WO1996015297A1 - Procede permettant d'obtenir la croissance d'un cristal massif - Google Patents

Procede permettant d'obtenir la croissance d'un cristal massif Download PDF

Info

Publication number
WO1996015297A1
WO1996015297A1 PCT/JP1995/002025 JP9502025W WO9615297A1 WO 1996015297 A1 WO1996015297 A1 WO 1996015297A1 JP 9502025 W JP9502025 W JP 9502025W WO 9615297 A1 WO9615297 A1 WO 9615297A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
solution
seed crystal
growing
grown
Prior art date
Application number
PCT/JP1995/002025
Other languages
English (en)
French (fr)
Inventor
Toshiaki Asahi
Osamu Oda
Kenji Sato
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/669,493 priority Critical patent/US5871580A/en
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to DE69528051T priority patent/DE69528051T2/de
Priority to JP51590796A priority patent/JP3343615B2/ja
Priority to EP95933607A priority patent/EP0751242B1/en
Publication of WO1996015297A1 publication Critical patent/WO1996015297A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Definitions

  • the present invention relates to a method for growing a bulk crystal, and for example, relates to a technique useful for producing a single crystal of a compound semiconductor from an ft solution or a solution using a large-diameter seed crystal.
  • a growth vessel crucible
  • a raw material liquid is gradually moved up and down relative to a heating furnace having a temperature gradient.
  • the vertical bridgeman (VB) method which grows crystals by heating
  • the vertical gradient freezing (VGF) method which grows crystals by providing a vertical temperature gradient in the raw material melt and gradually cooling it, are known.
  • a crucible having an inclined shape such that the bottom of the crucible is lowered toward the center is usually used. Then, a seed crystal having the same composition as the crystal to be grown and having a considerably smaller diameter than the crystal to be grown is placed at the bottom center of the crucible having the above shape, and the raw material contact liquid is solidified from the seed crystal, or the seed crystal is formed.
  • the bulk single crystal is obtained by spontaneously generating and solidifying a nucleus at the bottom center of the crucible without using it.
  • the thermal conductivity is low and the shear stress is low, so that the above-mentioned conventional VB method, VGF method, and LEC method require a high-quality single crystal.
  • the disadvantage is that it is not possible to obtain a good yield of the steel.
  • the conventional VB method and VGF method the crystal shoulder from the bottom center of the crucible to the straight body is formed.
  • nuclei are newly generated at a long time and polycrystallization is easy.
  • conventional VB, VGF, and LEC methods have the disadvantage that the scrap portion is formed in the crystal, so the length of the straight body is short, and the number of wafers that can be cut from the grown crystal is small. is there.
  • the seed crystal since the seed crystal has the same composition as the crystal to be grown, a part of the seed crystal that comes into contact with the raw material liquid during the seeding is melted, but the melting of the raw material melt to suppress the melting S to a predetermined level is performed. There is also a disadvantage that temperature control is extremely difficult.
  • a seed crystal having the same composition as the crystal to be grown is used, but as a special case, a seed crystal having a different composition may be used.
  • a special example is that when there is no suitable GaP seed crystal for growing a GaP single crystal, the LEC method is first used using the InAs single crystal as the seed crystal. In such a case, for example, a Gap single crystal is grown, and a Gap seed crystal is cut out from the obtained ingot and used for the subsequent production of a Gap single crystal.
  • a target single crystal (GaP in the above example) cannot be obtained directly from a seed crystal having a different composition (InAs in the above example), and the raw material ffi solution cannot be obtained.
  • the components of the seed crystal having a different composition dissolve out, and crystals having a composition different from the intended purpose grow.
  • the conventional VB method, VGF method, LEC method, or each of these methods In the method using a large-diameter seed crystal, a high-quality bulk single crystal cannot be obtained with good yield.
  • An object of the present invention is to provide a method of growing a bulk crystal, which has been starving for the above circumstances, and which can produce a good-quality bulk single crystal with good yield. Disclosure of the invention
  • the present inventors have thought that it is effective to use a single crystal substrate having a component different from that of the crystal to be grown as a seed crystal in order to achieve the above object, and as a result of intensive research, have found that a high quality bulk The single crystal was successfully grown.
  • the method for growing a bulk crystal according to the present invention is characterized in that, when a seed crystal is brought into contact with a melt or a solution containing a constituent element of the crystal to be grown to grow the bulk crystal from the liquid or solution, A thin single crystal substrate having a »point higher than the growth temperature of the crystal to be grown, having a different composition from the crystal to be grown, and having a low solubility in the melt or solution. .
  • Single crystals such as ZnSe can be easily grown, and high-quality single crystals can be obtained with higher yields than before. Also, since the seed crystal does not melt at the crystal growth temperature, the temperature control during seeding becomes easy, the heat conduction of the seed crystal becomes better, and heat is easily released through the seed crystal. It can be increased and is extremely effective in industrial production.
  • the seed crystal may be arranged at the bottom of the crucible or at one end of the boat. Further, the seed crystal may be brought into contact with the surface of the contact liquid or the solution.
  • the crystal may be grown by a gradient freezing (GF) method, or by a Chiyoklarsky method, a liquid sealing Chiyoklarski (LEC) method, or a Bridgeman method.
  • GF gradient freezing
  • LEC liquid sealing Chiyoklarski
  • the diameter of the seed crystal may be substantially the same as the diameter of the crystal to be grown.
  • the vapor pressure may be controlled in an airtight ampoule. Further, after the seed crystal and the melt or the solution come into contact with each other at the solid-liquid interface, and before starting the crystal growth, the power supply i to the heating furnace is regulated so that the »liquid or the solution A temperature gradient may be provided such that the temperature on the seed crystal side is higher than that on the melt side or the solution side, and in that state, the i-th liquid or the solution may be held for a predetermined period.
  • convection occurs in the »liquid or solution in the crucible, and the convection cleans the surface of the seed crystal that comes into contact with the» liquid or solution, and from that surface can be a nucleation point during crystal growth. Deposits are removed to provide a clean surface. Therefore, generation of many nuclei during crystal growth is prevented, and a high-quality single crystal can be obtained with a high yield.
  • a temperature gradient is provided in a plane of a solid-liquid interface between the seed crystal and the melt or the solution so that a territory having a lower temperature than other regions in the plane is generated. You may do it.
  • the solid-liquid interface is inclined such that the normal direction of the solid-liquid interface between the seed crystal and the »liquid or solution is inclined with respect to the crystal growth direction. It is good to be in the state where it was made.
  • the surface of the seed crystal which is in contact with the liquid or the solution, is formed into a mortar shape (that is, a shape that becomes gradually lower from the outer edge of the seed crystal toward the center of the surface), whereby Such a temperature gradient may be provided.
  • the crystal to be grown is a single crystal of a compound semiconductor.
  • CdTe, ZnTe or ZnSe can be selected as the compound semiconductor.
  • the seed crystal is a single crystal of an oxide, for example, as its oxide sapphire: can be selected (oxidation al Miniumu A 1 2 0 3).
  • FIG. 1 is a schematic view showing a first embodiment of a method for growing a Balta crystal according to the present invention
  • FIG. 2 is a diagram showing a second embodiment of a method for growing a bulk crystal according to the present invention. It is a schematic diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an example in which a bulk crystal growth method according to the present invention is applied to a vertical gradient freezing (V GF) method.
  • V GF vertical gradient freezing
  • a temperature gradient is set in the raw material melt of 12 m so that the temperature increases as it moves, and while the temperature gradient is maintained, the temperature is gradually cooled, and from the seed crystal 10 side toward the top of the raw material liquid 12 m The solidification allows the crystal to grow.
  • a reservoir 13 B is provided in communication with the growth chamber 13 A, and a single body (or a single volatile element) of the constituent elements of the single crystal to be grown is formed.
  • a compound may be used.
  • 14 is put in its reservoir section # 3B to control the vapor pressure.
  • the seed crystal 10 is a single crystal of a substance that has a melting point higher than the growth temperature of the crystal to be grown and does not melt upon contact with the raw material melt 12 m, such as an oxide single crystal.
  • an oxide single crystal such as an oxide single crystal.
  • sapphire aluminum oxide: A 1 2 0 3
  • the like or may be a compound semiconductor single crystal.
  • the surface area of the seed crystal 10 at the portion that comes into contact with the raw material melt 12 m is not particularly limited, but is preferably lcra 2 or more. The reason for this is that if the area of the seed crystal 10 is smaller than 1 cm 2 , the productivity deteriorates. More preferably, the seed crystal 10 should have a size that fits exactly at the bottom of the crucible body 11A that stores 12 m of the raw material melt. By doing so, the shape of the bottom of the crucible body 11A can be made flat, and the shape of the crucible 11 can be simplified.
  • the thickness of the seed crystal 10 is not particularly limited. Since it is higher than the temperature and does not melt during seeding, it may be thin, preferably 5 mm or less, more preferably 1 mm or less. The reason is that even if it is excessively thick, the economics will only be deteriorated.In addition, to keep good thermal conductivity and release the heat of the raw material »liquid 12 m to the outside, 5 ⁇ » ⁇ or less, more preferably Should be 1 mm or less. By efficiently dissipating the heat in the raw material »liquid 12 m to the outside using thin seed crystal 10, the growth rate can be increased and productivity can be improved.
  • the seed crystal 10 is pressed so that it does not float in the raw material »liquid 12 m by fitting a rectangular holding member 15 inside the crucible body 11 A.
  • the crucible 11 is provided with a heat sink 11B for heat dissipation extending downward from the bottom plate of the crucible body 11A.
  • the heat sink 11B can efficiently dissipate heat transmitted from the raw material melt 12m through the seed crystal 10 and further improve productivity.
  • the vertical heating furnace is provided so as to surround the ampoule 13 and has a circular, for example, multistage heater 120 capable of adjusting the temperature distribution in the vertical direction. Is adjusted so that a desired furnace temperature distribution can be obtained. Therefore, as described above, the temperature gradient in the raw material melt 12 m is set so as to increase as it goes upward, and the element 14 that is easily volatilized in the reservoir 13 B is used as the sample.
  • the pressure of the unit 14 can be heated to a temperature at which the pressure of the unit 14 can be applied in a desired size within the unit 13.
  • a high-quality single crystal can be obtained with good yield by performing crystal growth using a large-diameter thin-plate seed crystal 10 made of a component different from the crystal to be grown.
  • Single crystals such as CdTe, ZnTe, and ZnSe that were difficult to grow can be easily grown, and high-quality single crystals can be obtained with better yields (about 5 to 10%) than before. Can be.
  • the seed crystal 10 does not melt at the crystal growth temperature, the temperature control during seeding becomes easy, and since the seed crystal 10 has a thin plate shape, the heat conduction becomes good, and the seed crystal 10 passes through the seed crystal 10. Since heat is easily released, the crystal growth rate can be increased, which is extremely effective for industrial production.
  • FIG. 2 shows an example in which the bulk crystal growth method according to the present invention is applied to a vertical bridgeman (VB) method.
  • VB vertical bridgeman
  • a sheet-like seed crystal 10 having a different component from the crystal to be grown is placed on the bottom of the crucible 16 with a holding member 15, and the solute is placed in the crucible 16.
  • Compound semiconductor raw material and a solvent that dissolves the raw material are placed in an airtight ampoule 17, the ampoule 17 is vacuum-sealed, and it is placed in a vertical heating furnace to heat it. Heat by one hundred twenty.
  • the ampoule 17 was generated by adjusting the power supply Jt to the heater 20 at a predetermined furnace temperature. By moving from the high temperature side to the low temperature side in the distribution (from the upper side to the lower side in the figure), the crystal grows gradually from the seed crystal 10 side to the upper side of the solution 12 s. is there.
  • the seed crystal 10 has a melting point higher than the growth temperature of the crystal to be grown, is a single crystal that does not dissolve or dissolve upon contact with the solution 12 s, and is sapphire (aluminum oxide: A 1 2 0 3) is an oxide single crystal or compound semiconductor single crystal such as.
  • sapphire aluminum oxide: A 1 2 0 3
  • the size, thickness, and the like of the seed crystal 10 are as described in the first embodiment, and a description thereof will not be repeated.
  • crystal growth is performed using a large-diameter thin plate-shaped seed crystal 10 made of a component different from the crystal to be grown.
  • single crystals such as CdTe, ZnTe, and ZnSe can be easily grown, and a high-quality single crystal can be obtained with a better yield (about 5 to 10%) than before. Can be.
  • the crystal growth rate can be increased, it is extremely effective in industrial production.
  • the present inventors presume the reason why the yield in the first and second embodiments is about 5 to 10% as follows. Since the crystal to be grown and the seed crystal 10 made of a different component generally have different lattice constants and may also have different crystal structures, the crystal plane to be grown has one type of plane orientation. Not necessarily Conceivable. In addition, the contact surface with the seed crystal 10 raw material »liquid 12 m or solution 12 s was not contaminated with a large number of deposits, etc. It is considered that nucleation occurs simultaneously in kimonos, etc., and their growth directions are different, so that twin / polycrystals may occur. When the grown crystal is a single crystal, nucleation occurred only at one location on the surface of the seed crystal 10, or nucleation occurred at multiple seedlings on the surface of the seed crystal 10 and their orientation was changed. It is thought that everyone was the same.
  • This third embodiment is the same as the first or second embodiment, except that the crucible 11 After the raw material melt 12 m or the solution 12 s is obtained in 16 and seeded with the seed crystal 10, before starting the crystal growth, the raw material »liquid 12 m or the solution 12 s The temperature of the lower side (seed crystal 10 side in Figs. 1 and 2) is higher than that of the upper side to cause convection in the raw material »liquid 12 m or solution 12 s for a predetermined period. In this state, the deposits on the surface of the seed crystal 10 are washed by convection.
  • the temperature profile of the seed crystal 10 is set by the heater 20 so that the temperature of the seed crystal 10 side is lower than the temperature of the raw material »liquid 12 m side or solution 12 s side.
  • the temperature is gradually cooled while maintaining the furnace temperature gradient to precipitate crystals from the solid-liquid interface between the seed crystal 10 and the raw material liquid 12 m or the solution 12 s. (Gradient freezing method) or by gradually moving the samples 13 and 17 to the low temperature side in the furnace, solidification of the seed crystal 10 with the raw material melt 12 m or the solution 12 s Crystals are precipitated from the liquid interface (Bridgeman method).
  • the present inventors presume the reason why the yield is about 50 to 60% as follows.
  • the crystal to be grown and the seed crystal 10 generally have a lattice constant and Since the crystal structure may be different, it is considered that the plane to be grown is not necessarily one kind of plane orientation. In fact, it has been reported that it is difficult to control the growing plane orientation because the plane orientation grown when using a substrate with different components from the crystal to be grown strongly depends on the growth conditions. ing. In particular, when growing a crystal having a strong ionic bond, the crystal orientation to be grown is not limited to one type. Observation of polycrystalline or twinned crystals among the crystals grown using seed crystal 10 having different components from the crystal to be grown showed that most of them were generated at the center of the seed crystal substrate.
  • nucleation in the initial stage of growth occurs simultaneously and at multiple locations in the central part of the substrate where the temperature is low, and twins or polycrystals are generated because their growth directions are different.
  • nucleation occurs only at one Si position on the surface of the seed crystal 10 or nucleation occurs at a plurality of locations on the surface of the seed crystal 10 and all the orientations thereof are changed. It is considered the same.
  • the fourth embodiment differs from the first, second or third embodiment in that Raw material »The surface that comes in contact with the solution 12 m or solution 12 s is provided with a place where nucleation is likely to occur at the start of crystal growth.
  • a heater 20 and other necessary sub-heaters a temperature gradient is provided on the surface of the surface of the seed crystal 10 so that nuclei are generated at the lowest temperature in the surface.
  • a temperature gradient is set in the surface of the seed crystal 10 so that the normal direction of the surface of the seed crystal 10 is inclined with respect to the central direction of the heater 20, and the lowest temperature point on the surface ⁇ Nuclei are formed in the surface of the seed crystal 10, or at least one whistle (preferably, one) on the surface of the seed crystal 10 is formed in advance with a minute recess or a minute protrusion.
  • a nucleus is generated at the protrusion, or the surface of the seed crystal 10 is formed into a mortar shape so that a nucleus is generated at the bottom.
  • seedlings are provided on the surface of the seed crystal 10 so that nucleation is likely to occur.
  • nucleation occurs a priori, and a large number of nuclei can be prevented from occurring at the same time.
  • single crystals of good quality such as CdTe, ZnTe, and ZnSe can be It can be obtained with a yield of about 0 to 80%.
  • the present invention is not limited to this, and the present invention may be applied to a horizontal bridgeman (HB) method, ) Method, Czochralski method, and liquid crystal growth method such as liquid-filled Czochralski (LEC) method.
  • HB horizontal bridgeman
  • Czochralski Czochralski
  • LEC liquid crystal growth method
  • B 2 0 3 is brought into contact with raw material »solution 1 2 seed crystal 1 0 on the surface of the m covered with sealant, such as to raise gradually while by rotating.
  • the seed crystal 10 is arranged below the raw material «liquid 12 m or solution 12 s, but the raw material» liquid 12 m or solution 12 s is placed on the upper surface of the seed crystal 10. May be brought into contact, and the raw material melt 12 m or the solution 12 s may be solidified from top to bottom to grow crystals.
  • the seed crystal 1 0 Sapphire not limited to (oxidation Aruminiumu A 1 2 0 3), the growth temperature of the crystal to be growth, lattice constants, Ru appropriately selectable der in consideration of the thermal expansion coefficient.
  • the lattice constant is preferably matched between the seed crystal 10 and the crystal to be grown, but the crystal can be grown without necessarily matching.
  • the growth temperature is lower than when crystallizing a polycrystalline raw material and performing crystal growth from that liquid.
  • a substance having a lower melting point can be selected as a seed crystal.
  • a single crystal of CdTe was grown by the VGF method using the heating furnace shown in Fig. 1.
  • the plane orientation was (0 0 0 1 sapphire (aluminum oxide): a 1 2 0 3) consisting of a thickness of 5, the following lamellar seed crystal 1 0 (Sa
  • the fire substrate was placed so as not to be inclined, and was fixed with a carbon pressing member 15.
  • the sapphire substrate was preliminarily polished so that there were no fine protrusions or depressions on the surface.
  • the length from the bottom to the top of the crucible body 1 1 A is 10 Omm.
  • the diameter of the pressed member 15, that is, the diameter of the crystal to be grown was 5 Omm.
  • the polycrystalline raw material 12 is placed in the growth chamber 13 A of the ampoule 13 made of quartz, and the amount is sufficient to control the vapor pressure in the reservoir 13 B.
  • the ampoule 13 was vacuum-sealed by putting 14 of Cd alone.
  • the ampoule 13 was placed in a vertical heating furnace.
  • the temperature of the raw material 12 is raised to near the ⁇ point of C d Te by the multistage heater 120 of the heating furnace, and a temperature gradient of 2 tZcm in the longitudinal direction of the ampoule 13 is set so that the seed crystal 10 side becomes lower.
  • the temperature was further raised to dissolve the raw material 12 to obtain a raw material melt of 12 m.
  • the height of the raw material melt was 12 Om.
  • the seed crystal 10 (sapphire substrate) did not melt at all, and the temperature of the reservoir 13B was maintained at a temperature such that a desired Cd pressure could be applied into the ampoule 13.
  • the raw material liquid 12 m is gradually cooled at a rate of 0.It/hour, and the raw material liquid 12 m is solidified upward from the seed crystal 10 side. Then, crystals were obtained. At that time, the temperature fluctuation was ⁇ 0.1.
  • the obtained crystal was examined, it was a CdTe single crystal inclined by 10 to 15 ° from the (111) plane. Further, when the crystal was grown a plurality of times under the above conditions and conditions, the yield of the single crystal was about 5 to 10%.
  • a sapphire with a plane orientation of (00 0 1) is placed at the bottom of a crucible 16 made of graphite.
  • the sapphire substrate has been mirror-polished in advance so that there are no protrusions or depressions on the surface.
  • the length from the bottom to the upper end of the crucible 16 was 10 Omm, the inner diameter of the holding member 15, that is, the diameter of the crystal to be grown was 1 inch.
  • the ampoule 17 was placed in the crystal growing furnace ⁇ such that the central axis of the crucible 16 coincided with the central axis of the furnace. Then, the temperature of the crucible bottom was heated by the heater 120, and the temperature of the crucible bottom was 1165. The upper surface of the solution 12s formed by dissolving the solvent and the solute (the height was 7 Omm from the crucible bottom). A temperature gradient was set in the furnace so that the temperature of the furnace became 1150, and the state was maintained for 2 days to sufficiently dissolve the solute.
  • the solute dissolves in the solvent and at the same time, convection occurs, thereby promoting the dissolution of the solute.
  • the surface of the seed crystal 10 is washed by convection and becomes a clean surface.
  • the temperature distribution in the crystal growing furnace was changed by the heater 20 so that the temperature was lowered by a temperature gradient of 1 StZcm downward in the furnace.
  • the crystal growth was line summer is moved to the low temperature side of the ampule 1 7 at a rate of 3 C mZ date.
  • the obtained crystal was flipped over, it was a ZnTe single crystal having a length of 15 mm.
  • the yield of the single crystal was about 50 to 60%.
  • a seed crystal 10 (sapphire substrate) 5 mm or less in thickness consisting of a sapphire with a plane orientation of (001) is placed on the bottom of a crucible 16 made of graphite and fixed with a holding member 15. did.
  • the sapphire substrate was mirror-polished in advance.
  • the knollbos 16 were manufactured such that the bottom plate was inclined by 5 ° with respect to the vertical direction of the crucible center axis (that is, the horizontal direction in FIG. 2).
  • the seed crystal 10 was attached to the bottom of the crucible with its surface inclined at 5 ° to the horizontal direction.
  • Crucible 1 The length from the bottom to the top of 6 was 10 Omm, and the inner diameter of the holding member 15 was 1 inch.
  • the crucible 16 is filled with 60 g of Te as a solvent and 70 g of ZnTe polycrystalline material as a solute, and the crucible 16 is placed in a quartz ampoule 17. It was sealed in a vacuum of 2 ⁇ 10 16 Torr.
  • the ampoule 17 was set in the crystal growing furnace such that the center axis of the crucible 16 coincided with the center axis of the furnace. Subsequently, the mixture was heated by a heater 20 so that the temperature at the bottom of the crucible was 1165. The upper surface of the solution 12 s formed by dissolving the solvent and solute (the height was 70 mm from the bottom of the crucible. )), A temperature gradient is set in the furnace ⁇ such that the temperature of the seed crystal becomes 115, and the state is maintained for 2 days to sufficiently dissolve the solute, and the surface of the seed crystal 10 by convection. Was washed.
  • the temperature distribution in the crystal growing furnace was changed by the heater 20 so that the temperature was lowered with a temperature gradient of 15 / cm toward the lower part of the furnace.
  • the crystal was grown by moving the ampoule 17 to the low temperature side at the speed of ScinZ days.
  • the ZnTe crystal was deposited from the lowest temperature point on the surface of the seed crystal 10, that is, from the lowest tooth of the inclined seed crystal 10.
  • the obtained crystal was examined, it was a 2 n Te single crystal having a length of 15! 11111.
  • the yield of the single crystal was about 70 to 80%.
  • a seed crystal 10 (sapphire substrate) made of sapphire having a plane orientation of (001) and having a thickness of 5 mm or less is placed on the bottom of a crucible 16 made of graphite, and the holding member 15 is used. Fixed.
  • the sapphire substrate is mirror-polished in advance, and a 1 ⁇ m deep dent (recess) with a diameter of 60 im is formed in the center of the substrate by oxygen ion in ultra-high vacuum. Oita.
  • the length from the bottom to the upper end of the crucible 16 was 100 mm, and the inner diameter of the holding member 15 was 1 inch.
  • the crucible 16 is filled with 60 g of Te as a solvent and 70 g of ZnTe polycrystalline material as a solute, and the crucible 16 is placed in an ampoule 17 It was encapsulated in the 6 Torr vacuum - 2 X 1 0 in. Then, the ampoule 17 was placed in the crystal growing furnace ⁇ such that the central axis of the crucible 16 coincided with the central axis of the furnace. Then, the temperature of the crucible bottom is 1165t by heating with a heater 20, and the upper surface of the solution 12s formed by the mixture of the solvent and the solute (at a height of 7 mm from the bottom of the crucible). A temperature gradient is set in the furnace so that the temperature of the seed crystal becomes 1150, and the state is maintained for 2 days to sufficiently dissolve the solute, and the surface of the seed crystal 10 is convected by convection. Washing was performed.
  • the temperature distribution of the crystal growing furnace ⁇ was changed by the heater 20 so that the temperature was lowered by a temperature gradient of 15 tZ cin downward in the furnace.
  • the crystal was grown by moving the ampoule 17 to the low temperature side at a rate of 3 cnZ days.
  • the ZnTe crystal nucleated and grew in the depression on the surface of the seed crystal 10.
  • the obtained crystal was examined, it was a ZnTe single crystal having a length of 15 mm.
  • the yield of the single crystal was about 70 to 80%.
  • a thin single crystal substrate having a »point higher than the growth temperature of the crystal to be grown and having a component different from that of the crystal to be grown is seeded. Since crystal growth is performed by using the crystal as a crystal, a high-quality single crystal can be obtained with high yield. In addition, since the temperature control during seeding becomes easy and the crystal growth rate can be increased, it is extremely effective in industrial production. In addition, before starting crystal growth, the temperature at the bottom of the crucible was raised to cause convection in the melt or solution in the crucible, and the surface of the seed crystal was washed by the convection.
  • the surface of the seed crystal becomes a clean surface, a large number of nuclei are prevented from being generated during crystal growth, and the yield of the single crystal is improved. Furthermore, the surface of the seed crystal By providing a low-temperature part or a micro-recess or a micro-protrusion inside, a location where nuclei are likely to be generated during crystal growth is prevented, thereby preventing the generation of many nuclei during crystal growth. Yield is further improved.

Description

明 細 害 バルク結晶の成長方法 技術分野
本発明は、 バルク結晶の成長方法に関し、 例えば大口径の種結晶を用いて ft液 または溶液から化合物半導体の単結晶を製造するのに適用して有用な技術に関する 背景技術
従来よ り 、 化合物半導体のバルク単結晶を成長させる方法と して、 原料 »液を 入れた成長容器 (ルツボ) を、 温度勾配を有する加熱炉に対して徐々に上下方向 に相対的に移動させて結晶を成長させる垂直ブリ ッジマン (V B ) 法や、 原料融 液中に上下方向の温度勾配を設けて徐々に冷却するこ とによ り結晶を成長させる 垂直グラジェン トフ リージング (V G F ) 法が知られている。
これら V B法や V G F法では、 通常、 ルツボの底がその中心に向かって下がる よ うに傾斜した形状のルツボを用いる。 そして、 成長させる結晶と同じ組成で、 成長させる結晶よ り もかなり小径の種結晶を上記形状のルツボの底中央に設置し て、 その種結晶から原料触液を固化させるか、 あるいは種結晶を用いずにルツボ の底中央に核を自然発生させて固化させてバルク単結晶を得ている。
また、 化合物半導体のバルク単結晶の成長方法と しては、 ルツボ内の原料 »液 を B 2 0 3等の封止剤で覆い、 原料 ¾液の表面に種結晶を接触させて徐々に引き上 げる こ とによ り結晶を成長させる液体封止チヨ クラルスキー ( L E C ) 法があり . 広く実施されている。 その際に用いる種結晶も、 上記 V B法や V G F法の場合と 同様に、 成長させる結晶と同じ組成でそれよ り もかなり小径のものである。
しかし、 C d T eのよ うな I I一 VI族化合物半導体では、 熱伝導率が小さ く 、 し かも剪断応力が小さいため、 上述した従来の V B法や V G F法や L E C法では、 良質の単結晶を歩留ま り 良く得るこ とができないという欠点がある。 また、 従来 の V B法や V G F法では、 ルツボの底中央から直胴部に至るまでの結晶肩部の成 長時に新たな核発生が起こって多結晶化し易いという欠点もある。 さらに、 従来 の V B法や V G F法や L E C法では結晶に屑部が形成されるため、 直胴部の長さ が短く、 成長させた結晶から切り出すこ とのできるウェハの枚数が少ないという 欠点もある。
そこで、 V B法や V G F法や L E C法において、 従来より も径の大きい種結晶 を用いることにより、 屑部の少ない結晶を成長させる方法も提案されているが, 曆部が完全にはなくならないため、 上述した屑部成長時の核発生に起因する成長 結晶の多結晶化という欠点は依然解消されない。
また、 種結晶が、 成長させる結晶と同じ組成であるため、 種付け時に原料 »液 と接触する種結晶の一部が融解してしまうが、 その融解 Sを所定レベルに抑える ための原料融液の温度制御が極めて難しいという欠点もある。
また、 通常は、 成長させる結晶と同じ組成の種結晶を用いるが、 特殊な例と し て異なる組成の種結晶を用いることもある。 その特殊な例とは、 例えば、 G a P の単結晶を成長させるのに適当な G a Pの種結晶がない時に、 先ず I n A s単結 晶を種結晶と して用いて L E C法などにより G a P単結晶を成長させ、 得られた インゴッ 卜から G a Pの種結晶を切り出して以後の G a P単結晶の製造に使用す る場合などである。 しかし、 この方法では、 異なる組成の種結晶 (上記例では、 I n A s ) から直接的に目的の単結晶 (上記例では、 G a P ) を得ることはでき ず、 また、 原料 ffi液中に異なる組成の種結晶の成分が溶け出し、 目的とは異なる 組成の結晶が成長されてしまう という問題もある。
また、 液相ェピタキシャル成長 (L P E ) 法においては、 サファイア (酸化ァ ルミ二ゥム : A 1 203 ) を基板と して用いて、 その上に C d T eの単結晶をェピタ キシャル成長させる例もあるが、 得られるのは C d T eの薄膜であり、 バルク結 晶を得ることはできない。
あるいは、 気相成長によってサフアイァ基板上にバルク結晶を成長させる方法 もあるが、 この方法では成長速度が非常に遅く、 大型の結晶が成長できないとい う欠点、がある。
上述したよ うに、 従来の V B法や V G F法や L E C法、 あるいはそれら各方法 において大口径の種結晶を用いる方法では、 良質のバルク単結晶を歩留まり良く 得ることはできない。
この発明は、 上記事情に饑みてなされたもので、 良質のバルク単結晶を歩留ま り良く製造できるバルク結晶の成長方法を提供することを目的と している。 発明の開示
本発明者らは、 上記目的を達成するためには、 成長させる結晶と異なる成分の 単結晶基板を種結晶と して用いるのが有効であると考え、 鋭意研究を重ねた結果, 良質のバルク単結晶を成長させることに成功した。
すなわち、 本発明に係るバルク結晶の成長方法は、 成長させる結晶の構成元素 を含む融液または溶液に種結晶を接触させて該 »液または溶液からバルク結晶を 成長させるにあたり、 前記種結晶と して、 成長させる結晶の成長温度より も高い »点を有するとともに、 成長させる結晶と成分が異なり、 かつ前記融液または溶 液への溶解度が小さい薄板状の単結晶基板を用いることを特徴とする。
それによつて、 良質の単結晶を歩留まり良く得難かった C d T eや Z n T eや
Z n S eなどの単結晶を容易に成長させることができ、 良質の単結晶を従来より も歩留まり良く得ることができる。 また、 結晶成長温度で種結晶が溶けないので, 種付け時の温度制御が容易となるとともに、 種結晶の熱伝導が良好となり、 種結 晶を介して熱を逃がし易くなるので、 結晶成長速度を大きくすることができ、 ェ 業生産上極めて有効である。
また、 この発明において、 前記種結晶を、 ルツボの底に配置してもよいし、 ボー トの一端に配置してもよい。 また、 前記種結晶を触液または溶液の表面に接 触させてもよい。
また、 グラジェン ト フ リージング (G F ) 法によ り、 あるいはチヨ クラルス キー法や液体封止チヨクラルスキー (L E C ) 法、 またはブリ ッジマン法により 結晶を成長させるようにしてもよい。
また、 種結晶を、 成長させる結晶と略同じ径にしてもよい。
また、 気密性のアンプル内で、 蒸気圧制御を行なうようにしてもよい。 また、 種結晶と、 融液または溶液とが固液界面にて接触した後、 結晶成長を開 始する前に、 加熱炉への給電 iを瀾整して、 前記 »液または溶液中に、 同融液側 または溶液側より も種結晶側の温度が高くなるような温度勾配を設け、 その状態 で前記 i»液または溶液を所定期間保持するようにしてもよい。
そうすることによって、 ルツボ中の »液または溶液に対流が生じ、 その対流に より種結晶の、 »液または溶液と接触する面の洗浄が行なわれ、 その面から結晶 成長時に核発生点となり得る付着物などが取り除かれて清浄な面となる。 従って 結晶成長時に多数の核が発生するのが防止されて、 良質の単結晶が歩留り良く得 られる。
さらに、 少なく とも結晶成長中に、 種結晶と、 融液または溶液との固液界面の 面内に、 該面内の他の領域より も低温となる領城が生じるような温度勾配を設け るよ うにしてもよい。 そのよ うな温度勾配を設けるために、 具体的には、 例えば 種結晶と、 »液または溶液との固液界面の法線方向が結晶成長方向に対して傾く ように、 前記固液界面を傾斜させた状態とするとよい。 また、 種結晶の、 ¾液ま たは溶液と接触する面をすり鉢状 (即ち、 種結晶の外縁部から表面中央部に向 かって徐々に低くなる形状) に成形しておく ことにより、 上記のような温度勾配 を設けるようにしてもよい。
上記のように、 固液界面内に低温部を設けたり、 微小凹部や微小突起部を設け るなどして、 結晶成長時に核が発生し易い箇所を設けることにより、 結晶成長時 に多数の核が発生するのが防止され、 単結晶を歩留り良く得ることができる。 また、 前記成長させる結晶は化合物半導体の単結晶であり、 例えばその化合物 半導体と しては C d T e, Z n T eまたは Z n S eを選択できる。 また、 前記種 結晶は酸化物の単結晶であり、 例えばその酸化物と してはサファイア (酸化アル ミニゥム : A 1 203 ) を選択できる。 図面の簡単な説明
第 1図は、 本発明に係るバルタ結晶の成長方法の第一の実施形態を示す概略図 であり、 第 2図は、 本発明に係るバルク結晶の成長方法の第二の実施形態を示す 概略図である。 発明を実施するための最良の形態
本発明に係るバルク結晶の成長方法の第一の実施形牴について説明する。
第 1図には、 本発明に係るバルク結晶の成長方法を垂直グラジェン トフリージ ング (V G F ) 法に適用した例が示されている。 この成長方法は、 第 1図に示す ように、 成長させる結晶と異なる成分の薄板状の種結晶 1 0を底に設置したルツ ボ 1 1内に、 原料 1 2を入れ、 そのルツボ 1 1 を気密性アンプル 1 3の成長室 1 3 A内に設置してそのアンプル 1 3を真空封止し、 それを垂直型加熱炉内に設置 して原料 1 2を加熱溶融し、 ルツボ底から上方に向かうにつれて高温となるよう な温度勾配を原料融液 1 2 m中に設け、 その温度勾配を保持しつつ徐々に冷却し て、 種結晶 1 0側から原料 ¾液 1 2 mの上方に向かって固化させて結晶を成長さ せるようにしたものである。
また、 アンプル 1 3の下半部にはリザーパ部 1 3 Bが成長室 1 3 Aに連通して 設けられており、 成長させる単結晶の構成元素のうち揮発し易い元素よりなる単 体 (または、 化合物でもよい。 ) 1 4をそのリザーバ部 Γ3 B内に入れて、 蒸気 圧制御を行なっている。
種結晶 1 0は、 成長させる結晶の成長温度より も高い融点を有し、 原料融液 1 2 mとの接触により融解しないような物質の単結晶であり、 酸化物単結晶などで ある。 具体的には、 サファイア (酸化アルミニウム : A 1 203 ) などが挙げられる, あるいは、 化合物半導体の単結晶でもよい。
原料融液 1 2 mと接触する部分の種結晶 1 0の面精は、 特に限定しないが、 好 ま しく は l c ra 2以上であるのがよい。 その理由は、 種結晶 1 0の面積が l cm 2 より も小さいと、 生産性が悪化するからである。 より好ましくは、 種結晶 1 0は 原料融液 1 2 mを貯留するルツボ本体 1 1 Aの底に丁度納まる大きさであるのが よい。 そのようにすれば、 ルツボ本体 1 1 Aの底の形状を平坦にでき、 ルツボ 1 1 の形状を単純化することができるからである。
また、 種結晶 1 0の厚さは、 特に限定しないが、 種結晶 1 0 の ¾点が結晶成長 温度より も高く種付け時に溶けないため、 薄くてもよく、 好ま しくは 5 mm以下、 より好ましくは 1 mm以下であるのがよい。 その理由は、 むやみに厚く しても経済 性が悪化するだけであるのと、 良好な熱伝導性を保ち原料 »液 1 2 mの熱を外に 逃がすには 5 π»η以下、 より好ましくは 1 mm以下であるのがよいからである。 薄い 種結晶 1 0を用いて原料 »液 1 2 m中の熱を効率良く外に逃がすことによって、 成長速度を大きくすることができ、 生産性が向上する。
なお、 種結晶 1 0は、 ルツボ本体 1 1 Aの内側に简状の押さえ部材 1 5をはめ 込むことにより、 原料 »液 1 2 m中に浮き上がらないように押さえつけられている また、 第 1図の例では、 ルツボ 1 1は、 ルツボ本体 1 1 Aの底板から下方に延 びる放熱用のヒー トシンク 1 1 Bを備えている。 このヒー トシンク 1 1 Bにより、 種結晶 1 0を介して原料融液 1 2 m中から伝わってきた熱を効率良く放散するこ とができ、 さらに生産性が向上する。
なお、 垂直型加熱炉は、 アンプル 1 3を囲むように配置され、 かつ垂直方向の 温度分布を調整可能な円简状の例えば多段式のヒータ一 2 0を有しており、 電力 の供給量を調整することにより所望の炉内温度分布を得られるようになつている。 従って、 上述したように原料融液 1 2 m中の温度勾配を上に行くほど高くなるよ うに設定するとともに、 リザ一バ部 1 3 B内の揮発し易い元素の単体 1 4を、 ァ ンプル 1 3内にその単体 1 4の圧力を所望の大きさで印加できるような温度に加 熱することができる。
上記第一の実施形態によれば、 成長させる結晶と異なる成分でできた大口径の 薄板状の種結晶 1 0を用いて結晶成長を行なうことによって、 良質の単結晶を歩 留まり良く得ることが難しかった C d T eや Z n T eや Z n S eなどの単結晶を 容易に成長させることができ、 良質の単結晶を従来より も良い歩留まり ( 5〜 1 0 %程度) で得ることができる。 また、 結晶成長温度において種結晶 1 0は溶け ないので、 種付け時の温度制御が容易となり、 又、 種結晶 1 0は薄板状であるか ら熱伝導が良好となり、 種結晶 1 0を介して熱を逃がし易くなるので、 結晶成長 速度を大きくすることができ、 工業生産上極めて有効である。
次に、 本発明に係るバルク結晶の成長方法の第二の実施形態について説明する。 第 2図には、 本発明に係るバルク結晶の成長方法を垂直ブリ ッジマン (V B ) 法に適用した例が示されている。 この成長方法は、 第 2図に示すように、 成長さ せる結晶と異なる成分の薄板状の種結晶 1 0をルツボ 1 6の底に押さえ部材 1 5 により設置し、 そのルツボ 1 6内に溶質となる化合物半導体原料とその原料を溶 かす溶媒とを入れ、 それを気密性アンプル 1 7内に設置してそのアンプル 1 7を 真空封止し、 それを垂直型加熱炉内に設置してヒータ一 2 0によって加熱する。 そして、 ルツボ 1 6 の化合物半導体原料と溶媒とが十分に溶け合って溶液 1 2 s が得られたら、 アンプル 1 7を、 ヒーター 2 0への給電 Jtを調整して生ぜしめた 所定の炉内温度分布中を髙温側から低温側 (図中、 上方から下方) に移動させる ことにより、 種結晶 1 0側から溶液 1 2 sの上方に向かって徐々に結晶を成長さ せるようにしたものである。
なお、 上記第一の実施形態と同一の部材については同一の符号を付し、 その説 明を省略する。
種結晶 1 0は、 成長させる結晶の成長温度より も高い融点を有し、 溶液 1 2 s との接触により »解及び溶解しないような物 の単結晶であり、 サファイア (酸 化アルミ ニウム : A 1 203 ) などの酸化物単結晶、 または化合物半導体の単結晶で ある。 なお、 種結晶 1 0の大きさや厚さなどについては、 上記第一の実施形態で 説明した通りであるので、 説明を省略する。
上記第二の実施形態によれば、 前述の第一の実施形態と同様に、 成長させる結 晶と異なる成分でできた大口径の薄板状の種結晶 1 0を用いて結晶成長を行なう こ と によって、 C d T eや Z n T eや Z n S eなどの単結晶を容易に成長させる ことができ、 良質の単結晶を従来よりも良い歩留まり ( 5〜 1 0 %程度) で得る ことができる。 また、 結晶成長速度を大きくすることができるので、 工業生産上 極めて有効である。
こ こで、 上記第一及び第二の実施形態で歩留まりが 5〜 1 0 %程度である理由 について、 本発明者らは以下のように推測する。 成長させる結晶とそれとは異な る成分でできた種結晶 1 0 とは一般に格子定数が異なり、 加えて結晶構造も異な ることがあるので、 育成される結晶の面は 1種類の面方位であるとは限らないと 考えられる。 さらに、 種結晶 1 0の原料 »液 1 2 mまたは溶液 1 2 s との接触面 が多数の付着物などにより汚れていて滑浄な面になっていないことにより、 結晶 成長開始時に複数の付着物などにおいて核生成が同時多発的に起こり、 それらの 成長方位が異なるために、 双晶ゃ多結晶が発生することがあると考えられる。 育 成した結晶が単結晶である場合には、 種結晶 1 0の表面の一箇所でのみ核生成が 起こったか、 または種結晶 1 0の表面の複数苗所で核生成が起こりそれらの方位 が皆同じであったと考えられる。
次に、 本発明に係るバルク結晶の成長方法の第三の実施形態について説明する この第三の実施形態は、 上記第一または第二の実施形態において、 ヒータ一 2 0の加熱によりルツボ 1 1 , 1 6内に原料融液 1 2 mまたは溶液 1 2 sが得られ て種結晶 1 0が種付けされた後、 結晶成長を開始する前に、 原料 »液 1 2 mまた は溶液 1 2 sの下側 (第 1図及び第 2図では、 種結晶 1 0側) の温度を上側の温 度より も高く して原料 »液 1 2 mまたは溶液 1 2 sに対流を起こさせ、 所定期間 その状態を保って対流により種結晶 1 0の表面の付着物を洗浄するようにしたも のである。 この対流による洗浄工程が終了した後、 ヒータ一 2 0により種結晶 1 0側の温度が、 原料 »液 1 2 m側または溶液 1 2 s側の温度より低くなるような 温度プロファイルと し、 上記第一または第二の実施形態のように炉内温度勾配を 保ったまま徐々に冷却して種結晶 1 0と原料 ¾液 1 2 mまたは溶液 1 2 s との固 液界面から結晶を析出させたり (グラジェントフリージング法) 、 あるいは、 ァ ンプル 1 3, 1 7を炉内の低温側に徐々に移動させることにより種結晶 1 0と原 料融液 1 2 mまたは溶液 1 2 s との固液界面から結晶を析出させたりする (ブ リ ッジマン法) 。
上記第三の実施形態によれば、 原料 »液 1 2 mまたは溶液 1 2 sの下側の温度 を上側より も高くすることにより生じる対流によって種結晶 1 0の表面を洗浄し た後に、 結晶成長を開始するようにしたため、 良質の C d T eや Z n T eや Z n S eなどの単結晶を 5 0〜 6 0 %程度の歩留まりで得ることができる。
ここで、 歩留まりが 5 0〜 6 0 %程度である理由について、 本発明者らは以下 のように推測する。 まず、 成長させる結晶と種結晶 1 0 とは一般に格子定数及び 結晶構造が異なることがあるので、 育成される面は 1種類の面方位であるとは限 らないと考えられる。 実際に、 薄膜形成においては、 育成させる結晶と成分の異 なる基板を用いた場合に育成される面方位は成長条件に強く依存するので、 成長 する面方位を制御するのは難しいことが報告されている。 特にイオン結合性の強 い結晶を成長させる場合には、 育成される結晶方位は 1種類とは限らない。 また 成長させる結晶と成分の異なる種結晶 1 0を用いて育成した結晶のうち多結晶ま たは双晶が発生した結晶を観察したところ、 それらの多くは種結晶基板の中央部 で発生していることがわかった。 以上のことから、 成長初期段階における核生成 が温度の低い基板中央部の複数箇所において同時多発的に起こり、 それらの成長 方位が異なるために、 双晶または多結晶が発生したと考えられる。 育成した結晶 が単結晶である場合には、 種結晶 1 0の表面の一 Si所でのみ核生成が起こったか または種結晶 1 0の表面の複数箇所で核生成が起こ りそれらの方位が皆同じで あつたと考えられる。
以上の考察により、 結晶成長初期段階の核発生が種結晶 1 0の表面の 1齒所で 起こるように制御すれば、 単結晶を歩留まり良く育成することが可能となると考 えられる。
次に、 本発明に係るバルク結晶の成長方法の第四の実施形態について説明する この第四実施形態は、 上記第一、 第二または第三の実施形熊において、 予め、 種結晶 1 0の原料 »液 1 2 mまたは溶液 1 2 s と接触する表面に、 結晶成長の開 始時に核生成が起こり易いような箇所を設けておく ようにしたものである。 すな わち、 ヒーター 2 0及びその他必要なサブヒーターなどを設けることにより種結 晶 1 0の表面の面內に温度勾配を設け、 その表面内の最も低温 ®所に核が生成さ れるようにしたり、 ヒーター 2 0の中心紬方向に対して種結晶 1 0の表面の法線 方向が傾く ようにして種結晶 1 0の表面の面内に温度勾配を設け、 その表面內の 最も低温箇所に核が生成されるようにしたり、 種結晶 1 0の表面の少なく とも一 笛所 (好ましくは、 一箇所) に予め微小な凹部や微小な突起部を形成しておき、 その微小凹部や微小突起部において核が生成されるようにしたり、 種結晶 1 0の 表面をすり鉢状に成形して、 その底都において核が生成されるようにする。 上記第四の実施形態によれば、 種結晶 1 0の表面に核生成が起こり易いような 苗所を設けておく ようにしたことにより、 結晶成長開始時にそのような核生成の 起こり易い筋所において便先的に核生成が起こり、 多数の核が同時多発的に発生 するのを防ぐことができるので、 良質の C d T eや Z n T eや Z n S eなどの単 結晶を 7 0〜 8 0 %程度の歩留まりで得ることができる。
なお、 上記各実施形態では、 本発明を VG F法及び V B法に適用した例につい て説明したが、 これに限らず、 本発明は水平ブリ ッジマン (H B) 法、 水平ダラ ジェントフリージング (HG F) 法、 チヨクラルスキー法、 液体封止チヨクラル スキー (L E C) 法等の結晶成長方法にも適用可能である。 L E C法の場合には, B 203などの封止剤で覆った原料 »液 1 2 mの表面に種結晶 1 0を接触させて回 転させながら徐々に引き上げるようにする。
また、 上記各実施形態では、 種結晶 1 0を原料 «液 1 2 mや溶液 1 2 sの下側 に配置したが、 原料 »液 1 2 mや溶液 1 2 sの上面に種結晶 1 0を接触させ、 原 料融液 1 2 mや溶液 1 2 sを上から下に向かって固化させて結晶を成長させても よい。
さらに、 種結晶 1 0はサファイア (酸化アルミニゥム : A 1203 ) に限らず、 成 長させる結晶の成長温度、 格子定数、 熱膨張率などを考慮して適宜選択可能であ る。 なお、 格子定数については、 種結晶 1 0と成長させる結晶とで整合している のが好ましいが、 必ずしも整合していなくても結晶成長可能である。 また、 化合 物半導体原料を溶媒に溶解させた溶液から結晶成長を行なう場合には、 多結晶原 料を »解してその »液から結晶成長を行なう場合に比べて成長温度が低く なるの で、 より融点の低い物質を種結晶と して選択することができる。
以下に、 本発明を適用した単結晶成長の具体例を示すが、 本発明は以下の各具 体例により何等制限されるものではない。
(実施例 1 )
第 1図に示した加熱炉を用いて、 VG F法により C d T eの単結晶を成長させた, まず、 力一ボン製のルツボ 1 1の底に、 面方位が ( 0 0 0 1 ) のサファイア (酸化アルミニウム : A 1203 ) よりなる厚さ 5,以下の薄板状の種結晶 1 0 (サ フアイァ基板) を傾斜しないように置き、 カーボン製の押さぇ部材 1 5により固 定した。 サファイア基板には予め镜面研磨を施しておき、 その表面に微小な突起 や窪みがないようにしておいた。 ルツボ本体 1 1 Aの底から上端までの長さは 1 0 Omm. 押さぇ部材 1 5の內径、 すなわち成長させる結晶の径は 5 Ommであった, そのルツボ 1 1內に C d T eの多結晶原料 1 2を 5 7 0 g入れ、 それを石英製 のアンプル 1 3の成長室 1 3 A内に設置するとともに、 リザーバ部 1 3 B内に蒸 気圧制御を行なうのに十分な量の C dの単体 1 4を入れてアンプル 1 3を真空封 止した。
そして、 そのアンプル 1 3を垂直型加熱炉内に設置した。 その加熱炉の多段式 のヒータ一 2 0により原料 1 2を C d T eの ¾点近く まで昇温し、 アンプル 1 3 の縦方向に 2 tZcmの温度勾配を種結晶 1 0側が低くなるように設け、 さらに昇 温して原料 1 2を溶 ¾して原料融液 1 2 mを得た。 その時の原料融液 1 2 mの高 さは 5 Ommであった。 なお、 種結晶 1 0 (サファイア基板) は全く溶けなかった, また、 リザ一バ部 1 3 Bの温度を、 アンプル 1 3内に所望の C d圧を印加できる ような温度に保った。
続いて、 上述した温度勾配を保ちながら原料 ¾液 1 2 mを毎時 0. Itの降温速 度で徐々に冷却して、 原料 ¾液 1 2 mを種結晶 1 0側から上方に向かって固化さ せて結晶を得た。 その際、 温度の揺らぎは ±0.1でであった。 得られた結晶を調 ベたところ、 ( 1 1 1 ) 面から 1 0〜 1 5 ° 傾いた C d T e単結晶であつた。 ま た、 結晶成長を、 上述した条件及び手頤で複数回行なったところ、 単結晶の歩留 まりは 5〜 1 0 %程度であった。
(実施例 2 )
第 2図に示した加熱炉を用いて、 T eを溶媒と した V B法により Z n T eの単 結晶を成長させた。
まず、 グラフアイ ト製のルツボ 1 6の底に面方位が ( 00 0 1 ) のサファイア
(酸化アルミニウム : A 1203 ) よりなる厚さ 5mm以下の種結晶 1 0 (サファイア 基板) を傾斜しないように置き、 押さえ部材 1 5により固定した。 サファイア基 板には予め鏡面研磨を施しておき、 その表面に突起や窪みがないようにしておい た。 ルツボ 1 6の底から上端までの長さは 1 0 Omm、 押さえ部材 1 5の内径、 す なわち成長させる結晶の径は 1インチであった。 そのルツボ 1 6内に溶媒と して 6 0 gの T e と、 溶質と して 7 0 gの Z n T e多結晶原料 (結晶育成温度 1 1 0 0でにおいて 6 0 gの T e溶媒に十分に溶解する量である。 ) を充填し、 そのル ッボ 1 6を石英製のアンプル 1 7中に 2 X 1 0—6Torrの真空中で封入した。
そして、 そのアンプル 1 7を結晶育成炉內に、 ルツボ 1 6の中心軸が炉の中心 軸に一致するように設置した。 統いて、 ヒータ一 2 0により加熱して、 ルツボ底 の温度が 1 1 6 5で、 溶媒と溶質が溶け合ってできる溶液 1 2 sの上面 (ルツボ 底から 7 Ommの高さであった。 ) の温度が 1 1 5 0 となるように炉内に温度勾 配を設け、 その状態で 2 日間保持して十分に溶質を溶解させた。 このよ う に、 ル ッボ底の温度を溶液 1 2 sの上面の温度よりも高く設定することにより、 溶媒中 に溶質が溶解すると同時に対流が起こり、 それによつて溶質の溶解が促進される とともに、 種結晶 1 0の表面が対流によって洗浄されて清浄な面となる。
その後、 ヒータ一 2 0により結晶育成炉内の温度分布を変更して、 炉内下方に 向かって 1 S tZcmの温度勾配でもって温度が低くなるようにした。 その温度勾 配中を、 アンプル 1 7を 3CmZ日の速度で低温側に移動させて結晶育成を行なつ た。 得られた結晶を翻べたところ、 長さ 1 5 ΠΗΠの Z n T e単結晶であった。 また 同じようにして結晶成長を操り返し行なったところ、 単結晶の歩留まりは 5 0〜 6 0 %程度であった。
(実施例 3 )
第 2図に示した加熱炉を用いて、 T eを溶媒と した V B法により Z n T eの単 結晶を成長させた。
まず、 グラフアイ ト製のルツボ 1 6の底に、 面方位が ( 0 0 0 1 ) のサフアイ ァよりなる厚さ 5mm以下の種結晶 1 0 (サファイア基板) を置き、 押さえ部材 1 5により固定した。 サファイア基板には予め鏡面研磨を施しておいた。 なお、 ノレ ッボ 1 6を、 その底板部がルツボ中心軸の垂直方向 (すなわち、 第 2図の水平方 向) に対して 5 ° 傾斜するように製作した。 それによつて、 種結晶 1 0はルツボ 底に、 その表面が水平方向に対して 5 ° 傾いた状態で取り付けられた。 ルツボ 1 6の底から上端までの長さは 1 0 Omm、 押さえ部材 1 5の内径は 1 インチであつ た。 そのルツボ 1 6内に溶媒と して 6 0 gの T e と、 溶質と して 7 0 gの Z n T e多結晶原料を充填し、 そのルツボ 1 6 を石英製のアンプル 1 7 中に 2 X 1 0 一 6 Torrの真空中で封入した。
そして、 そのアンプル 1 7を結晶育成炉内に、 ルツボ 1 6の中心軸が炉の中心 軸に一致するよ うに設置した。 続いて、 ヒ一ター 2 0によ り加熱して、 ルツボ底 の温度が 1 1 6 5 溶媒と溶質が溶け合ってできる溶液 1 2 s の上面 (ルツボ 底から 7 0 mmの高さであった。 ) の温度が 1 1 5 0 となるよ うに炉內に温度勾 配を設け、 その状態で 2 日間保持して十分に溶質を溶解させる と と もに、 対流に よる種結晶 1 0の表面の洗浄を行なった。
その後、 ヒータ一 2 0によ り結晶育成炉内の温度分布を変更して、 炉内下方に 向かって 1 5で/ cmの温度勾配でもって温度が低く なるよ うにした。 その温度勾 配中を、 アンプル 1 7 を ScinZ日の速度で低温側に移動させて結晶育成を行なつ た。 Z n T e結晶は、 種結晶 1 0の表面の内最も温度の低い箇所、 すなわち傾い た種結晶 1 0の最も高さの低い齒所から析出した。 得られた結晶を調べたと ころ 長さ 1 5!11111の 2 n T e単結晶であった。 また、 同じよ う して結晶成長を繰り返 し行なったところ、 単結晶の歩留ま りは 7 0〜 8 0 %程度であった。
(実施例 4 )
第 2図に示した加熱炉を用いて、 T e を溶媒と した V B法によ り Z n T eの単 結晶を成長させた。
まず、 グラフアイ ト製のルツボ 1 6の底に面方位が ( 0 0 0 1 ) のサファイア よ りなる厚さ 5 mm以下の種結晶 1 0 (サフアイァ基板) を置き、 押さえ部材 1 5 によ り固定した。 サフアイァ基板には予め鏡面研磨を施しておく と と もに、 超高 真空中で酸素ィオンによ り基板中心部に直径 6 0 i mで深さ 1 μ mの窪み (凹 部) を形成しておいた。 ルツボ 1 6の底から上端までの長さは 1 0 0mm、 押さえ 部材 1 5の内径は 1 インチであった。 そのルツボ 1 6内に溶媒と して 6 0 gの T e と、 溶質と して 7 0 gの Z n T e多結晶原料を充填し、 そのルツボ 1 6 を石 英製のアンプル 1 7中に 2 X 1 0 ― 6 Torrの真空中で封入した。 そして、 そのアンプル 1 7を結晶育成炉內に、 ルツボ 1 6の中心軸が炉の中心 軸に一致するように設置した。 統いて、 ヒ一ター 2 0により加熱して、 ルツボ底 の温度が 1 1 6 5 t:、 溶媒と溶質が溶け合ってできる溶液 1 2 s の上面 (ルツボ 底から 7 O mmの高さであった。 ) の温度が 1 1 5 0でとなるように炉内に温度勾 配を設け、 その状態で 2 日間保持して十分に溶質を溶解させるとともに、 対流に よる種結晶 1 0の表面の洗浄を行なった。
その後、 ヒータ一 2 0により結晶育成炉內の温度分布を変更して、 炉内下方に 向かって 1 5 t Z cinの温度勾配でもって温度が低くなるようにした。 その温度勾 配中を、 アンプル 1 7を 3 cnZ日の速度で低温側に移動させて結晶育成を行なつ た。 Z n T e結晶は、 種結晶 1 0の表面の窪みにおいて核生成し成長した。 得ら れた結晶を調べたところ、 長さ 1 5 mmの Z n T e単結晶であった。 また、 同じよ うにして結晶成長を橾り返し行なったところ、 単結晶の歩留まりは 7 0〜 8 0 % 程度であった。
なお、 上記各実施例では、 C d T e及び Z n T e の単結晶を成長させる例を挙 げたが、 これに限らず、 本発明は Z n S eなどの他の I I一 VI族化合物半導体や I I I - V 族化合物半導体や S i 単結晶その他のバルク結晶を成長させる場合にも適用 可能である。 産業上の利用可能性
以上述べたように、 本発明に係るバルク結晶の成長方法によれば、 成長させる 結晶の成長温度より も高い »点を有し、 かつ成長させる結晶と異なる成分の薄板 状の単結晶基板を種結晶と して用いて結晶成長を行なうため、 良質の単結晶を歩 留まり良く得ることができる。 また、 種付け時の温度制御が容易になるとともに 結晶成長速度を大きくすることができるので、 工業生産上極めて有効である。 さ らに、 結晶成長を開始する前に、 ルツボの底の温度を高く してルツボ内の融液ま たは溶液に対流を起こさせ、 その対流により種結晶の表面を洗浄するようにした ことによって、 種結晶の表面が清浄な面になり、 結晶成長時に多数の核が発生す るのが防止され、 単結晶の歩留まりが向上する。 さらにまた、 種結晶の表面の面 内に低温部を設けたり、 微小凹部や微小突起部を設けるなどして、 結晶成長時に 核が発生し易い箇所を設けることにより、 結晶成長時に多数の核が発生するのが 防止され、 単結晶の歩留まりがさらに向上する。

Claims

請 求 の 範 囲
1 . 成長させる結晶の構成元素を含む融液または溶液に種結晶を接触させて該 ¾ 液または溶液からバルク結晶を成長させるにあたり、 前記種結晶と して、 成長さ せる結晶の成長温度より も高い »点を有するとともに、 成長させる結晶と成分が 異なり、 かつ前記 »液または溶液への溶解度が小さい薄板状の単結晶基板を用い ることを特徴とするバルク結晶の成長方法。
2 . 前記種結晶を、 前記融液または溶液を入れるルツボの底に配置することを特 徴とする請求の範囲第 1項記載のバルク結晶の成長方法。
3 . 前記種結晶を、 前記 ¾液または溶液を入れるボー トの一端に配置することを 特徴とする請求の範囲第 1項記載のバルク結晶の成長方法。
4 . 前記種結晶を、 前記 S! [液または溶液の表面に接触させることを特徴とする請 求の範囲第 1項記載のバルク結晶の成長方法。
5 . 加熱炉により加熱して、 前記種結晶と、 前記融液または溶液との固液界面の 温度が低くなるような温度勾配を、 前記 ¾液中または溶液中に設け、 該温度勾配 を保持しつつ前記加熱炉への供給電力を下げて前記加熱炉內を徐々に冷却するこ とによ り前記固液界面から結晶を成長させることを特徴とする請求の範囲第 1項 第 2項、 第 3項または第 4項に記載のバルク結晶の成長方法。
6 - 加熱炉により加熱して、 該加熱炉內に、 前記種結晶と、 前記 »液または溶液 との固液界面側から該固液界面に相対する界面側に向かって温度が高くなるよう な温度勾配を設け、 該加熱炉に対して、 前記 »液または溶液と前記種結晶とを接 触させた状態で低温側へ相対移動させることにより、 前記固液界面から結晶を成 長させることを特徴とする請求の範囲第 1項、 第 2項、 第 3項または第 4項に記 載のバルク結晶の成長方法。
7 . 前記種結晶を徐々に引き上げることにより結晶を成長させることを特徴とす る請求の範囲第 1項または第 4項に記載のバルク結晶の成長方法。
8 . 前記種結晶は、 成長させる結晶と略同じ径であることを特徴とする請求の範 囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項または第 7項に記載のバル ク結晶の成長方法。 9 . 気密性を有し、 かつ蒸気圧制御用のリザーバ部を有するアンプル内に、 前記 tt液また 溶液、 前記種結晶、 及び成長させる結晶の構成元素であり、 かつ蒸気 圧制御用の揮発し易い元素よりなる単体または化合物を真空封入し、 該揮発し易 い元素の所望の圧力を前記アンブル內に印加するように前記リザーバ部を加熱し ながら結晶を成長させることを特徴とする請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項または第 8項に記载のバルク結晶の成長方法。
1 0 . 前記種結晶と、 前記 ¾液または溶液とが固液界面にて接触した後、 結晶成 長を開始する前に、 加熱炉への給電 iを調整して、 前記融液または溶液中に、 同 »液側または溶液側より も種結晶側の温度が高くなるような温度勾配を設け、 そ の状態で前記 ¾液または溶液を所定期間保持することを特徴とする請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項または第 9項 に記載のバルク結晶の成長方法。
1 1 . 少なく とも結晶成長中に、 前記種結晶と、 前記融液または溶液との固液界 面の面内に、 該面内の他の領域より も低温となる領域が生じるような温度勾配を 設けて結晶成長を行なう ことを特徴とする請求の範囲第 1項、 第 2項、 第 3項, 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項または第 1 0項に記載のバル ク結晶の成長方法。
1 2. 前記種結晶と、 前記融液または溶液との固液界面の法線方向が結晶成長方 向に対して傾く ように、 前記固液界面を傾斜させた状態で結晶成長を行なうこと を特徴とする請求の範囲第 1 1項記載のバルク結晶の成長方法。
1 3. 前記種結晶の、 前記融液または溶液と接触する面がすり鉢状に成形されて いることを特徴とする請求の範囲第 1 1項記載のバルク結晶の成長方法。
1 4. 前記種結晶の、 前記 ¾液または溶液と接触する面に、 結晶成長の核となる 微小凹部が少なく とも一つ形成されていることを特徴とする請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項または第 1 0項に記載のバルク結晶の成長方法。
1 5. 前記種結晶の、 前記 »液または溶液と接触する面に、 結晶成長の核となる 微小突起部が少なく とも一つ形成されていることを特徴とする請求の範囲第 1項, 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項または第 1
0項に記載のバルク結晶の成長方法。
1 6. 前記成長させる結晶は、 化合物半導体の単結晶であることを特徴とする請 求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項、 第 1 0項、 第 1 1項、 第 1 2項、 第 1 3項、 第 1 4項、 または第 1 5項 に記載のバルク結晶の成長方法。
1 7. 前記化合物半導体は C d T e 、 Z n T eまたは Z n S eであることを特徴 とする請求の範囲第 1 6項記載のバルク結晶の成長方法。
1 8. 前記種結晶は、 酸化物の単結晶であることを特徴とする請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項、 第 1 0項、 第 1 1項、 第 1 2項、 第 1 3項、 第 1 4項、 第 1 5項、 第 1 6項、 または第 1 7 項に記載のバルク結晶の成長方法。
1 9 . 前記酸化物はサファイアであるこ とを特徴とする請求の範囲第 1 8項記載 のバルク結晶の成長方法。
PCT/JP1995/002025 1994-11-11 1995-10-04 Procede permettant d'obtenir la croissance d'un cristal massif WO1996015297A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/669,493 US5871580A (en) 1994-11-11 1995-04-10 Method of growing a bulk crystal
DE69528051T DE69528051T2 (de) 1994-11-11 1995-10-04 Kristallwachstumsverfahren
JP51590796A JP3343615B2 (ja) 1994-11-11 1995-10-04 バルク結晶の成長方法
EP95933607A EP0751242B1 (en) 1994-11-11 1995-10-04 Process for bulk crystal growth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27801594 1994-11-11
JP6/278015 1994-11-11

Publications (1)

Publication Number Publication Date
WO1996015297A1 true WO1996015297A1 (fr) 1996-05-23

Family

ID=17591457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002025 WO1996015297A1 (fr) 1994-11-11 1995-10-04 Procede permettant d'obtenir la croissance d'un cristal massif

Country Status (6)

Country Link
US (1) US5871580A (ja)
EP (1) EP0751242B1 (ja)
JP (1) JP3343615B2 (ja)
CN (1) CN1070542C (ja)
DE (1) DE69528051T2 (ja)
WO (1) WO1996015297A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759383B1 (fr) * 1997-02-07 1999-03-26 Sofradir Procede pour la realisation d'un semi-conducteur par cristallisation d'un bain liquide et installation pour la mise en oeuvre de ce procede
JP3648703B2 (ja) * 2000-01-07 2005-05-18 株式会社日鉱マテリアルズ 化合物半導体単結晶の製造方法
JP2002203799A (ja) * 2000-12-28 2002-07-19 Canon Inc 液相成長方法および液相成長装置
JP2002249399A (ja) * 2001-02-21 2002-09-06 Murata Mfg Co Ltd 単結晶の製造方法および単結晶
JP2002293686A (ja) * 2001-04-03 2002-10-09 Hitachi Cable Ltd 化合物半導体単結晶の成長方法及びそれから切り出した基板
US6886234B2 (en) * 2002-01-22 2005-05-03 Seagate Technology Llc Top cover removal machine for disc drives
US20030172870A1 (en) * 2002-03-14 2003-09-18 Axt, Inc. Apparatus for growing monocrystalline group II-VI and III-V compounds
CA2510415C (en) * 2005-06-21 2012-08-14 Redlen Technologies Inc. A cold-walled vessel process for compounding, homogenizing and consolidating semiconductor compounds
CA2649322C (en) * 2008-09-30 2011-02-01 5N Plus Inc. Cadmium telluride production process
US8493649B2 (en) * 2008-10-23 2013-07-23 Bae Systems Information And Electronic Systems Integration Inc. Method of producing nonlinear optical crystal CdSiP2
CN103374746A (zh) * 2012-04-27 2013-10-30 比亚迪股份有限公司 一种用于制作准单晶硅的装置及一种准单晶硅的制作方法
US9543457B2 (en) 2012-09-28 2017-01-10 First Solar, Inc. Method and system for manufacturing back contacts of photovoltaic devices
US9725821B1 (en) 2014-02-28 2017-08-08 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Cavity pull rod: device to promote single crystal growth from the melt
CN116536768B (zh) * 2023-06-29 2023-09-29 浙江珏芯微电子有限公司 一种碲锌镉单晶的生长用坩埚及生长方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869800A (ja) * 1981-10-16 1983-04-26 Nec Corp 3−5族化合物半導体の結晶成長方法
JPS6335349B2 (ja) * 1978-12-13 1988-07-14 Yunaitetsudo Tekunorojiizu Corp
JPH01122998A (ja) * 1987-11-09 1989-05-16 Sumitomo Electric Ind Ltd CdZnTe混晶半導体の製造方法
JPH0340987A (ja) * 1989-07-10 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> 単結晶育成方法
JPH05279165A (ja) * 1992-03-27 1993-10-26 Asahi Glass Co Ltd 化合物半導体単結晶の製造装置
JPH05310494A (ja) * 1992-05-11 1993-11-22 Sumitomo Electric Ind Ltd 単結晶の育成方法
JPH07206597A (ja) * 1994-01-25 1995-08-08 Dowa Mining Co Ltd ZnSeバルク単結晶の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869776A (en) * 1986-07-29 1989-09-26 Sharp Kabushiki Kaisha Method for the growth of a compound semiconductor crystal
JPS6335349A (ja) * 1986-07-31 1988-02-16 Toshiba Corp ワ−ドプロセツサ
JP2525930B2 (ja) * 1990-05-15 1996-08-21 スタンレー電気株式会社 ▲ii▼―▲vi▼族化合物半導体の結晶成長方法
US5499600A (en) * 1993-12-24 1996-03-19 Stanley Electric Co., Ltd. Methods for compound semiconductor crystal growth from solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335349B2 (ja) * 1978-12-13 1988-07-14 Yunaitetsudo Tekunorojiizu Corp
JPS5869800A (ja) * 1981-10-16 1983-04-26 Nec Corp 3−5族化合物半導体の結晶成長方法
JPH01122998A (ja) * 1987-11-09 1989-05-16 Sumitomo Electric Ind Ltd CdZnTe混晶半導体の製造方法
JPH0340987A (ja) * 1989-07-10 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> 単結晶育成方法
JPH05279165A (ja) * 1992-03-27 1993-10-26 Asahi Glass Co Ltd 化合物半導体単結晶の製造装置
JPH05310494A (ja) * 1992-05-11 1993-11-22 Sumitomo Electric Ind Ltd 単結晶の育成方法
JPH07206597A (ja) * 1994-01-25 1995-08-08 Dowa Mining Co Ltd ZnSeバルク単結晶の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0751242A4 *

Also Published As

Publication number Publication date
CN1138882A (zh) 1996-12-25
EP0751242A1 (en) 1997-01-02
EP0751242B1 (en) 2002-09-04
EP0751242A4 (en) 1998-04-01
CN1070542C (zh) 2001-09-05
JP3343615B2 (ja) 2002-11-11
US5871580A (en) 1999-02-16
DE69528051D1 (de) 2002-10-10
DE69528051T2 (de) 2003-01-02

Similar Documents

Publication Publication Date Title
WO1996015297A1 (fr) Procede permettant d&#39;obtenir la croissance d&#39;un cristal massif
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
EP0446525A1 (en) Crystal growth method and apparatus
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP3806791B2 (ja) 化合物半導体単結晶の製造方法
JP2008120614A (ja) 化合物半導体単結晶基板及びその製造方法
JP2000256091A (ja) 単結晶SiCの液相育成方法
JP2010064936A (ja) 半導体結晶の製造方法
JP2002293686A (ja) 化合物半導体単結晶の成長方法及びそれから切り出した基板
JPH10212192A (ja) バルク結晶の成長方法
JP2004099390A (ja) 化合物半導体単結晶の製造方法及び化合物半導体単結晶
JP2002274995A (ja) 炭化珪素単結晶インゴットの製造方法
JP3806793B2 (ja) 化合物半導体単結晶の製造方法
JP2009190914A (ja) 半導体結晶製造方法
JPH10152393A (ja) バルク結晶の成長方法及びバルク結晶成長用種結晶
JP2010150136A (ja) 化合物半導体単結晶の製造装置及びその製造方法
JP2612897B2 (ja) 単結晶の育成装置
JPH11130579A (ja) 化合物半導体単結晶の製造方法及びその製造装置
JPH11322489A (ja) 半導体単結晶の製造方法
JP3938674B2 (ja) 化合物半導体単結晶の製造方法
JP2016132599A (ja) サファイア単結晶製造装置、及びサファイア単結晶の製造方法
JPH10338591A (ja) 化合物半導体単結晶の製造方法
JPH0867593A (ja) 単結晶の成長方法
JP2922038B2 (ja) 化合物半導体単結晶の製造方法
JPH03193689A (ja) 化合物半導体の結晶製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191189.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995933607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08669493

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995933607

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995933607

Country of ref document: EP