WO1996038596A1 - High-strength spherical graphitic cast iron - Google Patents

High-strength spherical graphitic cast iron Download PDF

Info

Publication number
WO1996038596A1
WO1996038596A1 PCT/JP1995/001024 JP9501024W WO9638596A1 WO 1996038596 A1 WO1996038596 A1 WO 1996038596A1 JP 9501024 W JP9501024 W JP 9501024W WO 9638596 A1 WO9638596 A1 WO 9638596A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
spheroidal graphite
strength
less
modulus
Prior art date
Application number
PCT/JP1995/001024
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Kato
Original Assignee
Wing Metal Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP5293189A priority Critical patent/JPH07145444A/en
Priority claimed from JP5293189A external-priority patent/JPH07145444A/en
Application filed by Wing Metal Corporation filed Critical Wing Metal Corporation
Priority to PCT/JP1995/001024 priority patent/WO1996038596A1/en
Publication of WO1996038596A1 publication Critical patent/WO1996038596A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite

Definitions

  • the present invention relates to a high-strength spheroidal graphite iron having a high strength and a high toughness when released, and is expected to be an alternative material to steel, forged steel, austempered spheroidal graphite and iron and spheroidal graphite-iron. is there.
  • austempered spheroidal graphite-iron has problems of increased cost due to heat treatment, decreased Young's modulus, and reduced machinability due to processing-induced martensite of residual austenite.
  • the high-strength spheroidal graphite according to the present invention is, as a solution to the above-mentioned problems, a high-strength spheroidal graphite having a high tensile strength and elongation as a free material, and having a high Young's modulus and good machinability. It provides iron.
  • the high-strength spheroidal graphite iron according to the present invention is, by weight%, carbon (C): 3.0-3.8%, silicon (S i): 2.0-2.6%, manganese (Mn): 0.2 to 0.6%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.03% or less, Magnesium (Mg): 0.03 to 0.06%, Nickel (N i) : 0.8 ⁇ : L 2%, copper (Cu) : 0.8 to: I. 2%, molybdenum (Mo): 0.4 to 1.0%, with the balance being substantially iron (F e).
  • the high-strength spheroidal graphite iron is characterized in that bismuth (B i): 20 to 100 ppm and a rare earth element (RE) in a ratio of 0.5 to 1 with respect to the bismuth amount.
  • B i bismuth
  • RE rare earth element
  • the high-strength spheroidal graphite iron according to the present invention has high strength and ductility at the same time by having a matrix structure composed of dense disc-like and Z- or needle-like pearlite while leaving funilite. .
  • Ni, Cu and Mo are alloyed. These elements are necessary to provide good hardenability to iron, and to reduce the thickness sensitivity of iron, and to obtain a uniform matrix. At the same time, it is an element that contributes to the promotion and stability of the perlite base.
  • Ni is concentrated in the matrix near the spheroidal graphite, and when passing through the eutectoid transformation temperature range, the precipitation of carbon contained in the austenite matrix to the graphite grains is suppressed, and the matrix at room temperature is reduced. Although it is made of perlite, the ferrite base can be left in the vicinity of graphite by enriching Ni, which is a fluorinating element. If ⁇ is less than 0.8%, good elongation cannot be obtained. Conversely, if Ni exceeds 1.2%, no increase in mechanical properties is observed and the cost increases. The range of the i content rate is provided.
  • is added in order to make the base uniform, taking into account the change in wall thickness when the material is made into a material.
  • the upper limit is set to 1.0% because if it exceeds this, carbides will be formed at the eutectic cell boundary, adversely affecting mechanical properties, especially ductility, and impairing machinability.
  • the lower limit is set to 0.4% because good elongation cannot be obtained below this value.
  • Cu promotes the pearlite base by an action similar to that of Ni, but has an action of making the pearlite denser than Ni.
  • they are inexpensive compared to Ni and are often used as an alternative element to Ni.
  • the upper limit is set.
  • the lower limit is set to 0.4% because if it is less than this, good elongation cannot be obtained.
  • Ni and Cu compensates for the disadvantages of each element, and is for economical reasons to obtain inexpensive and optimal mechanical properties, Young's modulus and machinability.
  • C and Si are the chemical compositions of general spheroidal graphite and iron. If the content is out of the above range, the properties of the molten metal such as stiffness, shrinkage tendency and chilling tendency are adversely affected. It is provided.
  • Mn which is a pearlite stabilizing element, strongly bends at the eutectic cell boundary, making the matrix components non-uniform and forming carbide. ⁇ This is to significantly reduce the ductility of iron.
  • the content of P is set to not more than 0.03%.
  • S is one of the spheroidization inhibiting elements, and is set to not more than 0.03% at which spheroidal graphite-iron can be obtained economically.
  • Bi increases the number of graphite grains and concentrates at the eutectic cell boundary, mitigating the side effects of Mn and Mo that adversely affect the matrix structure and mechanical properties.
  • the upper limit exceeds 100 PPm, the spheroidizing inhibitory action becomes dominant, and the mechanical properties are remarkably reduced. Therefore, the above range is provided.
  • RE is necessary to prevent spheroidization rate fading and to alleviate the spheroidization inhibitory action of Bi.
  • the ratio to Bi exceeds 1, the effect of increasing the number of graphite particles is suppressed by Bi, and when the ratio is less than 0.5, the inhibitory effect of Bi on spheroidization cannot be avoided. It is provided.
  • FIG. 3 is a view showing a worn surface in Table 2.
  • Table 1 shows the comparison between the high-strength spheroidal graphite iron material of the present invention and the conventional comparative material.
  • FIG. 1 is an external view showing the worn surface shown in Table 2.
  • Comparative material 2 is equivalent to FCD 100 OA
  • Material 1 of the present invention was prepared by melting a molten metal equivalent to FCD500 using a 300 kg high-frequency induction furnace, and adding appropriate amounts of Ni, Cu and Mo. After that, the spheroidized alloy containing 8% Mg and 1% of graphite were spheroidized by the Sandwich method and the late inoculated molten metal was poured into an organic self-hardening type ⁇ , and the JIS G5502Kb type specimen was used. Was produced.
  • the chemical composition analysis result of the test material obtained as the material 1 of the present invention is as follows: C: 3.2%, Si
  • the chemical composition analysis results of the test material obtained as the material 2 of the present invention were as follows: C: 3.70%, Si: 2.33%, Mn: 0.34%, :: 0.025%, S: 0 022%, Mg: 0.055%, Ni: 0.95%, Cu: 0.85%, Mo: 0.44%, with the balance being Fe and other unavoidable impurities.
  • the mechanical properties and Young's modulus of the inventive material 2 are shown in Table 1 in the column of inventive material 2.
  • material 3 of the present invention was prepared by melting a molten metal equivalent to FCD500 using a high-frequency induction furnace having a capacity of 1 t, and adding appropriate amounts of Ni, Cu and Mo thereto. After that, 5% Mg—Fe—Si containing spheroidized alloy containing Bi and RE 1.5% added graphite spheroidized by sandwich method, then 0.3% of late inoculant was added After the seed treatment, the material was put into a self-hardening sand mold to produce a JIS G5502Kb type test material.
  • the chemical composition analysis results of the test material obtained as the material 3 of the present invention were as follows: C: 3.75%, S i: 2.39%, Mn: 0.26%, P: 0.03%, S: 0 02%, Mg: 0.006, Ni: 1.08%, Cu: 1.01%, Mo: 0.82%, Bi: 0.002%, RE: 0.002% The balance was Fe and other unavoidable impurities.
  • the mechanical properties and Young's modulus of the material 3 of the present invention are shown in the column of material 3 of the present invention in Table 1.
  • the material 4 of the present invention was prepared by changing the amount of M 0 added by the equipment of the third embodiment and the same procedure as in the third embodiment. It was produced by a late inoculation in which 0.07% i-alloy was simultaneously added.
  • the chemical composition analysis results of the test material obtained as the material 4 of the present invention were as follows : C: 3.73%, Si: 2.38%, Mn: 0.21%, P: 0.03%, S: 0.02%, Mg: 0.06, Ni: 1.08%, Cu: 1.00%, Mo: 0.49%, Bi: 0.008%, RE: 0.005%, The balance was Fe and other unavoidable impurities.
  • the mechanical properties and Young's modulus of the inventive material 4 are shown in Table 1 in the column of inventive material 4.
  • the results of comparison of the machinability between Inventive material 4 and Comparative material 2 are shown below. The results are shown in Table 2 and in FIG.
  • the comparison of machinability shown in Table 2 and FIG. 1 is based on the values obtained by measuring the wear width of the flank of the main cutting edge of a drill bit formed from the inventive material 4 and the comparative material 2, respectively. The comparison is based on the state of wear.
  • the inventive materials 1 to 4 have higher tensile strength and proof stress and better elongation as compared with the comparative material 1 (free aspheroidal graphite and iron FCD800 equivalent material). .
  • the Young's modulus is higher than that of the comparative material 2 (FCD1000A equivalent material) toughened by the heat treatment, and the excellent characteristics of the present invention materials 1 to 4 are evident.
  • inventive material 4 has a smaller amount of wear at the drill cutting edge and better machinability than the comparative material 2 having substantially the same hardness.
  • the high-strength spheroidal graphite iron according to the present invention alloys a small amount of Ni, Cu, and Mo at an appropriate ratio, and further, Bi and RE are subjected to spheroidizing treatment and / or By being added at the time of inoculation, it has a tensile strength of 900 (N / mm 2 ) or more, an elongation of 4% or more, and a Young's modulus of 169,000 (N / mm 2 ) or more. This is what you can get.
  • a free-form material that meets the standard of FCD800 of JIS G5502 has higher tensile strength and elongation than conventional free-form spheroidal graphite-iron. Also,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

A high-strength spherical graphitic cast iron having, as cast, high tensile strength, elongation and Young's modulus and good machinability. The iron comprises, on a weight basis, 3.0-3.8 % of carbon, 2.0-2.6 % of silicon, 0.2-0.6 % of manganese, 0.02 % or less of phosphorus, 0.03 % or less of sulfur, 0.03-0.06 % of magnesium, 0.8-1.2 % of nickel, 0.8-1.2 % of copper, 0.4-1.0 % of molybdenum, and the balance substantially consisting of iron.

Description

明 細 書  Specification
発明の名称  Title of invention
高強度球状黒鉛铸鉄  High strength spheroidal graphite iron
技術分野 Technical field
本発明は、 铸放しで高強度高靱性を有する高強度球状黒鉛銬鉄に関するもので あり、 铸鋼、 鍛鋼、 オーステンパ球状黒鉛錶鉄および球状黒鉛铸鉄の代替材料と して期待されるものである。  The present invention relates to a high-strength spheroidal graphite iron having a high strength and a high toughness when released, and is expected to be an alternative material to steel, forged steel, austempered spheroidal graphite and iron and spheroidal graphite-iron. is there.
背景技術 Background art
従来、 錶鋼、 鍛鋼、 および铸鉄が、 自動車、 産業機械、 および建設機械の部品 として広く使用されている。 近年これら機械の性能が上がるに伴い、 形状がより 複雑で高強度かつ高靱性を有する部品材料が望まれてきた。  Traditionally, steel, forged steel, and steel have been widely used as components in automobiles, industrial machinery, and construction machinery. In recent years, as the performance of these machines has increased, parts materials with more complex shapes, high strength and high toughness have been desired.
しかしながら、 高強度かつ高靱性を示す鍛鋼或いは铸鋼においては、 溶湯の特 性上、 複雑な形状を得るのは難しく、 かつ、 製造コストが高いといった問題があ る。 また、 球状黒鉛铸鉄は、 比較的複雑な部品の形状に対応して高い自由度を提 供するが、 従来の錶放しの材料では、 JIS G5502 の FCD800の規格で要求されてい る引張強さ : 8 0 0 (N/mm2 ) 以上、 伸び: 2 (%) 以上に対応する機械的 性質が得られないといった問題がある。 However, in the case of forged steel or steel with high strength and high toughness, it is difficult to obtain a complicated shape due to the characteristics of the molten metal, and the production cost is high. Also, spheroidal graphite iron provides a high degree of freedom corresponding to the shape of relatively complex parts, but the conventional free material uses the tensile strength required by the JIS G5502 FCD800 standard: There is a problem that the mechanical properties corresponding to 800 (N / mm 2 ) or more and elongation: 2 (%) or more cannot be obtained.
また、 オーステンパ球状黒鉛铸鉄は、 熱処理によるコストの上昇、 ヤング率の 低下および残留オーステナイ 卜の加工誘起マルテンサイ 卜に起因する被削性の低 下が問題となっている。  Further, austempered spheroidal graphite-iron has problems of increased cost due to heat treatment, decreased Young's modulus, and reduced machinability due to processing-induced martensite of residual austenite.
本発明に係る高強度球状黒鉛铸鉄は、 上記課題を解決する如く、 銬放し材料で 高い引張強さと伸びを有し、 かつ、 高いヤング率と良好な被削性を有する高強度 球状黒鉛铸鉄を提供するものである。  The high-strength spheroidal graphite according to the present invention is, as a solution to the above-mentioned problems, a high-strength spheroidal graphite having a high tensile strength and elongation as a free material, and having a high Young's modulus and good machinability. It provides iron.
発明の開示 Disclosure of the invention
本発明に係る高強度球状黒鉛铸鉄は、 重量%で、 炭素 (C) : 3. 0-3. 8 %, 硅素 (S i ) : 2. 0〜2. 6 %, マンガン (Mn) : 0. 2〜0. 6 %, 燐 (P) : 0. 02%以下, 硫黄 (S) : 0. 03%以下, マグネシウム (Mg ) : 0. 03〜0. 06%, ニッケル (N i ) : 0. 8〜: L . 2%, 銅 (C u) : 0. 8〜: I. 2%, モリブデン (Mo) : 0. 4〜1. 0%を含有し、 残部が 実質的に鉄 (F e )からなることを特徴とするものである。 The high-strength spheroidal graphite iron according to the present invention is, by weight%, carbon (C): 3.0-3.8%, silicon (S i): 2.0-2.6%, manganese (Mn): 0.2 to 0.6%, Phosphorus (P): 0.02% or less, Sulfur (S): 0.03% or less, Magnesium (Mg): 0.03 to 0.06%, Nickel (N i) : 0.8 ~: L 2%, copper (Cu) : 0.8 to: I. 2%, molybdenum (Mo): 0.4 to 1.0%, with the balance being substantially iron (F e).
また、 前記高強度球状黒鉛铸鉄にビスマス (B i ) : 20〜100 ppmと、 前記ビスマス量に対して希土類元素 (RE) を 0. 5〜1の割合で含有させたこ とを特徵とするものであり、 上述したように N Cu, Moを少量適切な量比 で合金化し、 あるいは、 さらに B iおよび REを球状化処理時および Zまたは接 種時に添加するものである。  The high-strength spheroidal graphite iron is characterized in that bismuth (B i): 20 to 100 ppm and a rare earth element (RE) in a ratio of 0.5 to 1 with respect to the bismuth amount. As described above, small amounts of N Cu and Mo are alloyed at an appropriate ratio, or Bi and RE are added during spheroidization and during Z or welding.
本発明に係る高強度球状黒鉛銬鉄は、 フニライトを残して緻密な盤状および Z または針状のパーライ 卜から構成される基地組織を有することにより、 高い強度 と延性が同時に得られるものである。 このような基地組織を得るために N i , C uおよび Moを合金化させる。 これ等の元素は、 铸鉄に良好な焼入れ性を提供し 、 铸鉄の肉厚感受性を鈍くさせ、 均一な基地を得るのに必要不可欠である。 また 、 同時にパーライ ト基地の促進と安定に寄与する元素でもある。  The high-strength spheroidal graphite iron according to the present invention has high strength and ductility at the same time by having a matrix structure composed of dense disc-like and Z- or needle-like pearlite while leaving funilite. . In order to obtain such a base structure, Ni, Cu and Mo are alloyed. These elements are necessary to provide good hardenability to iron, and to reduce the thickness sensitivity of iron, and to obtain a uniform matrix. At the same time, it is an element that contributes to the promotion and stability of the perlite base.
N iは、 球状黒鉛の近傍の基地中に濃化し、 共析変態温度域を通過するときォ —ステナイ ト基地中に含有される炭素の黒鉛粒への析出を抑制し、 室温での基地 をパーライ トにするが、 黒鉛近傍はフヱライ ト化元素である N iの濃縮によりフ エライ ト基地を残存させることが出来る。 尚、 ^^ ;が0. 8%未満では、 良好な 伸びが得られず、 反対に N iが 1. 2%を越えると機械的性質の増大は認められ ずコスト高になることから前記 N i含有率の範囲を設けるものである。  Ni is concentrated in the matrix near the spheroidal graphite, and when passing through the eutectoid transformation temperature range, the precipitation of carbon contained in the austenite matrix to the graphite grains is suppressed, and the matrix at room temperature is reduced. Although it is made of perlite, the ferrite base can be left in the vicinity of graphite by enriching Ni, which is a fluorinating element. If ^^ is less than 0.8%, good elongation cannot be obtained. Conversely, if Ni exceeds 1.2%, no increase in mechanical properties is observed and the cost increases. The range of the i content rate is provided.
Μθは、 銬物とした場合の肉厚変化を考慮し、 基地を均一にするために添加す るものである。 上限を 1. 0%としたのは、 これを越えると共晶セル境界部に炭 化物が生成され機械的性質、 特に延性に悪影響を与えると共に被削性を損なわせ るからである。 他方、 下限を 0. 4%としたのは、 これ未満では良好な伸びが得 られないからである。  Μθ is added in order to make the base uniform, taking into account the change in wall thickness when the material is made into a material. The upper limit is set to 1.0% because if it exceeds this, carbides will be formed at the eutectic cell boundary, adversely affecting mechanical properties, especially ductility, and impairing machinability. On the other hand, the lower limit is set to 0.4% because good elongation cannot be obtained below this value.
Cuは、 N i と略同じような作用によりパーライ ト基地を促進させるが、 N i に比べてパーライ 卜を緻密にする作用を有する。 また、 N iに比べて安価であり 、 N iの代替元素として使用することが多い。 尚、 1. 2%を越える合金化は延 性を著しく低下させ、 かつ、 被削性を悪くするため、 これを上限とした。 他方、 下限を 0 . 4 %としたのは、 これ未満では良好な伸びが得られないからである。Cu promotes the pearlite base by an action similar to that of Ni, but has an action of making the pearlite denser than Ni. In addition, they are inexpensive compared to Ni and are often used as an alternative element to Ni. In addition, since alloying exceeding 1.2% remarkably reduces ductility and deteriorates machinability, the upper limit is set. On the other hand, The lower limit is set to 0.4% because if it is less than this, good elongation cannot be obtained.
N iおよび C uの複合添加は、 夫々の元素が有する欠点を補うものであり、 安 価で最適な機械的性質、 ヤング率および被削性が得られる経済的な理由からであ る。 The combined addition of Ni and Cu compensates for the disadvantages of each element, and is for economical reasons to obtain inexpensive and optimal mechanical properties, Young's modulus and machinability.
Cおよび S iは、 一般的な球状黒鉛铸鉄の化学組成であり、 含有率が上記範囲 を外れると铸造性、 引け傾向およびチル化傾向などの溶湯性状に悪影響を及ぼす ことから前記範囲を夫々設けるものである。  C and Si are the chemical compositions of general spheroidal graphite and iron.If the content is out of the above range, the properties of the molten metal such as stiffness, shrinkage tendency and chilling tendency are adversely affected. It is provided.
M nの上限を 0 . 6 %としたのは、 これを越えるとパーライト安定化元素であ る M nが共晶セル境界に強く偏折し、 基地の成分を不均一にすると共に炭化物を 作り铸鉄の延性を著しく低下させるためである。  The reason why the upper limit of Mn is set to 0.6% is that if it exceeds this, Mn, which is a pearlite stabilizing element, strongly bends at the eutectic cell boundary, making the matrix components non-uniform and forming carbide.铸 This is to significantly reduce the ductility of iron.
Pは、 融点が低く最終凝固部すなわち共晶セル境界に濃化してステダイ トを生 成させ延性を低下させるため、 0 . 0 3 %以下とした。  Since P has a low melting point and is concentrated at the final solidified portion, that is, at the boundary of the eutectic cell, to generate stadite and reduce ductility, the content of P is set to not more than 0.03%.
Sは、 球状化阻害元素の一つであり、 経済的に球状黒鉛铸鉄が得られる 0 . 0 3 %以下とした。  S is one of the spheroidization inhibiting elements, and is set to not more than 0.03% at which spheroidal graphite-iron can be obtained economically.
B iは、 黒鉛粒数を増大させ共晶セル境界部に濃化し基地組織および機械的性 質に悪影響を及ぼす M nおよび M oの副作用を緩和させる。 ただし、 上限 1 0 0 P P mを越えると球状化阻害作用が優位となり、 機械的性質を著しく低下させる ので上記範囲を設けるものである。  Bi increases the number of graphite grains and concentrates at the eutectic cell boundary, mitigating the side effects of Mn and Mo that adversely affect the matrix structure and mechanical properties. However, if the upper limit exceeds 100 PPm, the spheroidizing inhibitory action becomes dominant, and the mechanical properties are remarkably reduced. Therefore, the above range is provided.
R Eは、 球状化率のフエ一ディングを防止し、 かつ、 B iの球状化阻害作用を 緩和させるために必要である。 B i との比が 1を越えると B iが黒鉛粒数を増大 させる作用を抑制し、 反対に 0 . 5未満では B iの球状化阻害作用を回避できな いことから前記 R Eの範囲を設けるものである。  RE is necessary to prevent spheroidization rate fading and to alleviate the spheroidization inhibitory action of Bi. When the ratio to Bi exceeds 1, the effect of increasing the number of graphite particles is suppressed by Bi, and when the ratio is less than 0.5, the inhibitory effect of Bi on spheroidization cannot be avoided. It is provided.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
【図 1】  【Figure 1】
第 2表の摩耗面を示す図である。  FIG. 3 is a view showing a worn surface in Table 2.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
表および図を用いて本発明に係る高強度球状黒鉛铸鉄の一実施例を具体的に説 明する。 文中に示す第 1表は本発明の高強度球状黒鉛铸鉄材と従来の比較材との O 96/38596 An example of the high-strength spheroidal graphite-iron according to the present invention will be specifically described with reference to tables and figures. Table 1 shows the comparison between the high-strength spheroidal graphite iron material of the present invention and the conventional comparative material. O 96/38596
-4- 材質試験の結果を示した表、 第 2表は本発明の高強度球状黒鉛铸鉄材と従来の比 較材で夫々製造したドリル刃の主切れ刃部逃げ面摩耗幅を示した表である。 また 、 図 1は第 2表の摩耗面を示す外観図である。  -4- Table showing the results of the material tests, and Table 2 shows the flank wear width of the main cutting edge of the drill blades manufactured using the high-strength spheroidal graphite-iron material of the present invention and the comparative material, respectively. It is. FIG. 1 is an external view showing the worn surface shown in Table 2.
【表 1】 第 1表  [Table 1] Table 1
Figure imgf000006_0001
Figure imgf000006_0001
ただし、 比較材 1は铸放し F CD 80 0相当材  However, the comparative material 1 is left free FCD 800 equivalent material
比較材 2は FCD 1 00 OA相当材  Comparative material 2 is equivalent to FCD 100 OA
上記の第 1表に示す供試材で本発明材 1は、 300 k g容量の高周波誘導炉を 用いて FCD500相当の溶湯を溶製し、 これに適量の N i, C uおよび Moを添加し た後、 8%Mg含有の球状化処理合金 1 %添加のサンドウイツチ法による黒鉛球 状化処理および後期接種処理された溶湯を有機自硬性鐯型に注湯し、 JIS G5502K b 号形供試材を作製したものである。 Among the test materials shown in Table 1 above, Material 1 of the present invention was prepared by melting a molten metal equivalent to FCD500 using a 300 kg high-frequency induction furnace, and adding appropriate amounts of Ni, Cu and Mo. After that, the spheroidized alloy containing 8% Mg and 1% of graphite were spheroidized by the Sandwich method and the late inoculated molten metal was poured into an organic self-hardening type 鐯, and the JIS G5502Kb type specimen was used. Was produced.
本発明材 1として得られた供試材の化学成分分析結果は、 C : 3. 2%, S i The chemical composition analysis result of the test material obtained as the material 1 of the present invention is as follows: C: 3.2%, Si
: 2. 55%, Mn : 0. 52 %, P : 0. 02%, S : 0.. 0 1 0%, N i : 1. 1 9 %, C u : 1. 07%, Mo : 0. 58 %で、 残部は F eその他不可避 不純物であつた。 この本発明材 1の機械的性質およびャング率を第 1表の本発明 材 1の欄に示す。 第 1表に示す供試材で本発明材 2は、 第 1実施例の設備および同様な手順でか つ化学組成を変化させて作製したものである。 本発明材 2として得られた供試材 の化学成分分析結果は、 C : 3. 70%, S i : 2. 33%, Mn : 0. 34% , Ρ : 0. 025 %, S : 0. 022 %, Mg : 0. 055 %, N i : 0. 95 %, C u : 0. 85%, Mo : 0. 44 %で、 残部は F eその他不可避不純物で あった。 この本発明材 2の機械的性質およびャング率を第 1表の本発明材 2の欄 に示す。 : 2.55%, Mn: 0.52%, P: 0.02%, S: 0 .. 0 1 0%, Ni: 1.19%, Cu: 1.07%, Mo: 0 At 58%, the balance was Fe and other unavoidable impurities. The mechanical properties and Young's modulus of the inventive material 1 are shown in Table 1 in the column of inventive material 1. In the test materials shown in Table 1, material 2 of the present invention was produced by changing the chemical composition using the equipment and the same procedure as in the first example. The chemical composition analysis results of the test material obtained as the material 2 of the present invention were as follows: C: 3.70%, Si: 2.33%, Mn: 0.34%, :: 0.025%, S: 0 022%, Mg: 0.055%, Ni: 0.95%, Cu: 0.85%, Mo: 0.44%, with the balance being Fe and other unavoidable impurities. The mechanical properties and Young's modulus of the inventive material 2 are shown in Table 1 in the column of inventive material 2.
第 1表に示す供試材で本発明材 3は、 1 t容量の高周波誘導炉を用いて、 FCD5 00相当の溶湯を溶製し、 これに適量の N i , C uおよび Moを添加した後、 B i および REを含有する 5%Mg— F e— S i含有の球状化処理合金 1. 5 %添加 のサンドウイツチ法による黒鉛球状化処理後、 後期接種材 0. 3%を添加する接 種処理を施した後、 自硬性砂型に铸込み、 JIS G5502Kb 号形供試材を作製したも のである。  In the test materials shown in Table 1, material 3 of the present invention was prepared by melting a molten metal equivalent to FCD500 using a high-frequency induction furnace having a capacity of 1 t, and adding appropriate amounts of Ni, Cu and Mo thereto. After that, 5% Mg—Fe—Si containing spheroidized alloy containing Bi and RE 1.5% added graphite spheroidized by sandwich method, then 0.3% of late inoculant was added After the seed treatment, the material was put into a self-hardening sand mold to produce a JIS G5502Kb type test material.
本発明材 3として得られた供試材の化学成分分析結果は、 C : 3. 75 %, S i : 2. 39 %, Mn : 0. 26%, P : 0. 03%, S : 0. 02%, Mg : 0. 060, N i : 1. 08%, C u : 1. 0 1 %, Mo : 0. 82%, B i : 0. 002 %, RE : 0. 002 %で、 残部は F eその他不可避不純物であった 。 この本発明材 3の機械的性質およびヤング率を第 1表の本発明材 3の欄に示す o  The chemical composition analysis results of the test material obtained as the material 3 of the present invention were as follows: C: 3.75%, S i: 2.39%, Mn: 0.26%, P: 0.03%, S: 0 02%, Mg: 0.006, Ni: 1.08%, Cu: 1.01%, Mo: 0.82%, Bi: 0.002%, RE: 0.002% The balance was Fe and other unavoidable impurities. The mechanical properties and Young's modulus of the material 3 of the present invention are shown in the column of material 3 of the present invention in Table 1.
第 1表に示す供試材で本発明材 4は第 3実施例の設備および同様な手順で M 0 の添加量を変化させ、 接種剤と金属 B i : 0. 0 1 %および RE— S i合金を 0 . 07%同時に添加する後期接種を施して作製したものである。  In the test materials shown in Table 1, the material 4 of the present invention was prepared by changing the amount of M 0 added by the equipment of the third embodiment and the same procedure as in the third embodiment. It was produced by a late inoculation in which 0.07% i-alloy was simultaneously added.
本発明材 4として得られた供試材の化学成分分析結果は、 C : 3. 73 %, S i : 2. 38 %, Mn : 0. 2 1 %, P : 0. 03 %, S : 0. 02%, Mg : 0. 06, N i : 1. 08 %, C u : 1. 00%, Mo : 0. 49 %, B i : 0 . 008 %, RE : 0. 005 %で、 残部は F eその他不可避不純物であった。 この本発明材 4の機械的性質およびャング率を第 1表の本発明材 4の欄に示す。 また、 本発明材 4と比較材 2 (FCD1000A相当材) との被削性の比較結果を以下 に示す第 2表および図 1に示す。 第 2表および図 1に示した被削性の比較は、 本 発明材 4と比較材 2の夫々でドリル刃を形成し、 その主切れ刃部逃げ面の摩耗幅 を測定した値、 並びにその摩耗状態によって比較するものである,。 The chemical composition analysis results of the test material obtained as the material 4 of the present invention were as follows : C: 3.73%, Si: 2.38%, Mn: 0.21%, P: 0.03%, S: 0.02%, Mg: 0.06, Ni: 1.08%, Cu: 1.00%, Mo: 0.49%, Bi: 0.008%, RE: 0.005%, The balance was Fe and other unavoidable impurities. The mechanical properties and Young's modulus of the inventive material 4 are shown in Table 1 in the column of inventive material 4. The results of comparison of the machinability between Inventive material 4 and Comparative material 2 (equivalent to FCD1000A) are shown below. The results are shown in Table 2 and in FIG. The comparison of machinability shown in Table 2 and FIG. 1 is based on the values obtained by measuring the wear width of the flank of the main cutting edge of a drill bit formed from the inventive material 4 and the comparative material 2, respectively. The comparison is based on the state of wear.
【表 2】  [Table 2]
第 2表  Table 2
Figure imgf000008_0001
先ず、 第 1表より、 前記本発明材 1〜4が比較材 1 (铸放し球状黒鉛铸鉄 FCD8 00相当材) に比べ高い引張強さおよび耐力と良好な伸びを有しているのが分かる 。 また、 ヤング率は、 熱処理により強靭化された比較材 2 (FCD1000A相当材) に 比べ高い値を示しているのが分かり、 本発明材 1〜 4の優れた特徴が明らかにな つている。
Figure imgf000008_0001
First, from Table 1, it can be seen that the inventive materials 1 to 4 have higher tensile strength and proof stress and better elongation as compared with the comparative material 1 (free aspheroidal graphite and iron FCD800 equivalent material). . In addition, the Young's modulus is higher than that of the comparative material 2 (FCD1000A equivalent material) toughened by the heat treatment, and the excellent characteristics of the present invention materials 1 to 4 are evident.
また、 第 2表および図 1より、 本発明材 4は略同じ硬さを有する比較材 2に比 ベ、 ドリル切れ刃部分の摩耗量が少なく良好な被削性を有していることが分かる 産業上の利用可能性  In addition, from Table 2 and FIG. 1, it can be seen that the inventive material 4 has a smaller amount of wear at the drill cutting edge and better machinability than the comparative material 2 having substantially the same hardness. Industrial applicability
本発明に係る高強度球状黒鉛铸鉄は、 上述の如く N i, C u , M oを少量適切 な量比で合金化し、 あるいは、 さらに B iおよび R Eを球状化処理時およびノま たは接種時に添加することにより、 引張強さ 9 0 0 ( N /m m 2 ) 以上, 伸び 4 %以上の引張特性, さらに 1 6 9, 0 0 0 ( N /mm 2 ) 以上のヤング率を铸放 しで得られるものである。 As described above, the high-strength spheroidal graphite iron according to the present invention alloys a small amount of Ni, Cu, and Mo at an appropriate ratio, and further, Bi and RE are subjected to spheroidizing treatment and / or By being added at the time of inoculation, it has a tensile strength of 900 (N / mm 2 ) or more, an elongation of 4% or more, and a Young's modulus of 169,000 (N / mm 2 ) or more. This is what you can get.
従って、 铸放しの材料で、 J IS G5502 の FCD800の規格に合致することは基より 、 従来の铸放し球状黒鉛铸鉄には無い高い引張強さと伸びを有する。 また、 ォー  Therefore, a free-form material that meets the standard of FCD800 of JIS G5502 has higher tensile strength and elongation than conventional free-form spheroidal graphite-iron. Also,

Claims

請求の範囲 The scope of the claims
【請求項 1】 重量%で、  Claim 1 In weight%,
·' (C) 3 0〜3. 8%と、  · '(C) 30-3.8%,
(S i ) 2 0〜2. 6%と、  (S i) 20-2.6%,
マンガン (Mn) 0 2〜0. 6%と、  Manganese (Mn) 0 2 to 0.6%,
'燐 ·· (P) 0 02 %以下と、  'Phosphor ... (P) 0 02% or less,
硫黄 (S) 0 03 %以下と、  Sulfur (S) 0 03% or less,
マグネシウム (Mg) 0 03〜0. 06%と  Magnesium (Mg) 0 03-0.06%
ニッケル (N i ) 0 8〜 1. 2%と、  Nickel (Ni) 08-1.2%
銅 (C u) 0 8〜: L . 2 %と、  Copper (Cu) 08-: L. 2%
モリブデン… (Mo ) 0 4〜 1. 0%と、  Molybdenum… (Mo) 04-1.0%
を含有し、 残部が実質的に鉄 (F e) からなることを特徴とする高強度球状黒鉛 High-strength spheroidal graphite, characterized in that the balance consists essentially of iron (Fe).
【請求項 2】 前記請求項 1記載の高強度球状黒鉛铸鉄に、 2. The high-strength spheroidal graphite iron according to claim 1,
ビスマス (B i ) : 20〜 1 00 p pmと、  Bismuth (B i): 20 to 100 ppm
前記ビスマス量に対して希土類元素 (RE) を 0. 5〜 1の割合で含有させた ことを特徴とする高強度球状黒鉛铸鉄。 High-strength spheroidal graphite-iron comprising a rare earth element (RE) in a ratio of 0.5 to 1 with respect to the bismuth amount.
- 7- ステンパ球状黒鉛铸鉄に比べて高いヤング率と良好な被削性を示し、 かつ、 製造 コス卜が廉価である。 -7-Compared to tempered spheroidal graphite-iron, it has a higher Young's modulus and better machinability, and is less expensive to manufacture.
PCT/JP1995/001024 1993-11-24 1995-05-29 High-strength spherical graphitic cast iron WO1996038596A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5293189A JPH07145444A (en) 1993-11-24 1993-11-24 High strength spheroidal graphite case iron
PCT/JP1995/001024 WO1996038596A1 (en) 1993-11-24 1995-05-29 High-strength spherical graphitic cast iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5293189A JPH07145444A (en) 1993-11-24 1993-11-24 High strength spheroidal graphite case iron
PCT/JP1995/001024 WO1996038596A1 (en) 1993-11-24 1995-05-29 High-strength spherical graphitic cast iron

Publications (1)

Publication Number Publication Date
WO1996038596A1 true WO1996038596A1 (en) 1996-12-05

Family

ID=26436267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001024 WO1996038596A1 (en) 1993-11-24 1995-05-29 High-strength spherical graphitic cast iron

Country Status (1)

Country Link
WO (1) WO1996038596A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072663A3 (en) * 2005-01-05 2007-05-18 Metso Paper Inc Ductile iron and method for manufacturing ductile iron for engineering components requiring strength and toughness
WO2018150645A1 (en) * 2017-02-17 2018-08-23 新日鉄住金エンジニアリング株式会社 Heat resistant spheroidal graphite cast iron with excellent creep resistance
CN113502431A (en) * 2021-06-30 2021-10-15 东风商用车有限公司 Isothermal quenching nodular cast iron material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613421A (en) * 1979-07-09 1981-02-09 Riken Corp Tough and hard spheroidal graphite cast iron and its manufacture
JPS58104154A (en) * 1981-12-01 1983-06-21 ゲツツエ・アクチエンゲゼルシヤフト Anti-frictive cast iron having spherically crystal deposit graphite and manufacture
JPS60187621A (en) * 1984-03-05 1985-09-25 Toyota Motor Corp Heat treatment of spheroidal graphite cast iron
JPS63259048A (en) * 1987-04-16 1988-10-26 Mazda Motor Corp Spheroidal graphite cast iron casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613421A (en) * 1979-07-09 1981-02-09 Riken Corp Tough and hard spheroidal graphite cast iron and its manufacture
JPS58104154A (en) * 1981-12-01 1983-06-21 ゲツツエ・アクチエンゲゼルシヤフト Anti-frictive cast iron having spherically crystal deposit graphite and manufacture
JPS60187621A (en) * 1984-03-05 1985-09-25 Toyota Motor Corp Heat treatment of spheroidal graphite cast iron
JPS63259048A (en) * 1987-04-16 1988-10-26 Mazda Motor Corp Spheroidal graphite cast iron casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072663A3 (en) * 2005-01-05 2007-05-18 Metso Paper Inc Ductile iron and method for manufacturing ductile iron for engineering components requiring strength and toughness
WO2018150645A1 (en) * 2017-02-17 2018-08-23 新日鉄住金エンジニアリング株式会社 Heat resistant spheroidal graphite cast iron with excellent creep resistance
CN113502431A (en) * 2021-06-30 2021-10-15 东风商用车有限公司 Isothermal quenching nodular cast iron material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP5355837B2 (en) Steel alloy, plastic forming tools and toughened blanks for plastic forming tools
JPH07145444A (en) High strength spheroidal graphite case iron
JPH02115353A (en) Metal band saw body material having high fatigue strength
JPH0699777B2 (en) Low thermal expansion cast iron manufacturing method
JP3913935B2 (en) Hypoeutectic spheroidal graphite cast iron
WO1991016468A1 (en) Air hardening steel
WO1996038596A1 (en) High-strength spherical graphitic cast iron
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
KR20030002183A (en) High Strength Wear Resistance Steel with Excellent Hardenability and Method of Producing the Same
JPH10317093A (en) High rigidity spheroidal graphite cast iron and its production
KR950005928B1 (en) Wear resistant steel
JP2677367B2 (en) Spheroidal graphite cast iron
JP2803331B2 (en) Manufacturing method of high toughness cast steel
JP2010132971A (en) High-strength thick spherical graphite iron cast product excellent in wear resistance
JPH06172919A (en) Machine tool, precision measuring instrument and molding die using low thermal expansion cast iron
JP3059318B2 (en) Manufacturing method of high fatigue strength hot forgings
JP2976777B2 (en) Austenitic heat-resistant cast steel
CN109468527B (en) Steel for back material of bimetal band saw blade and manufacturing method thereof
JPH08120396A (en) Pearlitic spheroidal graphite cast iron as cast and its production
JP2613612B2 (en) Graphite cast steel
JP2005002367A (en) Non-heat-treated steel for machine structural use excellent in fracture/partition property
JPS62112753A (en) High strength cast steel and its manufacture
JPH07179984A (en) Cast iron of high strength and low expansion and its production
JPS6070125A (en) Manufacture of turbine rotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase