WO1995007473A1 - Procede et dispositif pour la detection et la localisation d'obstacles dans l'environnement d'un vehicule - Google Patents

Procede et dispositif pour la detection et la localisation d'obstacles dans l'environnement d'un vehicule Download PDF

Info

Publication number
WO1995007473A1
WO1995007473A1 PCT/FR1994/001043 FR9401043W WO9507473A1 WO 1995007473 A1 WO1995007473 A1 WO 1995007473A1 FR 9401043 W FR9401043 W FR 9401043W WO 9507473 A1 WO9507473 A1 WO 9507473A1
Authority
WO
WIPO (PCT)
Prior art keywords
radars
vehicle
environment
probabilities
obstacles
Prior art date
Application number
PCT/FR1994/001043
Other languages
English (en)
Inventor
Omer Mercier
Michel Trouble
Original Assignee
Framatome
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Framatome filed Critical Framatome
Priority to EP94926275A priority Critical patent/EP0717854A1/fr
Publication of WO1995007473A1 publication Critical patent/WO1995007473A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the present invention relates to a method and a device for detecting and locating obstacles located in the environment of a stopped or moving vehicle.
  • An important function of mobile robotics concerns the detection of objects or obstacles located in front of or on the side of the carrier vehicle, insofar as these can impede its movement and must be bypassed, or require its complete stop for the sake of safety. or, on the contrary, are sufficiently distant or in a direction such that the vehicle can continue its way without deviation.
  • a secondary aspect of this detection consists in using a priori knowledge of the (absolute) positioning of the detected object with respect to a map or a larger site, so that by detecting this object and by measuring its coordinates (site and distance ) information about the absolute position of the vehicle itself can be obtained.
  • a convenient means of detecting objects located in the periphery of a vehicle and making it possible to measure the coordinates thereof is by using ultrasonic sensors.
  • an acoustic wave is emitted periodically and, being reflected by the objects constituting obstacles to its propagation, returns to the sensor after a delay time, which depends directly on the distance of the object thus detected.
  • the present invention aims to overcome these drawbacks.
  • the invention firstly relates to a method for detecting and locating obstacles located in the environment of a vehicle, characterized in that it comprises the steps consisting in transmitting signals towards of said environment from a plurality of radars arranged on the vehicle, to deduce from the signals received in echo the probabilities of occupation by an obstacle of a set of elementary cells of said environment, and to merge the probabilities relating to each of said cells .
  • the fusion is carried out on the values of the probabilities provided by a plurality of radars, and in particular two radars.
  • the fusion is carried out spatially so as to associate data returned simultaneously by a subset of radars having detected the same obstacle from different angles.
  • the merge is performed on the value of the probability supplied by a radar and the value of the probability previously known for the same cell.
  • the fusion is carried out temporally, the same obstacle being seen successively by the same sensor which will have advanced at the same time as the vehicle.
  • the merge operation is applied to the value already assigned to the cell.
  • a step of thresholding the results of the fusion is provided so as to obtain a stripped map of the various artefacts which may come from specular or multiple reflection, from the emitted radar waves.
  • the signal emitted by the radars is frequency modulated, the signal received in echo is mixed with a fraction of the signal emitted so, after elimination of the carrier frequency, to form a beat signal, and the beat pulses are counted during a predetermined interval to provide the distance from an obstacle.
  • this distance can be provided by Fourrier transformation.
  • the emission of each radar lasts a limited time and the repetition logic can even be coded for the purpose of identifying the source.
  • the invention also relates to a device for modeling the environment of a vehicle, characterized in that it comprises a plurality of radars mounted on the vehicle and a processing unit arranged to merge the data provided by the radars.
  • radars of this type are generally used in speed measurement whereas here, it is the distance which is measured principally, the speed measurement being possibly used only on an ancillary basis.
  • the radars used for distance measurements are generally radars operating in pulses, radars with continuous emission and operating in frequency modulation are preferably used here.
  • FIG. 1 is a schematic top view of a vehicle fitted with the means of the invention
  • FIG. 2 is a functional diagram of these means
  • FIG. 3 illustrates the signals emitted by the radars
  • FIG. 4 represents the modeling of the environment of the vehicle
  • FIG. 5 illustrates the function of distribution of the probabilities of occupation of a cell by an obstacle as a function of the distance from the focus of an antenna
  • FIG. 6 illustrates the function of distribution of the probabilities of occupation of this cell according to the angular difference between its direction and the axis of the antenna.
  • FIG. 1 represents an automatic vehicle provided with a platform 1 on which are mounted a plurality of radars 2, for example twenty.
  • the radars 2 are here wide-lobe radars, that is to say with an opening angle 2 ⁇ typically between 15 ° and 120 °.
  • an opening angle 2 ⁇ typically between 15 ° and 120 °.
  • a large angle 2 ⁇ is sought to obtain good peripheral coverage around the vehicle with as few sensors as possible.
  • the radars 2 are here FMCW radars with frequency modulation and continuous emission or by time window.
  • the radars 2 are placed at the periphery of the vehicle so as to obtain a vision as complete as desired of its environment.
  • each of these antennas is connected via an interface circuit 4a, 4b, 4c respectively, to a unit 5 capable of producing the trigger signals Sa, Sb and Se respectively of the radars.
  • the trigger signals may be common to all radars.
  • the signals Sa, Sb, Se are frequency modulated as shown in FIG. 3.
  • a carrier frequency Fp is modulated by a sawtooth wave of frequency ⁇ f. This frequency generation can be ensured at unit 5 by a GUNN oscillating diode.
  • the modulated transmission lasts a limited time D. This thus facilitates the differentiation of the signals received as well as the extraction of the information sought.
  • the repetition logic of the transmissions that is to say the duration T in FIG. 3, for example according to a pseudo-random model, it is possible to personalize each of the transmissions. It is thus in particular possible to operate several vehicles in the same environment.
  • the signal received in return by each antenna 2a, 2b, 2c is processed in an analog processing unit 6a, 6b, 6c respectively.
  • the received signal is out of phase with the transmitted signal.
  • a beat signal at a typical frequency of the order of 1 kHz is obtained.
  • the signal is first filtered to eliminate the high frequencies, corresponding to the most distant obstacles. We thus retain only the signal backscattered by the first obstacle encountered, which is then processed by Fourrier transform.
  • the speed information is not necessary for the implementation of the invention. Its availability is nevertheless an advantage in applications.
  • the digitized distance and speed information is supplied by the analog processing units 6a, 6b, 6c to the digital processor 7.
  • the processor 7 essentially consists of a calculation unit capable of accessing a memory 8.
  • Each element of the memory 8 is associated with an elementary cell 9 of the environment of the vehicle.
  • the content of each of its memory elements represents the probability that a particular cell, identified by its site ⁇ and its distance d from the vehicle, contains an obstacle.
  • FIG. 4 represents 2 radars 11 and 12 each having detected an obstacle, the first at the distance di and the second at the distance d2-
  • a probability of occupation is assigned to each cell as a function of the distance at which an obstacle has been detected, of the distance from this cell to the focal point of the antenna and the angular difference between the line of sight of the antenna and the direction of the cell.
  • FIG. 5 represents the function of distribution of the probabilities of occupation of a cell as a function of its distance from the focus of the antenna of the radar 11, and
  • FIG. 6 the function of distribution of the probabilities as a function the angular difference ⁇ between the axis of this antenna and the direction considered.
  • the maximum probability is of course encountered for the distance d-j and in the direction of sight of the antenna.
  • Zone B of positive probability in FIG. 5 corresponds to two annular bands on either side of the circle with radius dj. It is also verified in FIG. 5 that only the first obstacle encountered is taken into account since beyond a certain distance (zone D) function of d "
  • Zone D zone D
  • no information is provided by the measurement outside the emission lobe
  • This algorithm can be implemented in the manner described above, that is to say spatially, by merging the probability information coming from two radars, or even in a temporal manner, by using the probability information coming from 'a single speed camera and merging it with the probability already present for the cell considered in memory 8.
  • the probabilities of occupying the space are continuously expressed between -1 (cell certainly empty) and +1 (cell certainly occupied).
  • a thresholding of the results of the raw fusion is then carried out so as to obtain a map of the environment of the vehicle on which the obstacles are borne.
  • the card thus obtained thus provides precise information on the environment of the vehicle and allows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un procédé de détection et de localisation d'obstacles dans l'environnement d'un véhicule. A cet effet, il comprend les étapes consistant à émettre des signaux en direction dudit environnement à partir d'une pluralité de radars (2) disposés sur le véhicule, à déduire des signaux reçus en écho les probabilités d'occupation par un obstacle d'un ensemble de cellules élémentaires (9) dudit environnement, et à fusionner les probabilités relatives à chacune desdites cellules.

Description

Procédé et dispositif pour la détection et la localisation d'obstacles dans l'environnement d'un véhicule
La présente invention concerne un procédé et un dispositif pour la détection et la localisation d'obstacles situés dans l'environnement d'un véhicule arrêté ou en mouvement.
Une fonction importante de la robotique mobile concerne la détection des objets ou obstacles situés au devant ou sur le côté du véhicule porteur, dans la mesure où ceux-ci peuvent entraver son mouvement et doivent être contournés, ou nécessitent son arrêt complet par souci de sécurité ou, au contraire, sont suffisamment distants ou dans une direction telle que le véhicule peut continuer son chemin sans écart.
Un aspect secondaire de cette détection consiste à exploiter une connaissance a priori du positionnement (absolu) de l'objet détecté par rapport à une carte ou un site plus vaste, pour qu'en détectant cet objet et en mesurant ses coordonnées (site et distance) on puisse en retirer une information sur la position absolue du véhicule lui-même.
Un moyen commode pour détecter des objets situés dans la périphérie d'un véhicule et permettant d'en mesurer les coordonnées consiste à utiliser des capteurs à ultra-sons.
Selon cette technologie bien éprouvée, une onde acoustique est émise périodiquement et, se trouvant réfléchie par les objets constituant des obstacles à sa propagation, revient vers le capteur après un temps de retard, lequel dépend directement de la distance de l'objet ainsi détecté.
Pour assurer la détection périphérique d'un véhicule, il convient de disposer un nombre suffisant de tels capteurs sur son pourtour en fonction de l'angle d'ouverture du capteur élémentaire. Ce nombre est d'autant plus élevé que les capteurs auront un lobe de détection étroit.
L'utilisation de ces capteurs fournit une information de distance par rapport à un obstacle, mais l'information d'orientation angulaire est d'autant moins bonne que les capteurs sont à lobe large. En effet, dans la mesure où un capteur voit un obstacle donné non pas en un point de l'espace mais de manière ambiguë en tous points situés à égale distance, si l'on associe plusieurs capteurs pour assurer la couverture du périmètre du véhicule, l'indétermination de la position angulaire des obstacles détectés peut être excessivement grande.
A contrario, une détection plus fine exige un nombre supérieur de capteurs élémentaires, à lobes plus étroits, ce qui accroît le coût global de la détection.
Un autre inconvénient de l'utilisation de capteurs à ultra-sons est leur très grande sensibilité aux perturbations acoustiques extérieures, aux anomalies de réflexion sur certains obstacles, ainsi que la sensibilité au vent des ondes sonores, l'écho pouvant même être soufflé et ne jamais revenir à sa source.
La présente invention vise à pallier ces inconvénients.
A cet effet, l'invention a tout d'abord pour objet un procédé de détection et de localisation des obstacles situés dans l'environnement d'un véhicule, caractérisé par le fait qu'il comprend les étapes consistant à émettre des signaux en direction dudit environnement à partir d'une pluralité de radars disposés sur le véhicule, à déduire des signaux reçus en écho les probabilités d'occupation par un obstacle d'un ensemble de cellules élémentaires dudit environnement, et à fusionner les probabilités relatives à chacune desdites cellules.
Des algorithmes de fusion d'informations sont déjà connus dans la technique. Toutefois le fait de fusionner des probabilités d'occupation de cellules élémentaires, ces probabilités étant elles-mêmes obtenues à partir de signaux radar, peut donner, avec la technique selon l'invention, des résultats tout à fait surprenants par leur précision, permettant même la cartographie des obstacles détectés et rendant donc possible leur évitement ainsi que la localisation du véhicule lui-même, du fait de la grande qualité de la modélisation de l'environnement ainsi effectuée.
Par ailleurs, contrairement aux capteurs à ultra-sons, les radars peuvent être utilisés en extérieur et par tout temps. Enfin on a pu constater que l'invention permet même d'utiliser des radars de performance individuelle relativement médiocre sans altérer les résultats de la modélisation globale.
Dans un mode de réalisation de l'invention, la fusion est effectuée sur les valeurs des probabilités fournies par une pluralité de radars, et notamment deux radars.
Dans ce cas, la fusion est effectuée de manière spatiale de manière à associer des données retournées simultanément par un sous-ensemble de radars ayant détecté un même obstacle sous des angles différents.
Dans un autre mode de réalisation, la fusion est effectuée sur la valeur de la probabilité fournie par un radar et la valeur de la probabilité antérieurement connue pour la même cellule.
La fusion est dans ce cas effectuée de manière temporelle, le même obstacle étant vu successivement par un même capteur qui aura avancé en même temps que le véhicule. Dans ce cas, l'opération de fusion est appliquée à la valeur déjà affectée à la cellule.
On peut déduire des signaux reçus en écho une information de distance et une information angulaire sur les obstacles et déterminer lesdites probabilités d'occupation à partir de ces informations.
De préférence on prévoit une étape de seuillage des résultats de la fusion de manière à obtenir une carte dépouillée des artefacts divers pouvant provenir de réflexion spéculaires ou multiples, des ondes radars émises.
Selon un mode de réalisation particulière de l'invention, le signal émis par les radars est modulé en fréquence, le signal reçu en écho est mélangé à une fraction du signal émis pour, après élimination de la fréquence porteuse, former un signal de battement, et les impulsions de battement sont comptées pendant un intervalle prédéterminé pour fournir la distance d'un obstacle. En variante, cette distance peut être fournie par transformation de Fourrier.
Avantageusement, l'émission de chaque radar dure un temps limité et la logique de répétition peut même être codée en vue de l'identification de la source.
L'invention a également pour objet un dispositif pour la modélisation de l'environnement d'un véhicule, caractérisée par le fait qu'il comprend une pluralité de radars montés sur le véhicule et une unité de traitement agencée pour fusionner les données fournies par les radars.
Grâce à l'opération de fusion, on peut sans inconvénient choisir des radars à lobe large, donc de performance moyenne et de coût peu élevé.
On observera que les radars de ce type, notamment les radars Doppler courants, sont généralement utilisés en mesure de vitesse alors qu'ici, c'est la distance qui est mesurée à titre principal, la mesure de vitesse n'étant éventuellement utilisée qu'à titre accessoire. De surcroît, alors que les radars utilisés en vue de mesures de distances sont généralement des radars fonctionnant en impulsions, on utilise ici de préférence des radars à émission continue et fonctionnant en modulation de fréquence.
On décrira maintenant à titre d'exemple non limitatif un mode de réalisation particulier de l'invention, en référence aux dessins schématiques annexés dans lesquels :
- la figure 1 est une vue schématique de dessus d'un véhicule muni des moyens de l'invention,
- la figure 2 est un diagramme fonctionnel de ces moyens,
- la figure 3 illustre les signaux émis par les radars,
- la figure 4 représente la modélisation de l'environnement du véhicule, - la figure 5 illustre la fonction de répartition des probabilités d'occupation d'une cellule par un obstacle en fonction de la distance au foyer d'une antenne et
- la figure 6 illustre la fonction de répartition des probabilités d'occupation de cette cellule en fonction de l'écart angulaire entre sa direction et l'axe de l'antenne.
La figure 1 représente un véhicule automatique muni d'une plate-forme 1 sur laquelle sont montés une pluralité de radars 2, par exemple une vingtaine. Les radars 2 sont ici des radars à lobe large, c'est-à-dire d'angle d'ouverture 2Θ typiquement compris entre 15° et et 120°. On rappelle qu'un angle 2Θ important est recherché pour obtenir une bonne couverture périphérique autour du véhicule avec un nombre de capteurs aussi réduit que possible.
Les radars 2 sont ici des radars FMCW à modulation de fréquence et à émission continue ou par fenêtre temporelle.
Les radars 2 sont placés à la périphérie du véhicule de manière à obtenir une vision aussi complète que désirée de son environnement. La finesse de la couverture de détection et de la modélisation en général, dépend directement du nombre de radars utilisés dont les lobes individuels peuvent se rejoindre arbitrairement comme cela est repésenté vers l'avant (flèche 3) et le côté du véhicule.
On voit sur la figure 2 trois des antennes radars 2a, 2b et 2c. Chacune de ces antennes est reliée par l'intermédiaire d'un circuit d'inteface 4a, 4b, 4c respectivement, à une unité 5 susceptible d'élaborer les signaux de déclenchement Sa, Sb et Se respectivement des radars. En variante, les signaux de déclenchement peuvent être communs à tous les radars.
Les signaux Sa, Sb, Se sont modulés en fréquence comme représenté à la figure 3. Une fréquence porteuse Fp est modulée par une onde en dent de scie de fréquence Δf. Cette génération de fréquence peut être assurée au niveau de l'unité 5 par une diode oscillatrice GUNN. Optionnellement, pour chaque signal Sa, Sb, Se, l'émission modulée dure un temps limité D. On facilite ainsi la différenciation des signaux reçus ainsi que l'extraction des informations recherchées. Par ailleurs, en codant la logique de répétition des émissions, c'est-à-dire la durée T sur la figure 3, par exemple selon un modèle pseudo-aléatoire, il est possible de personnaliser chacune des émissions. On peut ainsi en particulier faire évoluer plusieurs véhicules dans le même environnement.
Le signal reçu en retour par chaque antenne 2a, 2b, 2c est traité dans une unité de traitement analogique 6a, 6b, 6c respectivement.
Le signal reçu est déphasé par rapport au signal émis. Par mélange dans l'unité 6 correspondante avec une fraction du signal émis, après élimination de la fréquence porteuse, un signal de battement à une fréquence type de l'ordre de 1 kHz est obtenu.
Le signal est tout d'abord filtré pour éliminer les hautes fréquences, correspondant aux obstacles les plus éloignés. On ne retient ainsi que le signal rétrodiffusé par le premier obstacle rencontré, qui est ensuite traité par transformée de Fourrier.
Par ailleurs, la comparaison de la fréquence de l'onde porteuse rétrodiffusée et de celle de l'onde porteuse du signal émis donne la fréquence Doppler F^ qui est proportionnelle à la vitesse de rapprochement ou d'éloignement du véhicule de l'obstacle détecté, selon la relation :
v = 1/2 λ Fd
où λ = c/F (vitesse de propagation/fréquence d'émission)
L'information de vitesse n'est pas nécessaire à la mise en oeuvre de l'invention. Sa disponibilité constitue néanmoins un avantage dans les applications.
Les informations de distance et vitesse numérisées sont fournies par les unités de traitement analogiques 6a, 6b, 6c au processeur numérique 7. Le processeur 7 est constitué pour l'essentiel d'une unité de calcul susceptible d'accéder à une mémoire 8.
A chaque élément de la mémoire 8 est associée une cellule élémentaire 9 de l'environnement du véhicule. Le contenu de chacun de ses éléments de mémoire représente la probabilité pour qu'une cellule particulière, repérée par son site φ et sa distance d par rapport au véhicule, renferme un obstacle.
La figure 4 représente 2 radars 11 et 12 ayant chacun détecté un obstacle, le premier à la distance di et le second à la distance d2- Par convention, on décide que la probabilité d'occupation d'une cellule par un obstacle est comprise entre -1 (la cellule est certainement non occupée) et +1 (la cellule est certainement occupée), la probabilité p = 0 correspondant à l'incertitude.
Connaissant la position du foyer de chaque antenne ainsi que son axe de visée, on affecte à chaque cellule une probabilité d'occupation fonction de la distance à laquelle un obstacle a été détecté, de la distance de cette cellule au foyer de l'antenne et de l'écart angulaire entre l'axe de visée de l'antenne et la direction de la cellule. A titre d'exemple, la figure 5 représente la fonction de répartition des probabilités d'occupation d'une cellule en fonction de sa distance au foyer de l'antenne du radar 11 , et la figure 6 la fonction de répartition des probabilités en fonction de l'écart angulaire α entre l'axe de cette antenne et la direction considérée. La probabilité maximale est bien entendu rencontrée pour la distance d-j et dans la direction de visé de l'antenne.
Les différentes zones de probabilités sont portées sur les figures 4 à 6. La zone B de probabilité positive sur la figure 5 correspond à deux bandes annulaires de part et d'autre du cercle de rayon d-j . On vérifie par ailleurs sur la figure 5 que seul le premier obstacle rencontré est pris en compte puisqu'au- delà d'une certaine distance (zone D) fonction de d«| aucune information n'est apportée par la mesure. De même sur la figure 6, aucune information n'est apportée par la mesure en dehors du lobe d'émission (zone A). Les niveaux possibles de quantification entre les valeurs -1 et +1 dépendent des performances du matériel de calcul utilisé, la performance globale de la représentation de l'environnement étant d'autant meilleure que ces niveaux sont plus nombreux.
Lorsque l'on a de cette manière affecté à une cellule donnée, par la mesure effectuée à l'aide du radar 11 , une probabilité p1 d'occupation de cette cellule par un obstacle et, par la mesure effectuée à l'aide du radar 12, une probabilité p2, on met en oeuvre l'algorithme de fusion suivant :
- si p1 > 0 et p2 > 0.
F(p1 , p2) = p1 + p2 - p1.p2
- si p1 < 0 et p2 > 0
F(p1 ,p2) = p1 + p2 + plp2
si p1 < 0 et p2 < 0
p1 + p2
F(p1 ,p2) =
1 - Min (p1 ,p2)
Cet algorithme peut être mis en oeuvre de la façon décrite ci-dessus, c'est-à- dire spacialement, en fusionnant les informations de probabilité provenant de deux radars, ou encore de manière temporelle, en utilisant l'information de probabilité provenant d'un seul radar et en la fusionnant avec la probabilité déjà présente pour la cellule considérée dans la mémoire 8.
Les probabilités d'occupation de l'espace s'expriment continûment entre -1 (cellule certainement vide) et +1 (cellule certainement occupée). On réalise ensuite un seuillage des résultats de la fusion brute de manière à obtenir une carte de l'environnement du véhicule sur laquelle sont portés les obstacles. Q
On peut d'ailleurs améliorer la représentation de cette carte en lui faisant subir une opération morphologique de type "fermeture" (dilatation - érosion), connue dans le domaine du traitement d'image.
La carte ainsi obtenue fournit ainsi une information précise sur l'environnement du véhicule et permet :
- son évolution avec évitement éventuel d'obstacles ;
- sa relocalisation par comparaison entre les emplacements mesurés des obstacles et une connaissance a priori de ces obstacles.
On peut par ailleurs envisager d'autres systèmes émetteurs-récepteurs de signaux que le radar, par exemple de télémètres laser ou infrarouge ou des sonars.

Claims

REVENDICATIONS
1. Procédé de détection et de localisation d'obstacles dans l'environnement d'un véhicule, caractérisé par le fait qu'il comprend les étapes consistant à émettre des signaux en direction dudit environnement à partir d'une pluralité de radars (2) disposés sur le véhicule, à déduire des signaux reçus en écho les probabilités d'occupation par un obstacle d'un ensemble de cellules élémentaires (9) dudit environnement, et à fusionner les probabilités relatives à chacune desdites cellules.
2. Procédé selon la revendication 1 , dans lequel la fusion est effectuée sur les valeurs des probabilités fournies par une pluralité de radars, et notamment deux radars.
3. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel la fusion est effectuée sur la valeur de la probabilité fournie par un radar et la valeur de la probabilité antérieurement connue par la même cellule.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel on déduit, des signaux reçus en écho, une information de distance et une information angulaire sur les obstacles, et on détermine lesdites probabilités d'occupation à partir de ces informations.
5. Procédé selon l'une quelconque des revendications 1 à 4, comprenant une étape de seuillage des résultats de la fusion.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le signal émis par les radars est modulé en fréquence, le signal reçu en écho est mélangé à une fraction du signal émis pour, après élimination de la fréquence porteuse, former un signal de battement, et la distance d'un obstacle est obtenue soit par transformation de Fourrier soit par comptage pendant un intervalle de temps prédéterminé.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'émission de chaque radar dure un temps limité, et la logique de répétition est codée en vue de l'identification de la source.
8. Dispositif pour la détection et la localisation d'obstacles dans l'environnement d'un véhicule, caractérisé par le fait qu'il comprend une pluralité de radars (2) montés sur le véhicule et une unité de traitement (7) agencée pour fusionner les données fournies par les radars.
9. Dispositif selon la revendication 8, dans lequel les radars sont à lobe large.
PCT/FR1994/001043 1993-09-10 1994-09-06 Procede et dispositif pour la detection et la localisation d'obstacles dans l'environnement d'un vehicule WO1995007473A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94926275A EP0717854A1 (fr) 1993-09-10 1994-09-06 Procede et dispositif pour la detection et la localisation d'obstacles dans l'environnement d'un vehicule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9310777A FR2709834B1 (fr) 1993-09-10 1993-09-10 Procédé et dispositif pour la détection et la localisation d'obstacles dans l'environnement d'un véhicule.
FR93/10777 1993-09-10

Publications (1)

Publication Number Publication Date
WO1995007473A1 true WO1995007473A1 (fr) 1995-03-16

Family

ID=9450729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/001043 WO1995007473A1 (fr) 1993-09-10 1994-09-06 Procede et dispositif pour la detection et la localisation d'obstacles dans l'environnement d'un vehicule

Country Status (3)

Country Link
EP (1) EP0717854A1 (fr)
FR (1) FR2709834B1 (fr)
WO (1) WO1995007473A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025630A1 (fr) * 1996-01-05 1997-07-17 Traiber, S.A. Dispositif de prevention de lesions corporelles, en particulier de la colonne vertebrale et des cervicales, applicable aux vehicules automobiles
WO1998000729A1 (fr) * 1996-06-28 1998-01-08 Cambridge Consultants Limited Systeme radar de vehicule
WO2003008995A1 (fr) * 2001-07-17 2003-01-30 Robert Bosch Gmbh Procede et dispositif d'echange et de traitement de donnees
US7068211B2 (en) 2000-02-08 2006-06-27 Cambridge Consultants Limited Methods and apparatus for obtaining positional information
EP2397866A1 (fr) * 2010-06-17 2011-12-21 Honeywell International, Inc. Systèmes et procédés pour utiliser une grille de mise en évidence pour éliminer les ambiguïtés dans un radar interférométrique
US8311695B2 (en) 2008-03-19 2012-11-13 Honeywell International Inc. Construction of evidence grid from multiple sensor measurements
JP2019184438A (ja) * 2018-04-11 2019-10-24 パナソニック株式会社 物体検出装置、物体検出システム、及び物体検出方法
WO2020099573A1 (fr) * 2018-11-16 2020-05-22 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Procédé permettant un fonctionnement bistatique d'un capteur de distance d'un véhicule automobile

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001286513A1 (en) 2000-08-16 2002-02-25 Raytheon Company Switched beam antenna architecture
US6784828B2 (en) 2000-08-16 2004-08-31 Raytheon Company Near object detection system
EP1310012B1 (fr) 2000-08-16 2006-05-03 Raytheon Company Capteur multifaisceaux a ondes millimetriques sur substrat unique tres compact
US6489927B2 (en) 2000-08-16 2002-12-03 Raytheon Company System and technique for mounting a radar system on a vehicle
US6657581B1 (en) 2000-08-16 2003-12-02 Raytheon Company Automotive lane changing aid indicator
KR100713387B1 (ko) 2000-08-16 2007-05-04 레이던 컴퍼니 적응성 항법 제어용 안전 거리 알고리즘
US6707419B2 (en) 2000-08-16 2004-03-16 Raytheon Company Radar transmitter circuitry and techniques
EP1870729A3 (fr) 2000-08-16 2011-03-30 Valeo Radar Systems, Inc. Systèmes et techniques de radar automobile
EP1315980B1 (fr) 2000-09-08 2006-10-04 Raytheon Company Systeme et procede de prevision de trajectoire
US6708100B2 (en) 2001-03-14 2004-03-16 Raytheon Company Safe distance algorithm for adaptive cruise control
WO2003016943A1 (fr) 2001-08-16 2003-02-27 Raytheon Company Systeme de detection d'objets proches
DE10140802A1 (de) * 2001-08-20 2003-03-06 Ibeo Automobile Sensor Gmbh Führung von Kraftfahrzeugen
DE102004007553A1 (de) * 2004-02-17 2005-09-01 Daimlerchrysler Ag Erfassungsvorrichtung und Sicherheitssystem für ein Kraftfahrzeug
DE102006056835A1 (de) * 2006-12-01 2008-06-05 Robert Bosch Gmbh Verfahren zum gitterbasierten Verarbeiten von Sensorsignalen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006808A1 (fr) * 1988-01-18 1989-07-27 Paolo Alberto Paoletti Systeme radar anti-collision pour vehicule

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006808A1 (fr) * 1988-01-18 1989-07-27 Paolo Alberto Paoletti Systeme radar anti-collision pour vehicule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.J. HARRIS: "distributed estimation, inferencing and multi-sensor data fusion for real time supervisory control", ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL. PROCEEDINGSOF THE IFAC WORKSHOP, 19 September 1989 (1989-09-19), SHENYANG, CHINA, pages 19 - 24 *
PUENTE ET AL.: "Analysis of Data Fusion Methods in Certainty Grids Application to Collision Danger Monitoring", IECON 91, INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, vol. 2, 28 October 1991 (1991-10-28), KOBE, JAPAN, pages 1133 - 1137, XP000313420 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2114801A1 (es) * 1996-01-05 1998-06-01 Traiber S A Dispositivo para la prevencion de lesiones corporales, especialmente de columna y cervicales, aplicable a vehiculos automoviles.
WO1997025630A1 (fr) * 1996-01-05 1997-07-17 Traiber, S.A. Dispositif de prevention de lesions corporelles, en particulier de la colonne vertebrale et des cervicales, applicable aux vehicules automobiles
WO1998000729A1 (fr) * 1996-06-28 1998-01-08 Cambridge Consultants Limited Systeme radar de vehicule
US7227493B2 (en) 2000-02-08 2007-06-05 Cambridge Consultants Limited Methods and apparatus for obtaining positional information
US7068211B2 (en) 2000-02-08 2006-06-27 Cambridge Consultants Limited Methods and apparatus for obtaining positional information
US7340380B2 (en) 2001-07-17 2008-03-04 Robert Bosch Gmbh Method and device for the exchange and processing of data into fusion data
WO2003008995A1 (fr) * 2001-07-17 2003-01-30 Robert Bosch Gmbh Procede et dispositif d'echange et de traitement de donnees
US8311695B2 (en) 2008-03-19 2012-11-13 Honeywell International Inc. Construction of evidence grid from multiple sensor measurements
US8391553B2 (en) 2008-03-19 2013-03-05 Honeywell International Inc. Systems and methods for using an evidence grid to eliminate ambiguities in an interferometric radar
EP2397866A1 (fr) * 2010-06-17 2011-12-21 Honeywell International, Inc. Systèmes et procédés pour utiliser une grille de mise en évidence pour éliminer les ambiguïtés dans un radar interférométrique
JP2019184438A (ja) * 2018-04-11 2019-10-24 パナソニック株式会社 物体検出装置、物体検出システム、及び物体検出方法
EP3779507A4 (fr) * 2018-04-11 2021-06-16 Panasonic Corporation Dispositif, système et procédé de détection d'objet
US11940557B2 (en) 2018-04-11 2024-03-26 Panasonic Holdings Corporation Object detection device, object detection system, and object detection method
WO2020099573A1 (fr) * 2018-11-16 2020-05-22 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Procédé permettant un fonctionnement bistatique d'un capteur de distance d'un véhicule automobile

Also Published As

Publication number Publication date
EP0717854A1 (fr) 1996-06-26
FR2709834A1 (fr) 1995-03-17
FR2709834B1 (fr) 1995-11-10

Similar Documents

Publication Publication Date Title
EP0717854A1 (fr) Procede et dispositif pour la detection et la localisation d&#39;obstacles dans l&#39;environnement d&#39;un vehicule
FR2669115A1 (fr) Systeme radar en ondes millimetriques pour le guidage d&#39;un robot mobile au sol.
CN111712828A (zh) 物体检测方法、电子设备和可移动平台
FR2537288A1 (fr) Dispositif servant a detecter des obstacles et utilise comme aide a la manoeuvre lors du rangement en stationnement ou du braquage d&#39;un vehicule automobile
EP1345042A1 (fr) Système de localisation 3D à grande précision
FR2842608A1 (fr) Capteur micro onde capable de transmettre une pluralite de f requences vers une ou plusieurs zones
US6313785B1 (en) Dual detection processing for detecting signals with high acceleration uncertainty
EP0237404B1 (fr) Procédé de traitement des signaux somme et différence d&#39;un radar du type monopulse, en vue d&#39;estimer la phase parasite introduite entre ces signaux par les circuits hyperfréquence de formation des voies somme et différence
FR2817973A1 (fr) Methode de detection et de positionnement d&#39;objets basee sur deux etapes de formation numerique de faisceaux d&#39;un reseau phase de capteurs
FR3070768A1 (fr) Procede de classification automatique d&#39;un navire cible et systeme radar associe
EP0228925B1 (fr) Système pour le guidage automatique d&#39;un missile et missile pourvu d&#39;un tel système
EP1204884B1 (fr) Systeme de reperage acoustique par bouees sous-marines
EP0524099A1 (fr) Procédé et dispositif d&#39;aide à la navigation et d&#39;anti-collision pour aéronef
FR2550347A1 (fr) Perfectionnements aux radars doppler a impulsions
FR2681434A1 (fr) Procede et appareil pour afficher et classer des echos radar et favoriser cette classification.
EP0335753A1 (fr) Radar pour la correction de tir d&#39;artillerie
FR2684767A1 (fr) Radar a ouverture synthetique.
EP3575822B1 (fr) Procédé et système de détermination d&#39;une dimension caractéristique d&#39;un navire
FR2864627A1 (fr) Procede de visualisation des echos recus par un sonar actif utilisant une emission a spectre de raies
WO1999064888A1 (fr) Procede d&#39;anticollision pour vehicule
FR2747792A1 (fr) Procede de formation de faisceaux adaptative pour un radar de surveillance du sol, et radar mettant en oeuvre le procede
EP3195007B1 (fr) Procédé radar pour estimation de la taille de blocs rocheux en chute
FR2749400A1 (fr) Radar avec systeme automatique de detection et de localisation de leurres ou d&#39;orages
WO2024134090A1 (fr) Système de détection d&#39;objets dans des trames de données radar utilisant un réseau de neurones convolutionnel récurrent
WO2023031553A1 (fr) Dispositif et procédé de détection et localisation d&#39;objets immergés

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994926275

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 596353

Date of ref document: 19960429

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994926275

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994926275

Country of ref document: EP