WO1997001851A1 - Nuclear reactor with molten core cooling in the propagation chamber - Google Patents

Nuclear reactor with molten core cooling in the propagation chamber Download PDF

Info

Publication number
WO1997001851A1
WO1997001851A1 PCT/DE1996/001083 DE9601083W WO9701851A1 WO 1997001851 A1 WO1997001851 A1 WO 1997001851A1 DE 9601083 W DE9601083 W DE 9601083W WO 9701851 A1 WO9701851 A1 WO 9701851A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
nuclear reactor
line
space
propagation chamber
Prior art date
Application number
PCT/DE1996/001083
Other languages
German (de)
French (fr)
Inventor
Lothar Wistuba
Gerhard Hau
Dietmar Bittermann
Horst WEISSHÄUPL
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59604499T priority Critical patent/DE59604499D1/en
Priority to JP9504081A priority patent/JPH11508680A/en
Priority to EP96918589A priority patent/EP0835511B1/en
Publication of WO1997001851A1 publication Critical patent/WO1997001851A1/en
Priority to US08/998,988 priority patent/US5930319A/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/04Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from fissile or breeder material
    • G21C15/06Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from fissile or breeder material in fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/016Core catchers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a nuclear reactor with an expansion chamber for meltdown, which is provided with a coolant line leading to a coolant reservoir, which has a temperature-dependent opening valve.
  • a steel crucible with a plurality of inner protective layers is arranged in the reactor pit receiving the reactor pressure vessel in order to withstand the high temperature of the core melt.
  • a coolant tube runs through the wall of the crucible in the upper half, and a melting plug is located at the end of the crucible inside the crucible. The other end of the coolant pipe leads to a coolant store. If core melt emerges from the reactor pressure vessel, it is collected immediately below the reactor pressure vessel within the reactor pit. When the meltdown rises to the level of the outlet opening of the cooling line, the melting plug melts through direct contact or as a result of heat radiation.
  • a nuclear reactor of the type mentioned at the outset is designed such that a coolant line is provided in the expansion space, which is a spray line, the spray surface of which covers the cross-section of the expansion space over a large area, and that the device is controlled so that it Entry of the meltdown into the expansion space opens.
  • the cross section of the expansion space can be round or polygonal (rectangular, hexagonal).
  • the spray line can advantageously be arranged on the walls of the collecting space in such a way that it encloses the cross section of the collecting space. There it can be easily attached and easily results in a large spray curtain.
  • the spray line can alternatively or additionally run at a distance from the floor over the cross section of the expansion space, as is done, for example, in sprinkler systems in agriculture with parallel pipes to cover a large area.
  • a large number of spray lines can be be seen that run parallel to each other or cross.
  • the spray line is a ring line with several feeds.
  • the device is preferably a passively opening fitting which, in particular, requires the coolant line to open in a temperature-dependent manner.
  • An important further development of the invention is therefore that the temperature-dependent opening device is arranged below the spray line in such a way that a melting body which holds the sealing plate against the pressure of the coolant is located at the bottom of the expansion space.
  • 3 to 6 show a device for use in the invention. fertilizer in a vertical section on a much larger scale.
  • the reactor building 1 consists of concrete and contains a reactor pressure vessel (not shown) with the reactor core in the central reactor pit 2 (see FIG. 2). From this, a manifold (not shown), which is inclined to the horizontal, leads into an expansion space 4 in the lower part of the reactor building 1.
  • the spreading space 4 has an elongated hexagonal cross-section with flat vertical walls 5 the entire cross section runs a ring line 6, which is designed as a spray line with spray nozzles 7.
  • the spray nozzles 7, which are produced in the simplest case as cylindrical holes in the ring line 6, are directed in the horizontal direction into the interior of the expansion space 4, so that its cross section can be sprayed over a large area.
  • the spray veil is indicated by the rays 8.
  • a reservoir (not shown) in the upper part of the reactor building 1 is arranged so high that a pressure of, for example, 1 bar is available on the ring line 6 for the safe supply.
  • the Ein ⁇ carried out by two feed Einspei ⁇ e technischen 10 ⁇ ind attached to almost opposite sides of the ring line 6 '. They sit as an angled pipe socket with their lower leg 11 on the bottom 12 of a collecting trough 13, on the upper edge 14 of which the ring line 6 lies.
  • the deep position of the leg 11 ensures that the temperature-sensitive device 16 starts the supply of the coolant as soon as the schematically indicated core melt 17 spreads out on the bottom 12 (see FIG. 3). It then immediately destroys a melting body 18 made of plastic or a low-melting metal, with which the sealing plate 19 of the device 16 against the pressure of the
  • Coolant is pressed onto the sealing seat 20.
  • the coolant then passes through the feed lines 10 into the ring line 6 and from there, as a spray curtain 8, ensures the desired rapid cooling and formation of a crust 15 on the meltdown 17.
  • the coolant flows over a large area through the housing of the device 16 and thereby ensures its integrity, even if the melt 17 rises higher. But it is also possible to extend the shaft 21 leading to the sealing plate 20 so that the device 16 lies above the highest expected level of the melt 17, without the rapid opening of the device 16 being impaired by the melting body 18 located on the bottom 12.
  • FIG. 4 shows a longitudinal section of an embodiment of the device 16, the device being arranged above the base 12 of the expansion space 4 such that the schematically illustrated meltdown remains clearly below the device 16.
  • the device 16 lies on a flange connection 26, on which the feed line 10, which is extended along a main axis 9, is connected to the ring line 6.
  • the cross section of the feed line 10 in the device 16 on the flange connection 26 is blocked by a rupture disk 23.
  • the coolant 22, for example at a pressure of about 1 bar, is present on the rupture disk 23 within the feed line 10.
  • a piezo element 24 is firmly attached to the rupture disk 23, which is connected to a thermocouple 25 that lies on the floor 12 of the expansion space 4.
  • the core melt 17 spreads out within the spreading space 4
  • the core melt generates a signal within the thermocouple 25 by direct contact or by heat radiation, which signal is passed on to the piezo element 24.
  • this leads to an expansion which leads to a destruction of the bursting disk 23 and thus an inflow of the coolant 22 into the ring line 6. This initiates the initiation of the spraying process and thus cooling of the meltdown by spraying.
  • FIG. 5 shows in a longitudinal section an embodiment of the device 16 which is analogous to FIG. 3, the latter being symmetrically stretched along a main axis 9.
  • the wall 28 of the device 16 is inclined with respect to the main axis 9, so that this area has the shape Nes has cone running towards the main axis 9.
  • the feed line 10 opens into one side of this conical wall and the ring line 6 leads away from the wall 28 on another side.
  • a likewise conical sealing body 27 which extends along the main axis 9 and which, in a sealing position, blocks both the feed line 10 and the ring line 6.
  • the sealing body 27 is held by a melting body 18 which projects out of the device 16 along the main axis 9 and rests on the floor 12 of the expansion space 4.
  • the melting body 18 is fixed in its position by means of a screw 30, which is also stretched along the main axis 9. It consists of plastic and the sealing body 27 of a metal, such as steel or ceramic or plastic.
  • the device 16 shows in a section a device 16 which is stretched along a main axis 9.
  • the feed line 10, which is also stretched along the main axis 9, leads into this and the ring line 6, which is also stretched along the main axis 9, leads out.
  • the device 16 has a sealing plate 19 which rests on a sealing seat 20 and thereby closes the cross section of the feed line 10.
  • the sealing plate 19 is held in the position closing the feed line 10 by means of a plate 31 running perpendicular to the main axis 9 in that two screws 30 running along the main axis 9 are surrounded by a melting sleeve 18, which moves the screws 30 and thus the Prevent plate 31 along the main axis 9.
  • meltdown 17 enters the expansion space 4
  • the melting sleeves 18 melt off, so that the pressure exerted by the coolant 22 on the sealing plate 19 displaces it along the main axis 9.
  • coolant 22 enters the device 16 and flows via the ring line 6 to the spray nozzles (not shown).
  • the invention is characterized by a passively triggering spray system in a spreading space for a meltdown, by means of which the spreading meltdown is cooled early and over a large area with a small amount of cooling water, so that the risk of steam explosions is significantly reduced.
  • Da ⁇ spraying the meltdown er ⁇ preferably follows a at the periphery of Au ⁇ breitung ⁇ - • space extending annular conduit angeschlo ⁇ en jur to adetically so high above the ring line, that a required pressure spray for large-scale Be ⁇ given is. Coolant is constantly present in the corresponding feed lines and is retained by the ring line via a device.
  • the device opens in a passive manner depending on the temperature, so that when core melt enters the spreading space, the core melt is reliably cooled without intervention by the operating personnel. Furthermore, at least two flood lines are provided, which are connected to a large coolant reservoir and can be supplied via the coolant for long-term cooling of the meltdown.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

A nuclear reactor has a propagation chamber (4) for the molten core (17) equipped with a coolant pipe (6) that leads to a coolant reservoir and has a temperature-dependent opening device (16). The coolant pipe (6) in the propagation chamber (4) is a spraying pipe whose spraying surface corresponds to the cross-section of the propagation chamber (4). The opening device (16) is controlled in such a way that it opens when the molten core (17) enters the propagation chamber (4). The sprayed coolant forms a crust on the molten core (17), reducing its heat radiation. At the same time, the propagation chamber (4) is filled with a vapour atmosphere that drastically reduces the thermal stresses to which the building structures are subjected.

Description

Beschreibung description
KERNREAKTOR MIT KERNSCHMELZENKÜHLUNG IM AUSBREITUNGSRAUMCORE REACTOR WITH MELT MELT COOLING IN THE SPREADING SPACE
Die Erfindung betrifft einen Kernreaktor mit einem Ausbrei¬ tungsraum für Kernschmelze, der mit einer zu einem Kühlmit¬ telreservoir führenden Külmittelleitung versehen ist, die ein temperaturabhängig öffnendes Ventil aufweist.The invention relates to a nuclear reactor with an expansion chamber for meltdown, which is provided with a coolant line leading to a coolant reservoir, which has a temperature-dependent opening valve.
Bei dem aus der DE-OS 40 41 295 bekannten Kernreaktor der oben genannten Art ist in der den Reaktordruckbehälter auf¬ nehmenden Reaktorgrube ein Stahltiegel mit mehreren inneren 'Schutzschichten angeordnet, um der hohen Temperatur der Kern¬ schmelze zu widerstehen. Durch die Wand des Tiegels führt in der oberen Hälfte ein Kühlmittelröhr, an desεen Ende im Inne¬ ren des Tiegels ein Schmelzstopfen sitzt. Das andere Ende des Kühlmittelrohreε führt zu einem Kühlmittelspeicher. Bei einem Austritt von Kernschmelze auε dem Reaktordruckbehälter wird diese unmittelbar unterhalb des Reaktordruckbehälterε inner¬ halb der Reaktorgrube aufgefangen. Bei einem Anstieg der Kernschmelze biε in die Höhe der Auslaßöffnung der Kühllei¬ tung erfolgt durch direkten Kontakt oder in Folge von Wärme- Strahlung ein Aufschmelzen deε Schmelzεtopfens. Hierdurch wird Kühlwasser in großer Menge auf die Oberfläche der Kern¬ schmelze zu deren direkten Kühlung geleitet. Eine indirekte Kühlung der Kernschmelze erfolgt über ein außerhalb des Tie¬ gels angeordnetes Kühlsystem. Die direkte Kühlung εetzt erst deutlich nach der indirekten Kühlung ein und führt zu einer schnellen Flutung des Tiegels, wobei große Mengen Kühlwasεer in Kontakt und der Kernεchmelze gelangen können.In the nuclear reactor of the type mentioned above, which is known from DE-OS 40 41 295, a steel crucible with a plurality of inner protective layers is arranged in the reactor pit receiving the reactor pressure vessel in order to withstand the high temperature of the core melt. A coolant tube runs through the wall of the crucible in the upper half, and a melting plug is located at the end of the crucible inside the crucible. The other end of the coolant pipe leads to a coolant store. If core melt emerges from the reactor pressure vessel, it is collected immediately below the reactor pressure vessel within the reactor pit. When the meltdown rises to the level of the outlet opening of the cooling line, the melting plug melts through direct contact or as a result of heat radiation. As a result, a large amount of cooling water is conducted onto the surface of the core melt for its direct cooling. Indirect cooling of the meltdown takes place via a cooling system arranged outside the bottom. The direct cooling sets in clearly after the indirect cooling and leads to a rapid flooding of the crucible, whereby large amounts of cooling water can come into contact and the meltdown.
Demgegenüber iεt eε daε Ziel der Erfindung, eine frühzeitige direkte Kühlung einer in einem Ausbreitungsraum einströmenden Kernschmelze über einen großflächigen Bereich zu ermöglichen. Gemäß der Erfindung wird ein Kernreaktor der eingangs genann¬ ten Art so ausgebildet, daß eine Kühlmittelleitung im Aus¬ breitungsraum vorgesehen ist, die eine Sprühleitung ist, deren Sprühfläche den Querschnitt des Ausbreitungsraumes großflächig erfaßt, und daß die Vorrichtung so gesteuert ist, daß sie beim Eintreten der Kernschmelze in den Ausbreitungs¬ raum öffnet. Der Querschnitt des Ausbreitungsräum kann rund¬ lich oder vieleckig (rechteckig, sechseckig) sein.In contrast, it is the aim of the invention to enable early, direct cooling of a meltdown flowing in a spreading space over a large area. According to the invention, a nuclear reactor of the type mentioned at the outset is designed such that a coolant line is provided in the expansion space, which is a spray line, the spray surface of which covers the cross-section of the expansion space over a large area, and that the device is controlled so that it Entry of the meltdown into the expansion space opens. The cross section of the expansion space can be round or polygonal (rectangular, hexagonal).
Durch die schnelle, von Anfang an wirkende großflächige Sprü¬ hung entsteht auf der Kernschmelze eine Kruste, die die Wär- meabstrahlung wesentlich verringert. Gleichzeitig füllt εich der Auffangraum oberhalb der Kruste mit einer Dampfatmosphä¬ re, die die thermische Belastung der Baustrukturen drastisch 'senkt, so daß man ohne besondere Schutzschichten (z.B. an der Decke) auskommen kann.As a result of the rapid, large-area spraying which acts from the start, a crust forms on the meltdown, which significantly reduces the heat radiation. At the same time fills εich the collecting space above the crust with a re Dampfatmosphä¬ that reduces the thermal load on the building structures drastically ', so that one can do without special protective layers (for example, on the ceiling).
Infolge des Beεprühenε der Kernεchmelzenoberflache wird daε Wasser gleichmäßig darauf verteilt und so verhindert, daß Wasser in die Kernschmelze eindringt und Dampfexplosionen verursacht. Im gleichen Sinne wirkt die durch das Sprühen ständig dicker werdende Kruste, weil sie die Wechselwirkungen zwiεchen Kernschmelze und Wasεer begrenzt, vor allem alεo Dampfexploεionen verhindert.As a result of the spraying of the core melt surface, water is distributed evenly thereon and thus prevents water from penetrating into the core melt and causing steam explosions. The crust, which becomes ever thicker due to spraying, acts in the same sense because it limits the interactions between the meltdown and water, and above all prevents steam explosions.
Die Sprühleitung kann in Weiterbildung der Erfindung vorteil¬ haft an den Wänden deε Auffangraumeε εo angeordnet εein, dafs εie den Querεchnitt deε Auffangraumeε umεchließt. Dort läßt εie sich einfach befestigen und ergibt ohne weiteres einen großflächigen Sprühschleier.In a further development of the invention, the spray line can advantageously be arranged on the walls of the collecting space in such a way that it encloses the cross section of the collecting space. There it can be easily attached and easily results in a large spray curtain.
Die Sprühleitung kann alternativ oder zusätzlich von dem Boden beabstandet über dem Querschnitt des Ausbreitungsraum≤ verlaufen, wie es beispielsweise bei Berieselungεanlagen in der Landwirtschaft mit parallel zueinander verlaufenden Rohr¬ leitungen zur Überdeckung einer großen Fläche durchgeführt wird. Es können hierzu eine Vielzahl von Sprühleitungen vor- gesehen sein, die parallel zueinander verlaufen oder sich kreuzen.The spray line can alternatively or additionally run at a distance from the floor over the cross section of the expansion space, as is done, for example, in sprinkler systems in agriculture with parallel pipes to cover a large area. A large number of spray lines can be be seen that run parallel to each other or cross.
Zur Erhöhung der Betriebssicherheit ist es günstig, wenn die Sprühleitung eine Ringleitung mit mehreren Einspeiεungen iεt.To increase operational safety, it is advantageous if the spray line is a ring line with several feeds.
Vorteilhaft ist das schnelle Einsetzen der Sprühung. Vorzugs¬ weise ist die Vorrichtung eine passiv öffnende Armatur, die insbesondere temperaturabhängig ein Öffnen der Kühlmittellei- tung bedingt. Deshalb besteht eine wichtige Weiterbildung der Erfindung darin, daß die temperaturabhängig öffnende Vorrich¬ tung unterhalb der Sprühleitung so angeordnet ist, daß sich ein den Dichtteller gegen den Druck des Kühlmittels geschlos¬ sen haltender Schmelzkörper am Boden des Ausbreitungsraumes 'befindet.It is advantageous to start spraying quickly. The device is preferably a passively opening fitting which, in particular, requires the coolant line to open in a temperature-dependent manner. An important further development of the invention is therefore that the temperature-dependent opening device is arranged below the spray line in such a way that a melting body which holds the sealing plate against the pressure of the coolant is located at the bottom of the expansion space.
Zur näheren Erläuterung der Erfindung wird im folgenden ein Ausführungsbeiεpiel beεchrieben. Eε zeigtIn order to explain the invention in more detail, an exemplary embodiment is described below. Eε shows
FIG 1 einen Vertikalεchnitt auε einem Kernreaktor,1 shows a vertical section from a nuclear reactor,
FIG 2 einen Horizontalεchnitt auε einem Kernreaktor und2 shows a horizontal section from a nuclear reactor and
FIG 3 biε 6 eine Vorrichtung zur Verwendung bei der Erfin-. düng in einem Vertikalεchnitt in weεentlich größerem Maßstab.3 to 6 show a device for use in the invention. fertilizer in a vertical section on a much larger scale.
Das Reaktorgebäude 1 besteht auε Beton und enthält einen nicht dargeεtellten Reaktordruckbehälter mit dem Reaktorkern in der zentralen Reaktorgrube 2 (εiehe FIG 2) . Von dieser führt eine nicht dargestellte gegen die Horizontale geneigt verlaufende Sammelleitung in einen Ausbreitungεraum 4 im unteren Teil deε Reaktorgebäudeε 1.The reactor building 1 consists of concrete and contains a reactor pressure vessel (not shown) with the reactor core in the central reactor pit 2 (see FIG. 2). From this, a manifold (not shown), which is inclined to the horizontal, leads into an expansion space 4 in the lower part of the reactor building 1.
Der Auεbreitungεraum 4 hat, wie Fig. 2 zeigt, einen längli¬ chen Sechεeckguerεchnitt mit ebenen vertikalen Wänden 5. Um den gesamten Querschnitt verläuft eine Ringleitung 6, die alε Sprühleitung mit Sprühdüsen 7 ausgebildet ist. Die Sprühdüsen 7, die im einfachsten Fall als zylindrische Löcher in der Ringleitung 6 hergestellt sind, sind in horizontaler Richtung in das Innere des Ausbreitungsraumeε 4 gerichtet, so daß sein Querschnitt großflächig besprüht werden kann. Der Sprüh¬ schleier ist durch die Strahlen 8 angedeutet.As shown in FIG. 2, the spreading space 4 has an elongated hexagonal cross-section with flat vertical walls 5 the entire cross section runs a ring line 6, which is designed as a spray line with spray nozzles 7. The spray nozzles 7, which are produced in the simplest case as cylindrical holes in the ring line 6, are directed in the horizontal direction into the interior of the expansion space 4, so that its cross section can be sprayed over a large area. The spray veil is indicated by the rays 8.
Zur Speisung der Ringleitung 6 ist ein nicht dargestelltes Reservoir im oberen Teil des Reaktorgebäudes 1 so hoch ange¬ ordnet, daß ein für die sichere Versorgung geeigneter Druck von z.B. 1 bar an der Ringleitung 6 vorhanden ist. Die Ein¬ speisung erfolgt durch zwei Einspeiεeleitungen 10, die an nahezu gegenüberliegenden Seiten der Ringleitung 6 angebracht ' εind. Sie εitzen alε abgewinkelte Rohrεtutzen mit ihrem unte¬ ren Schenkel 11 auf dem Boden 12 einer Auffangwanne 13, auf deren oberen Rand 14 die Ringleitung 6 liegt.To supply the ring line 6, a reservoir (not shown) in the upper part of the reactor building 1 is arranged so high that a pressure of, for example, 1 bar is available on the ring line 6 for the safe supply. The Ein¬ carried out by two feed Einspeiεeleitungen 10 εind attached to almost opposite sides of the ring line 6 '. They sit as an angled pipe socket with their lower leg 11 on the bottom 12 of a collecting trough 13, on the upper edge 14 of which the ring line 6 lies.
Durch die tiefe Lage deε Schenkels 11 ist sichergeεtellt, daß die temperaturempfindliche Vorrichtung 16 die Einspeisung des Kühlmittels in Gang setzt, sobald εich die εchematisch ange¬ deutete Kernschmelze 17 auf dem Boden 12 ausbreitet (siehe FIG 3). Sie zerstört dann εofort einen Schmelzkörper 18 auε Kunεtεtoff oder einem niedrig εchmelzenden Metall, mit dem der Dichtteller 19 der Vorrichtung 16 gegen den Druck desThe deep position of the leg 11 ensures that the temperature-sensitive device 16 starts the supply of the coolant as soon as the schematically indicated core melt 17 spreads out on the bottom 12 (see FIG. 3). It then immediately destroys a melting body 18 made of plastic or a low-melting metal, with which the sealing plate 19 of the device 16 against the pressure of the
Kühlmittels auf den Dichtsitz 20 gedrückt wird. Daε Kühlmit¬ tel gelangt dann durch die Einεpeiεeleitungen 10 in die Ring¬ leitung 6 und sorgt von dort als Sprühschleier 8 für die ge¬ wünschte schnelle Abkühlung und Bildung einer Kruste 15 auf der Kernschmelze 17. Gleichzeitig kommt es wegen der feinen Verteilung des Waεεers ohne Dampfexplosionen zu einer die Strukturen des Reaktorgebäudeε 1 abεchirmenden Dampfatmos¬ phäre .Coolant is pressed onto the sealing seat 20. The coolant then passes through the feed lines 10 into the ring line 6 and from there, as a spray curtain 8, ensures the desired rapid cooling and formation of a crust 15 on the meltdown 17. At the same time, because of the fine distribution of the water, there is no Steam explosions to a steam atmosphere shielding the structures of the reactor building 1.
Das Kühlmittel durchströmt großflächig das Gehäuse der Vor¬ richtung 16 und sorgt dadurch für deεεen Integrität, auch wenn die Schmelze 17 höher εteigt. Eε iεt aber auch möglich, den zum Dichtteller 20 führenden Schaft 21 so zu verlängern, daß die Vorrichtung 16 über dem höchsten zu erwartenden Stand der Schmelze 17 liegt, ohne daß das schnelle Öffnen der Vor¬ richtung 16 durch den am Boden 12 gelegenen Schmelzkδrper 18 beeinträchtigt wird.The coolant flows over a large area through the housing of the device 16 and thereby ensures its integrity, even if the melt 17 rises higher. But it is also possible to extend the shaft 21 leading to the sealing plate 20 so that the device 16 lies above the highest expected level of the melt 17, without the rapid opening of the device 16 being impaired by the melting body 18 located on the bottom 12.
FIG 4 zeigt in einem Längsschnitt eine Ausführungsform der Vorrichtung 16, wobei diese soweit über dem Boden 12 des Aus¬ breitungsraums 4 angeordnet ist, daß die schematisch darge- stellte Kernschmelze deutlich unterhalb der Vorrichtung 16 verbleibt. Die Vorrichtung 16 liegt an einer Flanschverbin¬ dung 26, an der die entlang einer Hauptachse 9 gestreckte Einspeiseleitung 10 mit der Ringleitung 6 verbunden ist. Die Einspeiseleitung 10 ist in der Vorrichtung 16 an der Flansch- Verbindung 26 in ihrem Querschnitt durch eine Berstεcheibe 23 versperrt. An der Berstεcheibe 23 liegt innerhalb der Ein- εpeiεeleitung 10 das Kühlmittel 22, beispielεweiεe mit einem Druck von etwa 1 bar, an. In der Ringleitung 6 iεt an der Berstscheibe 23 ein Piezoelement 24 fest angebracht, welcheε mit einem Thermoelement 25 verbunden iεt, daß auf dem Boden 12 deε Ausbreitungsraumε 4 liegt. Bei Ausbreitung der Kern¬ schmelze 17 innerhalb des Ausbreitungεraumeε 4 wird durch die Kernεchmelze mittels direktem Kontakt oder durch Wärmestrah¬ lung ein Signal innerhalb des Thermoelementes 25 erzeugt, welches an das Piezoelement 24 weitergegeben wird. Infolge des an dem Piezoelement 24 anliegenden Signals führt dieseε eine Ausdehnung durch, die zu einer Zerstörung der Berst- εcheibe 23 und damit einem Einεtrömen deε Kühlmittels 22 in die Ringleitung 6 führt. Hierdurch wird die Einleitung des Sprühvorganges und damit eine Kühlung der Kernschmelze durch Besprühen in Gang gesetzt.4 shows a longitudinal section of an embodiment of the device 16, the device being arranged above the base 12 of the expansion space 4 such that the schematically illustrated meltdown remains clearly below the device 16. The device 16 lies on a flange connection 26, on which the feed line 10, which is extended along a main axis 9, is connected to the ring line 6. The cross section of the feed line 10 in the device 16 on the flange connection 26 is blocked by a rupture disk 23. The coolant 22, for example at a pressure of about 1 bar, is present on the rupture disk 23 within the feed line 10. In the ring line 6 a piezo element 24 is firmly attached to the rupture disk 23, which is connected to a thermocouple 25 that lies on the floor 12 of the expansion space 4. When the core melt 17 spreads out within the spreading space 4, the core melt generates a signal within the thermocouple 25 by direct contact or by heat radiation, which signal is passed on to the piezo element 24. As a result of the signal present at the piezo element 24, this leads to an expansion which leads to a destruction of the bursting disk 23 and thus an inflow of the coolant 22 into the ring line 6. This initiates the initiation of the spraying process and thus cooling of the meltdown by spraying.
FIG 5 zeigt in einem Längsschnitt eine zu FIG 3 analoge Aus- führungεform der Vorrichtung 16, wobei dieεe symmetrisch ent- lang einer Hauptachse 9 gestreckt ist. In dem geodätisch obe¬ ren Bereich verläuft die Wand 28 der Vorrichtung 16 gegenüber der Hauptachse 9 geneigt, so daß dieser Bereich die Form ei- nes zur Hauptachse 9 hin laufenden Kegels besitzt. In einer Seite dieser kegelförmigen Wandung mündet die Einspeiselei¬ tung 10 ein und in einer anderen Seite führt die Ringleitung 6 von der Wand 28 weg. Im Inneren der Vorrichtung 16 ist ein ebenfalls kegelförmiger entlang der Hauptachse 9 gestreckter Dichtkörper 27 angeordnet, welcher in einer dichtenden Posi¬ tion sowohl die Einspeiseleitung 10 als auch die Ringleitung 6 versperrt. In dieser dichtenden Position wird der Dichtkör¬ per 27 durch einen Schmelzkörper 18 gehalten, der aus der Vorrichtung 16 entlang der Hauptachse 9 herausragt und auf dem Boden 12 des Ausbreitungεraumeε 4 aufliegt. Der Schmelz¬ körper 18 ist über eine Schraube 30, die ebenfalls entlang der Hauptachse 9 gestreckt iεt, in εeiner Lage fixiert. Er besteht aus Kunststoff und der Dichtkörper 27 aus einem Metall, wie Stahl oder Keramik bzw. Kunstεtoff. Bei einem5 shows in a longitudinal section an embodiment of the device 16 which is analogous to FIG. 3, the latter being symmetrically stretched along a main axis 9. In the geodetically upper area, the wall 28 of the device 16 is inclined with respect to the main axis 9, so that this area has the shape Nes has cone running towards the main axis 9. The feed line 10 opens into one side of this conical wall and the ring line 6 leads away from the wall 28 on another side. Arranged in the interior of the device 16 is a likewise conical sealing body 27 which extends along the main axis 9 and which, in a sealing position, blocks both the feed line 10 and the ring line 6. In this sealing position, the sealing body 27 is held by a melting body 18 which projects out of the device 16 along the main axis 9 and rests on the floor 12 of the expansion space 4. The melting body 18 is fixed in its position by means of a screw 30, which is also stretched along the main axis 9. It consists of plastic and the sealing body 27 of a metal, such as steel or ceramic or plastic. At a
Kontakt der εchematiεch dargeεtellten Kernεchmelze 17 mit dem Schmelzkörper 8 εchmilzt dieεer auf, wodurch der Dichtkörper 27 seine dichtende Position aufgrund des auf ihn wirkenden Drucks von dem in der Einspeiseleitung 10 anliegendem Kühl- mittel, entlang der Hauptachse verschoben wird. Hierdurch ist eine Strömung des Kühlmittels 22, wie mit den Strömungspfei¬ len 29 dargestellt, durch die Vorrichtung 16 in die Ringlei¬ tung 6 ermöglicht.Contact of the schematically illustrated core melt 17 with the melting body 8 melts them, as a result of which the sealing body 27 is displaced along the main axis due to the pressure acting on it from the coolant present in the feed line 10. This enables the coolant 22 to flow through the device 16 into the ring line 6, as shown by the flow arrows 29.
FIG 6 zeigt in einem Schnitt eine Vorrichtung 16, welches entlang einer Hauptachεe 9 gestreckt ist. In diese führt die ebenfalls entlang der Hauptachse 9 gestreckt Einspeiεeleitung 10 hinein und die ebenfallε entlang der Hauptachεe 9 ge- εtreckte Ringleitung 6 herauε. Die Vorrichtung 16 hat einen Dichtteller 19, der auf einem Dichtsitz 20 aufliegt und da¬ durch den Querschnitt der Einspeiεeleitung 10 verεchließt. Der Dichtteller 19 wird über eine senkrecht zur Hauptachse 9 verlaufende Platte 31 in der die Einεpeiεeleitung 10 ver¬ schließenden Position dadurch gehalten, daß zwei entlang der Hauptachse 9 verlaufende Schrauben 30 von einer Schmelzhülse 18 umgeben sind, die eine Bewegung der Schrauben 30 und damit der Platte 31 entlang der Hauptachse 9 unterbinden. Bei Ein- tritt einer Kernschmelze 17 in den Ausbreitungsraum 4 schmel¬ zen die Schmelzhülsen 18 ab, so daß infolge des von dem Kühl¬ mittel 22 auf den Dichtteller 19 ausgeübten Druckes dieser entlang der Hauptachse 9 verschoben wird. Hierdurch gelangt Kühlmittel 22 in die Vorrichtung 16 hinein und strömt über die Ringleitung 6 zu den nichtdargestellten Sprühdüsen.6 shows in a section a device 16 which is stretched along a main axis 9. The feed line 10, which is also stretched along the main axis 9, leads into this and the ring line 6, which is also stretched along the main axis 9, leads out. The device 16 has a sealing plate 19 which rests on a sealing seat 20 and thereby closes the cross section of the feed line 10. The sealing plate 19 is held in the position closing the feed line 10 by means of a plate 31 running perpendicular to the main axis 9 in that two screws 30 running along the main axis 9 are surrounded by a melting sleeve 18, which moves the screws 30 and thus the Prevent plate 31 along the main axis 9. At a- If a meltdown 17 enters the expansion space 4, the melting sleeves 18 melt off, so that the pressure exerted by the coolant 22 on the sealing plate 19 displaces it along the main axis 9. As a result, coolant 22 enters the device 16 and flows via the ring line 6 to the spray nozzles (not shown).
Die Erfindung zeichnet sich durch ein passiv auslösendes Sprühsystem in einem Ausbreitungεraum für eine Kernschmelze aus, durch welches eine frühzeitige und großflächige Kühlung der sich ausbreitenden Kernschmelze mit einer geringen Menge an Kühlwasser erfolgt, so daß die Gefahr von Dampfexplosionen deutlich vermindert wird. Daε Besprühen der Kernschmelze er¬ folgt vorzugsweise über eine an dem Umfang des Auεbreitungε- raumes verlaufende Ringleitung, die an eine Kühlmittelreser¬ voir angeschloεεen ist, welches geodätisch so hoch über der Ringleitung angeordnet ist, daß ein für die großflächige Be¬ sprühung erforderlicher Druck gegeben ist. In entsprechenden Einspeiseleitungen liegt ständig Kühlmittel an, welches über eine Vorrichtung von der Ringleitung zurückgehalten wird. Die Vorrichtung öffnet temperaturabhängig auf pasεive Art und Weise, wodurch bei Eintritt von Kernschmelze in den Auεbrei- tungεraum εicher die direkte Kühlung der Kernεchmelze, ohne Eingriff deε Bedienungεpersonals erfolgt. Weiterhin sind zu- mindest zwei Flutungsleitungen vorgesehen, die an ein großes Kühlmittelreservoir angeschloεεen εind und über die Kühlmit¬ tel für eine langfriεtige Kühlung der Kernεchmelze zuführbar ist. The invention is characterized by a passively triggering spray system in a spreading space for a meltdown, by means of which the spreading meltdown is cooled early and over a large area with a small amount of cooling water, so that the risk of steam explosions is significantly reduced. Daε spraying the meltdown er¬ preferably follows a at the periphery of Auεbreitungε- space extending annular conduit angeschloεεen voir to a Kühlmittelreser¬ disposed geodetically so high above the ring line, that a required pressure spray for large-scale Be¬ given is. Coolant is constantly present in the corresponding feed lines and is retained by the ring line via a device. The device opens in a passive manner depending on the temperature, so that when core melt enters the spreading space, the core melt is reliably cooled without intervention by the operating personnel. Furthermore, at least two flood lines are provided, which are connected to a large coolant reservoir and can be supplied via the coolant for long-term cooling of the meltdown.

Claims

Patentansprüche claims
1. Kernreaktor mit einem Ausbreitungεraum für Kernschmelze, der mit einer zu einem Kühlmittelreservoir führenden Kühl- mittelleitung versehen ist, die ein temperaturabhängig öff¬ nende Vorrichtung aufweist, d a d u r c h g e k e n n ¬ z e i c h n e t , daß die Kühlmittelleitung im Ausbrei¬ tungεraum (4) eine Sprühleitung (6) iεt, deren Sprühfläche den Querschnitt des Ausbreitungsraumeε (4) großflächig er- faßt, und daß die Vorrichtung (16) so gesteuert ist, daß sie beim Eintreten der Kernschmelze (17) in den Ausbreitungεraum (4) öffnet.1. Nuclear reactor with a spreading space for meltdown, which is provided with a coolant line leading to a coolant reservoir, which has a temperature-dependent opening device, characterized ¬ characterized in that the coolant line in the spreading space (4) has a spray line (6) iεt, the spray surface of which covers the cross-section of the expansion space (4) over a large area, and that the device (16) is controlled in such a way that it opens when the meltdown (17) enters the expansion space (4).
2. Kernreaktor nach Anεpruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Sprühleitung (6) an den Wänden (5) deε Auεbreitungsraumes (4) so angeordnet iεt, daß εie den Querεchnitt deε Auεbreitungεraumeε (4) umεchließt.2. Nuclear reactor according to claim 1, so that the spray line (6) is arranged on the walls (5) of the spreading space (4) in such a way that it encloses the cross section of the spreading space (4).
3. Kernreaktor nach Anεpruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Sprühleitung (6) vom Boden (12) deε Auεbreitungεprogrammε (4) beabεtandet über dem Querschnitt des Ausbreitungεraumε (4) verläuft.3. Nuclear reactor according to claim 1, so that the spray line (6) extends from the bottom (12) of the spreading program (4) across the cross-section of the spreading space (4).
4. Kernreaktor nach Anεpruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß die Sprühleitung eine Ringleitung (6) mit mehreren Einεpeiεeleitungen (10) iεt.4. Nuclear reactor according to claim 1, 2 or 3, so that the spray line is a ring line (6) with several feed lines (10).
5. Kernreaktor nach Anεpruch 1 biε 4, d a d u r c h g e - k e n n z e i c h n e t , daß die Vorrichtung (16) eine passiv temperaturabhängig öffnende Armatur (16a) mit einem Schmelzkörper (18) ist.5. Nuclear reactor according to claim 1 to 4, so that the device (16) is a passively temperature-dependent armature (16a) with a melting body (18).
6. Kernreaktor nach Anspruch 5, d a d u r c h g e - k e n n z e i c h n e t , daß die Armatur (16a) unterhalb der Sprühleitung (6) so angeordnet ist, daß sich der eine Dichtteller (19) gegen den Druck deε Kühlmittelε geschlossen haltende Schmelzkörper (18) am Boden (12) des Ausbreitungs- raumes (4) befindet. 6. Nuclear reactor according to claim 5, dadurchge - indicates that the fitting (16a) below the spray line (6) is arranged so that the one sealing plate (19) is closed against the pressure of the coolant holding melting body (18) on the bottom (12) of the expansion space (4).
PCT/DE1996/001083 1995-06-27 1996-06-19 Nuclear reactor with molten core cooling in the propagation chamber WO1997001851A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59604499T DE59604499D1 (en) 1995-06-27 1996-06-19 CORE REACTOR WITH MELT MELT COOLING IN THE SPREADING SPACE
JP9504081A JPH11508680A (en) 1995-06-27 1996-06-19 Reactor with core melt propagation chamber with coolant piping leading to coolant reservoir
EP96918589A EP0835511B1 (en) 1995-06-27 1996-06-19 Nuclear reactor with molten core cooling in the propagation chamber
US08/998,988 US5930319A (en) 1995-06-27 1997-12-29 Nuclear reactor with a core melt propagation space provided with a coolant conduit leading to a coolant reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19523303.4 1995-06-27
DE19523303A DE19523303C2 (en) 1995-06-27 1995-06-27 Nuclear reactor with a meltdown chamber which is provided with a coolant line leading to a coolant reservoir

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/998,988 Continuation US5930319A (en) 1995-06-27 1997-12-29 Nuclear reactor with a core melt propagation space provided with a coolant conduit leading to a coolant reservoir

Publications (1)

Publication Number Publication Date
WO1997001851A1 true WO1997001851A1 (en) 1997-01-16

Family

ID=7765354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001083 WO1997001851A1 (en) 1995-06-27 1996-06-19 Nuclear reactor with molten core cooling in the propagation chamber

Country Status (6)

Country Link
EP (1) EP0835511B1 (en)
JP (1) JPH11508680A (en)
KR (1) KR19990028377A (en)
CN (1) CN1186563A (en)
DE (2) DE19523303C2 (en)
WO (1) WO1997001851A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049664B3 (en) * 2010-10-26 2012-03-01 Adams Armaturen Gmbh Fast opening valve
EP2747087A1 (en) * 2012-12-22 2014-06-25 AREVA GmbH Pipe shut-off device and apparatus for the emergency supply of cooling fluid to the fuel rods arranged in the reactor vessel of an nuclear power station with such a pipe shut-off device
CN104006675B (en) * 2014-05-27 2016-02-10 上海交通大学 Remote control pneumatic sealed valve device bottom high temperature furnace
CN105931680B (en) * 2016-06-20 2018-04-06 中广核(北京)仿真技术有限公司 A kind of heap fusant collects cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113560A (en) * 1975-07-14 1978-09-12 Massachusetts Institute Of Technology Core catcher for nuclear reactor core meltdown containment
EP0419159A2 (en) * 1989-09-19 1991-03-27 General Electric Company Passive lower drywell flooder
DE4322107A1 (en) * 1993-07-02 1995-01-12 Siemens Ag Device for collecting and cooling the meltdown

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100784A (en) * 1981-12-10 1983-06-15 株式会社東芝 Reactor core spray device
DE4337367A1 (en) * 1993-06-08 1994-12-15 Siemens Ag Locking device for starting cooling for a meltdown

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113560A (en) * 1975-07-14 1978-09-12 Massachusetts Institute Of Technology Core catcher for nuclear reactor core meltdown containment
EP0419159A2 (en) * 1989-09-19 1991-03-27 General Electric Company Passive lower drywell flooder
DE4322107A1 (en) * 1993-07-02 1995-01-12 Siemens Ag Device for collecting and cooling the meltdown

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUCZERA B ET AL: "TOWARDS AN ENHANCED QUALITY IN PRESSURIZED WATER REACTOR SAFETY", KERNTECHNIK, vol. 59, no. 4/05, 1 August 1994 (1994-08-01), pages 151 - 155, XP000457567 *

Also Published As

Publication number Publication date
DE59604499D1 (en) 2000-03-30
JPH11508680A (en) 1999-07-27
DE19523303A1 (en) 1997-01-02
KR19990028377A (en) 1999-04-15
DE19523303C2 (en) 2000-04-13
CN1186563A (en) 1998-07-01
EP0835511B1 (en) 2000-02-23
EP0835511A1 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
EP0706707B1 (en) Device for containing and cooling reactor-meltdown products
DE3210745C2 (en)
EP0563118B1 (en) Core containment device in nuclear reactor installation and emergency cooling on core melt-through
EP0702835A1 (en) Device and method for collecting and cooling reactor-meltdown products
DE4032736C2 (en) Cooling devices in the foundation area of a nuclear reactor for cooling a meltdown in a hypothetical accident
EP0629308B1 (en) Safety device against the failure of a nuclear reactor pressure vessel due to overpressure
CH670011A5 (en)
EP0587959A1 (en) Molten core retaining device for light water reactors
DE2320091B2 (en) NUCLEAR REACTOR, IN PARTICULAR BROOD REACTOR
DE2129438A1 (en) Measuring device for the coolant outlet temperature in nuclear reactor fuel elements
EP0702836B1 (en) Closing device for initiating cooling for a core melt
CH689240A5 (en) Kernrohr- and supporting plate assembly for pressurized water nuclear reactor.
DE4337367A1 (en) Locking device for starting cooling for a meltdown
DE2138046C2 (en) pressure vessel
WO1997001851A1 (en) Nuclear reactor with molten core cooling in the propagation chamber
DE1564186A1 (en) Support floor in a pebble bed reactor
DE3603090A1 (en) CONCRETE REACTOR PRESSURE TANK FOR A GAS-COOLED CORE REACTOR OF LOW PERFORMANCE
EP0702834B1 (en) Device for recovering reactor-meltdown products which escape from a reactor pressure vessel
EP0756288B1 (en) Container for receiving and dispersing a molten nuclear core and nuclear installation comprising such a container
DE2506293C2 (en) High temperature reactor with closed gas cooling circuit
DE2858068C2 (en) Heat treatment device for extending the service life of a pressure vessel, in particular a reactor pressure vessel
DE3921670C2 (en)
DE1564668B1 (en) Nuclear reactor with a pressure vessel
WO1998032134A1 (en) Nuclear reactor installation with a cooling device for core melt-through collectors
DE3339627C2 (en) Reactor pressure vessel of a water-cooled nuclear reactor plant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194323.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996918589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970709693

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 504081

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 08998988

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996918589

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970709693

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996918589

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970709693

Country of ref document: KR