WO1997002612A1 - Separateur pour piles a combustible du type a polyelectrolyte solide et ses procedes de fabrication - Google Patents

Separateur pour piles a combustible du type a polyelectrolyte solide et ses procedes de fabrication Download PDF

Info

Publication number
WO1997002612A1
WO1997002612A1 PCT/JP1996/001859 JP9601859W WO9702612A1 WO 1997002612 A1 WO1997002612 A1 WO 1997002612A1 JP 9601859 W JP9601859 W JP 9601859W WO 9702612 A1 WO9702612 A1 WO 9702612A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
expanded graphite
thermosetting resin
fuel cell
particle size
Prior art date
Application number
PCT/JP1996/001859
Other languages
English (en)
French (fr)
Inventor
Kazuo Saito
Atsuchi Hagiwara
Fumio Tanno
Original Assignee
Nisshinbo Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries, Inc. filed Critical Nisshinbo Industries, Inc.
Priority to JP50500297A priority Critical patent/JP4028890B2/ja
Priority to DE69611778T priority patent/DE69611778T2/de
Priority to EP96922230A priority patent/EP0784352B1/en
Publication of WO1997002612A1 publication Critical patent/WO1997002612A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separation for a polymer electrolyte fuel cell and a method for producing the same.
  • polymer electrolyte fuel cells operate at lower temperatures than other types of fuel cells, so there is no problem of corrosion of the components that make up the cells, so there is less concern about corrosion in the material, and However, it has the characteristic that a relatively large current can be discharged in spite of its low-temperature operation.
  • the separator for polymer electrolyte fuel cells is required to have a light weight, a high gas barrier property, and an easy-cutting property when performing groove processing.
  • the materials used for polymer electrolyte fuel cell separators include graphite materials impregnated with a resin such as phenolic resin, or glass materials on the graphite surface layer in terms of processability and material price.
  • a resin such as phenolic resin
  • glass materials on the graphite surface layer in terms of processability and material price.
  • One coated with a pressure-sensitive layer is used.
  • the graphite material impregnated with this resin is not only expensive because it is necessary to repeat the impregnation-drying process many times in order to obtain a certain degree of gas barrier properties. Therefore, there is a problem that the density is high and the weight of the whole battery increases.
  • glassy carbon As is used in phosphoric acid fuel cells.
  • glassy carbon has a lower density than graphite, so the weight of the whole battery is lighter. It is expensive, and the vitreous carbon is a brittle material, so that it is very difficult to form a groove and the processing cost is high. Therefore, there has been a demand for the development of a polymer electrolyte fuel cell separator that is lightweight, can be easily grooved, and has high gas barrier properties.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a separator for a polymer electrolyte fuel cell, which is lightweight and can be easily grooved and has a high gas barrier property, and a method for producing the same. It was made as. Disclosure of the invention
  • the configuration of the solid polymer electrolyte fuel cell separator employed by the present invention to solve the above object is a solid polymer electrolyte fuel cell separator sandwiched between gas diffusion electrodes of the fuel cell.
  • Expanded graphite powder with an average particle size of 5 zm to 12 zm and a particle size of 80% or more of all powder particles in the range of 0.1 zm to 20 m, thermoplastic resin, thermosetting An oxidizing gas or fuel gas supply groove on one or both surfaces of a thermoplastic resin, a thermosetting resin, or a carbon composite material in which expanded graphite powder is dispersed in the fired resin. It is characterized by having formed.
  • the configuration of the manufacturing method of the separator for a solid polymer electrolyte fuel cell adopted by the present invention has an average particle diameter of 5 ⁇ m to 12 m, and Of the expanded graphite powder having a particle size of 80% or more in the range of 0.1 m to 20 m, and a thermoplastic resin or a thermosetting resin are mixed and dispersed at a temperature of room temperature to 400 ° C. An oxidizing gas or gas is applied to one or both sides of the carbon composite material Is characterized by forming a fuel gas supply groove.
  • another configuration of the method for producing a separation for a solid polymer electrolyte fuel cell employed by the present invention to solve the above object also has an average particle size of 5 m to l 2 lim, powder
  • An expanded graphite powder having a particle size of 80% or more of 0.1% to 20 / im of all particles and a thermosetting resin are mixed and dispersed, and the temperature is from room temperature to 40O: Then, the molded article is calcined at 700 to 300 ° C. in a non-oxidizing atmosphere at one or both sides of a carbon composite material obtained by oxidizing gas.
  • a fuel gas supply groove is formed, or the average particle diameter is 5 m to l 2 ⁇ m, and the particle diameter of 80% or more of all powder particles is 0.1 m to 2 m.
  • an oxidizing gas or Fuel gas supply groove Form After mixing and dispersing an expanded graphite powder belonging to the range of 0 / im and a thermosetting resin and press-forming at a temperature of room temperature to 400 ° C., an oxidizing gas or Fuel gas supply groove Form, under a non-oxidizing atmosphere, and is characterized in that the firing at at 7 0 0 ° C ⁇ 3 0 0 0.
  • the raw material for the expanded graphite used in the present invention is not particularly limited, and for example, natural graphite, pyrolytic graphite, quiche graphite, and any other materials used in the production of ordinary expanded graphite can be used. it can.
  • a conventionally well-known method can be used.
  • lipoperoxomonosulfuric acid is produced by mixing sulfuric acid and hydrogen peroxide.
  • Raw material graphite is charged while stirring the prepared liquid mixture, and reacted for about 1 hour to 1 day.
  • the reacted graphite is heated to 500 ° C to 100 ° C in an inert gas. It is good.
  • the expanded graphite used in the present invention includes, as described above, perchloric acid, perchlorate, and peroxodisulfuric acid as oxidizing agents when producing expanded graphite in concentrated sulfuric acid and hydrogen peroxide. It may be one obtained by adding and treating at least one selected from hydrogen ammonium (see Japanese Patent Application Laid-Open No. 6-164006). Specifically, to a mixture of 95% by weight of sulfuric acid (320 parts by weight) and 62% of hydrogen peroxide (4 parts by weight), 15% of hydrogen peroxide peroxodisulfate was added, and the temperature was reduced to 20 ° C or less.
  • the expanded graphite obtained as described above is pulverized and adjusted to a predetermined particle size and particle size as necessary.
  • the expanded bad lead used in the present invention has an average particle size of 5 / zm to 12 m.
  • more than 80% of all powder particles have a particle size of 0.1! Must be in the range of ⁇ 20 tm.
  • the average particle size of the expanded graphite used in the present invention is smaller than 5, it becomes difficult for the thermoplastic resin or the thermosetting resin to penetrate between the particles of the expanded graphite, and as a result, the gas barrier property is greatly impaired. Conversely, if the average particle size is larger than 12 m, it becomes difficult for the thermoplastic resin or thermosetting resin to fill the spaces between the expanded graphite particles, and the gas barrier property is greatly impaired. Instead, the packing density is reduced and the electrical connection is not sufficient, resulting in reduced conductivity.
  • the expanded graphite used in the present invention must have a particle size of 80% or more of all the powder particles in the range of 0.1 m to 20 m. That is, expanded graphite that has been pulverized and, if necessary, adjusted to a predetermined particle size and particle size has a particle size distribution in which the average particle size is peaked.
  • 80% or more of the particles must fall within the range of 0.1 im to 20 m, and less than 20% of particles belonging to 0.1 zm or less and 20 m or more. There is.
  • the particle diameter of 100% of the total particles of the powder may be distributed in the range from 0.1 / m to 20 zm, and from 0.1 lm to 20 / z. Within the range of m, they may be distributed within a narrower range.
  • the number of particles both in the former case or one (in the latter case) belonging to the range of 0.1 m or less and 20 zm or more
  • the surface area of the expanded graphite powder increases, which reduces the thickness of the resin between the expanded graphite powders.
  • the number of particles of 20 m or more increases, not only the possibility that some of the particles will be exposed on the surface of the separated graphite powder, but also that between the expanded graphite powder Since the number of resin layers to be formed is reduced, the gas pallidability in the re-separation is reduced, and neither is preferable.
  • the method for pulverizing the expanded graphite may be any conventionally known method, for example, pulverization methods such as mixer, jet mill, pole mill, pin mill, and freeze pulverization.
  • pulverization methods such as mixer, jet mill, pole mill, pin mill, and freeze pulverization.
  • the method for adjusting the particle size include a classifying method such as a vibrating sieve, a rotexex screener, a sonic sieve, a micro classifier, and a spread classifier.
  • thermoplastic resin used in the present invention examples include polyethylene, polystyrene, polypropylene, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, polyoxamethylene, Polyamide, Polyimide, Polyamide imide, Polyvinyl alcohol, Polyvinyl chloride, Fluororesin, Polyvinyl alcohol
  • resins such as fon, polyester ether ketone, polysulfone, polyether ketone, polyarylate, polyesterimidopolymethylbenden, and the like can be mentioned, and there is no particular limitation.
  • thermosetting resin used in the present invention examples include well-known resins such as polycarbodiimide resin, phenol resin, furfuryl alcohol resin, cellulose, epoxy resin, urine material fat, and melamine resin. There is no particular limitation.
  • thermoplastic resin or thermosetting resin may be used in the form of a powder or a solution by dissolving it in an appropriate solvent.
  • the separation product of the present invention it is first produced by compounding an expanded graphite powder, which is a main component thereof, and a resin according to the production method of the present invention described below.
  • the expanded graphite powder and the resin are mixed and dispersed to obtain a mixture.
  • This mixing step is performed by a usual mixing method, for example, a stirring rod, a stirrer, a pole mill, and a sample.
  • a method using a mill, a mixer, a static mixer, a lipon mixer or the like can be adopted.
  • the amount ratio of the expanded graphite to the resin may be determined according to the desired physical properties of the separated graphite, etc., for example, 100 parts by weight of the resin to 100 parts by weight of the expanded graphite powder. The range of 100 parts by weight can be mentioned. If the resin is smaller than this range, the strength of the separator will decrease or the impermeability will decrease. If it is larger than this range, the problem of insufficient conductivity occurs.
  • a pressure is applied to this mixture to form a resin by spreading the resin between the expanded graphite powders, thereby forming a carbon composite material for the separation of the present invention.
  • It can be performed by a conventionally known method such as hydrostatic molding, extrusion molding, transfer molding, injection-compression molding, injection molding, belt press, press heating, and mouth press.
  • the mixture is granulated to a diameter of, for example, 20 / zm to 2 mm to improve the formability. You may.
  • the molding temperature may be selected according to the resin to be used, and may be from room temperature to 400.
  • a heat treatment may be further performed after the molding.
  • the separator of the present invention In order to manufacture the separator of the present invention using the carbon composite material, it is necessary to supply an oxidizing gas or a fuel gas to the gas diffusion electrode to supply the oxidizing gas or the fuel gas to the entire surface of the gas diffusion electrode. It is necessary to provide a groove, and the shape, size, and the like of the groove can be appropriately set according to the intended performance of the fuel cell.
  • a mixture of a thermosetting resin and expanded graphite can be fired in a non-oxidizing atmosphere.
  • the firing temperature is, for example, in the range of 700 ° C. to 300 ° C. (preferably 1000 t: to 250 ° C. in a non-oxidizing gas).
  • a firing temperature lower than 700 ° C there is a problem that the conductivity is not dramatically improved as compared with the above-mentioned non-fired molded body, and at a temperature higher than 3000 ° C, the firing furnace is significantly depleted. There is a problem that it is not suitable for realistic production.
  • the mold In order to form the oxidant gas or fuel gas supply groove, the mold is designed in advance so that the supply groove is formed regardless of whether a thermoplastic resin or a thermosetting resin is used.
  • the supply groove may be formed by a method such as machining after the carbon composite material is manufactured.
  • Expanded graphite with an average particle size of 7 m and a particle size of 80% or more of all powder particles in the range of 0.1 l ⁇ m to 20 m, and polycarboimide resin are listed in Table 1.
  • the mixture was mixed and mixed to produce a molded product at 150 ° C and a pressure of 100 kg / cm 2 , and the molded product was subjected to groove processing to produce a separator for solid polymer electrolyte fuel cells. Thereafter, the density, gas permeability, and groove workability were measured.
  • Density is calculated from volume and weight by cutting out a 40 mm square, 2 mm thick plate from this molded product.Gas permeability is cut out from a 120 mm square, 1 mm thick plate by JIS 7126 differential pressure method. Measure the gas permeability of nitrogen gas.Furthermore, for groove workability, prepare a 120 mm square plate with a thickness of 2 mm, cut a groove with a depth of lmm and a width of 5 mm by machining. The appearance was observed. Table 1 shows the results. Example
  • Example 2 The same expanded graphite and phenol resin as in Example 1 were mixed in the combinations shown in Table 2, and molded products were produced under a pressure of 150 and 100 kgZcm 2 . Using this molded product, a separator for a solid polymer electrolyte fuel cell was manufactured in the same manner as in Example 1, and the density, gas permeability, and groove workability were measured. Table 2 shows the results.
  • Example 3 The same expanded graphite and polypropylene as in Example 1 were mixed in the combinations shown in Table 3 to produce a molded article at a pressure of 180 ° (: 100 kgZcm 2 . After producing a separator for a polymer electrolyte fuel cell in the same manner as in Example 1, the density, gas permeability, and groove workability were measured, and the results are shown in Table 3.
  • Example 4 Similar expanded graphite and polytetrafluoroethylene as in Example 1 were mixed in combination shown in Table 4, 330: made a molding pressure of 100 k gZcm 2. Using this molded product, a separator for a solid polymer electrolyte fuel cell was manufactured in the same manner as in Example 1, and the density, gas permeability, and groove workability were measured. Table 4 shows the results.
  • Expanded graphite and polycarboimide resin whose average particle size is 100 m and 20% of the total particles have a particle size in the range of 0.1 m to 20 m are shown in the combinations shown in Table 6.
  • the mixture was mixed to form a molded article at 150 ° C. and a pressure of 100 kg Zcm 2 .
  • a separator for a solid polymer electrolyte fuel cell was manufactured in the same manner as in Example 1, and the density, gas permeability, and groove workability were measured. Table 6 shows the results. Comparative Example 2
  • Comparative Example 3 The molded product used in Comparative Example 1 was fired in a nitrogen gas atmosphere to 100 ° C. Using this fired product, a separator for a solid polymer electrolyte fuel cell was manufactured in the same manner as in Example 1. After that, the density, gas permeability and groove workability were measured. Table 6 shows the results. Comparative Example 3
  • a molded product was produced at a pressure of 150 ° (: 100 kgZcm 2.
  • a separator for a solid polymer electrolyte fuel cell was manufactured in the same manner as in Example 1, and then the density and gas were obtained.
  • Table 6 shows the results of measuring the permeability and groove workability.
  • a graphite material having a density of 2.O gZcm 3 and 1.7 g / cm 3 was impregnated with a polycarboimide resin, and a separator for a solid polymer electrolyte fuel cell was manufactured in the same manner as in Example 1.
  • the gas permeability and groove workability were measured. Table 7 shows the results.
  • Comparative Example 5 Polycarboimide resin is applied to the surface layer of graphite materials with grooved densities of 1.7 gZcm 3 and 2.0 gZcm 3 , and baked at 150 O in a nitrogen gas atmosphere, as in Example 1. After producing a separator for a solid polymer electrolyte fuel cell, the density and gas permeability were measured. Table 7 shows the results.
  • the separation for a polymer electrolyte fuel cell of the present invention is a separation for a polymer electrolyte fuel cell sandwiched between gas diffusion electrodes of a fuel cell, and has an average particle diameter of 5 ⁇ !
  • An oxidizing gas or fuel gas supply groove is formed on one or both sides of a thermoplastic resin, a thermosetting resin, or a carbon composite material in which expanded graphite powder is dispersed in a fired product thereof.
  • the groove can be easily formed by using this method, and it has excellent gas barrier properties.

Description

明 細 書 固体高分子電解質型燃料電池用セパレ一夕及びその製造方法 技術分野
本発明は、 固体高分子電解質型燃料電池用セパレ一夕とその製造方法に関す るものである。 背景技術
燃料電池は、 資源の枯渴に留意する必要のある化石燃料を使う必要がほとん どない上に、 発電に際し騒音をほとんど発生せず、 エネルギーの回収率も他の エネルギー発電機関と比べて高くできる等の優れた特徴を持っために、 ビルや 工場における比較的小型の発電プラントとして開発が進められている。
中でも、 固体高分子型燃料電池は、 他のタイプの燃料電池と比べて低温で作 動するので、 電池を構成する部品の腐食の問題がなく、 従って材料面での腐食 の心配が少なく、 且つ、 低温作動の割には比較的大電流を放電できるといった 特徴を持ち、 車載用の内燃機関の代替電源として注目を集めている。
この固体高分子型燃料電池を構成する部品の中で、 セパレ一夕は、 燃料電池 セルへ流入する反応ガスの流通路を確保すると共に、 燃料電池セルで発電した 電気を外部へ伝達したり、 燃料電池セルで生じた熱を放熱するという役割を担 つており、 従って、 この固体高分子型燃料電池用セパレ一夕は、 前述した役割 を果たすために、 軽量性、 高ガスバリア性、 溝加工を行う際の易切削性が求め られている。
従来、 固体高分子型燃料電池セパレー夕に用いられている材料は、 加工性、 材料の価格の面からグラフアイ卜材料にフエノール樹脂等の樹脂を含浸したも の、 或いは、 グラフアイト表層にガラス状力一ボン層を被覆したものが用いら れている。
しかしながら、 この樹脂を含浸したグラフアイト材料は、 ある程度のガスバ リァ性を得るために、 何度も含浸—乾燥の工程を繰り返すことが必要となつて 高価なものになるばかりか、 グラフアイトを用いているために密度が高く、 電 池全体の重量が大きくなるという問題点を有している。
又、 グラフアイト表層にガラス状力一ボン層を被覆したものは、 上記の場合 と同様に何度も含浸—乾燥を繰り返した後、非酸化性雰囲気下で焼成するため、 工程が複雑になり、 高価なものになったり、 或いは、 グラフアイトを用いてい るために密度が高く、 電池全体の重量が大きくなる問題点を有する。
又、 リン酸型燃料電池で用いられているように、 ガラス状炭素を用いること も考えられ、 確かに、 ガラス状炭素はクラファイトよりは密度が低いために電 池全体の重量は軽くなるものの、 高価であり、 そしてガラス状力一ボンは脆性 材料であるために、 溝加工を施すことが非常に困難で、 且つ、 加工費が高価に なるという問題点がある。 このため、 軽量で溝加工を容易に施すことができ、 しかも高いガスバリア性 を有する固体高分子型燃料電池用セパレー夕の開発が望まれていた。
本発明は、 上記課題を解決して、 軽量で溝加工を容易に施すことができ、 し かも高いガスバリア性を有する固体高分子型燃料電池用セパレー夕及びその製 造方法を提供することを目的としてなされた。 発明の開示
上記目的を解決するために本発明が採用した固体高分子電解質型燃料電池セ パレ一夕の構成は、 燃料電池のガス拡散電極間に挟まれる固体高分子電解質型 燃料電池用セパレ一夕であって、 平均粒径が 5 z m〜 1 2 z m、 粉末全粒子の 内の 8 0 %以上の粒径が 0 . 1 z m〜2 0 mの範囲に属する膨張黒鉛粉末と、 熱可塑性樹脂、 熱硬化性榭脂或いはその焼成物よりなり、 熱可塑性樹脂、 熱硬 化性樹脂或いはその焼成物中に膨張黒鉛粉末が分散されている炭素複合材料の 片面又は両面に、 酸化剤ガス又は燃料ガス供給溝を形成したことを特徴とする ものである。
又、 同じく上記目的を解決するために本発明が採用した固体高分子電解質型 燃料電池用セパレ一夕の製造方法の構成は、 平均粒径が 5 ^ m〜 l 2 m、 粉 末全粒子の内の 8 0 %以上の粒径が 0 . 1 m〜2 0 mの範囲に属する膨張 黒鉛粉末と、 熱可塑性樹脂又は熱硬化性樹脂を混合分散し、 常温〜 4 0 0 °Cの 温度下で加圧成形して得られた炭素複合材料の片面又は両面に、 酸化剤ガス又 は燃料ガス供給溝を形成することを特徴とする。
更に又、 同じく上記目的を解決するために本発明が採用した固体高分子電解 質型燃料電池用セパレ一夕の製造方法の別の構成は、 平均粒径が 5 m〜l 2 li m, 粉末全粒子の内の 8 0 %以上の粒径が 0 . 1 m〜 2 0 /i mの範囲に属 する膨張黒鉛粉末と、 熱硬化性樹脂を混合分散し、 常温〜 4 0 O :の温度下で 加圧成形した後、 該成形物を、 非酸化性雰囲気下、 7 0 0 °C〜3 0 0 0 °Cで焼 成して得られた炭素複合材料の片面又は両面に、 酸化剤ガス又は燃料ガス供給 溝を形成することを特徴とするか、 或いは、 平均粒径が 5 m〜l 2 ^ m、 粉 末全粒子の内の 8 0 %以上の粒径が 0 . 1 m〜2 0 /i mの範囲に属する膨張 黒鉛粉末と、 熱硬化性樹脂を混合分散し、 常温〜 4 0 0 Cの温度下で加圧成形 した後、 該成形物の片面又は両面に、 酸化剤ガス又は燃料ガス供給溝を形成し、 非酸化性雰囲気下、 7 0 0 °C〜3 0 0 0でで焼成することを特徴とするもので ある。
即ち、 本発明者らは、 上記目的を達成するために鋭意研究の結果、 特定の粒 径を有する膨張黒鉛を、 熱可塑性樹脂又は熱硬化性樹脂と混合した場合、 非常 に優れた樹脂との混合性を与えるために、 成型あるいは賦形した際、 軽量で優 れたガスパリア性と溝加工性を有する固体高分子電解質型燃料電池用セパレ一 夕をもたらすのではないかという発想を得、 更に研究を重ねた結果、 本発明を 完成したものである。 発明を実施するための最良の形態
以下に本発明を説明する。
本発明で使用する膨張黒鉛として、 その原料については特に限定されること はなく、 例えば天然黒鉛、 熱分解黒鉛、 キッシュ黒鉛等、 通常の膨張黒鉛の製 造に用いられるあらゆるものを使用することができる。
上記原料黒鉛から膨張黒鉛を製造するには、 従来周知の方法によることがで き、 例えば、 硫酸と過酸化水素とを混合することによリペルォキソ一硫酸を生 成させた後、 このようにして調製された混合液を撹拌しながら原料黒鉛を投入 し、 約 1時間から 1日反応させ、 この反応させた黒鉛を、 不活性ガス中で 5 0 0 °C〜1 0 0 o °cに加熱すれはよいのである。
尚、 本発明で使用する膨張黒鉛としては、 上記のように, 濃硫酸と過酸化水 素にょリ膨張黒鉛を製造する際に、 酸化剤として、 過塩素酸、 過塩素酸塩、 ぺ ルォキソニ硫酸水素アンモニゥムから選ばれる少なくとも 1種類を添加して処 理することにより得られたもの (特開平 6— 1 6 4 0 6号公報参照) であって もよい。 具体的には、 9 5 w t %の硫酸 3 2 0重量部と 6 2 %の過酸化水素 4 重量部との混合物に、 ペルォキソ二硫酸水素アンモニゥム 1 5 %を添加して、 2 0 °C以下に冷却しながら混合し、 この混合液に天然黒鉛を投入した後、 2 4 時間反応させ、 この反応物を窒素ガス中 1 0 0 0 °Cまで焼成して得た膨張黒鉛 である。 上記のようにして得られた膨張黒鉛は粉砕され、 必要に応じ所定の粒度及び 粒径にそろえられるのであり、 本発明で使用される膨張悪鉛は、 平均粒径が 5 /zm〜12 mで、 しかも粉末全粒子の内の 80%以上の粒径が 0. 1 !〜 20 t mの範囲に属するものでなければならない。
本発明で使用される膨張黒鉛の平均粒径が 5 より小さい場合には、 熱可 塑性樹脂又は熱硬化性樹脂が膨張黒鉛の粒子間に浸透することが困難となり、 そのためにガスバリア性が大きく損われてしまい、 逆に平均粒径が 12 mよ り大きい場合には、 熱可塑性榭脂又は熱硬化性榭脂が膨張黒鉛の粒子間を埋め ることか困難となり、 そのためにガスバリァ性が大きく損なわれてしまうばか りか、 充填密度が落ちて電気的接続が十分でなくなり、 導電性が低下してしま ラ。
更に、 本発明で使用される膨張黒铅は、 粉末全粒子の内の 80%以上の粒径 が 0. 1 m〜20 mの範囲に属する必要がある。 即ち、 粉砕され、 必要に 応じ所定の粒度及び粒径にそろえられた膨張黒鉛は、 一般的には平均粒径をピ —クとする粒度分布を有しているが、 本発明では、 粉末全粒子の粒度測定した 場合に、 その 80%以上が 0. 1 im〜20 mの範範囲に属し、 0. 1 zm 以下及び 20 m以上の範囲に属する粒子が 20 %未満となっている必要があ るのである。
もちろん、 本発明で使用される膨張黒鉛粉末は、 粉末全粒子の 100%の粒 径が 0. 1 /m〜20 zmの範囲に分布していてもよく、 0. l m〜20 /z mの範囲内で、 更に狭い範囲内に分布していてもよい。
粒度分布のピ一クが低くなつたり、 いずれかの方向に移動すると、 0 . 1 m以下及び 2 0 z m以上の範囲に属する粒子の双方 (前者の場合) 或いは一方 (後者の場合) の数が増加するが、 0 . 1 以下の粒子の数が増加すると膨 張黒鉛粉末の表面積が増加し、 これによリ膨張黒鉛粉末間の樹脂の厚みが小さ くなるので、 得られるセパレー夕のガスバリア性が低下してしまい、 又、 2 0 m以上の粒子の数が増加すると、 粒子の一部が得られるセパレ一夕の表面に 露出してしまう可能性が生じるばかりか、 膨張黒鉛粉末間に形成される樹脂の 層の数が少なくなるので、やはリセパレー夕のガスパリア性が低下してしまい、 いずれも好ましくない。
尚、 上記膨張黒鉛を粉砕する方法は、 従来公知のいずれの方法によってもよ く、 例えは、 ミキサー、 ジェットミル、 ポールミル、 ピンミル、 凍結粉砕等の 粉砕方法を挙げることができ、 前記所定の粒度、 粒径にそろえる方法としては、 振動ふるい、 ローテツクススクリーナー、 音波ふるい、 マイクロクラッシファ ィァ一、 スぺディッククラシファイア一等の分級方法を挙げることができる。 又、 本発明で用いられる熱可塑性榭脂としては、 ポリエチレン、 ポリスチレ ン、 ポリプロピレン、 ポリメ夕クリル酸メチル、 ポリエチレンテレフ夕レート、 ポリブチレンテレフタレー卜、 ポリエーテルスルフォン、 ポリカーボネ一卜、 ポリオキサメチレン、 ポリアミド、 ポリイミド、 ポリアミドイミド、 ポリビニ ルアルコール、 ポリビニルクロライド、 フッ素樹脂、 ポリフエフエ二一ルサル フォン、 ポリエ一テルエ一テルケトン、 ポリスルフォン、 ポリエーテルケトン、 ポリアリレート、 ポリェ一テルイミドゃポリメチルベンデン等の周知の樹脂を 挙げることができ、 特に限定はされない。
一方、 本発明で用いられる熱硬化性樹脂としては、 ポリカルポジイミド榭脂、 フエノール樹脂、 フルフリルアルコール樹脂、 セルロース、 エポキシ樹脂、 尿 素材脂、 メラミン榭脂等の周知の樹脂を挙げることができ、 特に限定はされな い。
上記の熱可塑性榭脂或いは熱硬化性樹脂は、 粉末状あるいは適当な溶媒に溶 かして溶液状にして使用してもよい。
本発明のセパレ一夕を製造するには、 以下に説明する本発明の製造方法によ つて、 まず、 その主成分たる膨張黒鉛粉末と樹脂を複合することにより製造さ れる。
即ち、 最初に前記膨張黒鉛粉末と樹脂とを混合分散して混合物を得るのであ り、 この混合工程は、 通常のェ菜的な混合方法、 例えは、 撹拌棒、 二一ダー、 ポールミル、 サンプルミル、 ミキサー、 スタティックミキサー、 リポンミキサ —等による方法を採用することができる。
上記膨張黒鉛と樹脂との量比は、 目的とするセパレ一夕の物性等により決定 すればよいが、 例えば、 膨張黒鉛粉末 1 0 0重量部に対して、 樹脂を 1 0重量 部〜 1 0 0 0重量部という範囲を挙げることができる。 尚、 樹脂がこの範囲よ り小さい場合には、 セパレ一夕の強度が低くなつたり、 不浸透性が低下すると いう問題が起き、 又、 この範囲より大きい場合には、 導電性が不足するという 問題が起こる。
次に、 この混合物に圧力を加え、 樹脂を膨張黒鉛粉末間に行き渡らせること によって成形し、本発明のセパレ一夕のための炭素複合材料とするのであって、 この成形工程は、 加圧成形、 静水圧成形、 押し出し成形、 トランスファー成形、 射出一圧縮成形、 射出成形、 ベルトプレス、 プレス加熱、 口一ルプレス等の従 来公知の方法によって行うことができる。 尚、 この時点で所望の形状に成形し ても、 この成形工程の前に、 前記混合物に溶媒を加えることにより、 例えば、 2 0 /z m〜2 mmの径に造粒し、 成形性を高めてもよい。
成型温度については、 使用する樹脂に応じて選択すればよいが、 常温〜 4 0 0 を挙げることができる。 尚、 この成型物を化学的に安定化させるために、 さらに成型後に熱処理を行ってもよい。
前記炭素複合材料を使用して本発明のセパレー夕を製造するには、 ガス拡散 電極へ酸化剤ガス又は燃料ガスを当該ガス拡散電極の全面に供給するための、 酸化剤ガス又は燃料ガスの供給溝を設ける必要があり、 この溝の形状やサイズ 等については、 目的とする燃料電池の性能等に合わせ、 適宜に設定することが できる。
上記混合物の内、 熱硬化性樹脂と膨張黒鉛の混合物に関しては、 非酸化性雰 囲気下で焼成することができる。焼成温度としては、非酸化性ガス中で 7 0 0 °C 〜3 0 0 0 ° (:、 好ましくは 1 0 0 0 t:〜2 5 0 0 °Cという範囲を例示すること ができ、 700°Cより低い焼成温度では、 前述の非焼成型成型体と比べて導電 性が飛躍的に向上しないという問題があり、 3000°Cょリ高い温度は、 焼成 炉の消耗が著しくなり現実的な生産に適さないという問題点がある。
上記酸化剤ガス又は燃料ガス供給溝を形成するには、 熱可塑性樹脂を使用し た場合でも熱硬化性樹脂を使用した場合でも、 予め金型を供給溝が形成される ように設計しておいたり、 或いは、 前記炭素複合材料を製造した後に機械加工 等の方法で供給溝を形成したりすればよい。
以下実施例によって本発明を更に詳しく説明する。
実施例 1
平均粒径が 7 mで、 粉末全粒子の内の 80%以上の粒径が 0. l ^m〜2 0 mの範範囲に属する膨張黒鉛と、 ポリカルポジイミド榭脂を表 1に示す組 み合わせで混合し、 150°C、 100 k g/cm2の圧力で成型品を製造し、 こ の成型品に対し溝加工を施して固体高分子電解質型燃料電池用セパレ一夕を製 造した後、 その密度、 ガス透過率、 溝加工性を測定した。 密度は、 この成型品 から 40mm角、 厚さ 2mmの板材を切り出し、 体積と重量よリ算出し、 又、 ガス透過性は、 120mm角、 厚さ 1 mmの板材を切り出し、 J I S 7126 差圧法によって窒素ガスのガス透過性を測定し、 更に、 溝加工性は、 120m m角、 厚さ 2 mmの板を用意して、 深さ lmm、 幅 5 mmの溝を機械加工によ つて切削し、 その外観を観察した。 結果を表 1に示す。 実施例
1一 1 1一 2 1-3 焼成条件 なし なし なし 膨張黒鉛 100 100 100 樹脂 ポリカルポジイミド 10 100 1000 フエノール
ポリプロピレン
ポリテトラフロロエチレン
密度 1. 2 1. 34 1. 5 ガス透過率 1 X 10一2 1 X 10—5 1 X 10一7 i.cm3cm"2Er>in"1atmN2)
溝加工性 良好 良好 良好 実施例 2 実施例 1と同様の膨張黒鉛とフェノ一ル榭脂を表 2に示す組み合わせで混合 し、 150 、 100 k gZcm2の圧力で成型品を作った。 この成型品を用い て、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一夕を製造し た後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 2に示す。
¾t 2
Figure imgf000014_0001
実施例 3
実施例 1と同様の膨張黒鉛とポリプロピレンを表 3に示す組み合わせで混合 し、 1 8 0° (:、 1 0 0 k gZcm2の圧力で成型品を作った。 この成型品を用い て、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一夕を製造し た後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 3に示す。
表 3
Figure imgf000015_0001
実施例 4
実施例 1と同様の膨張黒鉛とポリテトラフロロエチレンを表 4に示す組み合 わせで混合し、 330 :、 100 k gZcm2の圧力で成型品を作った。 この成 型品を用いて、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一 夕を製造した後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 4に示す。
表 4
Figure imgf000016_0001
実施例 5
実施例 1のうち、 実施例 1一 2に示される組成 (膨張黒鉛 Zポリカルポジィ ミド樹脂 = 1 0 0重量部 1 0 0重量部) を実施例 1と同条件で成型し、 これ を表 5に示す温度まで不活性ガス雰囲気下で焼成した。 この焼成品を用いて、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一夕を製造した後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 5に示す。
表 5
Figure imgf000017_0001
比較例 1
平均粒径が 1 0 0 m、 全粒子の内の 2 0 %の粒径が 0 . 1 m〜 2 0 m の範囲に属する膨張黒鉛とポリカルポジィミド榭脂とを表 6に示す組み合わせ で混合し、 1 5 0 °C、 1 0 0 k g Z c m 2の圧力で成型品を作った。 この成型品 を用いて、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一夕を 製造した後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 6に示す。 比較例 2
比較例 1で使用した成型品を窒素ガス中で 1 0 0 o °cまで焼成した. この焼 成品を用いて、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一 夕を製造した後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 6に示す。 比較例 3
平均粒径が 0. 5 、 全粒子の内の 20%の粒径が 0. l ^m〜20 m の範囲に属する膨張黒鉛とポリカルポジィミド樹脂とを表 6に示す組み合わせ で混合し、 150° (:、 100 kgZcm2の圧力で成型品を作った。 この成型品 を用いて、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一夕を 製造した後、 密度、 ガス透過性、 溝加工性を測定した結果を表 6に示す。
表 6
Figure imgf000018_0001
比較例 4
密度 2. O gZcm3と 1. 7 g/cm3のグラフアイト材料にポリカルポジ イミド樹脂を含浸し、 実施例 1と同様にして固体高分子電解質型燃料電池用セ パレー夕を製造した後、 密度、 ガス透過性、 溝加工性を測定した。 結果を表 7 に示す。
比較例 5 溝加工を施した密度 1. 7 gZcm3と 2. 0 gZcm3のグラフアイト材の 表層に、 ポリカルポジイミド榭脂を塗布し、 窒素ガス雰囲気下で 150 O で 焼成し、 実施例 1と同様にして固体高分子電解質型燃料電池用セパレ一夕を製 造した後、 密度、 ガス透過性を測定した。 結果を表 7に示す。
表 7
Figure imgf000019_0002
比較例 6
密度 1. 5 gZcm3のガラス状力一ボンを使用し、 実施例 1と同様にして固 体高分子電解質型燃料電池用セパレ一夕を製造した後、 密度、 ガス透過性、 溝 加工性を測定した。 結果を表 8に示す。
表 8
Figure imgf000019_0001
産業状の利用可能性
本発明の固体高分子電解質型燃料電池用セパレ一夕は、 燃料電池のガス拡散 電極間に挟まれる固体高分子電解質型燃料電池用セパレ一夕であって、 平均粒 径が 5 π!〜 12 m、 粉末全粒子の内の 80%以上の粒径が 0. l zm〜2 0 /mの範囲に属する膨張黒鉛粉末と、 熱可塑性榭脂、 熱硬化性樹脂或いはそ の焼成物よりなり、 熱可塑性樹脂、 熱硬化性樹脂或いはその焼成物中に膨張黒 鉛粉末が分散されている炭素複合材料の片面又は両面に、 酸化剤ガス又は燃料 ガス供給溝を形成したものであり、 軽量で溝加工を容易に施すことができ、 し かも高いガスバリア性を有する優れたものである。

Claims

請求の範囲
1. 燃料電池のガス拡散電極間に挟まれる固体高分子電解質型燃料電池用セパ レー夕であって、 平均粒径が 5 !!!〜 12 m、 粉末全粒子の内の 80%以上 の粒径が 0. 1 m〜20 /_tmの範囲に属する膨張黒鉛粉末と、 熱可塑性樹脂、 熱硬化性樹脂或いはその焼成物よりなり、 熱可塑性樹脂、 熱硬化性樹脂或いは その焼成物中に膨張黒鉛粉末が分散されている炭素複合材料の片面又は両面に、 酸化剤ガス又は燃料ガス供給溝を形成したことを特徴とする固体高分子電解質 型燃料電池用セパレ一夕。
2. 平均粒径が 5 m〜l 2 /im、 粉末全粒子の内の 80%以上の粒径が 0.
1 m〜20 mの範囲に属する膨張黒鉛粉末と、 熱可塑性樹脂又は熱硬化性 樹脂を混合分散し、 常温〜 400°Cの温度下で加圧成形して得られた炭素複合 材料の片面又は両面に、 酸化剤ガス又は燃料ガス供給溝を形成することを特徴 とする固体高分子電解質型燃料電池用セパレー夕の製造方法。
3. 膨張黒鉛粉末と熱可塑性樹脂又は熱硬化性樹脂の割合が、 膨張黒鉛粉末 1
00重量部に対し、 熱可塑性樹脂又は熱硬化性樹脂 10乃至 1000重量部で ある請求項 2に記載の固体高分子電解質型燃料電池用セパレー夕の製造方法。
4. 平均粒径が 5 ^m~l 2 tm、 粉末全粒子の内の 80 %以上の粒径が 0.
1 m〜20 mの範囲に属する膨張黒鉛粉末と、熱硬化性樹脂を混合分散し、 常温〜 400 の温度下で加圧成形した後、 該成形物を、 非酸化性雰囲気下、 7 0 O 〜 3 0 0 0 で焼成して得られた炭素複合材料の片面又は両面に、 酸 化剤ガス又は燃料ガス供給溝を形成することを特徴とする固体高分子電解質型 燃料電池用セパレー夕の製造方法。
5 . 平均粒径が 5 !〜 1 2 tm、 粉末全粒子の内の 8 0 %以上の粒径が 0 . 1 /im〜 2 0 / mの範囲に属する膨張黒鉛粉末と、熱硬化性樹脂を混合分散し、 常温〜 4 0 0 の温度下で加圧成形した後、 該成形物の片面又は両面に、 酸化 剤ガス又は燃料ガス供給溝を形成し、非酸化性雰囲気下、 7 0 0 t:〜 3 0 0 0 で焼成することを特徴とする固体高分子電解質型燃料電池用セパレ一夕の製造 方法。
6 . 膨張黒鉛粉末と熱可塑性樹脂又は熱硬化性樹脂の割合が、 膨張黒鉛粉末 1 0 0重量部に対し、 熱可塑性樹脂又は熱硬化性樹脂 1 0乃至 1 0 0 0重量部で ある請求項 4又は 5に記載の固体高分子電解質型燃料電池用セパレ一夕の製造 方法。
7 . 非酸化性雰囲気下での焼成を、 1 0 0 0 :〜 2 5 0 0 で行う請求項 4又 は 5に記載の固体高分子電解質型燃料電池用セパレ一夕の製造方法。
PCT/JP1996/001859 1995-07-05 1996-07-04 Separateur pour piles a combustible du type a polyelectrolyte solide et ses procedes de fabrication WO1997002612A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50500297A JP4028890B2 (ja) 1995-07-05 1996-07-04 固体高分子電解質型燃料電池用セパレータ及びその製造方法
DE69611778T DE69611778T2 (de) 1995-07-05 1996-07-04 Separator für feststoffpolyelektrolytbrennstoffzellen und dessen herstellung
EP96922230A EP0784352B1 (en) 1995-07-05 1996-07-04 Separator for fuel cells of solid polyelectrolyte type and processes of the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/194333 1995-07-05
JP19433395 1995-07-05

Publications (1)

Publication Number Publication Date
WO1997002612A1 true WO1997002612A1 (fr) 1997-01-23

Family

ID=16322852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001859 WO1997002612A1 (fr) 1995-07-05 1996-07-04 Separateur pour piles a combustible du type a polyelectrolyte solide et ses procedes de fabrication

Country Status (5)

Country Link
EP (1) EP0784352B1 (ja)
JP (1) JP4028890B2 (ja)
CA (1) CA2198496A1 (ja)
DE (1) DE69611778T2 (ja)
WO (1) WO1997002612A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082476A (ja) * 1998-06-25 2000-03-21 Hitachi Chem Co Ltd 燃料電池、燃料電池用セパレ―タ及びその製造方法
JP2001076737A (ja) * 1999-09-01 2001-03-23 Nichias Corp 燃料電池用セパレーター
JP2001325967A (ja) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池
JP2002056854A (ja) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd 燃料電池用セパレータ及び燃料電池用セパレータを用いた燃料電池
JP2003242994A (ja) * 2002-02-13 2003-08-29 Matsushita Electric Ind Co Ltd 燃料電池用セパレータの製造方法およびそれを用いた高分子電解質型燃料電池
JP2004505418A (ja) * 2000-07-24 2004-02-19 コミツサリア タ レネルジー アトミーク 導電性複合材料ならびにこの導電性複合材料を使用した燃料電池用電極
JP2006179207A (ja) * 2004-12-21 2006-07-06 Izuru Izeki 燃料電池用セパレーターおよびその製造方法
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
EP2065956A1 (en) 2002-03-18 2009-06-03 Ntn Corporation Conductive resin molding
JP2013125611A (ja) * 2011-12-13 2013-06-24 Panasonic Corp 燃料電池用セパレータ、及び燃料電池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
US5976727A (en) * 1997-09-19 1999-11-02 Ucar Carbon Technology Corporation Electrically conductive seal for fuel cell elements
US6440598B1 (en) * 1997-10-14 2002-08-27 Nisshin Steel Co., Ltd. Separator for low temperature type fuel cell and method of production thereof
JP4000651B2 (ja) 1998-01-19 2007-10-31 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
US6232010B1 (en) 1999-05-08 2001-05-15 Lynn Tech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
US6103413A (en) * 1998-05-21 2000-08-15 The Dow Chemical Company Bipolar plates for electrochemical cells
US6037074A (en) * 1998-07-07 2000-03-14 Ucar Carbon Technology Corporation Flexible graphite composite for use in the form of a fuel cell flow field plate
DE59811481D1 (de) * 1998-09-16 2004-07-01 Schunk Kohlenstofftechnik Gmbh Kunststoffplatte sowie verfahren zur herstellung einer solchen
US6180275B1 (en) * 1998-11-18 2001-01-30 Energy Partners, L.C. Fuel cell collector plate and method of fabrication
US6602631B1 (en) 1999-01-26 2003-08-05 Lynntech Power Systems, Ltd. Bonding electrochemical cell components
CA2391894C (en) * 1999-12-06 2007-11-06 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof
EP1249051B1 (en) * 2000-01-19 2004-04-07 Manhattan Scientifics, Inc. Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
FR2812119B1 (fr) 2000-07-24 2002-12-13 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau mis en forme par thermo- compression
EP1184923A3 (en) * 2000-08-30 2006-05-17 Ballard Power Systems Inc. Expanded graphite fluid flow field plates and method for making such plates
US6517964B2 (en) * 2000-11-30 2003-02-11 Graftech Inc. Catalyst support material for fuel cell
US7736783B2 (en) 2002-12-04 2010-06-15 Lynntech, Inc. Very thin, light bipolar plates
JP4825894B2 (ja) 2009-04-15 2011-11-30 トヨタ自動車株式会社 燃料電池用セパレータおよびその製造方法
US10622643B2 (en) 2015-09-25 2020-04-14 Nippon Steel Corporation Carbon separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell stack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090807A (ja) * 1983-10-25 1985-05-22 Kobe Steel Ltd 不透過性炭素成形体の製造方法
JPS6259508A (ja) * 1985-09-06 1987-03-16 Tokai Carbon Co Ltd 炭素質薄板の製造方法
JPH01154467A (ja) * 1987-12-11 1989-06-16 Hitachi Ltd 液体燃料電池
JPH01311570A (ja) * 1988-06-08 1989-12-15 Hitachi Chem Co Ltd 燃料電池用セパレータ
JPH04214072A (ja) * 1990-12-12 1992-08-05 Osaka Gas Co Ltd 炭素質組成物、燃料電池用炭素材およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853167A (ja) * 1981-09-26 1983-03-29 Toshiba Corp 燃料電池
JPS62265109A (ja) * 1986-05-14 1987-11-18 Tokai Carbon Co Ltd 炭素質薄板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090807A (ja) * 1983-10-25 1985-05-22 Kobe Steel Ltd 不透過性炭素成形体の製造方法
JPS6259508A (ja) * 1985-09-06 1987-03-16 Tokai Carbon Co Ltd 炭素質薄板の製造方法
JPH01154467A (ja) * 1987-12-11 1989-06-16 Hitachi Ltd 液体燃料電池
JPH01311570A (ja) * 1988-06-08 1989-12-15 Hitachi Chem Co Ltd 燃料電池用セパレータ
JPH04214072A (ja) * 1990-12-12 1992-08-05 Osaka Gas Co Ltd 炭素質組成物、燃料電池用炭素材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0784352A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082476A (ja) * 1998-06-25 2000-03-21 Hitachi Chem Co Ltd 燃料電池、燃料電池用セパレ―タ及びその製造方法
JP2001076737A (ja) * 1999-09-01 2001-03-23 Nichias Corp 燃料電池用セパレーター
JP2001325967A (ja) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池
JP2004505418A (ja) * 2000-07-24 2004-02-19 コミツサリア タ レネルジー アトミーク 導電性複合材料ならびにこの導電性複合材料を使用した燃料電池用電極
JP2002056854A (ja) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd 燃料電池用セパレータ及び燃料電池用セパレータを用いた燃料電池
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
JP2003242994A (ja) * 2002-02-13 2003-08-29 Matsushita Electric Ind Co Ltd 燃料電池用セパレータの製造方法およびそれを用いた高分子電解質型燃料電池
EP2065956A1 (en) 2002-03-18 2009-06-03 Ntn Corporation Conductive resin molding
US7728066B2 (en) * 2002-03-18 2010-06-01 Ntn Corporation Conductive resin molding
JP2006179207A (ja) * 2004-12-21 2006-07-06 Izuru Izeki 燃料電池用セパレーターおよびその製造方法
JP2013125611A (ja) * 2011-12-13 2013-06-24 Panasonic Corp 燃料電池用セパレータ、及び燃料電池

Also Published As

Publication number Publication date
DE69611778T2 (de) 2001-06-13
CA2198496A1 (en) 1997-01-23
JP4028890B2 (ja) 2007-12-26
EP0784352A4 (en) 1999-08-04
EP0784352A1 (en) 1997-07-16
DE69611778D1 (de) 2001-03-22
EP0784352B1 (en) 2001-02-14

Similar Documents

Publication Publication Date Title
WO1997002612A1 (fr) Separateur pour piles a combustible du type a polyelectrolyte solide et ses procedes de fabrication
US6242124B1 (en) Separator for polymer electrolyte fuel cells and processes for production thereof
US6024900A (en) Process for production of a carbon composite material
JP4417886B2 (ja) 燃料電池分離板成型用素材の製造方法
CA1164934A (en) Separator plate for electrochemical cells
US6436567B1 (en) Separator for fuel cells
WO2000030202A1 (en) Fuel cell collector plate and method of fabrication
JPH11297338A (ja) 固体高分子型燃料電地用セパレータ及びその製造方法
EP0691699A1 (en) Graphite layer material
KR20180135344A (ko) 탄소소재 구조 제어를 통한 연료전지용 분리판 및 그 제조방법
JP3824795B2 (ja) 固体高分子型燃料電池用セパレータ部材の製造方法
Taherian et al. application of polymer-based composites: Bipolar plate of PEM fuel cells
WO2003056648A1 (en) Fuel cell-use separator
JPH01311570A (ja) 燃料電池用セパレータ
JP4037955B2 (ja) 固体高分子型燃料電池セパレータ部材の製造方法
JPH11354136A (ja) 燃料電池、燃料電池用セパレ―タ及びその製造方法
JP3600690B2 (ja) 炭素複合材料及びその製造方法
JP2003197215A (ja) 燃料電池用セパレータ及び燃料電池用セパレータを用いた燃料電池
EP3111496B1 (en) Fuel cell component including flake graphite
JPH0131445B2 (ja)
EP3309878B1 (en) Carbon-carbon composite particles, their preparation and use therefor as negative electrode for li-ion batteries
JP2000331690A (ja) 燃料電池用セパレータの製造方法
JPH11354137A (ja) 燃料電池、燃料電池用セパレ―タ及びその製造方法
JP2002114573A (ja) 導電性カーボン多孔体の作製方法及びその方法で作製した導電性カーボン多孔体
JP3925806B2 (ja) 燃料電池セパレータ用材料、及びその材料を用いた燃料電池用セパレータ、燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996922230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 793130

Country of ref document: US

Date of ref document: 19970219

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2198496

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996922230

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996922230

Country of ref document: EP