WO1994024198A1 - Polylactide coated with metal or silicon oxide for use as packaging material - Google Patents

Polylactide coated with metal or silicon oxide for use as packaging material Download PDF

Info

Publication number
WO1994024198A1
WO1994024198A1 PCT/EP1994/001114 EP9401114W WO9424198A1 WO 1994024198 A1 WO1994024198 A1 WO 1994024198A1 EP 9401114 W EP9401114 W EP 9401114W WO 9424198 A1 WO9424198 A1 WO 9424198A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactide
lactide
film
packaging material
coated
Prior art date
Application number
PCT/EP1994/001114
Other languages
German (de)
French (fr)
Inventor
Aktiengesellschaft Basf
Original Assignee
Sterzel, Hans-Josef
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sterzel, Hans-Josef filed Critical Sterzel, Hans-Josef
Publication of WO1994024198A1 publication Critical patent/WO1994024198A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • Polylactides are produced by ring-opening polymerization of the cyclic lactide. Starting from L-lactide, D-lactide or DL-lactide, poly-L-lactide, poly-D-lactide or poly-DL-0 lactide are obtained. There is no inversion at the optically active carbon atom during the polymerization, as a result of which the tacticity is retained. Under appropriate processing conditions, poly-L- and poly-D-lactide can be used as semicrystalline polymers with a glass softening temperature of 50 - 55 ° C and a temperature of 100 - 120 ° C
  • Crystallite melting point around 175 ° C can be obtained.
  • the ring-opening polymerization gives copolymers with a reduced crystallization rate and a reduced crystalline fraction. The melting point drops, but the glass softening temperature is retained. However, if you want to lower the glass softening temperature, you carry out a copolymerization with the cyclic glycolide.
  • the homopoly polyglycolide has a glass softening temperature of 20 - 25 ° C 5.
  • the glass transition temperature of the copolymer can accordingly be set between 20-25 ° C to 50-55 ° C.
  • the glass softening temperature of the polylactide plays a special role in the composting of the polymer or in its absorption into body tissue.
  • the degradation of the material takes place in the first step by unspecific hydrolysis of the polyester chains to lactic acid.
  • the lactic acid formed is broken down by microorganisms or enzymatically.
  • the rate-specific is the unspecific ester hydrolysis.
  • the rate of ester hydrolysis is extremely dependent on the glass softening temperature of the polymer. This takes place 5 - 10 ° C above the glass softening temperature approx. 100 times faster than 5 - 10 ° C below the glass softening temperature.
  • Polylactides are gaining increasing interest as packaging materials that can be composted without the development of non-natural degradation materials. It is essential that 5 polylactides are stable at normal storage temperatures down to 0 ° C. and that degradation takes place only above or in the range of the glass softening temperature. In quick composting plants The temperatures are usually longer than 50 ° C., which results in rapid ester hydrolysis. pH values above 7 accelerate the hydrolysis considerably. For example, bottles made of poly-L-lactide including the 2 - 3 mm thick screw thread are degraded at pH 8 to 10 within 2 weeks, at pH 3 - 7 within approx. 8 weeks, the temperature being higher than Must be 50 ° C.
  • the solid polymers are melted and the melt is pressed into molds by means of nozzles or films are produced.
  • polylactides obtain particularly good properties such as strength, rigidity, heat resistance, gas tightness or solvent resistance if they are multiaxial at a temperature between the glass softening temperature and the melting temperature, starting from the amorphous state stretched, stretched or stretched. The material is oriented, and it crystallizes simultaneously to crystalline proportions of up to 80%. Films, bottles, deep-drawn cups and foams thus have stiffnesses of 3000 to 6000 N / mm 2, measured as tensile modulus at room temperature.
  • polylactides are characterized by high strength and rigidity combined with low gas permeability and good resistance to solvents. Because of the high rigidity, moldings or foils can advantageously be produced with smaller wall thicknesses than the corresponding parts or foils based on polyolefins, which saves material.
  • the oxygen permeability of a 100 ⁇ m thick film is around 200 cm 3 / m 2 ⁇ bar and the water vapor permeability of a 100 ⁇ m thick film at 23 ° C. and 0 to 85% relative humidity is approximately 30 g / m2 x day.
  • the traditional coffee packaging therefore contains a 9 ⁇ m thick aluminum foil which is embedded between plastic foils in the lamination process.
  • the oriented polyester film in this composite fulfills the requirement for mechanical strength, printability and high surface gloss, while a PE film on the inside of the packaging ensures sealability.
  • metallized polyester film is also used, or attempts are made to completely dispense with AI as a barrier medium.
  • the 0 2 barrier reached today by metallized 12 ⁇ m polyethylene terephthalate (PET) films is below 1 cm 3 / m 2 xdx bar.
  • PET polyethylene terephthalate
  • ethylene vinyl alcohol copolymers EVOH must be used as the barrier plastic.
  • the required layer thickness under standard ambient conditions 23 ° C, 50% rh) is ⁇ 10 ⁇ m.
  • Typical permeability values for PET (12 ⁇ m) are less than 1 cm 3 / (m 2 xdx bar) for 0 2 , or less than 0.25 g / (m 2 xd) for water vapor for PP (20 ⁇ m).
  • a disadvantage for many packaging applications is the loss of transparency in metallized films.
  • Metallized foils are also only of limited suitability for use in packaging for microwave dishes, since the microwaves are reflected by the aluminum layer.
  • the evaporation of foils with SiO x was therefore developed.
  • the loading takes place Stratification, in high vacuum.
  • the thin layer forms an effective barrier against oxygen and water vapor, but does not impair the transparency of the film and allows microwaves to pass through.
  • the barrier properties that can be achieved are comparable to those of metallized films.
  • DOS 2 239 277 which claims a water-soluble container and process for its manufacture.
  • the core of this composite container can then consist of a water-soluble "polylactic acid", the cover foils from water-insoluble films. Since high-molecular, film-forming polylactides are water-insoluble, these can only be very low-molecular lactyllactic acids with degrees of condensation from 2 to 5, which are used as an adhesive layer and have no properties of free-standing films.
  • the aluminum coatings are applied to the film using methods customary in the art, such as vacuum evaporation of aluminum and deposition of the vapor.
  • the layer thicknesses are 0.01 to 1 ⁇ m, preferably 0.05 to 0.1 ⁇ m.
  • barrier layers metals other than aluminum can be used as barrier layers. It is also possible to apply non-metallic barrier layers, such as SiO x, via the decomposition of siloxanes in a plasma.
  • the films coated on one side are used for the production of packaging, the barrier layer on the inside facing the filling material.
  • Gas and liquid-tight seams are produced by gluing, flanging or a combination thereof according to the prior art.
  • a polylactide film formed by slot extrusion is passed over the coated cold polylactide film after it emerges from the nozzle on the cooling roll.
  • the polylactides used are preferably poly-L-lactide or poly-D-lactide.
  • Copolymers lactides are only of interest if they still have melting points above 150 ° C, ie only up to about 5 mol% comonomer units.
  • Comonomers are 1,3-dioxan-2-ones of the structure
  • the radicals R 1 to R 6 can be the same or different and contain hydrogen, a branched or unbranched alkyl, alkylene or alkyne group having 1 to 12, preferably 1 to 4, carbon atoms, optionally substituted by halogens, hydroxyl groups, alkoxy groups , Formyl groups, acrylic groups, amino, alkylamino, dialkylamino or cycloalkyl groups are substituted.
  • the homo- or copolymers lactides are produced ring-opening starting from the monomer melt at temperatures of 180 to 230 ° C.
  • BF 3 etherate, titanium alcoholates and further manganese, zinc, tin, lead, antimony or aluminum compounds can be used as polymerization catalysts.
  • Tin-II compounds are most commonly used as alkoxides or carboxylic acid salts.
  • Tin-II-octoate or tin-II-ethyl-2-hexanoate is preferably used in concentrations of 10 "6 to 10 " 3 moles per mole of monomer mixture.
  • the granules were then placed in a funnel of a film extruder flooded with argon and the material was melted at 200 ° C. and extruded through a slot die into films of approximately 20 cm in width. After leaving the slot die, the film was quenched into amorphous poly-L-lactide by means of a cooling roll cooled to 25 ° C. In the course of the further drawdown, it was heated to 90-100 ° C. using infrared emitters and then drawn off faster by a factor of five and thereby stretched and crystallized unidirectionally. Partly crystalline films with a thickness of approx. 30, 60 and 100 ⁇ m were produced.
  • Pieces of these foils with approx. 20 x 20 cm were evaporated in a laboratory evaporation plant with an approx. 0.03 ⁇ m thick aluminum layer. Additional pieces of film were provided with a 0.04 to 0.06 ⁇ m thick SiO x layer.
  • the coated films and, as a control, an uncoated film were buried in wire baskets in a municipal composting plant. After 6 weeks - during this time the temperature was 70 to 80 ° C - the baskets were excavated. No film residues were found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

Described is a packaging material made of polylactide with metal or silicon oxide vapour-deposited on one side.

Description

Mit Metallen oder Siliziumoxiden beschichtetes Polylactid als Verpackuπgsma ialPolylactide coated with metals or silicon oxides as packaging material
5 Beschreibung5 Description
Polylactide werden durch ringöffnende Polymerisation des cycli- schen Lactids hergestellt . Ausgehend von L-Lactid, D-Lactid oder DL-Lactid erhält man Poly-L-Lactid, Poly-D-Lactid oder Poly-DL- 0 Lactid. Während der Polymerisation kommt es nicht zu einer Inver¬ sion am optisch aktiven C-Atom, wodurch die Taktizität erhalten bleibt. Poly-L- und Poly-D-Lactid können unter entsprechenden Verarbeitungsbedingungen, speziell durch kurzes Halten im Temperaturbereich von 100 - 120°C als teilkristalline Polymere mit 5 einer Glaserweichungstemperatur von 50 - 55°C und einemPolylactides are produced by ring-opening polymerization of the cyclic lactide. Starting from L-lactide, D-lactide or DL-lactide, poly-L-lactide, poly-D-lactide or poly-DL-0 lactide are obtained. There is no inversion at the optically active carbon atom during the polymerization, as a result of which the tacticity is retained. Under appropriate processing conditions, poly-L- and poly-D-lactide can be used as semicrystalline polymers with a glass softening temperature of 50 - 55 ° C and a temperature of 100 - 120 ° C
KristallitSchmelzpunkt um 175°C erhalten werden. Durch Zumischen von DL- oder DD-Lactid zu L-Lactid oder von DL- pder LL-Lactid zu D-Lactid werden durch die ringöffnende Polymerisation Copolymere mit erniedrigter Kristallisationsgeschwindigkeit und erniedrigtem 0 kristallinen Anteil erhalten. Der Schmelzpunkt sinkt ab, die Gla¬ serweichungstemperatur bleibt jedoch erhalten. Möchte man jedoch die Glaserweichungstemperatur absenken, so führt man eine Copoly- merisation mit dem cyclischen Glykolid durch. Das homopoly ere Polyglykolid weist eine Glaserweichungstemperatur von 20 - 25°C 5 auf. Durch Copolymerisation entsprechender Anteile von Lactid und Glykolid läßt sich die Glastemperatur des Copolymeren demnach zwischen 20 - 25°C bis 50 - 55°C einstellen.Crystallite melting point around 175 ° C can be obtained. By admixing DL or DD lactide to L-lactide or from DL or LL lactide to D-lactide, the ring-opening polymerization gives copolymers with a reduced crystallization rate and a reduced crystalline fraction. The melting point drops, but the glass softening temperature is retained. However, if you want to lower the glass softening temperature, you carry out a copolymerization with the cyclic glycolide. The homopoly polyglycolide has a glass softening temperature of 20 - 25 ° C 5. By copolymerizing appropriate proportions of lactide and glycolide, the glass transition temperature of the copolymer can accordingly be set between 20-25 ° C to 50-55 ° C.
Die Glaserweichungstemperatur des Polylactids spielt eine beson- 0 dere Rolle bei der Kompostierung des Polymeren bzw. bei seiner Resorption in Körpergewebe. Der Abbau des Materials erfolgt näm¬ lich im ersten Schritt durch eine unspezifische Hydrolyse der Po¬ lyesterketten zu Milchsäure. Im zweiten Schritt wird die dabei gebildete Milchsäure durch Mikroorganismen oder enzymatisch abge- 5 baut. Geschwindigkeitsbestimmend ist die unspezifische Esterhy¬ drolyse. Die Geschwindigkeit der Esterhydrolyse hängt extrem stark von der Glaserweichungstemperatur des Polymeren ab. Diese erfolgt 5 - 10°C oberhalb der Glaserweichungstemperatur um ca. den Faktor 100 schneller als 5 - 10°C unterhalb der Glaserweichungs- 0 temperatur.The glass softening temperature of the polylactide plays a special role in the composting of the polymer or in its absorption into body tissue. The degradation of the material takes place in the first step by unspecific hydrolysis of the polyester chains to lactic acid. In the second step, the lactic acid formed is broken down by microorganisms or enzymatically. The rate-specific is the unspecific ester hydrolysis. The rate of ester hydrolysis is extremely dependent on the glass softening temperature of the polymer. This takes place 5 - 10 ° C above the glass softening temperature approx. 100 times faster than 5 - 10 ° C below the glass softening temperature.
Polylactide, speziell homopolymere Polylactide gewinnen zunehmend Interesse als Verpackungsmaterialien, die ohne Entwicklung natur¬ fremder Abbaustoffe kompostierbar sind. Dabei ist es wesentlich, 5 daß Polylactide bei üblichen Lagertemperaturen bis 0°C stabil sind und erst oberhalb oder im Bereich der Glaserweichungstempe¬ ratur ein Abbau stattfindet. In Schnellkompostierungsanlagen lie- gen die Temperaturen üblicherweise längere Zeit oberhalb 50°C, wo¬ durch eine schnelle Esterhydrolyse stattfindet. pH-Werte oberhalb 7 beschleunigen die Hydrolyse beträchtlich. So werden beispiels¬ weise Flaschen aus Poly-L-Lactid inclusive dem 2 - 3 mm starken Schraubgewinde bei pH 8 bis 10 innerhalb von 2 Wochen abgebaut, bei pH 3 - 7 innerhalb von ca. 8 Wochen, wobei die Temperatur hö¬ her als 50°C sein muß.Polylactides, especially homopolymeric polylactides, are gaining increasing interest as packaging materials that can be composted without the development of non-natural degradation materials. It is essential that 5 polylactides are stable at normal storage temperatures down to 0 ° C. and that degradation takes place only above or in the range of the glass softening temperature. In quick composting plants The temperatures are usually longer than 50 ° C., which results in rapid ester hydrolysis. pH values above 7 accelerate the hydrolysis considerably. For example, bottles made of poly-L-lactide including the 2 - 3 mm thick screw thread are degraded at pH 8 to 10 within 2 weeks, at pH 3 - 7 within approx. 8 weeks, the temperature being higher than Must be 50 ° C.
Zur Herstellung der verschiedensten Formkörper oder Verpackungs- mittel wie Folien, Flaschen, Tiefziehbecher oder Spritzgu߬ artikeln werden die festen Polymeren aufgeschmolzen und die Schmelze durch Düsen in Formen gepreßt oder Filme erzeugt.To produce a wide variety of moldings or packaging materials such as foils, bottles, deep-drawn cups or injection molded articles, the solid polymers are melted and the melt is pressed into molds by means of nozzles or films are produced.
Es ist bereits bekannt (DE-4230097.5) , daß Polylactide dann be- sonders gute Eigenschaften wie Festigkeit, Steifigkeit, Wärme¬ formbeständigkeit, Gasdichtigkeit oder Lösemittelbeständigkeit erhalten, wenn sie mehrachsig bei einer Temperatur zwischen Glas¬ erweichungstemperatur und Schmelztemperatur ausgehend vom amor¬ phen Zustand verstreckt, gereckt oder gedehnt werden. Dabei wird das Material orientiert, wobei es simultan zu kristallinen Antei¬ len bis 80 % kristallisiert. Folien, Flaschen, Tiefziehbecher und Schäume erhalten so Steifigkeiten von 3000 bis 6000 N/mm2, gemes¬ sen als Zug-E-Modul bei Raumtemperatur.It is already known (DE-4230097.5) that polylactides obtain particularly good properties such as strength, rigidity, heat resistance, gas tightness or solvent resistance if they are multiaxial at a temperature between the glass softening temperature and the melting temperature, starting from the amorphous state stretched, stretched or stretched. The material is oriented, and it crystallizes simultaneously to crystalline proportions of up to 80%. Films, bottles, deep-drawn cups and foams thus have stiffnesses of 3000 to 6000 N / mm 2, measured as tensile modulus at room temperature.
Damit zeichnen sich Polylactide durch eine hohe Festigkeit und Steifigkeit bei gleichzeitig geringer Gasdurchlässigkeit und gu¬ ter Beständigkeit gegen Lösungsmittel aus. Wegen der hohen Stei¬ figkeit können Formkörper oder Folien vorteilhaft mit geringeren Wandstärken als die entsprechenden Teile oder Folien auf der Ba- sis von Polyolefinen hergestellt werden, womit Material gespart wird.Thus, polylactides are characterized by high strength and rigidity combined with low gas permeability and good resistance to solvents. Because of the high rigidity, moldings or foils can advantageously be produced with smaller wall thicknesses than the corresponding parts or foils based on polyolefins, which saves material.
Bei orientiertem Poly-L-Lactid beträgt die Sauerstoffdurchlässig¬ keit einer 100 um starken Folie um 200 cm3/m2 x bar und die Was- serdampfdurchlässigkeit einer 100 um starken Folie bei 23°C und 0 bis 85 % relativer Feuchte ca. 30 g/m2 x Tag.In the case of oriented poly-L-lactide, the oxygen permeability of a 100 μm thick film is around 200 cm 3 / m 2 × bar and the water vapor permeability of a 100 μm thick film at 23 ° C. and 0 to 85% relative humidity is approximately 30 g / m2 x day.
Diese an sich geringe Gasdurchlässigkeiten sind bei kritischen Anwendungen, wie bei der Verpackung von Kaffee, Gewürzen oder Milch noch zu groß.This inherently low gas permeability is still too great for critical applications such as packaging coffee, spices or milk.
So ist es im Verpackungssektor üblich, Kunststoffolien für derar¬ tige Verpackungen zu metallisieren.It is common in the packaging sector to metallize plastic films for such packaging.
Die Lebensmittelindustrie fordert für Verpackungen neben attrak¬ tivem Äußeren und mechanischem Schutz des Packguts auch eine ge¬ wisse Barriere gegenüber gasförmigen Medien, Fetten und Ge- schmacksstoffen. Meist erfüllen Verpackungen diese Forderungen problemlos. Erst wenn eine besonders lange Haltbarkeit des Pack¬ guts, eventuell sogar ohne Kühlung, gewährleistet werden muß oder das Produkt besonders empfindliche Geschmacksstoffe enthält, sind spezielle Schutzmaßnahmen wie das Metallisieren notwendig. Eine Übersicht wird in Kunststoffe £2 (1992) 9 gegeben. So verliert beispielsweise gemahlener Kaffee sein Aroma unter Umgebungsbedin¬ gungen relativ schnell. Die aromatischen Öle reagieren mit dem Luftsauerstoff und werden "ranzig". Da Handel und Verbraucher aber eine Lagerfähigkeit bis zu 18 Monaten bei vorgemahlenem Kaf¬ fee verlangen, muß das Verpackungsmaterial eine besondere Sauer¬ stoffbarriere bieten. Die traditionelle Kaffeeverpackung beinhal¬ tet daher eine 9 um dicke Aluminiumfolie, die im Kaschierverfahren zwischen Kunststoffolien eingebettet wird. So erfüllt die orien- tierte Polyesterfolie in diesem Verbund die Forderung nach mecha¬ nischer Festigkeit, Bedruckbarkeit und hohem Oberflächenglanz, während eine PE-Folie auf der Innenseite der Verpackung die Sie- gelbarkeit gewährleistet. Alternativ wird auch metallisierte Polyesterfolie eingesetzt oder es wird versucht, auf AI als Bar- rieremedium ganz zu verzichten. Die heute von metallisierten 12 μm-Polyethylenterephthalat(PET)-Folien erreichte 02-Barriere liegt unter 1 cm3/m2 x d x bar. Um diesen Wert bei Verzicht auf Aluminium dennoch zu erreichen, müssen Ethylenvinylalkohol- Copolymere EVOH als Barrierekunststoff eingesetzt werden. Die er- forderliche Schichtdicke bei Standard-Umgebungsbedingungen (23°C, 50 % r.F) liegt bei < 10 μm.In addition to the attractive exterior and mechanical protection of the packaged goods, the food industry also demands a certain barrier to gaseous media, fats and liquids for packaging. flavors. Usually packaging meets these requirements without any problems. Special protective measures such as metallizing are only necessary if the packaged goods have to be kept for a particularly long time, possibly even without cooling, or if the product contains particularly sensitive flavors. An overview is given in Plastics £ 2 (1992) 9. For example, ground coffee loses its aroma relatively quickly under ambient conditions. The aromatic oils react with the atmospheric oxygen and become "rancid". However, since retailers and consumers require a shelf life of up to 18 months for pre-ground coffee, the packaging material must offer a special oxygen barrier. The traditional coffee packaging therefore contains a 9 μm thick aluminum foil which is embedded between plastic foils in the lamination process. The oriented polyester film in this composite fulfills the requirement for mechanical strength, printability and high surface gloss, while a PE film on the inside of the packaging ensures sealability. Alternatively, metallized polyester film is also used, or attempts are made to completely dispense with AI as a barrier medium. The 0 2 barrier reached today by metallized 12 μm polyethylene terephthalate (PET) films is below 1 cm 3 / m 2 xdx bar. In order to achieve this value when aluminum is not used, ethylene vinyl alcohol copolymers EVOH must be used as the barrier plastic. The required layer thickness under standard ambient conditions (23 ° C, 50% rh) is <10 μm.
Um dicke Aluminiumfolien einzusparen, wird im Verpackungsbereich Aluminium inzwischen häufig auch im Hochvakuum auf Folien aufge- dampft, um so gute Barriereeigenschaften zu erreichen. Als Sub¬ strate eignen sich zwar nahezu alle Folien von Polyethylen (PE) bis zu Zellglas, in der Praxis werden jedoch in erster Linie sol¬ che Folientypen eingesetzt, die schon von Haus aus gute Barriere¬ eigenschaften gegen bestimmte Medien aufweisen. So wird biorien- tierte PET-Folie metallisiert, wenn es um besonders niedrige Sau¬ erstoffdurchlässigkeit geht . Bei biorientierter Polypropylen-Fo¬ lie reduziert Bedampfen mit Aluminium die bereits sehr geringe Wasserdampfdurchlässigkeit weiter. Typische Durchlässigkeitswerte liegen für PET (12 μm) unter 1 cm3/ (m2 x d x bar) für 02, bzw. unter 0,25 g/ (m2 x d) bei Wasserdampf für PP (20 μm) .In order to save thick aluminum foils, aluminum is now often vapor-deposited on foils in high vacuum in order to achieve good barrier properties. Almost all foils from polyethylene (PE) to cellophane are suitable as substrates, but in practice primarily those foils are used which already have good barrier properties against certain media. For example, bio-oriented PET film is metallized when it comes to particularly low oxygen permeability. In the case of bio-oriented polypropylene film, vapor deposition with aluminum further reduces the already very low water vapor permeability. Typical permeability values for PET (12 μm) are less than 1 cm 3 / (m 2 xdx bar) for 0 2 , or less than 0.25 g / (m 2 xd) for water vapor for PP (20 μm).
Ein Nachteil für viele Anwendungen im Verpackungsbereich ist der Verlust der Transparenz bei metallisierten Folien. Auch für den Einsatz in Verpackungen für Mikrowellengerichte sind metalli- sierte Folien nur bedingt geeignet, da die Mikrowellen von der Aluminiumschicht reflektiert werden. Daher wurde die Bedampf ng von Folien mit SiOx entwickelt. Wie beim Aluminium erfolgt die Be- Schichtung, im Hochvakuum. Die dünne Schicht bildet eine wirksame Barriere gegen Sauerstoff und Wasserdampf, beeinträchtigt aber nicht die Transparenz der Folie und läßt Mikrowellen passieren. Die erzielbaren Barriereeigenschaften sind dabei vergleichbar mit denen metallisierter Folien.A disadvantage for many packaging applications is the loss of transparency in metallized films. Metallized foils are also only of limited suitability for use in packaging for microwave dishes, since the microwaves are reflected by the aluminum layer. The evaporation of foils with SiO x was therefore developed. As with aluminum, the loading takes place Stratification, in high vacuum. The thin layer forms an effective barrier against oxygen and water vapor, but does not impair the transparency of the film and allows microwaves to pass through. The barrier properties that can be achieved are comparable to those of metallized films.
Die aufwendigere Verfahrenstechnik macht jedoch zur Zeit SiOx-be- dampfte Folien noch teuerer. Dennoch wird die SiOx-Bedampfung be¬ reits an orientierten PET-Folien durchgeführt.However, the more complex process technology currently makes SiO x -evaporated films even more expensive. Nevertheless, the SiO x evaporation is already carried out on oriented PET films.
Die Verfahrenstechnik der Beschichtung von Folien im Vakuum ist Stand der Technik; sie wird beispielsweise in Vakuum-Technik, 34. Jahrgang, Heft 7, Seite 201, beschrieben. Der Einsatz im Le¬ bensmittelbereich wird in Neue Verpackung 9/83, Seite 1042, be- schrieben.The process technology for coating films in a vacuum is state of the art; it is described, for example, in vacuum technology, Volume 34, No. 7, page 201. Use in the food sector is described in New Packaging 9/83, page 1042.
Im Forschungsbericht Nr. 01-ZV 890V des Deutschen Bundesministe¬ riums für Forschung und Technologie wird deshalb auf die Möglich¬ keit hingewiesen, biologisch abbaubare Kunststoffe zur Verringe- rung der Permeabilität mit Aluminium zu beschichten. Damit läßt sich die oben angegebene Sauerstoffdurchlässigkeit auf 2,5 cm3/m2 x bar und die Wasserdampfdurchlässigkeit nach eigenen Messungen auf ca. 1 g/m2 x Tag reduzieren.Research report No. 01-ZV 890V by the German Federal Ministry for Research and Technology therefore points out the possibility of coating biodegradable plastics with aluminum to reduce the permeability. The oxygen permeability specified above can thus be reduced to 2.5 cm 3 / m 2 x bar and the water vapor permeability according to our own measurements to approximately 1 g / m 2 x day.
Allerdings wird in diesem Bericht angegeben, daß sich während 30 Tagen an einem derartigen Folienstück in aquatischem Milieu kein Abbau zeigte, wobei ein Abbau jedoch nicht für völlig unmög¬ lich gehalten wird. Danach erschien es dem Fachmann als nicht at¬ traktiv, mit Aluminium beschichtete Polylactid-Folien im Verpak- kungssektor zu verwenden.However, this report states that there was no degradation in such a piece of film in an aquatic environment for 30 days, although degradation is not considered to be completely impossible. Thereafter, it appeared to the person skilled in the art to be unattractive to use aluminum-coated polylactide films in the packaging sector.
Dieses Vorurteil wird unterstützt von der Lehre derThis prejudice is supported by the teaching of
DOS 2 239 277, mit der ein wasserlöslicher Behälter und Verfahren zu seiner Herstellung beansprucht werden. Danach kann der Kern dieses Verbundbehälters aus einer wasserlöslichen "polylactischen Säure" bestehen, die Deckfolien aus wasserunlöslichen Filmen. Da hochmolekulare, filmbildende Polylactide wasserunlöslich sind, kann es sich hierbei nur um sehr niedrigmolekulare Lactylmilch- säuren mit Kondensationsgraden von 2 bis 5 handeln, die als Kle- beschicht eingesetzt werden und keine Eigenschaften freistehender Filme aufweisen.DOS 2 239 277, which claims a water-soluble container and process for its manufacture. The core of this composite container can then consist of a water-soluble "polylactic acid", the cover foils from water-insoluble films. Since high-molecular, film-forming polylactides are water-insoluble, these can only be very low-molecular lactyllactic acids with degrees of condensation from 2 to 5, which are used as an adhesive layer and have no properties of free-standing films.
Es bestand also die Aufgabe, für permeationsdichte Güter eine dichte Kunststoffolie zu finden, die ohne Schwierigkeiten in üb- liehen Kompostieranlagen abbaubar ist. Es wurde nun gefunden, daß einseitig mit 0,01 bis 1 μm starkem Aluminium beschichtete Folien aus Polylactid unter den Bedingun¬ gen von üblichen kommunalen Kompostieranlagen bei Wandstärken um 0,1 bis 0,5 mm innerhalb von zwei bis vier Wochen vollkommen ab- gebaut werden, wobei kein metallisches Aluminium zurückbleibt.The task was therefore to find a dense plastic film for permeation-proof goods that can be easily degraded in conventional composting plants. It has now been found that polylactide foils coated on one side with 0.01 to 1 μm thick aluminum are completely degraded within two to four weeks under the conditions of conventional municipal composting plants with wall thicknesses of 0.1 to 0.5 mm without leaving any metallic aluminum.
Es wird damit gezeigt, daß entgegen einem Vorurteil mit Aluminium einseitig beschichtete Polylactide sehr wohl kompostierbar und damit vorteilhaft als Verpackungsmaterialien einsetzbar sind.It is shown that contrary to a prejudice, polylactides coated on one side with aluminum can be composted very well and are therefore advantageously used as packaging materials.
Die Aluminiumbeschichtungen werden mit nach dem Stand der Technik üblichen Verfahren wie dem Vakuumverdampfen von Aluminium und Niederschlagen des Dampfs an der Folie aufgebracht. Die Schicht¬ dicken betragen 0,01 bis 1 μm, vorzugsweise 0,05 bis 0,lμm.The aluminum coatings are applied to the film using methods customary in the art, such as vacuum evaporation of aluminum and deposition of the vapor. The layer thicknesses are 0.01 to 1 μm, preferably 0.05 to 0.1 μm.
Es ist verständlich, daß auch andere Metalle außer Aluminium als Barriereschichten verwendet werden können. Genauso ist es mög¬ lich, auch nichtmetallische Barriereschichten, wie SiOx über die Zersetzung von Siloxanen in einem Plasma aufzubringen.It is understood that metals other than aluminum can be used as barrier layers. It is also possible to apply non-metallic barrier layers, such as SiO x, via the decomposition of siloxanes in a plasma.
Die einseitig beschichteten Folien werden zur Herstellung von Verpackungen verwendet, wobei die Barriereschicht auf der Innen¬ seite dem Füllgut zugewandt ist. Gas- und Flüssigkeitsdichte Nähte werden durch Verklebung, Bördeln oder eine Kombination da- von nach dem Stand der Technik hergestellt.The films coated on one side are used for the production of packaging, the barrier layer on the inside facing the filling material. Gas and liquid-tight seams are produced by gluing, flanging or a combination thereof according to the prior art.
Es ist aber auch möglich, die bereits einseitig bedampfte Poly- lactid-Folie auf der mit der Sperrschicht bedampften Seite mit einer weiteren Polylactid-Folie zu kaschieren, so daß man einen Verbund Polylactid/-Sperrschicht/Polylactid erhält.However, it is also possible to laminate the polylactide film which has already been vapor-coated on one side with another polylactide film on the side coated with the barrier layer, so that a composite polylactide / barrier layer / polylactide is obtained.
Dazu führt man eine durch Breitschlitzextrusion geformte Polylac¬ tid-Folie nach dem Austritt aus der Düse auf der Kühlwalze über die beschichtete kalte Polylactid-Folie.For this purpose, a polylactide film formed by slot extrusion is passed over the coated cold polylactide film after it emerges from the nozzle on the cooling roll.
Bei den eingesetzten Polylactiden handelt es sich vorzugsweise um Poly-L-Lactid oder Poly-D-Lactid. Copolymere Lactide sind nur in soweit von Interesse, wenn sie noch Schmelzpunkte oberhalb 150°C aufweisen, also nur bis ca. 5 Mol.-% Comonomereinheiten aufwei- sen. Comonomere sind 1,3-Dioxan-2-one der StrukturThe polylactides used are preferably poly-L-lactide or poly-D-lactide. Copolymers lactides are only of interest if they still have melting points above 150 ° C, ie only up to about 5 mol% comonomer units. Comonomers are 1,3-dioxan-2-ones of the structure
Figure imgf000007_0001
1, -Dioxan-2-one der Struktur
Figure imgf000007_0001
1, -Dioxan-2-one of the structure
Figure imgf000008_0001
Figure imgf000008_0001
weitere Lactide der Strukturfurther lactides of the structure
Figure imgf000008_0002
Figure imgf000008_0002
oder Lactone der Strukturor lactones of the structure
Rl R l
R2 R 2
(CR3R4) 1 bis 10(CR 3 R 4 ) 1 to 10
In den angeführten Strukturformeln können die Reste R1 bis R6 gleich oder verschieden sein und Wasserstoff, eine verzweigte oder unverzweigte Alkyl-, Alkylen- oder Alkingruppe mit 1 bis 12, bevorzugt 1 bis 4 Kohlenstoffatomen enthalten, die gegebenenfalls durch Halogene, Hydroxigruppen, Alkoxygruppen, Formylgruppen, Acrylgruppen, Amino, Alkylamino, Dialkylamino oder Cycloalkyl- gruppen substituiert sind.In the structural formulas mentioned, the radicals R 1 to R 6 can be the same or different and contain hydrogen, a branched or unbranched alkyl, alkylene or alkyne group having 1 to 12, preferably 1 to 4, carbon atoms, optionally substituted by halogens, hydroxyl groups, alkoxy groups , Formyl groups, acrylic groups, amino, alkylamino, dialkylamino or cycloalkyl groups are substituted.
Die Homo- oder Copolymeren Lactide werden nach dem Stand der Technik ringöffnend ausgehend von der Monomerschmelze bei Tempe- raturen von 180 bis 230°C hergestellt. Als Polymerisationskataly¬ satoren sind BF3-Etherat, Titanalkoholate sowie weitere Mangan-, Zink-, Zinn-, Blei-, Antimon oder Aluminiumverbindungen einsetz¬ bar. Am häufigsten werden Zinn-II-Verbindungen als Alkoxide oder Carbonsäuresalze verwendet. Bevorzugt werden Zinn-II-octoat oder Zinn-II-ethyl-2-hexanoat in Konzentrationen von 10"6 bis 10"3 Mol pro Mol Monomermischung eingesetzt.According to the prior art, the homo- or copolymers lactides are produced ring-opening starting from the monomer melt at temperatures of 180 to 230 ° C. BF 3 etherate, titanium alcoholates and further manganese, zinc, tin, lead, antimony or aluminum compounds can be used as polymerization catalysts. Tin-II compounds are most commonly used as alkoxides or carboxylic acid salts. Tin-II-octoate or tin-II-ethyl-2-hexanoate is preferably used in concentrations of 10 "6 to 10 " 3 moles per mole of monomer mixture.
Beispielexample
Homopolymeres Poly-L-Lactid mit einer inhärenten Viskosität von 100 ml/g, gemessen an einer 0,1 %igen Lösung in Chloroform bei 25°C, wurde 20 h bei 120°C und einem Druck von 1 - 3 mbar getrock- net. Sodann wurde das Granulat in einem mit Argon gefluteten Trichter eines Folienextruders gegeben und das Material bei 200°C aufgeschmolzen und durch eine Breitschlitzdüse zu Folien von ca. 20 cm Breite extrudiert. Die Folie wurde nach dem Ausgang aus der Breitschlitzdüse mittels einer auf 25°C gekühlten Kühlwalze zu amorphem Poly-L-Lactid abgeschreckt . Im Verlauf des weiteren Ab¬ zugs wurde sie über Infrarotstrahler auf 90 - 100°C erwärmt und danach um den Faktor fünf schneller abgezogen und dabei unidirek- tional verstreckt und kristallisiert. So wurden teilkristalline Folien mit Dicken von ca. 30, 60 und 100 μm hergestellt.Homopolymeric poly-L-lactide with an inherent viscosity of 100 ml / g, measured on a 0.1% solution in chloroform at 25 ° C, was dried for 20 h at 120 ° C and a pressure of 1-3 mbar. net. The granules were then placed in a funnel of a film extruder flooded with argon and the material was melted at 200 ° C. and extruded through a slot die into films of approximately 20 cm in width. After leaving the slot die, the film was quenched into amorphous poly-L-lactide by means of a cooling roll cooled to 25 ° C. In the course of the further drawdown, it was heated to 90-100 ° C. using infrared emitters and then drawn off faster by a factor of five and thereby stretched and crystallized unidirectionally. Partly crystalline films with a thickness of approx. 30, 60 and 100 μm were produced.
Stücke dieser Folien mit ca. 20 x 20 cm wurden in einer Laborbe¬ dampfungsanlage mit einer ca. 0,03 μm starken Aluminiumschicht be¬ dampft. Weitere Folienstücke wurden mit einer 0,04 bis 0,06 μm starken SiOx-Schicht versehen.Pieces of these foils with approx. 20 x 20 cm were evaporated in a laboratory evaporation plant with an approx. 0.03 μm thick aluminum layer. Additional pieces of film were provided with a 0.04 to 0.06 μm thick SiO x layer.
Die beschichteten Folien sowie zur Kontrolle eine unbeschichtete Folie wurden in einer kommunalen Kompostieranlage in Drahtkörben eingegraben. Nach 6 Wochen - während dieser Zeit betrug die Temperatur 70 bis 80°C - wurden die Körbe ausgegraben. Es wurden keinerlei Folienreste mehr gefunden. The coated films and, as a control, an uncoated film were buried in wire baskets in a municipal composting plant. After 6 weeks - during this time the temperature was 70 to 80 ° C - the baskets were excavated. No film residues were found.

Claims

Patentansprüche Claims
1. Verpackungsmaterial aus mit Metallen oder Siliziumoxid ein- seitig bedampftem Polylactid.1. Packaging material made of polylactide vapor-coated on one side with metals or silicon oxide.
2. Verpackungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Schichtdicke der Bedampfung 0,001 bis 1 μm, vorzugs¬ weise 0,01 bis 0,1 μm beträgt.2. Packaging material according to claim 1, characterized in that the layer thickness of the vapor deposition is 0.001 to 1 μm, preferably 0.01 to 0.1 μm.
3. Verpackungsmaterial nach Anspruch 1 und 2, dadurch gekenn¬ zeichnet, daß die bedampfte Polylactid-Seite mit einer wei¬ teren Polylactid-Schicht kaschiert ist. 3. Packaging material according to claim 1 and 2, characterized gekenn¬ characterized in that the vapor-coated polylactide side is laminated with a further polylactide layer.
PCT/EP1994/001114 1993-04-22 1994-04-11 Polylactide coated with metal or silicon oxide for use as packaging material WO1994024198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4313136.0930422 1993-04-22
DE19934313136 DE4313136A1 (en) 1993-04-22 1993-04-22 Polyactide coated with metals or silicon oxide as packaging material

Publications (1)

Publication Number Publication Date
WO1994024198A1 true WO1994024198A1 (en) 1994-10-27

Family

ID=6486086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/001114 WO1994024198A1 (en) 1993-04-22 1994-04-11 Polylactide coated with metal or silicon oxide for use as packaging material

Country Status (2)

Country Link
DE (1) DE4313136A1 (en)
WO (1) WO1994024198A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802219A2 (en) * 1996-04-18 1997-10-22 Mitsui Toatsu Chemicals, Inc. Coated aliphatic polyester film
EP0974615A1 (en) 1998-07-22 2000-01-26 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
US7588813B2 (en) 2004-10-26 2009-09-15 Ishida Co., Ltd. Display strip and a display strip and product assembly

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609033A1 (en) * 1996-03-08 1997-09-11 Beiersdorf Ag Adhesive film
DE19954403A1 (en) * 1999-11-12 2001-05-17 Wolff Walsrode Ag Single and multi-layer, biodegradable, thermoplastic films with improved barrier properties as well as their use as packaging films or in cosmetic and hygiene articles
ATE552966T1 (en) * 2001-02-05 2012-04-15 Ishida Seisakusho BIODEGRADABLE BAGS FOR FOOD PACKAGING AVAILABLE THROUGH HIGH-SPEED MANUFACTURING
DE60304778T2 (en) 2002-08-30 2006-09-21 Ishida Co., Ltd. Display Strip
DE102007041485A1 (en) * 2007-08-31 2009-03-05 Henkel Ag & Co. Kgaa Silica-coated container containing a Pickering emulsion
DE102008037214A1 (en) * 2008-08-11 2010-02-18 Linden, Rolf-Dieter, Dipl.-Ing. Method for producing a packaging material
MX2011001623A (en) 2008-08-15 2011-05-24 Toray Plastics America Inc Biaxially oriented polylactic acid film with high barrier.
US9150004B2 (en) 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
EP2480710B1 (en) 2009-09-25 2018-01-24 Toray Plastics (America) , Inc. Multi-layer high moisture barrier polylactic acid film and its method of forming
WO2011103452A1 (en) 2010-02-19 2011-08-25 Toray Plastics (America) , Inc. Multi-layer high moisture barrier polylactic acid film
WO2011123165A1 (en) 2010-03-31 2011-10-06 Toray Plastics (America), Inc. Biaxially oriented polyactic acid film with reduced noise level
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298336A (en) * 1991-03-27 1992-10-22 Dainippon Printing Co Ltd Decomposable laminated packing material
WO1993004112A1 (en) * 1991-08-12 1993-03-04 E.I. Du Pont De Nemours And Company Degradable repellant coated articles
EP0576993A2 (en) * 1992-06-29 1994-01-05 MITSUI TOATSU CHEMICALS, Inc. Decomposable composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298336A (en) * 1991-03-27 1992-10-22 Dainippon Printing Co Ltd Decomposable laminated packing material
WO1993004112A1 (en) * 1991-08-12 1993-03-04 E.I. Du Pont De Nemours And Company Degradable repellant coated articles
EP0576993A2 (en) * 1992-06-29 1994-01-05 MITSUI TOATSU CHEMICALS, Inc. Decomposable composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 92-402198[49] *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802219A2 (en) * 1996-04-18 1997-10-22 Mitsui Toatsu Chemicals, Inc. Coated aliphatic polyester film
EP0802219A3 (en) * 1996-04-18 1998-05-13 Mitsui Toatsu Chemicals, Inc. Coated aliphatic polyester film
US5914188A (en) * 1996-04-18 1999-06-22 Mitsui Chemicals, Inc. Coated aliphatic polyester film
US6139948A (en) * 1996-04-18 2000-10-31 Mitsui Chemicals, Inc. Coated aliphatic polyester film
EP0974615A1 (en) 1998-07-22 2000-01-26 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
US6600008B1 (en) 1998-07-22 2003-07-29 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
US6649732B2 (en) 1998-07-22 2003-11-18 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
EP1785449A3 (en) * 1998-07-22 2007-08-29 Toyo Boseki Kabushiki Kasisha Aliphatic polyester film and gas barrier film
EP1967603A3 (en) * 1998-07-22 2008-12-10 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
EP2236548A3 (en) * 1998-07-22 2010-12-08 Toyo Boseki Kabushiki Kaisha Aliphatic polyester film and gas barrier film
US7588813B2 (en) 2004-10-26 2009-09-15 Ishida Co., Ltd. Display strip and a display strip and product assembly

Also Published As

Publication number Publication date
DE4313136A1 (en) 1994-10-27

Similar Documents

Publication Publication Date Title
WO1994024198A1 (en) Polylactide coated with metal or silicon oxide for use as packaging material
DE4328767C2 (en) Process for producing film composites and the composites produced using these processes
US5631066A (en) Process for making metalized films and films produced therefrom
DE69735206T2 (en) Gas-impermeable composite films
US6146764A (en) Polymer films and process for the preparation thereof
US5908917A (en) Polyglycolic acid sheet and production process thereof
KR102639403B1 (en) Laminated polyester film
KR100931143B1 (en) Polylactic Acid-Based Polymer Compositions, Molded Products and Films thereof
EP3344687B1 (en) Polyester film containing furandicarboxylate unit
EP0688806A2 (en) Biodegradable aliphatic polyester, melt-extrusion film thereof, and process for the production thereof
DE69434257T2 (en) DEGRADABLE, POLYDIOXANON BASED MATERIALS
EP3140349B1 (en) Article manufactured by means of thermoforming
DE2504322A1 (en) TRANSPARENT COMPOSITE FILMS MADE OF POLYOLEFINES AND POLYESTERS AND THE PROCESS FOR THEIR PRODUCTION
DE69400638T2 (en) METALIZED POLYMILIC ACID FILM
US6071599A (en) Polyester film for metal lamination and the use thereof
CN112334531A (en) Aqueous ethylene-vinyl alcohol copolymer dispersion and oxygen barrier multilayer film coated with the same
JPH1024518A (en) Polylactic biodegradable gas barrier film
CN103748154B (en) For the fluoropolymer composition of multilayer module
CN111334012B (en) Heat-resistant and degradable radiation refrigeration film and preparation method and application thereof
DE10258680B4 (en) Producing a composite material with a biodegradable plastic substrate and at least one coating
EP0549528A1 (en) Method for fabrication of coated substrates
DE19954403A1 (en) Single and multi-layer, biodegradable, thermoplastic films with improved barrier properties as well as their use as packaging films or in cosmetic and hygiene articles
JP2008062586A (en) Polylactic acid type gas barrier film
US4510205A (en) Copolyesterethers coated with saran
JP3984492B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA