of the cartridge according to the third embodiment of the present invention.
図 1 7は、 従来の光磁気ディスク力一トリッジの構造を示す断面図で おる。  FIG. 17 is a sectional view showing the structure of a conventional magneto-optical disk drive.
図 1 8八及び1 8 は、 それそれ、 本発明の実施例 4一 1の記録媒体 カートリッジの構造を示す平面図及びその A— A線断面図である。 図 1 9 A及び 1 9 Bは、 それそれ、 本発明の実施例 4一 2の記録媒体 カートリッジの構造を示す平面図及びその A— A線断面図である。 図 2 O A及び 2 0 Bは、 それそれ、 本発明の実施例 4一 3の記録媒体 力一卜リッジの構造を示す平面図及びその A— A線断面図であり、 図 2 0 C〜Dは、 図 2 0 Bの断面構造の変形例を示す断面図である。  FIGS. 18 and 18 are a plan view and a sectional view taken along line AA, respectively, showing the structure of a recording medium cartridge according to Embodiment 41 of the present invention. FIGS. 19A and 19B are a plan view and a sectional view taken along line AA, respectively, showing the structure of a recording medium cartridge according to Embodiment 412 of the present invention. FIGS. 2OA and 20B are a plan view and a cross-sectional view taken along line AA, respectively, showing the structure of the recording medium cartridge of Embodiments 4-13 of the present invention. 20 is a sectional view showing a modification of the sectional structure of FIG. 20B.
図 2 1は、 本発明の実施例 4 - 4の力一トリッジの構造を示す断面図 である。  FIG. 21 is a cross-sectional view showing a structure of a force cartridge according to Example 4-4 of the present invention.
図 2 2 A及び 2 2 Bは、 それそれ、 本発明の実施例 4— 5の記録媒体 力一卜リッジの構造を示す平面図及びその A— A線断面図である。 発明を実施するための最良の形態  FIGS. 22A and 22B are a plan view and a sectional view taken along line AA, respectively, showing the structure of a recording medium cartridge according to Examples 4-5 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面を参照しながら説明するが、 本発明はそ れらに限定されない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
第 1実施例 First embodiment
この実施例では、 本発明の第 1の目的を達成するための光記録媒体及 び磁気記録媒体用の基板及びそれを用いた光記録媒体及び磁気記録媒体 の具体例について説明する。 実施例 1一 1 図 1は、 本発明に従う光ディスクの概観図である。 この光ディスク 1 の外径及び内径はそれそれ 1 2 0 mm及び 1 5 mmである。 光ディスク 1は情報の記録再生が行われない部分、 すなわち、 リードイン 2の内側 領域 1 6 (クランビングエリア) 及びリードアウト 4の外側領域 1 2の 基板厚さが 1 . 2 mmであり、 リードイン 2及びリードアウト 4並びに それらに挟まれたプログラム領域 1 4の基板厚さは 0 . 6 mmである。 リードイン 2から内側領域 1 6へ接続する部分、 すなわち、 内側領域 1 6の側壁部は、 良好な形状、 光学特性及び機械特性のプラスチック基板 を射出成形により容易に製造できるよう約 2 0 ° で傾斜している。 同様 の理由から、 リードアウト 4から外側領域 1 2へ接続する部分、 すなわ ち、 外側領域 1 6の側壁部も約 2 0 ° で傾斜している。 この傾斜角は 4 5 0 以下であることが好ましい。 図 1に示したように、 本発明の光記録 媒体は、 記録再生が行われる領域を薄くすることによって高密度記録化 に対応することができるとともに、 記録再生が行われない少なくとも外 周部の厚さを記録再生が行われる領域の厚さより厚く (または薄く) す ることによって薄型の光記録媒体の剛性を高くすることができる。 図 1 に示した光ディスクは、 例えば、 ポリカーボネート樹脂を、 プリフォー トマツ トパターンが形成されたスタンパを装着した金型中で、 図 1に示 したような形状に射出成形し、 得られたポリカーボネート基板上に金属 反射膜及び保護層を順次積層することによって製造することができる。 図 2 Aに図 1の光ディスク 1の製造に用いたポリカーボネート基板 1 0の断面図を示す。 図 2 Aの断面図は、 内側領域 1 6 aと外側領域 1 2 aの位置及びそれらの領域と記録再生が行われる領域 1 4 aの厚さの差 を明瞭にするために誇張して示してある。 図 2 B〜図 2 Gに本発明の光記録媒体用基板の断面構造の変形例を示 す。 図 2Bは、 図 2Aの場合に比べて、 外側領域 12 bの厚さのみが内 側領域 16b及び記録再生領域 14 bの厚さよりも大きい場合を示し、 外側領域 12 bの厚さが 1. 2 mmであり、 記録再生が行われる領域 1 4 b及び内側領域 16ゎの厚さが0. 6 mmである。 図 2 Cは、 内側領 域 16 cの厚さが外側領域 12 c及び記録再生領域 14 cの領域の厚さ よりも小さい場合を示し、 内側領域 16 bの厚さが 0. 3 mmであり、 記録再生が行われる領域 14 b及び外側領域 1213の厚さが0. 6mm である。 図 2 Dは、 外側領域 12 dの厚さが内側領域 16 d及び記録領 域 14 dの厚さよりも小さい場合を示し、 外側領域 12 dの厚さが 0. 3 mmであり、 記録再生が行われる領域 14 d及び内側領域 16 dの厚 さが 0. 6mmである。 図 2Eは、 外側領域 12 e及び内側領域 16 e の厚さが記録再生領域 14 eの厚さよりも小さい場合を示し、 外側領域 12 e及び内側領域 12 eの厚さが 0. 3 mmであり、 記録再生領域 1 4 eの厚さが 0. 6mmである。 図 2 Fは、 外側領域 12 f、 内側領域 16 f及び記録再生領域 14 f の厚さがそれそれ異なる場合を示し、 外側領域 12 fの厚さが 1. 2 m m、 内側領域 12 fの厚さが 0. 3mm、 記録再生領域 14 fの厚さが 0. 6 mmである。 図 2Gは、 外側領域 12 g、 内側領域 16 g及び記 録再生領域 14 gの厚さがそれそれ異なる場合を示し、 外側領域 12 g の厚さが 0. 3mm、 内側領域 12 gの厚さが 1. 2mm、 記録再生領 域 14gの厚さが 0. 6mmである。 図 2Hは、 従来の光ディスクの断面構造を示し、 ディスクの厚みが 1. 2 mmの均一な場合を示す。 図 2 A〜図 2 Gにおいて、 各領域間の段差 部における傾斜角は図 1及び 2 Aの場合と同様に 2 0 ° である。 図 2 A 〜図 2 Gに示した断面構造を有する基板は、 ボリカーボネート等の樹脂 をそれらの断面構造に対応する形状の金型を用いて射出成型することに より容易に製造することができる。 なお、 図 2 A〜図 2 Gに示した基板 の上面、 下面のいずれの面が信号面を構成してもよく、 射出成型の際に、 スタンパを用いて所望の面にプリフォーマツ トパターンのビッ ト群を形 成させることができる。 次に、 図 2 A , 図 2 B及び図 2 Cに示した断面構造を有する基板につ いて、 ドライブ上での回転時における面振れ量を測定した。 面振れ量は、 光ディスク機械特性測定装置 (小野測器製 L M— 1 2 0 0 ) を用いて、 光ディスクが回転速度 1 8 0 O rpm にて一回転する間 (0。 〜3 6 0。 ) のディスク面の上下位置の変動を調べた。 結果を図 3に示す。 図中、 曲 線 A, B , Cは図 A , 図 2 B及び図 2 Cに示した基板の測定結果を示し、 曲線 Pは、 図 2 Hの従来の基板の結果を示す。 図 3より本発明の基板は 著しく面振れ量が小さいことがわかる。 図 2 A〜図 2 Gに示した本発明 に従う光ディスク用基板は記録再生領域の厚みが 0 . 6 mmと薄くても、 他の領域の厚みが異なるために、 基板全面で厚みが均一な従来の基板に 比べて基板の剛性を向上させることができる。 従って、 本発明の記録媒 体用基板を用いて製造した光記録媒体及び磁気記録媒体は、 ディスク回 転時の基板の変形を低減させ、 それによつて良好な記録再生を行うこと ができる。 基板の剛性を高めるために、 特に、 図 2 A, 2 8及び2 0に 示した構造が好ましい。 実施例 1一 2 図 4 A〜図 4 Hに、 本発明に従う記録媒体用基板の別の断面構造を示 す。 図 2 A〜2 Gでは、 光ディスクの上面の外側領域 1 2、 記録再生領 域 1 4、 及び内側領域 1 6の少なくとも一つの領域の高さを調整するこ とによって厚みを変更したが、 図 4 A〜図 4 Hに示したように、 光ディ スクの上面と下面が対称になるように各領域の厚みを変更することがで きる。 このような構造を採用する場合も、 実施例 1一 1の場合と同様に 薄型基板の所定のレベルの剛性を維持することができる。 実施例 1一 3 In this embodiment, specific examples of an optical recording medium and a magnetic recording medium substrate for achieving the first object of the present invention, and an optical recording medium and a magnetic recording medium using the same will be described. Example 11 FIG. 1 is a schematic view of an optical disk according to the present invention. The outer and inner diameters of the optical disc 1 are 120 mm and 15 mm, respectively. In the optical disc 1, the portion where information is not recorded / reproduced, that is, the substrate thickness of the inner area 16 (the clamping area) of the lead-in 2 and the outer area 12 of the lead-out 4 is 1.2 mm. The substrate thickness of the in 2 and the lead out 4 and the program area 14 sandwiched between them is 0.6 mm. The portion connecting the lead-in 2 to the inner region 16, that is, the side wall portion of the inner region 16 is formed at about 20 ° so that a plastic substrate having good shape, optical properties and mechanical properties can be easily manufactured by injection molding. It is inclined. For the same reason, the portion connecting the lead-out 4 to the outer region 12, that is, the side wall portion of the outer region 16 is also inclined at about 20 °. This inclination angle is preferably 450 or less. As shown in FIG. 1, the optical recording medium of the present invention can cope with high-density recording by making the recording / reproducing area thinner, and at least the outer peripheral portion where recording / reproducing is not performed. By making the thickness thicker (or thinner) than the thickness of the area where recording and reproduction are performed, the rigidity of the thin optical recording medium can be increased. The optical disk shown in FIG. 1 is obtained by, for example, injection molding a polycarbonate resin into a mold as shown in FIG. 1 in a mold equipped with a stamper on which a preform mat pattern is formed, and forming the mold on the obtained polycarbonate substrate. It can be manufactured by sequentially laminating a metal reflective film and a protective layer on the substrate. FIG. 2A shows a cross-sectional view of the polycarbonate substrate 10 used for manufacturing the optical disc 1 of FIG. The cross-sectional view in Figure 2A is exaggerated to clarify the position of the inner region 16a and the outer region 12a, and the difference in thickness between those regions and the region 14a where recording and reproduction are performed. It is. 2B to 2G show modified examples of the cross-sectional structure of the optical recording medium substrate of the present invention. Fig. 2B shows a case where only the thickness of the outer region 12b is larger than the thickness of the inner region 16b and the recording / reproducing region 14b compared to the case of Fig. 2A, and the thickness of the outer region 12b is 1. The thickness of the area 14b where recording and reproduction are performed and the inner area 16mm are 0.6 mm. Fig. 2C shows a case where the thickness of the inner area 16c is smaller than the thickness of the outer area 12c and the area of the recording / reproducing area 14c, and the thickness of the inner area 16b is 0.3 mm. The thickness of the area 14b where recording and reproduction are performed and the outer area 1213 are 0.6 mm. Figure 2D shows the case where the thickness of the outer area 12d is smaller than the thickness of the inner area 16d and the recording area 14d.The thickness of the outer area 12d is 0.3 mm, The thickness of the region 14d to be performed and the inner region 16d is 0.6 mm. FIG.2E shows a case where the thickness of the outer region 12e and the inner region 16e is smaller than the thickness of the recording / reproducing region 14e, and the thickness of the outer region 12e and the inner region 12e is 0.3 mm. The thickness of the recording / reproducing area 14 e is 0.6 mm. Figure 2F shows the case where the thickness of the outer area 12f, the inner area 16f, and the recording / reproducing area 14f are different from each other.The thickness of the outer area 12f is 1.2 mm, and the thickness of the inner area 12f. And the thickness of the recording / reproducing area 14 f is 0.6 mm. Figure 2G shows the case where the outer area 12 g, the inner area 16 g, and the recording / reproducing area 14 g have different thicknesses.The outer area 12 g has a thickness of 0.3 mm and the inner area 12 g has a thickness of 12 g. Is 1.2 mm, and the thickness of the recording / reproducing area 14 g is 0.6 mm. Figure 2H shows the cross-sectional structure of a conventional optical disk, where the disk thickness is 1. Shows the uniform case of 2 mm. 2A to 2G, the inclination angle at the step between the respective regions is 20 ° as in FIGS. 1 and 2A. The substrate having the cross-sectional structure shown in FIGS. 2A to 2G can be easily manufactured by injection molding a resin such as polycarbonate using a mold having a shape corresponding to the cross-sectional structure. . It should be noted that either the upper surface or the lower surface of the substrate shown in FIGS. 2A to 2G may constitute the signal surface, and during the injection molding, the bit of the preformat pattern is formed on the desired surface by using a stamper. Groups can be formed. Next, with respect to the substrate having the cross-sectional structure shown in FIGS. 2A, 2B, and 2C, the amount of surface runout during rotation on the drive was measured. The amount of runout was measured using an optical disk mechanical property measurement device (LM-1200, manufactured by Ono Sokki Co., Ltd.) during one rotation of the optical disk at a rotation speed of 180 O rpm (0 to 360.). Of the disk surface was examined. The results are shown in Figure 3. In the figure, curves A, B, and C show the measurement results for the substrates shown in FIGS. A, 2B, and 2C, and curve P shows the results for the conventional substrate shown in FIG. 2H. From FIG. 3, it can be seen that the substrate of the present invention has an extremely small surface runout. Although the optical disc substrate according to the present invention shown in FIGS. 2A to 2G has a thin recording / reproducing area as thin as 0.6 mm, the thickness of other areas is different. The rigidity of the substrate can be improved as compared with that of the substrate. Therefore, the optical recording medium and the magnetic recording medium manufactured by using the recording medium substrate of the present invention can reduce the deformation of the substrate during the rotation of the disk, thereby enabling good recording and reproduction. In order to increase the rigidity of the substrate, the structures shown in FIGS. 2A, 28 and 20 are particularly preferable. Example 11 4A to 4H show another sectional structure of the recording medium substrate according to the present invention. In FIGS. 2A to 2G, the thickness was changed by adjusting the height of at least one of the outer region 12, the recording / reproducing region 14, and the inner region 16 on the upper surface of the optical disc. As shown in FIGS. 4A to 4H, the thickness of each region can be changed so that the upper surface and the lower surface of the optical disc are symmetrical. Even when such a structure is employed, a predetermined level of rigidity of the thin substrate can be maintained as in the case of the embodiment 11. Example 11
図 5 Aに本発明の記録媒体用の基板の別の構成例を示す。 この基板 5 0は、 厚み 0 . 6 mm、 直径 1 2 0 mmの平坦な光ディスク用ポリ力一 ボネート基板の上面の外側領域 1 2に基板 5 4と同心状の環状の剛性補 強部材 5 2 aが接着剤等により固着されてなる。 剛性補強部材 5 2 aの 厚みは、 剛性補強部材 5 2 aを装着した部分のディスクの全厚みが 1 . 2 mm程度になるように調整することができる。 剛性補強部材のディス ク内側の側壁は実施例 1一 1の光ディスク用基板と同様に 4 5 ° 以下の 傾斜にすることが好ましい。 剛性補強板の材料としては、 ボリ力一ボネ —卜のような基板と同一の材料、 アルミニウム、 鉄、 酸化アルミニウム、 酸化シリコン、 酸化チタン、 窒化シリコン、 窒化チタン、 炭化シリコン などが適当である。 剛性を一層高めるために、 基板の材料よりもヤング 率が高い材料を用いるのが好ましい。 図 5 B〜図 5 Gに図 5 Aの基板の変形例を示す。 図 5 Bでは、 光ディ スク用基板 5 4の上面の内側領域 1 6に基板 5 4と同心状の環状の剛性 補強部材 5 2 bが接着剤等により固着されている。 図 5 Cでは、 光ディ スク用基板 5 4の上面の外側領域 1 2及び内側領域 1 6に基板 5 4と同 心状の環状の剛性補強部材 5 2 c及び 5 2 c ' がそれぞれ接着剤等によ り固着されている。 図 5 Dでは、 光ディスク用基板 5 4の上面及び下面 の外側領域 1 2に基板 5 4と同心状の環状の剛性補強部材 5 2 d及び 5 2 d, がそれそれ接着剤等により固着されている。 図 5 Eでは、 光ディ スク用基板 5 4の上面及び下面の内側領域 1 6に基板 5 4と同心状の環 状の剛性補強部材 5 2 eがそれそれ接着剤等により固着されている。 図 5 Fでは、 光ディスク用基板 5 4の上面及び下面の外側領域 1 2及び内 側領域 1 6に基板 5 4と同心状の環状の剛性補強部材 5 2 f及び 5 2 f ' がそれそれ接着剤等により固着されている。 図 5 Gは、 図 5 Bの基板の最外周部が振動吸収材 5 6で構成されてい る基板の例を示す。 振動吸収材としては、 例えば、 ウレタン、 シリコ一 ン樹脂、 塩化ビニール、 ブチルゴムなどのゴム材、 各種高分子材料等の 弾性部材から構成することができる。 図 5 Gに示した基板構造は、 後述 する実施例 3の力一トリヅジに収容する記録媒体に有効である。 また、 振動吸収材は図 5 A〜 Fの各図に用いた剛性補強部材 5 2や内側領域 1 6等に種々の形状及び配置で貼り付けることにより、 種々の振動モ一ド に対して防振性を発起させることが可能である。 また、 基板の形状とし て図 2、 図 4の各図のものを選択して振動吸収材の弾性係数 ·形状との 組合せにより最適な構成を得ることができる。 図 5 B〜図 5 Gにおいて、 補強部材 5 2の材料及び基板 5 4の材料及 び厚みは図 5 Aの場合と同様である。 図 5 A〜図 5 Gに示したように、 記録及び再生が行われる領域以外の 領域に剛性補強部材 5 2を固着したことにより、 基板 5 4の剛性を向上 することができる。 図 5 A〜図 5 Gに示した基板について、 実施例 1一 1で行ったのと同様の方法により、 基板回転時の面振れ量を測定した。 0 . 6 mm厚の従来型の平坦な基板と比較したところ、 図 5 A〜図 5 G の基板は面振が抑制されていることがわかった。 従って、 かかる基板か ら製造した光ディスクや光磁気記録媒体等の光記録媒体をドライブに装 着して回転駆動した場合に、 ディスク面の面振を低下させることができ る。 実施例 1— 1 ~ 1— 3に示した基板を用いて、 光記録媒体の種類に応 じて通常行われている方法を用いて、 種々の光記録媒体を製造すること ができる。 例えば、 C Dなどの光ディスクの場合には、 実施例で製造し た基板上に反射層及び保護層を塗布することによって製造することがで きる。 また、 光磁気ディスクの場合には、 実施例で製造した基板上にェ ンハンス層、 記録層、 中間層、 金属層等をスパッタリングなどにより種 々の順序で積層することで製造することができる。 実施例 1一 1〜 1一 3においては、 光ディスク及び光ディスク用基板 を例にして説明してきたが、 本発明は、 ブラスチック基板を用いた磁気 ディスクにも適用することができる。 例えば、 特開平 2— 2 1 8 0 1 0 号に記載されたようなエンボスタイプのプラスチック基板を用いた磁気 ディスクに適用することが特に有効である。 磁気ディスク用のプラスチ ック基板の寸法としては、 例えば、 外径 9 5 mm、 内径 2 5 mm、 厚み 1 . 2 m mにすることができる。 基板材料は、 特に限定されないが、 例 えば、 非晶質ポリオレフイン等の材料を用いることができる。 本発明を プラスチック基板を用いた磁気ディスクに適用することにより、 磁気デ イスクの回転時に起こる面振れを防止し、 良好な記録及び再生を確保す ることができる。 第 2実施例 FIG. 5A shows another configuration example of the substrate for a recording medium of the present invention. The substrate 50 has an annular rigid reinforcing member 5 2 concentric with the substrate 54 in an outer region 12 on the upper surface of a flat optical disk substrate for an optical disk having a thickness of 0.6 mm and a diameter of 120 mm. a is fixed by an adhesive or the like. The thickness of the rigid reinforcing member 52a can be adjusted so that the total thickness of the disk where the rigid reinforcing member 52a is mounted is about 1.2 mm. It is preferable that the side wall on the inner side of the disc of the rigidity reinforcing member is inclined at 45 ° or less similarly to the optical disc substrate of the embodiment 11. As the material of the rigid reinforcing plate, the same material as that of the substrate such as a bolt-on-bottle, aluminum, iron, aluminum oxide, silicon oxide, titanium oxide, silicon nitride, titanium nitride, silicon carbide and the like are suitable. In order to further increase the rigidity, it is preferable to use a material having a higher Young's modulus than the material of the substrate. 5B to 5G show modified examples of the substrate of FIG. 5A. In FIG. 5B, an annular rigid reinforcing member 52 b concentric with the substrate 54 is fixed to an inner region 16 on the upper surface of the optical disk substrate 54 with an adhesive or the like. In FIG. 5C, the outer region 12 and the inner region 16 on the upper surface of the optical disk substrate 54 are the same as the substrate 54. The core-shaped annular rigid reinforcing members 52c and 52c 'are respectively fixed by an adhesive or the like. In FIG. 5D, annular rigid reinforcing members 52 d and 52 d concentric with the substrate 54 are respectively fixed to the outer regions 12 on the upper and lower surfaces of the optical disk substrate 54 by an adhesive or the like. I have. In FIG. 5E, an annular rigid reinforcing member 52 e concentric with the substrate 54 is fixed to the inner region 16 on the upper and lower surfaces of the optical disk substrate 54 by an adhesive or the like. In FIG. 5F, annular rigid reinforcing members 52 f and 52 f ′ concentric with the substrate 54 are respectively bonded to the outer region 12 and the inner region 16 on the upper and lower surfaces of the optical disk substrate 54. It is fixed by an agent or the like. FIG. 5G shows an example of a substrate in which the outermost periphery of the substrate of FIG. 5B is made of a vibration absorbing material 56. Examples of the vibration absorbing material include elastic materials such as urethane, silicon resin, rubber materials such as vinyl chloride and butyl rubber, and various polymer materials. The substrate structure shown in FIG. 5G is effective for a recording medium accommodated in a force cartridge of Example 3 described later. In addition, the vibration absorbing material is attached to the rigid reinforcing member 52 and the inner area 16 used in each of FIGS. 5A to 5F in various shapes and arrangements to prevent various vibration modes. It is possible to cause vibration. In addition, an optimal configuration can be obtained by selecting the shape of the substrate shown in each of FIGS. 2 and 4 by combining the elastic modulus and shape of the vibration absorbing material. 5B to 5G, the material of the reinforcing member 52 and the material and thickness of the substrate 54 are the same as those in FIG. 5A. As shown in FIGS. 5A to 5G, the rigidity of the substrate 54 is improved by fixing the rigidity reinforcing member 52 to an area other than the area where recording and reproduction are performed. can do. For the substrates shown in FIGS. 5A to 5G, the amount of surface runout during rotation of the substrates was measured in the same manner as in Example 11-11. When compared with the conventional flat substrate having a thickness of 0.6 mm, it was found that the substrates of FIGS. 5A to 5G suppressed the surface vibration. Accordingly, when an optical recording medium such as an optical disk or a magneto-optical recording medium manufactured from such a substrate is mounted on a drive and driven to rotate, the surface vibration of the disk surface can be reduced. Using the substrates shown in Examples 1-1 to 1-3, various optical recording media can be manufactured by a method generally used according to the type of the optical recording medium. For example, in the case of an optical disk such as a CD, the optical disk can be manufactured by applying a reflective layer and a protective layer on the substrate manufactured in the embodiment. In the case of a magneto-optical disk, it can be manufactured by laminating an enhancement layer, a recording layer, an intermediate layer, a metal layer, and the like on the substrate manufactured in the embodiment in various orders by sputtering or the like. Embodiments 11 to 11 have been described by taking an optical disk and an optical disk substrate as examples, but the present invention can also be applied to a magnetic disk using a plastic substrate. For example, it is particularly effective to apply the present invention to a magnetic disk using an embossed plastic substrate as described in Japanese Patent Application Laid-Open No. 2-218010. The dimensions of the plastic substrate for the magnetic disk can be, for example, an outer diameter of 95 mm, an inner diameter of 25 mm, and a thickness of 1.2 mm. The material of the substrate is not particularly limited. For example, a material such as amorphous polyolefin can be used. By applying the present invention to a magnetic disk using a plastic substrate, surface run-out that occurs when the magnetic disk rotates can be prevented, and good recording and reproduction can be ensured. Can be Second embodiment
この実施例では、 本発明の第 2の目的を達成するための、 薄型の記録 媒体の再生 (または記録及び再生) に好適な再生装置の具体例について 説明する。 本発明のエアギヤップ形成部材を用いた再生装置の原理を図 6を用いて説明する。 図 6は本発明の光記録媒体用の再生装置を光磁気 ディスク記録再生装置に適用した場合の光へッ ド近傍部分を概念的に示 した図である。 この光磁気ディスク記録再生装置は、 通常の光磁気ディ スク記録再生装置と同様に、 記録再生時に光磁気ディスク 6 1の上面側 及び下面側に、 それそれ、 磁気へッド 65及び光へッド 67が位置する ような構造を有する。 光へッ ド 67にはォートフォーカス用のァクチュ エー夕 64が内蔵されており、 永久磁石 63 a, 63 bを用いて対物レ ンズ 62を光磁気ディスク 6 1面に対して近接または離隔させることが できる。 本発明の記録媒体用の再生装置は、 図示したディスク移動方向に対し て磁気へッ ド 65及び光へッ ド 67の前方側と後方側に、 それそれ、 デ イスク 6 1を挟むように対向する二組のスライダ部材 66 a, 66 b及 び 66 c, 66 dが配置されている。 スライダ部材 66 a, 66 b及び 66 c, 66 dは、 各々、 図示したように直方体部材をその対向する角 部が異なる傾斜または曲率を持つような形状に加工されている。 スライ ダ部材 66 a, 66 b及び 6 6 c, 66 dを図 6に示したように光磁気 ディスク 6 1を挟んで上下対称に配置させることにより、 ディスク回転 時に、 スライダ部材 66 a, 66 b 3 66 c, 66 dと光磁気ディスク の上下面との間に同一間隔のエアギャップ 68 a, 68 b, 68 c, 6 8 dを形成することができる。 スライダ部材 6 6 a及び 6 6 b (スライ ダ部材 6 6 c及び 6 6 d ) により挟まれた空間のうち、 ディスク入口側 (ディスク移動方向の前方側の空間) はディスク出口 (ディスク移動方 向の後方側の空間) よりも広い間隔でエアギヤップを形成している。 光磁気ディスク 6 1が図示した方向に高速移動 (回転) すると、 光磁 気ディスク 6 1のトラックの接線方向の空気の流れがエアギャップ 6 8 a , 6 8 bに入り込む。 この際、 ディスク入口と出口の中間付近ではェ ァギヤヅプの幅が狭くなるために、 各エアギヤプ内に入り込んだ空気の 圧力が上がる。 この際、 ディスク面がディスクの成型時や回転時の変形 等により設計位置 (スライダ部材 6 6 aと 6 6 b bの中間位置) からず れていると、 エアギャップ 6 8 aとエアギャップ 6 8 b内の空気圧が異 なるために、 それらのエアギヤップの空気圧を等しくするようにデイス ク上下面に力 (揚力) が作用する。 かかる揚力によりディスク面を前記 設計位置に位置付けることができる。 従って、 ディスクが薄型になって も回転時にその面位置をエアギヤップ形成部材により自動的に保持する ことができ、 薄型ディスクのディスク面がカートリッジ内壁と接触する ことが防止される。 スライダ 6 6 c及び 6 6 d間においても同様の原理 に従い、 ディスク 6 1は回転時にスライダ部材 6 6 cと 6 6 dの中間位 置に自動的に位置づけられる。 スライダ部材の位置は、 対向するスライダ部材の中間位置がディスク を回転するスピン ドルの高さから所定距離を隔てた位置、 すなわち、 デ イスク設置基準高さにディスクの厚みの半分の長さを加えた位置になる ように設計するのが好ましい。 スライダ部材は、 後述する具体例のよう に、 磁気へッ ド 6 5及び光へッ ド 6 7に固着させることによって所定位 置に配置することができる。 光磁気ディスク 6 1として基板厚みが 0. 6 mmのものを用いる場合、 各スライダ部材とディスク面で形成される エアギャップ 68 a, 68 b, 68 c , 68 dの最も狭い間隔が 0. 1 mmになるように設定した。 実施例 2一 1 In this embodiment, a specific example of a reproducing apparatus suitable for reproducing (or recording and reproducing) a thin recording medium for achieving the second object of the present invention will be described. The principle of a reproducing apparatus using the air gap forming member of the present invention will be described with reference to FIG. FIG. 6 is a diagram conceptually showing a portion near an optical head when the reproducing apparatus for an optical recording medium of the present invention is applied to a magneto-optical disk recording / reproducing apparatus. This magneto-optical disk recording / reproducing apparatus, like a normal magneto-optical disk recording / reproducing apparatus, has a magnetic head 65 and an optical head on the upper and lower sides of the magneto-optical disk 61 during recording and reproduction, respectively. It has a structure such that the gate 67 is located. The optical head 67 has a built-in autofocusing mechanism 64 for moving the objective lens 62 closer to or away from the surface of the magneto-optical disk 61 using permanent magnets 63a and 63b. Can be done. The reproducing apparatus for a recording medium according to the present invention opposes the front side and the rear side of the magnetic head 65 and the optical head 67 with respect to the illustrated moving direction of the disk so as to sandwich the disk 61 therebetween. The two sets of slider members 66a, 66b and 66c, 66d are arranged. Each of the slider members 66a, 66b and 66c, 66d is formed by processing a rectangular parallelepiped member into a shape such that opposing corners have different inclinations or curvatures, as shown in the drawing. By arranging the slider members 66a, 66b and 66c, 66d vertically symmetrically with respect to the magneto-optical disk 61 as shown in Fig. 6, the slider members 66a, 66b 3 Air gaps 68a, 68b, 68c, 6 at the same interval between 66c, 66d and the upper and lower surfaces of the magneto-optical disk. 8 d can be formed. Of the space sandwiched by the slider members 66a and 66b (slider members 66c and 66d), the disk inlet side (space in the disk moving direction front side) is the disk outlet (disk moving direction). The air gap is formed at a wider interval than the space on the rear side. When the magneto-optical disk 61 moves (rotates) at high speed in the illustrated direction, the air flow in the tangential direction of the track of the magneto-optical disk 61 enters the air gaps 68 a and 68 b. At this time, since the width of the gap becomes narrow near the middle between the disk inlet and the outlet, the pressure of the air entering each air gap increases. At this time, if the disk surface is deviated from the design position (the intermediate position between the slider members 66a and 66bb) due to deformation during molding or rotation of the disk, the air gap 68a and the air gap 68 Since the air pressures in b differ, forces (lift) act on the upper and lower surfaces of the disk to equalize the air pressures of those air gaps. The lift allows the disk surface to be positioned at the design position. Therefore, even when the disk becomes thin, the surface position thereof can be automatically held by the air gap forming member during rotation, and the disk surface of the thin disk is prevented from contacting the inner wall of the cartridge. Following the same principle between the sliders 66c and 66d, the disk 61 is automatically positioned at an intermediate position between the slider members 66c and 66d during rotation. The position of the slider member is determined by adding a half of the thickness of the disk to the position where the middle position of the opposing slider member is a predetermined distance from the height of the spindle that rotates the disk, that is, the disk installation reference height. It is preferable to design so that it is located at the right position. The slider member is fixed at a predetermined position by being fixed to the magnetic head 65 and the optical head 67 as in a specific example described later. Can be placed on the table. When a magneto-optical disk 61 having a substrate thickness of 0.6 mm is used, the narrowest space between the air gaps 68a, 68b, 68c, and 68d formed between each slider member and the disk surface is 0.1. mm. Example 21
図 7及び図 8に、 図 6に示したスライダ部材 66 a, 66 b, 66 c: 66 dの光磁気ディスク再生装置への取付け例を示す。 図 7は、 デイス ク 6 1の下面側にエアギヤップ 68 b, 68 dを形成するスライダ部材 を 66 b, 66 dを、 光へッ ド 67の支持体 70上に設置した光へッ ド 67の斜視図である。 スライダ部材 6 6 b, 66 dは、 長さ 3 cm、 幅 8mm、 高さ 8 mmのセラミック部材を図 6に示したような断面形状に なるように加工して作製した。 スライダ部材 6 6 b, 66 dをァクチュ 一夕 64を挟んで、 互いに平行になるよう対物レンズ 62の中心からそ れそれ 2 c m離れた位置に配置した。 図 8は、 ディスク 6 1の上面側にエアギャップ 68 a, 68 cを形成 するスライダ部材 66 a, 6 6 cを磁気へッ ド 65の支持体 69上に設 置した磁気へッ ド 67の斜視図である。 スライダ部材 66 a, 66 cは、 磁気へッ ド 65を挟んで磁気へッ ド 6 5の中心からそれぞれ 2 cm離れ た位置に互いに平行になるように配置した。 スライダ部材 66 a, 66 cはスライダ部材 66 b, 6 6 dと同一の寸法及び形状を有するセラミ ヅク製の部材である。 図 7に示したスライダ部材 66 b及び 66 dを装 着した光へッ ド 67と、 図 8に示したスライダ部材 66 a及び 66 cを 装着した磁気ヘッ ド 67とを、 ディスク上下面上に 0. 1mmのエアギ ャップをそれそれ形成するように光磁気ディスク記録再生装置に組み込 んだ。 磁気へッ ド 67自体は、 ディスク着脱時には上方に退避できるよ うにァクチユエ一夕 (図示しない) により可動式にした。 基板厚さ 0 . 6 mmの光磁気ディスクをこの光磁気ディスク記録再生装置に装着し, 例えば、 回転数 3600 r pmで光磁気ディスクを駆動させてデ一夕を 記録再生することができる。 これによりフォーカスサーボの安定度を増 すことができる。 実施例 2— 2 FIGS. 7 and 8 show examples of attaching the slider members 66a, 66b, 66c: 66d shown in FIG. 6 to the magneto-optical disk reproducing device. FIG. 7 shows the slider member 66 b and 66 d forming the air gap 68 b and 68 d on the lower surface side of the disk 61, and the optical head 67 mounted on the support 70 of the optical head 67. It is a perspective view. The slider members 66b and 66d were manufactured by processing a ceramic member having a length of 3 cm, a width of 8 mm, and a height of 8 mm so as to have a sectional shape as shown in FIG. The slider members 66b and 66d were arranged at positions 2 cm away from the center of the objective lens 62 so as to be parallel to each other with the actuator 64 interposed therebetween. FIG. 8 shows a magnetic head 67 in which slider members 66 a and 66 c forming air gaps 68 a and 68 c on the upper surface side of the disk 61 are mounted on a support 69 of the magnetic head 65. It is a perspective view. The slider members 66a and 66c were arranged parallel to each other at positions 2 cm away from the center of the magnetic head 65 with the magnetic head 65 interposed therebetween. The slider members 66a and 66c are ceramic members having the same dimensions and shape as the slider members 66b and 66d. The optical head 67 equipped with the slider members 66b and 66d shown in FIG. 7 and the magnetic head 67 equipped with the slider members 66a and 66c shown in FIG. 0.1mm air gap is incorporated into the magneto-optical disc recording / reproducing device to form I do. The magnetic head 67 itself was made movable by an actuator (not shown) so that it could be retracted upward when a disk was attached or detached. A magneto-optical disk having a substrate thickness of 0.6 mm is mounted on the magneto-optical disk recording / reproducing apparatus, and the magneto-optical disk can be driven at, for example, a rotation speed of 3600 rpm to record / reproduce data. As a result, the stability of the focus servo can be increased. Example 2-2
この例では、 スライダ部材 66 a, 66 b, 66 c, 66 dを光へッ ド 67及び磁気へッ ド 65に固着せずに、 光磁気ディスク記録再生装置 の本体のへヅ ドをアクセスさせるためのリニアァクチユエ一夕の固定部 に装着した例を示す。 図 9に示したように、 スライダ部材 6 6 a, 66 b, 66 c, 66 dを、 光磁気ディスク 6 1の最外周部を挟むような位 置に配置する。 そして、 スピンドル (図示しない) の高さを基準とする 所定位置、 すなわち、 (光磁気ディスク 6 1の記録再生装置上での設置 高さ) + (光磁気ディスク 6 1の厚さ X 0. 5 ) の高さ (位置) に対し て、 それそれ、 その上下方向に 0. 1 mmのエアギャップが形成される ようにスライダ部材 66 a, 66 b, 66 c, 66 dを位置付けた。 ス ライダ部材 66 a, 6 6 b, 66 c, 66 dの上面 (ディスクに面する 面と対向する面) にローディングモ一夕または電磁式のァクチユエ一夕 に接続することにより、 それらのスライダ部材を、 ディスク着脱時に上 下方向に退避させることができる。 ディスク回転後には、 ローデイング モー夕等により各スライダ部材を、 ディスク上下面上に 0. 1mmのギ ャップを与える距離までディスクに近づけることができる。 実施例 2 - 1の場合と同様に、 エアギヤップによりディスクの面がスライダ部材の 中間位置に位置づけられるので 、 ディスク自体に成型時の歪み等の変形があっても記録再生時には矯正 され、 すなわち回転しているディスクの上下変動が抑制される。 従って、 薄型の記録媒体であっても記録再生を確実に行うことができ、 さらにフ オーカスサーボの安定度を増すこともできる。 上記実施例では、 光記録媒体として光磁気ディスク及びその記録再生 装置を例に挙げて説明したが、 それに限らず C D、 C D - R , D V D , M D等の種々の光記録媒体に適用できる。 また、 実施例で説明したスラ イダ部材の材料、 形状、 配置等は、 それらの具体例に限定されず、 前記 原理説明に従うエアギヤップ形成部材の作用効果を奏するものであれば、 いずれの部材も任意の位置で使用することができる。 第 3実施例 In this example, the slider members 66a, 66b, 66c, and 66d are not fixed to the optical head 67 and the magnetic head 65, and the head of the main body of the magneto-optical disk recording / reproducing apparatus is accessed. The following shows an example of mounting on the fixed part of Linear Work. As shown in FIG. 9, the slider members 66 a, 66 b, 66 c, and 66 d are arranged so as to sandwich the outermost peripheral portion of the magneto-optical disk 61. Then, a predetermined position based on the height of a spindle (not shown), that is, (the installation height of the magneto-optical disk 61 on the recording / reproducing apparatus) + (the thickness of the magneto-optical disk 61 X0.5) The slider members 66a, 66b, 66c, 66d were positioned so that an air gap of 0.1 mm was formed in the vertical direction at each height (position). The slider members 66a, 66b, 66c, and 66d are connected to the loading module or electromagnetic actuator by connecting them to the upper surface (the surface opposite to the surface facing the disk). Can be retracted upward and downward when the disc is attached or detached. After the disk is rotated, each slider member can be brought close to the disk by a loading mode or the like to a distance that gives a gap of 0.1 mm on the upper and lower surfaces of the disk. As in the case of Embodiment 2-1, since the disk surface is positioned at the intermediate position of the slider member by air gap, Even if the disk itself has a deformation such as distortion during molding, it is corrected at the time of recording / reproduction, that is, the vertical fluctuation of the rotating disk is suppressed. Therefore, recording and reproduction can be reliably performed even with a thin recording medium, and the stability of the focus servo can be increased. In the above embodiment, a magneto-optical disk and its recording / reproducing apparatus have been described as examples of the optical recording medium. However, the present invention is not limited to this, and can be applied to various optical recording media such as CD, CD-R, DVD, and MD. Further, the material, shape, arrangement, and the like of the slider member described in the embodiment are not limited to those specific examples, and any member may be used as long as it has the function and effect of the air gap forming member according to the principle description. Can be used in any position. Third embodiment
この実施例では基板厚みが 0 . 8 5 mm以下の薄型の記録媒体を収容 した記録媒体力一トリヅジの具体例について図 1 0〜図 1 7を参照して 説明する。 実施例 3 — 1  In this embodiment, a specific example of a recording medium power cartridge accommodating a thin recording medium having a substrate thickness of 0.85 mm or less will be described with reference to FIGS. 10 to 17. FIG. Example 3 — 1
図 1 0は、 本発明の力一トリッジを光磁気ディスクカ一トリッジに適 用した場合の力一トリッジの概略構成を示す。 光磁気ディスク力一トリ ヅジ 1 0 0は、 ァヅパーシェル 1 0 1 a及びローァシェル 1 0 1 bから 構成されたカートリッジ本体 1 0 1と、 その内部に収容される光磁気デ イスク 1 0 3と、 アッパーシェル 1 0 l aのシャッターウィンドウ 1 0 6を開閉するシャツ夕一 1 0 8から主に構成されている。 光磁気デイス ク 1 0 3としては、 基板厚み 0 . 6 mm、 外径 1 2 0 mmの薄型ディス クが使用されている。 回転中の光磁気ディスク 1 0 3の外周部の上下面を支持することによ つて薄型ディスクの変形の抑制するため、 後述するローラ部材 1 0 5 a、 1 0 5 bが力一ト リッジ本体 1 0 1内のシャツ夕一ウインドウ 1 0 6の 両側に配置されている。 記録再生用の光磁気へッ ド (図示せず) がシャ ッ夕一ウィンドウ 1 0 6の領域内に接近することからすれば、 ディスク 1 0 3上の記録または再生が行われ部分の位置変動を抑制するために、 ローラ部材 1 0 5 a、 1 0 5 bは光磁気へッ ドの設置位置近傍、 すなわ ち、 シャッターウィンド 1 0 6の近傍に配置するのが望ましい。 また、 カー卜リッジ本体 1 0 1内には、 口一ラ部材 1 0 5 a, 1 0 5 bと光磁 気ディスク 1 0 3との接触で磨耗粉が発生した場合にそれを拭き取るラ イナ一 1 2 0 aがディスク中心に対してローラ部材 1 0 5 bと対向する 側に設置されている。 このライナー 1 2 0 a , 1 2 0 b (図 1 2参照) はディスク 1 0 3の回転によりディスク面上を摺動し、 回転中の光磁気 ディスクの外周部の上下面を支持する手段としても機能する。 ライナ一 1 2 0 aの構造及びディスク 1 0 3との配置関係は図 1 2において後述 する。 図 1 1に、 図 1 0に示したカートリッジ 1 0 0をディスク中心とロー ラ部材 1 0 5 aの中心とを結ぶ線で破断した場合の力一トリッジ断面図 を示す。 力一トリッジ本体 1 0 1内で、 ディスク 1 0 3はクランブリン グプレート 1 0 4によって回転支持される。 ディスク 1 0 3は、 回転駆 動の際に、 光磁気ディスク再生装置のスピンドル 1 1 4に吸着されモ一 夕軸 1 0 9の回転によって駆動される。 ローラ部材 1 0 5 aは、 円筒状 ローラであり、 ローラの中心に回転軸 1 0 7が埋設されている。 ローラ の中央外周部に溝部 1 1 1が形成されている。 ローラ溝部 1 1 1はディ スク 1 0 3の最外周部と係合することによって、 すなわちローラ溝部 1 1 1によりディスク 1 0 3の上下面が支持されることによって、 デイス ク 1 0 3の面の高さ方向 (回転軸方向) の位置上下変動を抑制すること ができる。 本実施例ではディスク厚み 0 . 6 mmに対して、 ローラ部材 1 0 5 aの溝幅は 0 . 7 mmとした。 溝幅は、 ディスク 1 0 5の円滑な 回転を確保するため、 ディスク厚みに対して 0 . 0 5〜0 . 1 5 mm広 くすることが望ましい。 また、 カートリヅジ本体 1 0 1内でのディスク 1 0 3の偏心をある程度、 例えば、 約 1 0 0 m許容させるために、 溝 1 1 1の底部 (深さ) はカートリヅジ本体 1 0 1中のディスクの最外周 の設計位置よりも外側に位置するように構成することができる。 ローラ 回転軸 1 0 7は、 その端部が、 それそれ、 力一卜リッジ本体 1 0 1のァ ヅパ一シェル 1 0 1 a及び口一ァシェル 1 0 1 bの内側に形成された孔 1 1 2 a , 1 1 2 bに回動可能に支持されている。 口一ラ部材 1 0 5 aの材料としては、 ディスク 1 0 3との接触により 生じる磨耗および摩擦力を低くするため、 滑性および耐磨耗性に優れた ものが好ましく、 例えばポリアセタール、 ポリプロピレン、 フッ素系樹 脂等が好ましい。 口一ラ部材 1 0 3 bは、 ローラ部材 1 0 3 aと同一の 構造であり、 同一材料から構成されている。 図 1 0では、 力一卜リッジ 本体 1 0 1内にローラ部材を二つ設けたが、 ローラ部材 1 0 3 a, bと 同一のローラ部材を 3つ以上ディスク外周部に設置することもできる。 FIG. 10 shows a schematic configuration of a force cartridge when the force cartridge of the present invention is applied to a magneto-optical disk cartridge. The magneto-optical disk drive 100 has a cartridge main body 101 composed of an upper shell 101a and a lower shell 101b, and a magneto-optical disk 103 housed therein. The upper shell consists mainly of a shirt that opens and closes a shutter window of 106 la. As the magneto-optical disk 103, a thin disk having a substrate thickness of 0.6 mm and an outer diameter of 120 mm is used. In order to suppress deformation of the thin disk by supporting the upper and lower surfaces of the outer periphery of the rotating magneto-optical disk 103, roller members 105a and 105b, which will be described later, are driven by the force cartridge body. The shirts in 101 are located on both sides of the evening window 106. Given that the magneto-optical head (not shown) for recording and reproduction approaches the area of the window 106, the position of the portion where the recording or reproduction is performed on the disk 103 is changed. In order to suppress this, it is desirable that the roller members 105 a and 105 b be disposed near the installation position of the magneto-optical head, that is, near the shutter window 106. Also, inside the cartridge body 101, a liner for wiping off any abrasion powder generated by contact between the mouthpiece members 105a, 105b and the magneto-optical disk 103 is provided. One 120a is provided on the side opposite to the roller member 105b with respect to the center of the disk. The liners 120a and 120b (see FIG. 12) slide on the disk surface by the rotation of the disk 103 and serve as means for supporting the upper and lower surfaces of the outer periphery of the rotating magneto-optical disk. Also works. The structure of the liner 120a and the positional relationship with the disk 103 will be described later with reference to FIG. FIG. 11 is a cross-sectional view of the force cartridge when the cartridge 100 shown in FIG. 10 is broken along a line connecting the center of the disk and the center of the roller member 105a. Within the force cartridge body 101, the disc 103 is rotatably supported by a clamping plate 104. The disk 103 is attracted to the spindle 114 of the magneto-optical disk reproducing device and is driven by the rotation of the motor shaft 109 when rotating. The roller member 105a is a cylindrical roller, and the rotating shaft 107 is embedded at the center of the roller. A groove 111 is formed on the outer periphery of the center of the roller. Roller groove 1 1 1 The upper and lower surfaces of the disk 103 are supported by being engaged with the outermost peripheral portion of the disk 103, that is, by supporting the upper and lower surfaces of the disk 103 by the roller grooves 111, so that the height direction of the surface of the disk 103 (rotating shaft Direction) can be suppressed. In this embodiment, the groove width of the roller member 105a was 0.7 mm with respect to the disk thickness of 0.6 mm. It is desirable that the groove width is set to be 0.05 to 0.15 mm wider than the disk thickness in order to ensure smooth rotation of the disk 105. Also, in order to allow the eccentricity of the disc 103 in the cartridge body 101 to some extent, for example, about 100 m, the bottom (depth) of the groove 111 is set to the disc in the cartridge body 101. It can be configured to be located outside the outermost design position of the. The roller rotating shaft 107 has an end formed by a hole 1 formed inside the paper shell 101 a and the mouth shell 101 b of the power cartridge body 101. It is rotatably supported by 12a and 11b. The material of the mouthpiece member 105a is preferably a material excellent in lubricity and abrasion resistance in order to reduce abrasion and frictional force caused by contact with the disc 103, such as polyacetal, polypropylene, and the like. Fluororesin is preferred. The mouth member 103b has the same structure as the roller member 103a, and is made of the same material. In FIG. 10, two roller members are provided in the cartridge body 101, but three or more roller members identical to the roller members 103a and 103b can be installed on the outer periphery of the disk. .
図 1 2に、 図 1 0のディスク 1 0 3の回転中心とライナー 1 2 0の中 心を結ぶ線で力一卜リッジ本体 1 0 1を破断した力一トリヅジの部分断 面図を示す。 ライナ一 1 2 0 a及び 1 2 0 bは、 それそれ、 カートリッ ジ本体 1 0 1のアッパーシェル 1 0 1 a及びローァシェル 1 0 1 bの内 側に形成されたライナ支持部 1 2 3 a及び 1 2 3 b上に固着されている ( ライナ 1 2 0 a及び 1 2 0 bはディスク最外周部を挟み込むように設置 されている。 ライナ 1 2 0 a及び 1 2 0 bは、 ローラ部材 1 0 5 a, 1 0 5 bとディスク 1 0 3との接触で磨耗粉がディスク上下面に発生した 場合、 それを拭き取る。 ライナ一 1 2 0 a及び 1 2 0 bの材料は、 フェ ルトおよびフロッピ一ディスクのライナ一として用いられているいずれ の材料も使用することができ、 例えば不織布が望ましい。 図 1 0の力一トリッジ本体 1 0 1内に設けられた集麈室 1 3 0につい て図 1 3を用いて説明する。 集塵室 1 3 0はカートリヅジ本体 1 0 1の 一角に形成された部屋であり、 ディスク 1 0 3の最外周の延長上に入口 1 3 4が設けられている。 集塵室 1 3 0の入り口 1 3 4は、 集塵室 1 3 0に収集された塵等が再びそこから飛散してディスク 1 0 3に付着する のを防止するため、 クサビ状の形状を成している。 また集塵室 1 3 0の 内壁の一部には、 例えば、 シリコン系の粘着材 1 3 2が塗布されており、 粘着材 1 3 2は集塵室 1 3 0に進入した塵等を粘着する。 ディスク 1 0 3と口一ラ部材 1 0 5 a , bの接触による静電気の発生 を防止するために少なくともディスク表面は静電気防止コーティングを 施すことが望ましい。 一層好ましくは力一トリッジ内壁およびライナ一 1 2 0 a , bに静電気防止材を塗布することが望ましい。 静電気防止材 を混入した樹脂でカートリッジを成型することも有効である。 実施例 3— 2 FIG. 12 is a partial cross-sectional view of the force cartridge in which the force cartridge main body 101 is broken by a line connecting the rotation center of the disc 103 and the center of the liner 120 in FIG. Liner 1 2 0 a and 1 2 0 b are each Are fixed to the di-body 1 0 Upper shell 1 1 0 1 a and Roasheru 1 0 1 b liner support portion formed on the inner side of the 1 2 3 a and 1 2 3 on b (liner 1 2 0 a, and The liners 120a and 120b are provided so that the outermost peripheral portion of the disk is sandwiched between them, and the liners 120a and 120b are in contact with the roller members 105a and 105b and the disk 103. If the abrasion powder is generated on the upper and lower surfaces of the disc, wipe it off.Use the same material as that used for the liner for the ferrite and floppy discs. A non-woven fabric is preferable, for example.The dust collecting chamber 130 provided in the force cartridge main body 101 of Fig. 10 will be described with reference to Fig. 13. The dust collecting chamber 130 is a cartridge. This is a room formed in a corner of the main body 101, and an entrance 1 34 is provided on the outermost extension of the disk 103. The entrance 1 3 4 of the dust collection chamber 130 has a wedge shape to prevent dust and the like collected in the dust collection chamber 130 from scattering again from there and adhering to the disc 103. For example, a silicon-based adhesive material 13 2 is applied to a part of the inner wall of the dust collection chamber 130, and the adhesive material 13 2 is a dust collection chamber 13 It sticks dust etc. that has entered 0. In order to prevent the generation of static electricity due to the contact between the disc 103 and the mouthpiece members 105, b, it is desirable to apply an antistatic coating on at least the disc surface. Preferably, an antistatic material is applied to the inner wall of the force cartridge and the liners 120a, b.It is also effective to mold the cartridge with a resin mixed with the antistatic material.
図 1 4に、 図 1 0〜図 1 3に示した力一卜リッジ本体 1 0 1において 異なるタイプのローラ部材を用いた例を示す。 図 14は、 図 10に示し た力一卜リッジ 1 00を図 1 1と同様の位置で切断した断面図を示す。 この例では、 ディスク 1 03の最外周部は、 ディスク 1 03の上面及び 下面にそれそれ接触する一対の口一ラ部材 140 a, 140 bにより係 合される。 口一ラ部材 140 a, 140 bの形状は円筒型または樽型に することができる。 ローラ回転軸 142 a, 142 bはそれそれァヅパ —シェル 10 1 a及びローァシェル 1 01 bの内側に形成されたローラ 回転軸支持部材 146により回動可能に支持されている。 ローラ部材 1 40 aと口一ラ部材 140 bとの間隔は図 1 1に示したローラ部材の溝 幅と同様である。 ディスク 1 03及びその他の力一トリッジの構成は実 施例 3— 1と同様である。 実施例 3— 3 Fig. 14 shows the force cartridge body 101 shown in Figs. An example in which different types of roller members are used will be described. FIG. 14 is a sectional view of the force cartridge 100 shown in FIG. 10 cut at the same position as that of FIG. In this example, the outermost periphery of the disc 103 is engaged by a pair of mouthpiece members 140a and 140b that respectively contact the upper and lower surfaces of the disc 103. The shape of the mouthpiece members 140a and 140b can be cylindrical or barrel-shaped. The roller rotating shafts 142a and 142b are rotatably supported by roller rotating shaft supporting members 146 formed inside the upper shell 101a and the lower shell 101b, respectively. The distance between the roller member 140a and the mouth member 140b is the same as the groove width of the roller member shown in FIG. The configuration of the disk 103 and other force cartridges is the same as in Example 3-1. Example 3-3
図 1 5に、 図 1 0〜図 1 3に示した力一卜リッジ 100においてロー ラ部材の代わりに摺動部材 1 50 a, 1 50 bを用いた例を示す。 図 1 5は、 図 10に示した力一トリッジ 100を図 1 1と同様の位置で切断 した断面図を示す。 この例では、 ディスク 1 03の最外周部は、 デイス ク 103の上面及び下面にそれそれ接触する一対の半球形の摺動部材 1 50 a, 1 50 bにより支持される。 この場合、 ディスク 1 03の回転 を円滑にするために、 ディスク 103と摺動部材 1 50 a, 1 50 b間 の摩擦係数は 0. 3以下が好ましく、 一層好ましくは 0. 2以下である。 摺動部材 1 50 a, 1 50 bの材料は、 摩擦係数を低下し且つ活性及び 耐磨耗性を向上すべく、 ポリアセ夕一ル、 ポリプロピレン、 フッ素系樹 脂等が望ましい。 また、 少なくともディスク 1 03の摺動部材との接触 部あるいは摺動部材自身のいずれがに潤滑剤、 例えばシリコン系潤滑剤 を塗布することが望ましい。 摺動部材 15 0 a, 1 50 bは、 アッパー シェル 1 0 1 a及びローァシェル 1 0 1 bに接合されたコ状の支持部材 1 5 2の端部に対向するように装着される。 摺動部材 1 5 0 aと摺動部 材 1 5 0 bとの間の間隔は図 1 1に示したローラの溝幅と同様である。 ディスク 1 0 3及びその他の力一トリッジの構成は実施例 3— 1及び実 施例 3— 2と同様である。 この摺動部材 1 5 0 a, 1 5 O bを用いた力 —トリッジも、 ディスク面の位置を保持することによって薄型ディスク の回転動作を安定化させ、 それによつて記録再生を確実に行わせること ができる。 実施例 3— 1及び 3— 3に示したディスクを係合するための部材を用 いたカートリッジについて、 回転中のディスク面の上下振れをそれそれ 測定した。 測定は、 実施例 1で用いたのと同じ光ディスク機械特性測定 装置を用いた。 なお、 図 1 7に示したような、 ディスクを係合するため の部材を持たない従来の光磁気ディスクカートリッジを比較例として用 いた。 結果を図 1 6に示す。 図 1 6中、 実施例 3— 1の力一トリッジの 測定結果を曲線 1 6 2、 実施例 3— 3のカートリッジの測定結果を曲線 1 6 3、 従来の力一トリヅジの測定結果を曲線 1 6 1でそれそれ示す。 従来の力一トリッジのディスクの一周内変動 (面振れの幅) が最大 0 . 5 mmであったのに対して、 実施例 3— 1では最大 0 . 1 2 mm、 実施 例 3— 3では 0 . 1 3 mmに低減することができた。 なお、 実施例 3— 2の力一トリッジの結果は図示しなかったが、 実施例 3— 1とほぼ同等 の曲線が得られ、 最大 0 . 1 1 mmの面振れ幅であった。 本発明のカートリッジは、 カートリッジ内に収容されるディスクの外 径が 8 0 m m以上で且つディスク基板の厚みが最も薄い部分で 0 . 8 5 mm以下のものに有効であり、 特に、 ディスク外径 1 0 0 mm以上で、 - 21 - ディスク基板の最小厚み 0 . 6 5 mm以下のものに有効である。 実施例 3では、 光磁気ディスクを収容したカートリッジについて説明 したが、 カートリツジに収容されるディスクの種類は特に限定されず、 C D、 C D - R O M. C D - R, 相変化型光ディスク、 M D、 D V D等 の種々の光記録媒体に適用することができる。 また、 プラスチック基板 を用いた磁気ディスクにも適用することができ、 例えば、 リムーバブル 夕ィプの磁気ディスクカートリッジに有効である。 力一トリッジに収容 させる記録媒体の種類は特に問わず、 その厚みが 0 . 8 5 mm以下の薄 型基板を用いた記録媒体であれば、 本発明のカートリッジは任意の記録 媒体に適用することができる。 第 4実施例 FIG. 15 shows an example in which the sliding members 150a and 150b are used instead of the roller members in the force cartridge 100 shown in FIGS. FIG. 15 shows a sectional view of the force cartridge 100 shown in FIG. 10 cut at the same position as that of FIG. In this example, the outermost peripheral portion of the disk 103 is supported by a pair of hemispherical sliding members 150a and 150b that contact the upper and lower surfaces of the disk 103, respectively. In this case, in order to make the rotation of the disk 103 smooth, the coefficient of friction between the disk 103 and the sliding members 150a and 150b is preferably 0.3 or less, more preferably 0.2 or less. The material of the sliding members 150a and 150b is desirably made of polyacetate, polypropylene, fluorine resin or the like in order to reduce the coefficient of friction and improve the activity and wear resistance. It is desirable that at least either the contact portion of the disk 103 with the sliding member or the sliding member itself be coated with a lubricant, for example, a silicon-based lubricant. The sliding members 150a and 150b are upper It is mounted so as to face the end of the U-shaped support member 152 joined to the shell 101a and the lower shell 101b. The distance between the sliding member 150a and the sliding member 150b is the same as the groove width of the roller shown in FIG. The configurations of the disc 103 and other force cartridges are the same as those of the embodiment 3-1 and the embodiment 2-2. The force using the sliding members 150a and 150Ob also stabilizes the rotation of the thin disk by maintaining the position of the disk surface, thereby ensuring recording and reproduction. be able to. For the cartridges using the members for engaging the disks shown in Examples 3-1 and 3-3, the vertical run-out of the rotating disk surface was measured. For the measurement, the same optical disk mechanical property measuring apparatus as used in Example 1 was used. As a comparative example, a conventional magneto-optical disk cartridge having no member for engaging the disk as shown in FIG. 17 was used. The results are shown in FIG. In Fig. 16, the measurement result of the force cartridge of Example 3-1 is curve 162, the measurement result of the cartridge of Example 3-3 is curve 163, and the measurement result of the conventional force cartridge is curve 1. At 6 one it shows. In the conventional force cartridge, the fluctuation (width of the runout) in one round of the disk was 0.5 mm at the maximum, whereas in Example 3-1 it was 0.12 mm at the maximum, and Example 3-3 was the maximum. It was reduced to 0.13 mm. In addition, although the result of the force cartridge of Example 3-2 was not shown, a curve substantially equivalent to that of Example 3-1 was obtained, and the maximum surface runout was 0.11 mm. The cartridge of the present invention is effective for a disk accommodated in the cartridge having an outer diameter of 80 mm or more and a disk substrate having a thinnest portion of 0.85 mm or less. 100 mm or more, -21-Effective when the minimum thickness of the disk substrate is 0.65 mm or less. In the third embodiment, the cartridge accommodating the magneto-optical disk is described. However, the type of the disk accommodated in the cartridge is not particularly limited, and may be a CD, a CD-ROM, a CD-R, a phase-change optical disk, an MD, and a DVD. And the like can be applied to various optical recording media. Further, the present invention can be applied to a magnetic disk using a plastic substrate, and is effective, for example, for a magnetic disk cartridge of a removable type. The type of recording medium to be accommodated in the force cartridge is not particularly limited, and the cartridge of the present invention is applicable to any recording medium as long as the recording medium uses a thin substrate having a thickness of 0.85 mm or less. Can be. Fourth embodiment
本実施例では、 記録媒体を収容するカートリッジ内面に凸部または凹 部を設けることによってディスク回転時の空気の流れを調整して、 調整 された空気流により記録再生時のディスクの信号記録面を一定の高さ位 置に付勢するためのカートリッジの具体例について説明する。 実施例 4一 1  In this embodiment, the air flow during rotation of the disk is adjusted by providing a convex portion or a concave portion on the inner surface of the cartridge accommodating the recording medium, and the adjusted air flow adjusts the signal recording surface of the disk during recording and reproduction. A specific example of a cartridge for urging the cartridge to a certain height position will be described. Example 41
図 1 8 Aは、 光磁気ディスク 1 8 3を収容したカートリッジ 1 8 1の 内面にディスクの中心から放射状に凸部 1 8 5 aが設けられている光磁 気ディスクカートリッジ 1 8 1の平面図である。 図 1 8 Aにおいて、 説 明の便宜上、 カートリッジ 1 8 1内に収容されたディスク 1 8 3の形状 及びカートリッジ (アッパーシェル) 内面の凸部 1 8 5 aは透視されて いる。 図 1 8 Aの A— A線で力一トリヅジ 1 8 1を切断した力一トリッ ジ断面図を図 1 8 Bに示す。 カートリッジ 1 8 1はアッパーシェル 1 8 1 a及び 181 bから構成されており、 図 18 Aはアッパーシェル 18 1 aの上方から見た平面図である。 アッパーシェル 181 aには、 記録 再生時に光ヘッ ドがディスク 183にアクセスできるようにシャツ夕一 ウィンドウ 187が形成されている (シャヅ夕一は図示しない) 。 力一 トリッジ 181には直径 120mm、 基板の厚み 0. 6 mmの光磁気デ イスク 183が収納されている。 図 18 A及び 18 Bに示したように、 カートリッジ 181のアッパー シェル 181 a及び 181 bの内側面には、 それそれ、 ディスク中心か ら放射状に延びた帯状の凸部 185 a及び 185 bがディスク 183に 対して対称に形成されている。 凸部 185 a及び 185 bは半径方向外 側に向かうに従って扇形状にその幅が広がり、 凸部 185 a及び 185 bのァヅパ一シェル 181 a及び口一ァシェル 181 bの内面からの高 さはそれぞれ 0. 5mmである。 また、 アッパーシェル 181 aの凸部 185 aとディスク 183の上面との間隔及び口一ァシヱル 181 b凸 部 185bとディスク 183の下面との間隔はそれそれ 0. 8 mm以下 が好ましく、 さらに好ましくは 0. 6mm以下であり、 この実施例では 0. 5 mmである。 凸部 185 a, 185 bはディスク中心から広がり 角 20° となるように形成されており、 ディスクの周上に 45° おきに 設けられている。 凸部 185 a及び 185 bは、 ディスク 183の半径 20 mm (クランビングプレート用開口部 189の縁部) の位置からの から半径 61 mmまでの位置に延在する。 凸部 185 a, 185 bをカートリッジ内面に設けることにより、 デ イスク回転時に、 ディスクの周方向に向かって発生した空気の流れを径 方向に誘導し、 ディスク外周部の圧力を上昇させ、 上昇した圧力をディ スクの上下面から均等に印加することにより、 特に変動の大きいディス ク外周部の面位置を安定化させることができる。 実施例 4一 2 Fig. 18A is a plan view of a magneto-optical disk cartridge 181, in which a projection 1885a is provided radially from the center of the disk 181, which contains a magneto-optical disk 183. It is. In FIG. 18A, for convenience of explanation, the shape of the disk 183 accommodated in the cartridge 181, and the projection 1885a on the inner surface of the cartridge (upper shell) are seen through. Fig. 18B shows a cross section of the force cartridge 18 1 taken along the line A-A in Fig. 18A. Cartridge 1 8 1 is upper shell 1 8 FIG. 18A is a plan view of the upper shell 181a as viewed from above. The upper shell 181a is formed with a shirt window 187 (not shown) so that the optical head can access the disk 183 during recording and reproduction. The magneto-optical disk 183 having a diameter of 120 mm and a substrate thickness of 0.6 mm is housed in the force cartridge 181. As shown in FIGS. 18A and 18B, the inner surfaces of the upper shells 181a and 181b of the cartridge 181 respectively have strip-shaped convex portions 185a and 185b extending radially from the center of the disk. It is formed symmetrically with respect to 183. The width of the convex portions 185a and 185b increases in a fan shape toward the outer side in the radial direction, and the heights of the convex portions 185a and 185b from the inner surfaces of the aperture shell 181a and the mouth shell 181b respectively. 0.5 mm. The distance between the convex portion 185a of the upper shell 181a and the upper surface of the disk 183 and the distance between the convex portion 185b of the mouth shell 181b and the lower surface of the disk 183 are preferably 0.8 mm or less, respectively, and more preferably. It is 0.6 mm or less, and in this embodiment, it is 0.5 mm. The convex portions 185a and 185b are formed so as to have a divergence angle of 20 ° from the center of the disk, and are provided at 45 ° intervals on the circumference of the disk. The convex portions 185a and 185b extend from the position of the radius of the disk 183 of 20 mm (the edge of the opening 189 for the clamping plate) to a position of a radius of up to 61 mm. By providing the convex portions 185a and 185b on the inner surface of the cartridge, the flow of air generated in the circumferential direction of the disk during the rotation of the disk was guided in the radial direction, and the pressure on the outer peripheral portion of the disk was increased. Pressure By applying the voltage evenly from the upper and lower surfaces of the disk, it is possible to stabilize the surface position of the disk outer peripheral portion where the fluctuation is particularly large. Example 4-1
図 1 9 A及び 1 9 Bに、 図 1 8 A及び 1 8 Bに示したカー卜リッジの 変形例を示す。 図 1 9 A及びその A— A断面図である 1 9 Bに示した力 ートリッジ 1 9 1は、 実施例 4一 1のカートリッジ 1 8 1と同様にアツ パーシェル 1 9 1 a及び 1 9 1 bから構成されており、 カートリッジ 1 9 1は、 直径 1 2 0 mm, 基板の厚み 0 . 6 mmの光磁気ディスク 1 8 3を収納する。 このカー卜リッジ 1 9 1では、 凸部 1 9 5 a , 1 9 5 b がアッパーシェル 1 9 l a及び口一ァシェル 1 9 l bの内側面上で、 デ イスクの中心から外周に向けて、 ディスクの回転方向に弧 1 9 6を描く ように放射状に形成されている。 凸部 1 9 5 a , 1 9 5 bを区画する弧 1 9 6は、 ディスクの円周 (直径 1 2 0 mm) 上に中心を置き、 半径 6 0 mmで描かれている。 弧 1 9 6の中心をディスクの円周上で 1 / 1 6 周ごとに設定して総計 1 6個の弧を描いた。 弧 1 9 6により区画された 凸部の断面形状は、 図 1 9 Bに示したように鋸刃状であり、 弧 1 9 6の 位置で突出し、 その部分でカートリッジ内面とディスク面との間隔が最 小となり、 次の弧まで徐々にその間隔が広がる。 即ち、 弧 1 9 6の位置 で隣接する凸部間の段差が生じて、 凸部 1 9 5間の境界を形成している c 弧の位置での突出高さは 0 . 5 mmであり、 その位置での凸部 1 9 5 a, 1 9 5 bとディスク 1 8 3の面との間隔は実施例 4— 1の場合と同様に 0 . 5 mmである。 かかる構造の凸部 1 9 5 a , 1 9 5 bをカートリツ ジ 1 9 1内面にディスク 1 8 3に対して対称に設けることによって、 デ イスク 1 8 3の回転によりディスクの周方向に向かって発生した空気の 流れを径方向に誘導し、 ディスク外周部の圧力を上昇させ、 上昇した圧 力をディスクの上下面から均等に印加することにより、 変動の大きいデ イスク外周部の面位置を安定化させることができる。 実施例 4一 3 FIGS. 19A and 19B show modifications of the cartridges shown in FIGS. 18A and 18B. The cartridge 1991 shown in Fig. 19A and its A-A cross-sectional view 19B is the upper shell 1991a and 1991b similarly to the cartridge 181 of the embodiment 4-11. The cartridge 191 houses a magneto-optical disk 183 having a diameter of 120 mm and a substrate thickness of 0.6 mm. In this cartridge 191, the protrusions 1995a and 1995b are formed on the inner surface of the upper shell 19 la and the mouth shell 19 lb. It is formed radially so as to draw an arc 196 in the direction of rotation. The arc 196 that defines the convex portions 195a and 195b is centered on the circumference (diameter of 120mm) of the disk and is drawn with a radius of 60mm. A total of 16 arcs were drawn with the center of arc 196 set at every 1/16 lap on the circumference of the disc. The cross-sectional shape of the protrusion defined by the arc 196 has a saw-tooth shape as shown in Fig. 19B, protrudes at the position of the arc 196, and the space between the cartridge inner surface and the disk surface at that portion Is minimized, and the interval gradually increases until the next arc. That is, a step is generated between the adjacent convex portions at the position of the arc 196, and the protruding height at the position of the arc c forming the boundary between the convex portions 195 is 0.5 mm, The distance between the projections 195a, 195b and the surface of the disk 183 at that position is 0.5 mm as in the case of Example 4-1. By providing the projections 1995a and 1995b of such a structure symmetrically with respect to the disc 183 on the inner surface of the cartridge 191, the rotation of the disc 183 toward the circumferential direction of the disc can be achieved. The generated air flow is guided in the radial direction, and the pressure at the outer periphery of the disk is increased. By applying a force evenly from the upper and lower surfaces of the disk, the surface position of the outer peripheral portion of the disk with large fluctuations can be stabilized. Example 4
図 2 0 A及び 2 0 Bに、 図 1 9 A及び 1 9 Bに示した力一トリッジの 変形例を示す。 図 2 O A及びその A— A断面図である 2 0 Bに示した力 ートリッジ 2 0 1は、 実施例 4 - 2のカートリッジ 1 9 1と同様に、 凸 部 2 0 5 a及び 2 0 5 bがそれそれアッパーシェル 2 0 1 a及び口一ァ シェル 2 0 1 bの内側面上で、 ディスクの中心から外周に向けて、 ディ スクの回転方向に弧を描くように放射状に形成されている。 凸部 2 0 5 aと凸部 2 0 5 bの断面形状はディスク 1 8 3に対して互いに対称であ るが、 図 2 0 Bに示すように、 実施例 4— 2の場合と異なり、 描かれた 弧 2 0 6の部分のみが凸部を形成している。 図 2 0 C , 及び 2 0 Dに、 図 2 0 A及び 2 0 Bに示したカートリツジ 2 0 1と同様に、 凸部が力一トリッジのアッパーシェル及び口一ァシェ ルの内側面上で、 ディスクの中心から外周に向けてディスクの回転方向 に弧を描くように放射状に形成されているカートリッジの断面構造を示 す。 弧の描き方は実施例 4一 2で説明したのと同様であるが、 弧により 区画される凸部 (または凹部) の断面形状はそれそれ異なる。 図 2 0 C では、 アッパーシェル 2 0 1 c及びローァシェル 2 0 1 dにおいてディ スク外周部に弧 2 0 6の中心を 1 / 1 6周毎に設定するが、 ディスク外 周部の 1 8周毎に設定した弧の中心により描かれた弧の部分が最大高 さとなり且つそれに隣接する弧の部分が最も低くなるように凸部 2 0 2 a及び凸部 2 0 2 bを形成した。 図 2 0 Dでは、 図 2 0 Bの場合とは対 照的に、 ァツバ一シエル 2 0 1 e及び口一ァシェル 2 0 1 f の内側面に おいて弧 2 0 6の部分が凹部 2 0 3 a , 2 0 3 bを形成する場合を示す ( カートリッジ内面の凸部とディスク表面との間隔は 0 . 8 mm以下が好 ましく、 一層好ましくは 0 . 6 mm以下である。 図 2 0 A〜図 2 0 Dに 示したカートリッジにおいては、 いずれも凸部の高さが 0 . 5 mm、 デ イスクと凸部の間隔が 0 . 5 mmであった。 図 2 0 A〜Dに示した構造の凸部または凹部をカートリッジ内面に設 けることによって、 ディスク 1 8 3の回転によりディスクの周方向に向 かって発生した空気の流れを径方向に誘導し、 ディスク外周部の圧力を 上昇させ、 上昇した圧力をディスクの上下面から均等に印加することに より、 特に変動の大きいディスク外周部の面位置を安定化させることが できる。 実施例 4一 4 FIGS. 20A and 20B show modified examples of the force cartridge shown in FIGS. 19A and 19B. FIG. 2 OA and its cartridge 201 shown in FIG. 20B, which is a cross-sectional view taken along line A—A, are similar to the cartridge 191 of the embodiment 4-2, and have convex portions 205a and 205b. Are formed radially on the inner surface of the upper shell 210a and the mouth shell 201b so as to draw an arc in the rotation direction of the disk from the center of the disk toward the outer periphery. . Although the cross-sectional shapes of the convex portions 205a and 205b are symmetrical to each other with respect to the disk 183, as shown in FIG. 20B, unlike the case of Example 4-2, Only the drawn arc 206 forms a convex part. In FIGS. 20C and 20D, similar to the cartridge 201 shown in FIGS. 20A and 20B, the convex portions are formed on the inner surface of the upper shell of the force cartridge and the inner shell. The cross-sectional structure of a cartridge radially formed so as to draw an arc in the rotation direction of the disk from the center of the disk toward the outer periphery is shown. The method of drawing the arc is the same as that described in Embodiment 4-2, but the cross-sectional shape of the convex (or concave) sectioned by the arc is different. In FIG. 20C, the center of the arc 206 is set every 1/16 of the circumference of the disk in the upper shell 201c and the lower shell 201d, but the circumference of the disk is set to 18 circumferences. The convex portion 202a and the convex portion 202b were formed such that the arc portion drawn by the center of the arc set every time had the maximum height and the adjacent arc portion had the lowest height. In FIG. 20D, in contrast to the case of FIG. 20B, on the inner surface of the x-ray shell 201 e and the mouth shell 201 f. In this case, the arc portion 206 forms the concave portions 203 a and 203 b ( the distance between the convex portion on the inner surface of the cartridge and the disk surface is preferably 0.8 mm or less, more preferably In the cartridges shown in FIGS. 20A to 20D, the height of the projection is 0.5 mm, and the distance between the disk and the projection is 0.5 mm. By providing protrusions or recesses having the structure shown in FIGS. 20A to 20D on the inner surface of the cartridge, the air flow generated in the circumferential direction of the disk by the rotation of the disk 183 can be reduced in the radial direction. By increasing the pressure on the outer peripheral portion of the disk and applying the increased pressure evenly from the upper and lower surfaces of the disk, it is possible to stabilize the surface position of the outer peripheral portion of the disk, which has particularly large fluctuations. Four one four
この実施例では、 力一トリッジ内に収容されたディスクの表面とカー トリッジの内面との間隔が、 ディスク内周部より外周部で小さいカート リッジの具体例を示す。 図 2 1は、 ディスク 1 8 3の中心軸を通る面で切断した力一トリッジ の断面図を示す。 カートリッジ 2 1 0は、 例えば、 直径 1 2 0 mm、 基 板の厚さが 0 . 6 mmの光磁気ディスクを収納する。 力一卜リッジ 2 1 0を構成するアッパーシェル 2 1 0 及びローァシェル 2 1 0 bの肉厚 は、 ディスク半径位置において等価であり、 且つディスク 1 8 3の内周 側から外周側に向かって徐々に厚くなつている。 すなわち、 ァヅパーシ エル 2 1 0 aの内面とディスク上面とにより円錐状の空間が形成され、 同様に口一ァシェル 2 1 0 bの内面とディスク下面とにより円錐状の空 間が形成されている。 これによりディスク 1 8 3の外周での空気の流速 が高まりディスク外周部の圧力を上昇させ、 ディスク外周部の面位置を 安定化させることが可能である。 外周部付近のディスク面とカートリッ ジ (アッパーシェル 2 1 0 a及び 2 1 0 bの内側面) との間隔をそれそ れディスクの厚さ以下の 0 . 5 mmとした。 図 2 1に示した構造を、 実 施例 4一 1、 4 - 2または 4一 3に示したカー 卜リヅジ内面の凸部 (ま たは凹部) を放射状に設けた構造と併用することで、 薄型ディスクの面 位置の安定化をさらに向上することができる。 実施例 4— 5 In this embodiment, a specific example of a cartridge in which the distance between the surface of the disk accommodated in the force cartridge and the inner surface of the cartridge is smaller at the outer periphery than at the inner periphery of the disk will be described. FIG. 21 shows a cross-sectional view of the force cartridge taken along a plane passing through the center axis of the disk 183. The cartridge 210 accommodates, for example, a magneto-optical disk having a diameter of 120 mm and a substrate thickness of 0.6 mm. The thicknesses of the upper shell 210 and the lower shell 210b constituting the force cartridge 210 are equivalent at the disk radial position, and gradually from the inner peripheral side to the outer peripheral side of the disk 183. It is thick. That is, a conical space is formed by the inner surface of the upper shell 210a and the upper surface of the disk, and similarly, a conical space is formed by the inner surface of the mouth shell 210b and the lower surface of the disk. An interval is formed. As a result, the flow velocity of the air around the outer periphery of the disk 183 is increased, the pressure at the outer peripheral portion of the disk is increased, and the surface position of the outer peripheral portion of the disk can be stabilized. The distance between the disk surface near the outer periphery and the cartridge (the inner surface of the upper shell 210a and 210b) was set to 0.5 mm, which is less than the thickness of the disk. The structure shown in FIG. 21 can be used in combination with the structure shown in Example 41-1, 4-2 or 413 in which the projections (or depressions) on the inner surface of the cartridge are radially provided. Thus, the stabilization of the surface position of the thin disk can be further improved. Example 4-5
この実施例では、 光磁気ディスク等の記録媒体を収容する力一トリッ ジにおいて、 ディスクの表面とカートリッジの内面との間隔がシャ夕一 ウィンドウ付近とその他の領域とでは異なる構造を有するカートリッジ の具体例について説明する。 図 2 2 Aに、 この構造を採用した力一トリ ッジの平面図を、 図 2 2 Bに図 2 2 Aの平面図の A A線で切断した力一 トリッジの断面図を示す。 カートリッジ 2 2 0は、 光磁気ディスク 1 8 3 (図 2 2 Aに図示しな い) を収容し、 ァヅパ一シェル 2 2 0 aと口一ァシェル 2 2 0 bとを接 合してなる。 アッパーシェル 2 2 0 aには、 光磁気ディスク 1 8 3を記 録または再生する'際に光へッ ドがアクセスすることができるようにシャ ッ夕一ウィンドウ 1 8 7が形成されている。 シャツ夕一ウィンドウ 1 8 7を区画する長手方向の対向するエッジ 2 2 5, 2 2 6のうち、 エッジ 2 2 6からエッジ 2 2 5の方向に光磁気ディスク 1 8 3が回転するもの とする。 図 2 2 Bの断面図に示したように、 アッパーシェル 2 2 0 aの 内側面は、 シャッターウィンドウ 1 8 7を区画するエッジ部 2 2 5 , 2 26のうちディスク 183の回転方向 (図中矢印) の後方 (ディスク面 がシャツ夕一ウィンドウ 1 87の領域からカートリッジに入る入口側) のエッジ部 225近傍においてディスク 1 83に向かって突出した凸部 222 aが形成されており、 ディスク 1 83との間に狭いエアギヤッブ 228 aを形成している。 口一ァシェル 2 20 bの内側面は、 ァヅパー シェル 220 aの凸部 222 aとディスク 183に対して対称な凸部 2 22 bを形成しており、 凸部 222 bとディスク 183との間にエアギ ヤップ 228 bを形成している。 本実施例ではディスク 183の厚さ 0. 6 mmに対し、 凸部 222 aとディスク 1 83の上面とのエアギャップ 228 a及び凸部 2 22 bとディスク 183の下面との間のエアギヤッ プ 228 bをそれそれ 0. 5 mmとした。 かかるエアギャップは本発明 の効果を奏するために、 0. 8 mm以下、 より一層好ましくは 0. 6 m m以下である。 ァヅパーシヱル 220 aの内側面は、 ディスク 1 83の回転方向の前 方 (ディスク面がシャッターウィンドウ 1 87の領域を出る出口側) の エッジ部 226では、 アッパーシェル 220 aの内側面がディスク 1 8 3に向かって突出した凸部 22 1 aを形成し、 凸部 22 l aとディスク 183の上面との間隔は前記エアギヤヅプと同様の 0. 5mmである。 かかるエアギャップは本発明の効果を奏するために 0. 8 mm以下、 よ り一層好ましくは 0. 6 mm以下である。 凸部 22 l aからディスク進 行方向の後方に向かうに従ってアッパーシェル 220 aの肉厚は簿くな り、 アッパーシェル 220 aの内側面とディスク 1 83の上面との間隔 は徐々に広がっている。 口一ァシェル 220 bの内側面は、 アッパーシ エル 220 aの凸部 22 1 aと対称に凸部 22 1 bが形成され、 ディス ク 183の下面との間に 0. 5 mmのエアギャップを形成している。 そ - n - して、 アッパーシェル 2 2 0 aの内面と同様に、 凸部 2 2 1 bからディ スク進行方向後方に向かうに従ってローァシヱル 2 2 0 bの肉厚は薄く なる。 上記凸部 2 2 2 a , 2 2 2 b及び 2 2 1 a, 2 2 1 bは、 シャツ 夕一ウィンドウ 1 8 7のエッジ 2 2 5及び 2 2 6に渡って延在しており、 従って、 光へヅ ドがシャッターウィンドウ 1 8 7のどの位置 (ディスク 半径方向) にあっても、 後述するディスク面の位置制御作用により安定 した記録再生特性が得られる。 図 2 2 Bに示した断面構造において、 カートリッジ内面とディスク表 面との間隔が、 凸部 2 2 2 a、 凸部 2 2 2 bにおいてその他の部分より 狭くなつているため、 この部分での空気流による圧力を高めることがで きる。 カートリッジ内面とディスク表面との間隔が変動する場合、 カー トリッジ内面とディスク表面との距離が相対的に小さくなると空気流の 流速が速くなり圧力が上昇し、 カートリッジ内面とディスク表面との距 離が相対的に大きくなると空気流の流速が遅くなり圧力が下降する。 力 一卜リツジの内面の構造をアッパーシェルとローァシェルとでディスク に対して対称な構造にしておき、 ディスク面がアッパーシヱル内面に形 成された凸部と口一ァシェル内面に形成された凸部との中間地点にあれ ば、 上昇した空気圧はディスクの上面側及び下面側で等しくなる。 一方、 ディスク回転中に、 ディスクの表面の位置 (高さ) が記録再生のための 基準位置 (凸部 2 2 2 aと凸部 2 2 2 bとの中間位置) からはずれてい る場合に、 凸部 2 2 2 aと凸部 2 2 2 bとの間の空間ではディスクの上 下面において空気圧の差を生じ、 かかる空気圧の差が、 ディスク上面と 凸部 2 2 2 aとの空間の圧力とディスク下面と凸部 2 2 2 bとの空間の 圧力と等しくするように、 ディスク 1 8 3を凸部 2 2 2 bとの中間位置 に移動させる。 従って、 回転変動によるディスク面の上下振動を抑制す ることができる。 さらに、 ディスク 1 8 3自体に多少の歪みがあっても 凸部 2 2 2 a , 2 2 2 b間を通過する際にその面位置が矯正される。 記録再生は、 シャツ夕一ウィンドウ 1 8 7の領域内で光へッ ドでディ スク面を走査することにより行われるので、 シャッターウィンドウ 1 8 7の手前でディスク上下面にかける圧力を上昇させることが望ましい。 また、 ディスク 1 8 3がシャッターウィンドウ 1 8 7を通り過ぎた後に、 カートリッジ内面とディスク面との間隔を狭めてディスク面にかかる圧 力を上昇させることができる。 この実施例では、 ディスク 1 8 3として基板の厚さが 0 . 6 mmのも のを用いたが、 本発明のカートリッジは基板の厚さが 0 . 8 5 mm以下、 好ましくは 0 . 6 5 mmより薄いディスクに対して、 特に有効である。 また、 かかる薄いディスクとして第 1実施例で説明した基板厚さが記録 領域と他の領域とで異なるディスク (記録媒体) が好適である。 この実 施例のカートリッジ構造は、 実施例 4一 1, 4一 2, 4一 3または 4一 4の構造と組合わせて用いることができ、 それにより記録または再生中 のディスクの面の位置を一層安定化することができる。 実施例 4一 1〜4一 5では光磁気ディスク力一トリヅジを例に上げて 説明してきたが、 本発明はそれに限定されず、 再生専用、 追記型、 書換 型のあらゆる光記録媒体を収容した力一卜 リッジに適応可能である。 さ らには光記録媒体に限らず、 基板がプラスチックで構成された磁気記録 媒体を収容したカートリッジ、 例えば、 リム一バブルタイプの磁気ディ スクカートリッジにも有効に用いることができる。 また、 力一卜リッジ 本体の材料や寸法等は特に限定されず、 現在使用されているカートリッ - 3δ - ジの材料を含む任意の材料を使用することができる。 産業上の利用可能性 In this embodiment, in a cartridge for accommodating a recording medium such as a magneto-optical disk, the distance between the disk surface and the inner surface of the cartridge is different between the vicinity of the window and other areas. An example will be described. Figure 22A shows a plan view of a force cartridge employing this structure, and Figure 22B shows a cross-sectional view of the force cartridge taken along the line AA in the plan view of Figure 22A. The cartridge 220 accommodates a magneto-optical disk 183 (not shown in FIG. 22A), and is formed by joining an aperture shell 220a and an aperture shell 220b. A shutter window 187 is formed in the upper shell 220a so that the optical head can access when recording or reproducing the magneto-optical disk 183. The magneto-optical disk 18 3 rotates in the direction from the edge 2 26 to the edge 2 25 out of the longitudinally opposite edges 2 2 5 and 2 2 6 which define the shirt evening window 18 7. . As shown in the cross-sectional view of FIG. 22B, the inner surface of the upper shell 220 a is an edge portion 2 25, 2 defining the shutter window 187. Of the 26, the protrusion protruding toward the disc 183 near the edge 225 in the rotation direction (the arrow in the figure) of the disc 183 (the side of the disc enters the cartridge from the area of the window 187). 222 a are formed, and a narrow air gear 228 a is formed between the disk 183 and the disk 183. The inner surface of the mouth shell 2 20b forms a convex portion 222b which is symmetrical to the convex portion 222a of the upper shell 220a and the disk 183, and is formed between the convex portion 222b and the disk 183. An air gap 228b is formed. In this embodiment, the air gap 228a between the convex portion 222a and the upper surface of the disk 183 and the air gap 228 between the convex portion 222b and the lower surface of the disk 183 for the thickness of the disk 183 of 0.6 mm. b was set to 0.5 mm each. Such an air gap is at most 0.8 mm, more preferably at most 0.6 mm, in order to achieve the effects of the present invention. The inner surface of the upper shell 220a has an edge 226 at the front of the rotating direction of the disk 183 (the disk surface exits from the area of the shutter window 187), and the inner surface of the upper shell 220a has the disk 18 3 Is formed, and the distance between the protrusion 22 la and the upper surface of the disk 183 is 0.5 mm, which is the same as that of the air gap. Such an air gap is at most 0.8 mm, more preferably at most 0.6 mm, in order to achieve the effects of the present invention. The wall thickness of the upper shell 220a becomes smaller toward the rear in the disk traveling direction from the convex portion 22la, and the distance between the inner surface of the upper shell 220a and the upper surface of the disk 183 gradually increases. On the inner surface of the mouth shell 220b, a convex portion 221b is formed symmetrically with the convex portion 221a of the upper shell 220a, and a 0.5 mm air gap is formed between the inner surface of the mouth shell 220b and the lower surface of the disk 183. are doing. So -n-As in the case of the inner surface of the upper shell 220a, the wall thickness of the lower shell 220b becomes thinner as it goes from the convex portion 221b to the rear in the disk traveling direction. The projections 2 2 2 a, 2 2 2 b and 2 2 1 a, 2 2 1 b extend over the edges 2 2 5 and 2 2 6 of the shirt 1 8 7 Regardless of the position (in the radial direction of the disk) of the shutter window 187 where the optical head is located, stable recording / reproducing characteristics can be obtained by a disk surface position control operation described later. In the cross-sectional structure shown in Fig. 22B, the distance between the inner surface of the cartridge and the surface of the disk is narrower at the protruding portions 22a and 22b than at the other portions. The pressure due to the airflow can be increased. When the distance between the inner surface of the cartridge and the disk surface fluctuates, if the distance between the inner surface of the cartridge and the disk surface becomes relatively small, the flow velocity of the air flow increases, the pressure increases, and the distance between the inner surface of the cartridge and the disk surface increases. If it becomes relatively large, the flow velocity of the air flow becomes slow and the pressure drops. The inner surface structure of the force ridge is made symmetrical with respect to the disk by the upper shell and the lower shell, and the disk surface has a convex portion formed on the inner surface of the upper shell and a convex portion formed on the inner surface of the mouth shell. In the middle point of, the increased air pressure is equal on the upper and lower sides of the disk. On the other hand, when the position (height) of the surface of the disk is out of the reference position for recording / reproducing (the intermediate position between the convex portions 22a and 22b) while the disk is rotating, In the space between the protrusions 2 2 a and the protrusions 2 2 b, a difference in air pressure occurs between the upper and lower surfaces of the disk, and the difference in air pressure is caused by the pressure in the space between the upper surface of the disk and the protrusions 2 2 2 a. The disk 183 is moved to a position intermediate between the disk and the convex portion 222b so as to make the pressure equal to the pressure of the space between the disk and the lower surface of the disk and the convex portion 222b. Therefore, vertical vibration of the disk surface due to rotation fluctuation is suppressed. Can be Further, even if the disk 18 3 itself has some distortion, the surface position is corrected when the disk 18 3 passes between the convex portions 222 a and 222 b. Recording and playback are performed by scanning the disk surface with a light head in the area of the shirt window 187, so the pressure applied to the upper and lower surfaces of the disk before the shutter window 187 must be increased. Is desirable. Also, after the disk 183 has passed through the shutter window 187, the pressure between the inner surface of the cartridge and the disk surface can be reduced to increase the pressure applied to the disk surface. In this embodiment, a disc having a substrate thickness of 0.6 mm was used as the disc 18 3. However, the cartridge of the present invention has a substrate thickness of 0.85 mm or less, preferably 0.65 mm. Especially effective for disks thinner than mm. Further, as such a thin disk, a disk (recording medium) in which the substrate thickness described in the first embodiment is different between the recording area and other areas is preferable. The cartridge structure of this embodiment can be used in combination with the structure of the embodiment 41-1, 412, 413 or 414, so that the position of the disk surface during recording or reproduction can be determined. It can be further stabilized. Fourth Embodiment In the fourteenth to fourteenth and fifth embodiments, the description has been made by taking the magneto-optical disk power storage as an example. Applicable to power cartridges. Further, the present invention can be effectively used not only for optical recording media but also for cartridges containing magnetic recording media whose substrates are made of plastic, for example, rim-bubble type magnetic disk cartridges. Further, the material and dimensions of the cartridge body are not particularly limited, and the cartridges currently used are not limited. Any material can be used, including the 3δ-di material. Industrial applicability
本発明の記録媒体用の基板及びそれを用いた記録媒体は、 高密度記録 用の光記録媒体、 例えば、 CD、 CD-Rs CD-ROM, MD、 D V D、 MOやリム一バブルタイプの磁気記録媒体に有効であり、 特に、 基 板の厚さが 0. 85 mm以下の薄型の高密度記録媒体に有効である。 ま た、 本発明の光記録媒体用の再生装置は、 薄型の光記録媒体の面位置を 一定の位置に保持させるように作用するエアギャップ形成部材を備える ため、 薄型の光記録媒体を安定な状態で記録再生することができる。 ま た、 本発明のカー卜リッジは薄型の高密度記録媒体を収容するのに好適 であり、 記録再生時に信号記録面を一定の高さに維持することができる 本発明の記録媒体を本発明のカー卜リッジに適用することによって一層 カートリッジを薄型化することができ、 一層安定な状態で薄型記録媒体 を記録再生することができる。  The substrate for a recording medium of the present invention and a recording medium using the same are optical recording media for high-density recording, for example, CD, CD-Rs, CD-ROM, MD, DVD, MO, and rim-bubble type magnetic recording. It is effective for media, especially for thin high-density recording media with a substrate thickness of 0.85 mm or less. In addition, since the reproducing apparatus for an optical recording medium of the present invention includes an air gap forming member that acts to hold the surface position of the thin optical recording medium at a constant position, the thin optical recording medium can be stably used. Recording and reproduction can be performed in the state. Further, the cartridge of the present invention is suitable for accommodating a thin high-density recording medium, and can maintain a signal recording surface at a constant height during recording and reproduction. By applying the present invention to a cartridge, the thickness of the cartridge can be further reduced, and a thin recording medium can be recorded and reproduced in a more stable state.

Claims

請 求 の 範 囲 The scope of the claims
1 . 記録媒体に使用される円板状基板において、  1. In a disk-shaped substrate used for a recording medium,
上記記録媒体の記録領域に相当する部分と該記録領域より外側の領域 に相当する部分とでは互いに基板の厚さが異なることを特徴とする記録 媒体用基板。  A substrate for a recording medium, wherein the substrate has a different thickness from a portion corresponding to a recording region of the recording medium and a portion corresponding to a region outside the recording region.
2 . 上記記録媒体の記録領域に相当する部分と、 該記録領域より外側の 領域に相当する部分と、 該記録領域より内側の領域に相当する部分とで は、 互いに基板の厚さが異なることを特徴とする請求項 1記載の記録媒 体用基板。  2. The thickness of the substrate differs between the portion corresponding to the recording area of the recording medium, the portion corresponding to the area outside the recording area, and the portion corresponding to the area inside the recording area. 2. The recording medium substrate according to claim 1, wherein:
3 . 上記記録領域に相当する部分と該記録領域より外側の領域に相当す る部分とを接続する面の傾斜が 4 5度以下であることを特徴とする請求 項 1に記載の光記録媒体。  3. The optical recording medium according to claim 1, wherein a slope connecting a part corresponding to the recording area and a part corresponding to an area outside the recording area has an inclination of 45 degrees or less. .
4 . 記録媒体に使用される円板状基板において、  4. In the disk-shaped substrate used for the recording medium,
上記記録媒体の記録領域に相当する部分が、 該記録領域より内側の領 域に相当する部分よりも基板の厚さが厚いことを特徴とする記録媒体用 基板。  A substrate for a recording medium, wherein a portion corresponding to a recording region of the recording medium is thicker than a portion corresponding to a region inside the recording region.
5 . 記録媒体が光記録媒体または磁気記録媒体であることを特徴とする 請求項 1〜4のいずれか一項記載の記録媒体用基板。  5. The recording medium substrate according to any one of claims 1 to 4, wherein the recording medium is an optical recording medium or a magnetic recording medium.
6 . 記録媒体に使用される円板状基板において、  6. In a disk-shaped substrate used for a recording medium,
上記基板面上の少なくとも一部に、 該基板のヤング率以上のヤング率 を有する補強部材を固着してなることを特徴とする記録媒体用基板。  A recording medium substrate comprising a reinforcing member having a Young's modulus higher than that of the substrate fixed to at least a part of the substrate surface.
7 . 上記補強部材が、 基板材料、 アルミニウム、 鉄、 酸化アルミニウム、 酸化シリコン、 酸化チタン、 窒化シリコン、 窒化チタン、 炭化シリコン からなる群から選ばれた一種であることを特徴とする請求項 6に記載の 記録媒体用基板。 7. The method according to claim 6, wherein the reinforcing member is a kind selected from the group consisting of a substrate material, aluminum, iron, aluminum oxide, silicon oxide, titanium oxide, silicon nitride, titanium nitride, and silicon carbide. The recording medium substrate as described in the above.
8 . 上記基板の記録領域に相当する部分の基板の厚さが 0 . 8 5 mm以 下であることを特徴とする請求項 1、 4または 6記載の記録媒体用基板8. The thickness of the substrate at the part corresponding to the recording area of the above substrate is 0.85 mm or less. 7. The recording medium substrate according to claim 1, 4 or 6, wherein
9 . 請求項 1記載の基板を用いて製造された記録媒体。 9. A recording medium manufactured using the substrate according to claim 1.
1 0 . 請求項 4記載の基板を用いて製造された記録媒体。  10. A recording medium manufactured using the substrate according to claim 4.
1 1, 請求項 6記載の基板を用いて製造された記録媒体。  11. A recording medium manufactured using the substrate according to claim 6.
1 2 . 上記記録媒体が、 光記録媒体または磁気記録媒体であることを特 徴とする請求項 9〜 1 2のいずれか一項記載の記録媒体。  12. The recording medium according to any one of claims 9 to 12, wherein the recording medium is an optical recording medium or a magnetic recording medium.
1 3 . 光ビームを光記録媒体に照射し、 該光記録媒体からの反射光の変 化を光量変化として検出する光記録媒体用の再生装置において、  13. A reproducing apparatus for an optical recording medium that irradiates an optical recording medium with a light beam and detects a change in reflected light from the optical recording medium as a change in light amount
上記光記録媒体を挟んで対向し且つ該光記録媒体の上下面に対して回 転中に同一幅のエアギヤプを形成するエアギヤプ形成部材を備えること を特徴とする光記録媒体用再生装置。  A reproducing apparatus for an optical recording medium, comprising: an air gap forming member that faces the optical recording medium and forms an air gap having the same width during rotation with respect to the upper and lower surfaces of the optical recording medium.
1 4 . 上記上記光記録媒体を挟んで対向するエアギャップ形成部材間の 距離が、 光記録媒体の回転方向に対して入口側よりも出口側の方が狭い ことを特徴とする請求項 1 3の光記録媒体用の再生装置。  14. The distance between the air gap forming members opposed to each other with the optical recording medium interposed therebetween is smaller on the outlet side than on the inlet side in the rotation direction of the optical recording medium. Playback device for optical recording media.
1 5 . 上記エアギャップ形成部材が、 上記光記録媒体を挟んで対向する 一対のスライダであり、 該一対のスライダ部材が上記再生装置の光へッ ド及び磁気へッ ドにそれそれ固着されていることを特徴とする請求項 1 3記載の記録媒体用再生装置。  15. The air gap forming member is a pair of sliders opposed to each other across the optical recording medium, and the pair of slider members are fixed to the optical head and the magnetic head of the reproducing apparatus, respectively. 14. The reproducing apparatus for a recording medium according to claim 13, wherein:
1 6 . 上記エアギャップ形成部材が、 上記光記録媒体の外周部を挟んで 対向する位置に設置されていることを特徴とする請求項 1 3記載の光記 録媒体用再生装置。  16. The optical recording medium reproducing apparatus according to claim 13, wherein the air gap forming member is provided at a position facing the optical recording medium with the outer peripheral portion thereof interposed therebetween.
1 7 . 前記エアギャップ形成部材が、 光記録媒体が回転していないとき 及び光記録媒体着脱時には光記録媒体から退避し、 光記録媒体回転後に、 光記録媒体に近接して所定のエアギヤップを形成するように移動するこ とを特徴とする請求項 1 3から 1 6のいずれか一項記載の光記録媒体用 再生装置。 17. The air gap forming member retracts from the optical recording medium when the optical recording medium is not rotating and when the optical recording medium is attached and detached, and forms a predetermined air gap close to the optical recording medium after the rotation of the optical recording medium. The reproducing apparatus for an optical recording medium according to any one of claims 13 to 16, wherein the reproducing apparatus is moved so as to move.
1 8 . 上記光記録媒体の厚みが 0 . 8 5 mm以下であり、 上記エアギヤ ップが 0 . 5 mm以下となるようにエアギヤップ形成部材が光記録媒体 に対して配置していることを特徴とする請求項 1 3記載の光記録媒体用 再生装置。 18. The thickness of the optical recording medium is 0.85 mm or less, and the air gap forming member is arranged with respect to the optical recording medium such that the air gap is 0.5 mm or less. 14. The reproducing apparatus for an optical recording medium according to claim 13, wherein:
1 9 . 上記再生装置が記録機能を有する記録再生装置であることを特徴 とする請求項 1 3記載の光記録媒体用再生装置。  19. The reproducing apparatus for an optical recording medium according to claim 13, wherein the reproducing apparatus is a recording / reproducing apparatus having a recording function.
2 0 . 少なくとも信号記録領域内での基板厚みが 0 . 8 5 mm以下の円 板状記録媒体が収容されている記録媒体カートリッジにおいて、  20. In a recording medium cartridge containing a disc-shaped recording medium having a substrate thickness of 0.85 mm or less at least in the signal recording area,
回転中の円板状記録媒体の外周部の上下面を支持する支持手段を有す る記録媒体カー卜リッジ。  A recording medium cartridge having support means for supporting upper and lower surfaces of an outer peripheral portion of a rotating disk-shaped recording medium.
2 1 . 前記支持手段が記録媒体の回転に伴って回動可能なローラ状の部 材であることを特徴とする請求項 2 0記載の記録媒体カートリッジ。  21. The recording medium cartridge according to claim 20, wherein said support means is a roller-shaped member rotatable with rotation of the recording medium.
2 2 . 前記支持手段が、 回転中の円板状記録媒体の外周部の上下面を摺 動する摺動部材であることを特徴とする請求項 2 0記載の記録媒体力一 トリッジ。 22. The recording medium power cartridge according to claim 20, wherein said support means is a sliding member which slides on upper and lower surfaces of an outer peripheral portion of a rotating disk-shaped recording medium.
2 3 . 前記支持手段が、 カートリッジ内であって記録または再生を行う ためのへッ ドの配置位置近傍に装着されていることを特徴とする請求項 2 0〜 2 2のいずれか一項記載の記録媒体カートリッジ。  23. The method according to any one of claims 20 to 22, wherein the support means is mounted in a cartridge and in the vicinity of an arrangement position of a head for performing recording or reproduction. Recording medium cartridge.
2 4 . さらに集塵手段を有することを特徴とする請求項 2 0 ~ 2 2のい ずれか一項記載の記録媒体カートリッジ。 24. The recording medium cartridge according to any one of claims 20 to 22, further comprising dust collecting means.
2 5 . 前記円板状記録媒体が、 信号記録領域と該記録領域より外側の部 分とでは互いに基板の厚さが異なることを特徴とする請求項 2 0記載の 記録媒体カートリッジ。  25. The recording medium cartridge according to claim 20, wherein the disc-shaped recording medium has a different substrate thickness between a signal recording area and a part outside the signal recording area.
2 6 . 円板状記録媒体が収容されている記録媒体カート リッジにおいて、 上記カートリッジ内面に、 記録媒体回転時の空気の流れを調整するた めの凸部及び凹部の少なくとも一方が力一トリッジ内面の上面と下面と にそれそれ対称になるように形成されていることを特徴とする記録媒体 力一トリッジ。 26. In a recording medium cartridge containing a disk-shaped recording medium, at least one of a convex portion and a concave portion for adjusting the flow of air when the recording medium rotates is provided on the inner surface of the cartridge. Top and bottom A recording medium characterized by being formed so as to be symmetrical in each case.
2 7 . 上記円板状記録媒体は、 少なくとも信号記録領域内での基板厚み が 0 . 8 5 mm以下であることを特徴とする請求項 2 6に記載の記録媒 体力一トリッジ。  27. The recording medium according to claim 26, wherein the disc-shaped recording medium has a substrate thickness of 0.85 mm or less at least in a signal recording area.
2 8 · カートリッジ内面の上面に形成された凸部と記録媒体上面の間隔 が、 カートリッジ内面の下面に形成された凸部と記録媒体下面の間隔と 等しいことを特徴とする請求項 2 6記載の記録媒体力一トリッジ。 28. The method according to claim 26, wherein the distance between the convex portion formed on the upper surface of the inner surface of the cartridge and the upper surface of the recording medium is equal to the distance between the convex portion formed on the lower surface of the inner surface of the cartridge and the lower surface of the recording medium. Recording medium power.
2 9 . 前記凸部及び凹部の少なくとも一方が記録媒体回転時の空気の流 れを調整することにより記録媒体の信号記録面を一定の位置に保持させ ることを特徴とする請求項 2 6記載の記録媒体カートリッジ。 29. The signal recording surface of the recording medium is held at a fixed position by adjusting the flow of air when the recording medium is rotated by at least one of the projections and the depressions. Recording medium cartridge.
3 0 . 前記凸部及び凹部のすくなくとも一方が、 カートリッジ内面にお いて、 カートリッジ内に収容された記録媒体の中心から放射状に形成さ れていることを特徴とする請求項 2 6〜2 9のいずれか一項に記載の記 録媒体カートリヅジ。  30. The method according to claim 26, wherein at least one of the convex portion and the concave portion is formed radially from the center of the recording medium accommodated in the cartridge on the inner surface of the cartridge. A recording medium cartridge according to any one of the preceding claims.
3 1 . 前記凸部及び凹部の少なくとも一方が、 カートリッジ内面におい て、 力一トリッジ内に収容された記録媒体の中心から外周に向けて記録 媒体の回転方向に弧を描くように放射状に形成されていることを特徴と する請求項 3 0に記載の記録媒体力— トリッジ。  31. At least one of the convex portion and the concave portion is formed radially on the inner surface of the cartridge so as to draw an arc in the rotation direction of the recording medium from the center to the outer periphery of the recording medium accommodated in the cartridge. 31. The recording medium according to claim 30, wherein:
3 2 . 前記凸部と記録媒体表面との間隔が 0 . 6 mm以下である請求項 3 0記載の記録媒体カートリッジ。 32. The recording medium cartridge according to claim 30, wherein a distance between the projection and the surface of the recording medium is 0.6 mm or less.
3 3 . 前記記録媒体が、 光記録媒体またはプラスチック基板を用いた磁 気記録媒体であることを特徴とする請求項 3 0に記載の記録媒体カー卜 リヅジ。  33. The recording medium cartridge according to claim 30, wherein the recording medium is an optical recording medium or a magnetic recording medium using a plastic substrate.
3 4 . 上記カートリッジに信号記録または再生用のへッ ドがアクセスす るためのウィンドウが形成され、 上記ウインドウの記録媒体の少なくと も入口側に、 上記凸部が力一トリッジ内側の上面及び下面に互いに対称 に形成されていることを特徴とする請求項 2 6記載の記録媒体カートリ ヅジ。 3 4. A window is formed for the signal recording or reproduction head to access the cartridge, and at least the recording medium of the window is used. 27. The recording medium cartridge according to claim 26, wherein the convex portion is formed symmetrically on an upper surface and a lower surface inside the force cartridge also on an inlet side.
3 5 . 前記凸部と記録媒体表面との間隔が 0 . 6 mm以下である請求項 3 3記載の記録媒体カートリッジ。  35. The recording medium cartridge according to claim 33, wherein the distance between the projection and the surface of the recording medium is 0.6 mm or less.
3 6 . 前記記録媒体が、 光記録媒体またはプラスチック基板を用いた磁 気記録媒体であることを特徴とする請求項 3 4に記載の記録媒体カート リッジ。  36. The recording medium cartridge according to claim 34, wherein the recording medium is an optical recording medium or a magnetic recording medium using a plastic substrate.
3 7 . 前記円板状記録媒体が、 信号記録領域と該記録領域より外側の部 分とでは互いに基板の厚さが異なることを特徴とする請求項 3 4記載の 記録媒体カートリッジ。  37. The recording medium cartridge according to claim 34, wherein the disc-shaped recording medium has different substrate thicknesses in a signal recording area and a part outside the recording area.
3 8 . 円板状記録媒体が収容されている記録媒体カートリッジにおいて、 前記記録媒体の上面とカートリッジの内側上面の間隔が記録媒体の下 面とカー卜リッジの内側下面の間隔と記録媒体半径方向に渡って等しく、 且つ該記録媒体の上面と力一トリッジの内側上面の間隔及び該記録媒体 の下面とカートリッジの内側下面の間隔が、 記録媒体の内周部より外周 部の方が小さいことを特徴とする記録媒体の力一トリッジ。  38. In a recording medium cartridge containing a disc-shaped recording medium, the distance between the upper surface of the recording medium and the inner upper surface of the cartridge is the distance between the lower surface of the recording medium and the inner lower surface of the cartridge, and the radial direction of the recording medium. And that the distance between the upper surface of the recording medium and the inner upper surface of the force cartridge and the distance between the lower surface of the recording medium and the inner lower surface of the cartridge are smaller at the outer periphery than at the inner periphery of the recording medium. Characteristic recording media power cartridge.
3 9 . 前記記録媒体の上面とカートリッジの内側上面の間隔及び該記録 媒体の下面とカートリッジの内側下面の間隔が、 記録媒体の内周部から 外周部に向かって徐々に小さくなることを特徴とする請求項 3 8記載の 記録媒体のカートリッジ。  39. The distance between the upper surface of the recording medium and the inner upper surface of the cartridge and the distance between the lower surface of the recording medium and the inner lower surface of the cartridge gradually decrease from the inner periphery to the outer periphery of the recording medium. The recording medium cartridge according to claim 38, wherein
4 0 . 前記記録媒体が、 光記録媒体またはプラスチック基板を用いた磁 気記録媒体であることを特徴とする請求項 3 8または 3 9に記載の記録 媒体力一トリッジ。  40. The recording medium according to claim 38, wherein the recording medium is an optical recording medium or a magnetic recording medium using a plastic substrate.
4 1 . 前記円板状記録媒体が、 信号記録領域と該記録領域より外側の部 分とでは互いに基板の厚さが異なることことを特徴とする請求項 3 9記 載の記録媒体カー卜リッジ。 41. The disc-shaped recording medium according to claim 39, wherein the signal recording region and the portion outside the recording region have different substrate thicknesses. On the recording medium cartridge.
42. 前記円板状記録媒体は、 少なく とも信号記録領域内での基板厚み が 0. 85mm以下であることを特徴とする請求項 38記載の記録媒体 カートリッジ。  42. The recording medium cartridge according to claim 38, wherein the disc-shaped recording medium has a substrate thickness of at least 0.85 mm in a signal recording area.
PCT/JP1996/002157 1995-08-01 1996-07-31 Substrate, recording medium including the substrate, cartridge and reproduction apparatus WO1997005607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21670695 1995-08-01
JP7/216706 1995-08-01

Publications (1)

Publication Number Publication Date
WO1997005607A1 true WO1997005607A1 (en) 1997-02-13

Family

ID=16692651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002157 WO1997005607A1 (en) 1995-08-01 1996-07-31 Substrate, recording medium including the substrate, cartridge and reproduction apparatus

Country Status (1)

Country Link
WO (1) WO1997005607A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110561A (en) * 2007-10-26 2009-05-21 Konica Minolta Opto Inc Substrate for magnetic recording medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971434U (en) * 1982-10-30 1984-05-15 ソニー株式会社 optical disc
JPS60261042A (en) * 1984-06-06 1985-12-24 Matsushita Electric Ind Co Ltd Optical information medium disc
JPS62293531A (en) * 1986-06-12 1987-12-21 Canon Inc Disk-type recording medium
JPH01264680A (en) * 1988-04-15 1989-10-20 Hitachi Ltd Optical disk cartridge
JPH05189828A (en) * 1991-03-29 1993-07-30 Ricoh Co Ltd Magneto-optical recording apparatus
JPH05282826A (en) * 1992-02-12 1993-10-29 Fujitsu Ltd Optical disk cartridge
JPH05307769A (en) * 1992-04-30 1993-11-19 Matsushita Electric Ind Co Ltd Optical disk substrate, apparatus and method for producing optical disk substrate
JPH06176400A (en) * 1992-09-29 1994-06-24 Sony Corp Optical disk substrate and optical disk formed by using the substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971434U (en) * 1982-10-30 1984-05-15 ソニー株式会社 optical disc
JPS60261042A (en) * 1984-06-06 1985-12-24 Matsushita Electric Ind Co Ltd Optical information medium disc
JPS62293531A (en) * 1986-06-12 1987-12-21 Canon Inc Disk-type recording medium
JPH01264680A (en) * 1988-04-15 1989-10-20 Hitachi Ltd Optical disk cartridge
JPH05189828A (en) * 1991-03-29 1993-07-30 Ricoh Co Ltd Magneto-optical recording apparatus
JPH05282826A (en) * 1992-02-12 1993-10-29 Fujitsu Ltd Optical disk cartridge
JPH05307769A (en) * 1992-04-30 1993-11-19 Matsushita Electric Ind Co Ltd Optical disk substrate, apparatus and method for producing optical disk substrate
JPH06176400A (en) * 1992-09-29 1994-06-24 Sony Corp Optical disk substrate and optical disk formed by using the substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110561A (en) * 2007-10-26 2009-05-21 Konica Minolta Opto Inc Substrate for magnetic recording medium

Similar Documents

Publication Publication Date Title
US7233554B2 (en) Disk drive system employing effective disk surface stabilization mechanism
JP4068655B2 (en) Optical information recording medium
US6246656B1 (en) Reduced thickness of a light transmissive layer for a high density optical disc
US7380257B2 (en) Optical information recording medium
WO1997005607A1 (en) Substrate, recording medium including the substrate, cartridge and reproduction apparatus
JP2000156060A (en) Cartridge for information recording medium
JPH04212729A (en) Optical floppy disk device
KR100447368B1 (en) Recording and reproducing device, disk cartridge, and optical disk device
JP4226230B2 (en) RECORDING / REPRODUCING DEVICE FOR RECORDING OR REPRODUCING INFORMATION ON / DOUBLE RECORDING MEDIUM, AND CARTRIDGE FOR THE DOUBLE RECORDING MEDIUM
JP3606544B2 (en) Optical disc cartridge
JP4495362B2 (en) Optical disk device
JP3741375B2 (en) Optical information recording medium
JP2003022651A (en) Optical disk drive, optical information recorder and optical information reproducing device
JP2003157573A (en) Flexible optical disk and optical disk device
JP4108436B2 (en) optical disk
JP4181053B2 (en) Recording / playback device
JP5524545B2 (en) Flexible disk system and method for manufacturing flexible disk
JP2002288862A (en) Optical disk device
JP2002197701A (en) Recording and reproducing device
JP4145514B2 (en) Optical disk drive device control method, optical disk drive device, optical recording / reproducing device control method, and optical recording / reproducing device
JP2003157575A (en) Optical disk and recording and reproducing device of optical disk
JP2002260367A (en) Recording and reproducing device and disk cartridge
JP2003257058A (en) Information recording and reproducing device
JP2000187957A (en) Disk cartridge and hub for disk cartridge
JP2000113623A (en) Disk cartridge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase