WO1996029542A1 - Verfahren und vorrichtung zum behandeln von hausmüll - Google Patents

Verfahren und vorrichtung zum behandeln von hausmüll Download PDF

Info

Publication number
WO1996029542A1
WO1996029542A1 PCT/EP1996/001194 EP9601194W WO9629542A1 WO 1996029542 A1 WO1996029542 A1 WO 1996029542A1 EP 9601194 W EP9601194 W EP 9601194W WO 9629542 A1 WO9629542 A1 WO 9629542A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
gas
melting furnace
coke
furnace
Prior art date
Application number
PCT/EP1996/001194
Other languages
English (en)
French (fr)
Inventor
John Rizzon
Original Assignee
Metallgesellschaft Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19522457A external-priority patent/DE19522457C2/de
Application filed by Metallgesellschaft Aktiengesellschaft filed Critical Metallgesellschaft Aktiengesellschaft
Priority to JP52808296A priority Critical patent/JP2002515110A/ja
Priority to EP96908081A priority patent/EP0815393B1/de
Priority to DE59601109T priority patent/DE59601109D1/de
Publication of WO1996029542A1 publication Critical patent/WO1996029542A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/301Treating pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/302Treating pyrosolids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/80Shredding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/103Combustion in two or more stages in separate chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50214Separating non combustible matters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/102Intercepting solids by filters electrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/50Intercepting solids by cleaning fluids (washers or scrubbers)

Definitions

  • the present invention relates to a method and an apparatus for treating household waste.
  • a melting plant is known from DE-ZE: Process Technologie A textbook, pp. 232-234 (1993).
  • the heart of the melting plant is a vertical double-shell melting furnace with a slowly rotating outer shell, in which a cylindrical inner shell is hung concentrically.
  • the residues fed into the ring shaft between the two jackets are fed to the melting chamber, in which an oil or gas-fired high-temperature burner initiates the melting process.
  • the object of the present invention is to provide an environmentally friendly and economical method for treating household waste.
  • the object of the present invention is achieved by a method for treating household waste, in which
  • Pyrolysis coke are introduced into the meltdown process.
  • the present invention provides a combined pyrolysis-melting process for the thermal treatment of waste.
  • the process according to the invention has the advantage that the pyrolysis and melting processes can also be operated in a decoupled manner. The procedures can be carried out independently. The decoupling gives you high availability. If ordinary household waste is used, the processes can be carried out in a self-sufficient manner. The ash components and heavy metals are converted into a leach-resistant melt granulate which is used.
  • the combined process uses waste water-free flue gas cleaning. The combined process is operated under normal pressure. No external or additional heating is required. Due to the high energy yield of the individual processes, no technical oxygen has to be used.
  • the pyrolysis drum is heated with burned pyrolysis gases.
  • waste such as domestic waste, special waste, old tires, shredder scans etc. can be used in pyrolysis.
  • the pyrolysis products such as coke, oil and gas can be stored, recycled or disposed of separately. Pyrolysis can be flexibly adjusted to qualitative and quantitative fluctuations in the input materials.
  • the coke is not ground during the melting process.
  • the smelting plant can be started and stopped more quickly.
  • high-calorific waste materials such as loaded HOK, dried sewage sludge and liquid special waste can be fed into the melting furnace.
  • the refractory material has a long service life. Flexible partial load procedures are possible. By staged combustion in the primary and secondary chamber, low NO x values are obtained in the exhaust gas. There is only a very small amount of residual dust in the exhaust gas.
  • a preferred embodiment of the invention is that the material is pretreated before pyrolysis. This measure gives good pyrolysis products.
  • a preferred embodiment of the invention is that the material is crushed to a size ⁇ 1,000 mm before pyrolysis, pressed and fed into the pyrolysis reactor via a shaft. This measure enables pyrolysis to be operated economically.
  • a preferred embodiment of the invention is that the material is reduced to a size ⁇ 300 mm before pyrolysis and is fed into the pyrolysis reactor by means of a press screw. This measure enables the pyrolysis to be carried out very economically.
  • a preferred embodiment of the invention is that the material is freed of metal-containing substances before pyrolysis.
  • the metal separation can be carried out very effectively.
  • the metal separation causes a reduction in the required capacity of the pyrolysis drum.
  • a preferred embodiment of the invention is that an indirectly heated pyrolysis drum is used as the pyrolysis reactor. This measure greatly reduces the operating costs of the pyrolysis.
  • a preferred embodiment of the invention is that the heat required for heating the pyrolysis reactor is obtained from the exhaust gas from the combustion according to process stage (b) and part of the exhaust gas from the melting furnace. This measure makes the operation of the pyrolysis drum very economical.
  • a preferred embodiment of the invention is that the dedusting of the pyrolysis gas takes place in an oil quench above the dew point of the water. With these measures, very good results are achieved in the dedusting of the pyrolysis gas. Dust removal in ceramic filters is also possible.
  • a preferred embodiment of the invention is that the pyrolysis coke is cooled, freed from metal-containing substances and sieved, the fraction is crushed with a size> 50 mm and introduced into the melting furnace with the fine fraction ⁇ 50 mm. This measure means that the furnace is operated very economically.
  • a preferred embodiment of the invention is that pyrolysis coke with a size ⁇ 50 mm and at least one of the components such as dried sewage sludge, pyrolysis gas, residues from the oil quench, heating oil, high-calorific waste, such as plastics, pasty, liquid and gaseous combustible waste and loaded Activated carbon and coke are introduced into the melting furnace.
  • other high-calorific substances are used effectively as fuels, and they are disposed of economically and in an environmentally friendly manner using the method according to the invention.
  • a preferred embodiment of the invention is that the burned exhaust gas from the melting furnace is introduced into a boiler and / or recuperator. With this measure, the energy of the exhaust gas can be used very usefully.
  • a preferred embodiment of the invention is that the dust from the dust separation of the melting process is returned to the melting furnace. With this measure, the separated dust can be returned to the smelting and does not have to be disposed of in a cost-intensive manner.
  • a device for treating household waste consisting of a pyrolysis reactor, dedusting, combustion chamber, pyrolysis coke cooling, metal separation, comminution, melting furnace, afterburning chamber, heat groove and flue gas cleaning.
  • the use of the device for the thermal disposal and use of domestic waste is provided, while at the same time producing an eluate-proof, reusable melting granulate.
  • the pyrolysis coke and / or pyrolysis dust is treated in a melting furnace which has at least one burner arranged on the furnace ceiling of a primary chamber and directed towards the surface of the material to be melted, and the pyrolysis gas, pyrolysis coke and / or pyrolysis dust from the pyrolysis furnace are supplied and in which tertiary air is introduced into the primary chamber at one or more points of the furnace ceiling, the material to be melted down and the pyrolysis gas being introduced into the primary chamber and the molten material which is running off leaving the primary chamber with flue gas, the molten material being passed through the secondary chamber and is discharged as slag.
  • the temperature in the primary chamber is between 1,250 and 1,500 ° C.
  • FIGS. 1 to 5 The drawing consists of FIGS. 1 to 5.
  • 1 shows a process diagram of the process according to the invention.
  • 2 shows a flow diagram of the method according to the invention.
  • Fig. 3 shows a flow diagram of the material flow diagram.
  • Fig. 4 shows a side view of the smelting furnace.
  • delivery vehicles deliver the household waste without the interposition of an external processing system in the waste bunker (11).
  • the material is reduced in size (13) to a size of 300 mm.
  • the shredded material is fed into the pyrolysis drum (2).
  • the pyrolysis drum (2) is continuously heated indirectly with the dedusted and afterburned pyrolysis gas via the outer wall.
  • the temperature of the afterburned pyrolysis gas is set so that the softening point of any entrained dust particles is not exceeded.
  • the cooled exhaust gas is sucked out of the drum wall by a fan and fed to a steam generator (3).
  • the pyrolysis coke is passed from the pyrolysis drum (2) at a temperature of about 500 ° C.
  • a pyrolysis coke cooling system (7) (wet descaler), where the pyrolysis coke is cooled.
  • the wet stripper (7) seals the outlet of the pyrolysis drum (2) against the atmosphere.
  • a metal deposition (8) non-ferrous metals and iron are separated from the cooled pyrolysis coke, which is then in the Smelting furnace (l) is abandoned.
  • the pyrolysis coke can be comminuted in a shredder (9) before being placed in the melting furnace (1).
  • the pyrolysis gas is dedusted in an oil quench (5) and afterburned in a combustion chamber (6). Excess pyrolysis gas can be burned in the melting furnace (1).
  • the oil from the oil quench (5) contains the condensed pyrolysis oil and the discharged dust.
  • An oil treatment device centrifuge or decanter, is used to separate the dust from the circulating oil.
  • the concentrated oil / dust fraction is fed into the melting furnace (l) via lance burners.
  • Pyrolysis coke is introduced into the primary chamber (17) of the melting furnace (1) with a piece size of ⁇ 50 mm.
  • the combustion of the coke and the melting of the ash components is energy self-sufficient by means of preheated air.
  • the liquid slag flows from the primary chamber (17) through the central outlet (18) and drips through the secondary chamber (21) into the water bath of the wet slag remover (22).
  • the liquid slag solidifies to a glassy granulate.
  • the exhaust gases are adjusted in the secondary chamber (21) by adding air to a 0, content of at least 6 vol%.
  • the pyrolysis gas leaves the pyrolysis drum (2) at a temperature of 500 ° C.
  • the quantities of the harmful gases H 2 S, COS and HC1 can be minimized by adding lime to the pyrolysis drum (2).
  • the pyrolysis gas consists of the evaporated water from CO and C0 5 and higher hydrocarbons.
  • the dust load is 20 to 30 g / m 3 iN In the oil quench (5) the pyrophoric dust and the pyrolysis oils are separated.
  • pyrolysis gas burns in the combustion chamber (6) to a hot gas, which is introduced at 1,050 ° C to 1,250 ° C into the outer jacket of the pyrolysis drum (2), where the pyrolysis gas is cooled to a temperature of 550 ° C to 600 ° C takes place.
  • the remaining part of the pyrolysis gas is introduced directly into the melting furnace (1).
  • Pyrolysis coke is about 18% to 20% carbon by weight. The rest are ashes and non-ferrous and iron components.
  • the pyrolysis coke reaches a temperature of 500 ° C.
  • the pyrolysis coke is cooled to about 60 ° C to 70 ° C.
  • the discharged pyrolysis coke is then subjected to an NE and Fe separation, whereby valuable materials are obtained.
  • the pyrolysis coke can be introduced into the melting furnace (1) with a piece size of ⁇ 50 mm.
  • the pyrolysis coke can be ground beforehand, which is usually not necessary.
  • the ash components are melted in the melting furnace (1) at a temperature of about 1,350 ° C.
  • the heavy metals are integrated in a stable aluminum silicate matrix.
  • the liquid slag granulates in the water bath of the wet stripper (22) to give a glassy, leach-resistant granulate.
  • the exhaust gas leaves the primary chamber (17) of the melting furnace (1) at a temperature of approximately 1,350 ° C.
  • an oxygen content of 6 vol% to 7 vol% is set by adding air.
  • the exhaust gas cools down to 950 ° C. to 1150 ° C. by adding air and evaporating water from the wet slipper (22).
  • the evaporated heavy metals and alkali metal compounds from the primary chamber (17) condense and are discharged as residual dust.
  • the composition of the exhaust gas from the boiler (3) corresponds approximately to the composition of flue gases from a conventional grate furnace.
  • the melting furnace principle of the invention is clear from the side view of the melting furnace (1) shown in FIG. 4.
  • the melting furnace (1) has: movable furnace cover (14), double pendulum flap (15), at least one burner (16), primary chamber (17), slag discharge (18), hydraulic furnace drive (19), video furnace monitoring (20), secondary chamber (21) and wet slag (22).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Verfahren, bei dem das Material pyrolysiert wird, Pyrolysegas entstaubt wird, ein Teil des entstaubten Pyrolysegases verbrannt und der restliche Teil in einen Schmelzofen (1) eingeleitet wird, heisses Gas aus der Verbrennung zum Beheizen des Pyrolysereaktors (2) verwendet wird, Abgas aus der Beheizung des Pyrolysereaktors (2) und Pyrolysekoks in das Einschmelzverfahren eingeleitet werden. Vorrichtung zum Behandeln von Hausmüll, bestehend aus Pyrolysereaktor (2), Entstaubung (5), Brennkammer (6), Pyrolysekokskühlung (7), Metallabscheidung (8), Zerkleinerung (9), Schmelzofen (1), Nachbrennkammer (10), Wärmenutzung (11) und Rauchgasreinigung (12).

Description

Verfahren und Vorrichtung zum Behandeln von Hausmüll
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Behandeln von Hausmüll.
Verfahren zur thermischen Abfallbehandlung werden weltweit intensiv erforscht und diskutiert. Zahlreiche Publikationen in der Fachpresse sind ein Zeugnis für das große Interesse an diesen Verfahren. Schon zu Beginn der 70er Jahre wurde in vielen Industriestaaten die Erforschung von Pyrolyseverfahren zur Abfallbehandlung vorangetrieben. Die Pyrolyseverfahren sollten als alternative Verfahren für die Behandlung von Haus¬ und Industriemüll, wie z.B. Kunststoffabfalle, Altreifen. Altkabel u.a. verwendet werden. Dabei wurde in den
ERSATZBLÄTT(REGEL26) Industriestaaten Japan, USA, Großbritannien und Deutschland sehr intensiv an über 60 Pyrolyseverfahren gearbeitet.
Aus DE-ZE: Umwelt Technologie Aktuell, S. 232 - 234 (1993) ist eine Einschmelzanlage bekannt. Das Kernstück der Einschmelzanlage ist ein senkrechter Doppelmantelschmelzofen mit einem sich langsam drehenden Außenmantel, in dem ein zylindrischer Innenmantel konzentrisch eingehängt ist. Die in den Ringschacht zwischen den beiden Mänteln aufgegebenen Rückstände werden der Schmelzkammer zugeführt, in der ein öl- oder gasgefeuerter Hochtemperaturbrenner den SchmelzVorgang einleitet .
Aufgabe der vorliegenden Erfindung ist es, ein umweltfreundliches und wirtschaftliches Verfahren zum Behandeln von Hausmüll bereitzustellen.
Die Aufgabe der vorliegenden Erfindung wird durch ein Verfahren zum Behandeln von Hausmüll gelöst, bei dem
a) das Material pyrolysiert wird,
b) Pyrolysegas entstaubt wird, ein Teil des entstaubten Pyrolysegases verbrannt und der restliche Teil in einen Schmelzofen eingeleitet wird,
c) heißes Gas aus der Verbrennung zum Beheizen des Pyrolysegases verwendet wird,
ERSATZBLÄTT(REGEL26) d) Abgas aus der Beheizung des Pyrolysereaktors und
Pyrolysekoks in das Einschmelzverfahren eingeleitet werden.
Die vorliegende Erfindung stellt ein kombiniertes Pyrolyse-Schmelzverfahren zum thermischen Behandeln von Abfällen bereit. Das erfindungsgemäße Verfahren hat den Vorteil, daß die Verfahren Pyrolyse und Einschmelzung auch entkoppelt betrieben werden können. Die Verfahren können unabhängig gefahren werden. Sie haben durch die Entkopplung eine hohe Verfügbarkeit. Beim Einsatz von gewöhnlichem Hausmüll können die Verfahren energieautark gefahren werden. Die Aschebestandteile und Schwermetalle werden bei der Einschmelzung in ein laugungsresistentes Schmelzgranulat überführt, das verwendet wird. Bei dem kombinierten Verfahren wird abwasserfreie Rauchgasreinigung angewendet. Das kombinierte Verfahren wird unter Normaldruck betrieben. Es ist keine Fremd- oder Zusatzbeheizung erforderlich. Aufgrund der hohen Energieausbeute der einzelnen Verfahren muß kein technischer Sauerstoff eingesetzt werden.
Bei der Pyrolyse wird keine Luft zugeführt, dadurch kann die Entwicklung von Dibenzodioxinen und Dibenzofuranen verhindert werden. Die Heizung der Pyrolysetrommel erfolgt mit verbrannten Pyrolysegasen. Bei der Pyrolyse können verschiedene Abfälle, wie Hausmüll, Sondermüll, Altreifen, Schredderrückscände u.a. eingesetzt werden. Die Pyrolyseprodukte, wie Koks, Öl und Gas können getrennt gespeichert, verwertet oder entsorgt werden. Die Pyrolyse kann flexibel auf qualitative und quantitative Schwankungen bei den Einsatzstoffen eingestellt werden.
Bei der Einschmelzung erfolgt keine Aufmahlung des Kokses. Die Einschmelzanläge kann schneller an- und abgefahren werden. Es können zusätzlich heizwertreiche Abfallstoffe, wie beladener HOK, getrockneter Klärschlamm und flüssige Sonderabfälle in den Einschmelzofen aufgegeben werden. Das Feuerfestmaterial weist eine lange Lebensdauer auf. Flexible Teillastverfahren sind möglich. Durch gestufte Verbrennung in der Primär- und Sekundärkammer werden niedrige NOx-Werte im Abgas erhalten. Im Abgas ist nur eine sehr geringe Reststaubmenge vorhanden.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse vorbehandelt wird. Durch diese Maßnahme werden qualitativ gute Pyrolyseprodukte erhalten.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse auf eine Größe < 1.000 mm zerkleinert, gepreßt und über einen Schacht in den Pyrolysereaktor aufgegeben wird. Durch diese Maßnahme kann die Pyrolyse wirtschaftlich betrieben werden.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse auf eine Größe < 300 mm zerkleinert und mittels einer Preßschnecke in den Pyrolysereaktor aufgegeben wird. Durch diese Maßnahme kann die Pyrolyse sehr wirtschaftlich durchgeführt werden.
ERSATZBLÄTT (REGa 26) Eine bevorzugte Ausgestaltung der Erfindung ist, daß das Material vor der Pyrolyse von metallhaltigen Stoffen befreit wird. Die Metallabtrennung kann sehr wirkungsvoll durchgeführt werden. Die Metallabtrennung bewirkt eine Verringerung der erforderlichen Kapazität der Pyrolysetrommel.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß als Pyrolysereaktor eine indirekt beheizte Pyrolysetrommel verwendet wird. Durch diese Maßnahme werden die Betriebskosten der Pyrolyse stark herabgesetzt.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß der zum Beheizen des Pyrolysereaktors erforderliche Wärmebedarf durch aas Abgas aus der Verbrennung gemäß Verfahrensstufe (b) und einem Teil des Abgases des Einschmelzofens erhalten wird. Durch diese Maßnahme ist der Betrieb der Pyrolysetrommel sehr wirtschaftlich.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß die Entstaubung des Pyrolysegases in einer Öl-Quenche über dem Taupunkt des Wassers erfolgt. Durch diese Maßnahmen werden bei der Entstaubung des Pyrolysegases sehr gute Ergebnisse erreicht. Eine Entstaubung in Keramikfiltern ist auch möglich.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß der Pyrolysekoks gekühlt, von metallhaltigen Stoffen befreit und gesiebt wird, die Fraktion mit einer Größe > 50 mm zerkleinert und mit der Feinfraktion < 50 mm in den Schmelzofen eingeleitet wird. Durch diese Maßnahme wird der Schmelzofen sehr wirtschaftlich betrieben. Eine bevorzugte Ausgestaltung der Erfindung ist, daß Pyrolysekoks mit einer Größe < 50 mm und mindestens einer der Bestandteile wie getrockneter Klärschlamm, Pyrolysegas, Reststoffe aus der Öl-Quenche, Heizöl, heizwertreiche Abfälle, wie Kunststoffe, pastös, flüssige und gasförmige brennbare Abfälle sowie beladene Aktivkohle und Kokse in den Schmelzofen eingeleitet werden. Durch diese Maßnahme werden andere heizwertreiche Stoffe wirkungsvoll als Brennstoffe verwendet, wobei sie wirtschaftlich und umweltfreundlich mit dem erfindungsgemäßen Verfahren entsorgt werden.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß das verbrannte Abgas aus dem Schmelzofen in einen Kessel und/oder Rekuperator eingeleitet wird. Durch diese Maßnahme kann die Energie des Abgases sehr nützlich verwendet werden.
Eine bevorzugte Ausgestaltung der Erfindung ist, daß der Staub aus der Staubabscheidung des Schmelzverfahrens in den Schmelzofen zurückgeleitet wird. Durch diese Maßnahme kann der abgeschiedene Staub in die Einschmelzung zurückgeführt werden und muß nicht kostenintensiv entsorgt werden.
Erfindungsgemäß ist eine Vorrichtung zum Behandeln von Hausmüll vorgesehen, bestehend aus Pyrolysereaktor, Entstaubung, Brennkammer, Pyrolysekokskühlung, Metallabscheidung, Zerkleinerung, Schmelzofen, Nachbrennkammer, Wärmenut∑ung und Rauchgasreinigung. Erfingungsgemäß ist die Verwendung der Vorrichtung zur thermischen Entsorgung und Nutzung von Hausmüll bei gleichzeitiger Erzeugung eines eluatfesten wiederverwendbaren Schmelzgranulats vorgesehen.
Im Rahmen der Ausgestaltung des Verfahrens wird der Pyrolysekoks und/oder Pyrolysestaub in einem Schmelzofen behandelt, der mindestens einen an der Ofendecke einer Primärkammer angeordneten und auf die Oberfläche des zu schmelzenden Materials gerichteten Brenner aufweist und dem aus dem Pyrolyseofen Pyrolysegas, Pyrolysekoks und/oder Pyrolysestaub zugeführt werden und bei dem an einer oder mehreren Stellen der Ofendecke Tertiärluft in die Primärkammer eingeleitet werden, wobei das einzuschmelzende Material und das Pyrolysegas in die Primärkammer eingeleitet werden und das ablaufende, geschmolzene Material mit Rauchgas die Primärkammer verläßt, das geschmolzene Material durch die Sekundärkammer geleitet und als Schlacke ausgetragen wird.
In der Primärkammer herrscht eine Temperatur von 1.250 bis 1.500°C.
Die Erfindung wird im folgenden anhand einer Zeichnung näher erläutert.
Die Zeichnung besteht aus Fig. 1 bis Fig. 5.
Fig. l zeigt ein Verfahrensschema des erfindungsgemäßen Verfahrens. Fig. 2 zeigt ein Fließschema des erfindungsgemäßen Verfahrens.
Fig. 3 zeigt ein Fließschema des Stoffflußplans.
Fig. 4 zeigt eine Seitenansicht des Einschmelzofens.
Fig. 5 zeigt Eluatwerte aus Schmelzgranulaten in tabellarischer Form.
Nach dem in Fig. 1 dargestellten Verfahrensschema und dem in Fig. 2 dargestellten Fließschema liefern Anlieferfahrzeuge den Hausmüll ohne Zwischenschaltung einer externen Aufbereitungsanlage im Müllbunker (11) ab. Das Material wird in der Zerkleinerung (13) auf eine Stückgröße von 300 mm zerkleinert. Das zerkleinerte Material wird in die Pyrolysetrommel (2) aufgegeben. Die Pyrolysetrommel (2) wird kontinuierlich mit dem entstaubten und nachverbrannten Pyrolysegas indirekt über die Außenwand beheizt. Die Temperatur des nachverbrannten Pyrolysegases wird so eingestellt, daß der Erweichungspunkt von eventuell mitgerissenen Staubteilchen nicht überschritten wird. Das abgekühlte Abgas wird von einem Ventilator aus der Trommelwand abgesaugt und einem Dampferzeuger (3) zugeführt. Der Pyrolysekoks wird aus der Pyrolysetrommel (2) mit einer Temperatur von etwa 500°C in eine Pyrolysekokskühlung (7) (Naßentschiacker) geleitet, wo der Pyrolysekoks abgekühlt wird. Der Naßentschiacker (7) dichtet den Auslauf der Pyrolysetrommel (2) gegen die Atmosphäre ab. Danach werden bei einer Metallabscheidung (8) NE-Metalle und Eisen aus dem gekühlten Pyrolysekoks abgetrennt, der dann in den Einschmelzofen (l) aufgegeben wird. Der Pyrolysekoks kann vor der Aufgabe in den Einschmelzofen (1) in einer Zerkleinerung (9) zerkleinert werden. Das Pyrolysegas wird in einer Öl-Quenche (5) entstaubt und in einer Brennkammer (6) nachverbrannt. Überschüssiges Pyrolysegas kann im Einschmelzofen (1) verbrannt werden. Das Öl aus der Öl-Quenche (5) enthält das auskondensierte Pyrolyseöl und den ausgetragenen Staub. Eine Ölaufbereitungsvorrichtung, Zentrifuge oder Dekanter, wird zum Abtrennen des Staubes aus dem Umlauföl verwendet. Die aufkonzentrierte Öl/Staubfraktion wird über Lanzenbrenner in den Einschmelzofen (l) eingeleitet. Pyrolysekoks wird mit einer Stückgröße < 50 mm in die Primärkammer (17) des Einschmelzofens (1) eingetragen. Die Verbrennung des Kokses und die Einschmelzung der Aschebestandteile verläuft energieautark mittels vorgewärmter Luft. Die flüssige Schlacke fließt aus der Primärkammer (17) durch den zentralen Auslauf (18) und tropft durch die Sekundärkammer (21) in das Wasserbad des Naßentschlackers (22) . Die flüssige Schlacke erstarrt hierbei zu einem glasigen Granulat. Die Abgase werden in der Sekundärkammer (21) durch Zugabe von Luft auf einen 0,-Gehalt von mindestens 6 Vol% eingestellt. Die Abgase aus dem Einschmelzofen (1) und die abgekühlten verbrannten Pyrolysegase aus der Pyrolysetrommel
(2) werden gemeinsam über die Nachbrennkammer (10) der
Wärmeauskopplung, nämlich dem Kessel (3) zugeführt. Der Kessel
(3) besteht aus einem Strahlungs- und Konvektionsteil mit integriertem Luvo. Das abgekühlte Abgas gelangt in die anschließende Rauchgasreinigung (12) . In der Rauchgasreinigung wird in einer zweistufigen Naßwäsche HC1 und SO. aus dem entstaubten Rauchgas entfernt. In der nachgeschalteten Hg-AbScheidung, die nach dem Sorbalit-, HOK- oder ähnlichem Verfahren funktioniert, werden das elementare Hg sowie Spuren von HC1, S02 und Kohlenwasserstoffen abgeschieden. Beim Sorbalit-Verfahren wird das beladene Aktivkohle/Ca(OH).-Gemisch in den Einschmelzofen (1) eingeführt. Die Senke für Hg befindet sich dann in der HC1-Wäsche.
Aus dem in Fig. 3 dargestellten Fließschema gehen der Stofffluß und die Verfahrensdaten des erfindungsgemäßen Verfahrens hervor. Das Pyrolysegas verläßt die Pyrolysetrommel (2) mit einer Temperatur von 500°C. Die Mengen der Schadgase H2S, COS und HC1 können durch Zugabe von Kalk in die Pyrolysetrommel (2) minimiert werden. Das Pyrolysegas besteht außer dem verdampften Wasser aus CO und C05 sowie höheren Kohlenwasserstoffen. Bei der Abkühlung in der Öl-Quenche (5) auf 150°C kondensieren etwa 40 kg Pyrolyseöl pro Tonne eingesetztem Müll aus. Die Staubbeladung liegt bei 20 bis 30 g/m3 i.N. In der Öl-Quenche (5) werden der pyrophore Staub und die Pyrolyseöle abgeschieden. Der größte Teil des Pyrolysegases verbrennt in der Brennkammer (6) zu einem Heißgas, das mit 1.050 °C bis 1.250°C in den Außenmantel der Pyrolysetrommel (2) eingeleitet wird, wo eine Abkühlung des Pyrolysegases auf eine Temperatur von 550°C bis 600°C erfolgt. Der restliche Teil des Pyrolysegases etwa 30 Vol% wird direkt in den Einschmelzofen (1) eingeleitet.
Pyrolysekoks bestehe zu etwa 18 Gew% bis 20 Gew% aus Kohlenstoff. Der Rest sind Asche und Nichteisen- sowie Eisenbestandteile. In der Pyrolysetrommel (2) erreicht der Pyrolysekoks eine Temperatur von 500°C. Im nachgeschalteten Naßentschlacker (7) wird der Pyrolysekoks auf etwa 60°C bis 70°C abgekühlt. Der ausgetragene Pyrolysekoks wird danach einer NE- und Fe-Abscheidung unterzogen, wobei Wertstoffe gewonnen werden. Der Pyrolysekoks kann mit einer Stückgrδße von < 50 mm in den Einschmelzofen (1) eingeführt werden. Der Pyrolysekoks kann vorher aufgemahlen werden, was gewöhnlich nicht erforderlich ist. Die Aschebestandteile werden bei einer Temperatur von etwa 1.350°C im Einschmelzofen (1) eingeschmolzen. Die Schwermetalle sind in einer stabilen Aluminiumsilikatmatrix eingebunden. Die flüssige Schlacke granuliert im Wasserbad des Naßentschiackers (22) zu einem glasigen laugungsresistenten Granulat. Das Abgas verläßt die Primärkammer (17) des Einschmelzofens (1) mit einer Temperatur von etwa 1.350°C. In der Sekundärkammer (21) des Einschmelzofens (1) wird durch Zugabe von Luft ein Sauerstoffgehalt von 6 Vol% bis 7 Vol% eingestellt. Das Abgas kühlt durch Zugeben von Luft und durch Verdampfen von Wasser aus dem Naßentschiacker (22) auf eine Temperatur von 950°C bis 1.150°C ab. Die verdampften Schwermetalle und Alkalimetall erbindungen aus der Primärkammer (17) kondensieren aus und werden als Reststaub ausgetragen. Die Zusammensetzung des Abgases aus dem Kessel (3) entspricht in etwa der Zusammensetzung von Rauchgasen aus einer konventionellen Rostfeuerung.
Aus der in Fig. 4 dargestellten Seitenansicht des Einschmelzofens (1) wird das Schmelzofenprinzip der Erfindung deutlich. Der Einschmelzofen (1) weist auf: verfahrbaren Ofendeckel (14), Doppelpendelklappe (15), mindestens einen Brenner (16), Primärkammer (17), Schlackenabzug (18), hydraulischen Ofenantrieb (19) , Video-Ofenüberwachung (20) , Sekundärkammer (21) und Naßen schlacker (22) .

Claims

Patentansprüche
1. Verfahren zum Behandeln von Hausmüll, bei dem
• a) das Material pyrolysiert wird,
b) Pyrolysegas entstaubt wird, ein Teil des entstaubten Pyrolysegases verbrannt und der restliche Teil in einen Schmelzofen (1) eingeleitet wird,
c) heißes Gas aus der Verbrennung zum Beheizen des Pyrolysegases verwendet wird,
d) Abgas aus der Beheizung des Pyrolysereaktors (2) und Pyrolysekoks in das Einschmelzverfahren eingeleitet werden.
2. Verfahren nach Anspruch 1, bei dem das Material vor der Pyrolyse vorbehandelt wird.
3. Verfahren nach Anspruch 2 , bei dem das Material auf eine Größe < 1.000 mm zerkleinert, gepreßt und über einen Schacht in den Pyrolysereaktor (2) aufgegeben wird.
4. Verfahren nach Anspruch 2, bei dem das Material auf eine Größe < 300 mm zerkleinert und mittels einer Preßschnecke in den Pyrolysereaktor (2) aufgegeben wird.
5. Verfahren nach den Ansprüchen 2 bis 4, bei dem das Material von metallhaltigen Stoffen befreit wird.
6. Verfahren nach den Ansprüchen 1 bis 5, bei dem als Pyrolysereaktor (2) eine indirekt beheizte Pyrolysetrommel verwendet wird.
7. Verfahren nach den Ansprüchen 1 bis 5, bei dem der zum Beheizen des Pyrolysereaktors (2) erforderliche Wärmebedarf durch das Abgas aus der Verbrennung gemäß Verfahrensstufe (b) und einem Teil des Abgases des Einschmelzofens erhalten wird.
8. Verfahren nach den Ansprüchen 1 bis 7, bei dem die Entstaubung des Pyrolysegases in einer Öl-Quenche (5) über dem Taupunkt des Wassers erfolgt.
9. Verfahren nach den Ansprüchen l bis 8, bei dem der Pyrolysekoks gekühlt, von metallhaltigen Stoffen befreit und gesiebt wird, die Fraktion mit einer Größe > 50 mm zerkleinert und mit der Fraktion < 50 mm in den Schmelzofen (1) eingeleitet wird.
10. Verfahren nach den Ansprüchen 1 bis 9, bei dem Pyrolysekoks mit einer Größe < 50 mm und mindestens einer der Bestandteile wie getrockneter Klärschlamm, Pyrolysegas, RestStoffe aus der Öl-Quenche, Heizöl, heizwertreiche Abfälle, wie Kunststoffe, pastös, flüssige und gasförmige brennbare Abfälle sowie beladene Aktivkohle und Koks in den Schmelzofen (1) eingeleitet werden.
11. Verfahren nach den Ansprüchen 1 bis 10, bei dem das verbrannte Abgas aus dem Schmelzofen (1) in einen Kessel (3) und/oder Rekuperator (4) eingeleitet wird.
12. Verfahren nach den Ansprüchen 1 bis 11, bei dem der Staub aus der Staubabscheidung des SchmelzVerfahrens in den Schmelzofen (1) zurückgeleitet wird.
13. Vorrichtung zum Behandeln von Hausmüll, bestehend aus Pyrolysereaktor (2) , Entstaubung (5) , Brennkammer (6) , Pyrolysekokskühlung (7) , Metallabscheidung (8) , Zerkleinerung (9) , Schmelzofen (1) , Nachbrennkammer (10) , Wärmenutzung (11) und Rauchgasreinigung (12) .
14. Verwendung der Vorrichtung nach Anspruch 13, zur thermischen Entsorgung und Nutzung von Hausmüll bei gleichzeitiger Erzeugung eines eluatfesten wiederverwendbaren Schmelzgranulats.
15. Ver ahren zur Behandlung des Pyrolysekoks und/oder Pyrolysestaub in einem Schmelzofen (1) , der mindestens einen an der Ofendecke einer Primärkammer (17) angeordneten und auf die Oberfläche des zu schmelzenden Materials gerichteten Brenner (16) aufweist und dem aus einem Pyrolyseofen (2) , Pyrolysegas, Pyrolysekoks und/oder Pyrolysestaub zugeführt werden und bei dem an einer oder mehreren Stellen der Ofendecke Tertiärluft in die Primarkammer (17) eingeleitet werden, wobei
a) das einzuschmelzende Material in die Primärkammer
(18) eingeleitet wird,
b) Pyrolysegas in die Primärkammer (17) eingeleitet wird,
c) das ablaufende, geschmolzene Material mit dem Rauchgas die Primärkammer (17) verläßt, das geschmolzene Material durch die Sekundärkammer (21) geleitet und als Schlacke ausgetragen wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß in der Primärkammer (17) eine Temperatur von 1.250 bis 1.500°C herrscht.
PCT/EP1996/001194 1995-03-21 1996-03-20 Verfahren und vorrichtung zum behandeln von hausmüll WO1996029542A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52808296A JP2002515110A (ja) 1995-03-21 1996-03-20 家庭ゴミを処理する方法及び装置
EP96908081A EP0815393B1 (de) 1995-03-21 1996-03-20 Verfahren zum behandeln von hausmüll
DE59601109T DE59601109D1 (de) 1995-03-21 1996-03-20 Verfahren zum behandeln von hausmüll

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19509620 1995-03-21
DE19509620.7 1995-06-21
DE19522457A DE19522457C2 (de) 1995-03-21 1995-06-21 Verfahren zum Behandeln von Hausmüll
DE19522457.4 1995-06-21

Publications (1)

Publication Number Publication Date
WO1996029542A1 true WO1996029542A1 (de) 1996-09-26

Family

ID=26013444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001194 WO1996029542A1 (de) 1995-03-21 1996-03-20 Verfahren und vorrichtung zum behandeln von hausmüll

Country Status (5)

Country Link
EP (1) EP0815393B1 (de)
JP (1) JP2002515110A (de)
AT (1) ATE175486T1 (de)
ES (1) ES2126393T3 (de)
WO (1) WO1996029542A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193913A (ja) * 1997-12-27 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd 廃棄物熱分解ガス化溶融装置
CN110701616A (zh) * 2019-11-05 2020-01-17 西安热工研究院有限公司 一种城市生活垃圾干燥热解焚烧发电***及方法
CN115213195A (zh) * 2022-07-22 2022-10-21 陕西南洋智汇能源环保科技有限公司 一种有机固废协同处理利用***及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2170687B1 (es) * 2000-07-27 2003-12-16 Quimica Plus S L Procedimiento de descomposicion mediante pirolisis de neumaticos de vehiculos.
CN104976622B (zh) * 2015-08-05 2018-07-06 中国东方电气集团有限公司 一种回转窑气化、等离子熔融的生活垃圾分级气化***
CN105910124B (zh) * 2016-06-16 2018-03-20 光大环保技术研究院(深圳)有限公司 一种飞灰低温熔融装置及方法
CN106800942A (zh) * 2017-03-31 2017-06-06 山西易通环能科技集团有限公司 一种废旧农膜塑料处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401207A (en) * 1971-08-13 1975-07-16 Ebara Infilco Apparatus for incineration of refuse
EP0067139A1 (de) * 1981-05-27 1982-12-15 Industri-Teknik Bengt Fridh AB Verfahren und Vorrichtung zur Behandlung von Abfallmaterial, das Metall und/oder Metalloxyde, organische Stoffe und möglicherweise auch Wasser enthält
DE4217301A1 (de) * 1992-02-17 1993-12-02 Siemens Ag Verfahren und Einrichtung zum Beheizen einer Schweltrommel
DE4308551A1 (de) * 1993-03-17 1994-01-05 Siemens Ag Verfahren und Einrichtung zum Entsorgen von Abfall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401207A (en) * 1971-08-13 1975-07-16 Ebara Infilco Apparatus for incineration of refuse
EP0067139A1 (de) * 1981-05-27 1982-12-15 Industri-Teknik Bengt Fridh AB Verfahren und Vorrichtung zur Behandlung von Abfallmaterial, das Metall und/oder Metalloxyde, organische Stoffe und möglicherweise auch Wasser enthält
DE4217301A1 (de) * 1992-02-17 1993-12-02 Siemens Ag Verfahren und Einrichtung zum Beheizen einer Schweltrommel
DE4308551A1 (de) * 1993-03-17 1994-01-05 Siemens Ag Verfahren und Einrichtung zum Entsorgen von Abfall

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERWEIN, KANCZAREK: "Müllentsorgung mit einer Schwel-Brenn-Anlage", BWK BRENNSTOFF WARME KRAFT, vol. 42, no. 10, October 1990 (1990-10-01), DUSSELDORF DE, pages R26 - R36, XP000162988 *
J.RIZZON: "Hochtemperatur-Einschmelzverfahren", UMWELT TECHNOLOGIE AKTUELL, no. 3, 1993, DARMSTADT, DE, pages 232 - 234, XP000570980 *
RIZZON: "Die Entsorgung von Reststoffen mit dem Pyromelt- und dem KSMF-Verfahren", BWK BRENNSTOFF WARME KRAFT, vol. 47, no. 10, October 1995 (1995-10-01), DUSSELDORF DE, pages R39 - R46, XP000534388 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193913A (ja) * 1997-12-27 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd 廃棄物熱分解ガス化溶融装置
CN110701616A (zh) * 2019-11-05 2020-01-17 西安热工研究院有限公司 一种城市生活垃圾干燥热解焚烧发电***及方法
CN115213195A (zh) * 2022-07-22 2022-10-21 陕西南洋智汇能源环保科技有限公司 一种有机固废协同处理利用***及方法

Also Published As

Publication number Publication date
ES2126393T3 (es) 1999-03-16
EP0815393A1 (de) 1998-01-07
ATE175486T1 (de) 1999-01-15
JP2002515110A (ja) 2002-05-21
EP0815393B1 (de) 1999-01-07

Similar Documents

Publication Publication Date Title
DE4446803C2 (de) Verfahren und Vorrichtung zur thermischen und stofflichen Verwertung von Rest- und Abfallstoffen
DE69512152T2 (de) Verfahren und Einrichtung für die Thermolyse von Abfall
EP0262144B1 (de) Verfahren zur rückgewinnung von verwertbarem gas aus müll
EP0509134B1 (de) Verfahren und Anlage zum thermischen Aufbereiten von mit organischen Komponenten verunreinigten Abfällen, insbesondere von Metallschrott
EP0394391B2 (de) Verfahren und vorrichtung zum aufbereiten von schlacke und anderen verbrennungsrückständen aus abfallverbrennungsanlagen
DE19522457C2 (de) Verfahren zum Behandeln von Hausmüll
DE4238934C2 (de) Verfahren zur Vergasung organischer oder organische Materialien enthaltender Roh- und Abfallstoffe
DE102007034139A1 (de) Verfahren zur thermischen Behandlung von feuchten Abfällen, Produktionsrückständen und sonstigen Reststoffen mit nativ-organischen und/oder synthetisch-organischen Bestandteilen
EP0815393B1 (de) Verfahren zum behandeln von hausmüll
EP0908673A1 (de) Verfahren zur Aufbereitung von Schlacke und/oder Asche aus der thermischen Behandlung von Müll
DE4318610C2 (de) Verfahren zur Gewinnung von Energie und Wertstoffen aus Müll
EP0626540B1 (de) Verfahren und Einrichtung zur Entsorgung unterschiedlich zusammengesetzter Abfallmaterialien
EP0610576B1 (de) Verfahren zum Gewinnen von Glas und Metall aus in Müllverbrennungsanlagen anfallenden festen Rückständen
CN110762535A (zh) 一种有机固废焚烧熔融无害化处理的方法和***
EP0823266A1 (de) Verfahren und Vorrichtung zum Entsorgen von Schwelkoks und/oder Pyrolysestaub
EP0770823B1 (de) Verfahren und Vorrichtung zur integrierten Entsorgung von Filterstäuben in thermischen Behandlungsanlagen
DE19730385C5 (de) Verfahren zur Erzeugung von Brenn- und Synthesegas aus Brennstoffen und brennbaren Abfällen und eine Vorrichtung zur Durchführung des Verfahrens
JPH09235559A (ja) 直立炉中で残留物および廃棄物を物質的およびエネルギー的に利用する方法
EP0067901B1 (de) Verfahren zur Herstellung von festen, lagerbaren und geruchsneutralen Brennstoffen aus Abfällen
EP1203060B1 (de) Verfahren und vorrichtung zur verwertung von gasen aus dem absetzbecken
DE19513832B4 (de) Verfahren zur Verwertung von Rest- und Abfallstoffen durch Kombination einer Wirbelschichtthermolyse mit einer Flugstromvergasung
EP0852692B1 (de) Verfahren zum schmelzen von oxidischen schlacken und verbrennungsrückständen sowie vorrichtung zur durchführung dieses verfahrens
WO1989003241A1 (en) Process for disposal of waste by combustion with oxygen
WO1983000046A1 (en) Device for manufacturing a storable, odourless solid fuel from waste material
EP0653478B1 (de) Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996908081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970706630

Country of ref document: KR

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 913655

Date of ref document: 19971222

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996908081

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970706630

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996908081

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970706630

Country of ref document: KR