WO1995018011A1 - Partially foamed, thermoformed container and production method therefor - Google Patents

Partially foamed, thermoformed container and production method therefor Download PDF

Info

Publication number
WO1995018011A1
WO1995018011A1 PCT/JP1994/002248 JP9402248W WO9518011A1 WO 1995018011 A1 WO1995018011 A1 WO 1995018011A1 JP 9402248 W JP9402248 W JP 9402248W WO 9518011 A1 WO9518011 A1 WO 9518011A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
layer
foamed
foaming
laminated sheet
Prior art date
Application number
PCT/JP1994/002248
Other languages
French (fr)
Japanese (ja)
Inventor
Ikuya Ishii
Ryuuji Moriwaki
Tetsurou Yasuike
Original Assignee
Idemitsu Petrochemical Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP34706593A external-priority patent/JP3342762B2/en
Priority claimed from JP17775294A external-priority patent/JP3400553B2/en
Application filed by Idemitsu Petrochemical Company Limited filed Critical Idemitsu Petrochemical Company Limited
Publication of WO1995018011A1 publication Critical patent/WO1995018011A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating

Definitions

  • the present invention does not require any special manufacturing equipment, and it is possible to obtain not only foamed containers having a uniform thickness distribution and foaming ratio but also intentionally foamed containers having a nonuniform thickness distribution and foaming ratio. Learn how to do it.
  • the foamed container obtained by the method of the present invention can be suitably used in various fields including foods and pharmaceuticals. Background art
  • the conventional foaming container aims at uniform foaming, and the foaming ratio is intentionally changed, that is, a portion having a high foaming ratio and a low foaming ratio in the container.
  • the existence of the part was previously unknown.
  • the present invention solves such conventional drawbacks, eliminates the need for special manufacturing equipment, and moves the gas in the foam layer at the time of container molding, thereby intentionally increasing the thickness distribution and the like.
  • the purpose of the present invention is to provide a method capable of obtaining a foamed container having a non-uniform sheet density.
  • the present invention does not require special manufacturing equipment, and maintains a sheet foaming state, forms a secondary foam or partially foams, or partially foams a container at the time of molding.
  • the purpose of the present invention is to provide a method (third aspect of the present invention to be described later) that can perform any one of the methods described above to obtain a container having a uniform thickness distribution and foam. Disclosure of the invention
  • the present invention firstly provides a foam core layer and adjacent to both sides thereof.
  • a foamed container obtained by thermoforming a laminated sheet having at least a three-layer structure, wherein the foamed core layer is made of a thermoplastic resin. It comprises an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are blended in a ratio of 99.9 to 50% by weight of the former and 0.1 to 50% by weight of the latter.
  • a foam having open cells, wherein the convex portions are formed only on the outer surface of the container, and the expansion ratio of the concave portions formed on the inner surface of the container is the foaming core of the laminated sheet before molding.
  • Another object of the present invention is to provide a partially foamed thermoformed container characterized by having a lower expansion ratio than the layer.
  • the foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are mixed with each other.
  • a thermoplastic resin an inorganic filler and a foaming agent
  • thermoplastic resin and the inorganic filler are mixed with each other.
  • a continuous foam layer having open cells and an outer layer adjacent to both sides of the foam core layer is heated.
  • a laminated sheet having at least a three-layer structure as a non-breathable layer made of a plastic resin is used, and the laminated sheet is thermoformed using a mold having only female molds with irregularities.
  • the foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are formed by the former method. It has open cells that are mixed at a ratio of 9 to 50% by weight and the latter at 0.1 to 50% by weight.
  • the container outer surface side of the laminated sheet is heated to a high temperature, the container inner surface side is cooled to a low temperature immediately before shaping at the time of forming the container, and
  • the surface temperature difference (X) between the outer surface and the inner surface of the container is 10. Molding at a temperature such that C ⁇ X ⁇ 70 ° C and maintaining the sheet foaming state, secondary foaming or partially foaming, or partial foaming
  • Another object of the present invention is to provide a method for producing a foamed container characterized by performing one of the following steps. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a perspective view showing the external shape of the cup-shaped containers obtained in Examples 1 to 7 and Comparative Examples 1 and 3 to 7.
  • FIG. 2 is a perspective view showing the external shape of the wrapped container obtained in Comparative Example 2.
  • FIG. 3 is a longitudinal sectional view of the mold A used in Examples 1 to 5 and Comparative Examples 1 and 3 to 5.
  • FIG. 4 is a cross-sectional view of the mold A used in Examples 1 to 5 and Comparative Examples 1 and 3 to 5, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 5 shows the cross-sectional shape of the container obtained in Comparative Example 3.
  • FIG. 6 shows the cross-sectional shape of the container obtained in Comparative Example 4.
  • FIG. 7 shows the cross-sectional shape of the container obtained in Example 4.
  • FIG. 1 is a perspective view showing the external shape of the cup-shaped containers obtained in Examples 1 to 7 and Comparative Examples 1 and 3 to 7.
  • FIG. 2 is a perspective view showing the external shape of the wrapped container obtained in Compar
  • FIG. 8 shows Embodiments 1, 2, 3, This figure shows the cross-sectional shape of the container obtained in steps 6 and 7.
  • FIG. 9 shows a cross-sectional shape of the container obtained in Example 5.
  • FIG. 10 shows the cross-sectional shape of the container obtained in Comparative Example 5.
  • FIG. 11 shows the cross-sectional shape of the containers obtained in Comparative Examples 1 and 6.
  • FIG. 12 shows the cross-sectional shape of the container obtained in Comparative Example 2.
  • FIG. 13 shows the shape of the cup-shaped container obtained in Example 14;
  • FIG. 13 (a) is a perspective view, and
  • FIG. (B) is a cross-sectional view of the uneven part (grip part).
  • FIG. 14 shows the shape of the cup-shaped container obtained in Example 15;
  • FIG. 14 (a) is a perspective view and
  • FIG. 14 (b) is FIG. 15 which is a cross-sectional view of the uneven portion (grip portion) shows the shape of the cup-shaped container obtained in Example 16;
  • FIG. FIG. 15 (b) is a perspective view, and
  • FIG. 15 (b) is a cross-sectional view of an uneven portion (grip portion).
  • FIG. 16 shows the shape of the cup-shaped container obtained in Comparative Example 10;
  • FIG. 16 shows the shape of the cup-shaped container obtained in Comparative Example 10;
  • FIG. 16 (a) is a perspective view
  • FIG. 16 (b) Is a cross-sectional view of the uneven portion (grip portion).
  • reference numeral 1 indicates a rib
  • reference numeral 2 indicates a female mold
  • reference numeral 3 indicates a male mold
  • reference numeral 4 indicates a clamp.
  • the partially foamed thermoformed container of the present invention comprises a foamed core layer and both sides thereof.
  • the partially foamed thermoformed container of the present invention has an outer shape such as a cup shape, a cylindrical shape, a truncated cone shape, a rectangular tube shape, a truncated pyramid shape, a flat box shape, a flat dish shape, and has an uneven surface. It is a thing.
  • the foamed core layer in the laminated sheet which is a material for obtaining the partially foamed thermoformed container of the present invention, is a foam having open cells, comprising a thermoplastic resin and a foaming agent.
  • the foam has an open cell ratio of 30% or more and 100% or less.
  • the foam core layer constituting the laminated sheet used in the present invention is a continuous foam layer having air permeability.
  • the foam form of the foamed core layer is a continuous cell, and is characterized by having continuity.
  • the open cell ratio in this foamed core layer is usually at least 30%, at most 100%, preferably at least 60%, as described above.
  • the open cell ratio in the foamed core layer is less than 30%, the foamed core layer has poor continuity and a small amount of gas moves, so that a partial foamed container cannot be obtained.
  • the open cell ratio is measured as follows.
  • a foam layer is provided in the intermediate layer, and both outer layers are non-foamed skin layers.
  • the dry automatic density meter measures the volume of a sample by the gas displacement method. For this reason, when measuring a foam sheet with this measuring instrument, the replacement gas penetrates into the foam cell, and as a result, a value lower than the apparent volume is measured. . Using this, the difference between the apparent volume: V and the measured volume: V A
  • is the expansion ratio.
  • V T X L X W
  • a laminated sheet used as a molding material for a foamed container has a foamed core layer and a non-foamed outer layer adjacent to both sides of the foamed core layer as described above. It has at least a three-layer structure.
  • the foamed core layer which is an intermediate layer, is composed of a thermoplastic resin, an inorganic filler, and a foaming agent, and is a continuous foamed layer having open cells as described above. ing.
  • thermoplastic resin is not particularly limited as long as it is used for molding a container.
  • Polyolefin resins, polyvinyl chloride resins, and polyamide resins are used.
  • resins, polyester resins, vinyl acetate resins, styrene resins, and acrylate resins are used.
  • polyester resins, vinyl acetate resins, styrene resins, and acrylate resins are used.
  • the most preferred being polyolefin resins.
  • polystyrene resin there is no particular limitation on the polyolefin resin, but in particular, ethylene or a homopolymer of propylene, or ethylene or propylene and other polymers And high-density, medium-density or low-density polyethylene, linear low-density polyethylene, and the like. , Ethylene-vinyl acetate copolymer, ethylene acrylate copolymer, atactic, syndiotactic or isotactic Topoxypropylene, ethylene-propylene block copolymer or random copolymer, polybutene, polymethylpentene, etc. These may be used alone or in combination of two or more. Can be used as a mixture.
  • the melt index (Ml) of these thermoplastic resins may be appropriately selected in consideration of the use of the molded article, etc., and is not particularly limited, but is usually 0.3. ⁇ 10 g Z About 10 minutes is required.
  • Ml melt index
  • the foamed container obtained by the method of the present invention is used in a food or pharmaceutical-related field, etc., there is no problem in hygiene as a thermoplastic resin. It is necessary to select and use one.
  • foaming agent in addition to water, ordinary chemical foaming agents, for example, inorganic salts such as sodium bicarbonate, ammonium bicarbonate, ammonium carbonate, and azo.
  • inorganic salts such as sodium bicarbonate, ammonium bicarbonate, ammonium carbonate, and azo.
  • Organic compounds such as drug, paratoluenesulfonyl hydrazide and citric acid, and combinations of two or more of these foaming agents are listed.
  • the amount of the foaming agent used is not particularly limited, but is usually used so that the foaming ratio (primary foaming ratio) of the foamed core layer is 20 times or less, particularly 10 times or less.
  • a sodium bicarbonate foaming agent having a decomposition temperature of about 160 ° C. is used.
  • the amount of the foaming agent varies depending on the molding temperature, the type of the resin, the type of the foaming agent, and the like. Usually, the total amount of the thermoplastic resin and the inorganic filler described later is 100 parts by weight. 0.1 to 20 parts by weight with respect to the weight. Furthermore, it is indispensable to mix an inorganic filler in the foamed core layer as the intermediate layer. By blending such an inorganic filler, the foam core layer can be made into a continuous foam layer having air permeability.
  • the inorganic filler is not particularly limited.
  • silica, diatomaceous earth, rhodium oxide, rhodium oxide, pumice, pumice balun Such as oxides, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, etc., calcium carbonate, magnesium carbonate Carbonates such as um, dolomite and dosonite; sulfates such as calcium sulfate, barium sulfate, ammonium sulfate, calcium sulfite; Sulphite tanolec, clay, mai force, asbestos, glass paste, glass beads, cane oleate, monmorillo Nitrate, bentonite, etc., and salts of carbon, such as carbon black, graphite, carbon hollow spheres, etc.
  • Powders such as molybdenum sulfide, zinc borate, barium metaborate, calcium borate, sodium borate, etc. Shaped, granular, and plate-like materials can also be used. Of these, talc and carbonated water are particularly preferred. These inorganic fillers may be used alone or in combination of two or more.
  • the mixing ratio of the thermoplastic resin and the inorganic filler in the foamed core layer is usually from 99.9 to 50% by weight of the thermoplastic resin, and from 0.1 to 50% by weight of the inorganic filler. Percentage, preferably the former The ratio of the latter is 0.5 to 35% by weight relative to 99.5 to 65% by weight. If the blending ratio of the inorganic filler is too small, it is not possible to form a permeable continuous foam layer, and it is not possible to obtain a sufficient communication rate of the foam core layer. On the other hand, if the mixing ratio of the inorganic filler is too large, the foam becomes coarse and the sheet becomes brittle, so that when the container is formed, the container is broken. This makes it difficult to form containers. Therefore, neither is preferred.
  • the outer layer (layer adjacent to both sides of the foamed core layer) constituting the laminated sheet used in the present invention is a non-foamed non-breathable layer made of a thermoplastic resin. It is.
  • the non-breathable means a material that does not substantially breathe instantaneously.
  • thermoplastic resin in the outer layer examples include those described in the description of the foaming core layer, and are usually used in the foaming core layer.
  • the same thermoplastic resin preferably a polyolefin resin
  • a different thermoplastic resin preferably a polyolefin resin
  • Refin resin may be used.
  • Particularly preferred are homopolymers of ethylene or propylene, or copolymers of ethylene or propylene with other olefins. You.
  • the laminate used in the present invention has at least a three-layer structure of the above-described foamed core layer and outer layers adjacent to both sides of the foamed core layer.
  • an ethylene vinyl layer is provided between the outer layer on one side and the foam core layer via an adhesive layer.
  • EVOH is a copolymer obtained by genating an ethylene vinyl acetate copolymer and having a content of 25 to 50 mol% of ethylene. Used.
  • the adhesive constituting the adhesive layer is not particularly limited as long as it is suitable for bonding the EVOH layer and the foamed core layer.
  • the adhesive may be an unsaturated carboxylic acid-modified polyester. Examples include propylene, ethylene-ethyl acrylate copolymer, and ethylene monovinyl acetate copolymer.
  • the inorganic filler is provided between the foamed core layer and the outer layer.
  • Those provided with a non-foamed layer containing a thermoplastic resin may also be used.
  • the inorganic filler used for the non-foamed layer containing the inorganic filler-containing thermoplastic resin the same ones as those used in the foamed core layer can be used, and particularly, Is preferred.
  • the inorganic filler used in this layer the same one as that used in the foam core layer or a different one may be used.
  • the ratio of the inorganic filler in this layer is usually from 0.1 to 50% by weight of the inorganic resin to 99.9 to 50% by weight of the thermoplastic resin.
  • thermoplastic resin used for the non-foamed thermoplastic resin-containing thermoplastic resin layer is the same as that described in the description of the foamed core layer. Also used in layers The same thermoplastic resin as described above may be used, or a different thermoplastic resin may be used. Especially preferred are polyolefin-based resins, especially single polymers of ethylene or propylene, or ethylene or propylene and other olefins. Is a copolymer of
  • a laminated sheet provided with a separation layer that can be separated at the interface on at least the outer surface of one of the outer layers can be used as the laminated sheet.
  • Such a separation layer is provided on at least one outer layer (outside) via a lower surface layer below (inside) and at an interface so as to be separable.
  • this release layer is located on the inner surface of the container.
  • the outer layer of one outer layer provided with a separation layer through the lower surface layer has a five-layer structure, and the outer layer of both outer layers has a seven-layer structure. It will be something.
  • This release layer is made of the same thermoplastic resin as described above, and contains no inorganic filler or foaming agent (a thermoplastic resin containing no inorganic filler). (Foamed layer).
  • thermoplastic resin used in the separation layer and the lower surface layer those described in the description of the foamed core layer are mentioned, and the same thermal resins as those used in the foamed core and the outer layer are used.
  • a plastic resin preferably a polyolefin resin
  • a different resin may be used.
  • thermoplastic resin that constitutes the release layer Resin in particular, polyethylene or polypropylene is preferred.
  • thermoplastic resin constituting the lower layer it is preferable to use a polyolefin-based resin.
  • a polypropylene resin and a polyethylene resin Preference is given to using a mixture.
  • the layers constituting the laminated sheet may be used, if necessary, with lubricants, coloring agents, antioxidants, ultraviolet absorbers, surfactants, flame retardants, etc. Additives such as plasticizers and antistatic agents may be added.
  • foam core layer outer layer, etc.
  • Additives such as plasticizers and antistatic agents may be added.
  • the amount of these additives is usually about 0.01 to 10 parts by weight based on 100 parts by weight of the resin component.
  • the laminated sheet used as the molding material of the foam container is basically composed of a foam core layer and at least an outer layer adjacent to both sides of the foam core layer.
  • Each of the three layers is composed of three layers, and various layers are laminated as necessary.
  • a method of lamination there is a method of forming each layer sheet separately, and then bonding each layer sheet by thermocompression bonding or sandwiching each layer with an adhesive, but using a respective extruder for each layer.
  • the method of co-extrusion using a common die is the most preferable in terms of efficiency and food hygiene. That is, the components of each layer are The mixture is melt-kneaded using a well-known Banbury mixer, single-screw / double-screw kneader, or the like, and the obtained pellets are co-extruded using a common die using an extruder for each layer.
  • the method is preferred.
  • Such a co-extrusion method is less likely to cause cracks and break the sheet during molding than the laminating method by thermocompression bonding, and the bonding is also small. Efficient and highly preferred for food hygiene.
  • the laminated sheet obtained in this way has a structure in which a foam core layer forming a permeable continuous foam layer is an RB layer, and the foam core layer (RB layer)
  • the non-breathable outer layer (non-foamed layer) adjacent to both sides is defined as an HH layer
  • the ethylene-vinyl alcohol copolymer layer is defined as an EVOH layer
  • the RB layer and the HH layer are defined as an EVOH layer.
  • the laminated sheet used in the present invention is not limited to those having these structures.
  • each layer of the laminated sheet varies depending on the use of the container, it is generally 0.2 to 4.5 mm for the RB layer and 0.1 for the HH layer. 11.5 mm, EV0H layer is about 0.01-0.1 mm, bottom layer is about 0.01-0.2 mm, and separation layer is about 0.01-0.2 mm. However, it is preferable that the total thickness of the laminated sheet is 0.5 to 6 mm.
  • the thickness of the outer layer be 50% or less of the total layer thickness, particularly 5 to 30%.
  • the thickness of the outer layer exceeds 50% of the total layer thickness, it becomes impossible to find properties as a foam, such as heat insulation and weight reduction.
  • the partially foamed thermoformed container of the present invention is a foamed container obtained by thermoforming the laminated sheet as described above, wherein the convex portion is formed only on the outer surface of the container.
  • the present invention is characterized in that the expansion ratio of the concave portion formed on the inner surface of the container is lower than the expansion ratio of the expanded core layer of the laminated sheet before molding.
  • the convex portion is formed only on the outer surface of the container, and a very small concave portion is formed on the inner surface of the container. .
  • the expansion ratio (N) of the convex portion formed on the outer surface of the container is n
  • the distance be in the range of 1.2 ⁇ k ⁇ 4.
  • the foaming ratio of the convex portion formed on the outer surface of the container is at least 1.2 times the foaming ratio of the foamed core layer of the laminated sheet before molding. If this value is less than 1.2 times, there is a significant difference in the heat insulation compared to a container that is not partially foamed. Not.
  • the expansion ratio of the convex portion formed on the outer surface of the container exceeds 4 times the expansion ratio of the expanded core layer of the laminated sheet before molding, the convex portion formed on the outer surface of the container is reduced. The air bubbles become very coarse, resulting in tearing of the outer surface of the container and deterioration of the container appearance.
  • an extremely small concave portion is formed on the inner surface of the container inside the portion where the convex portion is formed, and the expansion ratio of this concave portion is: It is lower than the expansion ratio of the foamed core layer of the laminated sheet before molding.
  • Such a partially foamed thermoformed container of the present invention can be manufactured, for example, as follows.
  • the foamed core layer is composed of a thermoplastic resin, an inorganic filler, and a foaming agent, and the thermoplastic resin and the inorganic filler are formed in the former 99.9.
  • a thermoplastic resin 0.1 to 50% by weight as a continuous foam layer
  • the outer layers adjacent to both sides of the foam core layer are made of a thermoplastic resin.
  • a laminated sheet having at least a three-layer structure as an air-impermeable layer is used, and the laminated sheet is thermoformed using a mold having only female molds with irregularities.
  • the present invention also provides a method for producing the first partially foamed thermoformed container of the present invention.
  • the foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are composed of 99.9 to 50% by weight of the former and 0.1% by weight of the latter. ⁇ 50% by weight At least a three-layer structure in which a continuous foam layer formed by mixing the two layers together and an outer layer adjacent to both sides of the foam core layer is an air-impermeable layer made of a thermoplastic resin
  • the sheet is as described in the first part of the present invention.
  • the open cell ratio in the foamed core layer is usually 30% or more, 100% or less, preferably 60% or more, 100% or less, and more preferably 6% or less. 5% or more and 100% or less is also as described in the first aspect of the present invention. Further, the usage ratio of the foaming agent is as described in the first item of the present invention.
  • the laminated sheet is thermoformed using a mold provided with irregularities only in a fit mold.
  • thermoforming method of the foaming container examples include vacuum forming, vacuum pressure forming, and the like, and the preceding clamp plug vacuum forming is particularly preferable.
  • plug-assist vacuum forming plug-assist vacuum forming is performed while clamping the outer periphery of the container opening.
  • the molding conditions may be ordinary molding conditions, but it is necessary to thermally mold the laminated body using a metal mold having only female molds with irregularities.
  • the shape of the unevenness can be various shapes such as vertical stripes, horizontal stripes, meshes, hemispheres, and the like. No need. In addition, these irregularities should be provided not only on the part that is gripped by the hand of the container, but also on other parts, for example, the female mold part corresponding to the bottom of the container and the entire outer surface. 0
  • gas is moved from a narrow portion to a wide portion through a gas-permeable continuous foam layer, as described below. This is because we are trying to manufacture containers with uneven wall thickness distribution and sheet density.
  • the second aspect of the present invention is to form a raw sheet as it is by concentrating the air in the layer on a part of the container by utilizing the characteristics of the sheet having open cell properties.
  • a temperature difference is formed between the upper and lower portions of the sheet in a later-described embodiment. It is formed by the thermoforming method described in Japanese Patent Application No. 5-347065, which is characterized by.
  • the distance between the female mold and the male mold is smaller than the value obtained by dividing the sheet thickness by the expansion ratio of the container (surface area ⁇ inner opening area) in the area other than the convex part of the container.
  • the convex part is formed by using a female mold that is wider than the value obtained by dividing the sheet thickness by the expansion ratio of the container.
  • a container having a non-uniform thickness distribution and a non-uniform sheet density can be used without requiring special manufacturing equipment. It can be manufactured.
  • a foamed container partially having a high foaming portion and a low foaming portion can be obtained. This is not due to foaming, but to the movement of gas in the laminate (laminated sheet). Therefore, if the amount of gas held in the sheet volume required for molding is A and the amount of gas held in the molding container is B, the raw foam and the foam container , The relationship A ⁇ B holds. In other words, the amount of gas held in the molding container is equal to or less than the amount of gas held in the volume of the laminated sheet required for molding.
  • the foaming ratio of the portion formed in the concave portion of the female mold is higher than the foaming ratio of the laminated sheet (raw foam), and partially.
  • a foaming container having a high foaming portion and a low foaming portion can be obtained.
  • the highly foamed portion is formed not by the secondary foaming but by the gas movement in the laminated sheet, so that the foamed core layer and the foamed core layer are not formed by the secondary foaming.
  • a breathable continuous foam layer is used, and the outer layers adjacent on both sides are non-breathable layers made of a thermoplastic resin. Due to such gas movement in the laminated sheet, foaming is intentionally caused by the presence of a high foaming portion and a low foaming portion, and the thickness distribution and the sheet density are not uniform. container Has never been known before.
  • the foamed sheet in the laminated sheet is formed by performing thermoforming using the laminated sheet as described above and using a mold having only female dies with irregularities.
  • the gas in the layer is concentrated in the recesses of the female mold during thermoforming, and after molding, high and low expansion ratio parts can be formed in the container. is there.
  • the wall thickness distribution and foaming are non-uniform, and there are partially high foaming parts and low foaming parts. It is possible to obtain a foam container having excellent properties.
  • the first foamed container of the present invention obtained by the second of the present invention has an outer shape such as a cup shape, a cylindrical shape, a truncated cone shape, a square tube shape, a truncated pyramid shape, a flat box shape, a flat dish shape, or the like. It has a surface and has irregularities on its surface.
  • the outer surface of the container has irregularities, a foamed container having improved rigidity can be obtained.
  • the second aspect of the present invention it is possible to faithfully reproduce more detailed three-dimensional patterns and designs than can be obtained by embossing or the like on the outer surface of the foamed container. May be omitted It is possible.
  • the foamed core layer comprises a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are formed by the former method.
  • a foamed container by using a laminated sheet having at least a three-layer structure in which the outer layer is a non-breathable layer made of a thermoplastic resin, and forming the laminated sheet, Immediately before shaping at the time of forming the container, the outer surface of the laminated sheet is heated to a high temperature, the inner surface of the container is cooled, and the surface temperature difference (X) between the outer surface of the container and the inner surface of the container is 10 °. Mold at a temperature such that C ⁇ X ⁇ 70 ° C to maintain the sheet foaming state, or secondary foaming or partially foaming. Either, or partially or to the secondary expansion, Ru Nodea also a manufacturing method for provision of the bubbling container, wherein the this Cormorant row the noise Zureka.
  • the laminated sheet used as the molding material of the foamed container is the same as that used in the second aspect of the present invention.
  • the outer surface side of the laminated sheet is heated to a high temperature just before shaping at the time of molding the container.
  • the container is molded at a temperature such that the inside surface of the container is at a low temperature and the surface temperature difference (X) between the outside surface of the container and the inside surface of the container is 10 ° C ⁇ X ⁇ 70 ° C.
  • X surface temperature difference
  • Examples of the method for forming the foam container include vacuum forming and vacuum pressure forming, but vacuum pressure forming is particularly preferable.
  • the molding conditions may be ordinary molding conditions, but immediately before shaping at the time of molding the container, the outer surface of the laminated sheet is heated to a high temperature, the inner surface of the container is cooled, and the outer surface of the container (the female mold side).
  • the surface temperature difference (X) is 10 ° C or less, foaming does not occur (because the inside surface is pulled to the outside surface and the foam becomes flattened down).
  • a container having a uniform thickness distribution and uniform foam can be manufactured.
  • a container having an irregular surface on the outer surface of the foamed container can be obtained.
  • the side wall and the bottom of the female mold and the cavity are made uneven, and such a mold is used.
  • the outer surface side of the container of the foamed sheet or laminated sheet is heated to a high temperature, and the inner surface side of the container is cooled to a constant temperature difference. Then, only the part of the outer surface of the container that hits the convex part is foamed. If there is no temperature difference between both sides of the foamed sheet or the laminated sheet, the inner part of the container may be formed into a shape along the outer irregularities or may not foam.
  • the high temperature side of the sheet (outer surface side of the container) is shaped according to the shape of the concave and convex cut in the female mold of the mold, while the low temperature side of the sheet is formed.
  • the side (the inner side of the container) is not formed along the uneven surface and is formed on a smooth surface.
  • one-stage foaming type Chemical foaming agent manufactured by Boehringer Gelnheim, trade name: Handrocell
  • two-stage foaming type chemical foaming agent manufactured by Dainichi Seika, product Name: Die blow
  • each of the above raw materials was pelletized and fed to each extruder (65 mm diameter extruder for the foam core layer and 65 mm diameter extruder for both outer layers). Co-extrusion using an ordinary T-die at an extrusion temperature of 160 to 200 ° C. The thickness of both outer layers is 0.5 mm, and the thickness of the foam core layer is 3.2 mm. Manufactured sheets. The foaming ratio of the foamed core layer of this laminated sheet was 3.2 times. The communication rate of the foamed core layer, that is, the open cell rate was 70%. The open cell rate was calculated by the above-described open cell rate measurement method based on the measurement value obtained using a dry automatic densitometer (manufactured by Shimadzu Corporation).
  • This three-layer laminated sheet is formed into a cup-shaped container by the thermoforming method according to Japanese Patent Application No. 5-347065, that is, a method of providing a heating temperature difference between the upper and lower sheets. Molded.
  • the method of the present invention is not limited to this thermoforming method.
  • the resulting container had a cap-like shape with an opening diameter (inner dimension) of 95.5 mm and a height of 35 mm having the appearance as shown in Fig. 1.
  • the length of rib 1 is 20 mm
  • the height of rib 1 is 2 mm
  • the width of rib 1 is 4 mm
  • the distance between ribs is 2 mm
  • the number of ribs is 50 It was a book, and the unfolding magnification was 2.45 times (surface area ⁇ inner opening area).
  • the cross-sectional shape of the container was as shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line I-I of FIG.
  • the female mold 2 was provided with an uneven shape, the length of the concave portion was 2 Omm, and the number of the concave portions was 50 (the length of the rib 1 and the Corresponding to the number).
  • reference numeral 3 is a male mold, and reference numeral 4 is a clamp.
  • Table 1 shows the results of the heat insulation when compared with the above.
  • One-stage foaming type chemical foaming agent manufactured by Behringer Ingelheim, product name: Cellulose Hand Cell
  • the raw material of the foamed core layer is made of polypropylene resin (polypropylene homopolymer, manufactured by Idemitsu Petrochemical, trade name: Idemitsu Polypropylene)
  • a cup-shaped container was obtained in exactly the same manner as in Example 1 except that the height of the rib 1 of the container was 1.5 mm. The results are shown in Table 1.
  • Example 5 As is evident from Table 1, the partial foamability and the appearance of the container were good. Insulation was slightly different from that of Comparative Example 2 but significant. Example 5
  • a cup-shaped container was obtained in the same manner as in Example 1 except that the height of the rib 1 of the container was 5 mm. The results are shown in Table 1.
  • Example 1 the cup was completely formed in the same manner as in Example 1 except that the container was not provided with any rib portion and was formed into a container having a container appearance as shown in FIG. A container was obtained. The results are shown in Table 1.
  • Example 1 A cup-shaped container in the same manner as in Example 1 except that the height of the rib 1 of the container was set to 0.1 mm in Example 1. I got The results are shown in Table 1.
  • Comparative Example 4 The container obtained in Comparative Example 3 would have a k of 1.2 due to a change in the uneven shape of the container. Comparative Example 4
  • a cup-shaped container was obtained in the same manner as in Example 1 except that the height of the rib 1 of the container was 0.5 mm. The results are shown in Table 1.
  • Comparative Example 5 The container obtained in Comparative Example 4 has a value of 1.2 due to a change in the uneven shape of the container. Comparative Example 5
  • a cup-shaped container was obtained in the same manner as in Example 1 except that the height of the rib 1 of the container was 5.5 mm. The results are shown in Table 1.
  • Example 7 In the same manner as in Example 1, except that the blending amounts of the polypropylene resin and the inorganic filler were changed to 90% by weight and 10% by weight, respectively. Table 1 shows the results of obtaining cup-shaped containers. As is evident from Table 1, the partial foaming property and the appearance of the container were good, and the heat insulating property was significantly different from the heat insulating property of Comparative Example 2.
  • Example 7
  • Example 1 In the same manner as in Example 1, except that the blending amounts of the polypropylene resin and the inorganic filler were changed to 80% by weight and 20% by weight, respectively. Table 1 shows the results of obtaining cup-shaped containers.
  • a cup-shaped container was obtained in the same manner as in Example 1 except that no inorganic filler was used in Example 1. The results are shown in Table 1.
  • Example 4 70% 3.2 times ⁇ 6 Figure 3.6 times 1.1 X kW riff ⁇ 3 ⁇ 4 0.5 band
  • inorganic 30 parts by weight of tark manufactured by Katsumitsuyama, average particle diameter: 10 m
  • calcium carbonate manufactured by Nitto Powder Chemical, average particle diameter: 1 / D1 or less
  • Titto Powder Chemical average particle diameter: 1 / D1 or less
  • anatase type (produced by Hara Sangyo), antioxidant (lin-based antioxidant, trade name: PEP —— 8, Asahi Denka)
  • Surfactant (trade name, manufactured by Toho Chemical) : A mixture of 0.5 parts by weight of T-solvent and 50 ppm of water was mixed using a high-speed mixing mixer (Hensil mixer manufactured by Kawada Seisakusho). Then, the mixture was charged into a bent type single-screw kneader and extruded at 210 ° C. to obtain a porous pellet having a void ratio of 50%.
  • thermoplastic containing inorganic filler 1.0% by weight of a chemical foaming agent (trade name: Hydrocell, manufactured by Dainichi Seika) was added to the porous pellet, and the resulting mixture was added to an intermediate layer (thermoplastic containing inorganic filler).
  • a chemical foaming agent trade name: Hydrocell, manufactured by Dainichi Seika
  • the outer layer thermoplastic resin non-foamed layer
  • pellets were obtained in the same manner as above.
  • the three-layer laminated sheet is formed by vacuum pressure forming method.
  • Table 2 shows the surface temperature of the laminated sheet on the outer surface side of the container (sculpture mold side) and the inner surface side of the container (male mold side) immediately before shaping.
  • the outer surface of the container (female mold side) just before shaping Table 2 shows the evaluation results of the surface temperature and formability of the laminated sheet on the inner surface side (male mold side) of the container.
  • a cup-shaped container was molded in the same manner as in Example 8, except that the container was changed to an opening diameter of 135 mm, a bottom diameter of 95 mm, and a height of 10 Omm. did.
  • Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheet on the outer surface side (female mold side) and inner surface side (male mold side) of the container immediately before shaping.
  • Example 10
  • an adhesive layer (a product made by Idemitsu Petrochemical: Idemitsu Polytax E—a layer made of an adhesive resin indicated by 100) is provided between one outer layer and the intermediate layer on one side. (Made by Kuraray, trade name: EVAL E) layer was co-extruded through the above to obtain a laminated sheet having the thickness shown in parentheses and having the following six-layer structure.
  • Example 1 Using this laminated sheet, a cup-shaped container was formed in the same manner as in Example 8, except that an EVOH layer was formed on the inner surface side of the container.
  • Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheets on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping.
  • Example 1 1
  • Example 8 on the outer surface of one outer layer on one side, a separation layer capable of separating at the interface was provided via the lower surface layer, and as a component constituting the outer layer, a high-density polyethylene was used.
  • Len made by Idemitsu Petrochemical, trade name: 52 MB
  • Polypropylene made by Idemitsu Petrochemical, trade name E—100G
  • tal Mer by Katsumitsuyama, average particle diameter: 10 m
  • the same procedure as in Example 8 was carried out to obtain the following Thus, a laminated sheet having a five-layer structure was obtained. ⁇ Layer (0.1mm) Z Lower layer (0.1mm) Z Outer layer (0.2mm) Z Middle layer (1.2mm) Z layer (0.2mm) 0
  • Idemitsu Petrochemical's Polypropylene (trade name: E-20 OS) was used as a component of the separation layer, and a high-density polymer was used as a component of the lower surface layer.
  • Ethylene (manufactured by Idemitsu Petrochemical, trade name: 52 MB) 42 parts by weight
  • Polypropylene (manufactured by Idemitsu Petrochemical, trade name: E-100G) 2 & parts by weight Luc (manufactured by Katsumitsuyama, average particle size: 10 m)
  • a material consisting of 30 parts by weight was used.
  • a cup-shaped container was formed in the same manner as in Example 8 except that the laminated sheet was arranged so that the separation layer was on the inner surface side of the container.
  • Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheets on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping.
  • Example 1 2
  • Example 8 between the outer layer and the intermediate layer, a polypropylene (made by Idemitsu Petrochemical Co., trade name: E—105 GM) 60 weight parts and a talc (made by Katsumitsuyama, Example 8 Except that an inorganic filler-containing thermoplastic resin layer (thickness: 2 mm) consisting of 40 parts by weight of each was provided to form a 5-layer laminated sheet.
  • a cup-shaped container was formed in the same manner as described above.
  • Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheet on the outer surface side of the container (female mold side) and the inner surface side of the container (male mold side) immediately before shaping.
  • Example 13 shows the evaluation results of the surface temperature and moldability of the laminated sheet on the outer surface side of the container (female mold side) and the inner surface side of the container (male mold side) immediately before shaping.
  • Example 8 The procedure was performed in the same manner as in Example 8 except that the shape of the container was a square tray having a mouth of 16 cm ⁇ 10 cm, a bottom of 13 cm ⁇ 7 cm, a height of 2 cm, and vacuum forming.
  • a foamed container was obtained in the same manner as in Example 8.
  • Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheets on the outer surface side (sculpture mold side) and the inner surface side (male mold side) of the container immediately before shaping. Comparative Examples 8 to 9
  • Example 8 except that the surface temperature of the laminated sheet on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping was changed as shown in Table 2. Then, a cup-shaped container was formed in the same manner as in Example 8. ⁇ Outside of container just before shape (Female mold Table 2 shows the evaluation results of the formability, as well as the surface temperature of the laminated sheet on the inner side (male mold side) and the inner side of the container (male mold side). (Hereinafter, margin)
  • As an inorganic filler Katsumitsuyama, average particle size: 10 m
  • calcium carbonate Nito Powder Chemical, average particle size: 1 m or less
  • the blended components were mixed using a high-speed mixing mixer (Henschel mixer manufactured by Kawada Seisakusho), and then charged into a bent single-shaft k
  • thermoplastic resin foam layer 1.0% by weight of a chemical foaming agent (trade name: Hydrocell, manufactured by Dainichi Seika) was added to the porous pellet, and the resulting mixture was added to the intermediate layer (heat containing inorganic filler).
  • a chemical foaming agent trade name: Hydrocell, manufactured by Dainichi Seika
  • the outer layer thermoplastic resin non-foam layer
  • the polypropylene resin containing no inorganic filler (same as above)
  • pellets were obtained in the same manner as above.
  • This three-layer laminated sheet was formed by vacuum pressure forming method with an opening diameter of 135 mm, a bottom diameter of 135 mm, and a height of 105 mm. It was formed into a cup-shaped container with a convex shape in the area (gripping part) of the shape shown in Fig. 13.
  • the temperature of the laminated sheet on the outer surface side (female mold side) of the container immediately before shaping was 121 ° C, and the surface temperature of the laminated sheet on the inner surface side of the container (male mold side) was 98 ° C. It was made to be C, and it was molded using a specially shaped metal mold with irregularities as the female metal.
  • Table 3 shows the evaluation results of the maximum foaming ratio and the heat insulation (grip time).
  • the heat insulation indicates the time during which hot water at 95 ° C was poured into the sample container up to the 8th minute and held with bare hands. If this time is less than 30 seconds, it cannot be used practically, and if it is more than 60 seconds, it can be used practically.
  • Example 14 the shape of the mold to be used was changed, and as shown in FIG. 14, a cup-shaped container having an uneven surface on the entire side (opening diameter 70 mm, bottom (70 mm diameter, 6 O mm height) was molded.
  • Table 3 shows the evaluation results of the maximum foaming ratio and the heat insulation (grip time).
  • Example 14 the shape of the mold used was changed, and as shown in FIG. 15, a cup-shaped container having an unevenness only at the lower portion of the side of the container (open diameter: 135 mm, bottom diameter: It was molded to have a height of 135 mm, a height of 105 mm, and a height of 4 Omm below the side wall of the container, with a concave-convex shape as a gripping part).
  • Table 3 shows the evaluation results of the maximum foaming ratio and heat insulation (grip time). Comparative Example 10
  • Example 14 except that the surface temperature of the laminated sheet on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping were both set to 121. Gap-shaped containers were formed in the same manner as in Example 14. The obtained cup-shaped container had an irregular inner surface as shown in Fig. 16. Table 3 shows the evaluation results of the maximum foaming ratio and the heat insulation (grip time). Table 3
  • the first partially foamed container of the present invention having a high-foamed portion and a low-foamed portion, not by secondary foaming but by gas transfer inside the laminate. Is obtained.
  • the thickness distribution and the foaming are non-uniform, the foam has a partially highly foamed portion, and
  • the first partially foamed container of the present invention having excellent design properties can be obtained.
  • the container obtained according to the second aspect of the present invention has a partially high foaming portion, so that it can be directly grasped by hand even when it contains high-temperature contents. It is possible. Further, according to the second aspect of the present invention, since the outer surface of the container has irregularities composed of a high foaming portion and a low foaming portion, it becomes a rib to obtain a foamed container having improved rigidity. Can be done.
  • the inside of the molded foam container is smooth with almost no irregularities, which is excellent in appearance as a container, and is excellent in covering food and medicine. It is possible to obtain a container in which almost no contents remain, and at least the portion of the outer surface of the container that is gripped by hand has irregularities.
  • the second aspect of the present invention it is possible to faithfully reproduce a more detailed three-dimensional pattern, pattern, etc. than can be obtained by embossing or the like on the outer surface of the foamed container. It is also possible to omit the printing.
  • the thickness of the container other than the foamed portion is thin. It becomes bad. Therefore, it has such characteristics that the whole container has a thin feeling, is not bulky, and has good thermal conductivity, and can be frozen and boiled even though it is an insulated container.
  • the third aspect of the present invention no special manufacturing equipment is required, and when the container is formed, the sheet is kept in a foamed state, is subjected to secondary foaming or partially foamed, or is partially foamed. It is possible to obtain a container with uniform wall thickness distribution and foaming by subjecting either secondary foaming or foaming. Further, the foamed container obtained by the third aspect of the present invention has excellent heat insulating properties. I In the third aspect of the present invention, thermoforming is easy.
  • the third aspect of the present invention there is no need for special manufacturing equipment as described above, and it is a simple equipment, which is excellent in design and accommodates high-temperature contents. Even so, a heat-insulating foam container that can be directly grasped by hand can be manufactured.
  • the foaming on the inner side of the molded foam container is suppressed, the unevenness is almost smooth and the container is excellent in appearance.
  • a container that contains little food or medicine, etc. and has at least a part of the outer surface of the container that is gripped by hand, with irregularities. can get.
  • the gripping portion is highly foamed, the container has high heat or low temperature contents, in combination with high heat insulation and a large surface area of the gripping portion. Can be grasped with bare hands.
  • the first partially foamed container of the present invention obtained by the second of the present invention can be suitably used in various fields including foods and pharmaceuticals. Furthermore, the first partially foamed container of the present invention obtained by the third of the present invention can also be suitably used in various fields including foods and pharmaceuticals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

A foamed container obtained by thermoforming a laminate sheet having an at least three-layered structure including a foamed core layer and non-foamed external layers on both sides of, and adjacent to, the foamed core layer, wherein the foamed core layer comprises a thermoplastic resin, an inorganic filler and a foaming agent, and 99.9 to 50 wt % of the thermoplastic resin and 0.1 to 50 wt % of the inorganic filler are blended to form a foamed body having open cells. Projections are formed on only the outer surface of the container and an expansion ratio of recesses formed in the inner surface of the container is lower than that of the foamed core layer of the laminate sheet before forming. The present invention can provide not only a foamed container having a uniform wall thickness distribution and uniform foaming but also a partially foamed container having a non-uniform wall thickness distribution and non-uniform foaming, having partially highly foamed portions and having an excellent design feature. The partially foamed container of this invention is obtained by moving a gas inside the foaming layer at the time of forming of the container and foaming a part of the container. Therefore, the wall thickness of the container becomes small at portions other than the foamed portion, and the container gives a thin-wall impression as a whole. Though the container is not bulky and is heat-insulating, it has a high heat conductivity and can be refrigerated or boiled.

Description

明 糸田 書  Akira Itoda
部分発泡熱成形容器 と その製造方法  Partially foamed thermoformed container and its manufacturing method
技術分野 Technical field
本発明は、 特殊な製造設備を必要 とせず、 肉厚分布や発 泡倍率の均一な発泡容器は勿論の こ と、 意図的に肉厚分布 や発泡倍率の不均一な発泡容器を得る こ と のでき る方法に 関する。 本発明の方法に よ り 得 られる 発泡容器は、 食品や 医薬品等をは じめ、 各種分野において好適に利用する こ と ができ る。 背景技術  The present invention does not require any special manufacturing equipment, and it is possible to obtain not only foamed containers having a uniform thickness distribution and foaming ratio but also intentionally foamed containers having a nonuniform thickness distribution and foaming ratio. Learn how to do it. The foamed container obtained by the method of the present invention can be suitably used in various fields including foods and pharmaceuticals. Background art
従来よ り 、 種々 の 目 的に応 じて、 様々 な材料を用いた発 泡容器が開発 さ れている。  Conventionally, foaming containers using various materials have been developed for various purposes.
しか しなが ら、 従来の発泡容器は均一な発泡を 目 的 と し てお り 、 その発泡倍率を意図的に変化さ せた も の、 すなわ ち容器内に発泡倍率の高い部分 と低い部分 とが存在 した も のは、 こ れま で知 られていなかっ た。  However, the conventional foaming container aims at uniform foaming, and the foaming ratio is intentionally changed, that is, a portion having a high foaming ratio and a low foaming ratio in the container. The existence of the part was previously unknown.
例えば、 均一な発泡状態を保持 した容器を製造する ため の積層 シー ト の両面真空成形方法 と して、 容器の両面に雌 雄金型を用い、 真空成形に よ り 容器を成形する方法が知 ら れてい る力 (特公平 5 —2 8 9 7 4 号公報) 、 雌金型の他 に雄金型 と その真空設備な ど特殊な製造設備が必要であ り しか も雌雄金型の間隙の調整や位置合わせが微妙で難 し く さ ら に容器内面に真空孔の痕が残る と い う 問題があ る。 しか も、 勿論、 こ の方法では、 そ の発泡倍率を意図的に 変化させた も の、 すなわち容器内に発泡倍率の高い部分 と 低い部分 とが存在 した発泡容器は得 られない。 For example, as a method of vacuum forming both sides of a laminated sheet for manufacturing a container having a uniform foaming state, a method of forming a container by vacuum forming using male and female molds on both sides of the container is known. The required force (Japanese Patent Publication No. 5-28974) and special manufacturing equipment such as a male mold and its vacuum equipment are required in addition to the female mold. There is a problem that the adjustment and positioning of the container are delicate and difficult, and that traces of vacuum holes remain on the inner surface of the container. However, of course, this method does not provide a foamed container in which the expansion ratio is intentionally changed, that is, a foamed container having a high expansion ratio portion and a low expansion ratio portion in the container.
—方、 容器に リ ブな どの凹凸を設ける こ と に よ り 、 容器 の剛性を高める こ とが行なわれている。  On the other hand, by providing ribs and other irregularities on the container, the rigidity of the container has been increased.
こ の場合、 雌金型にのみ凹凸を設けた金型を用いて成形 して も、 容器外側の層だけではな く 、 容器内側の層 も 凹凸 状に成形 さ れて し ま う ため、 内容物が例えばスー プな どの よ う な液状の食品であ る場合な ど、 容器内側の凹部に こ の 内容物が残 っ て し ま う と い う 問題があ っ た。  In this case, even if molding is performed using a metal mold with only the female mold provided with irregularities, not only the outer layer of the container but also the inner layer of the container will be formed in an irregular shape. For example, when the object is a liquid food such as a soup, there is a problem that the contents are left in the recess inside the container.
本発明は、 こ の よ う な従来の欠点を解消 し、 特殊な製造 設備を必要 とせず、 容器成形時に発泡層内の気体を移動 さ せる こ と に よ り 、 意図的に肉厚分布やシー ト密度の不均一 な発泡容器を得る こ とのでき る方法を提供する こ と を 目 的 とする も のであ る。  The present invention solves such conventional drawbacks, eliminates the need for special manufacturing equipment, and moves the gas in the foam layer at the time of container molding, thereby intentionally increasing the thickness distribution and the like. The purpose of the present invention is to provide a method capable of obtaining a foamed container having a non-uniform sheet density.
さ ら に、 本発明は、 特殊な製造設備を必要 とせず、 容器 成形時に シー ト 発泡状態を保持するか、 二次発泡又は部分 的に発泡を保持するか、 或いは部分的に二次発泡させるか のいずれかを行ない、 肉厚分布や発泡の均一な容器を得る こ と のでき る方法 (後記する本発明の第 3 ) を も提供する こ とを 目 的 とする も のであ る。 発明の開示  Furthermore, the present invention does not require special manufacturing equipment, and maintains a sheet foaming state, forms a secondary foam or partially foams, or partially foams a container at the time of molding. The purpose of the present invention is to provide a method (third aspect of the present invention to be described later) that can perform any one of the methods described above to obtain a container having a uniform thickness distribution and foam. Disclosure of the invention
すなわち本発明は第 1 に、 発泡コ ア層 と その両側に隣接 す る非発泡の外層 と を有する、. 少な く と も 3 層構造の積層 シー ト を熱成形する こ と に よ り 得 られる発泡容器であ つ て、 前記発泡コ ア層が熱可塑性樹脂 と無機質充塡剤 と発泡 剤 とか らな り 、 かつ前記熱可塑性樹脂 と前記無機質充塡剤 とを前者 9 9 . 9 〜 5 0 重量% と後者 0 . 1 〜 5 0 重量% の割合で配合 してな る、 連続気泡を有する発泡体であ っ て 、 凸部が容器外面のみに形成さ れ、 容器内面に形成さ れて い る 凹部の発泡倍率が前記成形前積層 シー ト の発泡コ ア層 の発泡倍率よ り 低い こ と を特徴 とする部分発泡熱成形容器 を提供する も のであ る。 That is, the present invention firstly provides a foam core layer and adjacent to both sides thereof. A foamed container obtained by thermoforming a laminated sheet having at least a three-layer structure, wherein the foamed core layer is made of a thermoplastic resin. It comprises an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are blended in a ratio of 99.9 to 50% by weight of the former and 0.1 to 50% by weight of the latter. A foam having open cells, wherein the convex portions are formed only on the outer surface of the container, and the expansion ratio of the concave portions formed on the inner surface of the container is the foaming core of the laminated sheet before molding. Another object of the present invention is to provide a partially foamed thermoformed container characterized by having a lower expansion ratio than the layer.
ま た、 本発明は第 2 に、 発泡コ ア層を、 熱可塑性樹脂 と 無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱可塑性樹脂 と前記無機質充塡剤 と を前者 9 9 . 9 〜 5 0 重量% と後者 0 . 1 〜 5 0 重量%の割合で配合 してな る、 連続気泡を有 する連続発泡層 と し、 かつ、 前記発泡コ ア層の両側に隣接 する外層を熱可塑性樹脂か らな る非通気性層 と した、 少な く と も 3 層構造の積層 シー ト を用い、 当該積層 シー ト を雌 金型のみに凹凸を設けた金型を用いて熱成形する こ とを特 徵 とする請求項 1 記載の部分発泡熱成形容器の製造方法を 提供する も のであ る。  Secondly, in the present invention, the foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are mixed with each other. To 50% by weight and the latter in a range of 0.1 to 50% by weight, and a continuous foam layer having open cells, and an outer layer adjacent to both sides of the foam core layer is heated. A laminated sheet having at least a three-layer structure as a non-breathable layer made of a plastic resin is used, and the laminated sheet is thermoformed using a mold having only female molds with irregularities. A method for producing a partially foamed thermoformed container according to claim 1 characterized by the following.
さ らに、 本発明は第 3 に、 発泡コ ア層を、 熱可塑性樹脂 と無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱可塑性樹 脂 と前記無機質充塡剤 と を前者 9 9 . 9 〜 5 0 重量% と後 者 0 . 1 〜 5 0 重量%の割合で配合 してな る連続気泡を有 する連続発泡層 と し、 かつ、 前記発泡コ ア層の両側に隣接 する外層を熱可塑性樹脂か らな る非通気性層 と した、 少な く と も 3 層構造の積層 シー ト を用い、 前記積層 シー ト を成 形 して発泡容器を製造する にあた り 、 容器成形時の賦形直 前に前記積層 シー ト の容器外面側を高温に し、 容器内面側 を低温 と し、 かつ容器外面側 と容器内面側 と の表面温度差 ( X ) が 1 0 。C < X < 7 0 °C とな る よ う な温度で成形 し シー ト 発泡状態を保持するか、 二次発泡又は部分的に発泡 を保持するか、 或いは部分的に二次発泡を させるか、 のい ずれかを行な う こ とを特徴 とする発泡容器の製造方法を提 供する も のであ る。 図面の簡単な説明 Thirdly, in the present invention, the foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are formed by the former method. It has open cells that are mixed at a ratio of 9 to 50% by weight and the latter at 0.1 to 50% by weight. A laminated sheet having at least a three-layer structure, in which a continuous foamed layer made of a thermoplastic resin is used, and outer layers adjacent to both sides of the foamed core layer are made of a non-breathable layer made of a thermoplastic resin. In forming a laminated sheet to produce a foamed container, the container outer surface side of the laminated sheet is heated to a high temperature, the container inner surface side is cooled to a low temperature immediately before shaping at the time of forming the container, and The surface temperature difference (X) between the outer surface and the inner surface of the container is 10. Molding at a temperature such that C <X <70 ° C and maintaining the sheet foaming state, secondary foaming or partially foaming, or partial foaming Another object of the present invention is to provide a method for producing a foamed container characterized by performing one of the following steps. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 実施例 1 〜 7 、 比較例 1 , 3 〜 7 で得 られた カ ッ プ状容器の外観形状を示す斜視図であ る。 第 2 図は、 比較例 2 で得 られた力 ッ プ状容器の外観形状を示す斜視図 であ る。 第 3 図は、 実施例 1 〜 5 、 比較例 1 , 3 〜 5 で用 いた金型 Aの縦断面図を示す も のであ る。 第 4 図は、 実施 例 1 〜 5 、 比較例 1 , 3 〜 5 で用 いた金型 Aの横断面図を 示す も のであ り 、 第 3 図の I — I 線断面図であ る。 第 5 図 は、 比較例 3 で得 られた容器の横断面形状を示す も のであ る。 第 6 図は、 比較例 4 で得 られた容器の横断面形状を示 す も のであ る。 第 7 図は、 実施例 4 で得 られた容器の横断 面形状を示す も のであ る。 第 8 図は、 実施例 1 , 2 , 3 , 6 , 7 で得 られた容器の横断面形状を示す も のであ る。 第 9 図は、 実施例 5 で得 られた容器の横断面形状を示す も の であ る。 第 1 0 図は、 比較例 5 で得 られた容器の横断面形 状を示す も のであ る。 第 1 1 図は、 比較例 1 , 6 で得 られ た容器の横断面形状を示す も のであ る。 第 1 2 図は、 比較 例 2 で得 られた容器の横断面形状を示す も のであ る。 FIG. 1 is a perspective view showing the external shape of the cup-shaped containers obtained in Examples 1 to 7 and Comparative Examples 1 and 3 to 7. FIG. 2 is a perspective view showing the external shape of the wrapped container obtained in Comparative Example 2. FIG. 3 is a longitudinal sectional view of the mold A used in Examples 1 to 5 and Comparative Examples 1 and 3 to 5. FIG. 4 is a cross-sectional view of the mold A used in Examples 1 to 5 and Comparative Examples 1 and 3 to 5, and is a cross-sectional view taken along the line II of FIG. FIG. 5 shows the cross-sectional shape of the container obtained in Comparative Example 3. FIG. 6 shows the cross-sectional shape of the container obtained in Comparative Example 4. FIG. 7 shows the cross-sectional shape of the container obtained in Example 4. FIG. 8 shows Embodiments 1, 2, 3, This figure shows the cross-sectional shape of the container obtained in steps 6 and 7. FIG. 9 shows a cross-sectional shape of the container obtained in Example 5. FIG. 10 shows the cross-sectional shape of the container obtained in Comparative Example 5. FIG. 11 shows the cross-sectional shape of the containers obtained in Comparative Examples 1 and 6. FIG. 12 shows the cross-sectional shape of the container obtained in Comparative Example 2.
ま た、 第 1 3 図は、 実施例 1 4 で得 られたカ ッ プ状容器 の形状を示 した も のであ り 、 第 1 3 図 ( a ) は斜視図であ り 、 第 1 3 図 ( b ) は凹凸部分 (把持部分) の横断面図で あ る。 第 1 4 図は、 実施例 1 5 で得 られたカ ッ プ状容器の 形状を示 した も のであ り 、 第 1 4 図 ( a ) は斜視図であ り 第 1 4 図 ( b ) は凹凸部分 (把持部分) の横断面図であ る 第 1 5 図は、 実施例 1 6 で得 られたカ ッ プ状容器の形状を 示 した も のであ り 、 第 1 5 図 ( a ) は斜視図であ り 、 第 1 5 図 ( b ) は凹凸部分 (把持部分) の横断面図であ る。 第 1 6 図は、 比較例 1 0 で得 られたカ ッ プ状容器の形状を 示 した も のであ り 、 第 1 6 図 ( a ) は斜視図であ り 、 第 1 6 図 ( b ) は凹凸部分 (把持部分) の横断面図であ る。 図中、 符合 1 は リ ブ、 符合 2 は雌金型、 符合 3 は雄金型 符合 4 は ク ラ ンプをそれぞれ示 している。 発明を実施する ための最良の形態  FIG. 13 shows the shape of the cup-shaped container obtained in Example 14; FIG. 13 (a) is a perspective view, and FIG. (B) is a cross-sectional view of the uneven part (grip part). FIG. 14 shows the shape of the cup-shaped container obtained in Example 15; FIG. 14 (a) is a perspective view and FIG. 14 (b) is FIG. 15 which is a cross-sectional view of the uneven portion (grip portion) shows the shape of the cup-shaped container obtained in Example 16; FIG. FIG. 15 (b) is a perspective view, and FIG. 15 (b) is a cross-sectional view of an uneven portion (grip portion). FIG. 16 shows the shape of the cup-shaped container obtained in Comparative Example 10; FIG. 16 (a) is a perspective view, and FIG. 16 (b) Is a cross-sectional view of the uneven portion (grip portion). In the figure, reference numeral 1 indicates a rib, reference numeral 2 indicates a female mold, reference numeral 3 indicates a male mold, and reference numeral 4 indicates a clamp. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の部分発泡熱成形容器について説明する。 本発明の部分発泡熱成形容器は、 発泡コ ア層 と その両側 に隣接する非発泡の外層 と を有する、 少な く と も 3 層構造 の積層 シ一 ト を熱成形する こ と に よ り 得 られる発泡容器で め る Hereinafter, the partially foamed thermoformed container of the present invention will be described. The partially foamed thermoformed container of the present invention comprises a foamed core layer and both sides thereof. A foamed container obtained by thermoforming a laminated sheet having at least a three-layer structure having a non-foamed outer layer adjacent to the
本発明の部分発泡熱成形容器は、 カ ッ プ状、 円筒状、 円 錐台状、 角筒状、 角錐台状、 平箱状、 平皿状等の外形を有 し、 表面に凹凸の付与さ れた も のであ る。  The partially foamed thermoformed container of the present invention has an outer shape such as a cup shape, a cylindrical shape, a truncated cone shape, a rectangular tube shape, a truncated pyramid shape, a flat box shape, a flat dish shape, and has an uneven surface. It is a thing.
本発明の部分発泡熱成形容器を得る ための材料であ る積 層 シ一 ト における発泡コ ア層は、 熱可塑性樹脂 と発泡剤 と か らな る、 連続気泡を有する発泡体であ り 、 好ま し く は連 続気泡率が 3 0 %以上、 1 0 0 %以下の発泡体であ る。  The foamed core layer in the laminated sheet, which is a material for obtaining the partially foamed thermoformed container of the present invention, is a foam having open cells, comprising a thermoplastic resin and a foaming agent. Preferably, the foam has an open cell ratio of 30% or more and 100% or less.
本発明において用 いる積層 シー ト を構成する発泡コ ア層 は、 通気性のあ る連続発泡層であ る。 換言すれば、 発泡コ ァ層の気泡形態は連続気泡であ り 、 連通性があ る こ とが特 徴であ る。  The foam core layer constituting the laminated sheet used in the present invention is a continuous foam layer having air permeability. In other words, the foam form of the foamed core layer is a continuous cell, and is characterized by having continuity.
こ の発泡コ ア層における連続気泡率は、 前記 した よ う に 通常、 3 0 %以上、 1 0 0 %以下、 好ま し く は 6 0 %以上 The open cell ratio in this foamed core layer is usually at least 30%, at most 100%, preferably at least 60%, as described above.
1 0 0 %以下、 さ ら に好ま し く は 6 5 %以上、 1 0 0 %以 下であ る。 発泡コ ア層にお ける連続気泡率が 3 0 %未満で あ る と、 発泡コ ア層の連通性に乏 し く 、 気体の移動が少な いため、 部分的な発泡容器が得 られない。 It is 100% or less, more preferably 65% or more, and 100% or less. If the open cell ratio in the foamed core layer is less than 30%, the foamed core layer has poor continuity and a small amount of gas moves, so that a partial foamed container cannot be obtained.
本発明において連続気泡率は、 以下のよ う に して測定 し た も のであ る。  In the present invention, the open cell ratio is measured as follows.
〔連続気泡率測定〕  (Open cell rate measurement)
( 1 ) 適応範囲 中間層に発泡層を持ち、 両外層が非発泡スキ ン層であ る 多層発泡体の気泡の連通性について規定する。 (1) Applicable range A foam layer is provided in the intermediate layer, and both outer layers are non-foamed skin layers.
( 2 ) 概要 • 原理  (2) Overview • Principle
乾式自動密度測定機は気体置換法に よ り 、 .サ ン プルの体 積測定を行な う 。 こ のため、 こ の測定機で発泡シー ト の測 定を行な う と、 発泡セ ル内に ま で置換気体が侵入 し、 こ の 結果、 見かけの体積よ り も低い値が測定さ れる。 こ の こ と を利用 し、 見かけの体積 : V と、 測定体積 : V A との差The dry automatic density meter measures the volume of a sample by the gas displacement method. For this reason, when measuring a foam sheet with this measuring instrument, the replacement gas penetrates into the foam cell, and as a result, a value lower than the apparent volume is measured. . Using this, the difference between the apparent volume: V and the measured volume: V A
( V - V A ) を連通性の評価基準 と して、 連続気泡率の測 定を行な う o Measure the open cell rate using (V-V A) as the criterion of communication.o
( 3 ) 使用機 fs  (3) Machine used fs
式自動密度測定機 「アキ ュ ピ ッ ク 」 (島津製作所製) ( 4 ) 試験片  -Type automatic density measuring machine "Akyupic" (manufactured by Shimadzu Corporation) (4) Test piece
1 0 X 2 0 m m、 カ ツ 夕 一刃にて採取 .  10 X 20 mm, cut with one blade.
( 5 ) 算出 .式  (5) Calculation.
• 連; β¾ ^¾泡率 (% ) = V d X I 0 0 / { ( 1 - 1 / n ) • Connected; β¾ ^ ¾ foam rate (%) = V d XI 0 0 / {(1-1 / n)
V„ }  V „}
なお、 η は発泡倍率であ る。 試験片の横寸を と し、 縦 寸を Wと し、 厚み寸を T と し、 中間の発泡層の厚みを T h と し、 両外層 (非発泡ス キ ン層) のそれぞれの厚みを T s と した。 Here, η is the expansion ratio. The lateral dimensions of the test piece and the vertical dimension and is W, the thickness dimension is T, the thickness of the intermediate foam layer and T h, the thickness of each of the both outer layers (non-foamed scan rk layer) T s
• 見かけ体積 : V = T X L X W  • Apparent volume: V = T X L X W
• 見かけ発泡層体積 : V h = T h X L X W • apparent foam layer volume: V h = T h XLXW
• 測定体積 : V A • 体積差 : V « = ( V — V A ) • Measurement volume: V A • Volume difference: V «= (V — V A )
本発明 にお いて、 発泡容器の成形材料 と して用 い られ る 積層 シ ー ト は、 上記の よ う に発泡 コ ア層 と そ の両側に隣接 す る非発泡の外層 と を有す る 、 少な く と も 3 層構造の も の であ る 。  In the present invention, a laminated sheet used as a molding material for a foamed container has a foamed core layer and a non-foamed outer layer adjacent to both sides of the foamed core layer as described above. It has at least a three-layer structure.
こ こ で中間層 をなす発泡 コ ア層 は、 熱可塑性樹脂 と無機 質充塡剤 と 発泡剤 と か ら な り 、 かつ、 前記 した よ う に連続 気泡を有す る連続発泡層 と さ れてい る。  Here, the foamed core layer, which is an intermediate layer, is composed of a thermoplastic resin, an inorganic filler, and a foaming agent, and is a continuous foamed layer having open cells as described above. ing.
熱可塑性樹脂 と して は、 容器の成形に用 い ら れ る も ので あれば特に限定はな く 、 ポ リ オ レ フ イ ン系樹脂、 ポ リ 塩化 ビニル系樹脂、 ポ リ ア ミ ド系樹脂、 ポ リ エステル系樹脂、 酢酸 ビニル系樹脂、 ス チ レ ン系樹脂、 ァ ク リ レ ー ト 系樹脂 な どがあ る が、 特に好 ま しいの はポ リ オ レ フ イ ン系樹脂で め る 。  The thermoplastic resin is not particularly limited as long as it is used for molding a container. Polyolefin resins, polyvinyl chloride resins, and polyamide resins are used. There are resins, polyester resins, vinyl acetate resins, styrene resins, and acrylate resins, with the most preferred being polyolefin resins. In
こ こ でポ リ オ レ フ ィ ン系樹脂 と して は特に制限はな いが 特にエチ レ ン やプ ロ ピ レ ン の単独重合体、 又はエチ レ ン或 い は プロ ピ レ ン と他の ひ 一 ォ レ フ ィ ン と の共重合体な どが 挙 げ られ、 具体的 に は例え ば、 高密度, 中密度又は低密度 ポ リ エチ レ ン、 直鎖状低密度ポ リ エチ レ ン、 エチ レ ン — 酢 酸 ビニル共重合体、 エチ レ ン一ア ク リ ル酸エステル共重合 体や、 ァ タ ク チ ッ ク , シ ン ジオ タ ク チ ッ ク 又はア イ ソ タ ク チ ッ ク ポ リ プ ロ ピ レ ン、 エチ レ ン 一 プロ ピ レ ンブロ ッ ク 共 重合体又は ラ ン ダム共重合体、 ポ リ ブテ ン, ポ リ メ チルぺ ン テ ンな どが挙 げ ら れ、 こ れ ら を単独で、 或いは 2 種以上 を混合 して用 い る こ とがで き る 。 Here, there is no particular limitation on the polyolefin resin, but in particular, ethylene or a homopolymer of propylene, or ethylene or propylene and other polymers And high-density, medium-density or low-density polyethylene, linear low-density polyethylene, and the like. , Ethylene-vinyl acetate copolymer, ethylene acrylate copolymer, atactic, syndiotactic or isotactic Topoxypropylene, ethylene-propylene block copolymer or random copolymer, polybutene, polymethylpentene, etc. These may be used alone or in combination of two or more. Can be used as a mixture.
こ れ ら熱可塑性樹脂の メ ル ト イ ン デ ッ ク ス ( M l ) は、 成形品の用途等を考慮 して適宜選択すればよ く 、 特に限定 はな いが、 通常、 0 . 3〜 1 0 g Z 1 0 分程度の も のが用 レ、 られ る 。 ま た、 本発明の方法に よ り 得 ら れ る 発泡容器を 食品や医薬品関連分野な どに用 い る 場合 に は、 こ れ ら熱可 塑性樹脂 と して は衛生上支障のな い も のを選択 して用 い る 必要があ る 。  The melt index (Ml) of these thermoplastic resins may be appropriately selected in consideration of the use of the molded article, etc., and is not particularly limited, but is usually 0.3. ~ 10 g Z About 10 minutes is required. In addition, when the foamed container obtained by the method of the present invention is used in a food or pharmaceutical-related field, etc., there is no problem in hygiene as a thermoplastic resin. It is necessary to select and use one.
次に、 発泡剤 と して は、 水の他に、 通常の化学発泡剤、 例え ば炭酸水素ナ ト リ ウ ム, 炭酸水素ア ン モニゥ ム, 炭酸 ア ン モニゥ ム等の無機塩、 ァ ゾ ジ カソレ ボ ン ア ミ ド, ア ブ ビ ス イ ソ プチ ロ ニ ト リ ル, ジニ ト ロ ペ ン タ メ チ レ ン テ ト ラ ミ ン, 4 , 4 ' 一ォキ シ ビスベ ン ゾス ノレホニル ヒ ド ラ ジ ド, パ ラ ト ルエ ン ス ル ホニル ヒ ド ラ ジ ド, ク ェ ン酸等の有機化 合物及び こ れ ら発泡剤の 2 種以上の組合せが挙 げ ら れ る 。  Next, as a foaming agent, in addition to water, ordinary chemical foaming agents, for example, inorganic salts such as sodium bicarbonate, ammonium bicarbonate, ammonium carbonate, and azo. Dicasolebon amide, abbisisobutyronitrile, dinitropenpentamethylentramine, 4,4'-oxobisbenzobenzolenoryl Organic compounds such as drug, paratoluenesulfonyl hydrazide and citric acid, and combinations of two or more of these foaming agents are listed.
発泡剤の使用量は特に制限はな いが、 通常は、 こ の発泡 コ ア 層の発泡倍率 (一次発泡倍率) が、 2 0 倍以下、 特に 1 0 倍以下 と な る よ う に用 い る 。 例え ば、 熱可塑性樹脂 と して ポ リ プロ ピ レ ン を用 レ、た場合に は、 分解温度が 1 6 0 °C程度の炭酸水素ナ ト リ ゥ ム系発泡剤が用 い られ る。  The amount of the foaming agent used is not particularly limited, but is usually used so that the foaming ratio (primary foaming ratio) of the foamed core layer is 20 times or less, particularly 10 times or less. . For example, when polypropylene is used as the thermoplastic resin, a sodium bicarbonate foaming agent having a decomposition temperature of about 160 ° C. is used.
発泡剤の添加量は、 成形温度, 樹脂の種類や発泡剤の種 類等に よ り 異な る が、 通常、 熱可塑性樹脂 と後述す る無機 質充塡剤 と の合計量 1 0 0 重量部に対 して、 0 . 1 〜 2 0 重量部であ る 。 さ ら に、 中間層をなす発泡 コ ア層 に は、 無機質充塡剤を 配合す る こ と が不可欠であ る。 こ の よ う な無機質充塡剤を 配合す る こ と に よ り 、 発泡 コ ア層を通気性の あ る 連続発泡 層 と する こ と ができ る 。 The amount of the foaming agent varies depending on the molding temperature, the type of the resin, the type of the foaming agent, and the like. Usually, the total amount of the thermoplastic resin and the inorganic filler described later is 100 parts by weight. 0.1 to 20 parts by weight with respect to the weight. Furthermore, it is indispensable to mix an inorganic filler in the foamed core layer as the intermediate layer. By blending such an inorganic filler, the foam core layer can be made into a continuous foam layer having air permeability.
こ こ で無機質充塡剤 と して は、 特に限定はな く 、 例え ば シ リ カ , 珪藻土, ノく リ ウ ム フ ヱ ラ イ ト , 酸化ノく リ ウ ム , 軽 石, 軽石バルー ン等の酸化物、 水酸化ア ル ミ ニ ウ ム, 水酸 化マ グ ネ シ ウ ム , 塩基性炭酸マ グ ネ シ ウ ム等の水酸化物、 炭酸カ ル シ ウ ム, 炭酸マ グネ シ ウ ム, ド ロ マ イ ト , ドー ソ ナ イ ト 等の炭酸塩、 硫酸カ ル シ ウ ム, 硫酸バ リ ウ ム , 硫酸 ア ン モニ ゥ ム, 亜硫酸カ ル シ ウ ム等の硫酸塩又は亜硫酸塩 タ ノレ ク , ク レ ー , マ イ 力 , ア ス ベ ス ト , ガ ラ ス ノく ル 一 ン , ガ ラ ス ビ ー ズ, ゲ イ 酸カ ノレ シ ゥ ム , モ ン モ リ ロ ナ イ ト , ベ ン ト ナイ ト 等の ゲ イ 酸塩、' カ ー ボ ン ブラ ッ ク , グラ フ ア イ ト , 炭素中空球等の炭素類が挙 げ ら れ、 さ ら に は硫化モ リ ブデ ン, ホ ウ酸亜鉛, メ タ ホ ウ酸バ リ ウ ム, ホ ウ 酸カ ル シ ゥ ム, ホ ウ 酸ナ ト リ ウ ム等の粉末状, 粒状, 板状の も の も 用 い る こ と ができ る 。 こ れ ら の中で も 特に タ ル ク や炭酸力 ル シ ゥ ムな どが好 ま しい。 こ れ ら の無機質充塡剤は、 単独 で用 いて も よ い し、 或いは 2 種以上を組み合わせて用 いて も よ い。  Here, the inorganic filler is not particularly limited. For example, silica, diatomaceous earth, rhodium oxide, rhodium oxide, pumice, pumice balun Such as oxides, aluminum hydroxide, magnesium hydroxide, basic magnesium carbonate, etc., calcium carbonate, magnesium carbonate Carbonates such as um, dolomite and dosonite; sulfates such as calcium sulfate, barium sulfate, ammonium sulfate, calcium sulfite; Sulphite tanolec, clay, mai force, asbestos, glass paste, glass beads, cane oleate, monmorillo Nitrate, bentonite, etc., and salts of carbon, such as carbon black, graphite, carbon hollow spheres, etc. Powders such as molybdenum sulfide, zinc borate, barium metaborate, calcium borate, sodium borate, etc. Shaped, granular, and plate-like materials can also be used. Of these, talc and carbonated water are particularly preferred. These inorganic fillers may be used alone or in combination of two or more.
発泡 コ ア層 に お け る 熱可塑性樹脂 と無機質充塡剤の配合 割合 は、 通常、 熱可塑性樹脂 9 9 . 9 〜 5 0 重量 ^に対 し 無機質充塡剤 0 . 1 〜 5 0 重量% の割合、 好ま し く は前者 9 9 . 5 〜 6 5 重量% に対 し、 後者 0 . 5 〜 3 5 重量% の 割合であ る 。 無機質充塡剤の配合割合が少な過 ぎ る と 、 通 気性のあ る 連続発泡層 とす る こ と はで き ず、 充分な発泡 コ ァ層の連通率が得 ら れな い。 一方、 無機質充塡剤の配合割 合が多過ぎ る と、 気泡が粗雑 と な っ た り 、 シ ー ト が脆 く な る ため、 容器成形の際、 容器に破れが生 じた り して し ま い 容器成形が困難 と な る 。 従 っ て、 いずれ も 好 ま し く な い。 The mixing ratio of the thermoplastic resin and the inorganic filler in the foamed core layer is usually from 99.9 to 50% by weight of the thermoplastic resin, and from 0.1 to 50% by weight of the inorganic filler. Percentage, preferably the former The ratio of the latter is 0.5 to 35% by weight relative to 99.5 to 65% by weight. If the blending ratio of the inorganic filler is too small, it is not possible to form a permeable continuous foam layer, and it is not possible to obtain a sufficient communication rate of the foam core layer. On the other hand, if the mixing ratio of the inorganic filler is too large, the foam becomes coarse and the sheet becomes brittle, so that when the container is formed, the container is broken. This makes it difficult to form containers. Therefore, neither is preferred.
次に、 本発明 に お いて用 い る 積層 シ ー ト を構成す る 外層 (前記発泡 コ ア層 の両側に隣接す る 層) は、 熱可塑性樹脂 か ら な る 非発泡の非通気性層であ る 。 こ こ で非通気性 と は 実質上において瞬間的 に は通気性 しな い も のを言 う 。  Next, the outer layer (layer adjacent to both sides of the foamed core layer) constituting the laminated sheet used in the present invention is a non-foamed non-breathable layer made of a thermoplastic resin. It is. Here, the non-breathable means a material that does not substantially breathe instantaneously.
こ の よ う な外層 にお け る 熱可塑性樹脂 と して は、 前記発 泡 コ ア層 に お け る 説明 中 に記載 した も のが挙げ られ、 通常 前記発泡 コ ア層で用 い る も の と 同 じ熱可塑性樹脂 (好 ま し く は ポ リ オ レ フ イ ン系樹脂) が用 い ら れ る が、 こ れ と は異 な る 熱可塑性樹脂 (好 ま し く は ポ リ オ レ フ イ ン系樹脂) を 用 レ、て も よ い。 特に好 ま しレ、のはエチ レ ン やプ ロ ピ レ ン の 単独重合体、 又はエチ レ ン或い はプロ ピ レ ン と 他の ひ 一 才 レ フ ィ ン と の共重合体であ る。  Examples of such a thermoplastic resin in the outer layer include those described in the description of the foaming core layer, and are usually used in the foaming core layer. The same thermoplastic resin (preferably a polyolefin resin) is used, but a different thermoplastic resin (preferably a polyolefin resin) is used. (Refin resin) may be used. Particularly preferred are homopolymers of ethylene or propylene, or copolymers of ethylene or propylene with other olefins. You.
本発明 にお いて用 い る 積層体は、 上記 した如 き 発泡 コ ア 層 と、 こ の発泡 コ ア層の両側に隣接す る 外層 と の少な く と も 3 層構造の も のであ る が、 例え ば、 容器 と して酸素バ リ ヤ ー性を必要 とす る 場合 に は、 一方の側の外層 と 発泡 コ ア 層 と の間 に、 それぞれ接着層 を介 してエチ レ ン ー ビニルァ ル コ ール共重合体 ( E V O H ) 層を設けた 6 層構造の積層 体を用いて も よい。 こ こ で E V O H は、 エチ レ ン一酢酸 ビ ニル共重合体をゲ ン化 して得 られる共重合体であ り 、 ェチ レ ン含有量が 2 5 〜 5 0 モ ル%の も のが用い られる。 The laminate used in the present invention has at least a three-layer structure of the above-described foamed core layer and outer layers adjacent to both sides of the foamed core layer. For example, when oxygen barrier properties are required for the container, an ethylene vinyl layer is provided between the outer layer on one side and the foam core layer via an adhesive layer. It is also possible to use a six-layered laminated body provided with a alcohol copolymer (EVOH) layer. Here, EVOH is a copolymer obtained by genating an ethylene vinyl acetate copolymer and having a content of 25 to 50 mol% of ethylene. Used.
ま た、 接着層を構成する接着剤 と しては、 E V O H層 と 発泡コ ア層 と を接着する のに適 した も のであれば特に限定 はな く 、 例えば不飽和カ ルボ ン酸変性ポ リ プロ ピ レ ン, ェ チ レ ン — ア ク リ ル酸ェチル共重合体, エチ レ ン一酢酸 ビニ ル共重合体等が挙げ られる。  The adhesive constituting the adhesive layer is not particularly limited as long as it is suitable for bonding the EVOH layer and the foamed core layer. For example, the adhesive may be an unsaturated carboxylic acid-modified polyester. Examples include propylene, ethylene-ethyl acrylate copolymer, and ethylene monovinyl acetate copolymer.
さ らに、 前記発泡コ ア層 と外層 との間であ っ て、 発泡コ ァ層の片面又は両面に、 すなわち発泡コ ア層 と外層 との界 面の両方又はいずれか一方に、 無機質充塡剤含有熱可塑性 樹脂非発泡層を設けた も のを用いる こ と もでき る。  Further, between the foamed core layer and the outer layer, one or both surfaces of the foamed core layer, that is, at least one of the interfaces between the foamed core layer and the outer layer, the inorganic filler is provided. Those provided with a non-foamed layer containing a thermoplastic resin may also be used.
こ こ で無機質充塡剤含有熱可塑性樹脂非発泡層に用いる 無機質充塡剤 と しては、 前記発泡コ ア層で用いた も の と 同 様の も のが挙げ られるが、 特にタ ル ク が好ま しい。 本層に おいて用いる無機質充塡剤 と しては、 前記発泡コ ア層で用 い る も の と同一の も のを用いて も よい し、 或いは異な る も のを用いて も よい。 本層における無機質充塡剤の割合は通 常、 熱可塑性樹脂 9 9 . 9 〜 5 0 重量%に対 して、 無機質 充塡剤 0 . 1 〜 5 0 重量% とする。  Here, as the inorganic filler used for the non-foamed layer containing the inorganic filler-containing thermoplastic resin, the same ones as those used in the foamed core layer can be used, and particularly, Is preferred. As the inorganic filler used in this layer, the same one as that used in the foam core layer or a different one may be used. The ratio of the inorganic filler in this layer is usually from 0.1 to 50% by weight of the inorganic resin to 99.9 to 50% by weight of the thermoplastic resin.
なお、 こ の無機質充塡剤含有熱可塑性樹脂非発泡層に用 いる熱可塑性樹脂 と しては、 前記発泡コ ア層についての説 明中で述べた も のが挙げ られ、 こ の発泡コ ア層で用いる も の と同 じ熱可塑性樹脂を用 いて も よ い し、 或いは こ れ と は 異な る熱可塑性樹脂を用 いて も よい。 特に好ま しいの と ポ リ オ レ フ イ ン系樹脂、 特にエチ レ ンやプロ ピ レ ンの単独重 合体、 又はェチ レ ン或いはプロ ピ レ ン と他の ひ 一 才 レ フ ィ ン と の共重合体であ る。 The thermoplastic resin used for the non-foamed thermoplastic resin-containing thermoplastic resin layer is the same as that described in the description of the foamed core layer. Also used in layers The same thermoplastic resin as described above may be used, or a different thermoplastic resin may be used. Especially preferred are polyolefin-based resins, especially single polymers of ethylene or propylene, or ethylene or propylene and other olefins. Is a copolymer of
さ らに、 本発明においては、 積層 シー ト と して、 少な く と も一方の外層の外面に、 界面において剝離可能な剝離層 を設けた も のを用 いる こ とができ る。  Furthermore, in the present invention, a laminated sheet provided with a separation layer that can be separated at the interface on at least the outer surface of one of the outer layers can be used as the laminated sheet.
こ の よ う な剝離層 は、 その下 (内側) の表下層を介 して 少な く と も一方の外層の上 (外側) に、 界面において剝離 可能に設け られている。 なお、 容器成形時において、 こ の 剝離層が容器内面に位置する よ う にする。 こ の場合、 一方 の外層の外面に表下層を介 して剝離層を設けた も のは 5 層 構造の もの とな り 、 両方の外層の外面に これ らを設けた も のは 7 層構造の も の とな る。  Such a separation layer is provided on at least one outer layer (outside) via a lower surface layer below (inside) and at an interface so as to be separable. When forming the container, this release layer is located on the inner surface of the container. In this case, the outer layer of one outer layer provided with a separation layer through the lower surface layer has a five-layer structure, and the outer layer of both outer layers has a seven-layer structure. It will be something.
こ の剥離層 は、 上記 した と同様の熱可塑性樹脂か らな る も のであ り 、 無機質充塡剤や発泡剤は全 く 含ま ない層 (無 機質充塡剤を含有 しない熱可塑性樹脂非発泡層) であ る。  This release layer is made of the same thermoplastic resin as described above, and contains no inorganic filler or foaming agent (a thermoplastic resin containing no inorganic filler). (Foamed layer).
こ の剝離層や表下層において用いる熱可塑性樹脂 と して は、 前記の発泡コ ア層についての説明中で述べた も のが挙 げ られ、 発泡コ アや外層で用いる も の と同 じ熱可塑性樹脂 (好ま し く はポ リ オ レ フ イ ン系樹脂) を用いて も よい し、 或いは こ れ と は異な る樹脂を用いて も よい。  As the thermoplastic resin used in the separation layer and the lower surface layer, those described in the description of the foamed core layer are mentioned, and the same thermal resins as those used in the foamed core and the outer layer are used. A plastic resin (preferably a polyolefin resin) may be used, or a different resin may be used.
剝離層を構成する熱可塑性樹脂 と しては、 ポ リ オ レ フ ィ ン系樹脂、 特にポ リ エチ レ ン又はポ リ プロ ピ レ ンが好ま し い。 ポ The thermoplastic resin that constitutes the release layer Resin, in particular, polyethylene or polypropylene is preferred.
ま た、 表下層を構成する熱可塑性樹脂 と しては、 ポ リ オ レ フ イ ン系樹脂を用 いる こ とが好ま し く 、 特にポ リ プロ ピ レ ン と ポ リ エチ レ ン との混合物を用 いる のが好ま しい。  As the thermoplastic resin constituting the lower layer, it is preferable to use a polyolefin-based resin. In particular, it is preferable to use a polypropylene resin and a polyethylene resin. Preference is given to using a mixture.
なお、 積層 シー ト を構成する各層 (発泡コ ア層や外層な ど) には、 必要に応 じて通常用い られる滑剤, 着色剤, 酸 化防止剤, 紫外線吸収剤, 界面活性剤, 難燃剤, 可塑剤, 帯電防止剤等の添加剤を加えて も よ い。 本発明の方法に よ り 得 られる発泡容器が食品や医薬品等の用途に用い られる 場合には、 安全衛生上問題のない も のを用いる こ と は、 無 機質充塡剤の場合 と同様であ る。  The layers constituting the laminated sheet (foam core layer, outer layer, etc.) may be used, if necessary, with lubricants, coloring agents, antioxidants, ultraviolet absorbers, surfactants, flame retardants, etc. Additives such as plasticizers and antistatic agents may be added. When the foamed container obtained by the method of the present invention is used for foods, pharmaceuticals, and the like, the use of a non-hazardous material in the same manner as in the case of an inorganic filler is used. is there.
こ れ らの添加剤の添加量は、 通常、 樹脂成夯 1 0 0 重量 部に対 して、 0 . 0 1 〜 1 0 重量部程度であ る。  The amount of these additives is usually about 0.01 to 10 parts by weight based on 100 parts by weight of the resin component.
本発明において、 発泡容器の成形材料 と して用い られる 積層 シー ト は、 上記 した如 く 、 基本的には発泡コ ア層 と、 こ の発泡コ ア層の両側に隣接する外層の少な く と も 3 層か らな る も のであ り 、 さ ら に必要に応 じて各種層が積層 さ れ ている も のであ る。  In the present invention, as described above, the laminated sheet used as the molding material of the foam container is basically composed of a foam core layer and at least an outer layer adjacent to both sides of the foam core layer. Each of the three layers is composed of three layers, and various layers are laminated as necessary.
こ こ で積層の方法には、 各層 シー ト を別 々 に成形 した後 に、 各層 シー ト を熱圧着や各層を接着剤で挟んで接着する 方法 あ るが、 各層をそれぞれの押出機を用い、 共通の ダ ィ を用いて共押出する方法が、 効率上及び食品衛生上な ど か ら見て最 も好ま しい。 すなわち、 各層の構成成分を予め 公知のバ ンバ リ 一 ミ キサー、 単軸 · 二軸混練機等を用 いて 溶融混練 し、 得 られたペ レ ツ ト を、 各層それぞれの押出機 を用い、 共通のダイ を用いて共押出する方法が好ま しい。 こ の よ う な共押出法は、 熱圧着に よ る貼 り 合わせ法に比べ て、 成形の際に亀裂が生 じた り 、 シー ト が破断する こ とが 少な く 、 ま た、 接着が効率的であ っ て食品衛生上 も極めて 好ま しレ、 も のであ る。 Here, as a method of lamination, there is a method of forming each layer sheet separately, and then bonding each layer sheet by thermocompression bonding or sandwiching each layer with an adhesive, but using a respective extruder for each layer. However, the method of co-extrusion using a common die is the most preferable in terms of efficiency and food hygiene. That is, the components of each layer are The mixture is melt-kneaded using a well-known Banbury mixer, single-screw / double-screw kneader, or the like, and the obtained pellets are co-extruded using a common die using an extruder for each layer. The method is preferred. Such a co-extrusion method is less likely to cause cracks and break the sheet during molding than the laminating method by thermocompression bonding, and the bonding is also small. Efficient and highly preferred for food hygiene.
こ のよ う に して得 られる積層 シー ト の構成 と しては、 通 気性のあ る連続発泡層をなす発泡コ ア層を R B層 と し、 こ の発泡コ ア層 ( R B層) の両側に隣接する、 非通気性の外 層 (非発泡層であ る ) を H H層 と し、 エチ レ ン ー ビニルァ ル コ ール共重合体層を E V O H層 と し、 前記 R B層 と前記 H H層 と の間の層、 すなわち無機質充塡剤含有熱可塑性樹 脂非発泡層を フ イ ラ 一含有 P O層 とすれば、 以下の如 き 3 層以上の構造の積層 シー ト が举げ られる。  The laminated sheet obtained in this way has a structure in which a foam core layer forming a permeable continuous foam layer is an RB layer, and the foam core layer (RB layer) The non-breathable outer layer (non-foamed layer) adjacent to both sides is defined as an HH layer, the ethylene-vinyl alcohol copolymer layer is defined as an EVOH layer, and the RB layer and the HH layer are defined as an EVOH layer. When a layer between the layers, that is, a non-foamed thermoplastic resin-containing layer containing an inorganic filler is used as the filler-containing PO layer, a laminated sheet having a structure of three or more layers as described below can be obtained.
① H H層 R B層 Z H H層  ① H H layer R B layer Z H H layer
② H H層 /接着層 E V O H層 接着層 Z R B層 / H H層 ② H H layer / adhesive layer E V O H layer Adhesive layer Z R B layer / H H layer
③剝離層 表下層 Z H H層 Z R B層 ZH H層 ③ 剝 Laminated layer Lower layer Z H H layer Z R B layer ZH H layer
④ H H層 フ ィ ラ ー含有 P O層 Z R B層 Zフ ィ ラ ー含有 P 0層 H H層  ④ H H layer Filler containing P O layer Z R B layer Z filler containing P 0 layer H H layer
なお、 本発明において用いる積層 シー ト は、 こ れ らの構 造の も のに限定さ れる も のではない。  The laminated sheet used in the present invention is not limited to those having these structures.
積層 シー ト の各層の厚みは、 容器の用途に応 じて異な る が、 通常、 R B層は 0 . 2〜 4 . 5 m m、 H H層は 0 . 1 〜 1 . 5 m m、 E V 0 H層 は 0 . 0 1 〜 0 . 1 m m、 表下 層 は 0 . 0 1 〜 0 . 2 m m、 剝離層 は 0 . 0 1 〜 0 . 2 m m程度が適当であ り 、 積層 シー ト 全体 と して は 0 . 5 〜 6 m m とす る のが好 ま し い。 Although the thickness of each layer of the laminated sheet varies depending on the use of the container, it is generally 0.2 to 4.5 mm for the RB layer and 0.1 for the HH layer. 11.5 mm, EV0H layer is about 0.01-0.1 mm, bottom layer is about 0.01-0.2 mm, and separation layer is about 0.01-0.2 mm. However, it is preferable that the total thickness of the laminated sheet is 0.5 to 6 mm.
但 し、 外層 の厚み は、 全層厚みの 5 0 %以下、 特に 5 〜 3 0 % と な る よ う にす る こ と が好 ま しい。 こ こ で外層の厚 みが全層厚みの 5 0 %を超え る と、 断熱性や軽量化等、 発 泡体 と して の特性が見出せな く な る 。  However, it is preferable that the thickness of the outer layer be 50% or less of the total layer thickness, particularly 5 to 30%. Here, if the thickness of the outer layer exceeds 50% of the total layer thickness, it becomes impossible to find properties as a foam, such as heat insulation and weight reduction.
本発明の部分発泡熱成形容器は、 上記 した如 き 積層 シ ー ト を熱成形す る こ と に よ り 得 ら れ る 発泡容器であ っ て、 凸 部が容器外面のみに形成 さ れ、 容器内面に形成 さ れ る 凹部 の発泡倍率が前記成形前積層 シ一 ト の発泡 コ ア層の発泡倍 率よ り 低い こ と を特徴 とす る も のであ る。  The partially foamed thermoformed container of the present invention is a foamed container obtained by thermoforming the laminated sheet as described above, wherein the convex portion is formed only on the outer surface of the container. The present invention is characterized in that the expansion ratio of the concave portion formed on the inner surface of the container is lower than the expansion ratio of the expanded core layer of the laminated sheet before molding.
上記 した よ う に、 本発明の部分発泡熱成形容器は、 凸部 が容器外面のみ に形成 さ れた も のであ り 、 容器内面に は極 く 僅かな凹部が形成 さ れた も のであ る 。  As described above, in the partially foamed thermoformed container of the present invention, the convex portion is formed only on the outer surface of the container, and a very small concave portion is formed on the inner surface of the container. .
本発明の部分発泡熱成形容器では、 容器外面に形成 さ れ てい る 凸部の発泡倍率 ( N ) が、 成形前積層 シー ト の発泡 コ ア層の発泡倍率を n と した場合、 N = k x n の関係 にお いて、 1 . 2 ≤ k ≤ 4 の範囲 に あ る こ と が好ま しい。  In the partially foamed thermoformed container of the present invention, when the expansion ratio (N) of the convex portion formed on the outer surface of the container is n, the expansion ratio of the expanded core layer of the laminated sheet before molding is n = kxn In the relationship, it is preferable that the distance be in the range of 1.2 ≤ k ≤ 4.
つ ま り 、 容器外面に形成 さ れてい る 凸部の発泡倍率が、 成形前積層 シ ー ト の発泡 コ ア層の発泡倍率の 1 . 2 倍以上 あ る こ と が好 ま しい。 こ の値が 1 . 2 倍未満であ る と、 部 分発泡 さ せな い容器 と比べて、 そ の断熱性に有意差が見 ら れない。 一方、 容器外面に形成さ れてい る 凸部の発泡倍率 が、 成形前積層 シー ト の発泡コ ア層の発泡倍率の 4 倍を超 え る と、 容器外面に形成さ れている 凸部の気泡が非常に粗 く な り 、 その結果、 容器外面に破れが生 じた り 、 容器外観 が悪化 して し ま う 。 That is, it is preferable that the foaming ratio of the convex portion formed on the outer surface of the container is at least 1.2 times the foaming ratio of the foamed core layer of the laminated sheet before molding. If this value is less than 1.2 times, there is a significant difference in the heat insulation compared to a container that is not partially foamed. Not. On the other hand, when the expansion ratio of the convex portion formed on the outer surface of the container exceeds 4 times the expansion ratio of the expanded core layer of the laminated sheet before molding, the convex portion formed on the outer surface of the container is reduced. The air bubbles become very coarse, resulting in tearing of the outer surface of the container and deterioration of the container appearance.
ま た、 本発明の部分発泡熱成形容器では、 上記凸部が形 成さ れてい る部分の内側の容器内面に極 く 僅か凹部が形成 さ れているが、 こ の凹部の発泡倍率は、 前記成形前積層 シ 一 ト の発泡コ ア層の発泡倍率よ り 低い も のであ る。  Further, in the partially foamed thermoformed container of the present invention, an extremely small concave portion is formed on the inner surface of the container inside the portion where the convex portion is formed, and the expansion ratio of this concave portion is: It is lower than the expansion ratio of the foamed core layer of the laminated sheet before molding.
こ の よ う な本発明の部分発泡熱成形容器は、 例えば次の よ う に して製造する こ とができ る。  Such a partially foamed thermoformed container of the present invention can be manufactured, for example, as follows.
すなわち、 本発明は第 2 に、 発泡コ ア層を、 熱可塑性樹 脂 と無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱可塑性 樹脂 と前記無機質充塡剤 とを前者 9 9 . 9 〜 5 0 重量% と 後者 0 . 1 〜 5 0 重量% の割合で配合 してな る連続発泡層 と し、 かつ、 前記発泡コ ア層の両側に隣接する外層を熱可 塑性樹脂か らなる非通気性層 と した、 少な く と も 3 層構造 の積層 シー ト を用い、 当該積層 シー ト を雌金型のみに凹凸 を設けた金型を用いて熱成形する こ と を特徴 とす る、 前記 本発明の第 1 の部分発泡熱成形容器の製造方法を提供する も のであ る 。  That is, secondly, in the present invention, the foamed core layer is composed of a thermoplastic resin, an inorganic filler, and a foaming agent, and the thermoplastic resin and the inorganic filler are formed in the former 99.9. To 50% by weight and the latter 0.1 to 50% by weight as a continuous foam layer, and the outer layers adjacent to both sides of the foam core layer are made of a thermoplastic resin. A laminated sheet having at least a three-layer structure as an air-impermeable layer is used, and the laminated sheet is thermoformed using a mold having only female molds with irregularities. The present invention also provides a method for producing the first partially foamed thermoformed container of the present invention.
発泡コ ア層を、 熱可塑性樹脂 と無機質充塡剤 と発泡剤 と か らな り 、 かつ前記熱可塑性樹脂 と前記無機質充填剤 と を 前者 9 9 . 9 〜 5 0 重量% と後者 0 . 1 〜 5 0 重量%の割 合で配合してな る連続発泡層 と し、 かつ、 前記発泡コ ア層 の両側に隣接する外層を熱可塑性樹脂か らな る非通気性層 と した、 少な く と も 3 層構造の積層 シー ト については、 本 発明の第 1 において述べた通 り であ る。 ま た、 発泡コ ア層 にお ける連続気泡率が、 通常、 3 0 %以上、 1 0 0 %以下 好ま し く は 6 0 %以上、 1 0 0 %以下、 さ ら に好ま し く は 6 5 %以上、 1 0 0 %以下であ る こ と も本発明の第 1 にお いて述べた通 り であ る。 さ ら に、 発泡剤の使用割合につい て も本発明の第 1 において述べた通 り であ る。 The foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are composed of 99.9 to 50% by weight of the former and 0.1% by weight of the latter. ~ 50% by weight At least a three-layer structure in which a continuous foam layer formed by mixing the two layers together and an outer layer adjacent to both sides of the foam core layer is an air-impermeable layer made of a thermoplastic resin The sheet is as described in the first part of the present invention. The open cell ratio in the foamed core layer is usually 30% or more, 100% or less, preferably 60% or more, 100% or less, and more preferably 6% or less. 5% or more and 100% or less is also as described in the first aspect of the present invention. Further, the usage ratio of the foaming agent is as described in the first item of the present invention.
本発明の第 2 では、 当該積層 シー ト を fit金型のみに凹凸 を設けた金型を用いて熱成形する。  In the second aspect of the present invention, the laminated sheet is thermoformed using a mold provided with irregularities only in a fit mold.
こ こ で発泡容器の熱成形方法 と しては、 真空成形、 真空 圧空成形等が挙げ られるが、 特に先行 ク ラ ンププラ グァ シ ス ト 真空成形が好適であ る。 こ の先行 ク ラ ンププラ グァ シ ス ト真空成形では、 容器開 口外周を ク ラ ンプ しなが ら、 プ ラ グア シス ト 真空成形を行な う 。  Here, examples of the thermoforming method of the foaming container include vacuum forming, vacuum pressure forming, and the like, and the preceding clamp plug vacuum forming is particularly preferable. In this preceding clamp plug-assist vacuum forming, plug-assist vacuum forming is performed while clamping the outer periphery of the container opening.
成形条件は一般的には通常の成形条件で良いが、 前記積 層体を雌金型のみに凹凸を設けた金型を用いて熱成形する こ とが必要であ る。  In general, the molding conditions may be ordinary molding conditions, but it is necessary to thermally mold the laminated body using a metal mold having only female molds with irregularities.
すなわち、 雌金型 と して、 リ ブな どの凹凸を設けた も の を用いる こ とが必要であ り 、 雄'金型には凹凸を設けないで お く 。 なお、 凹凸の寸法に関 しては特に制限はない。  In other words, it is necessary to use a female mold provided with irregularities such as ribs, and the male mold must not have irregularities. There is no particular limitation on the size of the unevenness.
ま た、 凹凸の形状は例えば縦縞状、 横縞状、 網 目状、 半 球状等種々 の形状が可能であ り'、 ま た特に規則的に設ける 必要はない。 さ ら に、 こ れ らの凹凸は、 容器の手で把持す る部分だけでな く 、 それ以外の部分、 例えば容器底部や外 表面全体に相当する雌金型の部分に設けてお く こ と もでき る 0 The shape of the unevenness can be various shapes such as vertical stripes, horizontal stripes, meshes, hemispheres, and the like. No need. In addition, these irregularities should be provided not only on the part that is gripped by the hand of the container, but also on other parts, for example, the female mold part corresponding to the bottom of the container and the entire outer surface. 0
ま た、 本発明の第 2 では、 熱成形する際に用いる雌金型 に、 リ ブな どの凹凸を設けた も のを用 いる こ とが必要であ る O  Further, in the second aspect of the present invention, it is necessary to use a female mold having irregularities such as ribs in a female mold used for thermoforming.
こ れは、 以下に述べる よ う に、 本発明の第 2 では、 通気 性のあ る連続発泡層を通 じて、 間隙の狭い部分か ら広い部 分へ気体を移動 させ、 こ れに よ り 肉厚分布やシー ト 密度の 不均一な容器を製造する よ う に してい る ためであ る。  As described below, in the second aspect of the present invention, gas is moved from a narrow portion to a wide portion through a gas-permeable continuous foam layer, as described below. This is because we are trying to manufacture containers with uneven wall thickness distribution and sheet density.
すなわち、 本発明の第 2 は、 連続気泡性を有する シー ト の特徴を利用 し、 層内のエア一を容器の一部分に集中 さ せ る こ と に よ り 、 原反シー ト をその ま成形 した容器に比べ、 容器の凸部に関 して、 その断熱性を向上させた も のであ る 熱成形方法については、 後述の実施例では、 シー ト上下 に温度差をつけ、 容器成形する こ と を特徴 とする特願平 5 一 3 4 7 0 6 5 号記載の熱成形方法によ り 成形する。  That is, the second aspect of the present invention is to form a raw sheet as it is by concentrating the air in the layer on a part of the container by utilizing the characteristics of the sheet having open cell properties. As for the thermoforming method in which the convexity of the container is improved in the heat insulating property as compared with the container formed, a temperature difference is formed between the upper and lower portions of the sheet in a later-described embodiment. It is formed by the thermoforming method described in Japanese Patent Application No. 5-347065, which is characterized by.
使用する金型は、 雌型 と雄型の間隔が、 容器凸部以外の 部分では、 シー ト 厚みを容器の展開倍率 (表面積 ÷ 内 口面 積) で割っ た値よ り も狭 く 、 容器凸部では、 シー ト厚みを 容器の展開倍率で割っ た値よ り も広い こ とを特徴 とする雌 型を用いて行な う こ と に よ り 、 目 的 とする部分発泡熱成形 容器を製造する こ とができ る。 本発明の第 2 では、 上記の よ う な条件で成形 して い る た め、 特殊な製造設備を必要 とす る こ と な く 、 肉厚分布ゃ シ ― ト 密度の不均一な容器を製造す る こ と ができ る 。 In the mold used, the distance between the female mold and the male mold is smaller than the value obtained by dividing the sheet thickness by the expansion ratio of the container (surface area 内 inner opening area) in the area other than the convex part of the container. The convex part is formed by using a female mold that is wider than the value obtained by dividing the sheet thickness by the expansion ratio of the container. Can be manufactured. In the second aspect of the present invention, since the molding is performed under the above-described conditions, a container having a non-uniform thickness distribution and a non-uniform sheet density can be used without requiring special manufacturing equipment. It can be manufactured.
すなわち、 本発明の第 2 に よ れば、 部分的に高発泡部分 と 低発泡部分 と を有す る 発泡容器が得 られ る が、 こ の高発 泡部分は、 二次発泡 (容器成形時に発泡す る こ と ) に よ る も のではな く 、 積層体 (積層 シー ト ) 内の気体移動 に よ る も のであ る 。 従 っ て、 成形 に必要な シー ト 体積内 に保持 さ れてい る 気体量を A と し、 成形容器内 に保持 さ れてい る 気 体量を B とす る と、 発泡原反 と発泡容器に は、 A ≥ B の関 係が成 り 立つ。 つ ま り 、 成形に必要な積層 シ ー ト 体積内 に 保持 さ れて い る 気体量に対 し、 成形容器内 に保持 さ れてい る 気体量が同 じか、 それ以下であ る。  That is, according to the second aspect of the present invention, a foamed container partially having a high foaming portion and a low foaming portion can be obtained. This is not due to foaming, but to the movement of gas in the laminate (laminated sheet). Therefore, if the amount of gas held in the sheet volume required for molding is A and the amount of gas held in the molding container is B, the raw foam and the foam container , The relationship A ≥ B holds. In other words, the amount of gas held in the molding container is equal to or less than the amount of gas held in the volume of the laminated sheet required for molding.
こ の結果、 雌金型の凹部で成形 さ れた部分 (容器外面の 凸部) の発泡倍率が、 積層 シ ー ト (発泡原反) の発泡倍率 よ り も 高 く な り 、 部分的に高発泡部分 と低発泡部分 と を有 す る 発泡容器が得 られ る。  As a result, the foaming ratio of the portion formed in the concave portion of the female mold (the convex portion of the outer surface of the container) is higher than the foaming ratio of the laminated sheet (raw foam), and partially. A foaming container having a high foaming portion and a low foaming portion can be obtained.
つ ま り 、 本発明の方法では、 高発泡部分 は、 二次発泡に よ る も のではな く 、 積層 シ ー ト 内の気体移動に よ る も ので あ る か ら、 発泡 コ ア層 と して通気性のあ る連続発泡層 を用 い、 両側に隣接す る 外層を熱可塑性樹脂か らな る 非通気性 層 と してレ、 る わ けであ る 。 こ の よ う な積層 シ ー ト 内の気体 移動 に よ り 、 意図的に高発泡部分 と低発泡部分 と を存在 さ せ、 肉厚分布や シ ー ト 密度を不均一な も の と した発泡容器 は、 こ れま で知 られていなか っ た。 That is, in the method of the present invention, the highly foamed portion is formed not by the secondary foaming but by the gas movement in the laminated sheet, so that the foamed core layer and the foamed core layer are not formed by the secondary foaming. In this case, a breathable continuous foam layer is used, and the outer layers adjacent on both sides are non-breathable layers made of a thermoplastic resin. Due to such gas movement in the laminated sheet, foaming is intentionally caused by the presence of a high foaming portion and a low foaming portion, and the thickness distribution and the sheet density are not uniform. container Has never been known before.
本発明の第 2 に よれば、 上記 した如 き積層 シー ト を用い かつ、 雌金型のみに凹凸を設けた金型を用いて熱成形す る こ と に よ り 、 積層 シー ト における発泡コ ア層内の気体を、 熱成形時に雌金型の凹部に集中 さ せ、 こ れに よ り 成形後、 容器内に発泡倍率の高い部分 と低い部分 と を形成する こ と ができ た も のであ る。  According to the second aspect of the present invention, the foamed sheet in the laminated sheet is formed by performing thermoforming using the laminated sheet as described above and using a mold having only female dies with irregularities. The gas in the layer is concentrated in the recesses of the female mold during thermoforming, and after molding, high and low expansion ratio parts can be formed in the container. is there.
なお、 単に雌金型に凹凸を設けた金型で成形 して も、 上 記 した シー ト を用 いる こ と な しには容器の発泡倍率を意図 的に変化さ せ る こ と はできず、 容器内側 も金型の凹凸が再 現ざれた も の とな っ て し ま う 。  Even if the female mold is simply molded using a mold having irregularities, the expansion ratio of the container cannot be intentionally changed without using the above-mentioned sheet. However, the inside of the container will also have the mold irregularities reappeared.
こ の よ う に して特殊な製造設備を必要 とする こ とな く 、 肉厚分布や発泡が不均一であ っ て、 部分的に高発泡部分 と 低発泡部分 と を有 し、 かつ意匠性に優れた発泡容器を得る こ とができ る。  In this way, there is no need for special manufacturing equipment, the wall thickness distribution and foaming are non-uniform, and there are partially high foaming parts and low foaming parts. It is possible to obtain a foam container having excellent properties.
本発明の第 2 に よ り 得 られる、 本発明の第 1 の発泡容器 は、 カ ッ プ状、 円筒状、 円錐台状、 角筒状、 角錐台状、 平 箱状、 平皿状等の外形を有 し、 表面に凹凸の付与さ れた も のであ る。  The first foamed container of the present invention obtained by the second of the present invention has an outer shape such as a cup shape, a cylindrical shape, a truncated cone shape, a square tube shape, a truncated pyramid shape, a flat box shape, a flat dish shape, or the like. It has a surface and has irregularities on its surface.
ま た、 本発明の第 2 に よれば、 容器外面に凹凸を有す る ため、 剛性の向上 した発泡容器を得る こ とができ る。  Further, according to the second aspect of the present invention, since the outer surface of the container has irregularities, a foamed container having improved rigidity can be obtained.
本発明の第 2 に よれば、 発泡容器の外表面にエ ン ボス加 ェ等で得 られる以上の精緻な立体的模様, 図案等を忠実に 再現する こ とが可能であ り 、 容器の印刷を省略する こ と も 可能であ る。 According to the second aspect of the present invention, it is possible to faithfully reproduce more detailed three-dimensional patterns and designs than can be obtained by embossing or the like on the outer surface of the foamed container. May be omitted It is possible.
さ ら に、 本発明は第 3 に、 発泡コ ア層を、 熱可塑性樹脂 と無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱可塑性樹 脂 と前記無機質充塡剤 と を前者 9 9 . 9 〜 5. 0 重量% と後 者 0 . 1 〜 5 0 重量%の割合で配合 してな る連続気泡を有 する連続発泡層 と し、 かつ、 前記発泡コ ア層の両側に隣接 する外層を熱可塑性樹脂か らな る非通気性層 と した、 少な く と も 3 層構造の積層 シー ト を用 い、 前記積層 シー ト を成 形 して発泡容器を製造する にあた り 、 容器成形時の賦形直 前に前記積層 シー ト の容器外面側を高温に し、 容器内面側 を低温 と し、 かつ容器外面側 と容器内面側 との表面温度差 ( X ) が 1 0 °C < X < 7 0 °C とな る よ う な温度で成形 し、 シー ト 発泡状態を保持するか、 二次発泡又は部分的に発泡 を保持するか、 或いは部分的に二次発泡を させるか、 のい ずれかを行な う こ と を特徴 とする発泡容器の製造方法を提 供する も のであ る。  Thirdly, according to the present invention, the foamed core layer comprises a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are formed by the former method. An open-cell foam layer having open cells, which is blended at a ratio of 9 to 5.0% by weight and the latter at 0.1 to 50% by weight, and is adjacent to both sides of the foam core layer. In producing a foamed container by using a laminated sheet having at least a three-layer structure in which the outer layer is a non-breathable layer made of a thermoplastic resin, and forming the laminated sheet, Immediately before shaping at the time of forming the container, the outer surface of the laminated sheet is heated to a high temperature, the inner surface of the container is cooled, and the surface temperature difference (X) between the outer surface of the container and the inner surface of the container is 10 °. Mold at a temperature such that C <X <70 ° C to maintain the sheet foaming state, or secondary foaming or partially foaming. Either, or partially or to the secondary expansion, Ru Nodea also a manufacturing method for provision of the bubbling container, wherein the this Cormorant row the noise Zureka.
本発明の第 3 において、 発泡容器の成形材料 と して用い られる積層 シー ト は、 上記本発明の第 2 において用いた と 同 じ も のであ る。  In the third aspect of the present invention, the laminated sheet used as the molding material of the foamed container is the same as that used in the second aspect of the present invention.
本発明の第 3 は、 前記 した如 き積層 シー ト を成形 して発 泡容器を製造する にあた り 、 容器成形時の賦形直前に前記 積層 シー ト の容器外面側を高温に し、 容器内面側を低温 と し、 かつ容器外面側 と容器内面側 との表面温度差 ( X ) が 1 0 °C < X < 7 0 °C とな る よ う な温度で成形 し、 こ の容器 成形中に、 シー ト 発泡状態を保持するか、 二次発泡又は部 分的に発泡を保持するか、 或いは部分的に二次発泡を さ せ るか、 のいずれかを行な う こ とを特徴 とする も のであ る。 In a third aspect of the present invention, in producing a foaming container by molding the laminated sheet as described above, the outer surface side of the laminated sheet is heated to a high temperature just before shaping at the time of molding the container. The container is molded at a temperature such that the inside surface of the container is at a low temperature and the surface temperature difference (X) between the outside surface of the container and the inside surface of the container is 10 ° C <X <70 ° C. During molding, it is necessary to either maintain the foamed state of the sheet, to maintain the secondary foaming or partial foaming, or to partially foam the foaming. It is a characteristic.
発泡容器の成形方法 と しては、 真空成形、 真空圧空成形 等が挙げ られ る が、 特に真空圧空成形が好適であ る。  Examples of the method for forming the foam container include vacuum forming and vacuum pressure forming, but vacuum pressure forming is particularly preferable.
成形条件 も通常の成形条件で良いが、 容器成形時の賦形 直前に前記積層 シー ト の容器外面側を高温に し、 容器内面 側を低温 と し、 かつ容器外面側 (雌金型側) と容器内面側 (雄金型側) との表面温度差 ( X ) 力 1 0 °C < X < 7 0 °C、 好ま し く は 3 0 °C < X < 6 0 °C とな る よ う な温度で成形 し、 こ の容器成形中に二次発泡を行な う こ とが必要であ る。 こ こ で表面温度差 ( X ) が 1 0 °C以下の場合には、 発泡せず (内面側が外面側に引かれ、 発泡がつぶれた伏態にな る た め) 、 一方、 表面温度差 ( X ) が 7 0 °C以上の場合には発 泡 しない (内面側が成形でき ない、 又は特に薄い シー ト で は熱伝導に よ り 、 温度差を付ける こ とが不可能であ る ため) か、 或いはた とえ発泡 した と して も 肉厚が不均一にな る た め、 いずれ も好ま し く ない。  The molding conditions may be ordinary molding conditions, but immediately before shaping at the time of molding the container, the outer surface of the laminated sheet is heated to a high temperature, the inner surface of the container is cooled, and the outer surface of the container (the female mold side). Temperature difference (X) force between the container and the inner surface of the container (male mold side): 10 ° C <X <70 ° C, preferably 30 ° C <X <60 ° C It is necessary to mold at such a temperature and to perform secondary foaming during molding of the container. Here, when the surface temperature difference (X) is 10 ° C or less, foaming does not occur (because the inside surface is pulled to the outside surface and the foam becomes flattened down). No foaming when (X) is 70 ° C or higher (because the inner surface cannot be formed, or it is impossible to provide a temperature difference due to heat conduction, especially for thin sheets) Or, even if foamed, neither of them is preferable because the thickness becomes uneven.
本発明の第 3 のでは、 上記のよ う な条件で成形 してい る 為、 肉厚分布や発泡が均一な容器を製造する こ とができ る。  According to the third aspect of the present invention, since the molding is performed under the above-described conditions, a container having a uniform thickness distribution and uniform foam can be manufactured.
本発明の第 3 に よ り 、 発泡容器の外表面に凹凸をつけた 容器を得る こ とができ る。  According to the third aspect of the present invention, a container having an irregular surface on the outer surface of the foamed container can be obtained.
すなわち、 本発明の第 3 においては、 雌金型やキ ヤ ビテ ィ 一の側壁部や底部を凹凸状 と し、 こ の よ う な金型を用 い、 前記発泡シー ト 又は積層 シー ト を加熱軟化さ せた後、 賦形 直前に前記発泡シー ト 又は積層 シー ト の容器外面側を高温 に し、 容器内面側を低温 と し、 一定の温度差をつけて成形 し、 容器外面の特に凸部に当た る部分だけを発泡させる わ けであ る。 こ こ で前記発泡シー ト 又は積層 シー ト の両面に 温度差がついていない と、 容器内側の部分 も外側の凹凸に 沿っ た形状に成形 さ れた り 、 或いは発泡 しなか っ た り す る 本発明の第 3 に よれば、 シー ト 高温側 (容器外面側) は 金型の雌型に刻 ま れた凹凸形状に沿 っ た形で型通 り に賦形 さ れ、 一方、 シー ト 低温側 (容器内面側) は凹凸面に沿わ ず、 平滑な面に形成さ れる。 That is, in the third aspect of the present invention, the side wall and the bottom of the female mold and the cavity are made uneven, and such a mold is used. After heating and softening the foamed sheet or laminated sheet, immediately before forming, the outer surface side of the container of the foamed sheet or laminated sheet is heated to a high temperature, and the inner surface side of the container is cooled to a constant temperature difference. Then, only the part of the outer surface of the container that hits the convex part is foamed. If there is no temperature difference between both sides of the foamed sheet or the laminated sheet, the inner part of the container may be formed into a shape along the outer irregularities or may not foam. According to the third aspect of the invention, the high temperature side of the sheet (outer surface side of the container) is shaped according to the shape of the concave and convex cut in the female mold of the mold, while the low temperature side of the sheet is formed. The side (the inner side of the container) is not formed along the uneven surface and is formed on a smooth surface.
なお、 凹凸の形状は例えば縦縞状、 横縞状、 網 目状等、 種々 の形状が可能であ り 、 ま た特に規則的に設ける必要は ない。 ま た、 こ れ らの凹凸は、 容器の手で把持する部分だ けでな く 、 それ以外の部分や外表面全体に設けて、 美観を 向上させる こ と もでき る。 本発明の第 3 に よれば、 発泡容 器の外表面にエ ン ボス加工等で得 られる以上の精緻な立体 的模様, 図案等を忠実に再現する こ とが可能であ り 、 容器 の印刷を省略する こ と も可能であ る。  It is to be noted that various shapes such as vertical stripes, horizontal stripes, meshes, etc. are possible for the unevenness, and it is not necessary to provide them regularly. In addition, these irregularities can be provided not only in the part to be gripped by the hand of the container, but also in other parts and the entire outer surface to improve the aesthetic appearance. According to the third aspect of the present invention, it is possible to faithfully reproduce a more detailed three-dimensional pattern, pattern, etc. than can be obtained by embossing or the like on the outer surface of the foamed container. Can be omitted.
こ の よ う に して肉厚分布や発泡が均一で、 しか も容器外 表面に金型の凹凸が忠実に再現さ れてお り 、 しか も断熱性 が高 く 、 かつ意匠性に優れた、 カ ッ プ状、 円筒状、 円錐台 状、 角筒状、 角錐台状、 平箱状、 平皿状等の発泡容器を得 る こ とができ る。 次に本発明を、 実施例に よ り 詳 し く 説明する。 In this way, the wall thickness distribution and foaming are uniform, the irregularities of the mold are faithfully reproduced on the outer surface of the container, and the heat insulation is high and the design is excellent. It is possible to obtain foamed containers such as cups, cylinders, truncated cones, prisms, truncated pyramids, flat boxes, and flat dishes. Next, the present invention will be described in more detail with reference to Examples.
実施例 1 Example 1
ポ リ プロ ピ レ ン樹脂 ( ポ リ プ ロ ピ レ ン ホ モ ポ リ マ ー、 出 光石油化学製、 商品名 : 出光ボ リ プロ E — 1 0 0 G、 M I = 0 . 6 g Z l O 分) 9 8 重量%及び無機質充塡剤 と して のタ ル ク (勝光山製、 平均粒径 = 9 z m ) 2 重量%の合計 量 1 0 0 重量部に対 して、 一段発泡型化学発泡剤 (ベー リ ン ガ一 イ ン ゲ ルノヽィ ム製、 商品名 : ハ ン ド ロ セ ルオ ー ル) 1 . 2 重量部、 二段発泡型化学発泡剤 (大 日 精化製、 商品 名 ' ダイ ブロ ー) 0 8 重量部を発泡コ ア層の原料 と した 一方、 両外層 (非発泡 · 非通気性層) 用原料 と して、 無 機質充塡剤及び発泡剤を含ま ないポ リ プロ ピ レ ン樹脂 (ポ リ プ ロ ピ レ ン ホモポ リ マー、 出光石油化学製、 商品名 : 出 光ポ リ プロ F 2 0 5 S 、 I = 2 g / 1 0 分) を用 いた。  Polypropylene resin (Polypropylene homopolymer, manufactured by Idemitsu Petrochemical, trade name: Idemitsu Polypropylene E—100 G, MI = 0.6 g Zl O content) 98% by weight and 1% by weight as inorganic filler (manufactured by Katsumitsuyama, average particle size = 9 zm) 2% by weight, 100% by weight, one-stage foaming type Chemical foaming agent (manufactured by Boehringer Gelnheim, trade name: Handrocell) 1.2 parts by weight, two-stage foaming type chemical foaming agent (manufactured by Dainichi Seika, product Name: Die blow) 0 8 parts by weight were used as the raw material for the foamed core layer, and as the raw material for both outer layers (non-foamed and air-impermeable layer), free of inorganic fillers and foaming agents Polypropylene resin (Polypropylene homopolymer, manufactured by Idemitsu Petrochemical, trade name: Idemitsu Polypropylene F205S, I = 2 g / 10 min) .
上記各原料をペ レ ツ ト 化 した も のを、 それぞれの押出機 (発泡コ ア層用 は、 直径 6 5 m mの押出機、 両外層用 は直 径 6 5 m mの押出機) に投入 し、 .通常の T 一 ダイ を用い、 押出温度 1 6 0 〜 2 0 0 °Cにて共押出を行ない、 両外層の 厚みがそれぞれ 0.5m m、 発泡コ ア層の厚みが 3.2m mの 三層積層 シー ト を製造 した。 こ の積層 シ ー ト の発泡コ ア層 の発泡倍率は 3.2倍であ っ た。 ま た、 発泡コ ア層の連通率 すなわち連続気泡率は 7 0 %であ っ た。 なお、 連続気泡率 は、 乾式自動密度計 (島津製作所製) を用 いて得 られた測 定値を基に、 前記 した連続気泡率測定方法に よ り 算出 した こ の三層積層 シ ー ト を、 特願平 5 — 3 4 7 0 6 5 号に よ る熱成形方法、 すなわち シー ト上下の加熱温度差を付ける 方法に よ り 、 カ ッ プ状容器に成形 した。 なお、 本発明の方 法は、 こ の熱成形方法に限 られる も のではない。 Each of the above raw materials was pelletized and fed to each extruder (65 mm diameter extruder for the foam core layer and 65 mm diameter extruder for both outer layers). Co-extrusion using an ordinary T-die at an extrusion temperature of 160 to 200 ° C. The thickness of both outer layers is 0.5 mm, and the thickness of the foam core layer is 3.2 mm. Manufactured sheets. The foaming ratio of the foamed core layer of this laminated sheet was 3.2 times. The communication rate of the foamed core layer, that is, the open cell rate was 70%. The open cell rate was calculated by the above-described open cell rate measurement method based on the measurement value obtained using a dry automatic densitometer (manufactured by Shimadzu Corporation). This three-layer laminated sheet is formed into a cup-shaped container by the thermoforming method according to Japanese Patent Application No. 5-347065, that is, a method of providing a heating temperature difference between the upper and lower sheets. Molded. The method of the present invention is not limited to this thermoforming method.
得 られた容器は、 第 1 図に示す如 き外観を有する 開 口径 (内寸) 9 5 . 5 m m、 高さ 3 5 m mのカ ッ プ状の も ので あ っ た。 ま た、 リ ブ 1 の長さ は 2 0 m m、 リ ブ 1 の高 さ は 2 m m . リ ブ 1 の幅は 4 m m、 リ ブ間の距離は 2 m m、 リ ブ 1 の本数は 5 0 本であ り 、 展開倍率は 2 . 4 5 倍 (表面 積 ÷ 内 口面積) であ っ た。 なお、 容器の横断面形状は第 8 図に示す通 り であ っ た。  The resulting container had a cap-like shape with an opening diameter (inner dimension) of 95.5 mm and a height of 35 mm having the appearance as shown in Fig. 1. The length of rib 1 is 20 mm, the height of rib 1 is 2 mm, the width of rib 1 is 4 mm, the distance between ribs is 2 mm, and the number of ribs is 50 It was a book, and the unfolding magnification was 2.45 times (surface area 内 inner opening area). The cross-sectional shape of the container was as shown in FIG.
なお、 こ の熱成形時にお ける金型 と しては、 第 3 図 (縦 断面図) 及び第 4 図 (横断面図) に示す如 き形状を有する 金型 Aを用 いた。 なお、 第 4 図は、 第 3 図の I 一 I 線断面 図であ る。 雌金型 2 には凹凸形状が設け られてお り 、 凹部 の長 さ は 2 O m mであ り 、 凹部の数は 5 0 個であ っ た (そ れぞれ リ ブ 1 の長さ と数に対応) 。 図中、 符号 3 は雄金型 であ り 、 符号 4 は ク ラ ンプであ る。  As a mold for the thermoforming, a mold A having a shape as shown in FIG. 3 (longitudinal sectional view) and FIG. 4 (transverse sectional view) was used. FIG. 4 is a cross-sectional view taken along the line I-I of FIG. The female mold 2 was provided with an uneven shape, the length of the concave portion was 2 Omm, and the number of the concave portions was 50 (the length of the rib 1 and the Corresponding to the number). In the figure, reference numeral 3 is a male mold, and reference numeral 4 is a clamp.
発泡コ ア層の連続気泡率、 発泡コ ア層の発泡倍率、 得 ら れた容器の外観、 リ ブ部の断面形状、 容器凸部の発泡倍率 k 値、 及び比較例 2 で得 られた容器 と比較 した場合の断熱 性についての結果を第 1 表に示す。  The open cell ratio of the foamed core layer, the foaming ratio of the foamed core layer, the appearance of the obtained container, the cross-sectional shape of the rib portion, the foaming ratio k value of the convex portion of the container, and the container obtained in Comparative Example 2. Table 1 shows the results of the heat insulation when compared with the above.
第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観 も良好 であ り 、 断熱性 も比較例 2 の断熱性に比べて大き な有意差 が確認でき た。 実施例 2 As is clear from Table 1, the partial foamability and the appearance of the container were good, and the heat insulation was also significantly different from the heat insulation of Comparative Example 2. Was confirmed. Example 2
発泡コ ア層の原料をポ リ プロ ピ レ ン樹脂 (ポ リ プロ ピ レ ン ホ モポ リ マ ー、 出光石油化学製、 商品名 : 出光ポ リ プロ E - 1 0 0 G、 M I = 0 . 6 g / 1 0 分) 9 8 重量%及び 無機質充塡剤 と して タ ル ク (勝光山製、 平均粒径 = 9 m ) 2 重量%の合計量 1 0 0 重量部に対 し、 一段発泡型化学発 泡剤 ( ベ ー リ ン ガ ー イ ン ゲ ルハ イ ム製、 商品名 : ハ ン ド 口 セ ルオール) 2 . 0 重量部を配合す る こ と に よ り 、 発泡コ ァ層の連続気泡率を 9 8 % と した こ と以外は、 実施例 1 と 全 く 同様に してカ ッ プ状容器を得た。 結果を第 1 表に示す。  The raw material of the foam core layer is made of polypropylene resin (Polypropylene homopolymer, manufactured by Idemitsu Petrochemical Co., Ltd., product name: Idemitsu Polypropylene E-100G, MI = 0) 6 g / 10 min) 98 wt% and talc as an inorganic filler (Katsumitsuyama, average particle size = 9 m) 2 wt% of the total amount of 100 wt% One-stage foaming type chemical foaming agent (manufactured by Behringer Ingelheim, product name: Cellulose Hand Cell) 2.0 mass parts of foaming core A cup-shaped container was obtained in exactly the same manner as in Example 1 except that the open cell ratio of the layer was set to 98%. The results are shown in Table 1.
第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観 も良好 であ り 、 断熱性 も比較例 2 の断熱性に比べて大き な有意差 が確認でき た。 実施例 3  As is clear from Table 1, the partial foamability and the appearance of the container were good, and the heat insulation was also significantly different from the heat insulation of Comparative Example 2. Example 3
発泡コ ア層の原料をポ リ プロ ピ レ ン樹脂 (ポ リ プロ ピ レ ン ホ モポ リ マー、 出光石油化学製、 商品名 : 出光ポ リ プロ The raw material of the foamed core layer is made of polypropylene resin (polypropylene homopolymer, manufactured by Idemitsu Petrochemical, trade name: Idemitsu Polypropylene)
E - 1 0 0 G、 M I = 0 . 6 g / 1 0 分) 9 8 重量%及び 無機質充塡剤 と して タ ル ク (勝光山製、 平均粒径 = 9 m ) 2 重量%の合計量 1 0 0 重量部に対 し、 一段発泡型化学発 泡剤 (ベー リ ン ガ ー イ ン ゲ ルハ イ ム製、 商品名 : ノヽ ン ドロ セ ルオー ル ) 0 . 4 重量部、 二段発泡型化学発泡剤 (大 日 精化製、 商品名 : ダイ ブロ ー) 1 . 6 重量部 とする こ と に よ り 、 発泡コ ア層の連続気泡率を 3 5 % と した こ と以外は 実施例 1 と全 く 同様に してカ ッ プ状容器を得た。 結果を第 1 表に示す。 E-100 G, MI = 0.6 g / 10 min) 98% by weight and 2% by weight of talc (Katsumitsuyama, average particle size = 9 m) as an inorganic filler 100 parts by weight, one-stage foaming type chemical foaming agent (manufactured by Boehringer Ingelheim, trade name: Nordrocellol) 0.4 parts by weight, two-stage foaming Type chemical blowing agent (Dainichi Seika Chemicals, trade name: Die blow) In the same manner as in Example 1 except that the foaming core layer has an open cell ratio of 35% by adopting 1.6 parts by weight. Thus, a cup-shaped container was obtained. The results are shown in Table 1.
第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観は良好 であ り 、 断熱性 も比較例 2 の断熱性に比べて大き な有意差 が確認でき た。 実施例 4  As is clear from Table 1, the partial foaming property and the appearance of the container were good, and the heat insulation was also significantly different from the heat insulation of Comparative Example 2. Example 4
実施例 1 において、 容器の リ ブ 1 の高 さ を 1 . 5 m m と した こ と以外は、 実施例 1 と.全 く 同様に してカ ッ プ状容器 を得た。 結果を第 1 表に示す。  A cup-shaped container was obtained in exactly the same manner as in Example 1 except that the height of the rib 1 of the container was 1.5 mm. The results are shown in Table 1.
第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観は良好 であ っ た。 ま た、 断熱性は比較例 2 の断熱性に比べ、 若干 ではあ るが有意差が認め られた。 実施例 5  As is evident from Table 1, the partial foamability and the appearance of the container were good. Insulation was slightly different from that of Comparative Example 2 but significant. Example 5
実施例 1 において、 容器の リ ブ 1 の高 さ を 5 m m と した こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器を得 た。 結果を第 1 表に示す。  A cup-shaped container was obtained in the same manner as in Example 1 except that the height of the rib 1 of the container was 5 mm. The results are shown in Table 1.
第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観は良好 であ り 、 断熱性は比較例 2 の断熱性に比べて大き な有意差 が認め られた。 比較例 1 As is clear from Table 1, the partial foaming property and the appearance of the container were good, and the heat insulating property showed a significant difference from the heat insulating property of Comparative Example 2. Comparative Example 1
発泡コ ア層の原料をポ リ プロ ピ レ ン樹脂 (ポ リ プロ ピ レ ン ホモポ リ マー、 出光石油化学製、 商品名 : 出光ポ リ プロ E - 1 0 0 G M I = 0 . 6 g Z l O 分) 9 8 重量%、 二 段発泡型化学発泡剤 (大 日 精化製、 商品名 : ダイ ブロ ー) 2 . 0 重量% とする こ と に よ り 、 発泡コ ア層の連続気泡率 を 2 5 % と した こ と以外は、 実施例 1 と全 く 同様に して力 ッ プ状容器を得た。 結果を第 1 表に示す。  The raw material of the foamed core layer is made of polypropylene resin (polypropylene homopolymer, manufactured by Idemitsu Petrochemical Co., Ltd., trade name: Idemitsu Polypropylene E-100 GMI = 0.6 g Zl O content) 98% by weight, two-stage foaming chemical blowing agent (manufactured by Dainichi Seika Co., Ltd., product name: Die blower) By setting the weight to 2.0% by weight, the open cell rate of the foam core layer Was changed to 25% to obtain a wrapped container in the same manner as in Example 1. The results are shown in Table 1.
こ の比較例 1 で得 られた シ一 ト は発泡コ ア層の連続気泡 率が小さ いため、 容器断面図 (第 1 1 図) か ら分かる よ う に、 容器凸部の部分的な発泡が得 られず、 よ っ て k < 1 . 2 にな っ て し ま う 。 比較例 2  In the sheet obtained in Comparative Example 1, since the open cell ratio of the foamed core layer was low, partial foaming of the convex portion of the container was observed as can be seen from the container cross-sectional view (Fig. 11). It cannot be obtained, so k <1.2. Comparative Example 2
実施例 1 において、 容器に リ ブ部を全 く 設けず、 第 2 図 に示すよ う な容器外観を有する容器に成形 した こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器を得た。 結果を第 1 表に示す。  In Example 1, the cup was completely formed in the same manner as in Example 1 except that the container was not provided with any rib portion and was formed into a container having a container appearance as shown in FIG. A container was obtained. The results are shown in Table 1.
こ の比較例 2 で得 られた容器には、 凹凸が設け られてい ないため、 部分的な発泡が得 られない。 比較 3  Since the container obtained in Comparative Example 2 was not provided with irregularities, partial foaming was not obtained. Comparison 3
実施例 1 において、 容器の リ ブ 1 の高さ を 0 . 1 m m と した こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器 を得た。 結果を第 1 表に示す。 A cup-shaped container in the same manner as in Example 1 except that the height of the rib 1 of the container was set to 0.1 mm in Example 1. I got The results are shown in Table 1.
こ の比較例 3 で得 られた容器は、 容器の凹凸形状の変化 に よ り 、 k く 1 . 2 にな っ て し ま う 。 比較例 4  The container obtained in Comparative Example 3 would have a k of 1.2 due to a change in the uneven shape of the container. Comparative Example 4
実施例 1 において、 容器の リ ブ 1 の高さ を 0 . 5 m m と した こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器 を得た。 結果を第 1 表に示す。  A cup-shaped container was obtained in the same manner as in Example 1 except that the height of the rib 1 of the container was 0.5 mm. The results are shown in Table 1.
こ の比較例 4 で得 られた容器は、 容器の凹凸形状の変化 に よ り 、 k く 1 . 2 にな っ て し ま う 。 比較例 5  The container obtained in Comparative Example 4 has a value of 1.2 due to a change in the uneven shape of the container. Comparative Example 5
実施例 1 において、 容器の リ ブ 1 の高さ を 5 . 5 m m と した こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器 を得た。 結果を第 1 表に示す。  A cup-shaped container was obtained in the same manner as in Example 1 except that the height of the rib 1 of the container was 5.5 mm. The results are shown in Table 1.
こ の比較例 5 で得 られた容器は、 容器の凹凸形状の変化 に よ り 、 k > 4 にな り 、 その結果、 容器外面に破れが生 じ て し ま う 。 実施例 6  In the container obtained in Comparative Example 5, k> 4 due to the change in the uneven shape of the container, and as a result, the outer surface of the container is torn. Example 6
実施例 1 において、 ポ リ プロ ピ レ ン樹脂 と無機質充塡剤 の配合量を、 それぞれ 9 0 重量% と 1 0 重量%に変えた こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器を得た 結果を第 1 表に示す。 第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観 も良好 であ り 、 断熱性は比較例 2 の断熱性に比べて大き な有意差 が認め られた。 実施例 7 In the same manner as in Example 1, except that the blending amounts of the polypropylene resin and the inorganic filler were changed to 90% by weight and 10% by weight, respectively. Table 1 shows the results of obtaining cup-shaped containers. As is evident from Table 1, the partial foaming property and the appearance of the container were good, and the heat insulating property was significantly different from the heat insulating property of Comparative Example 2. Example 7
実施例 1 において、 ポ リ プロ ピ レ ン樹脂 と無機質充塡剤 の配合量を、 それぞれ 8 0 重量% と 2 0 重量% に変えた こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器を得た 結果を第 1 表に示す。  In the same manner as in Example 1, except that the blending amounts of the polypropylene resin and the inorganic filler were changed to 80% by weight and 20% by weight, respectively. Table 1 shows the results of obtaining cup-shaped containers.
第 1 表か ら明 らかな如 く 、 部分発泡性や容器外観 も良好 であ り 、 断熱性は比較例 2 の断熱性に比べて大き な有意差 が認め られた。 比較例 6  As is evident from Table 1, the partial foaming property and the appearance of the container were good, and the heat insulating property was significantly different from the heat insulating property of Comparative Example 2. Comparative Example 6
実施例 1 において、 無機質充塡剤を全 く 配合 しなかっ た こ と以外は、 実施例 1 と全 く 同様に してカ ッ プ状容器を得 た。 結果を第 1 表に示す。  A cup-shaped container was obtained in the same manner as in Example 1 except that no inorganic filler was used in Example 1. The results are shown in Table 1.
第 1 表か ら明 らかな如 く 、 シー ト の連通率が 2 5 % にな つ たため、 容器断面図か ら分かる よ う に、 容器凸部の部分 的な発泡が得 られず、 よ っ て k < 1 . 2 にな っ て し ま い、 断熱性が得 られなか っ た。 第 1 表 シート 容器 m つマ つマ 口 iia • ^の違い 層の麟 層の発泡 外観 m 発泡倍率 性 •賺例の理由 倍率 木 2 * 3 As is clear from Table 1, since the sheet communication rate was 25%, as can be seen from the container cross-sectional view, partial foaming of the container convex portion was not obtained. As a result, k <1.2, so that heat insulation was not obtained. Table 1 Sheet container m マ つ ia iia • Difference of layer Foam of layer Appearance m Foaming magnification • Reason for example Magnification Wood 2 * 3
1 70% 3.2 倍 〇 8図 6.2倍 1.9 ◎ 蹢率: =70% 1 70% 3.2 times 〇 8 Fig. 6.2 times 1.9 ◎ 蹢 Rate: = 70%
2 9 B% 3.1 倍 〇 8図 6.3倍 2.0 ◎ 舰率 =98%2 9 B% 3.1 times 〇 8 Fig. 6.3 times 2.0 ◎ 舰 rate = 98%
3 35% 3.2 倍 〇 8図 5.9倍 1.8 ® 題率 =35% 她 3 35% 3.2 times 〇 8 Fig. 5.9 times 1.8 ® Title rate = 35% 她
例 4 70% 3.2 倍 〇 7図 3.8倍 1.2 〇 リ
Figure imgf000034_0001
Example 4 70% 3.2 times 〇 7 Figure 3.8 times 1.2 〇
Figure imgf000034_0001
5 70% 3.2 倍 〇 9図 12.8倍 4.0 ◎ リフ^ =5 mm 5 70% 3.2 times 〇 9 Figure 12.8 times 4.0 ◎ Riff ^ = 5 mm
6 80% 3.2 倍 〇 8図 6.3倍 2.0 舰率 =80% 6 80% 3.2 times 〇 8 Figure 6.3 times 2.0 舰 rate = 80%
ノレノ一 IUS TO Norenichi IUS TO
7 90% 3.2 倍 〇 8図 6.3倍 2.0 ◎ 編率 =90% 7 90% 3.2 times 〇 8 Figure 6.3 times 2.0 ◎ Editing rate = 90%
iti itl /(J  iti itl / (J
1 25% 3.3 倍 〇 11図 3.4倍 1.0 X 舰率 =25%1 25% 3.3 times 〇 11 Figure 3.4 times 1.0 X 舰 rate = 25%
2 70% 3.2 倍 〇 12図 3.2倍 1.0 鞾 リブ無し容器 比 3 70% 3.2 倍 〇 5図 3.4倍 1.0 X k リフ 1¾ 0.1, 較 2 70% 3.2 times 〇 12 Fig. 3.2 times 1.0 比 Ratio of container without ribs 3 70% 3.2 times 〇 5 figures 3.4 times 1.0 X k riff 1¾ 0.1, comparison
例 4 70% 3.2 倍 〇 6図 3.6倍 1.1 X k Wリフ Ί¾ 0.5匪 Example 4 70% 3.2 times 〇 6 Figure 3.6 times 1.1 X kW riff Ί¾ 0.5 band
5 70% 3.2 倍 X 10図 13.1倍 4.1 ◎ k Wリブ 5.5訓 5 70% 3.2 times X 10 Figure 13.1 times 4.1 ◎ k W rib 5.5
6 25% 3.2 倍 〇 11図 3.4倍 1.0 X 舰率 =25% 6 25% 3.2 times 〇 11 Figure 3.4 times 1.0 X 舰 rate = 25%
タルク = 0重暈% 〔第 1 表の脚注〕 Talc = 0 double halo% [Table 1 footnotes]
* 1 : 容器外観 · · · 〇 =容器外観が良好、 x =容器外截 に破れ等が発生  * 1: Container appearance · · · 〇 = Good container appearance, x = Torn outside the container
* 2 : 容器断面形状 · · · 外面が凹凸で、 かつ、 内面は平 滑な も のが部分発泡性良好  * 2: Container cross-sectional shape · · · · The outer surface is uneven and the inner surface is smooth;
* 3 : k = (容器凸部発泡倍率) ÷ (発泡コ ア層の連続気 泡率)  * 3: k = (expansion ratio of container convex part) ÷ (continuous bubble rate of foam core layer)
* 4 : 比較例 2 に示す容器の断熱性を基準 と した容器凸部 の断熱性評価  * 4: Thermal insulation evaluation of the convex part of the container based on the thermal insulation of the container shown in Comparative Example 2.
◎ =比較例 2 に示す容器の断熱性 と比較 し、 大き な有 意差が認め られる。  ◎ = Compared to the heat insulating property of the container shown in Comparative Example 2, a significant difference is observed.
〇 =比較例 2 に示す容器の断熱性 と比較 し、 若干の有 意差が認め られる。  〇 = Compared to the thermal insulation of the container shown in Comparative Example 2, there is some significant difference.
X =比較例 2 に示す容器の断熱性 と比較 し、 有意差が 認め られない。 実施例 8  X = Compared to the heat insulating property of the container shown in Comparative Example 2, no significant difference was observed. Example 8
ポ リ プロ ピ レ ン樹脂 (ポ リ プロ ピ レ ン ホモポ リ マー、 出 光石油化学製、 商品名 : 出光 E — 1 0 5 G M、 M I = 0.5 g / 1 0 分) 6 5 重量部、 無機質充塡剤 と してのタ ル ク (勝光山製、 平均粒径 1 0 m ) 3 0 重量部 と炭酸カ ル シ ゥ ム ( 日東粉化工業製、 平均粒径 1 / D1以下) 5 重量部の 合計 1 0 0 重量部に対 して、 着色剤 と して酸化チ タ ン (石 原産業製、 ア ナタ ーゼ型) 4 重量部、 酸化防止剤 ( リ ン系 酸化防止剤、 商品名 : P E P —— 8 、 旭電化製) 0.5 重量部 界面活性剤( 東邦化学製、 商品名 : ソ ルボ ン T一 6 0 ) を 0.5 重量部及び水 5 0 O p p mを配合 した も のを、 高速混 合 ミ キサー ( 川 田製作所製ヘ ン シ ヱ ル ミ キサー) を用いて 混合 した後、 ベ ン ト式単軸混練機に投入 し、 2 1 0 °Cで押 出 し、 空間率 5 0 % の多孔質ペ レ ツ ト を得た。 Polypropylene resin (Polypropylene homopolymer, manufactured by Idemitsu Petrochemical, trade name: Idemitsu E—105 GM, MI = 0.5 g / 10 minutes) 65 parts by weight, inorganic 30 parts by weight of tark (manufactured by Katsumitsuyama, average particle diameter: 10 m) as filler and 5 weight of calcium carbonate (manufactured by Nitto Powder Chemical, average particle diameter: 1 / D1 or less) Parts by weight of titanium oxide (stone) as a colorant based on 100 parts by weight. 4 parts by weight, anatase type (produced by Hara Sangyo), antioxidant (lin-based antioxidant, trade name: PEP —— 8, Asahi Denka) 0.5 part by weight Surfactant (trade name, manufactured by Toho Chemical) : A mixture of 0.5 parts by weight of T-solvent and 50 ppm of water was mixed using a high-speed mixing mixer (Hensil mixer manufactured by Kawada Seisakusho). Then, the mixture was charged into a bent type single-screw kneader and extruded at 210 ° C. to obtain a porous pellet having a void ratio of 50%.
次に、 こ の多孔質ペ レ ツ ト に、 化学発泡剤 (大 日 精化製 商品名 : ハイ ドロ セ ー ル) 1.0 重量%を加え、 こ れを中間 層 (無機質充塡剤含有熱可塑性樹脂発泡層) の原料 と した 一方、 両外層 (熱可塑性樹脂非発泡層) 用 と して、 無機 質充塡剤を含ま ないポ リ プロ ピ レ ン樹脂 (上記 した も の と 同 じ も の) を用い、 上記 と 同様に してペ レ ッ ト を得た。  Next, 1.0% by weight of a chemical foaming agent (trade name: Hydrocell, manufactured by Dainichi Seika) was added to the porous pellet, and the resulting mixture was added to an intermediate layer (thermoplastic containing inorganic filler). As the raw material for the resin foamed layer, the outer layer (thermoplastic resin non-foamed layer) was used as a polypropylene resin containing no inorganic filler (same as above). ) And pellets were obtained in the same manner as above.
上記各ペ レ ッ ト を、 それぞれの押出機 (中間層用 は直径 Put each of the above pellets into the respective extruder (diameter for middle layer)
6 5 m m の押出機、 両外層用 は直径 6 5 m m の押出機) に 投入 し、 通常の T一 ダイ を用い、 押出温度 1 6 0 〜 2 0 0 °Cにて共押出を行ない、 両外層の厚みがそれぞれ 0.2m m 中間層の厚みが 2 m mの三層積層 シー ト を製造 した。 こ の積層 シー ト の中間層の発泡倍率は 2.8 倍であ っ た。 Extruder of 65 mm and for both outer layers) into a 65 mm diameter extruder, and co-extrusion at an extrusion temperature of 160 to 200 ° C using an ordinary T-die. A three-layer laminated sheet having an outer layer thickness of 0.2 mm and an intermediate layer thickness of 2 mm was manufactured. The expansion ratio of the intermediate layer of this laminated sheet was 2.8 times.
こ の三層積層 シー ト を真空圧空成形法に よ り 、 開 口径 The three-layer laminated sheet is formed by vacuum pressure forming method.
7 2 m m , 底直径 6 5 m m、 高さ 3 0 m mのカ ッ プ状容器 に成形 した。 なお、 賦形直前に容器外面側 (雕金型側) と 容器内面側 (雄金型側) の積層 シ ー ト の表面温度を第 2 表 に示すよ う に した。 賦形直前の容器外面側 (雌金型側) と 容器内面側 (雄金型側) の積層 シ ー ト の表面温度並びに成 形性の評価結果を第 2 表に示す。 実施例 9 It was formed into a cup-shaped container with a size of 72 mm, a bottom diameter of 65 mm, and a height of 30 mm. Table 2 shows the surface temperature of the laminated sheet on the outer surface side of the container (sculpture mold side) and the inner surface side of the container (male mold side) immediately before shaping. The outer surface of the container (female mold side) just before shaping Table 2 shows the evaluation results of the surface temperature and formability of the laminated sheet on the inner surface side (male mold side) of the container. Example 9
実施例 8 において、 容器形状を開 口径 1 3 5 m m , 底直 径 9 5 m m, 高 さ 1 0 O m m と した こ と以外は、 実施例 8 と同様に してカ ッ プ状容器を成形 した。 賦形直前の容器外 面側 (雌金型側) と容器内面側 (雄金型側) の積層 シー ト の表面温度並びに成形性の評価結果を第 2 表に示す。 実施例 1 0  A cup-shaped container was molded in the same manner as in Example 8, except that the container was changed to an opening diameter of 135 mm, a bottom diameter of 95 mm, and a height of 10 Omm. did. Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheet on the outer surface side (female mold side) and inner surface side (male mold side) of the container immediately before shaping. Example 10
実施例 8 において、 片側一方の外層 と 中間層 との間に、 接着層 (出光石油化学製の商品名 : 出光ポ リ タ ッ ク E — 1 0 0 で示さ れる接着樹脂か らな る層) を介 して E V O H ( ク ラ レ製、 商品名 : エバ一 ル E ) 層を共押出 して、 括弧 内に示 した厚みを有する、 次の如 き 6 層構造の積層 シー ト を得た。  In Example 8, an adhesive layer (a product made by Idemitsu Petrochemical: Idemitsu Polytax E—a layer made of an adhesive resin indicated by 100) is provided between one outer layer and the intermediate layer on one side. (Made by Kuraray, trade name: EVAL E) layer was co-extruded through the above to obtain a laminated sheet having the thickness shown in parentheses and having the following six-layer structure.
外層 ( 0.2mm)Z接着層(0.025mm) Z E V O H層 ( 0.03mm) Z接着層(0.025mm) Z中間層 (1.2mm)Z外層 (0.2mn 。  Outer layer (0.2mm) Z adhesive layer (0.025mm) Z EVOH layer (0.03mm) Z adhesive layer (0.025mm) Z intermediate layer (1.2mm) Z outer layer (0.2mn.
こ の積層 シー ト を用い、 容器内面側に E V O H層が く る よ う に した こ と以外は、 実施例 8 と同様に してカ ッ プ状容 器を成形 した。 賦形直前の容器外面側 (雌金型側) と容器 内面側 (雄金型側) の積層 シー ト の表面温度並びに成形性 の評価結果を第 2 表に示す。 実施例 1 1 Using this laminated sheet, a cup-shaped container was formed in the same manner as in Example 8, except that an EVOH layer was formed on the inner surface side of the container. Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheets on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping. Example 1 1
実施例 8 において、 片側一方の外層の外面に、 界面にお いて剝離可能な剝離層を表下層を介 して設けた こ と、 及び 外層を構成する成分 と して、. 高密度ポ リ エチ レ ン (出光石 油化学製、 商品名 : 5 2 0 M B ) 4 2 重量部、 ポ リ プロ ピ レ ン (出光石油化学製、 商品名 E — 1 0 0 G ) 2 8 重量部 及びタ ル ク (勝光山製、 平均粒径 1 0 m ) 3 0 重量部か らな る も のを用いた こ と以外は実施例 8 と同様に して、 括 弧内に示 した厚みを有する、 次の如 き 5 層構造の積層 シー ト を得た。 剝離層(0.1mm) Z表下層(0. 1mm) Z外層 (0.2m m)Z中間層 (1.2mm)Zタ 層 (0.2mm)0 In Example 8, on the outer surface of one outer layer on one side, a separation layer capable of separating at the interface was provided via the lower surface layer, and as a component constituting the outer layer, a high-density polyethylene was used. Len (made by Idemitsu Petrochemical, trade name: 52 MB) 42 parts by weight, Polypropylene (made by Idemitsu Petrochemical, trade name E—100G) 28 parts by weight and tal (Made by Katsumitsuyama, average particle diameter: 10 m) Except for using 30 parts by weight, the same procedure as in Example 8 was carried out to obtain the following Thus, a laminated sheet having a five-layer structure was obtained.剝 Layer (0.1mm) Z Lower layer (0.1mm) Z Outer layer (0.2mm) Z Middle layer (1.2mm) Z layer (0.2mm) 0
なお、 剝離層を構成する成分 と してば出光石油化学製の ポ リ プロ ピ レ ン (商品名 : E — 2 0 O S ) を用い、 表下層 を構成する成分 と しては高密度ポ リ エチ レ ン (出光石油化 学製、 商品名 : 5 2 0 M B ) 4 2 重量部、 ポ リ プロ ピ レ ン (出光石油化学製、 商品名 E - 1 0 0 G ) 2 & 重量部及び タ ル ク (勝光山製、 平均粒径 1 0 m ) 3 0 重量部か らな る も のを用 いた。  In addition, Idemitsu Petrochemical's Polypropylene (trade name: E-20 OS) was used as a component of the separation layer, and a high-density polymer was used as a component of the lower surface layer. Ethylene (manufactured by Idemitsu Petrochemical, trade name: 52 MB) 42 parts by weight, Polypropylene (manufactured by Idemitsu Petrochemical, trade name: E-100G) 2 & parts by weight Luc (manufactured by Katsumitsuyama, average particle size: 10 m) A material consisting of 30 parts by weight was used.
上記積層 シー ト を、 剝離層が容器内面側 とな る よ う に し た こ と以外は、 実施例 8 と同様に してカ ッ プ状容器を成形 した。 賦形直前の容器外面側 (雌金型側) と容器内面側 ( 雄金型側) の積層 シー ト の表面温度並びに成形性の評価結 果を第 2 表に示す。 実施例 1 2 A cup-shaped container was formed in the same manner as in Example 8 except that the laminated sheet was arranged so that the separation layer was on the inner surface side of the container. Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheets on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping. Example 1 2
実施例 8 において、 外層 と 中間層 と の間に、 ポ リ プロ ピ レ ン (出光石油化学製、 商品名 : E — 1 0 5 G M ) 6 0 重 量部及びタ ル ク (勝光山製、 平均粒径 1 0 z m ) 4 0 重量 部か らな る無機質充塡剤含有熱可塑性樹脂層 (厚み 2 m m ) をそれぞれ設けて 5 層構造の積層 シ一 ト と した こ と以外は 実施例 8 と 同様に してカ ッ プ状容器を成形 した。 賦形直前 の容器外面側 (雌金型側) と容器内面側 (雄金型側) の積 層 シー ト の表面温度並びに成形性の評価結果を第 2 表に示 す。 実施例 1 3  In Example 8, between the outer layer and the intermediate layer, a polypropylene (made by Idemitsu Petrochemical Co., trade name: E—105 GM) 60 weight parts and a talc (made by Katsumitsuyama, Example 8 Except that an inorganic filler-containing thermoplastic resin layer (thickness: 2 mm) consisting of 40 parts by weight of each was provided to form a 5-layer laminated sheet. A cup-shaped container was formed in the same manner as described above. Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheet on the outer surface side of the container (female mold side) and the inner surface side of the container (male mold side) immediately before shaping. Example 13
実施例 8 において、 容器形状を口部 1 6 c m X 1 0 c m、 底 部 1 3 c m X 7 c m、 高 さ 2 c mの角形 ト レ ー状に し、 かつ真空 成形 した こ と以外は、 実施例 8 と同様に して発泡容器を得 た。 賦形直前の容器外面側 (雕金型側) と容器内面側 (雄 金型側) の積層 シー ト の表面温度並びに成形性の評価結果 を第 2 表に示す。 比較例 8 〜 9  The procedure was performed in the same manner as in Example 8 except that the shape of the container was a square tray having a mouth of 16 cm × 10 cm, a bottom of 13 cm × 7 cm, a height of 2 cm, and vacuum forming. A foamed container was obtained in the same manner as in Example 8. Table 2 shows the evaluation results of the surface temperature and moldability of the laminated sheets on the outer surface side (sculpture mold side) and the inner surface side (male mold side) of the container immediately before shaping. Comparative Examples 8 to 9
実施例 8 において、 賦形直前の容器外面側 (雌金型側) と容器内面側 (雄金型側) の積層 シー ト の表面温度を第 2 表に示すよ う に変えた こ と以外は、 実施例 8 と同様に して カ ッ プ状容器を成形 した。 陚形直前の容器外面側 (雌金型 側) と容器内面側 (雄金型側) の積層 シ ー ト の表面温度 と 共に成形性の評価結果を第 2 表に示す。 (以下、 余白) In Example 8, except that the surface temperature of the laminated sheet on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping was changed as shown in Table 2. Then, a cup-shaped container was formed in the same manner as in Example 8.外 Outside of container just before shape (Female mold Table 2 shows the evaluation results of the formability, as well as the surface temperature of the laminated sheet on the inner side (male mold side) and the inner side of the container (male mold side). (Hereinafter, margin)
第 2 表 Table 2
Figure imgf000041_0001
Figure imgf000041_0001
〔第 2 表の脚注〕 (Table 2 footnotes)
* 成形性の評価基準 : 〇 =良好、 △ =普通、 X =不可 実施例 1 4  * Formability evaluation criteria: 〇 = good, △ = normal, X = unacceptable
ポ リ プロ ピ レ ン樹脂 (ポ リ プロ ピ レ ン ホモポ リ マー、 出 光石油化学製、 商品名 : 出光 E — 1 0 5 G M、 M I = 0 . 5 g / 1 0 分) 6 5 重量部、 無機質充塡剤 と しての タ ル ク (勝光山製、 平均粒径 1 0 m ) 3 0 重量部 と炭酸カ ル シ ゥ ム ( 日 東粉化工業製、 平均粒径 1 m以下) 5 童量部の 合計 1 0 0 重量部に対 し、 着色剤 と して酸化チタ ン (石原 産業製、 ア ナ夕 一ゼ型) 4 重量部、 酸化防止剤 ( リ ン系酸 化防止剤、 商品名 : P E P—8 、 旭電化製) 0. 5 重量部、 界面活性剤( 東邦化学製、 商品名 : ソ ルボ ン T 一 6 0 ) を 0. 5 重量部及び水 5 0 0 p p mを配合 した も のを、 高速混 合 ミ キサー ( 川田製作所製ヘ ン シ ェ ル ミ キサー) を用いて 混合 した後、 ベ ン ト式単軸混練機に投入 し、 2 1 0 でで押 出 し、 空間率 5 0 % の多孔質ペ レ ツ ト を得た。  Polypropylene resin (Polypropylene homopolymer, manufactured by Idemitsu Petrochemical, trade name: Idemitsu E—105 GM, MI = 0.5 g / 10 minutes) 65 parts by weight , As an inorganic filler (Katsumitsuyama, average particle size: 10 m) 30 parts by weight and calcium carbonate (Nitto Powder Chemical, average particle size: 1 m or less) 5 Total weight of 100 parts by weight, 100 parts by weight of titanium oxide, 4 parts by weight of titanium oxide (made by Ishihara Sangyo Co., Ltd., ananalyze type) as an coloring agent, antioxidant (phosphorus antioxidant) 0.5 parts by weight of surfactant (manufactured by Toho Chemical Co., Ltd., trade name: SOLVON T-160) and 0.5 parts by weight of water and 500 ppm of water The blended components were mixed using a high-speed mixing mixer (Henschel mixer manufactured by Kawada Seisakusho), and then charged into a bent single-shaft kneader, and extruded at 210. , Space ratio 50% To obtain a porous Bae Les Tsu door.
次に、 こ の多孔質ペ レ ツ ト に、 化学発泡剤 (大 日精化製 商品名 : ハイ ドロ セ ー ル ) 1 . 0 重量%を加え、 こ れを中間 層 (無機質充塡剤含有熱可塑性樹脂発泡層) の原料 と した 一方、 両外層 (熱可塑性樹脂非発泡層) 用 と して、 無機 質充寧剤を含ま ないポ リ プロ ピ レ ン樹脂 (上記 した も の と 同 じ も の) を用い、 上記 と 同様に してペ レ ツ ト を得た。  Next, 1.0% by weight of a chemical foaming agent (trade name: Hydrocell, manufactured by Dainichi Seika) was added to the porous pellet, and the resulting mixture was added to the intermediate layer (heat containing inorganic filler). As the raw material for the thermoplastic resin foam layer), the outer layer (thermoplastic resin non-foam layer) was used as a raw material for the non-foaming layer, and the polypropylene resin containing no inorganic filler (same as above) ), And pellets were obtained in the same manner as above.
上記各ペ レ ツ ト を、 それぞれの押出機 (中間層用 は直径 6 5 m m の押出機、 両外層用 は直径 5 O m m の押出機) に 投入 し、 通常の T — ダイ を用い、 押出温度 1 6 0 〜 2 0 0 てにて共押出を行ない、 両外層の厚みがそれぞれ 0.2m m、 中間層の厚みが 1. 1 m mの三層積層 シー ト ( 厚み 1.5 m m ) を製造 した。 こ の積層 シー ト の中間層の発泡倍率は 2.8 倍 であ っ た。 Transfer each of the above pellets to each extruder (diameter for the middle layer) 65 mm extruder, for both outer layers is extruded into a 5 Omm diameter extruder), and co-extrusion is carried out using an ordinary T-die at an extrusion temperature of 160-200. A three-layer laminated sheet (thickness: 1.5 mm) having a thickness of 0.2 mm and an intermediate layer of 1.1 mm each was manufactured. The expansion ratio of the intermediate layer of this laminated sheet was 2.8 times.
こ の三層積層 シー ト を、 真空圧空成形法に よ り 、 開 口 径 1 3 5 m m、 底直径 1 3 5 m m、 高 さ 1 0 5 m mであ っ て、 容器側面の上部 5 0 m mの範囲 (把持部分) に 凸形状が 付さ れた、 第 1 3 図に示す如き形状のカ ッ プ状容器に成形 した。 なお、 賦形直前の容器外面側 (雌金型側) の積層 シ — ト の温度が 1 2 1 °C、 容器内面側 (雄金型側) の積層 シ — 卜 の表面温度が 9 8 °C とな る よ う に し、 ま た、 雌金 と して、 凹凸部のあ る特殊形状金型を使用 して成形 した。 最 大発泡倍率 と断熱性 ( グ リ ッ プ時間) の評価結果を第 3 表 に示す。 なお、 断熱性 ( グ リ ッ プ時間) は、 9 5 °Cの湯を 試料容器の 8 分 目 ま で注入 し、 素手で持っ てい られる 時間 を示 した。 こ の時間が 3 0 秒以下は実用上使用不可能であ り 、 6 0 秒以上であれば実用上使用可能であ る。 実施例 1 5  This three-layer laminated sheet was formed by vacuum pressure forming method with an opening diameter of 135 mm, a bottom diameter of 135 mm, and a height of 105 mm. It was formed into a cup-shaped container with a convex shape in the area (gripping part) of the shape shown in Fig. 13. The temperature of the laminated sheet on the outer surface side (female mold side) of the container immediately before shaping was 121 ° C, and the surface temperature of the laminated sheet on the inner surface side of the container (male mold side) was 98 ° C. It was made to be C, and it was molded using a specially shaped metal mold with irregularities as the female metal. Table 3 shows the evaluation results of the maximum foaming ratio and the heat insulation (grip time). The heat insulation (grip time) indicates the time during which hot water at 95 ° C was poured into the sample container up to the 8th minute and held with bare hands. If this time is less than 30 seconds, it cannot be used practically, and if it is more than 60 seconds, it can be used practically. Example 15
実施例 1 4 において、 使用する金型の形状を変えて、 第 1 4 図に示す よ う に、 容 ¾側面全体に凹凸を有す る カ ッ プ 状容器 (開 口 径 7 0 m m、 底直径 7 0 m m、 高 さ 6 O m m ) を成形 した。 最大発泡倍率 と断熱性 ( グ リ ッ プ時間) の評 価結果を第 3 表に示す。 実施例 1 6 In Example 14, the shape of the mold to be used was changed, and as shown in FIG. 14, a cup-shaped container having an uneven surface on the entire side (opening diameter 70 mm, bottom (70 mm diameter, 6 O mm height) Was molded. Table 3 shows the evaluation results of the maximum foaming ratio and the heat insulation (grip time). Example 16
実施例 1 4 において、 使用する金型の形状を変えて、 第 1 5 図に示すよ う に、 容器側面の下部のみに凹凸を有する カ ッ プ状容器 (開 口径 1 3 5 m m、 底直径 1 3 5 m m、 高 さ 1 0 5 m m、 容器側面の下部 4 O m mの高さ ま での範囲 に把持部分 と しての凹凸形状が付さ れた も の) を成形 した。 最大発泡倍率 と断熱性 ( グ リ ッ プ時間) の評価結果を第 3 表に示す。 比較例 1 0  In Example 14, the shape of the mold used was changed, and as shown in FIG. 15, a cup-shaped container having an unevenness only at the lower portion of the side of the container (open diameter: 135 mm, bottom diameter: It was molded to have a height of 135 mm, a height of 105 mm, and a height of 4 Omm below the side wall of the container, with a concave-convex shape as a gripping part). Table 3 shows the evaluation results of the maximum foaming ratio and heat insulation (grip time). Comparative Example 10
実施例 1 4 において、 賦形直前の容器外面側 (雌金型側) と容器内面側 (雄金型側) の積層 シ ー ト の表面温度を共に 1 2 1 で と した こ と以外は、 実施例 1 4 と同様に してガ ッ プ状容器を成形 した。 得 られたカ ッ プ状容器は、 第 1 6 図 に示すよ う に、 内面 も 凹凸を有する も のであ っ た。 最大発 泡倍率 と断熱性 ( グ リ ッ プ時間) の評価結果を第 3 表に示 す。 第 3 表 In Example 14, except that the surface temperature of the laminated sheet on the outer surface side (female mold side) and the inner surface side (male mold side) of the container immediately before shaping were both set to 121. Gap-shaped containers were formed in the same manner as in Example 14. The obtained cup-shaped container had an irregular inner surface as shown in Fig. 16. Table 3 shows the evaluation results of the maximum foaming ratio and the heat insulation (grip time). Table 3
Figure imgf000045_0001
本発明の第 2 に よれば、 二次発泡に よ る も のではな く 、 積層体内部の気体移動に よ り 、 高発泡部分 と低発泡部分 と を有する本発明の第 1 の部分発泡容器が得 られる。
Figure imgf000045_0001
According to the second aspect of the present invention, the first partially foamed container of the present invention having a high-foamed portion and a low-foamed portion, not by secondary foaming but by gas transfer inside the laminate. Is obtained.
すなわち、 本発明の第 2 に よれば、 特殊な製造設備を必 要 とする こ とな く 、 肉厚分布や発泡が不均一であ っ て、 部 分的に高発泡部分を有 し、 かつ意匠性に優れた本発明の第 1 の部分発泡容器を得る こ とができ る。 本発明の第 2 に よ り 得 られる容器は、 部分的に高発泡部分を有 している ため 高温の内容物を収容 した場合な どであ っ て も直接手で把持 し う る こ とが可能であ る。 ま た、 本発明の第 2 に よれば、 容器外面に高発泡部分 と 低発泡部分か らな る 凹凸を有する ため、 こ れが リ ブ とな つ て剛性の向上 した発泡容器を得る こ とができ る。 That is, according to the second aspect of the present invention, there is no need for special manufacturing equipment, the thickness distribution and the foaming are non-uniform, the foam has a partially highly foamed portion, and The first partially foamed container of the present invention having excellent design properties can be obtained. The container obtained according to the second aspect of the present invention has a partially high foaming portion, so that it can be directly grasped by hand even when it contains high-temperature contents. It is possible. Further, according to the second aspect of the present invention, since the outer surface of the container has irregularities composed of a high foaming portion and a low foaming portion, it becomes a rib to obtain a foamed container having improved rigidity. Can be done.
さ ら に、 本発明の第 2 では、 成形 さ れた発泡容器の内側 は凹凸が殆 どな く 平滑であ っ て、 容器 と しての美観に優れ る上に、 食品や医薬品等の被収容物が殆 ど残留せず、 しか も容器外表面の う ち少な く と も手に よ っ て把持する部分が 凹凸を有 している容器が得 られる。  Further, according to the second aspect of the present invention, the inside of the molded foam container is smooth with almost no irregularities, which is excellent in appearance as a container, and is excellent in covering food and medicine. It is possible to obtain a container in which almost no contents remain, and at least the portion of the outer surface of the container that is gripped by hand has irregularities.
ま た、 本発明の第 2 に よれば、 発泡容器の外表面にェ ン ボス加工等で得 られる以上の精緻な立体的模様, 図案等を 忠実に再現する こ とが可能であ り 、 容器の印刷を省略す る こ と も可能であ る。  Further, according to the second aspect of the present invention, it is possible to faithfully reproduce a more detailed three-dimensional pattern, pattern, etc. than can be obtained by embossing or the like on the outer surface of the foamed container. It is also possible to omit the printing.
本発明の部分発泡容器は、 容器成形時に発泡層内の気体 を移動 さ せる こ と に よ り 、 容器の一部分を発泡させた も の であ る ので、 発泡部分以外の容器の肉厚は薄 く な る。 その ため、 容器全体に薄肉感があ る、 嵩張 らない、 断熱容器で あ り なが ら熱伝導性が良 く 、 冷凍, ボイ ルが可能であ る、 な どの特質を有する。  In the partially foamed container of the present invention, a part of the container is foamed by moving the gas in the foamed layer at the time of molding the container. Therefore, the thickness of the container other than the foamed portion is thin. It becomes bad. Therefore, it has such characteristics that the whole container has a thin feeling, is not bulky, and has good thermal conductivity, and can be frozen and boiled even though it is an insulated container.
さ ら に、 本発明の第 3 に よれば、 特殊な製造設備を必要 とせず、 容器成形時に、 シー ト 発泡状態を保持するか、 二 次発泡又は部分的に発泡を保持するか、 或いは部分的に二 次発泡を さ せるか、 のいずれかを行ない、 肉厚分布や発泡 の均一な容器を得る こ とができ る。 ま た、 本発明の第 3 に よ り 得 られる 発泡容器は、 断熱性に優れた も のであ る。 し か も本発明の第 3 では、 熱成形が容易であ る。 Further, according to the third aspect of the present invention, no special manufacturing equipment is required, and when the container is formed, the sheet is kept in a foamed state, is subjected to secondary foaming or partially foamed, or is partially foamed. It is possible to obtain a container with uniform wall thickness distribution and foaming by subjecting either secondary foaming or foaming. Further, the foamed container obtained by the third aspect of the present invention has excellent heat insulating properties. I In the third aspect of the present invention, thermoforming is easy.
本発明の第 3 に よれば、 上記の よ う に特殊な製造設備を 必要 とする こ とな く 、 簡単な設備で、 意匠的に優れ、 しか も高温の内容物を収容 した場合な どであ っ て も直接手で把 持 し う る断熱性の発泡容器を製造する こ とができ る。  According to the third aspect of the present invention, there is no need for special manufacturing equipment as described above, and it is a simple equipment, which is excellent in design and accommodates high-temperature contents. Even so, a heat-insulating foam container that can be directly grasped by hand can be manufactured.
すなわち、 本発明の第 3 では、 成形 さ れた発泡容器の内 側の発泡を抑えてあ る ために、 凹凸がほ とん どな く 平滑で あ っ て、 容器 と しての美観に優れる上に、 食品や医薬品等 の被収容物がほ とん ど残留せず、 しか も容器外表面の う ち 少な く と も手に よ っ て把持する部分が凹凸を有 している容 器が得 られる。 ま た、 把持する部分が高発泡さ れている も のであ る ため、 断熱性が高 く 、 把持さ れる部分の表面積が 大き い こ と と相 ま っ て、 容器に高温又は低温の内容物を収 容 した場合に も、 素手で把持する こ とが可能 とな る。  That is, in the third aspect of the present invention, since the foaming on the inner side of the molded foam container is suppressed, the unevenness is almost smooth and the container is excellent in appearance. On top of this, there is a container that contains little food or medicine, etc., and has at least a part of the outer surface of the container that is gripped by hand, with irregularities. can get. In addition, since the gripping portion is highly foamed, the container has high heat or low temperature contents, in combination with high heat insulation and a large surface area of the gripping portion. Can be grasped with bare hands.
さ らに、 こ の よ う な大き な凹凸 と高発泡 と に よ り 、 独特 の意匠的美観を有する容器を得る こ とができ る。 産業上の利用可能性  Further, such large irregularities and high foaming make it possible to obtain a container having a unique aesthetic appearance. Industrial applicability
本発明の第 2 に よ り 得 られる本発明の第 1 の部分発泡容 器は、 食品や医薬品等をは じめ、 各種分野において好適に 利用する こ とができ る。 さ ら に、 本発明の第 3 に よ り 得 ら れる本発明の第 1 の部分発泡容器 も、 食品や医薬品等をは じめ、 各種分野において好適に利用する こ とができ る。  The first partially foamed container of the present invention obtained by the second of the present invention can be suitably used in various fields including foods and pharmaceuticals. Furthermore, the first partially foamed container of the present invention obtained by the third of the present invention can also be suitably used in various fields including foods and pharmaceuticals.

Claims

言青 求 の 範 囲 Scope of demand
(1) 発泡コ ア層 とその両側に隣接する非発泡の外層 とを有 する、 少な く と も 3 層構造の積層 シー ト を熱成形する こ と に よ り 得 られる発泡容器であ っ て、 前記発泡コ ア層が熱可 塑性樹脂 と無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱 可塑性樹脂 と前記無機質充填剤 と を前者 9 9 . 9 〜 5 0 重 量% と後者 0 . 1 〜 5 0 重量%の割合で配合 してな る連続 気泡を有する発泡体であ っ て、 凸部が容器外面のみに形成 さ れ、 容器内面に形成さ れる 凹部の発泡倍率が前記成形前 積層 シー ト の発泡コ ア層の発泡倍率よ り 低い こ とを特徴 と する部分発泡熱成形容器。 (1) A foam container obtained by thermoforming a laminated sheet having at least a three-layer structure having a foam core layer and a non-foamed outer layer adjacent to both sides thereof. The foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are composed of 99.9 to 50% by weight of the former and 0 of the latter. A foam having open cells blended at a ratio of 1 to 50% by weight, wherein the convex portion is formed only on the outer surface of the container, and the expansion ratio of the concave portion formed on the inner surface of the container is as defined in the above molding. A partially foamed thermoformed container characterized by having a lower foaming ratio than the foamed core layer of the laminated sheet.
(2) 連続気泡率が 3 0 %以上、 1 0 0 %以下であ っ て、 か っ凸部の発泡の倍率 ( N ) が、 成形前積層 シー ト の発泡コ ァ層の発泡倍率を n と した場合、 N = k x n の関係におい て、 1 . 2 ≤ k ≤ 4 の範囲にあ る ク レ ーム 1 の部分発泡熱 成形容器。  (2) When the open cell ratio is 30% or more and 100% or less, and the foaming ratio (N) of the convex portion is n, the foaming ratio of the foamed core layer of the laminated sheet before molding is n. , The partially foamed thermoformed container of claim 1 in the range of 1.2 ≤ k ≤ 4 in the relationship of N = kxn.
(3) 発泡コ ア層を、 熱可塑性樹脂 と無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱可塑性樹脂 と前記無機質充塡剤 と を前者 9 9 . 9 〜 5 0 重量% と後者 0 . 1 〜 5 0 重量%の 割合で配合 してな る連続気泡を有する発泡層 と し、 かつ、 前記発泡コ ア層の両側に隣接する外層を熱可塑性樹脂か ら な る非通気性層 と した、 少な く と も 3 層構造の積層 シー ト を用い、 当該積層 シー ト を雌金型のみに凹凸を設けた金型 を用 いて熱成形する こ と を特徴 とする ク レ ーム 1 記載の部 分発泡熱成形容器を製造する方法。 (3) The foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are mixed in the former at 99.9 to 50% by weight and the latter at 99.9 to 50% by weight. A non-breathable layer having open cells formed by blending at a ratio of 0.1 to 50% by weight, and an outer layer adjacent to both sides of the foam core layer made of a thermoplastic resin. A mold using a laminated sheet having at least a three-layer structure, and forming the laminated sheet on the female mold only with irregularities. A method for producing a partially foamed thermoformed container according to claim 1, wherein the partially foamed thermoformed container is thermoformed by using a thermoforming method.
(4) 連続気泡率が 3 0 %以上、 1 0 0 %以下であ る ク レ ー ム 3 記載の方法。  (4) The method according to claim 3, wherein the open cell ratio is 30% or more and 100% or less.
(5) 発泡コ ア層にお ける無機質充塡剤が、 タ ル ク 或いは炭 酸カ ル シウ ムであ る ク レ ー ム 3 記載の方法。  (5) The method according to claim 3, wherein the inorganic filler in the foam core layer is talc or calcium carbonate.
(6) 積層 シー ト と して、 一方の側の外層 と発泡コ ア層 と の 間に、 それぞれ接着層を介 してエチ レ ン一 ビニルアル コ 一 ル共重合体層を設けた 6 層構造の積層 シー ト を用 いる ク レ ー ム 3 記載の方法。  (6) A six-layer structure in which an ethylene-vinyl alcohol copolymer layer is provided between the outer layer on one side and the foam core layer via an adhesive layer as a laminated sheet The method according to claim 3 using a laminated sheet of:
(7) 積層 シー ト と して、 片側一方の外層の外面に、 界面に おいて剝離可能な剝離層を表下層を介 して設けた積層 シ一 ト を用 い る ク レ ーム 3 記載の方法。  (7) Claim 3 in which a laminated sheet is used as a laminated sheet, in which a separation layer that can be separated at the interface is provided on the outer surface of one outer layer on one side via the lower surface layer. the method of.
(8) 発泡コ ア層を、 熱可塑性樹脂 と無機質充塡剤 と発泡剤 とか らな り 、 かつ前記熱可塑性樹脂 と前記無機質充塡剤 と を前者 9 9 . 9 〜 5 0 重量% と後者 0 . 1 〜 5 0 重量%の 割合で配合 してな る連続気泡を有する連続発泡層 と し、 か つ、 前記発泡コ ア層の両側に隣接する外層を熱可塑性樹脂 か らな る非通気性層 と した、 少な く と も 3 層構造の積層 シ ー ト を用い、 前記積層 シー ト を成形 して発泡容器を製造す る にあた り 、 容器成形時の賦形直前に前記積層 シー ト の容 器外面側を高温に し、 容器内面側を低温 と し、 かつ容器外 面側 と容器内面側 と の表面温度差 ( X ) が 1 0 °C < x < (8) The foamed core layer is composed of a thermoplastic resin, an inorganic filler and a foaming agent, and the thermoplastic resin and the inorganic filler are mixed in the former at 99.9 to 50% by weight and the latter at 99.9 to 50% by weight. 0.1 to 50% by weight as a continuous foam layer having open cells, and outer layers adjacent to both sides of the foam core layer are made of a thermoplastic resin. When a foamed container is manufactured by molding the laminated sheet using a laminated sheet having at least a three-layer structure as a functional layer, the laminated sheet is formed immediately before shaping at the time of molding the container. The outer surface of the container is set to a high temperature, the inner surface of the container is set to a low temperature, and the surface temperature difference (X) between the outer surface of the container and the inner surface of the container is 10 ° C <x <
7 0 C とな る よ う な温度で成形 し、 シー ト 発泡状態を保持 するか、 二次発泡又は部分的に発泡を保持するか、 或いは 部分的に二次発泡を させるか、 のいずれかを行な う こ とを 特徴 とする ク レ ー ム 1 記載の部分発泡容器を製造する方法Molded at a temperature of 70 C to maintain sheet foaming , Secondary foaming, partially foaming, or partially foaming, partially foamed container according to claim 1. How to manufacture
(9) 前記発泡コ ア層 と外層 との間であ っ て、 発泡コ ア層の 片面又は両面に無機質充塡剤含有熱可塑性樹脂非発泡層を 設けた こ と を特徴 とする ク レ ーム 8 記載の方法。 (9) A clay characterized in that an inorganic filler-containing thermoplastic resin non-foamed layer is provided on one or both sides of the foamed core layer between the foamed core layer and the outer layer. The method described in item 8.
(10) 積層 シー ト と して、 片側一方の外層の外面に、 界面に おいて剝離可能な剝離層を表下層を介 して設けた積層 シー ト を用いる ク レ ー ム 8 記載の方法。  (10) The method according to claim 8, wherein the laminated sheet is a laminated sheet in which a separation layer which can be separated at the interface is provided on the outer surface of one outer layer on one side via the lower surface layer.
PCT/JP1994/002248 1993-12-27 1994-12-27 Partially foamed, thermoformed container and production method therefor WO1995018011A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP34706593A JP3342762B2 (en) 1993-12-27 1993-12-27 Foam container and its manufacturing method
JP5/347065 1993-12-27
JP17775294A JP3400553B2 (en) 1994-07-07 1994-07-07 Partially foamed thermoformed container and method for producing the same
JP6/177752 1994-07-07

Publications (1)

Publication Number Publication Date
WO1995018011A1 true WO1995018011A1 (en) 1995-07-06

Family

ID=26498183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002248 WO1995018011A1 (en) 1993-12-27 1994-12-27 Partially foamed, thermoformed container and production method therefor

Country Status (1)

Country Link
WO (1) WO1995018011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423916B (en) * 2005-03-09 2009-02-11 Taylor Egbert H & Company Ltd Insulated waste container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278153A (en) * 1975-12-24 1977-07-01 Nihon Matai Co Ltd Production of heat insulation container
JPS61216836A (en) * 1986-03-20 1986-09-26 Sekisui Plastics Co Ltd Production of expanded blow molding for full mold having skin
JPH0554810B2 (en) * 1988-06-30 1993-08-13 Sekisui Plastics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278153A (en) * 1975-12-24 1977-07-01 Nihon Matai Co Ltd Production of heat insulation container
JPS61216836A (en) * 1986-03-20 1986-09-26 Sekisui Plastics Co Ltd Production of expanded blow molding for full mold having skin
JPH0554810B2 (en) * 1988-06-30 1993-08-13 Sekisui Plastics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423916B (en) * 2005-03-09 2009-02-11 Taylor Egbert H & Company Ltd Insulated waste container

Similar Documents

Publication Publication Date Title
TWI519397B (en) Process for producing molded article of expanded polylolefin-based resin beads, and molded article of expanded polylolefin-based resin beads
TW568828B (en) Multilayer structure for packaging and packaging containers manufactured therefrom, as well as method for manufacturing of the multilayer structure
KR960011745B1 (en) Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same
TW298596B (en)
JP4332198B2 (en) Returnable box material made of propylene-based resin foam laminated flat plate
JP2015085673A (en) Laminated foam sheet, method for producing laminated foam sheet and container
JP3400553B2 (en) Partially foamed thermoformed container and method for producing the same
JP5673625B2 (en) Laminated sheet for thermoforming and laminated resin container
WO1995018011A1 (en) Partially foamed, thermoformed container and production method therefor
JP3254061B2 (en) Multilayer sheet and multilayer container comprising the sheet
JPH0742715Y2 (en) Laminated sheet
JP2010269510A (en) Thermoforming sheet formed of polyolefinic resin laminated foam sheet, and thermoforming article using the same
JP4458905B2 (en) Foamed polyethylene resin packaging container and method for producing the same
JP3342762B2 (en) Foam container and its manufacturing method
JP2000085039A (en) Molded body
JP4484184B2 (en) Polystyrene resin foam sheet, thermoplastic resin laminated foam sheet, and containers thereof
JP4535376B2 (en) Styrenic resin laminated foam sheet, method for producing the same, and molded product thereof
JP6280718B2 (en) Laminated foam sheet and container
JP2006001036A (en) Hollow structural sheet
JP2622556B2 (en) Food containers
JP6621292B2 (en) Thermoplastic resin sheet and container using the same
JP3432139B2 (en) Laminated foam and foam molded article using the same
JPH0237555Y2 (en)
JPH09226851A (en) Food container and lid
KR200377498Y1 (en) Construction of a inflated mat contains the nanosilver particle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase