WO1995018874A1 - Zirconium alloy - Google Patents

Zirconium alloy Download PDF

Info

Publication number
WO1995018874A1
WO1995018874A1 PCT/SE1994/001254 SE9401254W WO9518874A1 WO 1995018874 A1 WO1995018874 A1 WO 1995018874A1 SE 9401254 W SE9401254 W SE 9401254W WO 9518874 A1 WO9518874 A1 WO 9518874A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
per cent
content
zirconium
tin
Prior art date
Application number
PCT/SE1994/001254
Other languages
French (fr)
Inventor
Peter Rudling
Original Assignee
Abb Atom Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Atom Ab filed Critical Abb Atom Ab
Priority to AU14291/95A priority Critical patent/AU1429195A/en
Publication of WO1995018874A1 publication Critical patent/WO1995018874A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of zirconium alloys for nuclear fuel components for light-water reactors.
  • the new alloy is a further development of zirconium alloys containing alloying elements from the group tin, iron, chromium, nickel, niobium, vanadium, silicon, and oxygen.
  • zirconium alloys as construction material for nuclear fuel components such as cladding tubes, boxes, spacers, guide tubes, etc.
  • the general requirements on these zirconium alloys are that they should have a low neutron absorption cross section, good mechanical properties such as strength, ductility, creep resistance and good corrosion resistance in a light-water reactor environment, and a low hydrogen absorption in connection with the corrosion.
  • a very large number of alloys have been developed to attempt to fulfil these requirement as well as possible or to attempt to obtain an alloy which is considerably improved with respect to any of these requirements.
  • the alloys which are most used as construction material are Zircaloy 2 and Zircaloy 4, which consist of zirconium containing 1.2 - 1.7 per cent by weight tin, 0.07 - 0.20 per cent by weight iron, 0.05 - 0.15 per cent by weight chromium, 0.03 - 0.08 per cent by weight nickel, 0.09 - 0.16 per cent by weight oxygen and ⁇ 1.2 - 1.7 per cent by weigh tin, 0.18 - 0.24 per cent by weight iron, 0.07 - 0.13 per cent by weight chromium, and 0.09 - 0.16 per cent by weight oxygen, respectively.
  • zirconium alloys are known contai- ning 0.5 to 2.0 % niobium, up to 1.5 % tin and up to 0.25 % of a third element such as iron, chromium, molybdenum, vanadium, copper, nickel, or tungsten.
  • This alloy is, in principle, a zirconium-niobium alloy with addition of tin up to 1.5 % and with a small addition ( ⁇ 0.25 %) of a third sub ⁇ stance.
  • a phase transformation to ⁇ phase is performed at 610°C.
  • the ductility of the material in ⁇ phase is worse than in ⁇ phase, which means that a structural part in a material with a lower phase transformation temperature is given worse proper ⁇ ties at a heavy increase in temperature in the core, such as at a "Loss of Coolant Accident".
  • US 4 233 149 describes a zirconium alloy consisting of zir ⁇ conium and 0.05 - 3.0 % tin, 0.001 - 4.5 % hafnium, 0.001 - 1.0 % iron, 0.001 - 1.0 % chromium, 0.001 - 1.0 % nickel, 0.05 - 0.5 % oxygen, 0.001 - 0.05 % nitrogen, 0.001 - 0.2 % of one or more elements from the group copper, cobalt, cadmium, manganese, aluminium, titanium, silicon, carbon, phosphorus, molybdenum, bismuth, vanadium, antimony, niobium, tungsten, and boron.
  • This alloy is intended to constitute anode material for anodizing aluminium.
  • the alloy is produced to improve the current yield, the abrasion resistance and the corrosion resistance in electrolytes such as sulphuric acid, for anodi ⁇ zing aluminium and not a zirconium alloy intended to be used as construction material for nuclear fuel components.
  • a zirconium alloy for nuclear fuel components is described in US 4 981 527 and consists of zirconium with 0.1 - 0.35 % iron, 0.07 - 0.4 % vanadium, 0.05 - 0.3 % oxygen, less than 0.25 % tin and less than 0.25 % niobium.
  • the low contents ( ⁇ 0.25 %) of tin and niobium are stated to be of importance for achieving a good corrosion resistance of the alloy.
  • the creep properties of this alloy are very inferior compared with, for example, Zircaloy 2 or 4. The reason is that the alloy has a low content of alloying additives and is therefore soft.
  • the patent specification CA 859 053 describes a zirconium- niobium-beryllium alloy which may be alloyed with up to 10 per cent by weight of at least one element from the group tin, copper, iron, chromium, molybdenum, vanadium, tungsten, tantalum, nickel, yttrium, antimony and tellurium.
  • the alloy contains 0.005 - 1.0 per cent by weight beryllium, which has a very low neutron absorption cross section but which is exceedingly poisonous and difficult to handle when manufac ⁇ turing an alloy.
  • the present invention relates to a zirconium alloy, for components included in nuclear fuel elements, with improved properties with respect to the absorption of hydrogen released during the corrosion, in combination with good strength and creep properties.
  • the invention is an improvement of known zirconium alloys based on zirconium with alloying addition of at least tin, iron, chromium, nickel and silicon, and is based on the realization that the hydrogen absorption for a zirconium alloy based on zirconium-tin-iron-chromium-nickel-silicon can be considerably reduced by small additions of vanadium.
  • niobium It is also possible to add small quantities of niobium to the alloy. However, the niobium content should be maintained low to avoid phase transformation at 610 °C.
  • These alloys based on zirconium-tin-iron-chromium-nickel- silicon and with addition of vanadium or vanadium and niobium have good strength in spite of the fact that the tin content may be lower than the standard value for Zircaloy 2, 4. This is possible because vanadium, besides affecting the hydrogen absorption, also has a solution-hardening effect. Also, the combination of iron, chromium and nickel and, where appli ⁇ cable, also niobium contributes to increase the strength.
  • the zirconium alloy according to the invention comprises, in addition to zirconium and normal contents of impurities for reactor-grade zirconium, also the alloying elements tin, iron, chromium, nickel, silicon, oxygen and vanadium, or vanadium and niobium.
  • the total content of tin, iron, nickel, chromium and silicon is at least 0.54 per cent by weight and at most 2.15 per cent by weight, of which the content of tin is at least 0.3 per cent by weight, the content of iron at least 0.07 per cent by weight, the content of chromium 0.05 per cent by weight, the content of nickel at least 0.03 per cent by weight, and the content of silicon at least 0.005 per cent by weight.
  • the alloy contains 0.015 to 0.30 per cent by weight vanadium or 0.015 to 0.30 per cent by weight vanadium and 0.015 to 0.30 per cent niobium.
  • the alloy according to the invention makes it possible for nuclear fuel components such as cladding tubes or spacers to obtain good strength properties in combination with good corrosion resistance and a low propensity to absorb hydrogen in connection with the corrosion process.
  • Absorption of hydrogen means that the material is embrittled when the hydrogen is precipitated in the form of needle-shaped hydrides. This embrittlement reduces the capacity of the material to withstand impacts, vibrations, and the like, which may arise in operation or when handling the fuel in connection with refuelling or storage of spent fuel.
  • composition of the alloy is such that it has a higher phase transformation temperature than the conventional resistant zirconium-niobium alloys which exhibit a decreasing ductility at temperatures exceeding about 600 °C.
  • the manufacture of nuclear fuel components is usually performed by means of hot-working, for example forging or hot- rolling of a blank.
  • Cladding tubes are manufactured by extruding a blank and then cold-rolling it in several steps with intermediate heat treatments and a final heat treatment.
  • Flat products for manufacturing boxes or spacers are produced by hot- and cold-rolling to a suitable dimension and by heat treatments between the cold-rolling operations, and a final heat treatment.
  • the manufacture of the alloy according to the invention is performed in the most advantageous manner by allowing all the hot-working and heat-treatment operations to take place in the ⁇ phase range. This provides the most favourable effect on the corrosion properties of the alloy. It is therefore advan ⁇ tageous with an alloy with a low niobium content to avoid initiating the phase transformation to ⁇ phase as early as at
  • cladding tubes according to the inven- tion may be manufactured from a zirconium alloy according to the above and that it is favourable to heat-treat the cladding tubes between the cold-rolling operations at a temperature below 600 °C.
  • the alloy according to the invention according to other methods for manufacturing zirconium-base alloys, which may mean that heat treatments are carried out in the ⁇ + ⁇ phase range or in the ⁇ phase range, so-called ⁇ quenching.
  • An alloy for cladding tubes intended for boiling or pressurized-water reactors consists of zirconium with 0.5 to 1.7 per cent by weight tin, 0.07 to 0.20 per cent by weight iron, 0.05 to 0.15 per cent by weight chromium, 0.03 to 0.08 per cent by weight nickel, 0.005 to 0.05 per cent by weight silicon, 0.09 to 0.16 per cent by weight oxygen, 0.015 to 0.30 per cent by weight vanadium and impurities in quantities normally occurring for reactor-grade zirconium.
  • the cladding tubes may be manufactured in conventional manner by means of extrusion and a number of cold-rolling steps alternating with heat treatments and a final heat treatment to impart optimum properties to the finished cladding tube.
  • Another alloy composition according to the invention which may be used for manufacturing cladding tubes, is an alloy consisting of zirconium with 0.03 to 1.0 per cent by weight tin, 0.07 to 0.70 per cent by weigh iron, 0.05 to 0.15 per cent by weight chromium, 0.16 to 0.40 per cent by weight nickel, 0.015 to 0.05 per cent by weight silicon, 0.09 to 0.16 per cent by weight oxygen, 0.015 to 0.30 per cent by weight vanadium, 0.015 to 0.30 per cent by weight niobium, and impurities in quantities normally occurring for reactor-grade zirconium.
  • the cladding tubes may be manufactured by means of extrusion and four cold-working steps with intermediate heat treatments at temperatures lower than 600 °C and a final heat treatment at 450 to 700 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A zirconium alloy for nuclear fuel components such as cladding tubes, spacers, boxes, etc., with improved properties with respect to the absorption of hydrogen released during the corrosion, in combination with good strength and creep properties. The alloy contains zirconium and tin, iron, nickel, chromium, and silicon with a total content of at least 0.54 per cent by weight and at most 2.15 per cent by weight, of which the content of tin is at least 0.03 %, the content of iron at least 0.07 %, the content of nickel at least 0.03 %, the content of chromium at least 0.05 %, and the content of silicon at least 0.005 % and 0.15-0.30 % vanadium and 0.015-0.30 % niobium.

Description

Zirconium alloy
TECHNICAL FIELD
The invention relates to the field of zirconium alloys for nuclear fuel components for light-water reactors. The new alloy is a further development of zirconium alloys containing alloying elements from the group tin, iron, chromium, nickel, niobium, vanadium, silicon, and oxygen.
BACKGROUND ART, PROBLEMS
It is known to use zirconium alloys as construction material for nuclear fuel components such as cladding tubes, boxes, spacers, guide tubes, etc. The general requirements on these zirconium alloys are that they should have a low neutron absorption cross section, good mechanical properties such as strength, ductility, creep resistance and good corrosion resistance in a light-water reactor environment, and a low hydrogen absorption in connection with the corrosion. A very large number of alloys have been developed to attempt to fulfil these requirement as well as possible or to attempt to obtain an alloy which is considerably improved with respect to any of these requirements. The alloys which are most used as construction material are Zircaloy 2 and Zircaloy 4, which consist of zirconium containing 1.2 - 1.7 per cent by weight tin, 0.07 - 0.20 per cent by weight iron, 0.05 - 0.15 per cent by weight chromium, 0.03 - 0.08 per cent by weight nickel, 0.09 - 0.16 per cent by weight oxygen and ~1.2 - 1.7 per cent by weigh tin, 0.18 - 0.24 per cent by weight iron, 0.07 - 0.13 per cent by weight chromium, and 0.09 - 0.16 per cent by weight oxygen, respectively.
According to US 4 649 023, zirconium alloys are known contai- ning 0.5 to 2.0 % niobium, up to 1.5 % tin and up to 0.25 % of a third element such as iron, chromium, molybdenum, vanadium, copper, nickel, or tungsten. This alloy is, in principle, a zirconium-niobium alloy with addition of tin up to 1.5 % and with a small addition (<0.25 %) of a third sub¬ stance. For zirconium-niobium alloys containing more than 0.5 per cent by weight niobium, a phase transformation to β phase is performed at 610°C.
The ductility of the material in β phase is worse than in α phase, which means that a structural part in a material with a lower phase transformation temperature is given worse proper¬ ties at a heavy increase in temperature in the core, such as at a "Loss of Coolant Accident".
US 4 233 149 describes a zirconium alloy consisting of zir¬ conium and 0.05 - 3.0 % tin, 0.001 - 4.5 % hafnium, 0.001 - 1.0 % iron, 0.001 - 1.0 % chromium, 0.001 - 1.0 % nickel, 0.05 - 0.5 % oxygen, 0.001 - 0.05 % nitrogen, 0.001 - 0.2 % of one or more elements from the group copper, cobalt, cadmium, manganese, aluminium, titanium, silicon, carbon, phosphorus, molybdenum, bismuth, vanadium, antimony, niobium, tungsten, and boron. This alloy is intended to constitute anode material for anodizing aluminium. The alloy is produced to improve the current yield, the abrasion resistance and the corrosion resistance in electrolytes such as sulphuric acid, for anodi¬ zing aluminium and not a zirconium alloy intended to be used as construction material for nuclear fuel components.
From FR 89 13997 it is known to add to zirconium - 2.5 - 10 % niobium alloys 0.05 to 1.0 % of an element from the group iron, chromium, molybdenum or vanadium to obtain an alloy which is especially suited for manufacturing spacers for nuclear fuel elements. This alloy has a high niobium content, which leads to a low transformation temperature to β phase and the disadvantages described for US 4 649 023.
According to US 5 122 334 it is known to add small quantities of vanadium to zirconium-gallium alloys.
A zirconium alloy for nuclear fuel components is described in US 4 981 527 and consists of zirconium with 0.1 - 0.35 % iron, 0.07 - 0.4 % vanadium, 0.05 - 0.3 % oxygen, less than 0.25 % tin and less than 0.25 % niobium. The low contents (<0.25 %) of tin and niobium are stated to be of importance for achieving a good corrosion resistance of the alloy. However, the creep properties of this alloy are very inferior compared with, for example, Zircaloy 2 or 4. The reason is that the alloy has a low content of alloying additives and is therefore soft.
The patent specification CA 859 053 describes a zirconium- niobium-beryllium alloy which may be alloyed with up to 10 per cent by weight of at least one element from the group tin, copper, iron, chromium, molybdenum, vanadium, tungsten, tantalum, nickel, yttrium, antimony and tellurium. The alloy contains 0.005 - 1.0 per cent by weight beryllium, which has a very low neutron absorption cross section but which is exceedingly poisonous and difficult to handle when manufac¬ turing an alloy.
SUMMARY OF THE INVENTION
The present invention relates to a zirconium alloy, for components included in nuclear fuel elements, with improved properties with respect to the absorption of hydrogen released during the corrosion, in combination with good strength and creep properties.
The invention is an improvement of known zirconium alloys based on zirconium with alloying addition of at least tin, iron, chromium, nickel and silicon, and is based on the realization that the hydrogen absorption for a zirconium alloy based on zirconium-tin-iron-chromium-nickel-silicon can be considerably reduced by small additions of vanadium.
It is also possible to add small quantities of niobium to the alloy. However, the niobium content should be maintained low to avoid phase transformation at 610 °C. These alloys based on zirconium-tin-iron-chromium-nickel- silicon and with addition of vanadium or vanadium and niobium have good strength in spite of the fact that the tin content may be lower than the standard value for Zircaloy 2, 4. This is possible because vanadium, besides affecting the hydrogen absorption, also has a solution-hardening effect. Also, the combination of iron, chromium and nickel and, where appli¬ cable, also niobium contributes to increase the strength.
A good high temperature strength is also obtained in the alloy, and by keeping the niobium content low, the phase transformation at 610 °C, which is characteristic of conven¬ tional zirconium-niobium alloys, does not take place.
The zirconium alloy according to the invention comprises, in addition to zirconium and normal contents of impurities for reactor-grade zirconium, also the alloying elements tin, iron, chromium, nickel, silicon, oxygen and vanadium, or vanadium and niobium. The total content of tin, iron, nickel, chromium and silicon is at least 0.54 per cent by weight and at most 2.15 per cent by weight, of which the content of tin is at least 0.3 per cent by weight, the content of iron at least 0.07 per cent by weight, the content of chromium 0.05 per cent by weight, the content of nickel at least 0.03 per cent by weight, and the content of silicon at least 0.005 per cent by weight. In addition, the alloy contains 0.015 to 0.30 per cent by weight vanadium or 0.015 to 0.30 per cent by weight vanadium and 0.015 to 0.30 per cent niobium.
The alloy according to the invention makes it possible for nuclear fuel components such as cladding tubes or spacers to obtain good strength properties in combination with good corrosion resistance and a low propensity to absorb hydrogen in connection with the corrosion process. Absorption of hydrogen means that the material is embrittled when the hydrogen is precipitated in the form of needle-shaped hydrides. This embrittlement reduces the capacity of the material to withstand impacts, vibrations, and the like, which may arise in operation or when handling the fuel in connection with refuelling or storage of spent fuel.
The composition of the alloy is such that it has a higher phase transformation temperature than the conventional resistant zirconium-niobium alloys which exhibit a decreasing ductility at temperatures exceeding about 600 °C.
The manufacture of nuclear fuel components is usually performed by means of hot-working, for example forging or hot- rolling of a blank. Cladding tubes are manufactured by extruding a blank and then cold-rolling it in several steps with intermediate heat treatments and a final heat treatment. Flat products for manufacturing boxes or spacers are produced by hot- and cold-rolling to a suitable dimension and by heat treatments between the cold-rolling operations, and a final heat treatment.
The manufacture of the alloy according to the invention is performed in the most advantageous manner by allowing all the hot-working and heat-treatment operations to take place in the α phase range. This provides the most favourable effect on the corrosion properties of the alloy. It is therefore advan¬ tageous with an alloy with a low niobium content to avoid initiating the phase transformation to β phase as early as at
610 °C, which lies within that temperature range in which zirconium alloys are normally heat-treated.
It has been found that cladding tubes according to the inven- tion may be manufactured from a zirconium alloy according to the above and that it is favourable to heat-treat the cladding tubes between the cold-rolling operations at a temperature below 600 °C.
However, it is possible to manufacture the alloy according to the invention according to other methods for manufacturing zirconium-base alloys, which may mean that heat treatments are carried out in the α + β phase range or in the β phase range, so-called β quenching.
The invention will be explained in greater detail by describing a few embodiments.
Example 1
An alloy for cladding tubes intended for boiling or pressurized-water reactors consists of zirconium with 0.5 to 1.7 per cent by weight tin, 0.07 to 0.20 per cent by weight iron, 0.05 to 0.15 per cent by weight chromium, 0.03 to 0.08 per cent by weight nickel, 0.005 to 0.05 per cent by weight silicon, 0.09 to 0.16 per cent by weight oxygen, 0.015 to 0.30 per cent by weight vanadium and impurities in quantities normally occurring for reactor-grade zirconium. The cladding tubes may be manufactured in conventional manner by means of extrusion and a number of cold-rolling steps alternating with heat treatments and a final heat treatment to impart optimum properties to the finished cladding tube.
Example 2
Another alloy composition according to the invention, which may be used for manufacturing cladding tubes, is an alloy consisting of zirconium with 0.03 to 1.0 per cent by weight tin, 0.07 to 0.70 per cent by weigh iron, 0.05 to 0.15 per cent by weight chromium, 0.16 to 0.40 per cent by weight nickel, 0.015 to 0.05 per cent by weight silicon, 0.09 to 0.16 per cent by weight oxygen, 0.015 to 0.30 per cent by weight vanadium, 0.015 to 0.30 per cent by weight niobium, and impurities in quantities normally occurring for reactor-grade zirconium. The cladding tubes may be manufactured by means of extrusion and four cold-working steps with intermediate heat treatments at temperatures lower than 600 °C and a final heat treatment at 450 to 700 °C.

Claims

1. A zirconium alloy for use in nuclear fuel components for light-water reactors, wherein the alloy comprises, besides zirconium and normal quantities of impurities for reactor- grade zirconium, the alloying elements tin, iron, chromium, nickel, silicon and oxygen, characterized in that the total contents of tin, iron, nickel, chromium and silicon are at least 0.54 per cent by weight and at most 2.15 per cent by weight, of which the content of tin is a least 0.3 per cent by weight, the content of iron at least 0.07 per cent by weight, the content of nickel at least 0.03 per cent by weight, the content of chromium at least 0.05 per cent by weight, and the content of silicon at least 0.005 per cent by weight, and that the alloy comprises 0.015 to 0.30 per cent by weight vanadium or 0.015 to 0.30 per cent by weight vanadium and 0.015 to 0.30 per cent by weight niobium.
2. A zirconium alloy according to claim 1, characterized in that the content of tin is between 0.5 and 1.7 per cent by weight, the content of iron between 0.07 and 0.20 per cent by weight, the content of chromium between 0.05 and 0.15 per cent by weight, the content of nickel between 0.03 and 0.08 per cent by weight, the content of silicon between 0.005 and 0.05 per cent by weight, the content of oxygen between 0.09 and
0.16 per cent by weight, and the content of vanadium between 0.015 and 0.3 per cent by weight.
3. A zirconium alloy according to claim 1, characterized in that the content of tin is between 0.3 and 1.0 per cent by weight, the content of iron between 0.07 and 0.7 per cent by weight, the content of chromium between 0.05 and 0.15 per cent by weight, the content of nickel between 0.16 and 0.4 per cent by weight, the content of silicon between 0.015 and 0.05 per cent by weight, the content of oxygen between 0.09 and 0.16 per cent by weight, the content of vanadium between 0.015 and 0.3 per cent by weight, and the content of niobium between 0.03 and 0.3 per cent by weight.
4. A method for manufacturing a nuclear fuel component of a zirconium alloy according to claim 1, 2 or 3, characterized in that when manufacturing the component, this is heat-treated only at temperatures in the alpha-phase range.
5. A method for manufacturing cladding tubes of a zirconium alloy according to claim 1, 2 or 3, comprising extrusion, a number of cold-rolling operations with intermediate heat- treatments and a final heat treatment, characterized in that the cladding tube is heat-treated during the intermediate heat-treatment operations at a temperature below 600 °C.
6. A method for manufacturing cladding tubes comprising extrusion, cold-rolling steps, heat-treatments and a final heat treatment, characterized in that the cladding tube is manufactured from an alloy according to claim 1 and that heat treatments between cold-rolling steps are carried out at temperatures below 600 °C.
PCT/SE1994/001254 1994-01-03 1994-12-27 Zirconium alloy WO1995018874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14291/95A AU1429195A (en) 1994-01-03 1994-12-27 Zirconium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9400010-6 1994-01-03
SE9400010A SE9400010D0 (en) 1994-01-03 1994-01-03 zirconium

Publications (1)

Publication Number Publication Date
WO1995018874A1 true WO1995018874A1 (en) 1995-07-13

Family

ID=20392494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1994/001254 WO1995018874A1 (en) 1994-01-03 1994-12-27 Zirconium alloy

Country Status (3)

Country Link
AU (1) AU1429195A (en)
SE (1) SE9400010D0 (en)
WO (1) WO1995018874A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776821A1 (en) * 1998-03-31 1999-10-01 Framatome Sa PROCESS FOR MANUFACTURING A TUBE FOR ASSEMBLING NUCLEAR FUEL
KR100480529B1 (en) * 1996-04-16 2005-07-11 꽁빠니 유로펜 뒤 지르코니움 세쥐스 Zirconium-based alloys resistant to creep resistance and corrosion by water and steam, methods for their preparation and members for nuclear reactors produced therefrom
CN103898362A (en) * 2012-12-27 2014-07-02 中国核动力研究设计院 Zirconium-based alloy for water-cooled nuclear reactor
CN111254315A (en) * 2020-03-30 2020-06-09 上海核工程研究设计院有限公司 Furuncle-corrosion-resistant Zr-Sn-Fe-Cr-O alloy and preparation method thereof
EP3907742A1 (en) * 2020-05-07 2021-11-10 Westinghouse Electric Sweden AB A cladding tube for a fuel rod for a nuclear reactor, a fuel rod, and a fuel assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820191B (en) * 2021-10-19 2024-01-19 西安西部新锆科技股份有限公司 High-uniformity zirconium alloy standard substance and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017336A (en) * 1988-01-22 1991-05-21 Mitsubishi Kinzoku Kabushiki Kaisha Zironium alloy for use in pressurized nuclear reactor fuel components
US5241571A (en) * 1992-06-30 1993-08-31 Combustion Engineering, Inc. Corrosion resistant zirconium alloy absorber material
US5244514A (en) * 1992-02-14 1993-09-14 Combustion Engineering, Inc. Creep resistant zirconium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017336A (en) * 1988-01-22 1991-05-21 Mitsubishi Kinzoku Kabushiki Kaisha Zironium alloy for use in pressurized nuclear reactor fuel components
US5244514A (en) * 1992-02-14 1993-09-14 Combustion Engineering, Inc. Creep resistant zirconium alloy
US5241571A (en) * 1992-06-30 1993-08-31 Combustion Engineering, Inc. Corrosion resistant zirconium alloy absorber material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Vol. 10, No. 383, C-393; & JP,A,61 174 347 (HITACHI LTD), 6 August 1986. *
PATENT ABSTRACTS OF JAPAN, Vol. 15, No. 154, C-825; & JP,A,03 031 438 (NIPPON NUCLEAR FUEL DEV CO LTD), 12 February 1991. *
ZIRCONIUM IN THE NUCLEAR INDUSTRY: NINTH INT. SYMPOSIUM, ASTM STP 1132, Philadelphia, ISOBE et al., "Development of Highly Corrosion Restistant Zirconium-Base Alloys", p 346-367. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480529B1 (en) * 1996-04-16 2005-07-11 꽁빠니 유로펜 뒤 지르코니움 세쥐스 Zirconium-based alloys resistant to creep resistance and corrosion by water and steam, methods for their preparation and members for nuclear reactors produced therefrom
FR2776821A1 (en) * 1998-03-31 1999-10-01 Framatome Sa PROCESS FOR MANUFACTURING A TUBE FOR ASSEMBLING NUCLEAR FUEL
WO1999050854A1 (en) * 1998-03-31 1999-10-07 Framatome Alloy and tube for nuclear fuel assembly and method for making same
KR100680886B1 (en) * 1998-03-31 2007-02-09 프라마톰 아엔페 Alloy and tube for nuclear fuel assembly and method for making same
CN103898362A (en) * 2012-12-27 2014-07-02 中国核动力研究设计院 Zirconium-based alloy for water-cooled nuclear reactor
CN111254315A (en) * 2020-03-30 2020-06-09 上海核工程研究设计院有限公司 Furuncle-corrosion-resistant Zr-Sn-Fe-Cr-O alloy and preparation method thereof
EP3907742A1 (en) * 2020-05-07 2021-11-10 Westinghouse Electric Sweden AB A cladding tube for a fuel rod for a nuclear reactor, a fuel rod, and a fuel assembly
WO2021223925A1 (en) 2020-05-07 2021-11-11 Westinghouse Electric Sweden Ab A cladding tube for a fuel rod for a nuclear reactor, a fuel rod, and a fuel assembly

Also Published As

Publication number Publication date
SE9400010D0 (en) 1994-01-03
AU1429195A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
US4810461A (en) Zirconium-based alloy with high corrosion resistance
US4212686A (en) Zirconium alloys
EP0415134B1 (en) Zirconium based alloy material for light water reactor applications
US7364631B2 (en) Zirconium-based alloy having a high resistance to corrosion and to hydriding by water and steam and process for the thermomechanical transformation of the alloy
US20030098105A1 (en) Method for manufacturing zirconium-based alloys containing niobium for use in nuclear fuel rod cladding
US20080192880A1 (en) High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
US20060225815A1 (en) Zirconium alloy and components for the core of light water-cooled nuclear reactors
JPH06194473A (en) Manufacture of nuclear feul rod and clad material thereof
US4863679A (en) Cladding tube for nuclear fuel and nuclear fuel element having this cladding tube
US5972288A (en) Composition of zirconium alloy having high corrosion resistance and high strength
JPH11148990A (en) Production of tube cladding nuclear fuel rod, nuclear fuel cladding, production of zirconium alloy and production of structure member
WO1995018874A1 (en) Zirconium alloy
EP0893800A1 (en) Pressurized water reactor nuclear fuel assembly
CN105296803B (en) A kind of nuclear reactor fuel can zirconium-niobium alloy and preparation method thereof
EP0735151B2 (en) Alloy for improved corrosion resistance of nuclear reactor components
US7292671B1 (en) Zirconium based alloy and component in a nuclear energy plant
EP0867888B1 (en) Composite cladding for nuclear fuel rods
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPH0867954A (en) Production of high corrosion resistant zirconium alloy
JP3983493B2 (en) Zirconium-based alloy manufacturing method
JP2600057B2 (en) Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
JPH02263943A (en) Corrosion-resistant zirconium alloy any nuclear fuel composite cladding tube
JPS6126738A (en) Zirconium alloy
EP0964407B1 (en) High strength zirconium alloys containing bismuth, tin and niobium
EP0964406A1 (en) High strength zirconium alloys containing bismuth and niobium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA