WO1996027602A1 - Process for producing n-phosphonomethylglycine - Google Patents

Process for producing n-phosphonomethylglycine Download PDF

Info

Publication number
WO1996027602A1
WO1996027602A1 PCT/JP1996/000550 JP9600550W WO9627602A1 WO 1996027602 A1 WO1996027602 A1 WO 1996027602A1 JP 9600550 W JP9600550 W JP 9600550W WO 9627602 A1 WO9627602 A1 WO 9627602A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
mol
pmg
hydrogen peroxide
weight
Prior art date
Application number
PCT/JP1996/000550
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Nakano
Yukio Hirayama
Shuzi Sayama
Naohiko Ohashi
Original Assignee
Sankyo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Company, Limited filed Critical Sankyo Company, Limited
Priority to AU48893/96A priority Critical patent/AU4889396A/en
Publication of WO1996027602A1 publication Critical patent/WO1996027602A1/en
Priority to US08/944,029 priority patent/US5948938A/en
Priority to HK98111858A priority patent/HK1017360A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • C07F9/3813N-Phosphonomethylglycine; Salts or complexes thereof

Definitions

  • the present invention relates to an improved method for producing N-phosphonomethylglycine used as a raw material or an intermediate of N-phosphonomethylglycine widely used as a herbicide.
  • PMIDA N-phosphonomethyliminodisulfonic acid
  • water is used as a solvent
  • N-phosphonomethylglycine N-phosphonomethylglycine
  • activated carbon has a catalytic effect on the decomposition of hydrogen peroxide and is used as a reaction terminator.
  • the publication (Example 6 page 9 under Hidarirandai line 5), when producing the PMG guanidine salt, hydrogen peroxide (H 2 0 2) was added to the PM I DA guanidine salt, the reaction After that, excess hydrogen peroxide is decomposed by adding activated carbon. That is, it describes that activated carbon was used as a reaction terminator.
  • activated carbon activates hydrogen peroxide and PMIDA and is easily converted to PMG.
  • the starting material of the present invention can be prepared by a method well known in the art, for example, the reaction of formaldehyde, iminodi S acid and orthophosphorous acid in the presence of sulfuric acid (JP-A-49-148620), A method of reacting iminodidronic acid with formaldehyde and phosphorous acid in the presence (JP-A-50-160222) or a method of adding phosphorus trichloride to an aqueous solution of sodium salt of iminodidronic acid and reacting it with formaldehyde It can be manufactured by the method described in JP-A-5-3743-1).
  • the PMI DA used in the present invention may be manufactured by a method other than the above, and is not particularly limited.
  • the activated carbon used in the present invention various types of activated carbon generally commercially available can be used.
  • activated carbon on the market.
  • classified from raw materials there are beet coal made from peat, lignite coal made from lignite or lignite, coal coal made from bituminous coal, wood and wood.
  • activated carbon such as wood charcoal, wood charcoal, and coconut shell charcoal made from coconut husk, etc., and granulated coal, granulated charcoal, crushed charcoal, powdered charcoal, etc. classified according to shape.
  • the activated carbon used in the present invention is exemplified below, but not all of them can be shown. However, it is natural that it should not be limited to these.
  • Granular white 3 ⁇ 4Gc Granular white: StCc, Granular S Wc, Granular white Oshi WHc, Granular white: 3 ⁇ 4LHc, Granular white ⁇ WHA, Granular white 3 ⁇ 4GOC, Granular white ⁇ APRC: Granola, manufactured by Takeda Pharmaceutical Co., Ltd.
  • White 3 ⁇ 4TAC Granulated S3 ⁇ 4MAC, Granulated White Oyster XRC and Granulated White NCC, Granulated White Oshi KL, Granulated White 3 ⁇ 4DC, Granulated White Egret Gx, Granulated White Purple Sx, Granulated White 3 ⁇ 4 Cx, X—7000, X—7100, Granular white 5 GHx, Granular white: KGHxUG, Granular white purple GSlx, Granular white: 3 ⁇ 4GS2x, Granular white 3 ⁇ 4GTx, Granular white GTSx, Granular white 3 ⁇ 4 Gx, Granular white 5 SRCx, Morsibon 3A, Morsibon 4A, Morsibon 5 A and aldenite, carboraffin, strong white 3 ⁇ 4, refined white purple, characteristic white lemon, white KA, white: HM, white 3 ⁇ 4C, white eagle P and white « ⁇ (:,
  • BM-WA BM—WD, BM-AL, BM-AH, BM-GB, BM-GA, BM-GCA, MM-CD, MM-CB, MM-CBS, GM manufactured by Mitsui Pharmaceutical Co., Ltd. -GB, GM-GA, GM-GH, GM—AS, GM-AA, PM-PA, PM-PW, PM-PW1, PM-WA. PM-KI, PM-YO, PM-KS, PM-O PM-AA, PM-PE, PM-CR, PM-WA, PM-SX, PM-FZ and PM-SAY,
  • Kuraray Coal GG Kuraray Cole GS, Kuraray Cole GC, Kuraray Cole SA, Kuraray Cole KG, Kuraray Cole GM, Kuraray Cole GW, Kuraray Cole GL, Kuraray Cole GLC, Kuraray Cole KW, Kuraray Cole Gulla GWC, Kuraray Cole PW, Kuraray Cole PW—W5, Kuraray Cole PK, Kuraray Cole III, Kuraray Cole II, Kuraray Cole G—II, Kuraray Cole II, S (:,
  • Taiko TA Taiko TA, Taiko TS, Taiko TG, Taiko TM, Taiko GL 30, Taiko GL 30 A, Taiko GF 30 A, Taiko GF 50 A, Taiko CW 1303, Taiko CW130 BR, Taiko CW130 manufactured by Nimura Chemical Industry Co., Ltd.
  • NOR IT PK NOR IT PKDA 10X30 MESH.
  • NOR IT ELOR IT NOR IT AZO, NOR IT GRANULAR DARCO.
  • NOR IT HYDRO DARCO NOR IT DARCO 8x30, NOR IT DARCO 12x20 LI, NOR IT DARCO 12x20 DC, NOR IT PETRO DARCO.
  • NOR IT DARCO MRX NOR IT HYDRODARCO GCW ⁇ NOR IT HYDRODARCO GCL.
  • NOR IT HYDRODARC O GTS NOR IT DARCO CF NOR IT DARCO VAP URE, N0R IT DARCO GCV, NOR IT C-GRANULAR, NOR IT ROW, NOR IT ROW 0.8 SUPER NOR IT RO, NOR IT ROX, NOR IT ROX 0.8, NOR IT RB, NOR IT R.
  • NOR IT GL NOR IT CA
  • the amount of the activated carbon used may be 0.1 part by weight or more based on 1 part by weight of PM IDA, preferably 0.1 to 0.75 part by weight, and most preferably 0.1 to 0.4 part by weight. If the amount is less than 0.1 part by weight, the reaction is not completed, a side reaction occurs, the purity is reduced, and the object of the present invention cannot be achieved. If the amount exceeds 0.75 parts by weight, the quality and yield are not adversely affected, but the effect is not expected as much as used, and it is not economical. Further, the purpose can be achieved with a smaller amount of powdered activated carbon than in granular form.
  • the activated carbon used in the present invention After the activated carbon used in the present invention is used and recovered in the first reaction, it can be reused as it is for the second and subsequent reactions without renewal such as activation.
  • One point is a major feature. Even if activated carbon is used multiple times, the activity as a catalyst does not decrease and is extremely economical. If activated carbon is lost in an operation such as filtration by using activated carbon multiple times, the loss may be supplemented.
  • the hydrogen peroxide used in the present invention is generally 30-60% by weight commercially available. Aqueous solutions can be used and need not be further diluted with water.
  • the amount of hydrogen peroxide used may be 2 moles or more, preferably 2 to 5 moles, and most preferably 2.0 to 2.5 moles, per mole of PMIDA. is there. If the amount is less than 2 mol, the reaction is not completed, and a large amount of PMIDA remains as an unreacted substance. Use of more than 5 moles does not adversely affect the quality and yield, but is not expected to be as effective as used and is not economical.
  • the reaction between PMIDA and hydrogen peroxide in the present invention is an exothermic reaction, and the time for adding hydrogen peroxide varies depending on the cooling capacity of the equipment, but it may be within a range in which the heat of reaction can be removed. Since the reaction proceeds rapidly by the addition of hydrogen peroxide, it is not necessary to increase the aging time, and the reaction can be easily controlled. The end point of the reaction can be determined by monitoring the disappearance of PMIDA.
  • the reaction of the present invention is completed in about 30 minutes to about 4 hours if the cooling capacity of the reaction equipment is sufficient.
  • the reaction in the present invention proceeds in the presence of water, but the amount of water may be within a range in which the reaction solution can be stirred, and is not an amount sufficient to dissolve PMID ⁇ or PMG.
  • the ratio is usually 1 part by weight or more with respect to 1 part by weight of PM IDA, and is preferably 2 to 10 parts by weight.
  • the reaction temperature in the present invention is preferably 5 0 to 9 O 'C, is a more preferred temperature range face a 6 0 ⁇ 8 0 e C. If the temperature is lower than 50'C, the reaction progresses slowly. If the temperature exceeds 90'C, by-products are generated, and the purity and yield of the target product are reduced.
  • the pressure at which the present invention is performed is not particularly limited as long as the object of the present invention is attained.
  • the pressure may be lower than atmospheric pressure, atmospheric pressure or higher than atmospheric pressure. Does not need to be carried out above atmospheric pressure, atmospheric pressure is sufficient, and expensive, complicated and dangerous autoclaves such as those using activated carbon and oxygen-containing gas together do not need.
  • the generated PMG is precipitated in a crystalline state or dissolved in an aqueous solution state.
  • the following operation methods can be mentioned.
  • Simplex method (C) In the simplex method (A) and the simplex method (B), hot carbon is filtered to separate activated carbon to obtain a liquid, which is added with a water-soluble organic solvent such as methanol, acetone or Acetonitrile or the like is added in an appropriate amount or more, for example, 1 volume or more with respect to the aqueous solution, and the PMG crystals are crystallized and isolated.
  • the isolation method (C) usually increases the yield by several percent over the isolation method (A) or the isolation method (B).
  • an inorganic base such as alkali hydroxide, preferably sodium hydroxide, or an organic base such as isopropylamine is used in an amount sufficient to react with the generated PMG to form a salt.
  • Add an amine or the like to form a PMG salt form an aqueous solution of the PMG salt, filter the activated carbon, filter the acidified solution with a mineral acid, etc., and crystallize and isolate the PMG .
  • the PMG obtained by the method of the present invention can be obtained at a high level and in both purity and yield, and is a satisfactory value for an industrial production method.
  • a method of producing PMG by adding 2 to 5 mol of hydrogen peroxide to 1 mol of PM IDA while heating and stirring 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of activated carbon and water.
  • a method for producing PMG by adding 1 to 1 part by weight of PM IDA, 0.1 to 0.75 part by weight of activated carbon and water and adding 2.0 to 2.5 mol of hydrogen peroxide to 1 mol of PM I DA while stirring and mixing.
  • a method for producing PMG by adding 1 part by weight of PMI DA, 1 to 0.4 part by weight of activated carbon and water, and adding hydrogen peroxide while heating and stirring.
  • a method of producing PMG by adding 1 to 5 parts by weight of PM IDA, 0.1 to 0.4 parts by weight of activated carbon and water and adding 2 to 5 moles of hydrogen peroxide to 1 mole of PM IDA while stirring.
  • PIDA PIDA. A method of producing PMG by adding water and hydrogen peroxide to water and recovered activated carbon while heating and stirring.
  • (21) A method of producing PMG by adding 1 to 2.5 mol of hydrogen peroxide while heating and stirring 1 mol of PMI DA, water and activated carbon under the IE atmosphere.
  • (22) A method for producing PMG by adding hydrogen peroxide under heating and stirring 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of activated carbon and water under atmospheric pressure.
  • (31) A method of producing PMG by adding 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of recovered activated carbon and water under atmospheric pressure, and adding hydrogen peroxide thereto.
  • Examples include the production methods of Embodiments (9), (18), (27) and (36).
  • the net yield of PMG is a value calculated by the total yield (Gross) x purity (PMG content) of the crystals obtained by singulation, and the yield is (Net yield of PMG) The theoretical amount of PMG) The value calculated by X100, and the conversion is (content of generated PMG (number of moles) amount of raw material PM IDA used (number of moles)) The value calculated by X100 Shown respectively.
  • the content of PMG was determined by high performance liquid chromatography (HPLC).
  • activated carbon shelves (1) are manufactured by Mitsui Pharmaceutical Co., Ltd., (2) are manufactured by llmicole, and (3) and (11) are Nimura Chemical ( (4) is made by Kuraray Chemical Co., Ltd. (5) and (12) are made by Takeda Pharmaceutical Co., Ltd. (6) to (9) and (13) to (15) are made by Nippon Norit ( Indicates a product of Hanuri Co., Ltd.
  • Example 6 (1) The same reaction was performed 5 times using only the activated carbon recovered and used in the reaction of (1) in Example 6. (2) A similar reaction was performed 10 times using only the activated carbon recovered and used in the reaction of (6) in Example 6. (3) The same reaction was performed five times using only the activated carbon recovered and used in the reaction of (7) in Example 7. (4) The same reaction was performed 10 times using only the activated carbon recovered and used in the reaction of (8) in Example 7. Table 8 shows the results.
  • Activated carbon (NOR I T SX—111 ⁇ 13 ⁇ 413 ⁇ 48) with 5.0 £? 20.0 g (0.088 mol) of ⁇ 110 A was added, and oxygen gas was introduced at 60-65 ° C with stirring at a flow rate of 46 ml / min for 8 hours (11.2-fold molar ZPM IDA).
  • sodium hydroxide was added to form a PMG salt, and the resulting solution was used as an aqueous solution of the PMG salt.
  • the solution was filtered to separate activated carbon, and the amount of PMG determined by HPLC was 3.66 g (0.0216 mol) ( (Conversion rate 24.6%) o
  • the method of the present invention can be carried out under atmospheric pressure as compared with the prior art, so no pressure equipment is required, and since no acid is used, there is no problem of corrosion of the reactor, and it is toxic as a catalyst. It does not use metal compounds that may contain complex compounds, so there is no need for processing and it is safe.
  • the reaction control is easy, and the used activated carbon can be recycled many times without regenerating. Good purity and yield, suitable for industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

A process for producing N-phosphonomethylglycine safely and efficiently by treating N-phosphonomethyl-iminodiacetic acid in the presence of water, activated carbon and hydrogen peroxide.

Description

明細書  Specification
N—ホスホノメチルダリシンの製造方法 技術分野 Method for producing N-phosphonomethyldaricin
本発明は、 広く除草剤として使用されている N—ホスホノメチルグリシン塩の 原料又は中間体として利用されている N—ホスホノメチルグリシンの改良された 製造法に関する。 発明の背景  The present invention relates to an improved method for producing N-phosphonomethylglycine used as a raw material or an intermediate of N-phosphonomethylglycine widely used as a herbicide. Background of the Invention
N—ホスホノメチルイミノジ醉酸 (以下、 PM I DAと略称する。 ) を出発原 料として使用し、 溶媒として水を使用し、 酸化剤及び触媒を使用して N—ホスホ ノメチルグリシン (以下、 PMGと略称する。 ) を製造する方法は、 いくつかの 方法が挙げられる。 それらのうち、  N-phosphonomethyliminodisulfonic acid (hereinafter abbreviated as PMIDA) is used as a starting material, water is used as a solvent, and N-phosphonomethylglycine ( Hereinafter, PMG is abbreviated.) There are several methods for producing PMG. Among them,
(a) 酸化剤として、 常圧下又は高圧下で分子状酸素又は該酸素を含有する気 体を使用し、 触媒として活性炭を使用する方法は、 ( 1 ) 特開昭 50— 1 602 22号 ( 2 ) 特開昭 5 6 - 1 89 94号、 (3) 特開昭 60— 24 6328号に、 (a) A method of using molecular oxygen or a gas containing the oxygen under normal pressure or high pressure as an oxidizing agent and using activated carbon as a catalyst is described in (1) Japanese Patent Application Laid-Open No. 50-162222 ( 2) JP-A-56-18994, (3) JP-A-60-24 6328,
(b) 酸化剤として過酸化水素を使用し、 触媒として酸 (有機酸又は無機酸) を使用する方法は、 (4) 特開昭 4 9一 4 8620号、 (5) 特開平 2 - 270 8 9 1号に、 (b) A method using hydrogen peroxide as an oxidizing agent and using an acid (organic acid or inorganic acid) as a catalyst is described in (4) JP-A-49-48620, (5) JP-A-2-270. 8 9 No. 1,
(c) 酸化剤として過酸化水素を使用し、 触媒として金属化合物を使用する方 法は、 (6) 特開平 4— 224 5 9 3号、 ( 7 ) 特開平 4一 2 1 0 9 9 2号、 (c) A method using hydrogen peroxide as an oxidizing agent and a metal compound as a catalyst is described in (6) JP-A-4-224593, (7) JP-A-4-120992 issue,
( 8 ) 特開平 4一 2245 92号、 ( 9 ) 特開平 4— 273885号に、 それぞれ見いだされる。 It can be found in (8) Japanese Patent Application Laid-Open No. Hei 4-122492 and (9) Japanese Patent Application Laid-Open No. Hei 4-273885.
(a) の技術は、 常圧下では反応が非常に遅く、 高圧下では反応の収率が良好で あるが、 面 ί圧設備が必要であり、 また、 使用する活性炭は前処理する必要がある ため、 コスト上昇につながる。  In the technology (a), the reaction is very slow under normal pressure and the reaction yield is good under high pressure, but a surface pressure facility is required, and the activated carbon used must be pretreated. This leads to higher costs.
(b) の技術は、 有機酸又は無機酸を使用するので、 反応装置の腐食の懸念があ り、 かつ、 使用した酸の処理に手間がかかる。 ( C ) の技術は、 金属化合物を使用しているが、 それらの中には有毒な物質もあ り、 処理に困難を伴う場合や、 製品 PMG中に有毒触媒が混入する可能性を考慮 した場合、 環境対策上問題がある。 In the technique (b), since an organic acid or an inorganic acid is used, there is a concern that the reactor may be corroded, and it takes time to treat the used acid. The technology of (C) uses metal compounds, but some of them are toxic substances, taking into account cases where processing is difficult, and the possibility of toxic catalysts being mixed into the product PMG. In this case, there is a problem in environmental measures.
等の問題があり、 安全で効率のよい製造方法の開発が望まれていた。 発明の開示 Therefore, development of a safe and efficient manufacturing method has been desired. Disclosure of the invention
上記問題点を解決出来る方法につき鋭意研究を行った結果、 PM I D Aを水、 活性炭及び過酸化水素の存在下に処理することにより PMGを安全で効率よく得 ることができ、 本発明を完成した。  As a result of intensive research on a method that can solve the above problems, PMG can be obtained safely and efficiently by treating PM IDA in the presence of water, activated carbon and hydrogen peroxide, and the present invention has been completed. .
この知見は驚くべきことである。 なぜならば、 前記 (a ) 乃至 (b ) の先行技 術を結合するならば、 酸化剤として過酸化水素を、 触媒として活性炭を選択して 本発明に到達することは一見容易であるように見えるがかかる選択はあり得なレ、 と本技術分野では信じられていたからである。  This finding is surprising. This is because if the prior arts (a) and (b) are combined, it seems at first glance that it is easy to select hydrogen peroxide as the oxidizing agent and activated carbon as the catalyst to reach the present invention. However, such a choice was not possible, as it was believed in the art.
即ち、 活性炭は、 過酸化水素の分解に触媒作用を持っていること、 反応停止剤 として使用されていることが広く知られている。 例えば、 技術専門書 「活性炭 [ジョン * W,ハスラー著、 織田孝、 江口良友訳第 2 2 0頁第 2行乃至第 4行 (共立出版株式会社) 昭和 5 3年 3月 1 5日第 3版 2刷] 」 又は特開昭 5 8 - 2 1 9 1 9 3号公報を挙げることができる。 特に、 該公報 (実施例 6. 第 9頁下 左欄第 5行) には、 PMGグァニジン塩を製造する際に、 PM I DAグァニジン 塩に過酸化水素 (H2 02 ) を加え、 反応を終了させた後、 活性炭を加えること によって過剰の過酸化水素を分解している。 即ち、 活性炭を反応停止剤として使 用したことが記載されている。 That is, it is widely known that activated carbon has a catalytic effect on the decomposition of hydrogen peroxide and is used as a reaction terminator. For example, the technical book “Activated carbon [John W. Hustler, translated by Takashi Oda and Yoshitomo Eguchi, page 220, lines 2 to 4 (Kyoritsu Shuppan Co., Ltd.) March 15, 1933 2nd printing]] or JP-A-58-219193. In particular, the publication (Example 6 page 9 under Hidarirandai line 5), when producing the PMG guanidine salt, hydrogen peroxide (H 2 0 2) was added to the PM I DA guanidine salt, the reaction After that, excess hydrogen peroxide is decomposed by adding activated carbon. That is, it describes that activated carbon was used as a reaction terminator.
それ故、 もし過酸化水素と活性炭とを特に加温下に共存させれば、 過酸化水素 は、 水と酸素に直ちに分解してしまうので、 これを PM I D Aに適用しても、 そ れは即ち、 上記 (a ) の先行技術に帰するのであるから、 ことさら、 過酸化水素 と活性炭を用 、ても、 ( a ) 法よりも優れず、 かかる迂回的かつ不利益な方法を 採用することは当業者には到底考えられなかった。 一方、 大気圧下で酸素と活性 炭を用いて PM I D Aを反応させたときは、 反応が極めて遅く、 PMGの収量も 低いとの知見が得られた。 しかしながら、 大気圧下で、 過酸化水素と活性炭を用 いて PM I DAと反応させたときは、 意外にも反応は極めて迅速に進行し、 目的 とする P M Gが高収率でえられることを見いだしたのであり、 かかる組合せを採 用すること自体が想定しえないことであるのみならず、 その組合せによりもたら される効果も全く意外である。 Therefore, if hydrogen peroxide and activated carbon coexist, especially under warming, hydrogen peroxide immediately decomposes to water and oxygen, and even if this is applied to PM IDA, In other words, since it is attributable to the prior art (a), even if hydrogen peroxide and activated carbon are used, it is not superior to the method (a), and such a bypassing and disadvantageous method is used. Was never thought of by those skilled in the art. On the other hand, when PMIDA was reacted with oxygen and activated carbon under atmospheric pressure, it was found that the reaction was extremely slow and the PMG yield was low. However, under atmospheric pressure, using hydrogen peroxide and activated carbon When it was reacted with PM IDA, it was surprisingly found that the reaction proceeded very quickly, and that the desired PMG could be obtained in high yield. Not only is it impossible, but the effect of the combination is quite surprising.
本発明の方法においては、 過酸化水素及び活性炭を使用することから、 次の 2 段階の反応が進行するものと推定された。 In the method of the present invention, the use of hydrogen peroxide and activated carbon presumed that the following two-step reaction would proceed.
Figure imgf000005_0001
Figure imgf000005_0001
(PMIDA) (PMIDA-N-OXIDE) (PMIDA) (PMIDA-N-OXIDE)
> (H0)2P(=0)CH2NHCH2C00H > (H0) 2 P (= 0) CH 2 NHCH 2 C00H
(PMG)  (PMG)
しかしながら、 実際は、 PM I DAと過酸化水素との反応において、 PM I D A— N—オキサイドは反応中にほとんど検出されることなく、 また、 別途合成し た PM I DA— N—ォキサイドを活性炭の存在下に処理しても PMGは殆ど生成 しないことから、 前記の 2段階反応により P M Gが生成するかどうかは明らかで ない。  However, in practice, in the reaction between PM IDA and hydrogen peroxide, PM IDA-N-oxide is hardly detected during the reaction, and the separately synthesized PM IDA-N-oxide is present in the presence of activated carbon. It is not clear whether PMG is generated by the two-step reaction described above, since almost no PMG is generated even if the treatment is performed below.
いずれにせよ、 本発明は、 活性炭により、 過酸化水素及び PM I DAが活性化 され、 PMGへ容易に転換されると推測される。  In any case, in the present invention, it is assumed that activated carbon activates hydrogen peroxide and PMIDA and is easily converted to PMG.
以下、 本発明を更に詳細に説明する。 発明を実施するための最良の形態  Hereinafter, the present invention will be described in more detail. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の出発物質である PMI D Aは、 当業上よく知られた方法、 例えば硫酸 の存在下、 ホルムアルデヒド、 ィミノジ S酸及びオルト亜りん酸の反応 (特開昭 49一 48620号) 、 塩酸の存在下、 ィミノジ醉酸をホルムアルデヒド及び亜 燐酸と反応させる方法 (特開昭 50— 1 60222号) 又はィミノジ醉酸ナトリ ゥム塩水溶液に三塩化リンを添加し、 ホルムアルデヒドと反応させる方法 (特公 平 5— 3743 1号) 等に記載の方法により製造出来る。 本発明に供する PMI DAは、 上記以外の方法で製造されたものであってもよく、 特に限定されるもの ではない。 本発明で用いられる活性炭は、 一般に市販されている各種の活性炭を用いるこ とが出来る。 市販されている活性炭の種類は多種あり、 例えば、 原料から分類し て、 泥炭を原料とするビート炭、 褐炭や亜炭を原料とするリグナイト炭、 瀝青炭 等を原料とするコール炭、 木材や木質を原料とする木材炭や木質炭、 ヤシ殻等を 原料とするヤシ殻炭等の活性炭があり、 又、 形状から分類して、 造粒炭、 顆粒炭、 破碎炭及び粉末炭等がある。 The starting material of the present invention, PMI DA, can be prepared by a method well known in the art, for example, the reaction of formaldehyde, iminodi S acid and orthophosphorous acid in the presence of sulfuric acid (JP-A-49-148620), A method of reacting iminodidronic acid with formaldehyde and phosphorous acid in the presence (JP-A-50-160222) or a method of adding phosphorus trichloride to an aqueous solution of sodium salt of iminodidronic acid and reacting it with formaldehyde It can be manufactured by the method described in JP-A-5-3743-1). The PMI DA used in the present invention may be manufactured by a method other than the above, and is not particularly limited. As the activated carbon used in the present invention, various types of activated carbon generally commercially available can be used. There are many types of activated carbon on the market.For example, classified from raw materials, there are beet coal made from peat, lignite coal made from lignite or lignite, coal coal made from bituminous coal, wood and wood. There are activated carbon such as wood charcoal, wood charcoal, and coconut shell charcoal made from coconut husk, etc., and granulated coal, granulated charcoal, crushed charcoal, powdered charcoal, etc. classified according to shape.
本発明で使用される活性炭を以下に例示するが、 その全てを示すことは出来な い。 し力、しながら、 これらに限定されるべきものでないことは当然である。  The activated carbon used in the present invention is exemplified below, but not all of them can be shown. However, it is natural that it should not be limited to these.
武田薬品工業 (株) 製の、 粒状白 ¾Gc、 粒状白: StCc、 粒伏 S Wc、 粒状 白鴛 WHc、 粒状白: ¾LHc、 粒伏白鶯 WHA、 粒状白 ¾GOC、 粒状白 ¾ APRC:、 拉状白 ¾TAC、 粒伏 S¾MAC、 粒状白鶯 X R C及び拉状白駑 NCC、 粒状白鴛 KL、 粒状白 ¾DC、 粒状白鷺 Gx、 粒状白紫 Sx、 粒状白 ¾ Cx、 X—7000、 X—7100、 粒状白 5 GHx、 粒状白: KGHxUG、 粒 伏白紫 GSlx、 粒状白: ¾GS2x、 粒状白 ¾GTx、 粒白鶯 GTSx、 粒状白 ¾ Gx、 粒状白 5 SRCx、 モルシーボン 3 A、 モルシーボン 4 A、 モルシーボン 5 A及びアルデナイト、 カルボラフィン、 強力白 ¾、 精製白紫、 特性白駑、 白 K A、 白: HM、 白 ¾C、 白鷲 P及び白 «ΡΗ (:、  Granular white ¾Gc, Granular white: StCc, Granular S Wc, Granular white Oshi WHc, Granular white: ¾LHc, Granular white 鶯 WHA, Granular white ¾GOC, Granular white 武 APRC: Granola, manufactured by Takeda Pharmaceutical Co., Ltd. White ¾TAC, Granulated S¾MAC, Granulated White Oyster XRC and Granulated White NCC, Granulated White Oshi KL, Granulated White ¾DC, Granulated White Egret Gx, Granulated White Purple Sx, Granulated White ¾ Cx, X—7000, X—7100, Granular white 5 GHx, Granular white: KGHxUG, Granular white purple GSlx, Granular white: ¾GS2x, Granular white ¾GTx, Granular white GTSx, Granular white ¾ Gx, Granular white 5 SRCx, Morsibon 3A, Morsibon 4A, Morsibon 5 A and aldenite, carboraffin, strong white ¾, refined white purple, characteristic white lemon, white KA, white: HM, white ¾C, white eagle P and white «ΡΗ (:,
三井製薬工業 (株) 製の、 BM - WA、 BM— WD、 BM - AL、 BM - AH、 BM - GB、 BM - GA、 BM - GCA、 MM - CD、 MM - CB、 MM - CBS、 GM - GB、 GM - GA、 GM - GH、 GM— AS、 GM - AA、 PM 一 PA、 PM - PW、 PM - PW1、 PM-WA. PM - K I、 PM - YO、 PM - KS、 PM- O. PM - AA、 PM— PE、 PM - CR、 PM - WA、 PM— SX、 PM— FZ及び PM— SAY、  BM-WA, BM—WD, BM-AL, BM-AH, BM-GB, BM-GA, BM-GCA, MM-CD, MM-CB, MM-CBS, GM manufactured by Mitsui Pharmaceutical Co., Ltd. -GB, GM-GA, GM-GH, GM—AS, GM-AA, PM-PA, PM-PW, PM-PW1, PM-WA. PM-KI, PM-YO, PM-KS, PM-O PM-AA, PM-PE, PM-CR, PM-WA, PM-SX, PM-FZ and PM-SAY,
東洋カルゴン (株) 製の、 CAL、 CPG、 SGL、 F I LTRASORB 300、 F I LTRASORB 400、 CANE CAL、 APC、 BPL、 PCB、 I VP, HGR、 CP— 4、 FCA及び粒状 AL、  CAL, CPG, SGL, FILTRASORB 300, FILTRASORB400, CANE CAL, APC, BPL, PCB, IVP, HGR, CP-4, FCA and granular AL, manufactured by Toyo Calgon Co., Ltd.
クラレケミカル (株) 製のクラレコール GG、 クラレコール GS、 クラレコー ル GC、 クラレコール SA、 クラレコール KG、 クラレコール GM、 クラレコ一 ル GW、 クラレコール GL、 クラレコール GLC、 クラレコール KW、 クラレコ ール GWC、 クラレコール PW、 クラレコール PW— W5、 クラレコール PK、 クラレコール ΥΡ、 クラレコール Τ一 Β、 クラレコール G— Η、 クラレコール Τ 一 S、 クラレコール T一 F及びクラレコール T一 (:、 Kuraray Coal GG, Kuraray Cole GS, Kuraray Cole GC, Kuraray Cole SA, Kuraray Cole KG, Kuraray Cole GM, Kuraray Cole GW, Kuraray Cole GL, Kuraray Cole GLC, Kuraray Cole KW, Kuraray Cole Gulla GWC, Kuraray Cole PW, Kuraray Cole PW—W5, Kuraray Cole PK, Kuraray Cole III, Kuraray Cole II, Kuraray Cole G—II, Kuraray Cole II, S (:,
二村化学工業 (株) 製の、 太閤 TA、 太閤 TS、 太閤 TG、 太閤 TM、 太閤 GL 30、 太閤 GL 30 A、 太閤 GF 30 A、 太閤 GF 50 A、 太閤 CW 1303、 太閤 CW130 BR、 太閤 CW130 A、 太閤 CW130 AR、 太閤 CW612 G、 太閤 CW81 6 G、 太閤 CG 48 B、 太閤 CG 48 BR、 太閤 CG48 A、 太閤 CG48 AR、 太閤 SG、 太閤 SGP、 太閤 SGA、 太閤 S、 太閤 FC、 太閤 FCS、 太閤 SA1000、 太閤 K、 太閤 KS、 太閤 KW— 50、 太閤 K (A)、 太閤 A、 太閤 M、 太閤 AP、 太閤 RC、 太閤 B5、 太閤 P及び太 閤  Taiko TA, Taiko TS, Taiko TG, Taiko TM, Taiko GL 30, Taiko GL 30 A, Taiko GF 30 A, Taiko GF 50 A, Taiko CW 1303, Taiko CW130 BR, Taiko CW130 manufactured by Nimura Chemical Industry Co., Ltd. A, Taiko CW130 AR, Taiko CW612 G, Taiko CW81 6 G, Taiko CG 48 B, Taiko CG 48 BR, Taiko CG48 A, Taiko CG48 AR, Taiko SG, Taiko SGP, Taiko SGA, Taiko S, Taiko FC, Taiko FCS , Taiko SA1000, Taiko K, Taiko KS, Taiko KW—50, Taiko K (A), Taiko A, Taiko M, Taiko AP, Taiko RC, Taiko B5, Taiko P and Taiko P
(株) ッルミコール製の、 ッルミコール 4GS— S、 ッルミコール 4G— 2S、 ッルミコール 4 G— 3 S、 ッルミコール 7GM、 ッルミコール 4GM、 ツルミコ ール 4GCX、 ッルミコール SX、 ッルミコール AX、 ッルミコール MX、 ツル ミコール GOD、 ッルミコール 4GM— X、 ッルミコール 4GS— D、 ツルミコ ール HC— 6、 ッルミコール HC— 14、 ッルミコール HC— 20、 ッノレミコー ル HC— 20C、 ッルミコール HCA— S、 ッルミコール 5GV、 ッルミコール 4GV、 ッルミ コール GVA— S、 ッルミ コール HC— 42、 ッルミ コール HC— 30E、 ッルミコール GL— 30、 ッルミコール H C— 30 X、 ツルミコ ール 4GL、 ッルミコール HC— 30 S、 ッルミコール GL— 30 S、 ツルミコ ール PA及びツルミコール PC、  LLMICOLE 4GS—S, LLMICOLE 4G—2S, LLMICOLE 4G—3S, LLMICOLE 7GM, LLMICOLE 4GCX, LLMICOL SX, LLMICOL AX, LLMICOL G, 4GM — X, ulmicor 4GS—D, ulmicol HC—6, ulmicol HC—14, ulmicol HC—20, phonoremicol HC—20C, ulmicol HCA—S, ulmicol 5GV, ulmicol 4GV, ellmicol GVA—S, ulmicol HC-42, Culmicol HC-30E, Culmicol GL-30, Culmicol HC-30X, Culmicol 4GL, Culmicol HC-30S, Culmicol GL-30S, Culmicol PA and Culmicol PC,
日本ノリット(株)が販売している、 NOR I T PK、 NOR I T PKDA 10X30 MESH. NOR I T ELOR I T, NOR I T AZO、 NOR IT GRANULAR DARCO. NOR I T HYDRO DARCO、 NOR IT DARCO 8 x30、 NOR I T DARCO 12x20 L I、 NOR I T DARCO 12x20 DC, NOR I T PETRO DARCO. NOR I T DARCO MRX、 NOR I T HYDRODARCO GCWゝ NOR I T HYDRODARCO GCL. NOR I T HYDRODARC O GTS, NOR I T DARCO CF NOR I T DARCO VAP URE、 N0R IT DARCO GCV、 NOR IT C - GRANULAR、 NOR I T ROW, NOR I T ROW 0. 8 SUPRA NOR I T RO、 NOR IT ROX, NOR I T ROX 0. 8, NOR I T RB、 NOR I T R. NOR I T R. Ext r a. NOR I T Sorbonor i t、 NOR IT CAR NOR I T ROZ. NOR I T RBAA、 NO R I T RBHG、 NOR IT RZN、 NOR IT RGM、 NOR IT S X、 NORIT SX-ULTRA, NOR I T SA、 NOR IT SA - 1、 NOR I T D- 10. NOR I T PN. NOR I T ZN、 NOR I T S A-AW, NOR I T W. NOR I T GL、 NOR IT CA、 NOR ITNOR IT PK, NOR IT PKDA 10X30 MESH. NOR IT ELOR IT, NOR IT AZO, NOR IT GRANULAR DARCO. NOR IT HYDRO DARCO, NOR IT DARCO 8x30, NOR IT DARCO 12x20 LI, NOR IT DARCO 12x20 DC, NOR IT PETRO DARCO. NOR IT DARCO MRX, NOR IT HYDRODARCO GCW ゝ NOR IT HYDRODARCO GCL. NOR IT HYDRODARC O GTS, NOR IT DARCO CF NOR IT DARCO VAP URE, N0R IT DARCO GCV, NOR IT C-GRANULAR, NOR IT ROW, NOR IT ROW 0.8 SUPER NOR IT RO, NOR IT ROX, NOR IT ROX 0.8, NOR IT RB, NOR IT R. NOR IT R Ext r a. NOR IT Sorbonor it, NOR IT CAR NOR IT ROZ. NOR IT RBAA, NO RIT RBHG, NOR IT RZN, NOR IT RGM, NOR IT SX, NORIT SX-ULTRA, NOR IT SA, NOR IT SA- 1, NOR IT D- 10. NOR IT PN. NOR IT ZN, NOR ITS A-AW, NOR IT W. NOR IT GL, NOR IT CA, NOR IT
CA- 1. NOR I T CA - SP、 N〇R IT CN、 NOR I T CG、 NOR I T DARCO KB. NOR I T DARCO KBB、 NOR ITCA- 1. NOR I T CA-SP, N〇R IT CN, NOR I T CG, NOR I T DARCO KB. NOR I T DARCO KBB, NOR IT
S- 5 K NOR I T DARCO S- 5 NOR I T S - 51 - A、 NOR I T S- 5 I FF, NOR I T PREMIUM DARC〇、 NOR IT DARCO GFP、 N〇R IT HDC、 NOR IT HDR、 NOR IT HDH、 NOR IT GRO SAFE. NOR I T FM - l、 NOR IT DARCO TRS及び NOR IT DARCO FGD、 S-5K NOR IT DARCO S-5 NOR ITS-51-A, NOR IT S-5 IFF, NOR IT PREMIUM DARC〇, NOR IT DARCO GFP, N〇R IT HDC, NOR IT HDR, NOR IT HDH, NOR IT GRO SAFE. NOR IT FM-l, NOR IT DARCO TRS and NOR IT DARCO FGD,
活性炭の使用量は、 PM I DA 1重量部に対して 0.1重量部以上であればよく、 好ましくは 0.1〜0.75重量部であり、 最も好ましくは、 0.1〜0.4重量部であ る。 0.1重量部未満では反応が完結せず、 更に副反応が起き、 純度が低下して本 発明の目的を達成出来ない。 又、 0.75重量部を超えた場合は、 特に品質や収率 に悪影響を及ぼさないが、 使用した程の効果が期待されず、 又経済的ではない。 又、 顆粒状よりも粉末伏活性炭の方が少ない量で目的を達成出来る。  The amount of the activated carbon used may be 0.1 part by weight or more based on 1 part by weight of PM IDA, preferably 0.1 to 0.75 part by weight, and most preferably 0.1 to 0.4 part by weight. If the amount is less than 0.1 part by weight, the reaction is not completed, a side reaction occurs, the purity is reduced, and the object of the present invention cannot be achieved. If the amount exceeds 0.75 parts by weight, the quality and yield are not adversely affected, but the effect is not expected as much as used, and it is not economical. Further, the purpose can be achieved with a smaller amount of powdered activated carbon than in granular form.
本発明において使用される活性炭は、 初回の反応に使用され回収された後、 新 たに活性化等の再生処理をすることなく、 2回目以降の反応にそのまま何度もリ サイクル使用が可能である点が大きな特徴である。 活性炭を多重回使用しても、 触媒としての活性は低下することはなく、 極めて経済的である。 活性炭を多重回 使用することによって、 濂過等の操作において活性炭が損失したときは、 その損 失分を補充すればよい。  After the activated carbon used in the present invention is used and recovered in the first reaction, it can be reused as it is for the second and subsequent reactions without renewal such as activation. One point is a major feature. Even if activated carbon is used multiple times, the activity as a catalyst does not decrease and is extremely economical. If activated carbon is lost in an operation such as filtration by using activated carbon multiple times, the loss may be supplemented.
本発明で用いられる過酸化水素は、 一般に、 市販されている 30〜60重量% 水溶液を用いることが出来、 これを更に水で希釈する必要はない。 The hydrogen peroxide used in the present invention is generally 30-60% by weight commercially available. Aqueous solutions can be used and need not be further diluted with water.
過酸化水素の使用量は、 P M I D A 1モルに対して、 2モル以上の割合であれ ばよく、 好ましくは 2〜5モルの割合であり、 最も好ましくは 2. 0〜2· 5モルの 割合である。 2モル未満では反応が完結せず、 多量の P M I D Aが未反応物とし て残ってしまう。 又、 5モルを超えて使用しても、 特に品質や収率に悪影響を及 ぼさないが、 使用した程の効果が期待されず、 又経済的ではない。  The amount of hydrogen peroxide used may be 2 moles or more, preferably 2 to 5 moles, and most preferably 2.0 to 2.5 moles, per mole of PMIDA. is there. If the amount is less than 2 mol, the reaction is not completed, and a large amount of PMIDA remains as an unreacted substance. Use of more than 5 moles does not adversely affect the quality and yield, but is not expected to be as effective as used and is not economical.
本発明における P M I D Aと過酸化水素との反応は発熱反応であって、 過酸化 水素の添加時間は設備の冷却能力により変わるが、 反応熱を除去出来る範囲であ ればよい。 反応は過酸化水素の添加により速やかに進行するので、 熟成時間を長 くとる'必要はなく、 反応制御も容易である。 又、 該反応の終点は P M I D Aの消 失をモニタリングすることで決めることが出来る。 本発明の反応は、 反応設備の 冷却能力が充分あれば約 3 0分〜約 4時間で完結する。  The reaction between PMIDA and hydrogen peroxide in the present invention is an exothermic reaction, and the time for adding hydrogen peroxide varies depending on the cooling capacity of the equipment, but it may be within a range in which the heat of reaction can be removed. Since the reaction proceeds rapidly by the addition of hydrogen peroxide, it is not necessary to increase the aging time, and the reaction can be easily controlled. The end point of the reaction can be determined by monitoring the disappearance of PMIDA. The reaction of the present invention is completed in about 30 minutes to about 4 hours if the cooling capacity of the reaction equipment is sufficient.
本発明における反応は、 水の存在下で進行するものであるが、 水の量は反応液 が撹拌可能な範囲であればよく、 PM I D Αや P MGを溶解させるに足る量でな くてもよく、 特に限定されるものではないが、 通常、 PM I D A 1重量部に対し て、 1重量部以上の割合であればよく、 好ましくは 2〜 1 0重量部の割合である。 本発明での反応温度は、 5 0〜9 O 'Cが好ましく、 更に好ましい温度範面とし ては 6 0〜8 0 eCである。 5 0 'C以下では反応の進行が遅く、 9 O 'Cを超えては 副生物が生成し、 目的物の純度及び収率が低下してしまう。 The reaction in the present invention proceeds in the presence of water, but the amount of water may be within a range in which the reaction solution can be stirred, and is not an amount sufficient to dissolve PMIDΑ or PMG. Although not particularly limited, the ratio is usually 1 part by weight or more with respect to 1 part by weight of PM IDA, and is preferably 2 to 10 parts by weight. The reaction temperature in the present invention is preferably 5 0 to 9 O 'C, is a more preferred temperature range face a 6 0~8 0 e C. If the temperature is lower than 50'C, the reaction progresses slowly. If the temperature exceeds 90'C, by-products are generated, and the purity and yield of the target product are reduced.
本発明を実施する圧力は、 本発明の目的に叶う範囲であれば特に限定されるも のではなく、 大気圧未満、 大気圧又は大気圧を超えても実施されるが、 大気圧未 満或は大気圧を超えて実施する必要は特になく、 大気圧で充分であり、 活性炭と 酸素含有ガスを併用する方法のように、 高価で、 操作の複雑な、 危険性のあるォ 一トクレーブを'必要としない。  The pressure at which the present invention is performed is not particularly limited as long as the object of the present invention is attained. The pressure may be lower than atmospheric pressure, atmospheric pressure or higher than atmospheric pressure. Does not need to be carried out above atmospheric pressure, atmospheric pressure is sufficient, and expensive, complicated and dangerous autoclaves such as those using activated carbon and oxygen-containing gas together do not need.
本発明において、 使用する水の量如何によつて、 反応終了後、 生成した PMG は、 結晶状態で析出、 或は水溶液状態で溶解しているので、 P MGを結晶として 単離するためには種々の方法があるが、 例えば次のような操作方法を挙げること がことが出来る。  In the present invention, depending on the amount of water used, after the reaction is completed, the generated PMG is precipitated in a crystalline state or dissolved in an aqueous solution state. There are various methods. For example, the following operation methods can be mentioned.
単離法 (A) :使用した水の量が、 生成 PMGを溶解させるのに必要な量以上、 例えば仕込んだ PM I DAの 15重量倍以上の割合である場合は、 反応液を適 温以上、 例えば 80°C以上、 好ましくは 85〜90°Cに加温して熱時濂過して 活性炭を據別し、 濾液を、 仕込んだ PM I DAの適量倍迄、 例えば 3. 5重量 倍迄減圧濃縮して P M G結晶を晶析させて単離する。 Isolation method (A): The amount of water used is greater than that required to dissolve the generated PMG, For example, if the ratio is 15 times by weight or more of the charged PM IDA, the reaction solution is heated to an appropriate temperature or more, for example, 80 ° C. or more, preferably 85 to 90 ° C., and activated carbon is heated and filtered. The filtrate is concentrated under reduced pressure to an appropriate amount of PM IDA, for example, 3.5 times by weight, and PMG crystals are crystallized and isolated.
単雜法 (B) :使用した水の量が、 生成 PMGを溶解させるのに必要な量未満、 例えば仕込んだ PM I DAの 15重量倍未満の割合である場合は、 反応液を低 温、 例えば約 5 °C迄冷却し、 析出した PMGを活性炭と共に濾別し、 この PMG 結晶と活性炭からなる混合ケーキを、 仕込んだ PMI DAの適量倍以上、 例えば 15重量倍以上の熱水、 例えば 80て以上、 好ましくは 85〜 90てで溶解後、 熱時濾過して活性炭を濾別し、 據液を、 仕込んだ PMI DAの適量倍迄、 例えば 3.5重量倍迄減圧濃縮して P MG結晶を晶折させて単雜する。 Simplex method (B): If the amount of water used is less than the amount required to dissolve the generated PMG, for example, less than 15 times the weight of the charged PM IDA, For example, the mixture is cooled down to about 5 ° C, the precipitated PMG is filtered off with activated carbon, and the mixed cake of PMG crystals and activated carbon is mixed with hot water that is at least an appropriate amount, for example, at least 15 times the weight of the charged PMI DA, for example, 80%. After dissolving at 85 to 90, preferably, filter the activated carbon by hot filtration and concentrate the base solution under reduced pressure up to an appropriate volume of the charged PMI DA, for example, up to 3.5 times, to obtain PMG crystals. Fold and sing.
単雜法 (C) :単雜法 (A)及び単雜法 (B) において、 熱時濾過して活性炭を 滤別し、 滤液を得るが、 これに水溶性有機溶剤、 例えばメタノール、 アセトン 又はァセトニトリル等を滤液に対して適量倍以上、 例えば 1容量倍以上添加し て、 PMG結晶を晶析させて単雜する。 単離法 (C) は、 通常、 単離法 (A) 又は単離法 (B) よりも収率が数%上昇する。 Simplex method (C): In the simplex method (A) and the simplex method (B), hot carbon is filtered to separate activated carbon to obtain a liquid, which is added with a water-soluble organic solvent such as methanol, acetone or Acetonitrile or the like is added in an appropriate amount or more, for example, 1 volume or more with respect to the aqueous solution, and the PMG crystals are crystallized and isolated. The isolation method (C) usually increases the yield by several percent over the isolation method (A) or the isolation method (B).
単離法 (D) :反応終了後、 生成 PMGと反応して塩を生成するに足る量の無機 塩基、 例えば水酸化アルカリ、 好ましくは水酸化ナトリウム、 あるいは有機塩 基、 例えばイソプロピルアミン等の有機アミン等を添加して PMG塩を形成せ しめ、 PMG塩の水溶液とし、 濾過して活性炭を據別し、 據液を、 鉱酸等によ り酸性とし、 PMGを晶析させて単離する。 Isolation method (D): After completion of the reaction, an inorganic base such as alkali hydroxide, preferably sodium hydroxide, or an organic base such as isopropylamine is used in an amount sufficient to react with the generated PMG to form a salt. Add an amine or the like to form a PMG salt, form an aqueous solution of the PMG salt, filter the activated carbon, filter the acidified solution with a mineral acid, etc., and crystallize and isolate the PMG .
本発明方法によって得られる P M Gは、 純度及び収率共に高レ、水準で得られる ので、 工業的製法としては満足すべき値である。  The PMG obtained by the method of the present invention can be obtained at a high level and in both purity and yield, and is a satisfactory value for an industrial production method.
本発明の実施に当たっては、 以下のような実施憨様を挙げることが出来る。  In carrying out the present invention, the following embodiments can be mentioned.
(1) PMIDA、 水及び活性炭を加熱攆拌下、 過酸化水素を加えて PMGを製 造する方法。  (1) A method in which PMIDA, water and activated carbon are heated and stirred, and hydrogen peroxide is added to produce PMG.
(2) PMIDA、 水及び活性炭を加熱 JS拌下、 PM IDA 1モルに対して、 過 酸化水素 2〜 5モルを加えて P M Gを製造する方法。  (2) A method of producing PMG by heating PMIDA, water and activated carbon, adding 2 to 5 mol of hydrogen peroxide to 1 mol of PMIDA under JS stirring.
(3) PMI DA. 水及び活性炭を加熱攪拌下、 PM IDA 1モルに対して、 過 酸化水素 2.0〜 2.5モルを加えて PMGを製造する方法。 (3) PMI DA. Heat and stir water and activated carbon to 1 mole of PM IDA. A method for producing PMG by adding 2.0 to 2.5 moles of hydrogen oxide.
(4) P I DA 1重量部、 活性炭 0.1〜 0.75重量部及び水を加熱擾拌下、 過 酸化水素を加えて P M Gを製造する方法。  (4) A method of producing PMG by adding hydrogen peroxide to 1 part by weight of PIDA, 0.1 to 0.75 parts by weight of activated carbon, and water while heating and stirring.
(5) PM I DA 1重量部、 活性炭 0.1〜 0.75重量部及び水を加熱攪拌下、 PM I DA 1モルに対して、 過酸化水素 2〜 5モルを加えて PMGを製造 する方法。  (5) A method of producing PMG by adding 2 to 5 mol of hydrogen peroxide to 1 mol of PM IDA while heating and stirring 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of activated carbon and water.
(6) PM I DA 1重量部、 活性炭 0.1〜0.75重量部及び水を加熱攬拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2.5モルを加えて PMGを 製造する方法。  (6) A method for producing PMG by adding 1 to 1 part by weight of PM IDA, 0.1 to 0.75 part by weight of activated carbon and water and adding 2.0 to 2.5 mol of hydrogen peroxide to 1 mol of PM I DA while stirring and mixing.
(7) PMI DA 1重量部、 活性炭 1〜0.4重量部及び水を加熱攙拌下、 過酸 化水素を加えて P M Gを製造する方法。  (7) A method for producing PMG by adding 1 part by weight of PMI DA, 1 to 0.4 part by weight of activated carbon and water, and adding hydrogen peroxide while heating and stirring.
(8) PM I DA 1重量部、 活性炭 0.1〜 0.4重量部及び水を加熱撹拌下、 PM I DA 1モルに対して、 過酸化水素 2〜 5モルを加えて PMGを製造 する方法。  (8) A method of producing PMG by adding 1 to 5 parts by weight of PM IDA, 0.1 to 0.4 parts by weight of activated carbon and water and adding 2 to 5 moles of hydrogen peroxide to 1 mole of PM IDA while stirring.
(9) PMI DA 1重量部、 活性炭 0.1〜0.4重量部及び水を加熱攬拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2.5モルを加えて PMGを製造 する方法。  (9) A method for producing PMG by adding 1 part by weight of PMI DA, 0.1 to 0.4 part by weight of activated carbon and water, and adding 2.0 to 2.5 mol of hydrogen peroxide to 1 mol of PM I DA while heating and stirring.
(10) P I DA. 水及び回収活性炭を加熱攙拌下、 過酸化水素を加えて PMG を製造する方法。  (10) PIDA. A method of producing PMG by adding water and hydrogen peroxide to water and recovered activated carbon while heating and stirring.
(11) PMIDA 1モル、 水及び回収活性炭を加熱視拌下、 過酸化水素 2〜5モ ルを加えて PMGを製造する方法。  (11) A method for producing PMG by adding 2 to 5 mol of hydrogen peroxide while heating and stirring 1 mol of PMIDA, water and recovered activated carbon.
(12) PM I DA 1モル、 水及び回収活性炭を加熱攪拌下、 過酸化水素 2.0〜 2.5モルを加えて PMGを製造する方法。  (12) A method for producing PMG by adding 2.0 to 2.5 mol of hydrogen peroxide while heating and stirring 1 mol of PM IDA, water and recovered activated carbon.
(13) PMI DA 1重量部、 回収活性炭 0.1〜0.75重量部及び水を加熱攪拌下、 過酸化水素を加えて P M Gを製造する方法。  (13) A method for producing PMG by adding hydrogen peroxide while heating and stirring 1 part by weight of PMI DA, 0.1 to 0.75 parts by weight of recovered activated carbon and water and water.
(14) PMI DA 1重量部、 回収活性炭 0.1〜0.75重量部及び水を加熱視拌下、 PMI DA 1モルに対して、 過酸化水素 2〜 5モルを加えて PMGを製造 する方法。  (14) A method of producing PMG by adding 1 to 1 part by weight of PMI DA, 0.1 to 0.75 part by weight of recovered activated carbon and water and adding 2 to 5 mol of hydrogen peroxide to 1 mol of PMI DA under heating and stirring.
(15) PMI DA 1重量部、 回収活性炭 0.1〜0.75重量部及び水を加熱擾拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2. 5モルを加えて PMG を製造する方法。 (15) 1 part by weight of PMI DA, 0.1 to 0.75 parts by weight of recovered activated carbon and water were heated and stirred. A method for producing PMG by adding 2.0 to 2.5 moles of hydrogen peroxide to 1 mole of PM I DA.
(16) PMI DA 1重量部、 回収活性炭 0.1〜0. 重量部及び水を加熱搜拌下、 過酸化水素を加えて P M Gを製造する方法。  (16) A method of producing PMG by adding 1 part by weight of PMI DA, 0.1 to 0. parts by weight of recovered activated carbon and water and heating and adding hydrogen peroxide.
(17) PMI DA 1重量部、 回収活性炭 0.1〜0.4重量部及び水を加熱攙拌下、 PM I DA 1モルに対して、 過酸化水素 2〜5モルを加えて PMGを製造 する方法。  (17) A method for producing PMG by adding 1 part by weight of PMI DA, 0.1 to 0.4 part by weight of recovered activated carbon and water, and adding 2 to 5 moles of hydrogen peroxide to 1 mole of PM I DA while stirring.
(18) PMI DA 1重量部、 回収活性炭 0.1〜0.4重量部及び水を加熱攪拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2.5モルを加えて PMGを 製造する方法。  (18) A method for producing PMG by adding 1 to 1 part by weight of PMI DA, 0.1 to 0.4 part by weight of recovered activated carbon and water and adding 2.0 to 2.5 mol of hydrogen peroxide to 1 mol of PM I DA while heating and stirring.
(19) 大気圧下において、 PMI DA、 水及び活性炭を加熱攪拌下、 過酸化水素 を加えて P M Gを製造する方法。  (19) A method of producing PMG by adding hydrogen peroxide while heating and stirring PMI DA, water and activated carbon under atmospheric pressure.
(20) 大気圧下において、 PMI DA 1モル、 水及び活性炭を加熱攙拌下、 過酸 化水素 2〜 5モルを加えて PMGを製造する方法。  (20) A method for producing PMG by adding 1 to 5 mol of hydrogen peroxide while heating and stirring 1 mol of PMI DA, water and activated carbon under atmospheric pressure.
(21)大気 IE下において、 PMI DA 1モル、 水及び活性炭を加熱攪拌下、 過酸 化水素 2· 0〜2· 5モルを加えて PMGを製造する方法。  (21) A method of producing PMG by adding 1 to 2.5 mol of hydrogen peroxide while heating and stirring 1 mol of PMI DA, water and activated carbon under the IE atmosphere.
(22) 大気圧下において、 PM I DA 1重量部、 活性炭 0.1〜0.75重量部及び 水を加熱攪拌下、 過酸化水素を加えて P MGを製造する方法。  (22) A method for producing PMG by adding hydrogen peroxide under heating and stirring 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of activated carbon and water under atmospheric pressure.
(23) 大気圧下において、 PM I DA 1重量部、 活性炭 0.1〜0.75重量部及び 水を加熱攬拌下、 PM I DA 1モルに対して、 過酸化水素 2〜5モルを加 えて PMGを製造する方法。  (23) Under atmospheric pressure, heat 1 part by weight of PM IDA, 0.1 to 0.75 part by weight of activated carbon and water, and add 2 to 5 moles of hydrogen peroxide to 1 mole of PM I DA under stirring. How to make.
(24)大気圧下において、 PM I DA 1重量部、 活性炭 0.1〜0.75重量部及び 水を加熱攬拌下、 PMIDA 1モルに対して、 過酸化水素 2· 0〜2· 5モル を加えて P MGを製造する方法。  (24) Under atmospheric pressure, heat 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of activated carbon and water, and add 20 to 2.5 moles of hydrogen peroxide to 1 mole of PMIDA under stirring. How to manufacture PMG.
(25)大気圧下において、 PM I D A 1重量部を、 活性炭 0.1〜0.4重量部及び 水を加熱擾拌下、 過酸化水素を加えて P M Gを製造する方法。  (25) A method of producing PMG by adding 1 part by weight of PMIDA, 0.1 to 0.4 parts by weight of activated carbon and water under atmospheric pressure, and adding hydrogen peroxide while heating and stirring.
(26) 大気圧下において、 PM I DA 1重量部、 活性炭 0.1〜0.4重量部及び水 を加熱擾拌下、 PM IDA 1モルに対して、 過酸化水素 2〜5モルを加え て PMGを製造する方法。 (27) 大気圧下において、 PM I D A 1重量部、 活性炭 0, 1〜0.4重量部及び水 を加熱攪拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2.5モルを 加えて P M Gを製造する方法。 (26) Under atmospheric pressure, 1 part by weight of PM IDA, 0.1 to 0.4 part by weight of activated carbon and water are heated and stirred, and 2 to 5 mol of hydrogen peroxide is added to 1 mol of PM IDA to produce PMG how to. (27) Under atmospheric pressure, 1 part by weight of PM IDA, 0.1 to 0.4 part by weight of activated carbon and water are heated and stirred, and 2.0 to 2.5 mol of hydrogen peroxide is added to 1 mol of PM IDA to form PMG. How to make.
(28) 大気圧下において、 PMI DA、 水及び回収活性炭を加熱撹拌下、 過酸化 水素を加え P M Gを製造する方法。  (28) A method for producing PMG by adding hydrogen peroxide under heating and stirring PMI DA, water and recovered activated carbon under atmospheric pressure.
(29) 大気圧下において、 PM I DA 1モル、 水及び回収活性炭を加熱攙拌下、 過酸化水素 2〜 5モルを加えて PMGを製造する方法。  (29) A method of producing PMG by adding 1 to 5 mol of hydrogen peroxide while heating and stirring 1 mol of PM IDA, water and recovered activated carbon under atmospheric pressure.
(30)大気圧下において、 PM I DA 1モル、 水及び回収活性炭を加熱攙拌下、 過酸化水素 2.0〜2.5モルを加えて PMGを製造する方法。  (30) A method of producing PMG by adding 2.0 to 2.5 mol of hydrogen peroxide under heating and stirring 1 mol of PM IDA, water and recovered activated carbon under atmospheric pressure.
(31) 大気圧下において、 PM I DA 1重量部、 回収活性炭 0.1〜0.75重量部 及び水を加熱搜拌下、 過酸化水素を加えて PMGを製造する方法。  (31) A method of producing PMG by adding 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of recovered activated carbon and water under atmospheric pressure, and adding hydrogen peroxide thereto.
(32) 大気圧下において、 PM I DA 1重量部、 回収活性炭 0.1〜0.75重量部 び水を加熱熳拌下、 PM I DA 1モルに対して、 過酸化水素 2〜5モルを 加えて PMGを製造する方法。  (32) Under atmospheric pressure, 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of recovered activated carbon and water are heated and stirred, and PMG is added by adding 2 to 5 moles of hydrogen peroxide to 1 mole of PM I DA. How to manufacture.
(33) 大気圧下において、 PM I D A 1重量部、 回収活性炭 0.1〜0.75重量部 及び水を加熱攪拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2.5 モルを加えて PMGを製造する方法。  (33) Under atmospheric pressure, 1 part by weight of PM IDA, 0.1 to 0.75 parts by weight of recovered activated carbon and water are heated and stirred, and 2.0 to 2.5 mol of hydrogen peroxide is added to 1 mol of PM IDA to produce PMG how to.
(34) 大気圧下において、 PM I D A 1重量部、 回収活性炭 0.1〜0.4重量部及 び水を加熱攪拌下、 過酸化水素を加えて P M Gを製造する方法。  (34) A method of producing PMG by adding hydrogen peroxide to 1 part by weight of PMIDA, 0.1 to 0.4 part by weight of recovered activated carbon and water under heating and stirring under atmospheric pressure.
(35)大気圧下において、 PM I D A 1重量部、 回収活性炭 0.1〜0.4重量部及 び水を加熱攙拌下、 PM I DA 1モルに対して、 過酸化水素 2〜5モルを 加えて P M Gを製造する方法。  (35) Under atmospheric pressure, 1 part by weight of PM IDA, 0.1 to 0.4 part by weight of recovered activated carbon and water are heated and stirred, and PMG is added by adding 2 to 5 mol of hydrogen peroxide to 1 mol of PM IDA. How to manufacture.
(36)大気圧下において、 PM I D A 1重量部、 回収活性炭 0.1〜0.4重量部及 び水を加熱攪拌下、 PM I DA 1モルに対して、 過酸化水素 2.0〜2.5モ ルを加えて P M Gを製造する方法。  (36) Under atmospheric pressure, 1 part by weight of PM IDA, 0.1 to 0.4 part by weight of recovered activated carbon and water are heated and stirred, and 2.0 to 2.5 mol of hydrogen peroxide is added to 1 mol of PM IDA to PMG. How to manufacture.
本発明の好ましい実施の形態としては、 前記の実施態様 (2)、 (3) 、 (5)、 (6) 、 (8) 、 (9) 、 (11) 、 (12) 、 (14) 、 (15) 、 (17) 、 (18) 、 (20)、 (21) 、 (23) 、 (24)、 (26)、 (27)、 (29) 、 (30)、 (32) 、 (33) 、 (35) 及び (36) の製造方法が挙げられ、 最も好ましい実施の形態とし ては、 実施態様 (9) 、 (18) 、 (27) 及び (36) の製造方法が挙げられる。 実施例 As a preferred embodiment of the present invention, the above embodiments (2), (3), (5), (6), (8), (9), (11), (12), (14), (15), (17), (18), (20), (21), (23), (24), (26), (27), (29), (30), (32), (33 ), (35) and (36), which are the most preferred embodiments. Examples include the production methods of Embodiments (9), (18), (27) and (36). Example
次に本発明の方法を例示するが、 本発明はこれらに限定されるものではない。 又、 PMGの正味得量 (Net ) は、 単雜して得られた結晶の総得量 (Gross ) x 純度 (PMGの含有量) により計算された値、 収率は (PMGの正味得量 PM Gの理論得量) X 1 00により計算された値、 転化率は (生成 PMGの含有量 (モル数) 使用した原料 PM I D Aの量 (モル数) ) X 1 00により計算され た値をそれぞれ示す。 PMGの含有量は高速液体クロマトグラフィー(HPLC) により定量した。  Next, the method of the present invention will be illustrated, but the present invention is not limited thereto. The net yield of PMG (Net) is a value calculated by the total yield (Gross) x purity (PMG content) of the crystals obtained by singulation, and the yield is (Net yield of PMG) The theoretical amount of PMG) The value calculated by X100, and the conversion is (content of generated PMG (number of moles) amount of raw material PM IDA used (number of moles)) The value calculated by X100 Shown respectively. The content of PMG was determined by high performance liquid chromatography (HPLC).
実施例 1 Example 1
水 1 0 Oml中に、 表 1に示す活性炭 5 gと PM I DA20.0 g (0.088モル) とを加え、 撹拌下 60〜 65 'Cにて 30 %過酸化水素水 20.0 g (0.176モル、 2.0 倍モル ZPMIDA ) を、 同温度を保持しつつ、 3時間で滴下、 1時間熟成後、 単雜法 (B) により結晶を単離したところ、 表 1の結果を得た。 In 10 mL of water, 5 g of activated carbon shown in Table 1 and 20.0 g (0.088 mol) of PM I DA were added, and 20.0 g (0.176 mol, 2.0-fold molar ZPMIDA) was added dropwise over 3 hours while maintaining the same temperature. After aging for 1 hour, the crystals were isolated by the simplex method (B). The results shown in Table 1 were obtained.
表 1 活 性 炭 総得量 (g) 純度^) 正味得量 (g) 収率 ) Table 1 Total amount of activated charcoal (g) Purity ^) Net amount (g) Yield)
(1) PM-KS 12.52 96.1 12.03 80.8(1) PM-KS 12.52 96.1 12.03 80.8
(2) PC 13.18 97.4 12.84 86.2(2) PC 13.18 97.4 12.84 86.2
(3) 太閤 W-50 13.34 95.9 12.79 85.9(3) Taiko W-50 13.34 95.9 12.79 85.9
(4)クラレコ -ル PW-W5 13.02 97.7 12.72 85.4(4) Kuraray Co., Ltd.PW-W5 13.02 97.7 12.72 85.4
(5) 精製白 ¾ 12.62 97.3 12.28 82.5(5) Purified white ¾ 12.62 97.3 12.28 82.5
(6) NOR IT SX-ULTRA 12.74 97.8 12.46 83.7(6) NOR IT SX-ULTRA 12.74 97.8 12.46 83.7
(7) NOR IT CA-SP 12.77 98.4 12.57 84.4(7) NOR IT CA-SP 12.77 98.4 12.57 84.4
(8) NOR IT SA-1 13.02 98.2 12.79 85.9(8) NOR IT SA-1 13.02 98.2 12.79 85.9
(9) DARCO S-51 12.59 97.5 12.28 82.5(9) DARCO S-51 12.59 97.5 12.28 82.5
(10)カルゴン 粒伏 AL 12.75 ΐ)ο. 1 CO o4.1(10) Calgon Granulation AL 12.75 ΐ) ο.1 CO o4.1
(11) 太閤 SG 12.88 97.8 12.60 84.6(11) Taiko SG 12.88 97.8 12.60 84.6
(12) X-7100 12.29 95.1 11.69 78.5(12) X-7100 12.29 95.1 11.69 78.5
(13) NOR IT ROW 0.8SUPRA 12,55 98.5 12.36 83.0(13) NOR IT ROW 0.8SUPRA 12,55 98.5 12.36 83.0
(14) NOR IT ROX 0.8 12.61 98.3 12.40 83.3(14) NOR IT ROX 0.8 12.61 98.3 12.40 83.3
(15) DARCO 8x30 12.56 98.0 12.31 82.7 表中、 活性炭の棚の (1) は三井製薬工業 (株) 製、 (2) は (株) ッルミコール 製、 (3) 及び (11)は二村化学工業(株) 製、 (4) はクラレケミカル (株) 製、 (5) 及び (12)は武田薬品工業 (株) 製、 (6)〜(9)及び (13)〜(15)は日本ノリット(株) 阪売の製品を示す。 (15) DARCO 8x30 12.56 98.0 12.31 82.7 In the table, activated carbon shelves (1) are manufactured by Mitsui Pharmaceutical Co., Ltd., (2) are manufactured by llmicole, and (3) and (11) are Nimura Chemical ( (4) is made by Kuraray Chemical Co., Ltd. (5) and (12) are made by Takeda Pharmaceutical Co., Ltd. (6) to (9) and (13) to (15) are made by Nippon Norit ( Indicates a product of Hanuri Co., Ltd.
実施例 2 Example 2
水 1 00m 1中に、 表 2に示す活性炭 (日本ノリット (株) 販売品) と PM I DA 20.0 g (0.088モル)とを加え、 撹拌下 60〜 65 'Cにて 35 %過酸化水素水 20.0 g (0.176モル、 2.0倍モル/ PMIDA ) を、 同温度を保持しつつ、 3時間で滴下、 1 5分間熟成後、 単離法 (B) により結晶を単離したところ、 表 2の結果を得た。 表 2 活 性 炭 (g) 総得量 (g) 純度^) 正味得量 (g) 収率 ) In 100 ml of water, add activated carbon (sold by Nippon Norit Co., Ltd.) shown in Table 2 and 20.0 g (0.088 mol) of PM IDA, and stir at 35% hydrogen peroxide at 60-65 ° C. 20.0 g (0.176 mol, 2.0 times mol / PMIDA) was added dropwise over 3 hours while maintaining the same temperature, and after aging for 15 minutes, the crystals were isolated by the isolation method (B). I got Table 2 Activated charcoal (g) Total yield (g) Purity ^) Net yield (g) Yield)
(1) NOR IT SA-1 1 6.72 96.0 6.45 43.3(1) NOR IT SA-1 1 6.72 96.0 6.45 43.3
(2) NOR IT SA-1 2 12.63 98.2 12.40 83.3(2) NOR IT SA-1 2 12.63 98.2 12.40 83.3
(3) NOR IT SA-1 3 12.95 98.2 12.72 85.4(3) NOR IT SA-1 3 12.95 98.2 12.72 85.4
(4) NOR IT SA-1 4 13.08 98.0 12.82 86.1(4) NOR IT SA-1 4 13.08 98.0 12.82 86.1
(5) NOR IT SA-1 5 13.14 97.9 12.86 86.4(5) NOR IT SA-1 5 13.14 97.9 12.86 86.4
(6) NOR IT SA-1 8 13.13 97.4 12.79 85.9(6) NOR IT SA-1 8 13.13 97.4 12.79 85.9
(7) 匿 IT ROW 0.8 SUPRA 3 12.29 95.6 11.75 78.9(7) Hidden IT ROW 0.8 SUPRA 3 12.29 95.6 11.75 78.9
(8) 曙 IT ROW 0.8 SUPRA 4 12.68 98.2 12.45 83.6(8) Akebono IT ROW 0.8 SUPRA 4 12.68 98.2 12.45 83.6
(9) NOR IT ROW 0.8 SUPRA 5 12.80 98.4 12.60 84.6(9) NOR IT ROW 0.8 SUPRA 5 12.80 98.4 12.60 84.6
(10) NOR IT ROW 0.8 SUPRA 6 12.85 97.9 12.58 84.5(10) NOR IT ROW 0.8 SUPRA 6 12.85 97.9 12.58 84.5
(11) NOR IT ROW 0.8 SUPRA 7 12.91 98.3 12.69 85.2(11) NOR IT ROW 0.8 SUPRA 7 12.91 98.3 12.69 85.2
(12) NOR IT ROW 0.8 SUPRA 8 12.87 98.1 12.63 84.8(12) NOR IT ROW 0.8 SUPRA 8 12.87 98.1 12.63 84.8
(13) NORIT ROW 0.8 SUPRA 15 12.94 97.8 12.66 85.0 実施例 3 (13) NORIT ROW 0.8 SUPRA 15 12.94 97.8 12.66 85.0 Example 3
水 1 0 Om 1中に、 活性炭 (NOR I T ROW 0.8 SUPRA) 5 gと PM I DA20.0 g (0.088モル)とを加え、 撹拌下 60〜 65 'Cにて、 表 3に示す 35%過酸化水素水を添加し、 同温度を保持しつつ、 3時間で滴下、 1時間熟成 後、 単雜法 (B) により結晶を単離したところ、 表 3の結果を得た。 表 3 過酸化水素水 (対 PMIDAモル) 総得量 (g) 純度 ) 正味得量 (g) 収率 ) 5 g of activated carbon (NOR IT ROW 0.8 SUPRA) and 20.0 g (0.088 mol) of PM I DA were added to 10 Om1 of water, and the mixture was stirred at 60 to 65 ° C at a temperature of 60 to 65 ° C, and the 35% Hydrogen oxide water was added, and the mixture was added dropwise over 3 hours while maintaining the same temperature. After aging for 1 hour, the crystals were isolated by the simplex method (B). The results shown in Table 3 were obtained. Table 3 Hydrogen peroxide solution (based on PMIDA mole) Total yield (g) Purity) Net yield (g) Yield)
(1) 15.0g、 0.154モル、(1.75倍) 10.19 95.0 9.68 65.0(1) 15.0 g, 0.154 mol, (1.75 times) 10.19 95.0 9.68 65.0
(2) 17. lg、 0.176モル、(2.0倍) 12.69 97.6 12.39 83.2(2) 17.lg, 0.176 mol, (2.0 times) 12.69 97.6 12.39 83.2
(3) 19.3g、 0.198モル、(2.25倍) 12.79 97.9 12.52 84.1(3) 19.3 g, 0.198 mol, (2.25 times) 12.79 97.9 12.52 84.1
(4) 21.4g、 0.220モル、(2.5倍) 12.65 97.7 12.36 83.0(4) 21.4 g, 0.220 mol, (2.5 times) 12.65 97.7 12.36 83.0
(5) 42.8g、 0.441モル、(5.0倍) 12.65 98.0 12.40 83.3 実施例 4 (5) 42.8 g, 0.441 mol, (5.0 times) 12.65 98.0 12.40 83.3 Example 4
表 4に示す水中に、 活性炭 (NOR I T ROW 0.8 SUPRA) 5 gと PM I DA 20.0 g (0.088モル)とを加え、 撹拌下 60〜 65 'Cにて 30 %過酸化 水素水 20.0 g (0.176モル、 2.0倍モル ZPMIDA ) を同温度を保持しつつ、 3時間で 滴下、 1時間熟成し、 表 4に示す単雜法により結晶を単離したところ、 表 4の結 果を得た。  In the water shown in Table 4, 5 g of activated carbon (NOR IT ROW 0.8 SUPRA) and 20.0 g (0.088 mol) of PM IDA were added, and 20.0 g (0.176 g) of 30% hydrogen peroxide solution was stirred at 60 to 65 ° C. Mol, 2.0-fold mol ZPMIDA) was added dropwise over 3 hours and aged for 1 hour while maintaining the same temperature. The crystals were isolated by the simplex method shown in Table 4, and the results shown in Table 4 were obtained.
表 4 水 (g) 単離法 総得量 (g) 純度 ) 正味得量 (g) 収率 (%)  Table 4 Water (g) Isolation method Total yield (g) Purity) Net yield (g) Yield (%)
(1) 10 撹拌不能 (1) 10 Unable to stir
(2) 20 (B) 12.26 97.9 12.00 80.6 (2) 20 (B) 12.26 97.9 12.00 80.6
(3) 40 (B) 12.69 97.6 12.39 83.2(3) 40 (B) 12.69 97.6 12.39 83.2
(4) 100 (B) 12.55 98.5 12.36 83.0(4) 100 (B) 12.55 98.5 12.36 83.0
(5) 200 (B) 12.53 98.4 12.33 82.8(5) 200 (B) 12.53 98.4 12.33 82.8
(6) 300 (A) 12.57 98.4 12.37 83.1(6) 300 (A) 12.57 98.4 12.37 83.1
(7) 400 (A) 12.53 98.5 12.34 82.9 実施例 5 (7) 400 (A) 12.53 98.5 12.34 82.9 Example 5
水 1 0 Om 1中に、 活性炭 (NOR I T ROW 0.8 SUPRA) 5 gと PM I DA 20.0 g (0.088モル)とを加え、 撹拌下で、 表 5に示す温度にて、 30 %過酸化水素水 20.0 g (0.176モル、 2.0倍モル/ PMIDA を同温度を保持しつつ、 3 時間で滴下し、 熟成時間は、 反応温度 25〜30°Cでは 8時間 30分、 それ以外 の反応温度では 1時間行った後、 単離法 (B) により結晶を単雜したところ、 表 5の結果を得た。  5 g of activated carbon (NOR IT ROW 0.8 SUPRA) and 20.0 g (0.088 mol) of PM IDA were added to 10 Om 1 of water, and the mixture was stirred and stirred at a temperature shown in Table 5 at a temperature of 30% hydrogen peroxide. 20.0 g (0.176 mol, 2.0 times mol / PMIDA) was added dropwise over 3 hours while maintaining the same temperature.The aging time was 8 hours and 30 minutes at a reaction temperature of 25 to 30 ° C, and 1 hour at other reaction temperatures. After that, the crystals were isolated by the isolation method (B), and the results shown in Table 5 were obtained.
表 5 温度 CC) 総得量 (g) 純度 (%) 正味得量 (g) 収率 )  (Table 5 Temperature CC) Total yield (g) Purity (%) Net yield (g) Yield)
(1) 25 〜30 9.46 71.9 6.80 45.7 (1) 25 to 30 9.46 71.9 6.80 45.7
(2) 40 〜45 10.96 76.7 8.41 56.5  (2) 40 to 45 10.96 76.7 8.41 56.5
(3) 50 〜55 11.53 97.7 11.26 75.6  (3) 50 to 55 11.53 97.7 11.26 75.6
(4) 60 〜65 12.55 98.5 12.36 83.0  (4) 60 to 65 12.55 98.5 12.36 83.0
(5) 70 〜75 12.48 98.6 12.31 82.7  (5) 70 to 75 12.48 98.6 12.31 82.7
(6) 80〜85 12.39 98.6 12.22 82.1  (6) 80-85 12.39 98.6 12.22 82.1
(7) 90 〜95 11.98 98.4 11.79 79.2  (7) 90 to 95 11.98 98.4 11.79 79.2
(8) 還流温度 6.71 98.0 6.58 44.2 実施例 6  (8) Reflux temperature 6.71 98.0 6.58 44.2 Example 6
表 6に示す水中に、 活性炭 (NOR I T SA- 1 ) 2 £又は82と?\110 A 20.0 g (0.088モル) とを加え、 撹拌下 60〜 65 'Cにて 35 %過酸化水素水 17.1 (0.176モル、 2.0倍モル/ PMIDA) 又は 19.7 g (0.203モル、 2.3倍モル/ PMIDA) を同温度を保持しつつ、 3時間で滴下、 1時間熟成後、 単雜法 (B) により結晶 を単雜したところ、 表 6の結果を得た。 表 6 水 (g) 活性炭 (g) 過酸化水素水 総得量 (g) 純度^) 正味得量 (g) 収率 ) In the water shown in Table 6, activated carbon (NOR IT SA-1) 2 £ or 82? \ 110 A 20.0 g (0.088 mol) and 35% hydrogen peroxide aqueous solution 17.1 (0.176 mol, 2.0 times mol / PMIDA) or 19.7 g (0.203 mol, 2.3 times mol / PMIDA) was added dropwise over 3 hours while maintaining the same temperature. After aging for 1 hour, the crystals were singulated by the union method (B), and the results shown in Table 6 were obtained. Table 6 Water (g) Activated carbon (g) Hydrogen peroxide solution Total amount (g) Purity ^) Net amount (g) Yield)
(1) 40 2 17. lg(2.0倍モル) 12.78 97.2 12.40 83.3(1) 40 2 17.lg (2.0 times mol) 12.78 97.2 12.40 83.3
(2) 40 8 17. lg(2.0倍モル) 12.89 96.8 12.48 83.8(2) 40 8 17.lg (2.0 times mol) 12.89 96.8 12.48 83.8
(3) 40 2 19.7g(2.3倍モル) 12.75 97.5 12.43 83.5(3) 40 2 19.7 g (2.3 times mol) 12.75 97.5 12.43 83.5
(4) 40 8 19.7g(2.3倍モル) 12.77 98.0 12.51 84.0(4) 40 8 19.7 g (2.3 times mol) 12.77 98.0 12.51 84.0
(5) 200 2 17. lg(2.0倍モル) 12.47 98.2 12.25 82.3(5) 200 2 17.lg (2.0 times mol) 12.47 98.2 12.25 82.3
(6) 200 8 17. lg(2.0倍モル) 12.60 97.7 12.31 82.7(6) 200 8 17.lg (2.0 times mol) 12.60 97.7 12.31 82.7
(7) 200 2 19.7g(2.3倍モル) 12.48 97.9 12.22 82.1(7) 200 2 19.7 g (2.3 times mol) 12.48 97.9 12.22 82.1
(8) 200 8 19.7g(2.3倍モル) 12.62 98.2 12.39 83.2 実施例 7 (8) 200 8 19.7 g (2.3 times mol) 12.62 98.2 12.39 83.2 Example 7
表 7に示す水中に、 活性炭 (NOR I T SA— 1 ) 2 g又は 8 gと PM I D A 20.0 g (0.088モル) とを加え、 撹拌下 80-85てにて 35 %過酸化水素水 17.1 g (0.176モル、 2.0 倍モル ZPMIDA ) 又は 1 9.7 g (0.203モル、 2.3倍モル/ PMIDA ) を同温度を保持しつつ、 3時間で滴下、 1時間熟成後、 単雜法 (B) に より結晶を単離したところ、 表 7の結果を得た。 In the water shown in Table 7, 2 g or 8 g of activated carbon (NOR ITSA-1) and 20.0 g (0.088 mol) of PM IDA were added, and stirred under 80-85 for 35% hydrogen peroxide solution 17.1 g ( 0.176 mol, 2.0-fold mol ZPMIDA) or 19.7 g (0.203 mol, 2.3-fold mol / PMIDA) was added dropwise over 3 hours while maintaining the same temperature.After aging for 1 hour, crystals were obtained by simplex method (B). Upon isolation, the results in Table 7 were obtained.
水 (g) 活性炭 (g) 過酸化水素水 総得量 (g) 純度^) 正味得量 (g) 収率 ) Water (g) Activated carbon (g) Hydrogen peroxide solution Total amount (g) Purity ^) Net amount (g) Yield)
(1) 40 2 17. lg(2.0倍モル) 12.82 97.8 12.54 84.2(1) 40 2 17.lg (2.0 molar) 12.82 97.8 12.54 84.2
(2) 40 8 17. lg(2.0倍モル) 12.76 97.4 12.43 83.5(2) 40 8 17.lg (2.0 times mol) 12.76 97.4 12.43 83.5
(3) 40 2 19.7g(2.3倍モル) 12.84 98.0 12.58 84.5(3) 40 2 19.7 g (2.3 times mol) 12.84 98.0 12.58 84.5
(4) 40 8 19.7g(2.3倍モル) 12.85 98.1 12.61 84.7(4) 40 8 19.7 g (2.3 times mol) 12.85 98.1 12.61 84.7
(5) 200 2 17. lg (2.0倍モル) 12.64 98.3 12.43 83.5(5) 200 2 17.lg (2.0 times mol) 12.64 98.3 12.43 83.5
(6) 200 8 17. lg(2.0倍モル) 12.66 98.4 12.46 83.7(6) 200 8 17.lg (2.0 molar) 12.66 98.4 12.46 83.7
(7) 200 2 19.7g(2.3倍モル) 12.62 97.8 12.34 82.9(7) 200 2 19.7 g (2.3 times mol) 12.62 97.8 12.34 82.9
(8) 200 8 19.7g(2.3倍モル) 12.74 98.2 12.51 84.0 実施例 8 (8) 200 8 19.7 g (2.3 times mol) 12.74 98.2 12.51 84.0 Example 8
( 1 ) 実施例 6の ( 1 ) の反応で使用し回収された活性炭のみを使用して同様 の反応を 5回行った。 (2) 実施例 6の (2) の反応で使用し回収された活性炭 のみを使用して同様の反応を 1 0回行った。 (3) 実施例 7の (7) の反応で使 用し回収された活性炭のみを使用して同様の反応を 5回行った。 (4) 実施例 7 の (8) の反応で使用し回収された活性炭のみを使用して同様の反応を 1 0回行 つた。 それぞれの結果を表 8に示す。  (1) The same reaction was performed 5 times using only the activated carbon recovered and used in the reaction of (1) in Example 6. (2) A similar reaction was performed 10 times using only the activated carbon recovered and used in the reaction of (6) in Example 6. (3) The same reaction was performed five times using only the activated carbon recovered and used in the reaction of (7) in Example 7. (4) The same reaction was performed 10 times using only the activated carbon recovered and used in the reaction of (8) in Example 7. Table 8 shows the results.
表 8 水 (g) 過酸化水素水 総得量 (g) 純度 (%) 正味得量 (g) 収率 )  Table 8 Water (g) Hydrogen peroxide solution Total amount (g) Purity (%) Net amount (g) Yield)
(1) 40 17. lg(2.0倍モル) 12.52 98.3 12.31 82.7(1) 40 17.lg (2.0 times mol) 12.52 98.3 12.31 82.7
(2) 40 17. lg(2.0倍モル) 12.67 98.1 12.43 83.5(2) 40 17.lg (2.0 times mol) 12.67 98.1 12.43 83.5
(3) 200 19.7g(2.3倍モル) 12.59 98.5 12.40 83.3(3) 200 19.7 g (2.3 times mol) 12.59 98.5 12.40 83.3
(4) 200 19.7g(2.3倍モル) 12.64 98.3 12.43 83.5 表中、 (1) 及び (3) は 5回目の反応結果を、 (2) 及び (4) は 1 0回目の反応結 果をそれぞれ示す。 (4) 200 19.7 g (2.3 times mol) 12.64 98.3 12.43 83.5 In the table, (1) and (3) show the results of the fifth reaction, and (2) and (4) show the results of the tenth reaction, respectively.
比較例 Comparative example
比較例 1 Comparative Example 1
水 1 0 Om 1に、 活性炭 (NOR I T SX— 111^丁1¾八) 5.0 £と?\110 A 20.0 g (0.088モル) とを加え、 撹拌下 60〜65°Cにて、 酸素ガスを 4 6 ml /minの流速で 8時間導入した (11.2倍モル ZPM IDA ) 。 次レ、で水酸化ナトリウムを 加え PMG塩を形成し、 PMG塩の水溶液とし、 滤過して活性炭を濂別し、 HPLCで PMGを定量したところ、 3.6 6 g (0.0216モル) であった (転化率 24.6 %) o  Activated carbon (NOR I T SX—111 ^ 1¾1¾8) with 5.0 £? 20.0 g (0.088 mol) of \ 110 A was added, and oxygen gas was introduced at 60-65 ° C with stirring at a flow rate of 46 ml / min for 8 hours (11.2-fold molar ZPM IDA). Next, sodium hydroxide was added to form a PMG salt, and the resulting solution was used as an aqueous solution of the PMG salt. The solution was filtered to separate activated carbon, and the amount of PMG determined by HPLC was 3.66 g (0.0216 mol) ( (Conversion rate 24.6%) o
比較例 2 Comparative Example 2
3 0 0 m l耐圧ガラス容器に水 1 0 0m 1、 活性炭 (NOR I T SX- ULTRA) 1.5 gと PMI DA5.0 g (0.022モル)とを加え、 撹拌下 60〜65 'Cにて、 5 kg/cm2の加圧下、 空気を出口速度 1 5ml/minの流速で 7時間導入した。 次いで活性炭を濾別し、 滤液を 1 2m lまで減圧濃縮し、 析出した結晶 3.06 g を得た (純度 87.6 %、 収率 72.0 %)。 100 ml of water, 1.5 g of activated carbon (NOR IT SX-ULTRA) and 5.0 g (0.022 mol) of PMI DA are added to a 300 ml pressure-resistant glass container, and 5 kg at 60-65'C with stirring. Under a pressure of / cm 2 , air was introduced for 7 hours at an outlet speed of 15 ml / min. Then, the activated carbon was filtered off, and the filtrate was concentrated under reduced pressure to 12 ml to obtain 3.06 g of precipitated crystals (purity: 87.6%, yield: 72.0%).
比較例 3 Comparative Example 3
水 1 00m 1に 5%パラジウム炭素 (小島化学 (株) 製) 5 gと、 PMI DA 20.0 g (0.088 モル) を加え、 撹拌下 60〜65てにて酸素ガスを 5 1 ml/minの 流速で 6時間導入した (9.3 倍モル/ PMIDA) 。 次いで水酸化ナトリウムを加え PMG塩を形成し、 PMG塩の水溶液とし、 濾過してパラジウム炭素を濾別し、 HPLCで PMGを定量したところ、 0.69 g (0.004モル)であった (転化率 4.5 %)。  5 g of 5% palladium carbon (produced by Kojima Chemical Co., Ltd.) and 20.0 g (0.088 mol) of PMI DA are added to 100 ml of water, and oxygen gas is supplied at a flow rate of 51 ml / min with stirring at 60-65. For 6 hours (9.3 times mol / PMIDA). Then, sodium hydroxide was added to form a PMG salt, the resulting solution was made into an aqueous solution of the PMG salt, filtered, palladium carbon was filtered off, and the amount of PMG was determined by HPLC. The result was 0.69 g (0.004 mol) (conversion rate 4.5% ).
比較例 4 Comparative Example 4
3 0 0 m l耐圧ガラス容器に水 1 0 0 m 1、 5 %パラジゥム炭素 (小島化学 (株) 製) 5 gと、 PM I D A 20.0 g (0.088モル)を加え、 撹拌下 60〜 65 'C にて、 5kg/cm2の加圧下、 空気を 20 ml/minの流速で、 7時間導入した。 次いで 水酸化ナトリウムを加え PMG塩を形成し、 PMG塩の水溶液とし、 滤過してパ ラジウム炭素を濾別し、 HPLCで PMGを定量したところ、 2.92 g (0.0173 モル) であった (転化率 19.7%) In a 300 ml pressure-resistant glass container, add 100 g of water, 5 g of 5% palladium carbon (manufactured by Kojima Chemical Co., Ltd.) and 20.0 g (0.088 mol) of PM IDA and bring to 60-65 ° C with stirring. Under a pressure of 5 kg / cm 2 , air was introduced at a flow rate of 20 ml / min for 7 hours. Then, sodium hydroxide was added to form a PMG salt, and the resulting solution was made into an aqueous solution of the PMG salt. The solution was filtered to remove the palladium carbon, and the PMG was quantified by HPLC. Mol) (conversion rate 19.7%)
比較例 5 Comparative Example 5
水 22 m 1に濃硫酸 10.7 gと PM I D A 20· 0 g (0.088モル)とを加え、 撹拌 下 90〜95°Cにて 30 %過酸化水素水 23.9 g (0.211モル) を同温度を保持し つつ、 4時間で滴下、 1時間熟成後、 室温迄冷却した。 その後、 28%水酸化ナ トリウム 30.2 gを加え、 硫酸分を中和し、 5 °C迄冷却し、 析出した結晶 8.1 0 gを得た (純度 93.2 %、 収率 50.7 %)。  Add 10.7 g of concentrated sulfuric acid and 20.0 g (0.088 mol) of PM IDA to 22 m1 of water, and maintain 23.9 g (0.211 mol) of 30% hydrogen peroxide at the same temperature at 90 to 95 ° C with stirring. Then, the mixture was added dropwise over 4 hours, aged for 1 hour, and cooled to room temperature. Thereafter, 30.2 g of 28% sodium hydroxide was added to neutralize the sulfuric acid content and cooled to 5 ° C to obtain 8.10 g of precipitated crystals (purity 93.2%, yield 50.7%).
比較例 6 Comparative Example 6
水 1 5 m 1にモリブデン酸アンモニゥム 0.3 1 gと PM I DA 1 3.7 g (0.060 モル) とを加え、 撹拌下 60〜6 5°Cにて 35 %過酸化水素水 6.0 g (0.062倍モル) を同温度を保持しつつ、 1 5分で滴下、 50分熟成後、 室温迄冷 却した。 次に水 5 gにピロ亜硫酸ナトリウム 0.24 gを溶解した水溶液を上記反 応液に加えると、 発泡と共に温度が 65eC迄上昇した。 次いで冷却すると、 析出 した結晶 8.35 gが得られた (純度 68.3 %、 収率 55.9 %)。 0.31 g of ammonium molybdate and 3.7 g (0.060 mol) of PM IDA are added to 15 ml of water, and 6.0 g (0.062 times mol) of 35% aqueous hydrogen peroxide at 60 to 65 ° C with stirring. Was added dropwise over 15 minutes while maintaining the same temperature. After aging for 50 minutes, the mixture was cooled to room temperature. Then the addition of aqueous solution of sodium pyrosulfite 0.24 g water 5 g of the above reaction solution, the temperature was increased to 65 e C with foaming. Then, upon cooling, 8.35 g of precipitated crystals were obtained (purity: 68.3%, yield: 55.9%).
比較例 7 Comparative Example 7
水 1 00ml中に、 PM I D A 20.0 g (0.088モル) とを加え、 撹拌下 60〜 65てにて 30 %過酸化水素水 20.0 g (0.176モル) を同温度を保持しつつ、 3 時間で滴下、 1時間熟成後、 水酸化ナトリウムを加え PMG塩を形成し、 PMG 塩の水溶液とし、 HPLCで PMGを定量したところ、 2.7 g (0.0160モル) であ つた (転化率 18.2%)。  20.0 g (0.088 mol) of PM IDA was added to 100 ml of water, and 20.0 g (0.176 mol) of 30% aqueous hydrogen peroxide was added dropwise with stirring at 60 to 65 for 3 hours while maintaining the same temperature. After aging for 1 hour, sodium hydroxide was added to form a PMG salt, which was used as an aqueous solution of the PMG salt. The amount of PMG was determined by HPLC. The result was 2.7 g (0.0160 mol) (conversion rate: 18.2%).
上記の比較例から次のことが言える。  The following can be said from the above comparative example.
比較例 1から、 大気圧において、 活性炭を用いて酸素を長時間 (8時間) 導入 しても、 PMGは少量しか得られない。  As can be seen from Comparative Example 1, only a small amount of PMG can be obtained even when oxygen is introduced for a long time (8 hours) using activated carbon at atmospheric pressure.
比較例 2から、 加圧下 (5 kg/cm2 ) において、 活性炭を用いて空気を長 時間 (7時間) 導入すれば、 PMGが収率よく得られる。 From Comparative Example 2, PMG can be obtained in good yield by introducing air for a long time (7 hours) using activated carbon under pressure (5 kg / cm 2 ).
比較例 3から、 大気圧において、 パラジウム炭素を用いて酸素を長時間 (6時 間) 導入しても、 PMGは極めて少 iしか得られない。  As can be seen from Comparative Example 3, PMG can be obtained very little even if oxygen is introduced for a long time (6 hours) using palladium carbon at atmospheric pressure.
比較例 4から、 加圧下 (5 kg/cm2 ) において、 パラジウム炭素を用いて 空気を長時間 (7時間) 導入しても、 PMGは少量しか得られない。 比較例 5から、 大気圧において、 過酸化水素及び濃硫酸を用い反応させても P MGの収量は低い。 From Comparative Example 4, only a small amount of PMG can be obtained even if air is introduced for a long time (7 hours) using palladium carbon under pressure (5 kg / cm 2 ). From Comparative Example 5, the yield of PMG is low even when the reaction is performed at atmospheric pressure using hydrogen peroxide and concentrated sulfuric acid.
比較例 6から、 大気圧において、 過酸化水素、 モリブデン及びピロ亜硫酸ナト リウムを用いて反応させると、 発泡が激しく、 温度が上昇して、 反応制御が難し く P MGの収量も低い。  From Comparative Example 6, when the reaction was carried out at atmospheric pressure using hydrogen peroxide, molybdenum and sodium pyrosulfite, the foaming was severe, the temperature increased, the reaction was difficult to control, and the PMG yield was low.
比較例 7から、 大気圧において、 過酸化水素と反応させると、 PMGは少量し か得られない。  From Comparative Example 7, when reacted with hydrogen peroxide at atmospheric pressure, only a small amount of PMG was obtained.
本発明の方法は、 先行技術に比較して、 大気圧下で行うことが出来るので、 酎 圧設備が不要であり、 酸を使用しないので反応装置の腐食の問題もなく、 触媒と して有毒な化合物を含むこともある金属化合物を使用しないので、 処理の手間も かからず安全である。 反応制御も容易で、 使用した活性炭は再生処理をすること なく何度もリサイクル使用が可能である。 純度及び収率もよく、 工業的製法に適 している。  The method of the present invention can be carried out under atmospheric pressure as compared with the prior art, so no pressure equipment is required, and since no acid is used, there is no problem of corrosion of the reactor, and it is toxic as a catalyst. It does not use metal compounds that may contain complex compounds, so there is no need for processing and it is safe. The reaction control is easy, and the used activated carbon can be recycled many times without regenerating. Good purity and yield, suitable for industrial production.

Claims

請求の範囲 The scope of the claims
1. N—ホスホノメチルイミノジ酢酸を水、 活性炭及び過酸化水素の存在下に処 理することを特徴とする N—ホスホノメチルグリシンの製造方法。 1. A method for producing N-phosphonomethylglycine, comprising treating N-phosphonomethyliminodiacetic acid in the presence of water, activated carbon and hydrogen peroxide.
2. 過酸化水素を、 N—ホスホノメチルイミノジ酢酸 1モルに対して、 2〜5モ ルの割合で使用する請求項 1記載の方法。  2. The method according to claim 1, wherein hydrogen peroxide is used in a ratio of 2 to 5 mol per mol of N-phosphonomethyliminodiacetic acid.
3. 過酸化水素を、 N—ホスホノメチルイミノジ酢酸 1モルに対して、 2. 0〜 2. 5モルの割合で使用する請求項 1記載の方法。  3. The method according to claim 1, wherein the hydrogen peroxide is used in a ratio of 2.0 to 2.5 mol based on 1 mol of N-phosphonomethyliminodiacetic acid.
4. 活性炭を、 N—ホスホノメチルイミノジ酢酸 1重量部に対して、 0. 1〜 0. 7 5重量部の割合で使用する請求項 1記載の方法。  4. The method according to claim 1, wherein the activated carbon is used in a ratio of 0.1 to 0.75 parts by weight based on 1 part by weight of N-phosphonomethyliminodiacetic acid.
5. 活性炭を、 N—ホスホノメチルイミノジ酢酸 1重量部に対して、 0. 1〜0. 4 重量部の割合で使用する請求項 1記載の方法。  5. The method according to claim 1, wherein the activated carbon is used in an amount of 0.1 to 0.4 part by weight based on 1 part by weight of N-phosphonomethyliminodiacetic acid.
6. 回収活性炭を使用する請求項 1記載の方法。  6. The method according to claim 1, wherein recovered activated carbon is used.
7. 大気圧下において実施する請求項 1記載の方法。  7. The method according to claim 1, which is performed at atmospheric pressure.
8. N—ホスホノメチルイミノジ et酸、 水及び活性炭を加熱攪拌下に過酸化水素 を加えることを特徴とする N—ホスホノメチルグリシンの製造方法。  8. A method for producing N-phosphonomethylglycine, comprising adding hydrogen peroxide to N-phosphonomethyliminodietic acid, water and activated carbon while heating and stirring.
9. 過酸化水素を、 N—ホスホノメチルイミノジ酢酸 1モルに対して、 2〜5モ ルの割合で使用する請求項 8記載の方法。  9. The method according to claim 8, wherein hydrogen peroxide is used in a proportion of 2 to 5 mol per mol of N-phosphonomethyliminodiacetic acid.
10. 過酸化水素を、 N—ホスホノメチルイミノジ酢酸 1モルに対して、 2. 0〜 2. 5モルの割合で使用する請求項 8記載の方法。  10. The method according to claim 8, wherein hydrogen peroxide is used in a ratio of 2.0 to 2.5 mol per 1 mol of N-phosphonomethyliminodiacetic acid.
11. 活性炭を、 N—ホスホノメチルイミノジ酢酸 1重量部に対して、 0. 1〜 0. 7 5重量部の割合で使用する請求項 8記載の方法。  11. The method according to claim 8, wherein the activated carbon is used in a ratio of 0.1 to 0.75 parts by weight based on 1 part by weight of N-phosphonomethyliminodiacetic acid.
12. 活性炭を、 N—ホスホノメチルイミノジ酢酸 1重量部に対して、 0. 1〜0. 4 重量部の割合で使用する請求項 8記截の方法。  12. The method according to claim 8, wherein the activated carbon is used in a ratio of 0.1 to 0.4 part by weight based on 1 part by weight of N-phosphonomethyliminodiacetic acid.
13. 回収活性炭を使用する請求項 8記載の方法。  13. The method according to claim 8, wherein the recovered activated carbon is used.
14. 大気圧下において実施する請求項 8記載の方法。  14. The method according to claim 8, which is carried out under atmospheric pressure.
PCT/JP1996/000550 1995-03-07 1996-03-07 Process for producing n-phosphonomethylglycine WO1996027602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU48893/96A AU4889396A (en) 1995-03-07 1996-03-07 Process for producing n-phosphonomethylglycine
US08/944,029 US5948938A (en) 1995-03-07 1997-08-29 Process for preparing N-phosphonomethylglycine
HK98111858A HK1017360A1 (en) 1995-03-07 1998-11-09 Process for preparing n-phosphonomethylglycine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/46005 1995-03-07
JP4600595 1995-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/944,029 Continuation US5948938A (en) 1995-03-07 1997-08-29 Process for preparing N-phosphonomethylglycine

Publications (1)

Publication Number Publication Date
WO1996027602A1 true WO1996027602A1 (en) 1996-09-12

Family

ID=12734963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000550 WO1996027602A1 (en) 1995-03-07 1996-03-07 Process for producing n-phosphonomethylglycine

Country Status (6)

Country Link
KR (1) KR19980702708A (en)
CN (1) CN1066152C (en)
AU (1) AU4889396A (en)
HK (1) HK1017360A1 (en)
TW (1) TW322481B (en)
WO (1) WO1996027602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058537A1 (en) * 1998-05-14 1999-11-18 Calgon Carbon Corporation Method for the manufacture of n - phosphonomethylglycine from n - phosphonomethyliminodiacetic acid using a catalytic carbon
DE19938622A1 (en) * 1999-08-14 2001-02-22 Sueddeutsche Kalkstickstoff Pure N-phosphonomethyl-glycine preparation in high yield for use as herbicide, by peroxide oxidation of N-(phosphonomethyl)-iminodiacetic acid over activated carbon catalyst having specific particle size distribution
US6867326B1 (en) 1999-07-23 2005-03-15 Basf Aktiengesellschaft Method of producing glyphosate or a salt thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI247746B (en) * 2000-05-22 2006-01-21 Monsanto Co Reaction systems for making N-(phosphonomethyl)glycine compounds
CN101311183B (en) * 2000-05-22 2011-08-31 孟山都技术有限责任公司 Reaction systems for making N-(phosphonomethyl) glycine compounds
CN1301259C (en) * 2004-01-16 2007-02-21 广东琪田农药化工有限公司 Preparation for glyphosate from N-(phosphonomethyl)iminodiacetic acid (PMIDA) and its products ,and related process
WO2006096617A2 (en) * 2005-03-04 2006-09-14 Monsanto Technology Llc Mitigating necrosis in transgenic glyphosate-tolerant cotton plants treated with herbicidal glyphosate formulations
CN101092428B (en) * 2006-06-23 2011-04-06 北京紫光英力化工技术有限公司 New technique for preparing glyphosate by oxidizing N-Phosphonomethyl iminodiacetic acid in air
CN101092429B (en) * 2006-06-23 2010-08-11 北京紫光英力化工技术有限公司 Method for preparing glyphosate by catalytic oxidation method
CN101508701B (en) * 2008-12-10 2012-09-05 上海泰禾(集团)有限公司 Method for preparing glyphosate by oxidizing N-(Phosphonomethyl)iminodiacetic acid with active carbon as catalyst oxygen
KR101840488B1 (en) 2010-03-31 2018-03-20 주식회사 쿠라레 Activated carbon and uses thereof
KR101246278B1 (en) * 2012-09-18 2013-03-22 주식회사 천보 Synthetic method of iminodiacetic acid
CN104829649A (en) * 2015-05-05 2015-08-12 安徽省益农化工有限公司 Method for producing glyphosate by adopting PMIDA as raw material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219193A (en) * 1982-03-08 1983-12-20 ゲシユリ・ラボラトリ−ズ・リミテツド N-phosphonomethylglycin derivative
JPS597196A (en) * 1982-06-25 1984-01-14 ゲシユリ・ラボラトリ−ズ・リミテツド Manufacture of n-phosphonomethylglycine derivative, herbicidal compound and composition
JPS60246328A (en) * 1984-05-10 1985-12-06 モンサント コンパニー Selective manufacture of secondary amine and primary amine and active carbon catalyst therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969398A (en) * 1974-05-01 1976-07-13 Monsanto Company Process for producing N-phosphonomethyl glycine
US4624937A (en) * 1984-05-10 1986-11-25 Monsanto Company Process for removing surface oxides from activated carbon catalyst
WO1998050279A2 (en) * 1997-05-09 1998-11-12 The Procter & Gamble Company Flexible, collapsible, self-supporting storage bags and containers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219193A (en) * 1982-03-08 1983-12-20 ゲシユリ・ラボラトリ−ズ・リミテツド N-phosphonomethylglycin derivative
JPS597196A (en) * 1982-06-25 1984-01-14 ゲシユリ・ラボラトリ−ズ・リミテツド Manufacture of n-phosphonomethylglycine derivative, herbicidal compound and composition
JPS60246328A (en) * 1984-05-10 1985-12-06 モンサント コンパニー Selective manufacture of secondary amine and primary amine and active carbon catalyst therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058537A1 (en) * 1998-05-14 1999-11-18 Calgon Carbon Corporation Method for the manufacture of n - phosphonomethylglycine from n - phosphonomethyliminodiacetic acid using a catalytic carbon
US6867326B1 (en) 1999-07-23 2005-03-15 Basf Aktiengesellschaft Method of producing glyphosate or a salt thereof
DE19938622A1 (en) * 1999-08-14 2001-02-22 Sueddeutsche Kalkstickstoff Pure N-phosphonomethyl-glycine preparation in high yield for use as herbicide, by peroxide oxidation of N-(phosphonomethyl)-iminodiacetic acid over activated carbon catalyst having specific particle size distribution
DE19938622C2 (en) * 1999-08-14 2002-10-02 Sueddeutsche Kalkstickstoff Process for the preparation of N- (phosphonomethyl) glycine

Also Published As

Publication number Publication date
CN1183100A (en) 1998-05-27
KR19980702708A (en) 1998-08-05
TW322481B (en) 1997-12-11
AU4889396A (en) 1996-09-23
HK1017360A1 (en) 1999-11-19
CN1066152C (en) 2001-05-23

Similar Documents

Publication Publication Date Title
WO1996027602A1 (en) Process for producing n-phosphonomethylglycine
CA2554842A1 (en) Process for the preparation of propylene oxide
WO2004028962A1 (en) Novel aqueous hydrogen peroxide solutions
JP2002532483A (en) Continuous production of epoxides from olefins.
JPH025759B2 (en)
US5948938A (en) Process for preparing N-phosphonomethylglycine
CN115353448B (en) Synthesis method of ibuprofen, catalytic system and application of catalytic system
JPS59105847A (en) Method of synthesizing multicomponent acidic catalyst by organic solution method
JP3719756B2 (en) Method for producing N-phosphonomethylglycine
EP0201719A1 (en) Process for preparing polycarboxylic acid
JP3318992B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JP3520967B2 (en) Method for producing polyester and sorbic acid
US4014952A (en) Process for the preparation of isoprene
US6509498B1 (en) Process for the preparation of sorbic acid or salts thereof
JPH0859205A (en) Production of hydroiodic acid
CN1068564A (en) Produce the method for Sorbic Acid with crotonic aldehyde and acetaldehyde
EP0593129B1 (en) Tungsten- or molybdenum-based supported compositions, process for obtaining them and use thereof as heterogeneous oxydation catalysts
EP0484122B1 (en) Method for obtaining high-purity cinnamic acid
EP0894086B1 (en) Oxidation of pyridine and derivatives
CN112111659B (en) Method for recovering rhodium from rhodium-containing waste liquid
JPH07258156A (en) Production of glycol monoester
JP3001097B1 (en) Method for producing sorbic acid
JPH0625090A (en) Production of neopentyl glycol hydroxypivarate
JPS62106078A (en) Production of hydroxymethylpyridine
KR830000207B1 (en) Method of manufacturing KETAZINE

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96193655.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN CZ HU KR MX NO NZ RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08944029

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970706115

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019970706115

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970706115

Country of ref document: KR