WO1995020762A1 - Ultrasonic probe excitation circuit - Google Patents

Ultrasonic probe excitation circuit Download PDF

Info

Publication number
WO1995020762A1
WO1995020762A1 PCT/JP1995/000124 JP9500124W WO9520762A1 WO 1995020762 A1 WO1995020762 A1 WO 1995020762A1 JP 9500124 W JP9500124 W JP 9500124W WO 9520762 A1 WO9520762 A1 WO 9520762A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
circuit
impedance
waveform
speed
Prior art date
Application number
PCT/JP1995/000124
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Udagawa
Original Assignee
Yoshio Udagawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6028882A external-priority patent/JPH07218482A/en
Priority claimed from JP6196111A external-priority patent/JPH0843065A/en
Application filed by Yoshio Udagawa filed Critical Yoshio Udagawa
Publication of WO1995020762A1 publication Critical patent/WO1995020762A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details

Definitions

  • the present invention relates to an ultrasonic probe excitation circuit. More specifically, the present invention relates to a probe excitation circuit capable of significantly improving the accuracy of measurement or inspection in meat measurement or flaw detection using an ultrasonic probe. Background art
  • ultrasonic waves have been used to detect defects and the like inside the test material by non-crushing inspection, and an ultrasonic probe equipped with a transducer has been used.
  • the probe is connected to the flaw detection device via a conductive part such as a cable.
  • the transducer of the probe When performing an inspection, the transducer of the probe is vibrated by sending a spike voltage to the probe through the conducting part from the flaw detection device, and an ultrasonic wave is emitted toward the inside of the test material.
  • the probe receives the reflected wave from the inside of the test material, and the vibration of the vibrator changes the voltage, and again generates a voltage waveform in the conducting part.
  • the detection the presence or absence of a defect is determined.
  • the cable impedance If the impedance is large compared to the impedance of the transducer, an electric signal will be reflected in the transmission path (coaxial cable) between the probe and the amplifier when a transmission wave is generated, resulting in waveform distortion.
  • the voltage waveform generated by the reflected wave from the test material which is the object of the detection, often fell into the waveform due to the unnecessary reflection, resulting in a decrease in the accuracy of defect detection.
  • the first invention of the present application has been made based on the above background.
  • Ultrasonic probes used for measuring equipment and the like were generally provided in an excitation circuit as shown in FIG.
  • a indicates a charging circuit
  • b indicates a fast discharging circuit
  • c indicates a capacitor
  • d indicates a matching circuit
  • e indicates a cable
  • indicates a probe.
  • a charging circuit a charges from a power supply (not shown), and instantaneously connects a load stored in a capacitor c to a transducer ⁇ , which is a vibrator.
  • An impulse excitation voltage was applied to f.
  • the high-speed discharge circuit b is a well-known means, such as a switch, capable of cutting off an image path.
  • the probe f receiving the impulse excitation voltage (spike hail pressure) emits ultrasonic waves to the test material.
  • the time until the transmitted ultrasonic wave is reflected from the target object is measured; the position of the defect is measured in the case of the detection test, and the target is measured in the case of the thickness measurement. He knew the thickness of things.
  • the impedance matching circuit d is arranged in parallel with the high-speed discharge surface b, and the impedance of the circuit on the probe ⁇ side is changed at and after the transmission.
  • the probe f does not match with the cable e, etc., and signal reflection occurs at both ends of the cable e. The reflection is picked up in the waveform from the probe ⁇ itself, and the S / N ratio is reduced. Had been lowered. This is because the reflected voltage of the above-mentioned reflected tatami mats disturbs the transmission voltage transmitted to the probe f side, which also disturbs the waveform of the ultrasonic wave emitted from the probe f.
  • the voltage R across the matching circuit d indicates the pick-up of the reflected wave.
  • the transmission waveform P has a large width W in the time axis direction of the transmission wave.
  • the inventions of the present application are intended to solve the above-mentioned problems by improving resolution with respect to elapsed time in flaw detection and wall thickness measurement.
  • the present invention provides the following ultrasonic probe excitation circuit. That is, the ultrasonic probe excitation surface according to the first invention of the present application has the probe 1 and the conductive portion 2 and has the following configuration.
  • the probe 1 is provided to a detector such as a flaw detection device via a conductive member 2.
  • the probe 1 receives a pulse voltage from the detector side of the conductive portion 2 to transmit ultrasonic waves to the test material. As well as receiving pulses It transmits the voltage to conduction city 2.
  • the transmission unit 2 is for transmitting the above-described pulse voltage of the probe 1 to the probe 1 and transmitting a voltage waveform generated by the reflected wave received by the probe 1 to the detector side, and further includes a variable impedance circuit. It is equipped with 3.
  • the variable impedance circuit 3 sets the impedance of the conductive section 2 to approximately the same as the impedance of the probe 1 when transmitting ultrasonic waves, and the impedance of the conductive section 2 when receiving reflected waves. It can be larger than the impedance of child 1.
  • the ultrasonic probe excitation circuit includes a low-speed charging circuit 101 capable of gradually charging electric charges, and a rapid discharge of electric charges when an appropriate charging pressure is reached.
  • High-speed discharge circuit 102 a series impedance 103, a conducting part 104, and a probe 105 that vibrates by receiving a spike pressure and emits ultrasonic waves.
  • the surface 101 is connected to the high-speed discharge circuit 102 via a series impedance 103.
  • the series impedance 103 restricts the above-mentioned discharge of a predetermined value or more.
  • the conductive portion 10 is a member such as a cable, and connects the low-speed charging circuit 101 and the series impedance 103 to the probe 105.
  • the ultrasonic probe excitation circuit according to the third investigation of the present invention has a low-speed charging surface 101 capable of gradually charging electric charges, and a rapid discharge of a load when an appropriate charging pressure is reached. It has a high-speed emission circuit 102 that performs the operation, a series impedance 103, a conduction section 104, and a probe 105 that vibrates by receiving a spike voltage and emits ultrasonic waves.
  • the low-speed charging circuit 101 is connected to the high-speed discharging circuit 102.
  • the series impedance 103 restricts the above-mentioned discharge above a predetermined level.
  • One end is connected between the low-speed charging circuit 101 and the high-speed discharging circuit 102, and the other end is connected. It is connected to one end of the head 104.
  • the conductive portion 104 is a conductive member such as a cable, and connects one end of the series impedance 103 to the probe 105.
  • the ultrasonic probe excitation circuit according to the first invention of the present application which employs the above-described means, is characterized in that the variable impedance circuit 3 of the transmission center 2 controls the impedance of the conduction section 2 when transmitting ultrasonic waves. Since the size is almost the same as that of the impedance in (1), it is possible to suppress the occurrence of reflection in the doujinro (2).
  • the impedance of the conducting part 2 is set to be larger than the impedance of the probe 1, so that the sound pressure and the signal voltage become almost proportional, and Pressure regeneration is now possible.
  • capacitance is given by arranging capacitors in parallel to the probe, and an amplifier with the highest possible input impedance is used. It is necessary to widen the received signal.
  • an equivalent circuit of a piezoelectric element used as a transducer of a probe can be generally represented as shown in FIG.
  • the waveform obtained when the probe is of a narrow band type and the transmission is in a wide band, that is, using a probe with a small wave number is as follows: Since both transmission and reception are almost the same as those using a broadband probe, it is appropriate to consider that the receiving characteristics of the ultrasonic transducer do not show much the resonance characteristics of the transducer, and are close to Equation I above. is there. With the probe alone (in a state where it is not connected to other devices), the above idea is satisfied. On the other hand, when it is connected to a flaw detector, it is considered that it is indicated by an equivalent path as shown in Fig. 24.
  • Equation IV C / kXV + l / (kR) X i Vd t... (IV)
  • the value R of impedance 933 is extremely large.
  • the sound pressure is proportional to the signal voltage. Therefore, when the reflected wave from the test material is received, the impedance of the conducting part 2 is made larger than the impedance of the probe 1 and approaches infinity, so that the sound pressure and the signal voltage are almost proportional. The sound pressure can be reproduced.
  • the ultrasonic probe excitation image path according to the present invention does not cause waveform distortion due to reflection in the transmission section during transmission, and enables reproduction of sound pressure.
  • the ultrasonic probe excitation circuit according to the second invention of the present application employing the above means includes a low-speed charging circuit 101 and a high-speed discharging circuit 102, and a series impedance 10 between them. The voltage is gradually discharged by the high-speed discharge circuit.
  • the series impedance 103 keeps the impedance as seen from the conducting part 104 constant during the period from excitation to reception of the reflected wave, facilitating circuit matching and reflecting useless signals. It is possible to avoid. Furthermore, since the excitation waveform is step-shaped, the transmission waveform becomes narrower.
  • one end of the series impedance 103 is connected to the low-speed charging path 101 and the high-speed discharge path 1. Since the other end of the serial impedance 103 is connected to one end of the conducting portion 104, the conventional impedance array is arranged in parallel as in the first invention. Unlike, I Nbidansu viewed from the conduction portion 1 0 4 side becomes constant, easy alignment of the circuit, is ⁇ bRIEF drawings is possible to avoid reflection of unnecessary signals description
  • FIG. 1 is an explanatory diagram showing one embodiment of a circuit according to the first invention of the present application.
  • FIG. 2 is an explanatory diagram showing waveforms obtained by a circuit and the like according to the first invention of the present application.
  • FIG. 3 is a sharp view showing a waveform obtained by the circuit and the like according to the first invention of the present application.
  • FIG. 4 is an explanatory diagram showing waveforms obtained by the circuit and the like according to the first invention of the present application.
  • FIG. 5 is a more detailed explanatory diagram of the waveform shown in FIG.
  • FIG. 6 is an explanatory diagram showing a state of generation of a reflected wave during flaw detection.
  • FIG. 7 is an explanatory diagram showing a comparison between a waveform obtained by the circuit according to the first invention of the present cocoon and a conventional waveform.
  • FIG. 8 is an explanatory view showing another embodiment of the circuit according to the first invention of the present invention.
  • FIG. 9 shows the change of the signal waveform and the state of the impedance at each of the positions X 1, X 2, X 3, X 4, X 5 and X 6 of the circuit shown in FIG.
  • FIG. 10 is an explanatory diagram showing a waveform at the position of the variable impedance 30 of the circuit of the embodiment of FIG.
  • FIG. 11 is an explanatory diagram showing another embodiment of the circuit according to the second invention of the present II.
  • FIG. 12 is an explanatory view showing another embodiment of the image path according to the first invention of the present application.
  • FIG. 13 shows the impulses of the bike pulser (spike pressure) at the position SY1, the control voltage at the position SY2, and the overall Y3 of FIG.
  • FIG. 14 is an explanatory view showing an embodiment of the second invention of the present application.
  • FIG. 15 is an explanatory view showing an embodiment of the third invention of the present invention.
  • the 1st 611 is an explanatory diagram showing one embodiment of a circuit according to the second or third invention of the present application.
  • FIG. 17 is an explanatory diagram showing one embodiment of the circuit according to the second or third invention of the present application.
  • FIG. 18 is an explanatory diagram showing one embodiment of the circuit according to the second or third invention of the present application.
  • FIG. 19 is an explanatory diagram of an ultrasonic waveform obtained by implementing the second or third invention of the present application.
  • FIG. 20 is an explanatory view showing the second or third other embodiment.
  • FIG. 21 is an explanatory diagram showing one embodiment of the circuit according to the second or third invention of the present application.
  • FIG. 22 is an explanatory diagram of a waveform of an ultrasonic wave obtained by a conventional ultrasonic probe.
  • FIG. 23 is an explanatory diagram showing a conventional circuit.
  • FIG. 24 is an explanatory diagram showing a conventional circuit.
  • FIG. 25 is an explanatory diagram of a waveform of an ultrasonic wave obtained by a conventional ultrasonic probe.
  • FIG. 26 is an explanatory diagram showing an example of a conventional ultrasonic probe excitation surface.
  • the ultrasonic probe excitation image field has a probe 1 and a conduction section 2 and has the following configuration.
  • the probe 1 emits ultrasonic waves to the test material by receiving a pulsed pressure, and transmits a reception pulse voltage to the conduction unit 2 by receiving a reflected wave from the test material.
  • the conductive part 2 is for transmitting the spike voltage from the probe 1 and for transmitting the voltage waveform generated by the reflected wave received by the probe 1 to the flaw detector, and the variable impedance circuit 3 It is provided with.
  • the variable impedance circuit 3 sets the impedance of the transmission section 2 to the same as the impedance of the probe 1 when transmitting ultrasonic waves, and the impedance of the transmission section 2 when receiving a reflected wave. It is possible to make it larger than the one-by-one dance. The specific configurations of these components will be described in detail below.
  • the probe 1 is connected to a detector such as a flaw detector or a wall thickness measuring device via a conductive line 2 formed by a cable or other conductive wire. Detectors other than those that are not shown).
  • the pulse voltage generated by the flaw detection device S side of the transmission center 2, that is, the excitation pulse generation circuit 41 is sent to the probe 1 via the conduction section 2.
  • the transducer 1 vibrates under the pulse voltage.
  • the probe 1 emits an ultrasonic wave to the test material by the above vibration of the transducer.
  • the conduction city 2 is provided with a variable impedance circuit 3.
  • Reference numeral 31 in FIG. 1 indicates a grounding portion.
  • the variable impedance surface 3 includes the variable impedance 30 and places the variable impedance 30 under the control of the control circuit 40.
  • a control circuit 40 is connected to the excitation pulse generation circuit 41.
  • the excitation pulse generation circuit 41 is also placed under control.
  • the impedance value of the variable impedance '30 is set to be approximately the same as the impedance value of the probe 1. (This is because unnecessary reflection in the conducting part is suppressed by performing impedance matching).
  • control circuit 40 generates the excitation pulse (in the state of the variable impedance 30 described above), generates a spike compress on the @ 1 path 41, and vibrates the vibrator of the probe 1 at the same time as the variable impedance. Adjust 30 to automatically increase the impedance value.
  • the impedance value of the conduction 2 is larger than that of the probe 1, contrary to the initial value.
  • the reflected wave from the test material received by the probe 1 is transmitted by the conduction section 3.
  • Reference numeral 42 in FIG. 1 indicates an amplifier. Amplifier 42 is used in this embodiment. Therefore, it is appropriate to use a high-income Cainbee dance amplifier.
  • the amplifier 42 amplifies the voltage waveform of the reflected wave from the test material and sends it to the detector.
  • Reference numerals 5a and 5b denote parallel capacitance supply units. It has capacitors 50a, 50b, switches 51a, 51b, and grounds 52a, 52b, respectively. When transmitting, the switches 51a and 51b are OFF, and when receiving the reflected wave, short-circuit and discharge to the grounding 52a.52b side.
  • This parallel capacitance supply section is used when the inter-electrode capacitance of the probe (931 in Fig. 12) is small and the second term of Equation IV cannot be ignored even if the variable impedance is maximized. That is, when the second term is sufficiently smaller than the first term of the equation shown in Equation IV (usually about 10% or less of the first term, but depending on the purpose of use, It is sufficient if the ratio of the term is larger than this.) This is to increase the term 1 of the equation.
  • the present invention includes a probe 1 and a conductive member 2, and the probe 1 is provided on a detector such as a flaw detection device via a conductive portion 2.
  • the ultrasonic detector emits an ultrasonic wave to the specimen by receiving the spike voltage from the detector, and transmits the received pulse voltage to the conduction center by receiving the reflected wave from the specimen.
  • Numeral 2 is for transmitting the spike voltage to the probe 1 and for transmitting the hail pressure waveform generated by the ultrasonic reflected wave received by the probe 1 to the detector side.
  • the variable impedance circuit 3 is provided with a beadance image 3 and a parallel capacitance supplying section 5a, 5b.
  • the impedance of the conducting section 2 is set to the impedance of the probe.
  • the parallel capacitance supply units 5a and 5b can further increase the impedance of the conduction unit 2 as compared with the impedance of the probe.
  • Ultrasonic probe excitation characterized by being It can be implemented as a drawing path.
  • the parallel capacitance supply sections 5a and 5b are not provided. Can be implemented. Further, the arrangement of the parallel capacitance supply units 5a and 5b may be immediately adjacent to the probe or as shown in FIG.
  • FIG. 2 shows a general waveform of one wave obtained with a step-type pulsar.
  • A shows the waveform obtained by the probe having the circuit according to the present invention
  • B shows the waveform obtained by the conventional method (the right side of FIG. 2 respectively). Shown).
  • B is a waveform with a fixed impedance of the cable and about 200 ⁇ at the resonance frequency obtained by impedance matching with the cable at 50 ⁇ . , 10 MHz, 85 PF) ⁇
  • the vertical axis represents voltage
  • the horizontal axis represents time
  • the probe is a direct contact type with a frequency of 1 MHz and a diameter of 56 mm.
  • a 1 shows the result of the frequency decimation of the waveform A
  • B 1 shows the result of the frequency decimation of the waveform B.
  • the horizontal axis indicates frequency
  • the vertical axis indicates amplitude.
  • Fig. 3 shows the same waveform A2 obtained using the ultrasonic probe (56 mm in diameter) shown in Fig. 2 above, and another water immersion probe (diameter 2 0 mm ) Is placed in water, and the reflected echo A 3 on the iron plate surface when a large iron plate reflector at about 3 O mm is perpendicular to the beam is shown.
  • the time axis of the A3 waveform is set to 10 times the time axis of the A2 waveform.
  • the waveforms indicated by the dotted lines A 20 and A 30 in the figure show the cases where the transducers of the above-mentioned waveforms A 2 and A 3 were completely damped, respectively. This is an imaginary curve that seems to have no ringing and looks like dotted lines A 20 and A 30.
  • the circuit of the new method related to this cocoon investigation has the advantage that the time axis resolution is high first. As shown in Fig. 4, in the case of wall thickness measurement, the time when the package echo usually overlaps the surface echo is usually observed. And the minimum measured wall thickness.
  • the upper waveform B 11 shows a conventional waveform
  • the lower waveform A 11 shows a waveform obtained using the surface according to the present invention.
  • the measurement using the circuit according to the present invention can be performed up to the reference line w0.
  • the waveform B11 it is difficult to separate the waveforms B111 and B111 when the waveform B112 approaches the reference line W in the conventional method. It was impossible to measure. This is because the width of the positive and negative waveforms was too large in the direction of the amplitude (vertical direction in FIG. 4) in the waveform of one wave, and this waveform was in the way.
  • a tight wave called a half wave is obtained, so that flaw detection or wall thickness measurement can be performed with extremely high accuracy.
  • the waveform of Fig. 4 is shown in Fig. 5 as a more detailed graph based on the data.
  • This probe is a direct contact probe with a delay material.
  • the material to be inspected is a lmm aluminum plate.
  • One scale on the vertical axis indicates 1 Omv
  • the scale on the horizontal axis indicates 100 ns (nano-second) (one scale is about 0.1 cm in FIG. 4).
  • S of this waveform C1 indicates a surface echo.
  • E 1 indicates the first back echo and E 2 indicates the second back echo.
  • E 1 indicates the first back echo and E 2 indicates the second back echo.
  • Another advantage of using the above-described circuit according to the present invention is that the bandwidth is wide.
  • A101 of the waveform 1 shows a waveform of one defect obtained by the circuit according to the present invention, that is, a waveform obtained by the sound pressure reproduction type circuit.
  • the area indicated by the spot indicates the size of the defect.
  • the B101 force shows the conventional waveform, and the h force shows the echo height of the conventional waveform.
  • Waveform 2 in FIG. 7 is a waveform similarly obtained for another defect. This
  • B102 indicates the conventional waveform
  • A102 indicates the waveform obtained by the sound pressure reproduction type circuit of the present invention.
  • A103 shown in waveform 3 in Fig. 7 is a waveform that is finally detected, that is, a waveform obtained by combining waveform 1 and waveform 2 in Fig. 7, and is different from the conventionally obtained combined waveform B103.
  • switches F l which enable high-speed switches such as two FETs or transistors, are provided.
  • F2 has been dispatched.
  • the control circuit 40 is connected to these switches Fl and F2. More specifically, a differentiating circuit 6 constituted by a capacitor 61 and a grounded impedance 62 is interposed between the control circuit 40 and the switch F1. Further, the other end of the switch F 1 is connected to the high-voltage charging circuit 7. As shown in FIG. 8, the high-voltage charging circuit 7 is connected to the switch F 1 and is connected to the variable impedance 30. The switch F 1 and the variable impedance 30 are connected to the probe 1 at the other end as a main component of the variable impedance circuit 3, and are connected between the variable impedance 30 and the probe 1. One end of the switch F2 is connected.
  • reference numeral 63 denotes a ground portion of the impedance 62
  • reference numeral 64 denotes a ground portion of the switch F1
  • reference numeral 65 denotes a ground portion of the switch F2
  • reference numeral 66 denotes a ground portion of the probe 1. I have. Further, the amplifier 42 is connected to the middle of the switch F2 on the ground side, and an impedance 45 is interposed between the ground unit 65 and the switch F2.
  • FIG. 9 shows the change of the signal waveform and the state of the impedance at the husband * of the positions X 1, X 2, X 3, X 4, X 5, and X 6 of the circuit shown in FIG.
  • X3 indicates the value of the impedance at the switch F1. As indicated by X3 in FIG. 9, the “high” position of the waveform indicates a high impedance, and the “low” position indicates a low impedance. A high portion of the waveform of X indicates that the switch F2 is ON.
  • the waveform obtained at the variable impedance 30 position in FIG. 8 is shown in FIG. This is a waveform obtained by changing the impedance value at the position of the variable impedance 30.
  • the probe indance (1/2 ⁇ fc) here is 100 ⁇ ⁇
  • one vertical scale indicates 100 mv
  • one horizontal scale indicates 50 ns (nano-second). (Approximately 1 cm in Fig. 0).
  • R 1 is when the variable impedance 30 is 25 ⁇
  • R 2 is when the variable impedance 30 is 50 Q
  • R 3 is when the variable impedance 30 is 75 ⁇ .
  • R 4 is 100 ⁇ for variable impedance
  • R 5 is 150 ⁇ for variable impedance
  • R 6 is 200 ⁇ for variable impedance 30 ⁇ .
  • R7 is when the variable impedance 30 is set to 300 ⁇
  • R8 is when the variable impedance 30 is set to 400 ⁇
  • R9 is when the variable impedance 30 is set to 500 ⁇ . Time waveforms are shown respectively.
  • the ratio in the vertical direction (downward) to the horizontal direction is large, and a tight and sharp waveform is obtained.
  • Sweep rate pitch F 1 is completely the state ON, the the resistance is about 5 Omega e Therefore, it is sufficient to add 5 ⁇ to each of the above resistance values, but this value is an error range and can be ignored.
  • Fig. 11 emphasizes the improvement of characteristics in addition to the conventional spike pulsar method.
  • the diode D 2 is disposed between the capacitor C 1 and the diode D 1, and the diode D 2 is arranged between the capacitor C 1 and the diode D 1.
  • a damping resistor R 2 (variable impedance 30) constituting the variable impedance circuit 3 is arranged in parallel with the probe 1. I have.
  • the damping resistor R2 is usually constituted by FET or a combination of FET and a resistor.
  • Reference numeral 42 denotes an amplifier
  • variable impedance circuit 3 has almost the same impedance value as that of the probe during transmission, and has a high damping resistance R 2 (variable impedance) controlled by the control circuit 40 when receiving ultrasonic waves (reflected waves). Impedance value. '
  • the damping resistor R2 becomes a large impedance, and the amplifier 42 amplifies the waveform proportional to the sound pressure.
  • the probe cable that constitutes the conductive part 2 is about 5 m long and has a characteristic impedance of about 50 ⁇ .
  • R 2 is set to 100 ⁇ .
  • the waveform in that case is B.
  • the waveform is A when R2 is set to about 50 ⁇ during transmission and the equation is equal to or greater than I0 ⁇ ⁇ ⁇ during reception.
  • Each frequency spectrum is shown in the lower left of the figure. From FIG. 22, it can be seen that a waveform having a smaller wave number and a wider band than the conventional method can be obtained.
  • FIG. 12 illustrates an embodiment of a method for easily adding a flaw detector or a thickness measuring instrument that already exists.
  • 80 indicates a pulse transmission path of the existing device
  • 81 indicates a receiving circuit of the existing device.
  • a switch F1 which is controlled by a control circuit 40, is provided in a conduction section 2 connecting the probe 1 and these circuits 80, 81, and this switch F2 constitutes a variable impedance circuit 3. It is connected to the conduction ⁇ 2 through the variable impedance 30.
  • the switch F1 employs an FET or a transistor capable of high-speed switching, such as a transistor.
  • FIG. 13 shows the spike pulser (spike voltage) at the position Y1, the control overpressure at the position Y2, and the impedance of the whole Y3.
  • the impedance of the whole Y3 is almost the same as that of the variable impedance 30 on the left, and gradually rises after the spike voltage is generated, and the impedance on the right is high. Leads to.
  • examples of the second and third inventions of the present application will be described.
  • the circuit according to the present invention has a low-speed charging surface 101 capable of gradually charging the electric charge, and rapidly discharges the electric charge when an appropriate charging pressure is reached. It has a high-speed packing surface path 102, a series impedance 103, a conductive section 104, and a probe 105 which vibrates and emits ultrasonic waves by receiving a spike voltage.
  • the low-speed charging circuit 101 is connected to the high-speed discharging circuit 102 via a series impedance 103.
  • the series impedance 103 limits the hail above a predetermined level.
  • the conductive portion 104 is a conductive member such as a cable, and connects the probe 105 with the portion between the low-speed charging surface 101 and the series impedance 103.
  • FIG. 15 shows a configuration for obtaining the same operation and effect as the above. It has a low-speed charging circuit 101 that can gradually charge the load, a high-speed discharging circuit 102 that discharges the electric charge rapidly when an appropriate charging pressure is reached, and a series impedance 103 It has a conduction tube 104 and a probe 105 which vibrates by receiving a bike voltage and emits ultrasonic waves.
  • the low-speed charging surface 101 is connected to the high-speed discharging circuit 102.
  • the series impedance 103 limits the above-mentioned discharge above a predetermined level.
  • One end of the series impedance 103 is connected between the low-speed charging circuit 101 and the high-speed discharging circuit 102, and the other end is conductive. It is connected to one end of the city 104.
  • the conductive member 104 is a power supply member such as a cable, and connects one end of the series impedance 103 to the probe 105.
  • “slow” in the low-speed charging circuit 101 means that the probe is gradually charged with the compress so as not to excite the probe 105. Meaning, if it is such a power circuit, what kind is adopted -
  • “high speed” of the high-speed discharge circuit 102 means that the probe 105 has a power supply capability that can excite the probe 105.
  • the present invention can be implemented even if a suitable one is adopted.
  • the circuit shown in Fig. 16 requires a low power supply voltage, and is suitable for a battery-powered device.
  • the low-speed charging circuit 101 is a transformer connected to the power supply 110 (+ V c c). Further, it is connected to a low-speed charging circuit 101 through a high-speed discharging surface 102 formed by a transistor and a variable series impedance 103. 1 3 1 indicates impedance for negative voltage limit.
  • Reference numeral 1332 denotes a diode for rectifying a current flowing only in the charging direction
  • reference numerals 133 and 134 denote a diode for maintenance
  • reference numeral 135 denotes a FET.
  • Reference numerals 1 2 1 and 1 2 2 denote impedance provided in the high-speed discharge circuit 102, impedance 1 2 1 is for controlling the input current 1, and impedance 1 2 2 is a transistor This is for rapid discharge between the base and emitter of the high-speed discharge circuit 102.
  • a switch 107 capable of high-speed switching such as a transistor.
  • . 1 7 1 1 7 2 shows the impedance provided sweep rate pitch 1 0 7 beta
  • the low-speed charging circuit 101 it is also possible to use an element capable of high-speed switching, such as FET, in addition to a transistor (the transistor shown is a transistor).
  • FET field-effect transistor
  • the low-speed charging circuit 101 which has obtained the appropriate voltage and has been charged, is turned on by the switch 107, so that a small current flows through the conduction center 104, and is transferred to the probe 105. Stores electric charge.
  • high-speed discharge circuit 102 When switch 107 is turned off, high-speed discharge circuit 102 is also turned on at the same time. The signal is turned on, and a step-like waveform is sent to the probe 105 through the conduction section 104. That is, the electric charge stored in the probe 105 is discharged by the rapid current P2.
  • FIG. 17 An example in which a relatively small circuit configuration is possible is shown in Figure 17. This means that a high voltage of about 100 to 100 V is obtained from the power supply 110, and a relatively large resistance of about 100 to 500 ⁇ is provided in the circuit. is there.
  • the low-speed charging circuit 101 is implemented by using a transistor or an element capable of high-speed switching (FET in the illustrated example) such as FET.
  • FET field-speed switching
  • 1 1 and 2 indicate an amplifier. The minute current p 1 is sent to the probe 105 side, and the returning load P 2 is discharged by the high-speed discharge circuit 102.
  • the high-speed discharging circuit 102 and the low-speed charging circuit 101 can be realized with a relatively simple configuration as described above, they can be formed in a relatively small size.
  • FIG. 17 the one shown in FIG. 17 is effective when the transducer 105 has a plurality of transducers (channels) because it saves space.
  • Fig. 18 shows another example of the circuit configuration. This means that the change in the charging curve of the probe 105 due to the load is small.
  • a ramp waveform generating circuit 201 is provided together with a rectangular wave generating circuit 200 so that a desired waveform can be obtained as much as possible.
  • the figure shows a low-speed charging circuit with 101 power
  • 102 shows a high-speed discharging circuit.
  • the high-speed discharging circuit 102 uses FETs.
  • the present invention is not limited to a certain type of FET, but may be implemented in place of a high-speed switch such as a transistor if it is capable of high-speed switching, and a switch capable of high-speed switching such as a transistor.
  • the switch 107 has a transistor 1 7 3 for protecting the transistor of this switch 107. Is provided.
  • the reference numeral 140 denotes a transformer or other resistor whose base side is connected to the square wave generation circuit 200, the emitter side is connected to the conduction section 104, and the collector side is connected to the amplifier 112. 2 shows a switch formed by the elements.
  • the switch 140 is provided with an impedance 123 in order to stabilize the switch at 0 when the switch is on.
  • FIG. 19 shows an example of a waveform obtained by implementing the present invention.
  • the vertical axis y indicates the transmission pressure
  • the horizontal axis X indicates the time axis.
  • the scale of vertical t * y is different from that of Fig. 25).
  • the voltage R received by the probe 105 has a small wave number because the reflected wave is suppressed from being picked up.
  • the transmission waveform P has a width in the time axis direction of the transmission wave. W has become smaller.
  • the transmission waveform P in FIG. 26 has two downwardly convex portions, that is, two valleys G.
  • the valley G is There is one.
  • the width W in the time axis direction of the present invention is suppressed to an extremely small value.
  • each embodiment enables high-precision flaw detection or wall thickness measurement, and when accuracy requirements are not strict, the probe has a conventional parallel inductance. Sometimes you want something cheaper. At this time, it is uneconomical to use a wide-area probe that meets the accuracy requirements described above.
  • the transducer 105 itself generally uses a vibrator, if the vibrator is used alone, a useful vibration for emitting ultrasonic waves is obtained. It has the problem that vibration occurs in the radial direction (surrounding) of the vibrator at the same time as the movement occurs in the thickness direction. This (the latter) vibration is lower than the flaw detection frequency because the width of the vibrator in the radial direction is larger than its thickness, and therefore, the attenuation in the probe and the wiping test material is small. However, it appeared as noise on flaw detection.
  • the inductance 106 arranged in parallel with the probe 105 has low impedance at low frequency, so that the voltage becomes 0 during the slow charging and ⁇ and the rapid discharge When the current is applied, the current is drained instead of being discharged. At this time, since the inductance 106 tries to maintain the current flowing from the function, a negative voltage (generally called kickback) is applied to the probe 105. Will give. After all, in this case, the probe 105 (oscillator) vibrates due to this negative voltage.
  • kickback a negative voltage
  • the probe 105 reverse-polarizes when a positive voltage is applied, and the probe 105 does not function. To avoid this, switch the voltage to negative. It is appropriate to provide a well-known configuration to the circuit described above.
  • FIG. 21 An example in which such a configuration is provided in the circuit shown in FIG. 17 is shown in FIG.
  • a capacitor 15 1 is interposed between the low-speed charging circuit 101 and the high-speed discharging circuit 102 and the probe 105, and a diode 15 2 Arranged and grounded.
  • the capacitor 15 1 and the diode 15 2 have a conducting part 104 and the force shown between the low-speed charging circuit 101 and the high-speed discharging circuit 102.
  • ⁇ A similar effect can be obtained by arranging these elements between the conductive part 104 and the probe 105 and practicing them.
  • the first invention of the present application By implementing the first invention of the present application, it is possible to reproduce sound pressure without causing waveform distortion due to reflection in the transmission area during transmission. For this reason, the resolution with respect to the elapsed time (time axis direction) has been significantly improved.
  • the disturbance of the transmitted waveform was suppressed, the wave number of the generated ultrasonic wave was reduced, and the time axis resolution was significantly improved. For this reason, the minimum measurable wall thickness in the wall thickness measurement has become smaller, and it has become possible to measure the wall thickness of extremely thin objects that could not be measured conventionally.
  • an inductance is arranged in parallel with the probe (vibrator), and the outer diameter of the probe 105 to suppress low-frequency vibrations below the flaw detection frequency With a certain force, in the circuit according to the present invention, it is possible to obtain a spike compress even with such a probe, and it has versatility.
  • the resolution with respect to the elapsed time (time direction) can be significantly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An ultrasonic probe excitation circuit according to the present invention includes a probe (1) and a conductor (2), and the probe (1) is connected to a detection apparatus such as a flaw detector through the conductor (2). The probe generates an ultrasonic wave to an object to be inspected on receiving a spike voltage from the detection device, receives the reflected wave from the object, and transmits a reception pulse voltage to the conductor (2). The conductor (2), which transmits the spike voltage to the probe (1) and transmits the voltage waveform derived from the reflected wave to the detection device, includes a variable impedance circuit (3). This variable impedance circuit (3) allows the conductor (2) to have the same impedance as that of the probe (1) at the time of transmission of the ultrasonic wave, and greater impedance than that of the probe (1) at the time of reception of the reflected wave. Accordingly, a sound pressure can be reproduced without generating waveform distortion due to the reflection inside the conductor at the time of transmission, and hence, resolution with the passage of time can be improved during flaw detection or thickness measurement.

Description

明 細 書 超音波探触子励振回路 技術分野  Description Ultrasonic probe excitation circuit Technical field
本願発明は、 超音波探触子励振回路に閩する。 更に詳しくは、 超音波深 触子を用いる肉 測定や探傷にあって、 測定或いは検査の精度を著しく向 上させることができる探触子励振回路に関する。 背景技術  The present invention relates to an ultrasonic probe excitation circuit. More specifically, the present invention relates to a probe excitation circuit capable of significantly improving the accuracy of measurement or inspection in meat measurement or flaw detection using an ultrasonic probe. Background art
従来より、 非破壌検査によって、 被検材内部の欠陥等の検出を行うに際 して、 超音波が利用され、 振動子を備えた超音波探触子が用いられた。 探触子は、 ケーブル等の伝導部を介して探傷装置と接铙されるものであ る。  Conventionally, ultrasonic waves have been used to detect defects and the like inside the test material by non-crushing inspection, and an ultrasonic probe equipped with a transducer has been used. The probe is connected to the flaw detection device via a conductive part such as a cable.
検査を行う際、 上記探傷装置側から伝導部を通じて、 スパイク電圧を探 触子に向けて送ることによって探触子の振動子を振動させ、 被検材内部へ 向けて超音波を発射するものであった,  When performing an inspection, the transducer of the probe is vibrated by sending a spike voltage to the probe through the conducting part from the flaw detection device, and an ultrasonic wave is emitted toward the inside of the test material. there were,
この後被検材内部からの反射波を探触子が受け、 振動子の振動が電圧の 変化となって、 再び上記伝導部に電圧波形を生じさせるのであり、 探傷装 置にてこの波形の検出を行うことにより、 欠陥の有無等を判別するのであ つた。  After that, the probe receives the reflected wave from the inside of the test material, and the vibration of the vibrator changes the voltage, and again generates a voltage waveform in the conducting part. By performing the detection, the presence or absence of a defect is determined.
ところが、 従来のこのような装置において、 充分な検査精度が得られな かった。 即ち、 探傷時に、 検出せず、 見過ごされる欠陥があつたのである。  However, with such a conventional apparatus, sufficient inspection accuracy could not be obtained. That is, at the time of flaw detection, there was a defect that was not detected and overlooked.
この点について従来充分な解明がなされないまま、 放置されてきた。 出願人は、 鋭意研究の末、 下記のような事実を発見した。  This has been neglected in the past without sufficient clarification. The applicant has found the following facts after extensive research.
即ち、 上記のような事態は、 入力イ ンピーダンスが伝送路のィンビーダ ンスに等しくないと、 例えばこのようなケーブル · インピーダンスが探触 子のィンピーダンスに比して大きいものであると、 送信波の発生時に探触 子とアンプの間の伝送路 (同軸ケーブル) 内で、 電気信号の反射が生じ波 形歪みを生じ、 このため、 検出の目的である被検材からの反射波によって 生じた電圧波形が、 上記不要な反射による波形に IIれてしまう事態が往々 にして生じ、 欠陥検出の精度の低下を招いたのである。 That is, if the input impedance is not equal to the impedance of the transmission line, the cable impedance If the impedance is large compared to the impedance of the transducer, an electric signal will be reflected in the transmission path (coaxial cable) between the probe and the amplifier when a transmission wave is generated, resulting in waveform distortion. However, the voltage waveform generated by the reflected wave from the test material, which is the object of the detection, often fell into the waveform due to the unnecessary reflection, resulting in a decrease in the accuracy of defect detection.
又、 上記のような問題と共に、 従来、 実際の音圧波形に近い電気信号波 形を観測していないことも、 出願人は、 解明した。  In addition to the problems described above, the applicant has clarified that an electric signal waveform close to the actual sound pressure waveform has not been observed.
本願第 1の発明は、 上記背景によりなされたのである。  The first invention of the present application has been made based on the above background.
他方において従来、 探傷装置や、 肉)?:測定装 ¾等に用いられる超音波探 触子は、 第 2 6図に示すような励振回路に設けられるのが一般的であった。 図中、 aは充¾回路を、 bは高速放電回路を、 cはコンデンサを示し、 そして、 dは整合回路を、 eはケーブルを、 ίは探触子を示している。 一般的な励振回路は、 充電回路 aが電源 (図示しない。 ) より充電を行 い、 コンデンサ cに蓄えた ¾荷を振動子である探触子 ίに瞬時に接続する ことによって、 探触子 f にイ ンパルス状の励振電圧を加えるものであった。 高速放電回路 bは、 スィ ッチ等の、 画路を絶つことが可能な周知の手段で ある。  On the other hand, conventionally, flaw detectors and meat)? : Ultrasonic probes used for measuring equipment and the like were generally provided in an excitation circuit as shown in FIG. In the figure, a indicates a charging circuit, b indicates a fast discharging circuit, c indicates a capacitor, and d indicates a matching circuit, e indicates a cable, and ί indicates a probe. In a general excitation circuit, a charging circuit a charges from a power supply (not shown), and instantaneously connects a load stored in a capacitor c to a transducer 振動, which is a vibrator. An impulse excitation voltage was applied to f. The high-speed discharge circuit b is a well-known means, such as a switch, capable of cutting off an image path.
そして、 このイ ンパルス状の励振電圧 (スパイク雹圧) を受けた探触子 f カ^ 被検材に超音波を発するのである。  Then, the probe f receiving the impulse excitation voltage (spike hail pressure) emits ultrasonic waves to the test material.
このようにして、 発信された超音波が対象物に反射して'; §つてくるまで の時閒を計測し、 探慯拭験の場合は欠陥の存在位置を、 肉厚測定の場合は 対象物の肉厚を知るのであった。  In this way, the time until the transmitted ultrasonic wave is reflected from the target object is measured; the position of the defect is measured in the case of the detection test, and the target is measured in the case of the thickness measurement. He knew the thickness of things.
しかし、 上述の面路では、 イ ンピーダンスとなる整合回路 d力 高速放 電面路 bに対して並列に配設されおり、 送信時点とその後で、 探触子 ί側 の回路のインビーダンスが変化し、 探触子 f のケーブル e等とのマツチン グが取れず、 ケーブル e両端での信号の反射が生じ、 探触子〖自体からの 波形にその反射が拾置され Sノ N比を低下させていた。 これは、 上記反射の袷畳のため、 探触孑 f 側に向けて発信した送信電圧 が乱れることによって、 探触子 f が発する超音波の波形も乱れるからであ つた。 However, in the above-mentioned surface, the impedance matching circuit d is arranged in parallel with the high-speed discharge surface b, and the impedance of the circuit on the probe ί side is changed at and after the transmission. The probe f does not match with the cable e, etc., and signal reflection occurs at both ends of the cable e.The reflection is picked up in the waveform from the probe 〖itself, and the S / N ratio is reduced. Had been lowered. This is because the reflected voltage of the above-mentioned reflected tatami mats disturbs the transmission voltage transmitted to the probe f side, which also disturbs the waveform of the ultrasonic wave emitted from the probe f.
詳述すると、 第 2 5図へ示すように (図中縦軸 yは送信電圧を示し、 横 軸 Xは時 Γ蚰を示す。 ) 、 整合回路 d両端の電圧 Rは、 上記反射波の拾畳 によって波数が増え、 この結果、 送信波形 Pは、 送信波の時間軸方向の幅 Wが大きなものとなったのである。  More specifically, as shown in Fig. 25 (the vertical axis y indicates the transmission voltage, and the horizontal axis X indicates the time), the voltage R across the matching circuit d indicates the pick-up of the reflected wave. As a result, the transmission waveform P has a large width W in the time axis direction of the transmission wave.
結局、 広带域の探触子を用いた際、 通常のインパルス状の励振では、 1 . 5波以下の短いパルスの生成は困難である。  After all, when using a wide-area probe, it is difficult to generate short pulses of 1.5 waves or less with ordinary impulse-like excitation.
このため、 探傷の場合においては、 比較的探触子 f に近距離にある (被 検材表面付近にある) 欠陥は、 この うなバルスの乱れ (送信波の時間軸 方向の幅 W ) に反射波が隙れてしまい、 検出できず、 又肉厚測定の場合に おいては、 肉厚の簿ぃ対象物の計測が行い難いという問題が生じるのであ つた。  For this reason, in the case of flaw detection, a defect relatively close to the probe f (near the surface of the test material) is reflected by such pulse disturbance (width W of the transmitted wave in the time axis direction). Waves are gaped, cannot be detected, and in the case of thickness measurement, there is a problem that it is difficult to measure the thickness of the object and the thickness of the object.
現状では、 より時間軸方向の分解能の良い波形が望まれつつも、 この要 請に応じたものが提案されるに至っていなかったのである β At present, even with good resolution of more time axis waveform is desired, it is the one corresponding to the Solicitation did not come to be proposed β
本願第 2及び第 3の発明は、 上記背景によりなされたのである。  The second and third inventions of the present application have been made based on the above background.
本願各発明は、 探傷や肉厚測定に際し、 経過時間に対する分解能の向上 によって、 上記各猓題の解決を図るものである。 発明の閒示  The inventions of the present application are intended to solve the above-mentioned problems by improving resolution with respect to elapsed time in flaw detection and wall thickness measurement. DISCLOSURE OF THE INVENTION
錁題解決のため、 本願発明は、 下記の超音波探触子励振回路を提供する。 即ち本願第 1の発明に係る超音波探触子励振面路は、 探触子 1と、 伝導 部 2とを有するものであり下記の構成を採るものである。  In order to solve the problem, the present invention provides the following ultrasonic probe excitation circuit. That is, the ultrasonic probe excitation surface according to the first invention of the present application has the probe 1 and the conductive portion 2 and has the following configuration.
探触子 1は、 伝導都 2を介して探傷装笸等の検出機に設けられるもので あり、 伝導部 2の検出機側から、 パルス電圧を受けることによって被検材 に対して超音波を発すると共に、 被検材からの反射波を受けて受信パルス 電圧を伝導都 2へ伝えるものである。 伝 ¾部 2は、 上記スパルス電圧の探 触子 1の伝達と、 探触子 1が受けた反射波にて生じた電圧波形を検出機側 へ伝達するものであり、 且つ、 可変イ ンピーダンス回路 3を備えたもので ある。 この可変イ ンピーダンス回路 3は、 超音波発信時には、 伝導部 2の ィンビ一ダンスを、 探触子 1のィンビーダンスとほぼ同じ大きさとし、 反 射波受信時には、 伝導部 2のイ ンピーダンスを、 探触子 1のイ ンピーダン スよりも大きいものとすることが可能なるものである。 The probe 1 is provided to a detector such as a flaw detection device via a conductive member 2. The probe 1 receives a pulse voltage from the detector side of the conductive portion 2 to transmit ultrasonic waves to the test material. As well as receiving pulses It transmits the voltage to conduction city 2. The transmission unit 2 is for transmitting the above-described pulse voltage of the probe 1 to the probe 1 and transmitting a voltage waveform generated by the reflected wave received by the probe 1 to the detector side, and further includes a variable impedance circuit. It is equipped with 3. The variable impedance circuit 3 sets the impedance of the conductive section 2 to approximately the same as the impedance of the probe 1 when transmitting ultrasonic waves, and the impedance of the conductive section 2 when receiving reflected waves. It can be larger than the impedance of child 1.
又、 本願第 2の発明に係る超音波探触子励振回路は、 電荷を徐々に充電 することが可能な低速充 ¾回路 1 0 1と、 適切な充電圧に到達すると急速 に電荷の放 ¾を行う高速放電回路 1 0 2と、 直列ィンビーダンス 1 0 3と、 伝導部 1 0 4と、 スパイク踅圧を受けることによって振動し超音波を発す る探触子 1 0 5とを有する, 低速充電面路 1 0 1は、 直列ィンビーダンス 1 0 3を介して高速放 ¾回路 1 0 2に接統するものである。 直列ィンビー ダンス 1 0 3は、 所定以上の上記放電を制限するものである。 伝導部 1 0 は、 ケーブル等の ¾¾部材であり、 上記低速充電回路 1 0 1と直列ィン ピーダンス 1 0 3との間と、 探触子 1 0 5とを接統するものである。  Further, the ultrasonic probe excitation circuit according to the second invention of the present application includes a low-speed charging circuit 101 capable of gradually charging electric charges, and a rapid discharge of electric charges when an appropriate charging pressure is reached. High-speed discharge circuit 102, a series impedance 103, a conducting part 104, and a probe 105 that vibrates by receiving a spike pressure and emits ultrasonic waves. The surface 101 is connected to the high-speed discharge circuit 102 via a series impedance 103. The series impedance 103 restricts the above-mentioned discharge of a predetermined value or more. The conductive portion 10 is a member such as a cable, and connects the low-speed charging circuit 101 and the series impedance 103 to the probe 105.
更に本睏第 3の究明に係る超音波探触子励振回路は、 電荷を徐々に充電 することが可能な低速充電面路 1 0 1と、 適切な充電圧に到達すると急速 に ¾荷の放 ¾を行う高速放 ¾回路 1 0 2と、 直列ィンビーダンス 1 0 3 と、 伝導部 1 0 4と、 スパイク電圧を受けることによって振動し超音波を発す るの探触子 1 0 5とを有する。  Furthermore, the ultrasonic probe excitation circuit according to the third investigation of the present invention has a low-speed charging surface 101 capable of gradually charging electric charges, and a rapid discharge of a load when an appropriate charging pressure is reached. It has a high-speed emission circuit 102 that performs the operation, a series impedance 103, a conduction section 104, and a probe 105 that vibrates by receiving a spike voltage and emits ultrasonic waves.
低速充電回路 1 0 1は、 高速放電画路 1 0 2に接铳するものである。 直 列ィンピーダンス 1 0 3は、 所定以上の上記放電を制限するものであり、 低速充電回路 1 0 1と高速放 ¾回路 1 0 2との間に、 その一端が接続され、 他端が伝 ¾部 1 0 4の一端に接耪されている。 伝導部 1 0 4は、 ケーブル 等の導電部材であり、 上記直列インピーダンス 1 0 3の一端と、 探触子 1 0 5とを接統するものである。 上記手段を採用する本願第 1の発明に係る超音波探触子励振回路は、 伝 ¾都 2の可変イ ンピーダンス回路 3が、 超音波発信時、 伝導部 2のインビ 一ダンスを、 探触子 1のインビーダンスとほぼ同じ大きさとするため、 伝 導郎 2内での反射の発生を低く抑えることが可能である。 The low-speed charging circuit 101 is connected to the high-speed discharging circuit 102. The series impedance 103 restricts the above-mentioned discharge above a predetermined level. One end is connected between the low-speed charging circuit 101 and the high-speed discharging circuit 102, and the other end is connected. It is connected to one end of the head 104. The conductive portion 104 is a conductive member such as a cable, and connects one end of the series impedance 103 to the probe 105. The ultrasonic probe excitation circuit according to the first invention of the present application, which employs the above-described means, is characterized in that the variable impedance circuit 3 of the transmission center 2 controls the impedance of the conduction section 2 when transmitting ultrasonic waves. Since the size is almost the same as that of the impedance in (1), it is possible to suppress the occurrence of reflection in the doujinro (2).
他方被検材からの反射波の受信時に、 伝導部 2のィンビーダンスを、 探 触子 1のィンビーダンスよりも大きいものとするものであるため、 音圧と 信号電圧が、 ほぼ比例するものとなり、 音圧の再生が可能となった。  On the other hand, when the reflected wave from the test material is received, the impedance of the conducting part 2 is set to be larger than the impedance of the probe 1, so that the sound pressure and the signal voltage become almost proportional, and Pressure regeneration is now possible.
より具体的に説明すると、 まず、 音圧を再生するためには、 探触子へ並 列にコンデンサを配投することによって静電容量を付与し、 且つなるだけ 高い入カインビーダンスのアンプで受信信号を增幅する必要がある。  To explain more specifically, first, in order to reproduce sound pressure, capacitance is given by arranging capacitors in parallel to the probe, and an amplifier with the highest possible input impedance is used. It is necessary to widen the received signal.
このことについて、 詳述すると、 探触子の振動子として用いられる圧電 素子の等価回路は、 一般に第 2 3図のように表すことができる。  More specifically, an equivalent circuit of a piezoelectric element used as a transducer of a probe can be generally represented as shown in FIG.
ここで 9 3 0は電流源を、 9 3 1は振動子の電極間コンデンサーを、 9 3 2は音圧による発生電圧 Vを示している β Here 9 3 0 a current source, 9 3 1 inter-electrode capacitor of the oscillator, 9 3 2 shows the generated voltage V by the sound pressure β
音圧 Ρが、 加わった場合の振動端子間電圧 Vは、 V - Q/ Cであるから、 発生 圧 Vは、 次の数式 Iにて与えられるものとなり、 音圧に比例した信 号が振動子の端子に現れる * ここで Qはコンデンサ一に溜まった電荷を示 し、 Cはコンデンサー 9 3 1の容量を示す。 又数式 Iに示す iは、 電流源 9 3 0が流す電流を示し、 kは定数を示している。 又 は時間を示してい る。  When the sound pressure Ρ is applied, the voltage V between the oscillating terminals is V-Q / C, so the generated pressure V is given by the following formula I, and the signal proportional to the sound pressure oscillates. Where Q indicates the charge stored in the capacitor, and C indicates the capacitance of the capacitor 931. In addition, i in Expression I indicates a current flowing from the current source 9330, and k indicates a constant. Or it indicates time.
V = M d t / C = k P / C · · · ( I ) 探触子を狭带域型にして、 送信を広带域即ち波数の少ない探触子を使用 した場合に得られる波形は、 送受信とも広帯域探触子を用いた場合と殆ど 変わらないことから、 超音波の振動子の受信特性は、 振動子の持つ共振特 性が余り現れず、 上記数式 Iに近いと考えるのが適切である。 探触子単体 (他のディバイスと接続していない状態) では、 上述のよう な考えが成立する。 その一方、 探傷器に接铙される場合は、 第 24図のよ うな等価画路で示されるものと考えられる。 ここで、 933は、 探触子ケ 一ブルが短い場合は探傷器の入カインビーダンスを示し、 探触子ケーブル が長い堪合にはケーブルのィンビーダンスを示す。 このィ ンビーダンス 9 33の値を Rとする, 又、 コンデンサー 93 1に带霄している電荷の値を Q1、 抵抗 (ィンビーダンス 933 ) に流れる I流 935を i 1とすると、 数式 II、 数式 III の二式が成立する。 又 934は入カイ ンビ一ダンスが無 限の理想ァンプを示している。 i i d t =P k = Ql + M l d t · · ' (II) V = M dt / C = k P / C (I) The waveform obtained when the probe is of a narrow band type and the transmission is in a wide band, that is, using a probe with a small wave number is as follows: Since both transmission and reception are almost the same as those using a broadband probe, it is appropriate to consider that the receiving characteristics of the ultrasonic transducer do not show much the resonance characteristics of the transducer, and are close to Equation I above. is there. With the probe alone (in a state where it is not connected to other devices), the above idea is satisfied. On the other hand, when it is connected to a flaw detector, it is considered that it is indicated by an equivalent path as shown in Fig. 24. Here, reference numeral 933 indicates the input beam dance of the flaw detector when the probe cable is short, and the input beam dance when the probe cable is long. Assuming that the value of this impedance 933 is R, the value of the charge flowing to the capacitor 931 is Q1, and the I-flow 935 flowing through the resistor (impedance 933) is i1, Equation II and Equation III The following two equations hold. Numeral 934 indicates an ideal pump with infinite dance. iidt = P k = Ql + M ldt
Q 1/C=RX i 1 =V · · · (III) この数式 II及び数式 ΙΠ の両式から、 次の数式 IVの式を導くことができ る。 Q 1 / C = RX i 1 = V ··· (III) From both equations II and ΙΠ, the following equation IV can be derived.
P = C/kXV+ l/ (kR) X i Vd t · . · (IV) ィンビーダンス 933の値 Rが無限大の場合は数式 IVは、 数式 IIと等価 となる。 P = C / kXV + l / (kR) X i Vd t... (IV) When the value R of the impedance 933 is infinite, Equation IV is equivalent to Equation II.
数式 IVに示す式において、 Cの値が大きく、 第 2項が無視できるような 場合には出力電圧波形は、 音圧波形に比例する。  In the formula shown in Expression IV, when the value of C is large and the second term is negligible, the output voltage waveform is proportional to the sound pressure waveform.
従って、 探傷器の入カインピーダンスを大きくすることができる場合に は、 このような操作によって、 比較的容易に、 実際の音圧波形に近い電気 信号波形を觀測することができるのである。  Therefore, when the input impedance of the flaw detector can be increased, an electric signal waveform close to the actual sound pressure waveform can be observed relatively easily by such an operation.
このように、 数式 IVから、 イ ンピーダンス 933の値 Rが極めて大きい 場合に、 音圧と信号電圧とが比例することが分かる。 従って、 被検材から の反射波の受信時に、 伝導部 2のイ ンピーダンスを、 探触子 1のイ ンビー ダンスよりも大きくし、 無限大に近づけることにより、 音圧と信号電圧が 、 ほぼ比例するものとなり、 音圧の再生が可能となる。 Thus, from Equation IV, the value R of impedance 933 is extremely large. In this case, it can be seen that the sound pressure is proportional to the signal voltage. Therefore, when the reflected wave from the test material is received, the impedance of the conducting part 2 is made larger than the impedance of the probe 1 and approaches infinity, so that the sound pressure and the signal voltage are almost proportional. The sound pressure can be reproduced.
以上のように、 本願発明に係る超音波探触子励振画路は、 送信時の伝導 部内の反射による波形歪みを生じさせることなく、 且つ、 音圧の再生を可 能にするものである。  As described above, the ultrasonic probe excitation image path according to the present invention does not cause waveform distortion due to reflection in the transmission section during transmission, and enables reproduction of sound pressure.
又前記手段を採用する本願第 2の発明に係る超音波探触子励振回路は、 低速充¾回路 1 0 1と高速放電回路 1 0 2とを備え、 両者の間に直列ィン ビーダンス 1 0 3を介するものであり、 徐々に充罨した電圧が、 高速放電 回路によって一気に放電される。  Further, the ultrasonic probe excitation circuit according to the second invention of the present application employing the above means includes a low-speed charging circuit 101 and a high-speed discharging circuit 102, and a series impedance 10 between them. The voltage is gradually discharged by the high-speed discharge circuit.
このとき、 直列のィ ンビーダンス 1 0 3によって、 励振中から反射波の 受信までの間、 伝導部 1 0 4側から見たィンビーダンスが一定となり、 回 路の整合が容易で、 無駄な信号の反射を避けることが可能である。 更に、 励振波形がステップ状のため、 より幅の狭い送信波形となる。  At this time, the series impedance 103 keeps the impedance as seen from the conducting part 104 constant during the period from excitation to reception of the reflected wave, facilitating circuit matching and reflecting useless signals. It is possible to avoid. Furthermore, since the excitation waveform is step-shaped, the transmission waveform becomes narrower.
更に前記手段を採用する本踬第 3の発明に係る超音波探触子励振回路に ついても、 直列ィ ンビーダンス 1 0 3の一端が、 低速充電画路 1 0 1 と高 速放¾面路 1 0 2との間に接耪され、 直列ィンビーダンス 1 0 3の他端が 伝導部 1 0 4の一端に接統されているので、 上記第 1の発明と同様並列に ィンビーダンスを配列する従来のものと異なり、 伝導部 1 0 4側から見た ィ ンビーダンスが一定となり、 回路の整合が容易で、 無駄な信号の反射を 避けることが可能である β 図面の簡単な説明 Further, in the ultrasonic probe excitation circuit according to the third invention employing the above means, one end of the series impedance 103 is connected to the low-speed charging path 101 and the high-speed discharge path 1. Since the other end of the serial impedance 103 is connected to one end of the conducting portion 104, the conventional impedance array is arranged in parallel as in the first invention. Unlike, I Nbidansu viewed from the conduction portion 1 0 4 side becomes constant, easy alignment of the circuit, is β bRIEF drawings is possible to avoid reflection of unnecessary signals description
第 1図は、 本願第 1の発明に係る回路の一実施例を示す説明図である。 第 2図は、 本願第 1の発明に係る回路等によって得られた波形を示す説 明図である。 第 3図は、 本願第 1の発明に係る回路等によって得られた波形を示す鋭 明図である。 FIG. 1 is an explanatory diagram showing one embodiment of a circuit according to the first invention of the present application. FIG. 2 is an explanatory diagram showing waveforms obtained by a circuit and the like according to the first invention of the present application. FIG. 3 is a sharp view showing a waveform obtained by the circuit and the like according to the first invention of the present application.
第 4図は、 本願第 1の発明に係る回路等によって得られた波形を示す説 明図である。  FIG. 4 is an explanatory diagram showing waveforms obtained by the circuit and the like according to the first invention of the present application.
第 5図は、 第 4図に示す波形についての更に詳細な説明図である。  FIG. 5 is a more detailed explanatory diagram of the waveform shown in FIG.
第 6図は、 探傷時の反射波の発生状態を示す説明図である。  FIG. 6 is an explanatory diagram showing a state of generation of a reflected wave during flaw detection.
第 7図は、 本繭第 1の発明に係る回路によって得られた波形と、 従来の 波形との比較を示す説明図である。  FIG. 7 is an explanatory diagram showing a comparison between a waveform obtained by the circuit according to the first invention of the present cocoon and a conventional waveform.
第 8図は、 本麒第 1の発明に係る回路の他の実施例を示す锐明図である。 第 9図は、 第 8図に示す回路の位置 X 1 , X 2 , X 3 , X 4 , X 5 , X 6の夫々における信号波形の変化とィンビーダンスの状態を示す。  FIG. 8 is an explanatory view showing another embodiment of the circuit according to the first invention of the present invention. FIG. 9 shows the change of the signal waveform and the state of the impedance at each of the positions X 1, X 2, X 3, X 4, X 5 and X 6 of the circuit shown in FIG.
第 1 0図は、 第 8図の実施例の回路の可変インピーダンス 3 0位置での 波形を示す説明図である。  FIG. 10 is an explanatory diagram showing a waveform at the position of the variable impedance 30 of the circuit of the embodiment of FIG.
第 1 1図は、 本 II第 1の発明に係る回路の他の実施例を示す説明図であ る。  FIG. 11 is an explanatory diagram showing another embodiment of the circuit according to the second invention of the present II.
第 1 2図は、 本願第 1の発明に係る画路の他の実施例を示す锐明図であ る。  FIG. 12 is an explanatory view showing another embodiment of the image path according to the first invention of the present application.
第 1 3図は、 第 1 2図の位 S Y 1におけるスバイクパルサー (スパイク 霄圧) 、 位 SY 2における制御電圧、 全体 Y 3のィ ンビ一ダンスを示す。  FIG. 13 shows the impulses of the bike pulser (spike pressure) at the position SY1, the control voltage at the position SY2, and the overall Y3 of FIG.
第 1 4図は、 本願第 2の発明の一実施例を示す説明図である。  FIG. 14 is an explanatory view showing an embodiment of the second invention of the present application.
第 1 5図は、 本頤第 3の発明の一実施例を示す説明図である。  FIG. 15 is an explanatory view showing an embodiment of the third invention of the present invention.
第 1 6 11は、 本願第 2或いは第 3の発明に係る回路の一実施例を示す説 明図である。  The 1st 611 is an explanatory diagram showing one embodiment of a circuit according to the second or third invention of the present application.
第 1 7図は、 本願第 2或いは第 3の発明に係る回路の一実施例を示す説 明図である。  FIG. 17 is an explanatory diagram showing one embodiment of the circuit according to the second or third invention of the present application.
第 1 8図は、 本願第 2或いは第 3の発明に係る回路の一実施例を示す説 明図である。 第 1 9図は、 本願第 2或いは第 3の発明の実施によって得られる超音波 の波形の説明図である。 FIG. 18 is an explanatory diagram showing one embodiment of the circuit according to the second or third invention of the present application. FIG. 19 is an explanatory diagram of an ultrasonic waveform obtained by implementing the second or third invention of the present application.
第 2 0図は、 第 2或いは第 3の他の実施例を示す説明図である。  FIG. 20 is an explanatory view showing the second or third other embodiment.
第 2 1図は、 第 2或いは第 3の本願発明に係る回路の一実施例を示す説 明図である。  FIG. 21 is an explanatory diagram showing one embodiment of the circuit according to the second or third invention of the present application.
第 2 2図は、 従来の超音波探触子によって得られる超音波の波形の説明 図である。  FIG. 22 is an explanatory diagram of a waveform of an ultrasonic wave obtained by a conventional ultrasonic probe.
第 2 3図は、 従来の回路を示す説明図である。  FIG. 23 is an explanatory diagram showing a conventional circuit.
第 2 4図は、 従来の回路を示す説明図である。  FIG. 24 is an explanatory diagram showing a conventional circuit.
第 2 5図は、 従来の超音波探触子によって得られる超音波の波形の説明 図である。  FIG. 25 is an explanatory diagram of a waveform of an ultrasonic wave obtained by a conventional ultrasonic probe.
第 2 6図は、 従来の超音波探触子励振面路の一例を示す説明図である。 発明を実施するための最良の形  FIG. 26 is an explanatory diagram showing an example of a conventional ultrasonic probe excitation surface. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本願発明の一実施例を具体的に説明する。  Hereinafter, one embodiment of the present invention will be specifically described.
先ず、 本睏第 1の発明の一実施例について説明する。  First, an embodiment of the present invention will be described.
第 1図へ示す通り、 本願発明に係る超音波探触子励振画路は、 探触子 1 と、 伝導部 2とを有するものであり下記の構成を採るものである。  As shown in FIG. 1, the ultrasonic probe excitation image field according to the present invention has a probe 1 and a conduction section 2 and has the following configuration.
探触子 1は、 パルス ¾圧を受けることによって被検材に対して超音波を 発すると共に、 被検材からの反射波を受けて受信パルス電圧を伝導部 2へ 伝えるものである。 伝導部 2は、 上記スパイク電圧の探触子 1の伝達と、 探触子 1が受けた反射波にて生じた電圧波形を探傷装置側へ伝達するもの であり、 且つ、 可変イ ンピーダンス回路 3を備えたものである。 この可変 ィンピーダンス回路 3は、 超音波発信時、 伝導部 2のィンビーダンスを、 探触子 1のイ ンビーダンスと同等とし、 反射波受信時、 伝 ¾部 2のイ ンビ 一ダンスを、 探触子 1のィンビーダンスよりも大きいものとすることが可 能なるものである。 これら、 各部の具体的構成について以下詳述する。 The probe 1 emits ultrasonic waves to the test material by receiving a pulsed pressure, and transmits a reception pulse voltage to the conduction unit 2 by receiving a reflected wave from the test material. The conductive part 2 is for transmitting the spike voltage from the probe 1 and for transmitting the voltage waveform generated by the reflected wave received by the probe 1 to the flaw detector, and the variable impedance circuit 3 It is provided with. The variable impedance circuit 3 sets the impedance of the transmission section 2 to the same as the impedance of the probe 1 when transmitting ultrasonic waves, and the impedance of the transmission section 2 when receiving a reflected wave. It is possible to make it larger than the one-by-one dance. The specific configurations of these components will be described in detail below.
探触子 1は、 ケーブルその他導線等にて形成された伝導都 2を介して、 探傷装置或いは肉厚測定機といった検出機に接続される (図面の煩雑化を 避けるため、 超音波送受信に関係する部分以外の検出機は図示しない) 。 伝 ¾都 2の探傷装 S側、 即ち、 励振パルス発生回路 4 1によって発生さ せたパルス電圧が、 伝導部 2を経て、 探触子 1へ送られる。 このパルス電 圧を受けて探触子 1の振動子が振動する。  The probe 1 is connected to a detector such as a flaw detector or a wall thickness measuring device via a conductive line 2 formed by a cable or other conductive wire. Detectors other than those that are not shown). The pulse voltage generated by the flaw detection device S side of the transmission center 2, that is, the excitation pulse generation circuit 41 is sent to the probe 1 via the conduction section 2. The transducer 1 vibrates under the pulse voltage.
探触子 1は、 その振動子の上記振動にて、 被検材に対し超音波を発する のである。  The probe 1 emits an ultrasonic wave to the test material by the above vibration of the transducer.
伝導都 2は、 可変インビーダンス回路 3が設けられている。 第 1図の 3 1は接地部を示している。  The conduction city 2 is provided with a variable impedance circuit 3. Reference numeral 31 in FIG. 1 indicates a grounding portion.
この可変インピーダンス面路 3は、 可変ィ ンビーダンス 3 0を備えると 共に、 この可変ィンビーダンス 3 0を、 制御回路 4 0の制御下に置く もの である。  The variable impedance surface 3 includes the variable impedance 30 and places the variable impedance 30 under the control of the control circuit 40.
この上記励振パルス発生回路 4 1には、 制御回路 4 0が接統されている。 この制御回路 4 0は、 励振パルス発生回路 4 1も制御下に置くものである, 当初、 可変ィンピーダンス' 3 0のィンビーダンスの値は、 探触子 1のィ ンビーダンスの値とほぼ同じに設定される (ィンビーダンスマッチングを 図ることにより、 伝導部内での不要な反射を抑えるためである) 。  A control circuit 40 is connected to the excitation pulse generation circuit 41. In this control circuit 40, the excitation pulse generation circuit 41 is also placed under control. Initially, the impedance value of the variable impedance '30 is set to be approximately the same as the impedance value of the probe 1. (This is because unnecessary reflection in the conducting part is suppressed by performing impedance matching).
そして制御回路 4 0は、 (上記可変インビ一ダンス 3 0の状態において ) 励振パルス発生 @1路 4 1にスパイク罨圧を発生させ探触子 1の振動子を 振動させると同時に、 可変ィンピーダンス 3 0を調節して自動的にそのィ ンピーダンス値を上げる。 これにより、 このインピーダンスの値は、 当初 と逆に、 伝導都 2のィンビーダンスを、 探触子 1のィンビーダンスよりも 大きいものとする。 この状態において、 探触子 1が受信した被検材からの 反射波を伝導部 3が伝達するのである。  Then, the control circuit 40 generates the excitation pulse (in the state of the variable impedance 30 described above), generates a spike compress on the @ 1 path 41, and vibrates the vibrator of the probe 1 at the same time as the variable impedance. Adjust 30 to automatically increase the impedance value. Thus, the impedance value of the conduction 2 is larger than that of the probe 1, contrary to the initial value. In this state, the reflected wave from the test material received by the probe 1 is transmitted by the conduction section 3.
第 1図の 4 2は、 アンプを示している。 アンプ 4 2は、 この実施例にお いて、 高入カインビーダンス ·アンプを採用するのが適当である。 Reference numeral 42 in FIG. 1 indicates an amplifier. Amplifier 42 is used in this embodiment. Therefore, it is appropriate to use a high-income Cainbee dance amplifier.
アンプ 4 2は、 被検材からの反射波の電圧波形を増幅して、 検出機側へ 送るものである。  The amplifier 42 amplifies the voltage waveform of the reflected wave from the test material and sends it to the detector.
5 a, 5 bは、 並列容量供耠部を示している。 これは、 夫々、 コンデン サ 5 0 a, 50 b、 スィ ッチ 5 1 a, 5 1 b、 及び接地部 52 a , 5 2 b とを有するものである。 送儈時、 スィ ッチ 5 1 a, 5 1 bは、 O F Fにな つており、 反射波受信時、 短絡して、 接地都 52 a. 5 2 b側へ放電する ものである。  Reference numerals 5a and 5b denote parallel capacitance supply units. It has capacitors 50a, 50b, switches 51a, 51b, and grounds 52a, 52b, respectively. When transmitting, the switches 51a and 51b are OFF, and when receiving the reflected wave, short-circuit and discharge to the grounding 52a.52b side.
この並列容量供袷部は、 探触子の電極間容量 (第 1 2図の 9 3 1 ) が小 さく、 可変ィンビーダンスを最大にしても、 数式 IVの第 2項が無視出来な い場合に、 即ち、 数式 IVへ示す式の第 1項に比して第 2項が充分に小さい ときに (通常の場合第 1項の約 10%以下ということであるが、 使用目的 によっては、 第 2項が、 これよりも大きい割合であっても充分である。 ) 同式 1項を大きくするためのものである。  This parallel capacitance supply section is used when the inter-electrode capacitance of the probe (931 in Fig. 12) is small and the second term of Equation IV cannot be ignored even if the variable impedance is maximized. That is, when the second term is sufficiently smaller than the first term of the equation shown in Equation IV (usually about 10% or less of the first term, but depending on the purpose of use, It is sufficient if the ratio of the term is larger than this.) This is to increase the term 1 of the equation.
即ち、 本願発明は、 探触子 1と、 伝導都 2とを有してなり、 探触子 1は、 伝導部 2を介して探傷装置等の検出機に設けられるものであり、 伝導部 2 の検出機側から、 スパイク電圧を受けることによって被検材に対して超音 波を発すると共に、 被検材からの反射波を受けて受信パルス電圧を伝導都 2へ伝えるものであり、 伝導部 2は、 上記スパイク電圧の探触子 1への伝 連と、 探触子 1が受けた超音波反射波にて生じた雹圧波形を検出機側へ伝 達するものであり、 且つ、 可変インビーダンス画路 3と、 並列容量供袷部 5 a , 5 bを備えたものであり、 この可変インピーダンス回路 3は、 超音 波発信時、 伝導部 2のインピーダンスを、 探触子のインピーダンスとほぼ 同じ大きさとし、 反射超音波受信時、 探触子 1のイ ンピーダンスよりも大 きいものとすることが可能であり、 更に並列容量供給部 5 a, 5 bによつ て、 更に探触子のィンビーダンスに比して伝導部 2のィ ンビーダンスを更 に大きくすることが可能なるものであることを特徴とする超音波探触子励 振画路として実施し得る。 That is, the present invention includes a probe 1 and a conductive member 2, and the probe 1 is provided on a detector such as a flaw detection device via a conductive portion 2. The ultrasonic detector emits an ultrasonic wave to the specimen by receiving the spike voltage from the detector, and transmits the received pulse voltage to the conduction center by receiving the reflected wave from the specimen. Numeral 2 is for transmitting the spike voltage to the probe 1 and for transmitting the hail pressure waveform generated by the ultrasonic reflected wave received by the probe 1 to the detector side. The variable impedance circuit 3 is provided with a beadance image 3 and a parallel capacitance supplying section 5a, 5b.When the ultrasonic wave is transmitted, the impedance of the conducting section 2 is set to the impedance of the probe. Approximately the same size, larger than the impedance of transducer 1 when receiving reflected ultrasonic waves In addition, the parallel capacitance supply units 5a and 5b can further increase the impedance of the conduction unit 2 as compared with the impedance of the probe. Ultrasonic probe excitation characterized by being It can be implemented as a drawing path.
勿論、 不要であれば、 より具体的には、 可変イ ンピーダンスを最大にす ることによって、 数式 IVの第 2項が無視出来る場合には、 並列容量供袷部 5 a , 5 bを設けずに実施し得る。 又、 並列容量供給部 5 a , 5 bの配置 は、 探触子の直近でもよく、 又第 1図のようであってもよい。  Of course, if unnecessary, more specifically, by maximizing the variable impedance, if the second term of Equation IV can be neglected, the parallel capacitance supply sections 5a and 5b are not provided. Can be implemented. Further, the arrangement of the parallel capacitance supply units 5a and 5b may be immediately adjacent to the probe or as shown in FIG.
次に、 実際に得られた波形を第 2図及び第 3図へ示す。 第 2図は、 ステ ップ方式のパルサーで得た 1波の、 一般的な波形である。  Next, the actually obtained waveforms are shown in FIG. 2 and FIG. Fig. 2 shows a general waveform of one wave obtained with a step-type pulsar.
第 2図において、 Aが本願発明に係る回路を備えた探触子で得られた波 形を示しており、 Bが従来の方式で得られた波形を示している (夫々第 2 図の右側に示す) 。 Bは、 ケーブル . インピーダンスが固定であり、 共振 周波数で約 2 0 0 Ωの探触子についてケーブル 5 0 Ωでィンビーダンス · マッチングをとつたものにて得た波形である (尚、 探触子は、 1 0 M H z、 8 5 P Fのものを用いた) β In FIG. 2, A shows the waveform obtained by the probe having the circuit according to the present invention, and B shows the waveform obtained by the conventional method (the right side of FIG. 2 respectively). Shown). B is a waveform with a fixed impedance of the cable and about 200 Ω at the resonance frequency obtained by impedance matching with the cable at 50 Ω. , 10 MHz, 85 PF) β
第 2図に示したグラフは、 縦軸が電圧、 横軸が時間を示している。  In the graph shown in FIG. 2, the vertical axis represents voltage, and the horizontal axis represents time.
ここでは、 探触子は、 周波数が 1 M H zで、 直径が 5 6 mmの直接接触 型のものを採用している。  Here, the probe is a direct contact type with a frequency of 1 MHz and a diameter of 56 mm.
そして、 探触子の前に 5 0 m m :さのポリスチレンブロックを置き、 そ の底面エコーを捉えているのが分かる。 従来 1波であった波形 B力、 本願 発明に係る回路を備えたものにて得た波形 Aは、 半波となっているのが判 る。  Then, a 50 mm: polystyrene block is placed in front of the probe, and it can be seen that the bottom echo is captured. It can be seen that the waveform B force, which was one wave in the past, and the waveform A obtained with the circuit provided with the circuit according to the present invention, are half waves.
周波数分圻桔果を上記と同じ第 2図の左側に示してある。 A 1は、 上記 波形 Aの周波敗分折結果を示しており、 B 1は、 上記波形 Bの周波数分圻 結果を示している。 図中横軸が周波数、 縦軸が振幅を示す。  The frequency components are shown on the left side of FIG. 2 as above. A 1 shows the result of the frequency decimation of the waveform A, and B 1 shows the result of the frequency decimation of the waveform B. In the figure, the horizontal axis indicates frequency, and the vertical axis indicates amplitude.
この周波数分折結果から、 今回の方式での受信周波数は、 より低域側に 広带域となることカ^ 判る。  From the result of the frequency analysis, it can be seen that the reception frequency in the present method is wider on the lower frequency side.
第 3図へ、 上記第 2図へ示す超音波探触子 (直径 5 6 m m ) を用いて得 たものと同じ波形 A 2と、 1 O M H zの別の水浸法探触子 (直径 2 0 m m ) を水中におき約 3 O m mのところの大きな鉄平板反射体をビームと直角 においたときの鉄板表面の反射エコー A 3と、 を示す。 Fig. 3 shows the same waveform A2 obtained using the ultrasonic probe (56 mm in diameter) shown in Fig. 2 above, and another water immersion probe (diameter 2 0 mm ) Is placed in water, and the reflected echo A 3 on the iron plate surface when a large iron plate reflector at about 3 O mm is perpendicular to the beam is shown.
尚、 この第 3図において、 A 3波形の時間軸は A 2波形の時間軸の 1 0 倍に設定してある。  In FIG. 3, the time axis of the A3 waveform is set to 10 times the time axis of the A2 waveform.
この第 3図を見れば判る通り、 夫々綺灑な半波が得られている。  As can be seen from Fig. 3, beautiful half waves were obtained for each.
これは、 1 0 M H z付近でも同じ回路が使用可能であることを示してい る,  This indicates that the same circuit can be used around 10 MHz.
図中点線 A 2 0 , A 3 0で示された波形は、 上記波形 A 2 , A 3の探触 子について、 夫々ダンビングが完全に効いた探触子を採用した場合を示し ており、 リ ンギングが無くなり、 点線 A 2 0 , A 3 0のようになるであろ うと思われる想像曲線である。  The waveforms indicated by the dotted lines A 20 and A 30 in the figure show the cases where the transducers of the above-mentioned waveforms A 2 and A 3 were completely damped, respectively. This is an imaginary curve that seems to have no ringing and looks like dotted lines A 20 and A 30.
本繭究明に係る新しい方式の回路は、 先ず時間軸分解能が高いという利 点が挙げられる. これは、 第 4図へ示す通り、 肉厚測定の場合、 通常表面 エコーにパックェコ一が重なる時点が、 最小測定肉厚となる。  The circuit of the new method related to this cocoon investigation has the advantage that the time axis resolution is high first. As shown in Fig. 4, in the case of wall thickness measurement, the time when the package echo usually overlaps the surface echo is usually observed. And the minimum measured wall thickness.
この第 4図において、 従来の波形 (第 2図の Bと同様の条件で得た波形 である。 ) と本願発明に係る回路によって得た波形とを、 比較し易いよう に、 一つに重ねて掲げたものである。  In FIG. 4, the conventional waveform (a waveform obtained under the same conditions as B in FIG. 2) and the waveform obtained by the circuit according to the present invention are superimposed on each other for easy comparison. It is the thing which was raised.
上方の波形 B 1 1が従来の波形を示しており、 下方の波形 A 1 1が本願 発明に係る面路を用いて得た波形を示している。  The upper waveform B 11 shows a conventional waveform, and the lower waveform A 11 shows a waveform obtained using the surface according to the present invention.
図示の A 2 1の通り、 基準線 w 0まで、 本顧発明に係る回路を用いたも のは、 測定可能であることが判る。 し力、し、 波形 B 1 1を見れば判るとお り、 従来の方式では、 基準線 W付近に波形 B 1 1 2が近づくと、 波形 B 1 1 1と B 1 1 2の分離が困難に成り、 測定が不能となっていたのである。 これは、 1波の波形では、 振幅蚰方向 (第 4図の縦方向) に正負の波形の 幅が大き過ぎて、 この波形が邪魔になっていたからであった。  As shown in A21 in the figure, it can be understood that the measurement using the circuit according to the present invention can be performed up to the reference line w0. As can be seen from the waveform B11, it is difficult to separate the waveforms B111 and B111 when the waveform B112 approaches the reference line W in the conventional method. It was impossible to measure. This is because the width of the positive and negative waveforms was too large in the direction of the amplitude (vertical direction in FIG. 4) in the waveform of one wave, and this waveform was in the way.
ところが本願発明に係る回路を用いた場合、 半波というタイ トな波が得 られるので、 極めて高精度に探傷或いは肉厚測定が行えるのである。 第 4図の波形を、 データに基づき更に詳細なグラフとして、 第 5図へ示 す。 これは、 周波数式 I O M H zの探触子により得られた波形 C 1を示し ている。 この探触子はディレー材付き直接接触探触子である。 被検査材は l m mのアルミ板である。 縱軸の一目盛りは、 1 O m vを示し、 横轴のー 目盛りは、 1 0 0 n s (ナノ ·セコンド) を示している (一目盛りとは、 第 4図においてほぼ.1 c m程度) 。 この波形 C 1の Sは、 表面エコーを示 している。 However, when the circuit according to the present invention is used, a tight wave called a half wave is obtained, so that flaw detection or wall thickness measurement can be performed with extremely high accuracy. The waveform of Fig. 4 is shown in Fig. 5 as a more detailed graph based on the data. This shows the waveform C1 obtained by the probe of the frequency type IOMHz. This probe is a direct contact probe with a delay material. The material to be inspected is a lmm aluminum plate. One scale on the vertical axis indicates 1 Omv, and the scale on the horizontal axis indicates 100 ns (nano-second) (one scale is about 0.1 cm in FIG. 4). S of this waveform C1 indicates a surface echo.
又、 E 1は第 1背面エコーを、 E 2は第 2背面エコーを示している。 このように実際のデータを基に、 得た波形グラフを見ても、 上記第 4図 の A 2 1の波形が得られているのが分かる。  Also, E 1 indicates the first back echo and E 2 indicates the second back echo. As can be seen from the waveform graph obtained based on the actual data, the waveform of A21 in FIG. 4 is obtained.
本願発明に係る上記回路を用いた際の他の利点としては、 帯域が広いこ とが挙げられる。  Another advantage of using the above-described circuit according to the present invention is that the bandwidth is wide.
髙减衰材等の探傷において、 帯域幅が広いことは、 非常に有益であり、 より広い帯域の探傷が可能になることにより、 探傷が可能な材料や、 被検 材の大きさの制約が援和される。  広 い In flaw detection of attenuated materials, etc., a wide bandwidth is very useful.Because a wider range of flaw detection is possible, there are restrictions on the size of the flaw-detectable material and the material to be tested. It is supported.
例えば、 従来は、 第 6図で示すように複数の欠陥 K 1 , K 2が存在する 場合 (欠陥の集合を総合的に見て) 、 欠陥集合の大きさが、 比較的大きな ものであっても、 集合を構成する個々の欠陥が小さなものであつた場合、 その実お、を判別できないことが往々にしてあつたのである。 これは、 第 7 図へ示すように、 本願発明に係る回路を使用することによって、 比較的な 大きな反射体があるとして、 その波形を検出することが可能である。 この第 7図について詳述すると、 波形 1の A 1 0 1は、 本願発明に係る 回路によって得られた 1つの欠陥についての波形即ち音圧再生型回路によ つて得られた波形を示しており、 その斑点で示す面積が欠陥の大きさを示 すものである。 そして B 1 0 1力 従来の波形を示し、 h力 その従来の 波形のエコー高さを示すものである。  For example, conventionally, when there are a plurality of defects K 1 and K 2 as shown in FIG. 6 (when the set of defects is viewed comprehensively), the size of the defect set is relatively large. However, when the individual defects that make up a set were small, it was often impossible to determine the reality. This is because, as shown in FIG. 7, it is possible to detect the waveform of a relatively large reflector by using the circuit according to the present invention. Referring to FIG. 7 in detail, A101 of the waveform 1 shows a waveform of one defect obtained by the circuit according to the present invention, that is, a waveform obtained by the sound pressure reproduction type circuit. The area indicated by the spot indicates the size of the defect. The B101 force shows the conventional waveform, and the h force shows the echo height of the conventional waveform.
第 7図の波形 2は、 同じく、 他の欠陥について得られた波形である。 こ  Waveform 2 in FIG. 7 is a waveform similarly obtained for another defect. This
1 i の第 7図の波形 2においても、 B 1 0 2が従来の波形を示しており、 A 1 0 2は、 本願の音圧再生型回路による波形を示している。 1 i Also in the waveform 2 of FIG. 7, B102 indicates the conventional waveform, and A102 indicates the waveform obtained by the sound pressure reproduction type circuit of the present invention.
第 7図の波形 3に示す A 1 0 3は、 最終的に検出される波形、 即ち第 7 図の波形 1と波形 2を合成した波形であり、 従来得られる合成波形 B 1 0 3と異なり、 斑点で示す面積が顕著に大きくなつているか否かにより、 欠 陥の総合的な量の大小と分布状態を知ることが可能となったのである。 次に、 更に、 実用に即した実施例について説明する。  A103 shown in waveform 3 in Fig. 7 is a waveform that is finally detected, that is, a waveform obtained by combining waveform 1 and waveform 2 in Fig. 7, and is different from the conventionally obtained combined waveform B103. However, it was possible to know the magnitude and distribution of the total amount of defects based on whether the area indicated by the spots was significantly large or not. Next, an embodiment that is more practical will be described.
第 8図へ示すように、 伝導部 2の検出機側 (探触子 1が設けられた側と 反対側) には、 2つの F E T或いはトランジスタ等の高速スィ ッチが可能 なスィッチ F l , F 2が配投されている。  As shown in Fig. 8, on the detector side of the conduction section 2 (the side opposite to the side on which the probe 1 is provided), switches F l, which enable high-speed switches such as two FETs or transistors, are provided. F2 has been dispatched.
制御回路 4 0は、 これらスィ ッチ F l , F 2に接続されている。 詳述す ると、 制御回路 4 0とスイ ッチ F 1との間には、 コンデンサ 6 1と、 接地 されたィンビーダンス 6 2とによって構成された微分回路 6が介されてい る。 更に、 スィ ツチ F 1は、 他端が高電圧充電回路 7に接続されている。 第 8図へ示す通り、 この高電圧充電回路 7は、 スイ ッチ F 1に連絡すると 共に可変ィンビーダンス 3 0に接統されている。 このスィ ッチ F 1と可変 ィンビーダンス 3 0は、 可変ィンビーダンス回路 3の主構成として探触子 1に他端が速絡するのであり、 この可変ィンピーダンス 3 0と探触子 1と の間へスィ ツチ F 2の一端が接統されている。  The control circuit 40 is connected to these switches Fl and F2. More specifically, a differentiating circuit 6 constituted by a capacitor 61 and a grounded impedance 62 is interposed between the control circuit 40 and the switch F1. Further, the other end of the switch F 1 is connected to the high-voltage charging circuit 7. As shown in FIG. 8, the high-voltage charging circuit 7 is connected to the switch F 1 and is connected to the variable impedance 30. The switch F 1 and the variable impedance 30 are connected to the probe 1 at the other end as a main component of the variable impedance circuit 3, and are connected between the variable impedance 30 and the probe 1. One end of the switch F2 is connected.
第 8図中、 6 3はインピーダンス 6 2の接地部、 6 4はスィ ッチ F 1の 接地部、 6 5はスィツチ F 2の接地都、 6 6は探触子 1の接地部を示して いる。 又スィ ッチ F 2の接地都側の途中にてアンプ 4 2と接铳され、 更に 、 接地部 6 5とスィ ッチ F 2との間には、 ィンビーダンス 4 5が介されて いる。  In FIG. 8, reference numeral 63 denotes a ground portion of the impedance 62, reference numeral 64 denotes a ground portion of the switch F1, reference numeral 65 denotes a ground portion of the switch F2, and reference numeral 66 denotes a ground portion of the probe 1. I have. Further, the amplifier 42 is connected to the middle of the switch F2 on the ground side, and an impedance 45 is interposed between the ground unit 65 and the switch F2.
この第 8図に示す回路の位置 X 1 , X 2 , X 3 , X 4 , X 5 , X 6の夫 *における信号波形の変化とィンビーダンスの状態を第 9図へ示す。  FIG. 9 shows the change of the signal waveform and the state of the impedance at the husband * of the positions X 1, X 2, X 3, X 4, X 5, and X 6 of the circuit shown in FIG.
ここで、 X 3は、 スィ ッチ F 1でのイ ンピーダンスの値を示している。 この第 9図の X 3へ捃げたように、 波形の 「高」 位置がイ ンビーダンスの 高いことを示し、 「低」 位置がィンビーダンスの低いことを示している。 又 X の波形の高い部分は、 スィツチ F 2が O Nになっていることを示し ている。 Here, X3 indicates the value of the impedance at the switch F1. As indicated by X3 in FIG. 9, the “high” position of the waveform indicates a high impedance, and the “low” position indicates a low impedance. A high portion of the waveform of X indicates that the switch F2 is ON.
第 9図の X 6においては、 送信パルス波形と反射エコーの挙動が掲げら れている。  At X6 in Fig. 9, the behavior of the transmitted pulse waveform and the reflected echo are listed.
この第 8図の可変ィンピーダンス 3 0位置で得られた波形を第 1 0図へ 示す。 これは可変インピーダンス 3 0位置において、 インピーダンスの値 を変えて得た波形である。 ここでの探触子ィンビーダンス ( 1 / 2 π f c ) は、 1 0 0 Ωである β The waveform obtained at the variable impedance 30 position in FIG. 8 is shown in FIG. This is a waveform obtained by changing the impedance value at the position of the variable impedance 30. The probe indance (1/2 π fc) here is 100 Ω β
尚、 この第 1 0図において、 縱蚰の一目盛りは、 1 0 0 m vを示し、 横 軸の一目盛りは、 5 0 n s (ナノ ·セコンド) を示している (一目盛りと は、 第 1 0図においてほぼ 1 c m程度) 。  In FIG. 10, one vertical scale indicates 100 mv, and one horizontal scale indicates 50 ns (nano-second). (Approximately 1 cm in Fig. 0).
送信時、 R 1は、 可変インピーダンス 3 0を 2 5 Ωとしたとき、 R 2は、 可変ィンビーダンス 3 0を 5 0 Qとしたとき、 R 3は、 可変ィンビーダン ス 3 0を 7 5 Ωとしたとき、 R 4は、 可変ィンビーダンスを 1 0 0 Ωとし たとき、 R 5は、 可変ィンピダンスを 1 5 0 Ωとしたとき、 R 6は、 可変 ィ ンピーダンス 3 0を 2 0 0 Ωとしたとき、 R 7は、 可変ィ ンビーダンス 3 0を 3 0 0 Ωとしたとき、 R 8は、 可変ィンビーダンス 3 0を 4 0 0 Ω としたとき、 R 9は、 可変ィンビーダンス 3 0を 5 0 0 Ωとしたとき波形 を夫々示している。  At the time of transmission, R 1 is when the variable impedance 30 is 25 Ω, R 2 is when the variable impedance 30 is 50 Q, and R 3 is when the variable impedance 30 is 75 Ω. When R 4 is 100 Ω for variable impedance, R 5 is 150 Ω for variable impedance, and R 6 is 200 Ω for variable impedance 30 Ω. R7 is when the variable impedance 30 is set to 300 Ω, R8 is when the variable impedance 30 is set to 400 Ω, and R9 is when the variable impedance 30 is set to 500 Ω. Time waveforms are shown respectively.
このように、 送信時探触子ィンビーダンス ( 1 0 0 Ω ) と整合するィ ン ビーダンス値 ( 1 0 0 Ω ) をとるもの (R 4 ) が、 最も好ましい波形を呈 していることが分かる,  Thus, it can be seen that the one with the impedance value (100 Ω) matching the probe impedance (100 Ω) at the time of transmission (R 4) exhibits the most preferable waveform,
即ち、 横轴方向に対する縱铀方向 (下方) への比率が大きく、 タイ トな 鋭い形状の波形を得ているのである。  In other words, the ratio in the vertical direction (downward) to the horizontal direction is large, and a tight and sharp waveform is obtained.
スィ ッチ F 1は、 完全に O Nの状態のとき、 その抵抗は、 5 Ω程度ある e 従って上記の各抵抗値に 5 Ω加えて考えればよいのであるが、 この程度の 値は、 誤差範囲であり、 無視して差し支えない。 Sweep rate pitch F 1 is completely the state ON, the the resistance is about 5 Omega e Therefore, it is sufficient to add 5 Ω to each of the above resistance values, but this value is an error range and can be ignored.
第 1 1図に示すものは、 従来のスパイクパルサー方式に、 更に特性の改 善を重視した実施例である。  The example shown in Fig. 11 emphasizes the improvement of characteristics in addition to the conventional spike pulsar method.
第 1 1図の面路について説明すると、 これは、 探触子 1が設けられた伝 導都 2の検出機側に、 F E T或いはトランジスタ等のスィ ツチ T 1と、 固 定ィンビーダンス R 1と力 ¾己設されたものであり、 両者は接続されると共 に、 この両者の間は探触子 1側に連絡するよう接蜣されている。 そして、 このスィ ツチ T 1とィンピーダンス R 1との間は、 連絡する探触子 1へ至 までに、 コンデンサ C 1と、 ダイオード D 1力く、 順に介されている。 又こ のコンデンサ C 1とダイォード D 1との間から分技して、 ダイォード D 2 が、 その接地部 6 7との間に配設されている。  To explain the surface area shown in Fig. 11, this means that a switch T1 such as an FET or a transistor and a fixed impedance R1 are connected to the detector side of the conduction center 2 where the probe 1 is provided. It is self-installed, and both are connected and connected so as to contact the probe 1 side. Then, between the switch T 1 and the impedance R 1, a capacitor C 1 and a diode D 1 are successively interposed in order to reach the contacting probe 1. The diode D 2 is disposed between the capacitor C 1 and the diode D 1, and the diode D 2 is arranged between the capacitor C 1 and the diode D 1.
そして、 ダイオード D 1と探触子 1との間には、 探触子 1と並列に、 可 変ィンピーダンス回路 3を構成するダンビング抵抗 R 2 (可変ィ ンビーダ ンス 3 0 ) が配設されている。 ダンピング抵抗 R 2は、 通常 F E Tや或い は F E Tと抵抗等との組合せにより構成されている。  And, between the diode D 1 and the probe 1, a damping resistor R 2 (variable impedance 30) constituting the variable impedance circuit 3 is arranged in parallel with the probe 1. I have. The damping resistor R2 is usually constituted by FET or a combination of FET and a resistor.
又、 4 2は、 アンプを示している。  Reference numeral 42 denotes an amplifier.
可変ィンビーダンス回路 3は、 送信時、 探触子とほぼ同じィンビーダン ス値であり、 超音波 (反射波) の受信時には、 ダンビング抵抗 R 2 (可変 ィンピーダンス) は制御回路 4 0により制御され、 高いィンピーダンス値 となる。 '  The variable impedance circuit 3 has almost the same impedance value as that of the probe during transmission, and has a high damping resistance R 2 (variable impedance) controlled by the control circuit 40 when receiving ultrasonic waves (reflected waves). Impedance value. '
このような回路において、 イ ンピーダンス R 1とダイオード D 2を通し て電荷がコンデンサ C 1に蓄えられる。 コンデンサ C 1に溜まった電荷は、 スィ ツチ T 1が O Nになると、 ダイオード D 1を通してダンビング抵抗 R 2 (可痰インビーダンス) と探触子 1とに送られる (電荷を放電する) 。 このとき、 ダンピング抵抗 R 2が探触子 1に対して、 電気的ダンビングの 効果となる。 伝導部 2を形成するケーブルが長い場合は、 ダンピング抵抗 R 2はケーブルィンビ一ダンス近くの値にすると送信波形のケーブル内の 反射が一番少なくなり、 既述の通り不要な疑似エコーを最小にすることが できる。 In such a circuit, charge is stored in the capacitor C1 through the impedance R1 and the diode D2. When the switch T1 is turned on, the electric charge accumulated in the capacitor C1 is sent to the damping resistor R2 (sputable impedance) and the probe 1 through the diode D1 (discharge electric charge). At this time, the damping resistance R 2 has an effect of electric damping on the probe 1. If the cable forming conductor 2 is long, the damping resistance If R2 is set to a value near the cable impedance, the reflection of the transmission waveform in the cable is minimized, and as described above, unnecessary pseudo echo can be minimized.
超音波信号受信時にはダンビング抵抗 R 2が大きなィンビーダンスとな り、 音圧に比例した波形をアンプ 4 2が増幅する事になる。  At the time of receiving the ultrasonic signal, the damping resistor R2 becomes a large impedance, and the amplifier 42 amplifies the waveform proportional to the sound pressure.
波形とスぺク トラムについて、 第 2 2図へ示す。  The waveform and spectrum are shown in Fig. 22.
これは、 5 M H zの直接接触型の広帯域探触子を 5 O m mのポリスチレ ン板の上に乗せ、 Aスコープを観測した。 伝導部 2を構成する探触子ケー ブルは、 約 5 mの長さで特性インビーダンスは約 5 0 Ωである。  This was done by placing a 5 MHz direct contact broadband probe on a 5 Om m polystyrene plate and observing the A scope. The probe cable that constitutes the conductive part 2 is about 5 m long and has a characteristic impedance of about 50 Ω.
従来は、 R 2を 1 0 0 Ωにしている。 その場合の波形が Bである。 送信時に R 2を約 5 0 Ωとし、 受信時に数式 I 0 Κ Ω以上にした場合の 波形が Aである, それぞれの周波数スぺク トラムを同図左下に示す。 第 2 2図より、 従来方より波数が少なくより広帯域の波形が得られる事 が分かる。  Conventionally, R 2 is set to 100Ω. The waveform in that case is B. The waveform is A when R2 is set to about 50 Ω during transmission and the equation is equal to or greater than I0 時 に Ω during reception. Each frequency spectrum is shown in the lower left of the figure. From FIG. 22, it can be seen that a waveform having a smaller wave number and a wider band than the conventional method can be obtained.
第 1 2図に、 既に有る探傷器や肉厚測定器に容易に付加する方法の、 実 施例について説明する。 8 0は、 既存機器のパルス送信画路を示し、 8 1 は既存機器の受信回路を示している。 探触子 1とこれら回路 8 0 , 8 1を 結ぶ伝導部 2には、 制御回路 4 0の制御を受けるスィ ツチ F 1が配され、 このスィ ッチ F 2は、 可変ィンビーダンス回路 3を構成する可変ィンピー ダンス 3 0が介され、 伝導郜 2に接統されているのである。  FIG. 12 illustrates an embodiment of a method for easily adding a flaw detector or a thickness measuring instrument that already exists. 80 indicates a pulse transmission path of the existing device, and 81 indicates a receiving circuit of the existing device. A switch F1, which is controlled by a control circuit 40, is provided in a conduction section 2 connecting the probe 1 and these circuits 80, 81, and this switch F2 constitutes a variable impedance circuit 3. It is connected to the conduction 、 2 through the variable impedance 30.
スィッチ F 1は、 既述の通り、 F E T或いはトランジスタ等の高速スィ ツチングが可能なものを採用する。  As described above, the switch F1 employs an FET or a transistor capable of high-speed switching, such as a transistor.
この場合、 位置 Y 1におけるスパイクパルサ一 (スパイク電圧) 、 位置 Y 2における制御鼋圧、 全体 Y 3のィンビーダンスを第 1 3図へ示す。 この第 1 3図にへ示すように、 全体 Y 3のインピーダンスは、 左では殆 ど可変イ ンピーダンス 3 0と同一であり、 スパイク電圧発生後、 徐々に上 昇し、 右側の高い状魅にインピーダンスが至るのである。 次に、 本願第 2及び第 3の発明の実施例について説明する。 In this case, FIG. 13 shows the spike pulser (spike voltage) at the position Y1, the control overpressure at the position Y2, and the impedance of the whole Y3. As shown in Fig. 13, the impedance of the whole Y3 is almost the same as that of the variable impedance 30 on the left, and gradually rises after the spike voltage is generated, and the impedance on the right is high. Leads to. Next, examples of the second and third inventions of the present application will be described.
第 1 4図へ示すように、 本願発明に係る回路は、 電荷を徐々に充電する ことが可能な低速充電面路 1 0 1と、 適切な充電圧に到達すると急速に電 荷の放電を行う高速放罨面路 1 0 2と、 直列インピーダンス 1 0 3と、 伝 導部 1 0 4と、 スパイク電圧を受けることによって振動し超音波を発する 探触子 1 0 5とを有するものである。  As shown in FIG. 14, the circuit according to the present invention has a low-speed charging surface 101 capable of gradually charging the electric charge, and rapidly discharges the electric charge when an appropriate charging pressure is reached. It has a high-speed packing surface path 102, a series impedance 103, a conductive section 104, and a probe 105 which vibrates and emits ultrasonic waves by receiving a spike voltage.
この低速充電回路 1 0 1は、 直列ィンビーダンス 1 0 3を介して高速放 電回路 1 0 2に接続するものである。  The low-speed charging circuit 101 is connected to the high-speed discharging circuit 102 via a series impedance 103.
直列ィ ンビーダンス 1 0 3は、 所定以上の上記放雹を制限するものであ る。  The series impedance 103 limits the hail above a predetermined level.
伝導部 1 0 4は、 ケーブル等の導電部材であり、 上記低速充電面路 1 0 1と直列ィンビーダンス 1 0 3との間と、 探触子 1 0 5とを接続するもの である。  The conductive portion 104 is a conductive member such as a cable, and connects the probe 105 with the portion between the low-speed charging surface 101 and the series impedance 103.
又、 上記と、 同様の作用効果を得る構成として、 第 1 5図へ示すものが ある。 これは、 ¾荷を徐々に充電することが可能な低速充電回路 1 0 1 と、 適切な充電圧に到達すると急速に電荷の放電を行う高速放電回路 1 0 2と、 直列ィンビーダンス 1 0 3と、 伝導都 1 0 4と、 スバイク電圧を受けるこ とによって振動し超音波を発するの探触子 1 0 5とを有する。  FIG. 15 shows a configuration for obtaining the same operation and effect as the above. It has a low-speed charging circuit 101 that can gradually charge the load, a high-speed discharging circuit 102 that discharges the electric charge rapidly when an appropriate charging pressure is reached, and a series impedance 103 It has a conduction tube 104 and a probe 105 which vibrates by receiving a bike voltage and emits ultrasonic waves.
そして低速充電面路 1 0 1は、 高速放電回路 1 0 2に接続するものであ る。 直列ィ ンピーダンス 1 0 3は、 所定以上の上記放電を制限するもので あり、 低速充¾回路 1 0 1と高速放電回路 1 0 2との間に、 その一端が接 統され、 他端が伝導都 1 0 4の一端に接続されている。 伝導都 1 0 4は、 ケーブル等の ¾電部材であり、 上記直列ィンピーダンス 1 0 3の一端と、 探触子 1 0 5とを接続するものである。  The low-speed charging surface 101 is connected to the high-speed discharging circuit 102. The series impedance 103 limits the above-mentioned discharge above a predetermined level. One end of the series impedance 103 is connected between the low-speed charging circuit 101 and the high-speed discharging circuit 102, and the other end is conductive. It is connected to one end of the city 104. The conductive member 104 is a power supply member such as a cable, and connects one end of the series impedance 103 to the probe 105.
上記第 1 4図及び第 1 5図において、 低速充電回路 1 0 1の 「低速」 と は、 探触子 1 0 5を励振しない程度に、 徐々に罨荷を探触子を充電する」 という意味であり、 このような電源回路であれば、 どのようなものを採用 - In FIGS. 14 and 15 described above, “slow” in the low-speed charging circuit 101 means that the probe is gradually charged with the compress so as not to excite the probe 105. Meaning, if it is such a power circuit, what kind is adopted -
しても実施可能である。 It is also feasible.
又、 高速放 ¾回路 1 0 2の 「高速」 とは、 探触子 1 0 5が励振可能な程 度の電力供給能力を有する」 という意味であり、 このような回路であれば、 どのようなものを採用しても実施可能である。  In addition, “high speed” of the high-speed discharge circuit 102 means that the probe 105 has a power supply capability that can excite the probe 105. However, the present invention can be implemented even if a suitable one is adopted.
次に具体的な回路構成の例について、 順に説明する。  Next, specific examples of the circuit configuration will be described in order.
第 1 6図へ示すものは、 電源電圧が低くて済むものであり、 バッテリー 駆動の装 Sに適した回路である。 低速充電回路 1 0 1は、 電源 1 1 0 ( + V c c ) に接続された変圧器である。 又、 トランジスタにて形成された高 速放 ¾面路 1 0 2力、 可変直列インピーダンス 1 0 3を介して、 低速充電 回路 1 0 1に接铳している。 1 3 1は、 負電圧リ ミッ ト用のインビーダン スを示している。 1 3 2は充電方向のみに電流を流す整流用の、 1 3 3 , 1 3 4は保 18用の、 ダイォードを示しており、 1 3 5は F E Tを示してい る。 1 2 1 , 1 2 2は、 高速放電回路 1 0 2に適宜設けられたインビーダ ンスを示しており、 ィンビーダンス 1 2 1は、 入力電流の制 1 用であり、 イ ンピーダンス 1 2 2は、 トランジスタである高速放電回路 1 0 2のべ一 ス -エミッタ間の急速放電用のものである。  The circuit shown in Fig. 16 requires a low power supply voltage, and is suitable for a battery-powered device. The low-speed charging circuit 101 is a transformer connected to the power supply 110 (+ V c c). Further, it is connected to a low-speed charging circuit 101 through a high-speed discharging surface 102 formed by a transistor and a variable series impedance 103. 1 3 1 indicates impedance for negative voltage limit. Reference numeral 1332 denotes a diode for rectifying a current flowing only in the charging direction, reference numerals 133 and 134 denote a diode for maintenance, and reference numeral 135 denotes a FET. Reference numerals 1 2 1 and 1 2 2 denote impedance provided in the high-speed discharge circuit 102, impedance 1 2 1 is for controlling the input current 1, and impedance 1 2 2 is a transistor This is for rapid discharge between the base and emitter of the high-speed discharge circuit 102.
矩形波発生 HI路 2 0 0より、 発生された矩形波は、 トランジス等の高速 スィ ツチングが可能なスィツチ 1 0 7を介して、 低速充電回路 1 0 1の一 次側へ接統されている。 1 7 1 , 1 7 2は、 スィ ッチ 1 0 7に設けられた イ ンピーダンスを示している β Square wave generation From the HI path 200, the generated square wave is connected to the primary side of the low-speed charging circuit 101 via a switch 107 capable of high-speed switching such as a transistor. . 1 7 1 1 7 2 shows the impedance provided sweep rate pitch 1 0 7 beta
低速充¾回路 1 0 1 として、 トランジスタ以外に、 F E Tその他の高速 スィ ツチが可能な素子を、 採用して実施することも可能である (図示した ものはトランジスタ) 。  As the low-speed charging circuit 101, it is also possible to use an element capable of high-speed switching, such as FET, in addition to a transistor (the transistor shown is a transistor).
適切な電圧を得て、 充電した低速充¾回路 1 0 1は、 スィ ッチ 1 0 7の ォンによって、 小 流が伝 ¾都 1 0 4を介して流れ、 探触子 1 0 5へ電荷 を蓄える。  The low-speed charging circuit 101, which has obtained the appropriate voltage and has been charged, is turned on by the switch 107, so that a small current flows through the conduction center 104, and is transferred to the probe 105. Stores electric charge.
スィ ッチ 1 0 7が遮断すると、 同時に高速放電回路 1 0 2がスィ ッチ · オンとなり、 ステップ状の波形を伝導部 1 0 4を介して探触子 1 0 5へ送 る。 即ち、 急激な電流 P 2によって、 探触子 1 0 5に蓄えられた電荷が放 電される。 When switch 107 is turned off, high-speed discharge circuit 102 is also turned on at the same time. The signal is turned on, and a step-like waveform is sent to the probe 105 through the conduction section 104. That is, the electric charge stored in the probe 105 is discharged by the rapid current P2.
これによつて、 伝導部 1 0 4で、 反射による電圧の乱れ、 その結果によ る超音波パルスの波数の増加が抑えられるのである。  As a result, the disturbance of the voltage due to the reflection in the conductive portion 104 and the increase in the wave number of the ultrasonic pulse due to the reflection are suppressed.
比較的に小型の回路構成が可能な例を第 1 7図へ掲げる。 これは、 電源 1 1 0より約 1 0 0〜 1 0 0 0 V程度の高圧を得るものとし、 回路に、 約 1 0〜5 0 0 Κ Ω程度の比較的大きな抵抗を配設したものである。 低速充 ¾回路 1 0 1は、 この場合もトランジスタ或いは F E T等の高速スィ ツチ (図示したものは F E T ) が可能な素子を用いて実施する。 図中、 1 1 2 はアンプを示している。 微小電流 p 1が探触子 1 0 5側へ送られ、 戻って くる踅荷 P 2は、 高速放電回路 1 0 2によって放電されるのである。  An example in which a relatively small circuit configuration is possible is shown in Figure 17. This means that a high voltage of about 100 to 100 V is obtained from the power supply 110, and a relatively large resistance of about 100 to 500ΚΩ is provided in the circuit. is there. In this case as well, the low-speed charging circuit 101 is implemented by using a transistor or an element capable of high-speed switching (FET in the illustrated example) such as FET. In the figure, 1 1 and 2 indicate an amplifier. The minute current p 1 is sent to the probe 105 side, and the returning load P 2 is discharged by the high-speed discharge circuit 102.
このように高速放電回路 1 0 2及び低速充鼋回路 1 0 1側が比較的簡単 な構成にて実現可能であるため、 比較的に小型に形成することが可能なの である。  Since the high-speed discharging circuit 102 and the low-speed charging circuit 101 can be realized with a relatively simple configuration as described above, they can be formed in a relatively small size.
特に、 この第 1 7図へ示すものは、 省スペースであることから、 探触子 1 0 5の振動子 (チャンネル) が複数になる場合などに有効である。 第 1 8図へ更に、 回路構成の他の例を接げる。 これは、 負荷によって、 探触子 1 0 5の充電曲線の変勖が少ないものである。  In particular, the one shown in FIG. 17 is effective when the transducer 105 has a plurality of transducers (channels) because it saves space. Fig. 18 shows another example of the circuit configuration. This means that the change in the charging curve of the probe 105 due to the load is small.
即ちこれは、 当初より、 なるべく所望の波形が得られるように、 矩形波 発生回路 2 0 0と共に、 ランプ波形発生回路 2 0 1力設けられ いる。 この図の場合も、 1 0 1力 低速充電画路を示しており、 1 0 2が高速 放電回路を示している (この実施例において、 高速放霄回路 1 0 2は、 F E Tを使用してある力、'、 F E Tに限定するものではなく、 トランジスタ等 の高速のスイッチが可能なるものであれば、 これに代えて実施することも 可能ある。 そして、 トランジス等の高速スイ ッチングが可能なスィ ッチ 1 0 7には、 このスィツチ 1 0 7のトランジスタ保護用のダイオード 1 7 3 が設けられている。 That is, from the beginning, a ramp waveform generating circuit 201 is provided together with a rectangular wave generating circuit 200 so that a desired waveform can be obtained as much as possible. In this case as well, the figure shows a low-speed charging circuit with 101 power, and 102 shows a high-speed discharging circuit. (In this embodiment, the high-speed discharging circuit 102 uses FETs. The present invention is not limited to a certain type of FET, but may be implemented in place of a high-speed switch such as a transistor if it is capable of high-speed switching, and a switch capable of high-speed switching such as a transistor. The switch 107 has a transistor 1 7 3 for protecting the transistor of this switch 107. Is provided.
又この場合も電源 1 1 0より約 1 0 0〜 1 0 0 0 V程度の高圧を得るも のとし、 回路に、 保護のため、 数 Κ Ωから数式 I 0 Κ Ω程度の比較的小さ な抵抗 1 1 1が介されている。  Also in this case, it is assumed that a high voltage of about 100 to 100 V is obtained from the power supply 110, and the circuit has a relatively small value of about several Ω to about I 0 ΩΩ for protection. The resistance 1 1 1 is through.
又 1 4 0は、 そのベース側が矩形波発生回路 2 0 0に接続し、 ェミ ッタ 側が伝導部 1 0 4に接铳し、 コレクター側がァンプ 1 1 2に接統する トラ レジスタ或いはその他の素子によって形成されたスィツチを示している。 このスィ ッチ 1 4 0は、 スィ ッチ 'オンのとき霄圧 0にして安定を図る ため、 イ ンピーダンス 1 2 3が設けられている。  The reference numeral 140 denotes a transformer or other resistor whose base side is connected to the square wave generation circuit 200, the emitter side is connected to the conduction section 104, and the collector side is connected to the amplifier 112. 2 shows a switch formed by the elements. The switch 140 is provided with an impedance 123 in order to stabilize the switch at 0 when the switch is on.
第 1 9図は、 本願考案の実施によって得られた波形の例を示している ( 図中縦軸 yは送信 ¾圧を示し、 横蚰 Xは時間軸を示す。 第 2 5図と同様で ある。 但し、 縦 t* yのスケールは、 第 2 5図のものと異なる) 。 このよう に探触子 1 0 5が受ける電圧 Rは、 上記反射波の拾畳が抑えられたもので あるため、 波数が少なく、 この結果、 送信波形 Pは、 送信波の時間軸方向 の幅 Wが小さなものとなった。  FIG. 19 shows an example of a waveform obtained by implementing the present invention. (In the figure, the vertical axis y indicates the transmission pressure, and the horizontal axis X indicates the time axis. As in FIG. 25, However, the scale of vertical t * y is different from that of Fig. 25). As described above, the voltage R received by the probe 105 has a small wave number because the reflected wave is suppressed from being picked up. As a result, the transmission waveform P has a width in the time axis direction of the transmission wave. W has become smaller.
具体的に述べると、 第 2 6図の送信波形 Pは、 下に凸となった都分即ち 谷 Gは 2つであるが、 この第 1 9図に示す本蹦のものでは、 谷 Gは 1つで ある。  More specifically, the transmission waveform P in FIG. 26 has two downwardly convex portions, that is, two valleys G. However, in the main waveform shown in FIG. 19, the valley G is There is one.
このため、 本願のものは、 時間軸方向の幅 Wが極めて小さいものに抑え られているのである。  For this reason, the width W in the time axis direction of the present invention is suppressed to an extremely small value.
上記のような構成によ て、 各実施例は、 高精度な探傷或いは肉厚測定 を可能とするのであるカ、 精度の要求が厳しくない場合、 探触子は、 従来 の並列ィンダクタンスを備えた安価なものによって済ませたい場合がある。 このとき、 既述の精度要求に合致する広带域の探触子を用いたのでは、 不経済である。  With the above-described configuration, each embodiment enables high-precision flaw detection or wall thickness measurement, and when accuracy requirements are not strict, the probe has a conventional parallel inductance. Sometimes you want something cheaper. At this time, it is uneconomical to use a wide-area probe that meets the accuracy requirements described above.
詳述すると、 探触子 1 0 5そのものも、 一般に振動子が用いられるもの であるため、 振動子単独で使用すると、 超音波を発射するための有用な振 動を厚み方向に発生すると同時に、 振動子の径方向 (周囲) にも振動を発 生するという問題を抱えるものである。 この (後者の) 振動は、 振動子は、 その厚さに比べて径方向の幅が大きいことから、 探傷周波より低く、 この ため、 探触子内や拭験材中での滅衰が少なく、 探傷上のノイズとして現れ るのであった。 More specifically, since the transducer 105 itself generally uses a vibrator, if the vibrator is used alone, a useful vibration for emitting ultrasonic waves is obtained. It has the problem that vibration occurs in the radial direction (surrounding) of the vibrator at the same time as the movement occurs in the thickness direction. This (the latter) vibration is lower than the flaw detection frequency because the width of the vibrator in the radial direction is larger than its thickness, and therefore, the attenuation in the probe and the wiping test material is small. However, it appeared as noise on flaw detection.
このため、 従来、 探触子 (振動子) と並列にィンダクタンスを配設して、 このような振動によって発生した周波を吸収するようにしているのであつ た。  For this reason, conventionally, an inductance has been arranged in parallel with the probe (vibrator) to absorb the frequency generated by such vibration.
このような探触子を、 本願の発明に係る回路へ用いると、 前述の本願発 明の作用が得られなくなることから、 探傷或いは肉厚測定そのものが、 で きなくなのでは、 と考えがちであるが、 従来の安価な探触子 1 0 5を用い ること、 即ち、 第 2 0図へ示すように、 探触子 1 0 5と並列にィ ンダクタ ンス 1 0 6が配設して、 探触子 1 0 5の径外方向へ生じる探傷周波数より 低い低周波の振動が抑えるようにして用いることも可能である。  If such a probe is used in the circuit according to the present invention, the effect of the present invention described above cannot be obtained, so that it is often thought that flaw detection or wall thickness measurement itself cannot be performed. However, using a conventional inexpensive probe 105, that is, as shown in FIG. 20, an inductance 106 is arranged in parallel with the probe 105, It is also possible to use the probe 105 in such a manner that low-frequency vibration lower than the flaw detection frequency generated in the radial direction of the probe 105 is suppressed.
この場合、 探触子 1 0 5と並列に配されたイ ンダクタンス 1 0 6は、 低 周波ではイ ンビーンスが低いので、 ゆっくり充電して行く間は、 ずっと電 圧が 0となる β そして急速放 ¾する際には、 放電されるのではなく、 電流 が铯たれることとなる。 このとき、 ィンダクタンス 1 0 6は、 その機能か ら流れている電流を維持しょうとするので、 探触子 1 0 5に対して負の電 圧 (一般にキックバックと呼ばれている。 ) を与えることとなる。 結局、 この場合、 この負電圧により、 探触子 1 0 5 (の振動子) が振動するので ある。 In this case, the inductance 106 arranged in parallel with the probe 105 has low impedance at low frequency, so that the voltage becomes 0 during the slow charging and β and the rapid discharge When the current is applied, the current is drained instead of being discharged. At this time, since the inductance 106 tries to maintain the current flowing from the function, a negative voltage (generally called kickback) is applied to the probe 105. Will give. After all, in this case, the probe 105 (oscillator) vibrates due to this negative voltage.
従って、 第 2 0図へ示す構成の探触子を第 1 6図や第 1 7図、 或いは第 1 8図へ示す回路に使用しても、 上記負の電圧によって、 超音波を発する ことが可能である。  Therefore, even if the probe having the structure shown in FIG. 20 is used in the circuit shown in FIG. 16, FIG. 17, or FIG. 18, it is possible to generate ultrasonic waves by the negative voltage. It is possible.
探触子 1 0 5は、 その振動子の材質によっては、 正の電圧を印荷すると 逆分極し、 探触子 1 0 5が機能しない。 これを避けるため、 電圧を負にシ フ 卜する周知の構成を既述の回路に設けておくのが適切である。 Depending on the material of the vibrator, the probe 105 reverse-polarizes when a positive voltage is applied, and the probe 105 does not function. To avoid this, switch the voltage to negative. It is appropriate to provide a well-known configuration to the circuit described above.
例えば、 第 1 6図、 第 1 7図或いは第 1 8図に示した回路等において、 このような構成を設けるのである。 第 1 7図に示す回路にこのような構成 を設けた例を第 2 ί図へ示す。 この第 2 1図に示すように、 低速充電回路 1 0 1及び高速放電回路 1 0 2と、 探触子 1 0 5との間へ、 コンデンサ 1 5 1を、 介すると共に、 ダイオード 1 5 2を配設 ·接地するのである。 第 2 1図において、 コンデンサ 1 5 1とダイオード 1 5 2には、 伝導部 1 0 4と、 低速充電回路 1 0 1及び高速放電回路 1 0 2の間に配設されたもの を示した力 <、 伝導部 1 0 4と探触子 1 0 5との間に、 これら素子を配設し て実施しても、 同様の効果が得られるのである。  For example, such a configuration is provided in the circuit shown in FIG. 16, FIG. 17, or FIG. An example in which such a configuration is provided in the circuit shown in FIG. 17 is shown in FIG. As shown in FIG. 21, a capacitor 15 1 is interposed between the low-speed charging circuit 101 and the high-speed discharging circuit 102 and the probe 105, and a diode 15 2 Arranged and grounded. In Fig. 21, the capacitor 15 1 and the diode 15 2 have a conducting part 104 and the force shown between the low-speed charging circuit 101 and the high-speed discharging circuit 102. <A similar effect can be obtained by arranging these elements between the conductive part 104 and the probe 105 and practicing them.
本願第 1の発明の実施によって、 送信時の伝導都内の反射による波形歪 みを生じさせることなく、 音圧の再生が可能となった。 このため、 経過時 間 (時間軸方向) に対する分解能を著しく向上した。  By implementing the first invention of the present application, it is possible to reproduce sound pressure without causing waveform distortion due to reflection in the transmission area during transmission. For this reason, the resolution with respect to the elapsed time (time axis direction) has been significantly improved.
本 SI第 2の発明の実施によって、 伝導部において、 信号の反射を回避す ることが可能となり、 S ZN比が著しく向上した。  By implementing the second invention of the present SI, it is possible to avoid signal reflection in the conduction section, and the SZN ratio is significantly improved.
又、 このため、 発信波形の乱れが抑えられ、 発生する超音波の波数が低 滅して時間軸分解能が著しく高められた。 このため、 肉厚測定においては、 測定可能な最低肉厚がより小さくなり、 従来測定不可能であった極めて薄 い対象物についても、 肉厚測定が可能となった。  Also, for this reason, the disturbance of the transmitted waveform was suppressed, the wave number of the generated ultrasonic wave was reduced, and the time axis resolution was significantly improved. For this reason, the minimum measurable wall thickness in the wall thickness measurement has become smaller, and it has become possible to measure the wall thickness of extremely thin objects that could not be measured conventionally.
発生する超音波の波数が低減することは、 同時に発生する超音波の周波 数帯域が広くなるということと同じであり、 これにより、 探傷試験におい ては、 散乱等に寄るノイズが低滅し、 S ZN比の良好な探傷が可能となる。 又、 本願第 3の発明の実施によっても、 上記と同様の効果を得ることが 可能である。  Decreasing the wave number of the generated ultrasonic waves is equivalent to widening the frequency band of the ultrasonic waves generated at the same time.In the flaw detection test, noise due to scattering and the like is reduced, and S Good flaw detection with a ZN ratio becomes possible. Further, the same effects as above can be obtained by implementing the third invention of the present application.
更に、 第 2 0図へ示す実施例のように、 一般に安価な探触子の場合、 探 触子 (振動子) と並列にインダクタンスが配設されており、 探触子 1 0 5 の径外方向へ生じる探傷周波数より低い低周波の振動を抑えるようにして ある力、 本願発明に係る回路にあっては、 このような探触子を用いても、 スパイク罨圧を得ることが可能であり、 汎用性を有するものである。 Further, as in the embodiment shown in FIG. 20, in the case of a generally inexpensive probe, an inductance is arranged in parallel with the probe (vibrator), and the outer diameter of the probe 105 To suppress low-frequency vibrations below the flaw detection frequency With a certain force, in the circuit according to the present invention, it is possible to obtain a spike compress even with such a probe, and it has versatility.
即ち、 精密探谌或いは精密肉厚測定を可能とすると共に、 このような精 度要求が厳しくない場合に、 通常の安価な探触子即ち並列にィンダクタン スが配設された探触子を用いても、 従来探傷機としての動作は可能であり、 汎用性を有するものである。  That is, it is possible to perform the precision detection or the accurate wall thickness measurement, and when such a precision requirement is not severe, use a normal inexpensive probe, that is, a probe in which inductance is arranged in parallel. However, it can operate as a conventional flaw detector and has versatility.
上述の通り、 第 1、 第 2、 第 3の各発明の実施によって、 経過時間 (時 間蚰方向) に対する分解能を著しく向上し得た。  As described above, by implementing the first, second, and third inventions, the resolution with respect to the elapsed time (time direction) can be significantly improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 探触子(1) と、 伝導部 (2) とを有してなり、 1. It has a probe (1) and a conduction part (2),
探触子 ) は、 伝導部 ) を介して探傷装置等の検出機に設けられるも のであり、 伝 ¾部 (2) の検出機側から、 スパイク電圧を受けることによつ て被検材に対して超音波を発すると共に、 被検材からの反射波を受けて受 信パルス霄圧を伝導部 (2) へ伝えるものであり、  The probe) is provided on a detector such as a flaw detector through the conductive part), and receives a spike voltage from the detector side of the conductive part (2) to apply a spike voltage to the material to be inspected. In addition to transmitting ultrasonic waves, it receives reflected waves from the specimen and transmits the received pulse pressure to the conduction unit (2).
伝 ¾部 (2) は、 上記スパイク電圧の探触子(1) への伝達と、 探触子(1) が受けた超音波反射波にて生じた電圧波形を検出機側へ伝達するものであ り、 且つ、 可変ィンビーダンス回路(3) を備えたものであり、  The transmission unit (2) transmits the spike voltage to the probe (1) and transmits a voltage waveform generated by the ultrasonic reflected wave received by the probe (1) to the detector side. And a variable impedance circuit (3).
この可変ィンピーダンス回路 (3) は、 超音波発信時、 伝導部 (2) のィ ン ビーダンスを、 探触子のインピーダンスとほぼ同じ大きさとし、 反射超音 波受信時、 探触子(1) のイ ンピーダンスよりも大きいものとすることが可 能なるものであることを特徴とする超音波探触子励振回路。  This variable impedance circuit (3) sets the impedance of the conducting part (2) to approximately the same as the impedance of the probe when transmitting ultrasonic waves, and the probe (1) when receiving reflected ultrasonic waves. An ultrasonic probe excitation circuit characterized in that the impedance can be larger than the impedance of the ultrasonic probe.
2 . ¾荷を徐々に充¾することが可能な低速充電回路(101) と、 適切な 充踅圧に到達すると急速に踅荷の放 ¾を行う高速放電回路 (102) と、 直列 イ ンピーダンス(103) と、 伝導部(104) と、 スパイク霄圧を受けることに よつて振觔し超音波を発するの探触子 αο5) とを有してなり、 2. A low-speed charging circuit (101) that can gradually charge the load, a high-speed discharging circuit (102) that releases the load quickly when the appropriate charging pressure is reached, and a series impedance (103), a conducting part (104), and a probe αο5) that vibrates by receiving a spike pressure and emits ultrasonic waves.
低速充電回路(101) は、 直列イ ンピーダンス(103) を介して高速放電回 路(102) に接続するものであり、  The low-speed charging circuit (101) is connected to the high-speed discharging circuit (102) via the series impedance (103).
直列イ ンピーダンス(103) は、 所定以上の上記放電を制限するものであ 、  The series impedance (103) limits the discharge above a predetermined level.
伝導都(104) は、 ケーブル等の導電部材であり、 上記低速充電回路(101 ) と直列インピーダンス(103) との間と、 探触子 05) とを接続するもの であることを特徴とする超音波探触子励振回路。 The conductive member (104) is a conductive member such as a cable, and connects the low-speed charging circuit (101) and the series impedance (103) to the probe 05). Ultrasonic probe excitation circuit.
3 . 電荷を徐々に充電することが可能な低速充電回路 οι) と、 適切な 充電圧に到達すると急速に電荷の放電を行う高速放電回路 αο2) と、 直列 イ ンピーダンス(103) と、 伝導部(104) と、 スパイク電圧を受けることに よって振動し超音波を発するの探触子(105) とを有してなり、 3. A low-speed charging circuit οι) that can gradually charge the electric charge, a high-speed discharging circuit αο2) that discharges the electric charge rapidly when the appropriate charging pressure is reached, a series impedance (103), and a conducting part (104) and a probe (105) that vibrates by receiving a spike voltage and emits ultrasonic waves.
低速充¾回路 οι) は、 高速放電画路(102) に接続するものであり、 直列イ ンビーダンス(103) は、 所定以上の上記放電を制限するものであ り、 低速充電回路 αοι) と高速放電画路 αο2) との間に、 その一端が接続 され、 他端が伝導部 (104) の一端に接続されており、  The low-speed charging circuit οι) is connected to the high-speed discharge circuit (102), and the series impedance (103) limits the discharge above a predetermined level. One end is connected to the discharge circuit αο2), and the other end is connected to one end of the conduction portion (104).
伝導部 ο4) は、 ケーブル等の導電部材であり、 上記直列ィ ンビーダン ス(103) の一端と、 探触子(105) とを接続するものであることを特徴とす る超音波探触子励振回路。  The conductive part ο4) is a conductive member such as a cable, and connects one end of the series impedance (103) to the probe (105). Excitation circuit.
PCT/JP1995/000124 1994-01-31 1995-01-31 Ultrasonic probe excitation circuit WO1995020762A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6028882A JPH07218482A (en) 1994-01-31 1994-01-31 Ultrasonic probe excitation circuit
JP6/28882 1994-01-31
JP6196111A JPH0843065A (en) 1994-07-27 1994-07-27 Ultrasonic probe oscillation circuit
JP6/196111 1994-07-27

Publications (1)

Publication Number Publication Date
WO1995020762A1 true WO1995020762A1 (en) 1995-08-03

Family

ID=26367028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000124 WO1995020762A1 (en) 1994-01-31 1995-01-31 Ultrasonic probe excitation circuit

Country Status (1)

Country Link
WO (1) WO1995020762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118817A (en) * 2019-05-31 2019-08-13 云谷(固安)科技有限公司 Conducting wire testing apparatus and its detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS437674Y1 (en) * 1965-03-22 1968-04-05
JPS5057694A (en) * 1973-09-21 1975-05-20
JPH01124443A (en) * 1987-11-10 1989-05-17 Fuji Electric Co Ltd Transmitted and reception matching circuit of medical ultrasonic probe
JPH01160535A (en) * 1987-12-17 1989-06-23 Toshiba Corp Ultrasonic diagnostic apparatus
JPH0618655A (en) * 1992-07-06 1994-01-28 Oki Shisutetsuku Tokai:Kk Sound generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS437674Y1 (en) * 1965-03-22 1968-04-05
JPS5057694A (en) * 1973-09-21 1975-05-20
JPH01124443A (en) * 1987-11-10 1989-05-17 Fuji Electric Co Ltd Transmitted and reception matching circuit of medical ultrasonic probe
JPH01160535A (en) * 1987-12-17 1989-06-23 Toshiba Corp Ultrasonic diagnostic apparatus
JPH0618655A (en) * 1992-07-06 1994-01-28 Oki Shisutetsuku Tokai:Kk Sound generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118817A (en) * 2019-05-31 2019-08-13 云谷(固安)科技有限公司 Conducting wire testing apparatus and its detection method

Similar Documents

Publication Publication Date Title
US2280226A (en) Flaw detecting device and measuring instrument
US5723791A (en) High resolution ultrasonic coating thickness gauge
US4011473A (en) Ultrasonic transducer with improved transient response and method for utilizing transducer to increase accuracy of measurement of an ultrasonic flow meter
US3994154A (en) Ultrasonic pulse-echo thickness and velocity measuring apparatus
KR101688844B1 (en) Method for determining the starting instant of a periodically oscillating signal response
US4043176A (en) Acoustic white noise generator
US3423992A (en) Ultrasonic apparatus for measuring thickness or distances
WO1995020762A1 (en) Ultrasonic probe excitation circuit
US3688562A (en) Ultrasonic inspection apparatus
Hidayat et al. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation
RU2363550C1 (en) Device for exciting and damping oscillations of piezoelectric transducer (versions)
JPH0843065A (en) Ultrasonic probe oscillation circuit
US3038328A (en) Ultrasonic wave train generator
KR840002077B1 (en) Ultrasonic sensing
Borg et al. 3J-3 reciprocal operation of ultrasonic transducers: Experimental results
US3789352A (en) Method and apparatus for testing depth finders
JPH07218482A (en) Ultrasonic probe excitation circuit
Onykiienko et al. The selection of the test pulse duration for a shock excitation study of ultrasonic transducers
Martin Variable pulse width piezoelectric ultrasonic transducer driver
RU2003105080A (en) METHOD FOR DETERMINING STATE OF PILES AND DEVICE FOR ITS IMPLEMENTATION
JPH04265856A (en) Sector scanning type ultrasonic flaw detector
JPH0449593Y2 (en)
RU2052768C1 (en) Ultrasonic distance meter
SU1627973A1 (en) Ultrasonic flaw detector
JPS6245502B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase