WO1993014503A1 - Energy generating method based on gravitational collapse - Google Patents

Energy generating method based on gravitational collapse Download PDF

Info

Publication number
WO1993014503A1
WO1993014503A1 PCT/JP1993/000019 JP9300019W WO9314503A1 WO 1993014503 A1 WO1993014503 A1 WO 1993014503A1 JP 9300019 W JP9300019 W JP 9300019W WO 9314503 A1 WO9314503 A1 WO 9314503A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
hydrogen
deuterium
solid
electrolysis
Prior art date
Application number
PCT/JP1993/000019
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Matsumoto
Hiroyuki Harada
Original Assignee
Chlorine Engineers Corp., Ltd.
Mitsui & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp., Ltd., Mitsui & Co., Ltd. filed Critical Chlorine Engineers Corp., Ltd.
Publication of WO1993014503A1 publication Critical patent/WO1993014503A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention generates neutron nuclei by conducting electrolysis of water or heavy water using a cathode made of a solid element, and surrounding the solid element with hydrogen and Z or deuterium in an ultrahigh pressure state. And the method of generating energy by causing gravitational collapse.
  • the method of the present invention can also be carried out as a method for treating radioactive waste by using a radioactive element derived from radioactive waste as the solid element.
  • the neutron nucleus in which orbital electrons and protons have disappeared from the atom, undergoes gravitational collapse, that is, the neutron nuclei themselves self-shrink due to the gravitational force between the neutrons that make up the nucleus, shrinking to a singular point It has been reported that a neutron nucleus itself can explode and release energy on an astrophysical scale when it strikes, and the energy generated by the gravitational collapse of this neutron nucleus is about 130 OMeV / neutron It is said to be. However, it has not been reported that such gravitational collapse of neutron nuclei could occur on an industrial scale under artificial control.
  • the gravitational collapse of neutron nuclei can release an extremely large amount of energy, so if the gravitational collapse of neutron nuclei can be generated under mild conditions by some means, it can be a powerful energy supply method. It is expected.
  • neutron nuclei are sought from ordinary elements to cause gravitational collapse of the neutron nuclei, it is possible to annihilate the raw material elements. It is possible to plan.
  • an object of the present invention is to provide a method for generating energy using the gravitational collapse of neutron nuclei capable of rapidly generating energy, and a method capable of treating radioactive substances. .
  • the present invention performs electrolysis of water and / or heavy water containing a supporting electrolyte using a cathode composed of one or more conductive solid elements
  • the self-compression effect of hydrogen and z or deuterium on the surface and z or inside of the pole forms hydrogen and / or deuterium in ultrahigh pressure to surround the solid element of the cathode, Gravitational decay of single and / or multiple neutron nuclei generated from Z or deuterium itself and / or gravitational decay of single and / or multiple neutron nuclei generated by capturing orbital electrons of solid element nuclei
  • This is a method for generating energy, which is characterized by generating energy by generating energy.
  • a water containing a supporting electrolyte is formed by using a cathode composed of one or more conductive solid elements hardly occluding hydrogen and having a surface roughness of R a ⁇ 5 m. And electrolysis of Z or heavy water.
  • electrolysis of water and Z or heavy water containing a supporting electrolyte is performed using a solid element containing a radioactive element derived from radioactive waste as a cathode.
  • FIG. 1 is a diagram showing an example of an apparatus for performing the method of the present invention.
  • FIG. 2 is a photograph showing the gravitational collapse of quadruple neutrons observed on a nuclear dry plate in Example 1.
  • FIG. 3 is a diagram illustrating the photograph of FIG.
  • FIG. 4 is a photograph showing the gravity decay of the itonized quadruple neutrons observed on the nucleus plate in Example 1.
  • FIG. 5 is a diagram illustrating the photograph of FIG.
  • FIG. 6 is a photograph showing bursts of pits observed on a nucleus plate in Example 1.
  • FIG. 7 is a diagram illustrating the photograph of FIG.
  • FIG. 8 is a photograph showing the simultaneous gravitational collapse of three quadruple neutrons and the generation of a tiny black hole observed on a nuclear plate in Example 1.
  • FIG. 9 is a diagram illustrating the photograph of FIG.
  • FIG. 10 is a photograph showing a star-like track of fission fragments due to fission observed on a nuclear dry plate in Example 1.
  • FIG. 11 is a diagram illustrating the photograph of FIG. 10.
  • FIG. 12 is a photograph showing evaporation of a minimal black hole observed on a nucleus plate in Example 5.
  • FIG. 13 is a diagram illustrating the photograph of FIG.
  • FIG. 14 is a photograph showing the emission of a very small white hole (cone-shaped white hole) observed on the nucleus plate in Example 5.
  • FIG. 15 is a diagram illustrating the photograph of FIG.
  • FIG. 16 is a photograph showing emission of extremely small white holes (white holes due to evaporation of black holes) observed on the nucleus plate in Example 5.
  • FIG. 17 is a diagram illustrating the photograph of FIG.
  • Black hole A minimal compression state of a substance due to gravity.
  • White hole A mathematically symmetric solution of a black hole, a hole that releases a compact.
  • Wormhole A tiny hole that is compressed by a black hole and becomes extremely small, and passes through a black hole and a white hole.
  • the ultrahigh pressure state in the present invention refers to a state in which a pressure of at least several hundred atmospheres is locally applied to the peripheral portion of the element.
  • the gravitational collapse referred to in the present invention is, as described above, a reaction in which neutrons constituting nuclei self-shrink due to gravity between neutrons and approach each other, contract to a singular point, and neutron nuclei explode to release energy.
  • the gravitational collapse of neutron nuclei occurs because the generated neutron nuclei are surrounded by diton particles, and are generated by the diton particle compression effect.
  • the reaction in the method of the present invention includes the steps of generating neutron nuclei containing single neutrons and multiple neutrons from hydrogen, deuterium and / or solid elements, and the single and / or generated nuclei. Includes the stage where multiple neutron nuclei cause gravitational collapse.
  • neutron nuclei from hydrogen and deuterium atoms is considered to occur, for example, in the following manner.
  • H is a hydrogen atom
  • D is a deuterium atom
  • e is an electron
  • i is a single iton
  • i 2 is a double iton
  • i 3 is a triple pit
  • p is a proton
  • 1 n is a single neutron
  • 2 n is a double neutron
  • 4 n is a quadruple neutron
  • d is a deuteron
  • 4 H is a deuterium.
  • the atomic number Z, nucleus of the element X of the mass number A, the A n represents a multiple neutron atomic nuclei. Or represents a singleton.
  • the element used as a cathode in the present invention is applicable as long as it is a solid element.
  • a solid element For example, Ag, Al, As, Au, Ba, Be, Bi, C, Cd, Ce, Co, Cr ⁇ Cu, Fe, Ga, Ge, Hf, Hg, In, Ir, La, Mn, Mo, Nb, Ni, 0s, P, Pa, Pb, Pd, Pt, Ra, Re, Rh, Rn, Ru, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, U, V, W, Y, Zn, Zr and the like can be mentioned, and these can be used alone or in the form of an alloy or a mixture.
  • hydrogen, Z or deuterium is electrolyzed using the solid element as a cathode to surround the solid element with hydrogen and Z or deuterium molecules in an ultra-high pressure state. Must have conductivity.
  • the solid element used in the present invention can be formed into an arbitrary shape and used as a cathode, and can be used in the form of a column, a prism, a plate, a fiber sheet, or the like.
  • palladium or a palladium alloy can be mentioned as a preferable material that can be used as a solid element of the cathode.
  • the solid element constituting the cathode may be composed only of palladium, but when the method of the present invention is carried out by electrolysis, the mechanical strength of the solid element formed on the cathode during electrolysis is reduced.
  • the preferred metal that forms an alloy with palladium is silver.
  • the content of silver or other solid elements in the palladium alloy is preferably 25% by weight or less. Palladium and silver or other solid elements It is preferable to use palladium-silver or other solid alloy having a fifty ratio of 75 / 25-99Z1.
  • palladium or palladium alloy used as a solid-state element in this Takaaki must be heat-treated in advance at a temperature of 800 or higher in general (however, the melting point of the solid element or lower). Is preferred.
  • the purpose of this heat treatment is to desorb components in the air such as nitrogen molecules adsorbed on or inside the palladium or palladium alloy.
  • hydrogen and Z or deuterium are easily accessible to solid elements, generation of single and Z or multiple neutron nuclei from hydrogen and deuterium, and removal of solid elements.
  • the capture of orbital electrons promotes the generation of multiple neutron nuclei and the gravitational collapse of these single and Z or multiple neutron nuclei. Insufficient desorption of the components in it will prevent hydrogen or deuterium atoms from approaching the palladium atom, making it difficult for the desired reaction to occur.
  • This heat treatment is achieved by treating the solid elements in a vacuum furnace at a temperature of 800 ° C. or more and a vacuum of 10 ′′ 4 Torr or more before electrolysis. Longer time at high temperature has a greater effect, but as described above, it must be performed at a temperature lower than the melting point of the solid state.
  • hydrogen or deuterium replacement is preferably performed in a hydrogen or deuterium atmosphere. Can be filled with hydrogen or deuterium at an appropriate pressure.
  • the solid element used in the method of the present invention is converted into a nuclear state and then splits into multiple neutrons and other particles, and the multiple neutrons are converted into energy by gravity decay. Therefore, if the radioactivity derived from radioactive waste is used as a solid element in the method of the present invention, the radioactive element can be extinguished, and the radioactive waste treatment method Is extremely useful. Particularly effective in the elimination processing of various radioactive elements from nuclear power plants, 238 U these nuclear fuel radioactive elemental generated by capturing neutrons, 237 Np, 23 S Pu, 241 Pu, 2 42 Am and, 1 37 Cs produced by nuclear fission in addition to this, such as, 133 Cs, there is s ° Sr or the like.
  • the reprocessing of these radioactive wastes is carried out by treating spent nuclear fuel with nitric acid solution by nitric acid treatment. Then, the mixture is extracted with an organic solvent (for example, a kerosene solution containing tributyl phosphate), separated into an aqueous phase and an organic solvent phase, and further appropriately subjected to post-treatments such as ion exchange and neutralization treatment. It has been sealed in drums and stored strictly for a long time. If the present invention is applied, it is technically possible to extinguish by gravitational collapse while generating energy without performing the above-mentioned treatment, which is of great industrial significance.
  • an organic solvent for example, a kerosene solution containing tributyl phosphate
  • the rougher the surface of the cathode used in the present invention the lower the hydrogen overvoltage, and the longer the time required for the gravitational collapse of the neutron nucleus to occur after the start of electrolysis.
  • it is smooth.
  • the average roughness Ra expressed in accordance with JIS B0106
  • the roughness is more preferably Ra ⁇ 1 Rm, and even more preferably Ra ⁇ 0. It is desirable that the entire surface of the cathode immersed in water, Z or heavy water during electrolysis has the above roughness.
  • cathodes having a greater surface roughness than those described above can also be used in the present invention.
  • the element which can be used as the cathode having the above-mentioned surface roughness in the present invention is a solid in water and / or heavy water electrolysis, is insoluble in water and Z or heavy water, has conductivity, and has hydrogen. Any material that is hardly permeated and hardly occludes hydrogen inside, that is, hardly occludes hydrogen, can be used as long as the surface can be finished to the above surface roughness and the hydrogen overvoltage can be increased. In particular, since it is necessary to finish the surface to the above-mentioned surface roughness, it is preferable to select from metal and carbon.
  • cathode materials examples include iridium, ruthenium, silver, copper, nickel, cadmium, iron, indium, zinc, tin, aluminum, lead, gold, platinum, stainless steel (sus-316, SUS-316L, sus-310, sus-304, etc.), Hastelloy, silver nickel nickel and the like.
  • Particularly preferred cathode materials are pure nigels and force domes.
  • the cathode material Prior to use in the method of the invention, can be electropolished by electrolyzing water with a supporting electrolyte used as an anode. Preferably, after mechanical polishing, finish by electrolytic polishing.
  • the cathode having the above-mentioned surface roughness used in the present invention may be used in any shape, but is preferably in the form of a plate, a woven sheet, a wire or a foil.
  • the desired effect can be obtained by finishing the main plane surface to the specified surface roughness.
  • the surface of the sickle constituting the sheet has the above surface roughness.
  • the surface roughness of such fibers can be obtained by electropolishing.
  • a non-woven sheet made of sintered metal fibers of nickel, stainless steel, titanium or the like having a diameter of several m to several tens of m / m is used.
  • the thickness is about 0.1 to 10 thighs and the basis weight is about 100 to 800 g / m 2 .
  • a nickel-woven fabric sheet suitable for use as a cathode for water electrolysis include, for example, Naslon CNP nickel sheet manufactured by Nippon Seisen Co., Ltd.
  • the anode material is not particularly limited, but it is preferable to use platinum or a platinum-plated titanium anode.
  • the shape of the anode is not particularly limited, but is preferably provided so as to surround the cathode. Therefore, for example, when a plate-shaped or fiber-sheet-shaped cathode is used, two anodes, a platinum wire provided spirally around the cathode or the fiber-sheet-shaped cathode at regular intervals, or ⁇ It is preferable to use an anode composed of two platinum plates, a platinum mesh, a platinum-plated titanium plate or a platinum-plated titanium mesh provided in parallel to the surface.
  • water and Z or heavy water are electrolyzed, that is, water, heavy water or a mixture thereof is electrolyzed.
  • water contains about 0.17% by weight of heavy water. Therefore, in practice, a mixture of water and heavy water containing about 0.17 weight of heavy water is the source of electrolysis.
  • the content of heavy water is not particularly limited.However, from the viewpoint of generation of multiple neutron nuclei, the content of heavy water is preferably high, and heavy water with a purity of 99.5% or more should be used. Is preferred. On the other hand, it is preferable that the content of heavy water is not so high from the viewpoint of safety, easiness or cost of operation, and the condition can be determined by considering each condition.
  • a supporting electrolyte is added to the water and Z or heavy water to be electrolyzed to ensure electrical conductivity.
  • the type of the supporting electrolyte is not particularly limited as long as the purpose can be achieved.
  • the supporting electrolyte is a salt or hydroxide of an alkali metal, and more preferably, NaC1, KC1, LiCl, RbCK. CsCl, NaOH, KOH, LiOH,
  • Na 2 C0 3, K 2 C0 3, Li 2 C0 3, are selected from Rb 2 C0 3 and Cs 2 C0 3.
  • LiOD, NaOD, KOD, RbOD and CsOD are added only when electrolyzing heavy water, but others can be added to both water and heavy water.
  • a small amount (several ppm to several hundred ppm) of silica, an aluminum compound, iron oxide, or the like can be added together with these supporting electrolytes.
  • the cell voltage and current density used in the electrolysis are not particularly limited as long as the reaction leading to the gravitational collapse of neutron nuclei as described above can be caused. It is desirable to make the mE and cathode current density sufficiently high. In particular, increasing the cathode current density increases the hydrogen overvoltage, generates hydrogen and Z or deuterium in an ultra-high pressure state on the surface and / or inside of the cathode to generate hydrogen and Z or deuterium, and even solids A self-compressive effect is created for the orbital atoms in the shape of a circle, making it easier for gravity collapse to occur.
  • the cell voltage is preferably 3 volts or more, more preferably 10 volts or more, and the current density is preferably 1 AZdm 2 or more, more preferably
  • the electrolysis is preferably performed at 5 AZdm 2 or more, particularly preferably at 10 AZdm 2 or more.
  • the hydrogen group and Z or the deuterium group mainly cause nuclear fusion reactions and make an effort for energy, but they are not efficient. It is not preferable because it generates radioactive materials.
  • the current value is changed every tens of minutes or every several hours, or continuously in a pulse form of, for example, several tens to several hundreds of hertz.
  • the desired reaction can be triggered, that is, the generation of single and Z or multiple neutron nuclei and their gravitational collapse can be promoted.
  • the membrane material include a fluorine-based cation exchange membrane (a polyperfluorosulfonic acid membrane manufactured by DuPont USA, such as Naphion 117, 415, 417, 422, 550), and the like.
  • Porous fluororesin membrane Naflon diaphragm manufactured by Nichias Co., Ltd., Goatex diaphragm manufactured by Japan Pagotex Co., Ltd., porous Teflon membrane manufactured by Nitto Denko Corporation, Teflon membrane containing potassium titanate powder, etc.), porous polypropylene Membrane (Polyplastics Co., Ltd.'s Jyuragard etc.), Porous ceramic film (Nippon Tokuhoku Co., Ltd.'s ⁇ -alumina film and nickel oxide film, etc.), Asbestos diaphragm (Other than just asbestos diaphragm, Teflon fiber, elastomer) It is possible to use a polymer film having a wakefulness and chemical resistance, such as a porous polyphenylene sulfide film. Hydrogen or deuterium separated by providing these membranes can be used for fuel cells, hydrogen bottles, etc., and can be used as a hybrid between water electrolysis or heavy water electrolysis
  • the electrolytic cell is used as a closed system, and the gas generated by electrolysis is taken out of the system via the pressure regulating valve so that the inside of the electrolytic cell is pressurized by the pressure regulating valve.
  • the electrolytic cell is preferably placed in a closed pressurized container and pressurized with nitrogen gas, and electrolysis is preferably performed inside and outside the electrolytic bath by using a pressure regulating valve to make the pressure equal.
  • a gas-liquid separator is provided outside the closed pressurized vessel and in front of the pressure regulating valve, and gas discharged from the electrolytic cell is introduced into the gas-liquid separator to liquefy and separate a part of steam or heavy steam. It is also preferable to recycle to the electrolytic cell.
  • There is a danger of explosion if hydrogen or deuterium and oxygen come into contact with each other in a pressurized state. Forcibly remove the generated gas by suctioning it out of the electrolytic cell system, or separate the cathode and anode from each other with a diaphragm, Deuterium and oxygen need to be separately taken out of the system.
  • the method of the present invention When the method of the present invention is carried out, it is considered to occur after a certain period of time has elapsed after the start of electrolysis.
  • the temperature of the cathode is raised or lowered, or a DC voltage is applied to move hydrogen or deuterium on the cathode in the system, or the cathode is installed so that the whole is submerged in the electrolyte.
  • a trigger By pulling up and moving hydrogen or deuterium on the cathode over the cathode, a trigger can be given to the above-described reaction leading to gravitational collapse of neutron nuclei.
  • FIG. 1 shows an example of an electrolysis apparatus for carrying out the method of the present invention.
  • the apparatus shown in FIG. 1 has a plate-shaped cathode made of a solid element, and an anode made of a platinum wire provided so as to spirally surround the plate-shaped cathode at regular intervals. It is.
  • 1 is a cathode made of a solid element
  • 2 is a platinum wire anode
  • 3 is water and Z or heavy water to which a supporting electrolyte has been added
  • 4 is a thermometer
  • 5 is an internal cell
  • 6 is a water level
  • 7 is a thermometer.
  • Couple, 8 indicates glass, quartz, Teflon, methacrylic resin or Teflon-lined stainless steel electrolytic cell
  • 9 indicates hydrogen or deuterium and oxygen.
  • the method of the present invention is carried out by directly immersing the anode and the cathode in water, Z or heavy water, applying a voltage between the electrodes, and performing electrolysis, and is also used in a hydrogen fuel cell.
  • a gas diffusion electrode in which a platinum catalyst supported on fine-particle carbon is coated on the surface of a gas-permeable carbon fiber cloth together with a binder.
  • An alloy rod of palladium-silver having a composition of 9100 weight ratio of palladium-silver instead of the palladium rod of Example 1 (diameter: 5 cm, length: 5 cm, 800 ° C., 10 ′′ e Torr Water or heavy water electrolysis was carried out in the same manner as in Example 1 except that the degassing treatment was performed in a vacuum furnace for 10 hours at a temperature of 10%. The temperature rose rapidly to 250-300 ° C, and the water temperature also gradually increased to about 80 ° C.
  • Example 1 double neutrons and single pits were mainly detected during light water electrolysis from nuclear dry plates, while quadruple neutrons and double pits were mainly detected during heavy water electrolysis.
  • part of the palladium-silver alloy rod is released due to gravity collapse, causing local cracks and pinholes, a slight decrease in weight, and the formation of grain-shaped defects by a scanning electron microscope. It was recognized that no. The disappearance of the radium element was confirmed. The composition of the palladium silver alloy was slightly changed.
  • Example 1 Using K 2 C0 3 in place of NaOH or NaOD the supporting electrolyte of Example 1, was carried out by following the procedure of electrolysis as in Example 1 except that 3 weight K 2 C0 3 water was used as the electrolyte. As a result, the temperature of the palladium rod rapidly increased 10 days after the start of electrolysis to reach 250 to 300 ° C, and the water temperature rose to about 8 (TC).
  • Example 4 5 mg of cadmium powder was added to 1.177 g of palladium powder, and both were melted and placed in a mold to produce a rod 5 cm in diameter and 5 cm in length.
  • a tungsten plate was irradiated with an electron beam using an electron linear accelerator with an output energy of 48 MeV to generate neutrons of about 2 MeV, which was decelerated to 0.025 MeV with water.
  • Cadmium was converted to radioactive cadmium by irradiating and irradiating a radium rod with force cadmium.
  • the radiated cadmium-containing palladium rod was used as a cathode, the cathode current density was 15 A / dm 2 , the cell voltage was about 10 V, and the other conditions were the same as in Example 1 except that 3% NaOH was contained. Electrolysis was performed in heavy water. 10 days after the start of electrolysis, the number of cathode rods was 20 to 300 days. Rose to C. Gamma clear distinction spectrum of cadmium results measured by the Ge detector, and about 1 of the added 1 1 5 Cd disappears, observed that happened that reaction leading to gravitational collapse of the neutron nuclear force Domiumu element Was done.
  • the Nigel plate electropolished as above is used as the cathode
  • the platinum wire is used as the anode
  • the cathode current density is 2 AZdra 2 and the cell voltage is about 3.5 V.
  • the temperature of the nickel plate was 16. C to 28 ° C.
  • the current was increased to a cathode current density of 6 A / dm 2 and a cell voltage of about 7 V.
  • the temperature of the Nigger plate rapidly increased from 37 ° C to 70, abnormal heat generation continued for more than 10 hours. . Following this, the liquid temperature gradually increased from 16 and reached 65 ° C.
  • a nuclear emulsion plate one side of a methacrylic resin plate or an emulsion for autoradiography manufactured by Fuji Photo Film Co., Ltd., EM type MA-7B was placed on each side in close proximity to the outside of the glass electrolytic bath. Coated to a thickness of 0 m ) was placed. Double neutrons and single ditons were mainly detected in the nuclear slab, and multiple neutrons due to nickel nuclei were also detected (see Figs. 12 to 17).
  • Example 5 Instead of light water, heavy water having a purity of 99.5% was used, and thereafter, electropolishing and electrolysis were performed under the same conditions as in Example 5.
  • the nickel temperature at the start of electrolysis after polishing was 21 ° C, but after the start of electrolysis the nickel plate temperature gradually increased to 32 ° C after 50 minutes, and the cathode current density after 50 minutes. When the current was increased to 6 A / dm 2 and the cell voltage was about 6 V, the temperature of the nickel plate rapidly increased to 78 ° C, and abnormal heat generation continued for 10 hours or more. The temperature of the solution gradually increased from 21 ° C and reached 72.
  • the force-dummy plate was electropolished in 200 ml of a 3.3% by weight aqueous K0H solution under the same conditions as in Cold Working Example 5.
  • electrolysis was performed by applying a direct current so that the cathode current density was 2 AZdm 2 and the cell voltage was about 3 V using the force-dummy plate electropolished as described above as a cathode and a platinum wire as an anode.
  • the temperature of the force-dummy plate gradually increased from 18 ° C, and reached 39 ° C 51 minutes after energization.
  • the current was increased so that the cathode current density was 6AZdm 2 and the cell voltage was about 4.5 V
  • the temperature of the force-dummy plate rapidly increased to 71 ° C, and abnormal heat generation continued for more than 10 hours.
  • the liquid temperature gradually increased from 18 ° C to 67 ° C.
  • Double neutrons and single neutrons were mainly detected in the nuclei plates provided in the same manner as in Example 5, and multiple neutrons caused by force nuclei were also detected.
  • Example 5 the electrolysis was started by applying a direct current at a cathode current density of 2 AZdra 2 and a cell voltage of about 3 V using the nickel plate electropolished as described above as a cathode and a platinum wire as an anode.
  • the temperature of the nickel plate gradually increased from 21 ° C, and reached 32 after 50 minutes.
  • the current was increased so that the cathode current density was 7 AZdm 2 and the cell voltage was about 6 V
  • the temperature of the Nigger plate rapidly increased to 78 ° C, and abnormal heat generation continued for more than 10 hours.
  • the liquid temperature gradually increased from 21 ° C to 71 ° C. Double neutrons and single neutrons were mainly detected in the nuclei plates provided in the same manner as in Example 5, and multiple neutrons due to nil nuclei were also detected.
  • a DC was applied so that a cathode current density of 1 A / dm 2 and a cell voltage of about 3 V were applied using the roll-shaped force-dominating foil electropolished as described above as a cathode and a platinum wire as an anode, and electrolysis was started.
  • the temperature of the foil gradually increased from 21 ° C, and reached 28 ° C 50 minutes after energization.
  • the current was further increased to a cathode current density of 3 A / dm 2 and a cell voltage of about 5 V, the temperature of the force-dummy foil rapidly increased to 78 ° C 30 minutes later, and abnormal heat generation continued at 10 o'clock.
  • a cathode current density of 1 A / dm 2 and a cell voltage of about 3 V were applied using the roll-shaped force-dominating foil electropolished as described above as a cathode and a platinum wire as an anode, and electrolysis was started.
  • the temperature of the foil gradually increased
  • the liquid temperature gradually increased from 21 ° C to 53 ° C.
  • Double neutrons and single neutrons were mainly detected in the nuclei plates provided in the same manner as in Example 5, and multiple neutrons caused by force nuclei were also detected.
  • Example 5 a nickel fiber sheet electropolished as described above was used as a cathode, and a platinum wire was used as an anode, and a direct current was applied so that the cathode current density was 2 AZdm 2 and the cell voltage was about 3.5 V.
  • the electrolysis was started, the temperature of the Niger tissue sheet gradually increased from 21 ° C, and reached 35 after 50 minutes of energization.
  • the cathode current density was increased to lOAZdm 2 , and the cell voltage was increased to about 8 V.
  • pulsed electrolysis was performed at 100 Hz, the temperature of the Nigel fiber sheet rapidly increased to 80 ° C, and abnormal heat generation for 10 hours or more Followed. As a result, the liquid temperature gradually increased from 21 ° C to 75 ° C.
  • the present invention provides a very efficient energy generation method. Further, it is possible to extinguish radioactive elements by the method of the present invention.

Abstract

An energy generating method having an extremely high efficiency, comprising the steps of electrolyzing supporting electrolyte-containing water and/or heavy water by using a cathode consisting of at least one kind of conductive solid element; forming superhigh pressure hydrogens and/or superhigh pressure heavy hydrogens on the surface and/or inner side of the cathode of a solid element owing to the self-compressing effect of the hydrogens and/or heavy hydrogens and surrounding the solid element of the cathode therewith; and giving rise to the gravitational collapse of the nucleus of a single and/or multiple neutron produced by the hydrogen and/or heavy hydrogen, and/or the gravitational collapse of the nucleus of a single and/or multiple neutron produced when the orbital electron of the nucleus of the solid element is captured.

Description

明 細 書  Specification
重力崩壊によるエネルギーの発生方法  How energy is generated by gravity collapse
【技術分野】  【Technical field】
本発明は、 固体状の元素からなる陰極を使用して水または重水の電解を行い、 超高圧状態の水素群及び Zまたは重水素群で固体状の元素を包囲することにより、 中性子原子核を発生させその重力崩壊を生起させることによるエネルギーの発生 方法に係る。 本発明方法は、 上記固体状の元素として放射性廃棄物に由来する放 射性元素を使用することにより放射性廃棄物の処理方法としても実施することが できる。  The present invention generates neutron nuclei by conducting electrolysis of water or heavy water using a cathode made of a solid element, and surrounding the solid element with hydrogen and Z or deuterium in an ultrahigh pressure state. And the method of generating energy by causing gravitational collapse. The method of the present invention can also be carried out as a method for treating radioactive waste by using a radioactive element derived from radioactive waste as the solid element.
隱技術】  Hidden technology]
これまで、 L i ODを支持電解質とし、 パラジウムまたはパラジウム一銀合金 を陰極とし、 白金を陽極として重水の電解を行うと、 パラジウム原子の格子の中 に重水素が吸蔵されて重水素原子が核融合反応を生起し、 ェネルギ一を発生し得 ることが報告されており、 新たなエネルギー発生方法として注目された。 しかし この方法によれば、 所望の核融合反応を生起させるためにはパラジゥム原子中に 重水素 Zノ、'ラジウムの原子比が少なくとも 0.8以上となるまで重水素を吸蔵させ なければならず、 陰極の形状にも依存するが、 例えば棒状の場合には、 このよう な吸蔵量を得るためには電解開始後ある程度の誘導的な時間を要し、 従ってエネ ルギーの発生までにある程度の時間を必要とするとレ、う欠点があつた。 またこの ような核融合反応による方法では、 人体に有害な中性子、 多量のトリチウム、 ガ ンマ一線等の発生が避けられず、 完全な密閉系において操業しなければならない ことも問題である。  Until now, when heavy water was electrolyzed using LiOD as a supporting electrolyte, palladium or palladium-silver alloy as a cathode, and platinum as an anode, deuterium was occluded in the lattice of palladium atoms, and deuterium atoms were nucleated. It has been reported that fusion reactions can occur and energy can be generated, and it has attracted attention as a new energy generation method. However, according to this method, in order to cause a desired nuclear fusion reaction, deuterium must be occluded in the palladium atom until the atomic ratio of deuterium, Z, and radium becomes at least 0.8 or more. For example, in the case of a rod, a certain amount of inductive time is required after the start of electrolysis, and thus a certain amount of time is required until energy is generated, in the case of a rod shape, for example. Then, there was a drawback. In addition, such a fusion reaction method has a problem in that neutrons, a large amount of tritium, gamma rays, etc., which are harmful to the human body, cannot be avoided, and the operation must be performed in a completely closed system.
一方、 原子から軌道電子と陽子が消失した中性子原子核が、 重力崩壊、 即ち原 子核を構成している中性子間の重力によって中性子原子核自身が自己収縮して互 いに接近し、 特異点まで収縮したとき中性子原子核自身が爆発してエネルギーを 放出する反応を宇宙物理学的規模において生起し得ることが報告されており、 こ の中性子原子核の重力崩壊により生じるエネルギーは約 1 3 0 O MeV /中性子で あるとされている。 しかしながら、 このような中性子原子核の重力崩壊を工業的 規模にぉ 、て人為的な制御下に生起し得たという報告はなされていなレ、。 上記の通り、 中性子原子核の重力崩壊は極めて多量のエネルギーを放出し得る ので、 中性子原子核の重力崩壊を何等かの手段により温和な条件下で生起させる ことができれば、 有力なエネルギーの供給方法たり得ることが期待される。 また、 通常の元素から中性子原子核を努生させ、 その中性子原子核の重力崩壊 を生起させることとすれば原料元素を消滅させることが可能であり、 放射性元素 を原料»として放射性廃棄物の消滅処理を図ることが可能である。 On the other hand, the neutron nucleus, in which orbital electrons and protons have disappeared from the atom, undergoes gravitational collapse, that is, the neutron nuclei themselves self-shrink due to the gravitational force between the neutrons that make up the nucleus, shrinking to a singular point It has been reported that a neutron nucleus itself can explode and release energy on an astrophysical scale when it strikes, and the energy generated by the gravitational collapse of this neutron nucleus is about 130 OMeV / neutron It is said to be. However, it has not been reported that such gravitational collapse of neutron nuclei could occur on an industrial scale under artificial control. As described above, the gravitational collapse of neutron nuclei can release an extremely large amount of energy, so if the gravitational collapse of neutron nuclei can be generated under mild conditions by some means, it can be a powerful energy supply method. It is expected. In addition, if neutron nuclei are sought from ordinary elements to cause gravitational collapse of the neutron nuclei, it is possible to annihilate the raw material elements. It is possible to plan.
従つて本発明の目的は、 迅速にエネルギーを発生し得る中性子原子核の重力崩 壊を利用したエネルギーの発生方法であって、 放射性 ¾物の処理をすることも 可能である方法を することにある。  Accordingly, an object of the present invention is to provide a method for generating energy using the gravitational collapse of neutron nuclei capable of rapidly generating energy, and a method capable of treating radioactive substances. .
[努明の開示】  [Disclosure of efforts]
本発明者等の水及び重水電解に関する研究の結果、 一種以上の導電性の固体状 の からなる を使用して支持電解質を含有する水及び Zまたは重水の電気 分解を行うと、 電解により陰極周辺に生成した水素群及び Zまたは重水素群の自 己 ΕΕϋ効果により該固体状の元素の陰極の表面及び Ζまたは内部に超高圧 t態の 水素群及び/または重水素群が形成されて陰極の固体状の元素が包囲され、 これ により水素及び Zまたは重水素自体から単一及び/または多重中性子原子核が生 成し、 また固体状 の原子核の軌道電子が捕獲されて単一及び/または多重中 性子原子核が生成し、 これらの単一及び Zまたは多重中性子原子核の重力崩壤が 生起してエネルギーが発生されることが見出された。  As a result of the present inventors' research on water and heavy water electrolysis, the electrolysis of water and Z or heavy water containing a supporting electrolyte using one or more conductive solid Due to the self-effect of hydrogen and / or Z or deuterium generated at the surface, ultrahigh pressure t-state hydrogen and / or deuterium are formed on the surface and / or inside of the cathode of the solid element, and Encloses solid elements, thereby producing single and / or multiple neutron nuclei from hydrogen and Z or deuterium itself, and capturing single and / or multiple orbital electrons of solid nuclei It has been found that neutron nuclei are generated and energy is generated by the gravitational collapse of these single and Z or multiple neutron nuclei.
さらに上記のような電解による単一及び Zまたは多重中性子原子核の発生とそ の重力崩壊によるエネルギーの発生方法において、 陰極に水素難吸蔵性の固体状 を使用し、 固体状 の表面を平滑にすることにより陰極の水素過電圧 を粗な表面と比較して大きいものとし、主として陰極表面近傍のみにぉレゝて超高 圧状態の水素群及び Zまたは重水素群を形成して単一及び Zまたは多重中性子原 子核の生成と重力崩壊を生起させることとすると、 電解開始後極めて短い時間で 所望の単一及び Zまたは多重中性子原子核の生成と重力崩壊を生起させ得ること が見出された。  Furthermore, in the method of generating single and Z or multiple neutron nuclei by electrolysis as described above and generating energy by gravitational collapse, use a solid state that is hard to absorb hydrogen as the cathode and smooth the solid state surface As a result, the hydrogen overvoltage of the cathode is made larger than that of the rough surface, and the hydrogen group and Z or deuterium group in the ultrahigh pressure state are formed mainly only near the cathode surface to form single and Z or deuterium groups. Assuming that the production of multiple neutron nuclei and the gravitational collapse were to occur, it was found that the generation of the desired single and Z or multiple neutron nuclei and the gravitational collapse could occur in a very short time after the start of electrolysis.
従って本癸明は、 一種以上の導電性の固体状の元素からなる陰極を使用して支 持電解質を含有する水及び/または重水の電気分解を行レ、、 該固体状の元素の陰 極の表面及び zまたは内部に水素群及び zまたは重水素群の自己圧縮効果により 超高圧状態の水素群及び/または重水素群を形成させて陰極の固体状の元素を包 囲し、 水素及び Zまたは重水素自体から生成する単一及び Zまたは多重中性子原 子核の重力崩壊及び/または固体状元素の原子核の軌道電子が捕獲されて生成す る単一及び,または多重中性子原子核の重力崩壊を生起させてエネルギーを発生 させることを特徵とするエネルギーの発生方法である。 Accordingly, the present invention performs electrolysis of water and / or heavy water containing a supporting electrolyte using a cathode composed of one or more conductive solid elements, The self-compression effect of hydrogen and z or deuterium on the surface and z or inside of the pole forms hydrogen and / or deuterium in ultrahigh pressure to surround the solid element of the cathode, Gravitational decay of single and / or multiple neutron nuclei generated from Z or deuterium itself and / or gravitational decay of single and / or multiple neutron nuclei generated by capturing orbital electrons of solid element nuclei This is a method for generating energy, which is characterized by generating energy by generating energy.
さらに本発明の一態様によれば、 一種以上の導電性の水素難吸蔵性固体状元素 からなり、 その表面粗さが R a≤ 5〃mである陰極を使用して支持電解質を含有 する水及び Zまたは重水の電気分解が行われる。  Further, according to one embodiment of the present invention, a water containing a supporting electrolyte is formed by using a cathode composed of one or more conductive solid elements hardly occluding hydrogen and having a surface roughness of R a ≤ 5 m. And electrolysis of Z or heavy water.
さらに別の本発明の一態様によれば、 放射性廃棄物に由来する放射性元素を含 む固体状元素を陰極として使用して支持電解質を含有する水及び Zまたは重水の 電気分解が行われる。  According to yet another aspect of the present invention, electrolysis of water and Z or heavy water containing a supporting electrolyte is performed using a solid element containing a radioactive element derived from radioactive waste as a cathode.
【図面の簡単な説明】  [Brief description of the drawings]
図 1は、 本発明方法を実施するための装置の例を示す図である。  FIG. 1 is a diagram showing an example of an apparatus for performing the method of the present invention.
図 2は、 実施例 1において原子核乾板上に観察された 4重中性子の重力崩壊を 示す写真である。  FIG. 2 is a photograph showing the gravitational collapse of quadruple neutrons observed on a nuclear dry plate in Example 1.
図 3は、 図 2の写真を説明する図である。  FIG. 3 is a diagram illustrating the photograph of FIG.
図 4は、 実施例 1において原子核乾板上に観察されたィトン化 4重中性子の重 力崩壊を示す写真である。  FIG. 4 is a photograph showing the gravity decay of the itonized quadruple neutrons observed on the nucleus plate in Example 1.
図 5は、 図 4の写真を説明する図である。  FIG. 5 is a diagram illustrating the photograph of FIG.
図 6は、 実施例 1において原子核乾板上に観察されたィトンの破裂を示す写真 である。  FIG. 6 is a photograph showing bursts of pits observed on a nucleus plate in Example 1.
図 7は、 図 6の写真を説明する図である。  FIG. 7 is a diagram illustrating the photograph of FIG.
図 8は、 実施例 1において原子核乾板上に観察された 3個の 4重中性子の同時 重力崩壊と極小ブラックホールの生成を示す写真である。  FIG. 8 is a photograph showing the simultaneous gravitational collapse of three quadruple neutrons and the generation of a tiny black hole observed on a nuclear plate in Example 1.
図 9は、 図 8の写真を説明する図である。  FIG. 9 is a diagram illustrating the photograph of FIG.
図 1 0は、 実施例 1において原子核乾板上に観察された核***による核***片 の星状の飛跡を示す写真である。  FIG. 10 is a photograph showing a star-like track of fission fragments due to fission observed on a nuclear dry plate in Example 1.
図 1 1は、 図 1 0の写真を説明する図である。 図 1 2は、 実施例 5において原子核乾板上に観察された極小ブラックホールの 蒸発を示す写真である。 FIG. 11 is a diagram illustrating the photograph of FIG. 10. FIG. 12 is a photograph showing evaporation of a minimal black hole observed on a nucleus plate in Example 5.
図 1 3は、 図 1 2の写真を説明する図である。  FIG. 13 is a diagram illustrating the photograph of FIG.
図 1 4は、 実施例 5において原子核乾板上に観察された極小ホワイトホールの 放出 (円錐形のホワイトホール) を示す写真である。  FIG. 14 is a photograph showing the emission of a very small white hole (cone-shaped white hole) observed on the nucleus plate in Example 5.
図 1 5は、 図 1 4の写真を説明する図である。  FIG. 15 is a diagram illustrating the photograph of FIG.
図 1 6は、 実施例 5において原子核乾板上に観察された極小ホワイトホールの 放出 (ブラックホールの蒸発によるホワイトホール) を示す写真である。  FIG. 16 is a photograph showing emission of extremely small white holes (white holes due to evaporation of black holes) observed on the nucleus plate in Example 5.
図 1 7は、 図 1 6の写真を説明する図である。  FIG. 17 is a diagram illustrating the photograph of FIG.
図面中の用語は下記の意味を有する。  The terms in the drawings have the following meanings.
特異点:重力による極小圧縮状態。  Singularity: Minimal compression due to gravity.
ブラックホール:重力による物質の極小の圧縮状態。  Black hole: A minimal compression state of a substance due to gravity.
ホワイトホール:ブラックホールの数学的対称解で、 圧縮物を放出する孔。 ワームホール:ブラックホールで圧縮されて極小状態になって、 ブラックホ一 ルとホワイトホールを繫ぐ極小の孔。  White hole: A mathematically symmetric solution of a black hole, a hole that releases a compact. Wormhole: A tiny hole that is compressed by a black hole and becomes extremely small, and passes through a black hole and a white hole.
【発明を実施するための最良の態様】  BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
上記のように固体状 5 ^を陰極として電解を行つた場合、 電解時の水素過電 EE により、 水素及び Zまたは重水素が陰極材表面及び/または内部の固体状の に吸蔵され、 原 晶粒間中に水素及び Zまたは重水素原子が入って貯蔵される。 そして水素群及び Zまたは重水素群の自己圧縮効果により固体状元素が超高圧状 態の水素群及び Zまたは重水素群で包囲されるようになり、 これにより中性子原 子核が発生し弓 ίき鐃きその重力崩壊が生起する。  When electrolysis is performed using the solid 5 ^ as a cathode as described above, hydrogen and Z or deuterium are absorbed into the solid material on the surface and / or inside the cathode material due to hydrogen overcharge EE during electrolysis, and the Hydrogen and Z or deuterium atoms are stored between the grains. The self-compression effect of the hydrogen group and the Z or deuterium group causes the solid element to be surrounded by the ultrahigh-pressure state of the hydrogen group and the Z or deuterium group. The collapse of gravity occurs.
尚、 本発明でいう超高圧状態とは少くとも局部的に数百気圧以上の圧力が元素 周辺部にかかっている状態をいう。  The ultrahigh pressure state in the present invention refers to a state in which a pressure of at least several hundred atmospheres is locally applied to the peripheral portion of the element.
本発明にいう重力崩壊とは、 前記した通り、 原子核を構成する中性子が中性子 間の重力によって自己収縮して互いに接近し、 特異点に収縮して中性子原子核が 爆発してエネルギーを放出する反応をいう。 この中性子原子核の重力崩壊は、 生 成した中性子原子核がィトン粒子に包囲され、 ィトン粒 圧縮効果により生起 し得るものと考えられ、 従って本発明方法における反応には、 水素、 重水素及び /または固体状元素から単一中性子、 多重中性子を含む中性子原子核が生成する 段階と、 生成した単一及び/または多重中性子原子核が重力崩壊を生起する段階 を含む。 The gravitational collapse referred to in the present invention is, as described above, a reaction in which neutrons constituting nuclei self-shrink due to gravity between neutrons and approach each other, contract to a singular point, and neutron nuclei explode to release energy. Say. The gravitational collapse of neutron nuclei occurs because the generated neutron nuclei are surrounded by diton particles, and are generated by the diton particle compression effect. Accordingly, the reaction in the method of the present invention includes the steps of generating neutron nuclei containing single neutrons and multiple neutrons from hydrogen, deuterium and / or solid elements, and the single and / or generated nuclei. Includes the stage where multiple neutron nuclei cause gravitational collapse.
水素原子、 重水素原子からの中性子原子核の生成は例えば下記のような形で生 起するものと考えられる。  The production of neutron nuclei from hydrogen and deuterium atoms is considered to occur, for example, in the following manner.
( 1 ) 水素原子の場合  (1) In the case of hydrogen atom
2H+e+H 2He+ i 1 + 'η (1) 2H + e + H 2 He + i 1 + 'η (1)
2 ρ  2 ρ
2H+e+H d+ i , + p (2) 2H + e + H d + i, + p (2)
2H+2 e+H 2n+ i 2 + p (3) 2H + 2 e + H 2 n + i 2 + p (3)
2H+2 e+H d+ i 2 + (2)  2H + 2 e + H d + i 2 + (2)
2H+ 3 e+H 2n + i 2 + ]n (3) 2H + 3 e + H 2 n + i 2 + ] n (3)
(2)重水素原子の場合 (2) In case of deuterium atom
2D+e+D → 4He+ i , + 2n (1) 2D + e + D → 4 He + i, + 2 n (1)
2D+e+D → 4H+ i , +d (2) 2D + e + D → 4 H + i, + d (2)
2D+2 e+D → 4n+" +d (3) 2D + 2 e + D → 4 n + "+ d (3)
2D+2 e+D → 4H+ i2 + 2n (2) 2D + 2 e + D → 4 H + i 2 + 2 n (2)
2D+ 3 e+D → 4 n + i 3 + 2 n (3) 式中、 Hは水素原子、 Dは重水素原子、 eは電子、 i , は単一イトン、 i2 は 2重ィトン、 i 3 は 3重ィトン、 pは陽子、 1 nは単一中性子、 2 nは 2重中性 子、 4nは 4重中性子、 dは重陽子、 4 Hは四重水素を示す。 2D + 3 e + D → 4 n + i 3 + 2 n (3) where H is a hydrogen atom, D is a deuterium atom, e is an electron, i, is a single iton, i 2 is a double iton, i 3 is a triple pit, p is a proton, 1 n is a single neutron, 2 n is a double neutron, 4 n is a quadruple neutron, d is a deuteron, and 4 H is a deuterium.
通常、 分子群を構成する eと H及び Dが複数であるので、 上記の通り多くの種 類の反応が起る。 そして上記で発生した 'ικ 2n、 4nが重力崩壊する。 Usually, since there are a plurality of e, H, and D constituting a molecule group, many kinds of reactions occur as described above. And 'ικ 2 n, 4 n generated above collapses by gravity.
また水素、 重水素以外の元素からの中性子原子核 (多重中性子) の発生は下記 一 で示される c X + Ze The generation of neutron nuclei (multiple neutrons) from elements other than hydrogen and deuterium is shown below. C X + Ze denoted by one
.式中、 は原子番号 Z、 質量数 Aの元素 Xの原子核、 Anは多重中性子原子 核を表す。 また は単一イトンを表す。 During. The formula, the atomic number Z, nucleus of the element X of the mass number A, the A n represents a multiple neutron atomic nuclei. Or represents a singleton.
従って種々の元素についての多重中性子の発生を例示すると以下のようになる。
Figure imgf000008_0001
Therefore, the generation of multiple neutrons for various elements is as follows.
Figure imgf000008_0001
Li + 3e en + 3ij Li + 3e e n + 3ij
I Be + 4e 7n + 4ix I Be + 4e 7 n + 4i x
n  n
10 5B + 5e 10n + 5Ϊ, C + 6e 12n + 6 zi! 10 5 B + 5e 10 n + 5Ϊ, C + 6e 12 n + 6 zi!
i  i
1 N + 7e 14n + 7i, 1 N + 7e 14 n + 7i,
:0 + 8e 16n + 8ia : 0 + 8e 16 n + 8i a
+ 9e I8n + 91: 0°Ne + lOe 20n + 10i】 + 9e I8 n + 91: 0 ° Ne + lOe 20 n + 10i]
28· 2S. 3oSi + 14e 28·29·30η + 141, 2 8 · 2S .3o Si + 14e 28 · 29 · 30 η + 141,
54.  54.
26 Fe + 26e 5i'56- 57-58 n + 26ix 26 Fe + 26e 5i '56 - 57 - 58 n + 26i x
63, + 29e 63'e5n + 29" 63, + 29e 63 ' e5 n + 29 "
Θ4. 66. 67. 68. 70  Θ4. 66. 67. 68. 70
30 Zn + 30e 64·66·67·β8·70η + 30Ϊ,30 Zn + 30e 64 , 66 , 67 , β8 , 70 η + 30Ϊ,
102. 104. 105. 106· 108, 110 102.104.105.106
46 Pld+46e 、 】 02,】 04,】 05, 106. 108, 110 n + 46Ϊ!46 P l d + 46e,] 02,] 04,] 05, 106. 108, 110 n + 46Ϊ!
106. 108. 110, 111. 112. 113. 114. 1 4168Cd + 48e → 106. 108. 110, 111. 112. 113. 114.1 4 16 8 Cd + 48e →
I 06, I 08. 110, 11】, 112, 113, 114, 11 n 丄 λ0· 196.】98,! S 9. 200, 201. 202, 204 I 06, I 08. 110, 11], 112, 113, 114, 11 n 丄λ0 196.] 98 ,! S 9. 200, 201. 202, 204
80 Hg + 80e →  80 Hg + 80e →
196. 198, 1 S 9. 200, 201. 202. 204  196. 198, 1 S 9. 200, 201. 202. 204
n + 80Ϊ! n + 80Ϊ!
204. 206. 207. 204. 206. 207, 208 204.206.207.204.206.207,208
2^Pb + 82e n + 82i! 2 ^ Pb + 82e n + 82i!
235, 238 235, 238 235, 238 235, 238
32 U + 92e n + 92i 1  32 U + 92e n + 92i 1
239, 240, 241 239. 240, 241  239, 240, 241 239.240, 241
94 U + 92e n + 94i!  94 U + 92e n + 94i!
133, 137  133, 137
S 5 Cs + 55e 133· 137η + 551, ssSr + 38e 90η 十 38i 上記で発生した多重中性子原子核が重力崩壊する。 S 5 Cs + 55e 133 · 137 η + 551, ssSr + 38e 90 η 10 38i The multiple neutron nuclei generated above undergo gravity collapse.
本発明において陰極として使用される元素は、 固体状の元素であれば適用可能 である。 例えば、 Ag、 Al、 As、 Au、 Ba、 Be、 Bi、 C、 Cd、 Ce、 Co、 Crゝ Cu、 Fe、 Ga、 Ge、 Hf、 Hg、 In, Ir、 La、 Mn、 Mo、 Nb、 Ni、 0s、 P、 Pa、 Pb、 Pd、 Pt、 Ra、 Re、 Rh、 Rn、 Ru、 S、 Sb、 Sc、 Se、 Si、 Sn、 Sr、 Ta、 Te、 Th、 Ti、 U、 V、 W、 Y、 Zn、 Zr等が挙げられ、 これらを単独で、 あるいは合金もしくは混合物の状態 で使用することができる。 本発明においては固体状の元素を超高圧状態の水素及 び Zまたは重水素分子群で包囲するために固体状の元素を陰極として水素及び Z または重水素を電気分解するので、 固体状の元素は導電性を有していることが必 要である。  The element used as a cathode in the present invention is applicable as long as it is a solid element. For example, Ag, Al, As, Au, Ba, Be, Bi, C, Cd, Ce, Co, Cr ゝ Cu, Fe, Ga, Ge, Hf, Hg, In, Ir, La, Mn, Mo, Nb, Ni, 0s, P, Pa, Pb, Pd, Pt, Ra, Re, Rh, Rn, Ru, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, U, V, W, Y, Zn, Zr and the like can be mentioned, and these can be used alone or in the form of an alloy or a mixture. In the present invention, hydrogen, Z or deuterium is electrolyzed using the solid element as a cathode to surround the solid element with hydrogen and Z or deuterium molecules in an ultra-high pressure state. Must have conductivity.
本発明に使用される固体状の元素は任意の形状に成形して陰極として使用する ことができ、 円柱状、 角柱状、 板状、 繊維シート状等の形態で使用することがで きる。  The solid element used in the present invention can be formed into an arbitrary shape and used as a cathode, and can be used in the form of a column, a prism, a plate, a fiber sheet, or the like.
本発明方法において特に放射性元素の処理を目的としない場合は、 陰極の固体 状の元素として使用できる好ましい材料としてパラジウムまたはパラジウム合金 を挙げることができる。 陰極を構成する固体状の元素はパラジウムのみからなる ものであってもよいが、 本発明方法を電解により実施する場合には陰極に成形さ れた固体状の元素の電解中の機械的強度の安定性を考慮して、 パラジウムと他の 金属の合金からなる陰極を使用することが好ましい。 パラジウムと合金を形成す る好ましい金属は銀である。 パラジウム合金中の銀またはその他の固体状元素の 含有率は 25重量%以下が好ましく、 パラジウムと銀またはその他の固体状元素 の 比が fiftで 7 5 / 2 5— 9 9 Z 1のパラジウム一銀またはその他の固体伏 の合金を使用することが好ましい。 When the method of the present invention does not particularly aim at treating a radioactive element, palladium or a palladium alloy can be mentioned as a preferable material that can be used as a solid element of the cathode. The solid element constituting the cathode may be composed only of palladium, but when the method of the present invention is carried out by electrolysis, the mechanical strength of the solid element formed on the cathode during electrolysis is reduced. In consideration of stability, it is preferable to use a cathode made of an alloy of palladium and another metal. The preferred metal that forms an alloy with palladium is silver. The content of silver or other solid elements in the palladium alloy is preferably 25% by weight or less. Palladium and silver or other solid elements It is preferable to use palladium-silver or other solid alloy having a fifty ratio of 75 / 25-99Z1.
また、 本堯明において固体伏の元素として用いられるパラジゥムまたはパラジ ゥム合金は、 予め真空中で一般に 8 0 0で以上の温度(但し固体状元素の融点以 To ) で熱処理をされていることが好ましい。 この熱処理はパラジウムまた はパラジウム合金表面または内部に吸着された窒素分子等の空気中の成分を脱着 することを目的とする。 これらの脱空気処理を行うことにより固体状の元素に水 素及び Zまたは重水素が接近し易くなり、 水素及び重水素からの単一及び Zまた は多重中性子原子核の発生及び固体状の元素の軌道電子の捕獲による多重中性子 原子核の発生及びこれらの単一及び Zまたは多重中性子原子核の重力崩壊の生起 が促進される。 ^中の成分の脱着が不十分であると、 水素または重水素原子の パラジウム原子への接近が妨げられ、 所望の反応が生起しにくくなる。  In addition, palladium or palladium alloy used as a solid-state element in this Takaaki must be heat-treated in advance at a temperature of 800 or higher in general (however, the melting point of the solid element or lower). Is preferred. The purpose of this heat treatment is to desorb components in the air such as nitrogen molecules adsorbed on or inside the palladium or palladium alloy. By performing these deairing treatments, hydrogen and Z or deuterium are easily accessible to solid elements, generation of single and Z or multiple neutron nuclei from hydrogen and deuterium, and removal of solid elements. The capture of orbital electrons promotes the generation of multiple neutron nuclei and the gravitational collapse of these single and Z or multiple neutron nuclei. Insufficient desorption of the components in it will prevent hydrogen or deuterium atoms from approaching the palladium atom, making it difficult for the desired reaction to occur.
この熱処理は、 固体状の元素を電解前に真空加熱炉中にて、 8 0 0 °C以上、 1 0 "4 T o r r以上の真空度で処理することによって達成される。 この熱処理は、 より高温でより長時間行うことにより効果が大きくなるが、 前述の通り固体状の の融点よりも低い温度で行わなければならず、 8 0 (TCで行う場合数時間〜 1 2時間程度処理することにより所望の効果が得られる。 更にこの空気中の成分 の脱着の後、 水素または重水素雰囲気中で水素または重水素置換することも好ま しい。 この水素または重水素置換は、 加熱処理後の炉に水素または重水素を適当 な圧力で充填すること等により行うことができる。This heat treatment is achieved by treating the solid elements in a vacuum furnace at a temperature of 800 ° C. or more and a vacuum of 10 ″ 4 Torr or more before electrolysis. Longer time at high temperature has a greater effect, but as described above, it must be performed at a temperature lower than the melting point of the solid state. After the desorption of the components in the air, hydrogen or deuterium replacement is preferably performed in a hydrogen or deuterium atmosphere. Can be filled with hydrogen or deuterium at an appropriate pressure.
ri己した通り、 本発明の方法に使用される固体状の元素は、 原子核忧態に変換 された後、 多重中性子とその他の粒子に***し、 多重中性子は重力崩壊によりェ ネルギ一に変換されるので、 元素自体が消滅してしまうものであり、 放射性廃棄 物に由来する放射性 を本発明方法の固体状の元素として使用すれば放射性元 素を消滅させることができ、 放射性廃棄物の処理方法として極めて有用である。 特に原子力発電所からの各種放射性元素の消滅処理に有効で、 これらの放射性元 素には核燃料が中性子を捕獲して生成する 238 U、 237Np、 23 SPu、 241Pu、 242Am、 及びこれ等の他に核***により生成する 1 37Cs、 133Cs、 s°Sr等がある。 通常これらの放射性廃棄物の再処理は使用済核燃料を硝酸処理にて硝酸溶液と し、 有機溶媒(例えばリン酸トリブチル含有のケロシン液) で抽出し、 水相と有 機溶媒相に分離し、 更に適宜イオン交換、 中和処理等の後処理を行い、 最終的に は溶融ガラスの中に封じ込めてドラム缶詰めにされ長期間にわたり厳重に貯蔵保 管されている。 本発明を適用すれば、 上記のような処理をせずにエネルギーを発 生させながら重力崩壊により消滅させることが技術的に可能であり、 工業的意義 は大きい。 As described above, the solid element used in the method of the present invention is converted into a nuclear state and then splits into multiple neutrons and other particles, and the multiple neutrons are converted into energy by gravity decay. Therefore, if the radioactivity derived from radioactive waste is used as a solid element in the method of the present invention, the radioactive element can be extinguished, and the radioactive waste treatment method Is extremely useful. Particularly effective in the elimination processing of various radioactive elements from nuclear power plants, 238 U these nuclear fuel radioactive elemental generated by capturing neutrons, 237 Np, 23 S Pu, 241 Pu, 2 42 Am and, 1 37 Cs produced by nuclear fission in addition to this, such as, 133 Cs, there is s ° Sr or the like. Usually, the reprocessing of these radioactive wastes is carried out by treating spent nuclear fuel with nitric acid solution by nitric acid treatment. Then, the mixture is extracted with an organic solvent (for example, a kerosene solution containing tributyl phosphate), separated into an aqueous phase and an organic solvent phase, and further appropriately subjected to post-treatments such as ion exchange and neutralization treatment. It has been sealed in drums and stored strictly for a long time. If the present invention is applied, it is technically possible to extinguish by gravitational collapse while generating energy without performing the above-mentioned treatment, which is of great industrial significance.
さらに前述の通り、 本発明において使用される陰極は、 その表面が粗であるほ ど水素過電圧が低下し、 電解開始後中性子核の重力崩壊が生起するまで時間を要 することになるので、 できるだけ平滑であることが好ましい。 JIS B0106 に従つ て表示される平均粗さ R aで表すと、 R aが小さい程陰極の水素過電圧は大きく なり、 本発明の目的に合致することになり、 R a≤ 5 zmの粗さを有することが 好ましく、 より好ましくは R a≤ 1 ^m、 更に好ましくは R a≤0. の粗さ である。 電解時に水及び Zまたは重水に浸潰される陰極の表面全体が上記の粗さ を有していることが望ましい。 しかし、 上記よりも大きい表面粗さを有する陰極 も本発明に使用することは可能である。  Furthermore, as described above, the rougher the surface of the cathode used in the present invention, the lower the hydrogen overvoltage, and the longer the time required for the gravitational collapse of the neutron nucleus to occur after the start of electrolysis. Preferably, it is smooth. In terms of the average roughness Ra expressed in accordance with JIS B0106, the smaller the Ra, the higher the hydrogen overvoltage of the cathode, meeting the object of the present invention, and the roughness of Ra≤5 zm The roughness is more preferably Ra ≦ 1 Rm, and even more preferably Ra ≦ 0. It is desirable that the entire surface of the cathode immersed in water, Z or heavy water during electrolysis has the above roughness. However, cathodes having a greater surface roughness than those described above can also be used in the present invention.
本発明で上記のような表面粗さを有する陰極として使用し得る元素は、 水及び または重水電解時に固体状であつて水及び Zまたは重水に難溶性であり、 導電 性を有し、 水素を透過させにくく、 水素を内部に吸蔵しにくい、 即ち水素難吸蔵 性のもので、 表面を上記の表面粗さに仕上げて水素過電圧を大きぐすることがで きるものであればいずれも使用できるが、 特に表面を上記の表面粗さに仕上げら れるものである必要から、 金属及び炭素から選択されることが好ましレ、。  The element which can be used as the cathode having the above-mentioned surface roughness in the present invention is a solid in water and / or heavy water electrolysis, is insoluble in water and Z or heavy water, has conductivity, and has hydrogen. Any material that is hardly permeated and hardly occludes hydrogen inside, that is, hardly occludes hydrogen, can be used as long as the surface can be finished to the above surface roughness and the hydrogen overvoltage can be increased. In particular, since it is necessary to finish the surface to the above-mentioned surface roughness, it is preferable to select from metal and carbon.
このような陰極材料として好ましい金属の例としては、 イリジウム、 ルテニゥ ム、 銀、 銅、 ニッケル、 カドミウム、 鉄、 インジウム、 亜鉛、 スズ、 アルミニゥ ム、 鉛、 金、 白金、 ステンレス鋼 (sus-316, SUS-316L, sus-310, sus-304等) 、 ハステロイ、 銀メツキニッケル等が挙げられる。 特に好ましい陰極材料は純ニッ ゲル及び力ドミゥムである。  Examples of preferred metals for such cathode materials include iridium, ruthenium, silver, copper, nickel, cadmium, iron, indium, zinc, tin, aluminum, lead, gold, platinum, stainless steel (sus-316, SUS-316L, sus-310, sus-304, etc.), Hastelloy, silver nickel nickel and the like. Particularly preferred cathode materials are pure nigels and force domes.
陰極材料を上記のような表面粗度に仕上げるためには、 材料表面を平滑に仕上 げるために慣用されている技術を使用することができ、 例えば板状の陰極の場合 はパフ研磨のような機械的研磨法を使用することができる。 また、 陰極材料を本 発明の方法で使用する前に、 陽極として使用して支持電解質を添加した水を電解 することにより陰極材料表面を電解研磨することができる。 好ましくは機械的研 磨の後、 電解研磨により仕上げる。 In order to finish the cathode material with the surface roughness as described above, it is possible to use a commonly used technique for smoothing the surface of the material. Any suitable mechanical polishing method can be used. In addition, the cathode material Prior to use in the method of the invention, the surface of the cathode material can be electropolished by electrolyzing water with a supporting electrolyte used as an anode. Preferably, after mechanical polishing, finish by electrolytic polishing.
本発明に使用される上記のような表面粗さを有する陰極も 意の形状で使用さ れ得るが、 板状、 織維シート伏、 ワイヤー状あるいは箔状のものであることが好 ましい。 このような板状あるいは箔伏の陰極を使用した場合、 その主となる平面 表面を上記規定の表面粗さに仕上げておけは^ f望の効果が得られる。 繊維シ—卜 状の ^の場合、 当該シートを構成する鎌維の表面が上記のような表面粗さを有 していればよい。 このような繊維の表面粗さは電解研磨によつて得ることができ る。  The cathode having the above-mentioned surface roughness used in the present invention may be used in any shape, but is preferably in the form of a plate, a woven sheet, a wire or a foil. When such a plate-like or foil-like cathode is used, the desired effect can be obtained by finishing the main plane surface to the specified surface roughness. In the case of the fiber sheet-shaped ^, it is sufficient that the surface of the sickle constituting the sheet has the above surface roughness. The surface roughness of such fibers can be obtained by electropolishing.
上記のような表面粗さに ifc_bげることができる繊維シートとしては、 直径数^ m〜数十/ mのニッケル、 ステンレス鋼、 チタン等の焼結された金属繊維からな る不織布状シートが好ましく、 厚さ 0. 1 〜10腿、 目付け 100 〜800 g/m2程度のも のが好ましい。 このような金属繊維シートを陰極として使用すると、 板状、 ロッ ド状のものに比較して 質量当たりの陰極の有效表面積を大きくし得ることが 可能であり、 電解時に陰極表面及び Zまたは内部においてそれだけ多くの水素及 び Zまたは重水素で を包囲することができ、 水素群及び Zまたは重水素 群の自己圧縮効果により生じる単一及び Zまたは多重中性子原子核及び Zまたは 固体状 の原子核の軌道電子が捕獲されて生成する多重中性子原子核の重力崩 壊を生起させるのに有利である。 水電解の陰極として使用するのに適した二ッケ ル織維シートとしては、 例えば、 日本精線㈱製ナスロン CNPニッケルシートAs a fiber sheet that can be subjected to the surface roughness as described above, a non-woven sheet made of sintered metal fibers of nickel, stainless steel, titanium or the like having a diameter of several m to several tens of m / m is used. Preferably, the thickness is about 0.1 to 10 thighs and the basis weight is about 100 to 800 g / m 2 . When such a metal fiber sheet is used as a cathode, it is possible to increase the effective surface area of the cathode per mass as compared with a plate-like or rod-like sheet, and to reduce the surface area of the cathode and Z or inside during electrolysis. As much hydrogen and Z or deuterium can surround, and single or Z or multiple neutron nuclei generated by the self-compression effect of hydrogen and Z or deuterium and orbital electrons of Z or solid nuclei This is advantageous for causing gravity collapse of multiple neutron nuclei generated by capture. Examples of a nickel-woven fabric sheet suitable for use as a cathode for water electrolysis include, for example, Naslon CNP nickel sheet manufactured by Nippon Seisen Co., Ltd.
(二ッケゾレ^ 以上、 ニッケノレ織維径 18 zm、 目付け 500 g/m2、 厚さ約 1 删)及 cmatioiml-Staiidard社 Fibrexニッケルシー ト (二ッケノレ繊維径 25 m 、 目付け 600 g/m2. 厚さ約 1.65蘭) がある。 (Two Kkezore ^ above, Nikkenore woven fiber diameter 18 zm, basis weight 500 g / m 2, a thickness of about 1删)及cmatioiml-Staiidard Co. Fibrex nickel sheet (two Kkenore fiber diameter 25 m, basis weight 600 g / m 2. About 1.65 orchids).
陽極材料は特に限定されないが、 白金または白金メツキチタン陽極を使用する ことが好ましい。 陽極の形状も特に限定されないが、 陰極を取り囲むようにして 設けることが好ましい。 従って、 例えば板状あるいは繊維シート状の陰極を使用 した場合、 状あるいは繊維シート状の陰極の周囲を一定の間隔でスパイラル 状に取り巻くように設けられた白金ワイヤからなる陽極、 あるいは^の 2つの 表面に平行に設けた 2枚の白金板、 白金メッシュ、 白金メッキチタン板または白 金メツキチタンメッシュからなる陽極を使用することが好ましい。 The anode material is not particularly limited, but it is preferable to use platinum or a platinum-plated titanium anode. The shape of the anode is not particularly limited, but is preferably provided so as to surround the cathode. Therefore, for example, when a plate-shaped or fiber-sheet-shaped cathode is used, two anodes, a platinum wire provided spirally around the cathode or the fiber-sheet-shaped cathode at regular intervals, or ^ It is preferable to use an anode composed of two platinum plates, a platinum mesh, a platinum-plated titanium plate or a platinum-plated titanium mesh provided in parallel to the surface.
本発明方法においては水及び Zまたは重水を電解するものであり、 即ち、 水、 重水またはそれらの混合物を電解するものであるが、 通常入手可能な水は 0.17重 量%程度の重水を含有しており、 従って実際には 0.17重量 程度の重水を含有す る水と重水の混合物が電解の となる。  In the method of the present invention, water and Z or heavy water are electrolyzed, that is, water, heavy water or a mixture thereof is electrolyzed. Generally available water contains about 0.17% by weight of heavy water. Therefore, in practice, a mixture of water and heavy water containing about 0.17 weight of heavy water is the source of electrolysis.
水/重水混合物を電解する場合、 重水の含有率は特に限定されないが、 多重中 性子核の発生という観点からは重水の含有率が高いことが好ましく、 純度が 99.5 %以上の重水を使用することが好ましい。 一方、 操業の安全性、 容易性あるいは コスト等の観点からは重水の含有率はあまり高くない方が好ましく、 各条件を'考 慮して決定することができる。  When electrolyzing a water / heavy water mixture, the content of heavy water is not particularly limited.However, from the viewpoint of generation of multiple neutron nuclei, the content of heavy water is preferably high, and heavy water with a purity of 99.5% or more should be used. Is preferred. On the other hand, it is preferable that the content of heavy water is not so high from the viewpoint of safety, easiness or cost of operation, and the condition can be determined by considering each condition.
電解される水及び Zまたは重水には、 電気伝導性を確保するため支持電解質を 添加する。 支持電解質の種類はその目的を達成し得る限り特に限定されな ヽが、 好ましくはアル力リ金属の塩または水酸化物であり、 より好ましくは、 N a C 1、 KC1、 Li Cl、 RbC K CsCl、 NaOH、 KOH、 L i OH、  A supporting electrolyte is added to the water and Z or heavy water to be electrolyzed to ensure electrical conductivity. The type of the supporting electrolyte is not particularly limited as long as the purpose can be achieved.Preferably, the supporting electrolyte is a salt or hydroxide of an alkali metal, and more preferably, NaC1, KC1, LiCl, RbCK. CsCl, NaOH, KOH, LiOH,
RbOH、 CsOH、 NaOD、 KOD、 L i OD、 RbOD、 CsOD、 RbOH, CsOH, NaOD, KOD, LiOD, RbOD, CsOD,
Na2C03、 K2C03、 Li2C03、 Rb2C03及び Cs2C03から選択される。 これらの電解質の うち、 LiOD、 NaOD、 KOD、 R b OD及び C s ODは重水を電解する時 にのみ添加されるが、 その他は水、 重水のいずれにも添加することができる。 ま た場合によってはこれらの支持電解質と共に、 シリカ、 アルミニウム化合物、 酸 化鉄等を微量(数 ppm〜数百 ppm)添加することもできる。 Na 2 C0 3, K 2 C0 3, Li 2 C0 3, are selected from Rb 2 C0 3 and Cs 2 C0 3. Of these electrolytes, LiOD, NaOD, KOD, RbOD and CsOD are added only when electrolyzing heavy water, but others can be added to both water and heavy water. In some cases, a small amount (several ppm to several hundred ppm) of silica, an aluminum compound, iron oxide, or the like can be added together with these supporting electrolytes.
電解に使用するセル電£¾び電流密度は上記のような中性子原子核の重力崩壊 に至る反応を生起し得る限り特に限定されないが、 重力崩壊を効率的に生起させ るためには電解時のセル mE¾び陰極電流密度を充分に高くすることが望ましい。 特に陰極電流密度を高めることは、 水素過電圧を高め、 陰極表面及び/または内 部に超高圧状態の水素群及び Zまたは重水素群を生成させて水素群及び Zまたは 重水素群、 さらには固体状 の軌道原子に対して自己圧縮効果を生起させ、 重 力崩壊を生起しやすくする。例えば、 セル電圧は好ましくは 3ボルト以上、 より 好ましくは 10ボルト以上、 電流密度は好ましくは 1 AZdm2 以上、 より好 ましくは 5 AZdm2以上、 特に好ましくは lOAZdm2以上として電解を行う。 セル電圧及び陰極電流密度が低レ、場合には、 水素群及び Zまたは重水素群は核融 合反応を主に生起し、 エネルギーを努生するが効率的でなく、 またトリチウム等 の長^の放射性物質を発生させるので好ましくない。 The cell voltage and current density used in the electrolysis are not particularly limited as long as the reaction leading to the gravitational collapse of neutron nuclei as described above can be caused. It is desirable to make the mE and cathode current density sufficiently high. In particular, increasing the cathode current density increases the hydrogen overvoltage, generates hydrogen and Z or deuterium in an ultra-high pressure state on the surface and / or inside of the cathode to generate hydrogen and Z or deuterium, and even solids A self-compressive effect is created for the orbital atoms in the shape of a circle, making it easier for gravity collapse to occur. For example, the cell voltage is preferably 3 volts or more, more preferably 10 volts or more, and the current density is preferably 1 AZdm 2 or more, more preferably The electrolysis is preferably performed at 5 AZdm 2 or more, particularly preferably at 10 AZdm 2 or more. When the cell voltage and the cathode current density are low, the hydrogen group and Z or the deuterium group mainly cause nuclear fusion reactions and make an effort for energy, but they are not efficient. It is not preferable because it generates radioactive materials.
に水素難吸蔵性の固体状 を使用した場合は、 水素群及び Zまたは重水 素群の圧力が上昇しやすく、 比較的低いセル電圧及び陰極電流密度で重力崩壤を 有効に生起させることができる。 .  When a solid that is hard to absorb hydrogen is used, the pressure of hydrogen group and Z or deuterium group tends to increase, and gravity collapse can be effectively generated at relatively low cell voltage and cathode current density. . .
この電解において印加する直流電流に関しては、 一定電流密度で印加する他、 数十分毎あるいは数時間毎に電流値を変化させたり、 連続して例えば数十へルツ 〜数百へルツのパルス状の電流を印加することにより、 所望の反応にトリガーを 与える、 即ち単一及び Zまたは多重中性子核の発生とその重力崩壊の生起を促進 することができる。  Regarding the direct current applied in this electrolysis, in addition to applying a constant current density, the current value is changed every tens of minutes or every several hours, or continuously in a pulse form of, for example, several tens to several hundreds of hertz. By applying a current of this magnitude, the desired reaction can be triggered, that is, the generation of single and Z or multiple neutron nuclei and their gravitational collapse can be promoted.
また上記の電解においては、 陽極で発生する酸素と、 陰極で発生する水素また は重水素を分 るために陰極を隔膜で包囲し、 水電解または重水電解を行うこ とも好ましい。 隔膜材料としては、 フッ素系陽イオン交換膜(米国デュポン社製 のポリパーフルォロスルホン酸膜であるナフイオン 1 1 7、 4 1 5、 4 1 7、 4 2 7、 5 5 0等) 、 多孔性フッ素樹脂膜(二チアス (株) 製ナフロン隔膜、 ジャ パンゴァテックス (株)製ゴァテックス隔膜、 日東電工(株)製多孔製テフロン 膜及びチタン酸カリウム粉末入りテフロン膜等)、 多孔性ポリプロピレン膜(ポ リプラスチックス (株)製ジユラガード等) 、 多孔性セラミックス膜(日本特殊 陶業(株)製^ -アルミナ膜及び酸化ニッケル膜等)、 アスベスト隔膜(単なる アスベスト隔膜以外に、 テフロン繊維、 エラストマ一等で補強されたものも含 む)、 多孔性のポリフエ二レンスルフィ ド膜等の醒性及び耐薬品性のポリマー 膜等が使用可能である。 尚、 これらの隔膜を設けることにより分離された水素ま たは重水素は燃料電池、 水素夕一ビン等に使用することができ、 水電解または重 水電解と燃料電池または水素タービンとのハイプリッドシステムとして使用する ことも期待できる。  In the above electrolysis, it is also preferable to perform water electrolysis or heavy water electrolysis by surrounding the cathode with a diaphragm in order to separate oxygen generated at the anode and hydrogen or deuterium generated at the cathode. Examples of the membrane material include a fluorine-based cation exchange membrane (a polyperfluorosulfonic acid membrane manufactured by DuPont USA, such as Naphion 117, 415, 417, 422, 550), and the like. Porous fluororesin membrane (Naflon diaphragm manufactured by Nichias Co., Ltd., Goatex diaphragm manufactured by Japan Pagotex Co., Ltd., porous Teflon membrane manufactured by Nitto Denko Corporation, Teflon membrane containing potassium titanate powder, etc.), porous polypropylene Membrane (Polyplastics Co., Ltd.'s Jyuragard etc.), Porous ceramic film (Nippon Tokuhoku Co., Ltd.'s ^ -alumina film and nickel oxide film, etc.), Asbestos diaphragm (Other than just asbestos diaphragm, Teflon fiber, elastomer) It is possible to use a polymer film having a wakefulness and chemical resistance, such as a porous polyphenylene sulfide film. Hydrogen or deuterium separated by providing these membranes can be used for fuel cells, hydrogen bottles, etc., and can be used as a hybrid between water electrolysis or heavy water electrolysis and a fuel cell or hydrogen turbine. It can be expected to be used as a system.
また上記の電解を加圧状態で行うことにより、 中性子原子核の重力崩壌による 異常 熱のエネルギーを 1 0 0 °C以上の高温スチームとして取り出すこと力可能 である。 この場合、 電解槽を閉鎖系として圧力調整弁を介して電解により発生し たガスを系外に取り出すようにして該圧力調整弁により電解槽内を加圧状態にす ると同時に、 電解槽全体を密閉型加圧容器内に入れて窒素ガスで加圧し、 電解槽 内外で圧力調整弁により等圧になるようにして電解を行うことが好ましい。 更に この場合、 密閉型加圧容器外で圧力調整弁の前段に気液分離器を設け、 電解槽か ら出た気体をこれに導入することにより水蒸気または重水蒸気の一部を液化分離 し、 電解槽にリサイクルするこ も好ましい。 また加圧状態で水素または重水素 と酸素が接触すると爆発する危険があるので、 発生ガスを強制的に電解槽系外に 吸引除去するか、 あるいは陰極と陽極とを隔膜で分離し、 水素または重水素と酸 素を別々に系外へ取り出す必要がある。 In addition, by performing the above-mentioned electrolysis in a pressurized state, it is possible to extract abnormal heat energy due to gravity collapse of neutron nuclei as high-temperature steam of 100 ° C or more It is. In this case, the electrolytic cell is used as a closed system, and the gas generated by electrolysis is taken out of the system via the pressure regulating valve so that the inside of the electrolytic cell is pressurized by the pressure regulating valve. Is preferably placed in a closed pressurized container and pressurized with nitrogen gas, and electrolysis is preferably performed inside and outside the electrolytic bath by using a pressure regulating valve to make the pressure equal. Further, in this case, a gas-liquid separator is provided outside the closed pressurized vessel and in front of the pressure regulating valve, and gas discharged from the electrolytic cell is introduced into the gas-liquid separator to liquefy and separate a part of steam or heavy steam. It is also preferable to recycle to the electrolytic cell. There is a danger of explosion if hydrogen or deuterium and oxygen come into contact with each other in a pressurized state. Forcibly remove the generated gas by suctioning it out of the electrolytic cell system, or separate the cathode and anode from each other with a diaphragm, Deuterium and oxygen need to be separately taken out of the system.
本発明方法を実施した場合、 電解開始後ある程度の時間柽過した後に生起する ものと考えられるが、 前述のように印加電流の変化による他、 電解開始後ある程 度の時間が経過したときに、 陰極の温度を上下させるかあるいは直流電圧を印加 して陰極上の水素または重水素を系内で移動させたり、 電解液に全体が没するよ うに設置された陰極を、 その上端が液面上にでるように引き上げて陰極上の水素 または重水素を陰極上で移動させ、 前記した中性子原子核の重力崩壊に至る反応 にトリガ一を与えることができる。  When the method of the present invention is carried out, it is considered to occur after a certain period of time has elapsed after the start of electrolysis. The temperature of the cathode is raised or lowered, or a DC voltage is applied to move hydrogen or deuterium on the cathode in the system, or the cathode is installed so that the whole is submerged in the electrolyte. By pulling up and moving hydrogen or deuterium on the cathode over the cathode, a trigger can be given to the above-described reaction leading to gravitational collapse of neutron nuclei.
第 1図に本発明の方法を実施するための電解装置の例を示す。 第 1図に示した 装置は、 板状の固体状元素からなる陰極と、 該板状の陰極の周囲を一定の間隔で スパイラル状に取り巻くように設けられた白金ワイヤーからなる陽極を有する装 置である。 第 1図において、 1は固体状元素からなる陰極、 2は白金ワイヤ陽極、 3は支持電解質を添加した水及び Zまたは重水、 4は温度計、 5は内部セル、 6 は水位、 7はサーモカップル、 8はガラス、 石英、 テフロン、 メタクリル樹脂ま たはテフロンライニングされたステンレス鋼製電解セル、 9は水素または重水素 及び酸素を示す。  FIG. 1 shows an example of an electrolysis apparatus for carrying out the method of the present invention. The apparatus shown in FIG. 1 has a plate-shaped cathode made of a solid element, and an anode made of a platinum wire provided so as to spirally surround the plate-shaped cathode at regular intervals. It is. In Fig. 1, 1 is a cathode made of a solid element, 2 is a platinum wire anode, 3 is water and Z or heavy water to which a supporting electrolyte has been added, 4 is a thermometer, 5 is an internal cell, 6 is a water level, and 7 is a thermometer. Couple, 8 indicates glass, quartz, Teflon, methacrylic resin or Teflon-lined stainless steel electrolytic cell, and 9 indicates hydrogen or deuterium and oxygen.
また本発明方法は、 図 1に示したように陽極及び陰極を直接水及び Zまたは重 水に浸潰し各電極間に電圧を印加して電解することにより実施する他、 水素燃料 電池に使用されるような陽極、 即ち、 例えば白金触媒を微粒子炭素に担持させた ものをバインダ一と共にガス透過性の炭素繊維布の表面に被覆したガス拡散電極 である陽極を 2枚と、 その中間に配置される陰極を使用し、 前記ガス拡散電極で ある陽極と陰極の間に支持電解質を含む水及びノまたは重水を保持し、 そして前 記ガス拡散 «Sからなる陽極の外側に水素及び Zまたは重水素を導入して H+及 び Zまたは D+を生成させ、 これにより陽極と陰極間に電圧が印加されるように して水及び Zまたは重水の電解を行い、 陰極表面及び Zまたは内部に超高圧の水 素群及び Zまたは重水素群を生成し、 I己と同様に単一及び Zまたは多重中性子 原子核の^^とその重力崩壤を生起させることにより実施することも可能である。 電解による本 明方法に使用するその他の装置、 電解等の条件は通常の電解ェ 業の知識により理解され得るであろう。 In addition, as shown in FIG. 1, the method of the present invention is carried out by directly immersing the anode and the cathode in water, Z or heavy water, applying a voltage between the electrodes, and performing electrolysis, and is also used in a hydrogen fuel cell. A gas diffusion electrode in which a platinum catalyst supported on fine-particle carbon is coated on the surface of a gas-permeable carbon fiber cloth together with a binder. Using two anodes and a cathode disposed between them, holding water and / or heavy water containing a supporting electrolyte between the anode and the cathode as the gas diffusion electrodes; Hydrogen and Z or deuterium are introduced outside the anode made of S to generate H + and Z or D +, so that a voltage is applied between the anode and the cathode to electrolyze water and Z or heavy water. To generate ultra-high pressure hydrogen group and Z or deuterium group on the cathode surface and Z or inside, and generate ^^ of single and Z or multiple neutron nuclei and its gravity collapse like I It is also possible to carry out by. Other equipment and conditions for electrolysis, such as electrolysis, may be understood by one having ordinary skill in the electrolysis industry.
【実施例】  【Example】
以下、 本発明の詳細について実施例により説明するが、 本発明はこれらの実施 例に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
予め真空伊で 1 0 -8Torr. 8 0 0 °Cにて 1 0時間脱気処理された (株) ニラコ 製パラジウム棒(直径 5麵、 長さ 5 cra、 純度 9 9. 9 5 %、 同位膽成 1 02PdO. 9 6 %、 104Pd l O. 9 7 %、 105Pd22. 2 3 I 06Pd27. 3 108Pd26. 7Previously in vacuo Italy 1 0 -. 8 Torr 8 0 0 ° C in was 1 0 hour degassed Co. Nilaco Ltd. palladium rods (diameter 5 noodles, length 5 cra, purity 9 9.9 5% isotope膽成1 02 PdO. 9 6%, 104 Pd l O. 9 7%, 105 Pd22. 2 3 I 06 Pd27. 3 108 Pd26. 7
0 %、 1 10Pd l l. 8 1 %. 不純物として Pt、 Rh、 Ag、 Si、 Mgを M:含有する) を とし、 陽極に白金ワイヤー (線径 0. 3觀) を使用し、 図 iに示したように陽 極の白金ワイヤーを陰極棒の周囲にスパイラル伏に配置し、 支持電解質として Na OHを添加した 3 %NaOH水または NaODを添加した 3重量%NaOD重水を電解液と して使用し、 陰極電流密度 1 O A/dm2、液温 4 0 °Cにて直流電圧(約 8 V) を 印加してガラス製電解槽内で水または重水電解を行った。 電解に際し、 ガラス製 電^!の外部に近接して原子 ^板(メタクリル樹脂板の片面または両面に富士 写真フィルム(株) 製ォ一トラジオグラフィー用乳液 EMタイプ MA— 7 Bを各 面に 5 0〜1 0 0 〃mの膜厚になるように塗布したもの) を配置した。 電解開始 1 0日後に急激にパラジウム棒の温度が上昇し、 2 5 0〜3 i) 0。Cになり、 それ に伴い水温も約 8 0 °Cに昇温した。 0%, 1 10 Pd l l. 8 1%. Pt, Rh, Ag, Si, Mg are contained as impurities), and platinum wire (0.3 mm diameter) is used for the anode. As shown in i, an anode platinum wire was spirally arranged around the cathode bar, and 3% NaOH water with NaOH added or 3% by weight NaOD heavy water with NaOD was used as the electrolyte. Water or heavy water electrolysis was performed in a glass electrolytic cell by applying a DC voltage (about 8 V) at a cathode current density of 1 OA / dm 2 and a liquid temperature of 40 ° C. At the time of electrolysis, an atom plate (one side or both sides of a methacrylic resin plate) with an emulsion EM type MA-7B for photoradiography manufactured by Fuji Photo Film Co., Ltd. (Applied so as to have a thickness of 50 to 100 μm). 10 days after the start of electrolysis, the temperature of the palladium rod sharply increased to 250 to 3i) 0. The water temperature rose to about 80 ° C.
原子磁板には、 水電解の場合には主に 2重中性子、 単一ィトンが検出さ 重水電解時には主に 4重中性子、 2重ィトンが検出された (觀 2〜図 1 1参照) 。 またパラジゥム棒の一部が重力崩壊により放出され、 局部的にクラック及びピン ホールが発生し、 重量の僅かな減少が認められ、 また走査型電子顕微鏡により粒 形の欠陥が生成されたことが認められ、 ノ、。ラジウム元素の消滅が確認できた。 ま た、 パラジゥム同位体の組成が僅かに変化していた。 In the atomic magnetic plate, double neutrons and single pits were mainly detected in the case of water electrolysis, and quadruple neutrons and double pits were mainly detected in the case of heavy water electrolysis (see Fig. 2 to Fig. 11). In addition, a part of the palladium rod was released by gravity collapse, local cracks and pinholes were generated, a slight decrease in weight was observed, and scanning electron microscopy confirmed that grain defects were generated. No, no. The disappearance of the radium element was confirmed. Also, the composition of the palladium isotope changed slightly.
実施例 2  Example 2
実施例 1のパラジゥム棒の代りにパラジゥム Z銀の組成が 9 0 1 0重量比の パラジウム一銀の合金ロッド (直径 5趣、 長さ 5 cmで予め 8 0 0 °C、 1 0 "eTorr にて 1 0時間真空炉で脱気処理されたもの) を使用した以外は実施例 1と同様に 水または重水電解を行った。 その結果、 電解開始 1 0日後にパラジウム一銀合金 棒の温度が急上昇し、 2 5 0〜3 0 0 °Cに昇温すると共に、 水温も徐々に上昇し、 約 8 0 °Cになった。 An alloy rod of palladium-silver having a composition of 9100 weight ratio of palladium-silver instead of the palladium rod of Example 1 (diameter: 5 cm, length: 5 cm, 800 ° C., 10 ″ e Torr Water or heavy water electrolysis was carried out in the same manner as in Example 1 except that the degassing treatment was performed in a vacuum furnace for 10 hours at a temperature of 10%. The temperature rose rapidly to 250-300 ° C, and the water temperature also gradually increased to about 80 ° C.
原子核乾板には、 実施例 1と同様に、 軽水電解時には主に 2重中性子、 単一ィ トンが重水電解時には主に 4重中性子、 2重ィトンが検出された。 またパラジゥ ム—銀合金棒の一部が重力崩壊により放出され、 局部的にクラック及びピンホ一 ルが生じ、 重量の僅かな減少が認められ、 また走査型電子顕微鏡により粒形の欠 陥が生成したことが認められ、 ノ、。ラジウム元素の消滅が確認できた。 またパラジ ゥムー銀合金の組成が僅かに変化してレ、た。  As in Example 1, double neutrons and single pits were mainly detected during light water electrolysis from nuclear dry plates, while quadruple neutrons and double pits were mainly detected during heavy water electrolysis. In addition, part of the palladium-silver alloy rod is released due to gravity collapse, causing local cracks and pinholes, a slight decrease in weight, and the formation of grain-shaped defects by a scanning electron microscope. It was recognized that no. The disappearance of the radium element was confirmed. The composition of the palladium silver alloy was slightly changed.
実施例 3 Example 3
実施例 1の支持電解質の NaOHまたは NaODの代わりに K2C03 を使用し、 3重量 K2C03 水を電解液として使用した以外は実施例 1と同様に電解を行った。 その 果、 電解開始 1 0日後に急激にパラジウム棒の温度が上昇し、 2 5 0〜3 0 0 °C になり、 それに伴い水温も約 8 (TCに昇温した。 Using K 2 C0 3 in place of NaOH or NaOD the supporting electrolyte of Example 1, was carried out by following the procedure of electrolysis as in Example 1 except that 3 weight K 2 C0 3 water was used as the electrolyte. As a result, the temperature of the palladium rod rapidly increased 10 days after the start of electrolysis to reach 250 to 300 ° C, and the water temperature rose to about 8 (TC).
原子核乾板には、 水電解の場合には主に 2重中性子、 単一ィトンが検出され、 重水電解時には主に 4重中性子、 2重ィトンが検出された。 またパラジウム棒の —部が重力崩壊により放出され、 局部的にクラック及びピンホールが発生し、 重 量の僅かな減少が認められ、 また走査型電子顕微鏡により粒形の欠陥が生成され たことが認められ、 パラジウム元素の消滅が確認できた。 また、 パラジウム同位 体の組成が僅かに変化してレ、た。  In the nuclear dry plate, double neutrons and single pits were mainly detected in the case of water electrolysis, and quadruple neutrons and double pits were mainly detected in the case of heavy water electrolysis. In addition, the-part of the palladium rod was released due to gravity collapse, cracks and pinholes were locally generated, a slight decrease in weight was recognized, and grain-shaped defects were generated by a scanning electron microscope. It was confirmed that the disappearance of the palladium element was confirmed. In addition, the composition of the palladium isotope was slightly changed.
実施例 4 パラジウム粉末 1 1. 7 7 gにカドミウム粉末 5 mgを添加し、 両者を融解して金 型に入れ、 直径 5讓、 長さ 5 cmの棒を製作した。 一方、 出力エネルギー 4 8 MeV の電子線形加速器にて、 タングステン板に電子線を照射し、 約 2MeVの中性子を 発生せしめ、 これを水にて 0. 0 2 5 MeVに減速させた後、 上記の力ドミゥム入り , ラジウム棒に照、射して、 カドミウムを放射性カドミウムとした。 この放射 ί匕さ れたカドミウム入りパラジウム棒を陰極として、 陰極電流密度 1 5 A/dm2 、 セ ル電圧約 1 0 Vとし、 その他の条件は実施例 1と同様にして 3 %NaOH含有の重水 中で電解を行った。 電解開始 1 0日後に、 陰極棒が 2 0ひ〜 3 0 0。Cに上昇した。 カドミウムのガンマ一線スペクトルを Ge検出器で測定した結果、 添加された 1 1 5 Cdの約 1 が消滅しており、 力ドミゥム元素の中性子原子核の重力崩壊に至る反 応が起ったことが認められた。 Example 4 5 mg of cadmium powder was added to 1.177 g of palladium powder, and both were melted and placed in a mold to produce a rod 5 cm in diameter and 5 cm in length. On the other hand, a tungsten plate was irradiated with an electron beam using an electron linear accelerator with an output energy of 48 MeV to generate neutrons of about 2 MeV, which was decelerated to 0.025 MeV with water. Cadmium was converted to radioactive cadmium by irradiating and irradiating a radium rod with force cadmium. The radiated cadmium-containing palladium rod was used as a cathode, the cathode current density was 15 A / dm 2 , the cell voltage was about 10 V, and the other conditions were the same as in Example 1 except that 3% NaOH was contained. Electrolysis was performed in heavy water. 10 days after the start of electrolysis, the number of cathode rods was 20 to 300 days. Rose to C. Gamma clear distinction spectrum of cadmium results measured by the Ge detector, and about 1 of the added 1 1 5 Cd disappears, observed that happened that reaction leading to gravitational collapse of the neutron nuclear force Domiumu element Was done.
実施例 5 Example 5
陽極として厚さ 1.0匪、 幅 1.5cm、 長さ 6 cm、 純度 9 9. 9 %の純ニッケル板 (板の両表面の粗さは R a =1.5 m) を使用し、 陰極として白金ワイヤー (線 径. 8 mm) を使用し、 第 1図に示したようにガラス製電解槽内で陽極の白金ワイ ヤーを陰極板の周囲に陰極陽極間距離が 10mmになるようにスパイラル状に配置し、 3. 1重量%NaCl水溶液 200 ml中において、 液温 16°Cにて陰極電流密^ 20 A/dm2 となるように直流 (約 1 2 V) を印加して約 2分間電解研磨を行った。 この 結果、 ニッケノレ板の表面粗さは R a =0.8^mとなり、 光沢面が得られた。 A pure nickel plate (1.0 mm thick, 1.5 cm wide, 6 cm long, 99.9% pure) was used as the anode (both surfaces have a roughness of Ra = 1.5 m), and a platinum wire ( Using a wire diameter of 8 mm), a platinum wire for the anode was spirally arranged around the cathode plate in a glass electrolytic cell so that the distance between the cathode and anode was 10 mm, as shown in Fig. 1. , 3. in 1 wt% NaCl aqueous solution 200 ml in, for about 2 minutes electropolished by applying a DC (about 1 2 V) so that the cathode current density ^ 20 a / dm 2 at a liquid temperature of 16 ° C went. As a result, the surface roughness of the nickele plate was Ra = 0.8 ^ m, and a glossy surface was obtained.
次に上記の二ッケル板と白金ワイャの配置のまま、 上記で電解研磨されたニッ ゲル板を陰極とし、 白金ワイヤを陽極として陰極電流密度 2 AZdra2、 セル電圧 約 3. 5 Vとなるように直流を印加し電解を開始したところニッケル板の温度が 16。Cから 28°Cに上昇した。 さらに通電 50分後に陰極電流密度 6 A/dm2 、 セル電 圧約 7 Vとなるように増流したところニッゲル板の温度が 37°Cから 70でに急上昇 し、 10時間以上異常発熱が続いた。 これに伴い液温は 16でから徐々に上昇し 65°C に達した。 Next, with the Nigel plate and platinum wire arranged as above, the Nigel plate electropolished as above is used as the cathode, the platinum wire is used as the anode, and the cathode current density is 2 AZdra 2 and the cell voltage is about 3.5 V. When a direct current was applied to the electrode and the electrolysis was started, the temperature of the nickel plate was 16. C to 28 ° C. Further, 50 minutes after energization, the current was increased to a cathode current density of 6 A / dm 2 and a cell voltage of about 7 V.When the temperature of the Nigger plate rapidly increased from 37 ° C to 70, abnormal heat generation continued for more than 10 hours. . Following this, the liquid temperature gradually increased from 16 and reached 65 ° C.
電解に際し、 ガラス製電解槽の外部に近接して原子核乾板(メタクリル樹脂板 の片面または に富士写真フィルム (株)製オートラジオグラフィー用乳液 E Mタイプ MA— 7 Bを各面に 5 0〜1 0 0 mの膜厚になるように塗布したも の) を配置した。 原子核乾板には、 主に 2重中性子、 単一ィトンが検出され、 ま たニッケル原子核に起因する多重'中性子も検出された (図 12〜図 17参照) 。 At the time of electrolysis, a nuclear emulsion plate (one side of a methacrylic resin plate or an emulsion for autoradiography manufactured by Fuji Photo Film Co., Ltd., EM type MA-7B) was placed on each side in close proximity to the outside of the glass electrolytic bath. Coated to a thickness of 0 m ) Was placed. Double neutrons and single ditons were mainly detected in the nuclear slab, and multiple neutrons due to nickel nuclei were also detected (see Figs. 12 to 17).
実施例 6 Example 6
軽水の代わりに純度が 99. 5%の重水を用い、 後は実施例 5と同様の条件で電解 研磨と電解を行った。 電解研磨後の二ッゲル板の表面粗さは R a =0. 7 mであ つた。 研磨後の電解開始時の二ッケル扳温度は 21°Cであつたが電解開始後二ッケ ル板温度は徐々に上昇し、 50分後 は 32°Cになり、 50分後に陰極電流密度 6 A/ dm2 、 セル電圧約 6 Vとなるように増流したところニッケル板の温度は 78°Cに急 上昇し、 10時間以上異常発熱が続いた。 これに伴い液温は 21°Cから徐々に上昇し 72でに達した。 Instead of light water, heavy water having a purity of 99.5% was used, and thereafter, electropolishing and electrolysis were performed under the same conditions as in Example 5. The surface roughness of the Nigel plate after electropolishing was Ra = 0.7 m. The nickel temperature at the start of electrolysis after polishing was 21 ° C, but after the start of electrolysis the nickel plate temperature gradually increased to 32 ° C after 50 minutes, and the cathode current density after 50 minutes. When the current was increased to 6 A / dm 2 and the cell voltage was about 6 V, the temperature of the nickel plate rapidly increased to 78 ° C, and abnormal heat generation continued for 10 hours or more. The temperature of the solution gradually increased from 21 ° C and reached 72.
実施例 5と同様に設けた原子核乾板には、 主に 4重中性子、 2重ィトンが検出 され、 また二ッケゾレ原子核に起因する多重中性子も検出された。  In the nuclei plates provided in the same manner as in Example 5, mainly quadruple neutrons and double pits were detected, and multiple neutrons originating from the Nickesole nucleus were also detected.
実施例 7 Example 7
ニッケノレ板の代わりに厚さ 1.0腿、 幅 1. 5cm、 長さ 6 cm、 純度 9 9. 9 %のカド ミゥム板(板の両表面の粗さは R a = 1. 4 m) を使用し、 支持電解質として K0 を使用して 3. 3重量%K0H水溶液 200 ml中において寒施例 5と同様の条件で力 ドミゥム板の電解研磨を行った。 この結果、 カドミウム板の表面粗さは R a =0. 6 umとなり、 光沢面が得られた。  A 1.0 cm tall, 1.5 cm wide, 6 cm long, 99.9% pure cadmium plate (with a roughness of Ra = 1.4 m on both surfaces of the plate) was used in place of the nickel plate. Using K0 as the supporting electrolyte, the force-dummy plate was electropolished in 200 ml of a 3.3% by weight aqueous K0H solution under the same conditions as in Cold Working Example 5. As a result, the surface roughness of the cadmium plate was Ra = 0.6 um, and a glossy surface was obtained.
さらに実施例 5と同様に、 上記で電解研磨された力ドミゥム板を陰極とし、 白 金ワイヤを陽極として陰極電流密度 2 AZdm2 、 セル電圧約 3 Vとなるように直 流を印加し電解を開始したところ力ドミゥム板の温度が 18°Cから徐々に上昇し、 通電 51分後に 39°Cとなった。 さらに陰極電流密度 6AZdm2 、 セル電圧約 4 . 5 Vとなるように増流したところ力ドミゥム板の温度が急激に上昇して 71 °Cとなり、 10時間以上異常発熱が続いた。 これに伴い液温は 18°Cから徐々に上昇し 67°Cに達 した。 Further, in the same manner as in Example 5, electrolysis was performed by applying a direct current so that the cathode current density was 2 AZdm 2 and the cell voltage was about 3 V using the force-dummy plate electropolished as described above as a cathode and a platinum wire as an anode. At the start, the temperature of the force-dummy plate gradually increased from 18 ° C, and reached 39 ° C 51 minutes after energization. Furthermore, when the current was increased so that the cathode current density was 6AZdm 2 and the cell voltage was about 4.5 V, the temperature of the force-dummy plate rapidly increased to 71 ° C, and abnormal heat generation continued for more than 10 hours. As a result, the liquid temperature gradually increased from 18 ° C to 67 ° C.
実施例 5と同様に設けた原子核乾板には、 主に 2重中性子、 単一ィトンが検出 され、 また力ドミゥム原子核に起因する多重中性子も検出された。  Double neutrons and single neutrons were mainly detected in the nuclei plates provided in the same manner as in Example 5, and multiple neutrons caused by force nuclei were also detected.
実施例 8 Example 8
実施例 5において支持電解質として NaClの代わりに K2C03 を使用し、 7. 1 重 %の1(2(103 水溶液中で同様にニッケル板の電解研磨を行った。 この結果、 ニッ ケル板の表面粗さは R a =0. 6〃mとなり、 光沢面が得られた。 Using K 2 C0 3 in place of NaCl as a supporting electrolyte in Example 5, 7.1-fold The nickel plate was similarly electropolished in an aqueous solution of 1 ( 2 (10 3 %). As a result, the surface roughness of the nickel plate was Ra = 0.6 μm, and a glossy surface was obtained.
さらに実施例 5と同様に、 上記で電解研磨されたニッケル板を陰極とし、 白金 ワイヤを陽極として陰極電流密度 2 AZdra2 、 セル電圧約 3 Vとなるように直流 を印加し電解を開始したところニッケノレ板の温度が 21°Cから徐々に上昇し、 通電 50分後に 32でとなった。 さらに陰極電流密度 7AZdm2、 セル電圧約 6 Vとなる ように増流したところニッゲル板の温度が急激に上昇して 78°Cとなり、 10時間以 上異常発熱が続いた。 これに伴い液温は 21°Cから徐々に上昇し 71°Cに達した。 実施例 5と同様に設けた原子核乾板には、 主に 2重中性子、 単一ィトンが検出 され、 またニッ ル原子核に起因する多重中性子も検出された。 Further, as in Example 5, the electrolysis was started by applying a direct current at a cathode current density of 2 AZdra 2 and a cell voltage of about 3 V using the nickel plate electropolished as described above as a cathode and a platinum wire as an anode. The temperature of the nickel plate gradually increased from 21 ° C, and reached 32 after 50 minutes. When the current was increased so that the cathode current density was 7 AZdm 2 and the cell voltage was about 6 V, the temperature of the Nigger plate rapidly increased to 78 ° C, and abnormal heat generation continued for more than 10 hours. As a result, the liquid temperature gradually increased from 21 ° C to 71 ° C. Double neutrons and single neutrons were mainly detected in the nuclei plates provided in the same manner as in Example 5, and multiple neutrons due to nil nuclei were also detected.
実施例 9 Example 9
実施例 5と同様の電解層中に、 厚さ 130〃m、 幅 10cm、 長さ 6 cm、 純度 9 9. 9 %の力ドミゥム箔(板の表面の粗さは R a =1. l m) を幅方向から直径 10腿の 丸棒に巻き付けてロール状にしたものを陽極とし、 このロール状力ドミゥム箔の 周囲に実施例 1と同様の白金ワイヤを陰極として陽極陰極閭距離が 10腿になるよ うにスパイラル状に設置し、 その他の条件は実施例 7と同様にして力ドミゥム箔 の電解研磨を行った。 この結果、 カドミウム箔の表面粗さは R a =0.7 mとな り、 光沢面が得られた。  In the same electrolytic layer as in Example 5, 130 mm thick, 10 cm wide, 6 cm long, 99.9% pure force dome foil (the surface roughness of the plate is Ra = 1.lm) Is wound around a round bar with a diameter of 10 thighs from the width direction to form a roll, and this is used as the anode.Around this roll-shaped force-dummy foil, the same platinum wire as in Example 1 is used as the cathode, and the anode-cathode distance is 10 thighs. It was installed in a spiral shape as much as possible, and the other conditions were the same as in Example 7, and the electrolytic polishing of the force-dominant foil was performed. As a result, the surface roughness of the cadmium foil was Ra = 0.7 m, and a glossy surface was obtained.
さらに上記で電解研磨されたロール状力ドミゥム箔を陰極とし、 白金ワイヤを 陽極として陰極電流密度 1 A/dm2 、 セル電圧約 3 Vとなるように直流を印加し 電解を開始したところ力ドミゥム箔の温度が 21°Cから徐々に上昇し、 通電 50分後 に 28°Cとなった。 さらに陰極電流密度 3 A/dm2、 セル電圧約 5 Vとなるように 増流したところ力ドミゥム箔の温度が急激に上昇して 30分後に 78°Cとなり、 10時 閭以上異常発熱が続いた。 これに伴い液温は 21°Cから徐々に上昇し 53°Cに達した。 実施例 5と同様に設けた原子核乾板には、 主に 2重中性子、 単一ィトンが検出 され、 また力ドミゥム原子核に起因する多重中性子も検出された。 Further, a DC was applied so that a cathode current density of 1 A / dm 2 and a cell voltage of about 3 V were applied using the roll-shaped force-dominating foil electropolished as described above as a cathode and a platinum wire as an anode, and electrolysis was started. The temperature of the foil gradually increased from 21 ° C, and reached 28 ° C 50 minutes after energization. When the current was further increased to a cathode current density of 3 A / dm 2 and a cell voltage of about 5 V, the temperature of the force-dummy foil rapidly increased to 78 ° C 30 minutes later, and abnormal heat generation continued at 10 o'clock. Was. As a result, the liquid temperature gradually increased from 21 ° C to 53 ° C. Double neutrons and single neutrons were mainly detected in the nuclei plates provided in the same manner as in Example 5, and multiple neutrons caused by force nuclei were also detected.
餓例 1 0 Hunger 1 0
実施例 8において、 純ニッケル板の代わりにニッケル織維シート (日本精線㈱ 製ナスロン CNPニッケルシート、 ニッケル純度 99.0%以上、 ニッケノレ織維径 18 m、 目付け 500 g/ \ 厚さ約 1議、 幅 1. 5 cm、 長さ 6 cm、 織維表面の粗さ R a = 1. 7 UL & ) を使用して同様にこのニッケル繊維シートの電解研磨を行った。 こ の結果、 ニッケル繊維の表面粗さは R a =0. 9/zmとなり、 光沢面が得られた。 さらに実施例 5と同様に、 上記で電解研磨されたニッケル繊維シートを陰極と し、 白金ワイヤを陽極として陰極電流密度 2 AZdm2 、 セル電圧約 3 . 5 Vとな るように直流を印加し電解を開始したところニッゲル織維シ一トの温度が 21°Cか ら徐々に上昇し、 通電 50分後に 35 となった。 さらに陰極電流密度 lOAZdm2 、 セル電圧約 8 Vとなるように増流し、 100ヘルツのパルス電解を行ったところ二 ッゲル繊維シートの温度が急激に上昇して 80°Cとなり、 10時間以上異常発熱が続 いた。 これに伴い液温は 21°Cから徐々に上昇し 75°Cに達した。 In Example 8, instead of a pure nickel plate, a nickel woven fiber sheet (Naslon CNP nickel sheet manufactured by Nippon Seisen Co., Ltd., nickel purity 99.0% or more, nickel woven fiber diameter 18) m, basis weight 500 g / \ about 1 thickness, width 1.5 cm, length 6 cm, texture of textile surface Ra = 1.7 UL &) Electropolishing was performed. As a result, the surface roughness of the nickel fiber was Ra = 0.9 / zm, and a glossy surface was obtained. Further, in the same manner as in Example 5, a nickel fiber sheet electropolished as described above was used as a cathode, and a platinum wire was used as an anode, and a direct current was applied so that the cathode current density was 2 AZdm 2 and the cell voltage was about 3.5 V. When the electrolysis was started, the temperature of the Niger tissue sheet gradually increased from 21 ° C, and reached 35 after 50 minutes of energization. In addition, the cathode current density was increased to lOAZdm 2 , and the cell voltage was increased to about 8 V.When pulsed electrolysis was performed at 100 Hz, the temperature of the Nigel fiber sheet rapidly increased to 80 ° C, and abnormal heat generation for 10 hours or more Followed. As a result, the liquid temperature gradually increased from 21 ° C to 75 ° C.
実施例 5と同様に設けた原子核乾板には、 主に 2重中性子、 単一ィトンが検出 され、 またニッケル原子核に起因する多重中性子も検出された。  In the nuclei plates provided in the same manner as in Example 5, mainly double neutrons and single pits were detected, and multiple neutrons due to nickel nuclei were also detected.
【産業上の利用可能性】  [Industrial applicability]
本発明の方法によれば、 水及び Zまたは重水の電解により、 水素及び Zまたは 重水素自体から生成する中性子原子核の重力崩壊及び/または一種以上の固体状 元素の原子核の軌道電子の捕獲により生成した中性子原子核の重力崩壊を生起し てエネルギーを発生させることができ、 また電解開始後極めて短時間のうちに上 記重力崩壊を生起することができる。 従って、 本発明により極めて効率のよいェ ネルギ一発生方法が提供される。 また本発明方法により放射性元素を消滅処理す ることも可能である。  According to the method of the present invention, water and Z or heavy water are electrolyzed, and neutron nuclei generated from hydrogen and Z or deuterium themselves are gravity-decayed and / or one or more solid state elements are generated by orbital electron capture of nuclei. Energy can be generated by causing the gravitational collapse of the neutron nucleus, and the above-mentioned gravitational collapse can occur within a very short time after the start of electrolysis. Therefore, the present invention provides a very efficient energy generation method. Further, it is possible to extinguish radioactive elements by the method of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1. 一種以上の導電性の固体状元素からなる陰極を使用して支持電解質を含有 する水及び Zまたは重水の電気分解を行レ、、 該固体状元素の陰極の表面及び/ま たは内部に水素群及び Zまたは重水素群の自己圧縮効果により超高圧状態の水素 群及び Zまたは重水素群を形成させて陰極の固体状 を包囲し、 水素及び/ま たは重水素自体から生成する単一及び Zまたは多重中性子原子核の重力崩壊及び Zまたは固体状元素の原子核の軌道電子が捕獲されて生成する単一及び/または 多重中性子原子核の重力崩壊を生起させることからなるエネルギーの発生方法。 1. Electrolysis of water and Z or heavy water containing a supporting electrolyte using a cathode made of one or more conductive solid elements, and the surface and / or inside of the cathode of the solid element The self-compression effect of hydrogen and / or Z or deuterium causes hydrogen and / or Z or deuterium to form at ultra-high pressure and surrounds the solid state of the cathode and is generated from hydrogen and / or deuterium itself A method of generating energy comprising causing the gravitational collapse of single and / or Z or multiple neutron nuclei and causing the gravitational collapse of single and / or multiple neutron nuclei generated by capturing orbital electrons of Z or solid element nuclei.
2. 重水含有率が 0.17重量%以上の水を電解することを特徴とする請求項 1に 記載の方法。 2. The method according to claim 1, wherein water having a heavy water content of 0.17% by weight or more is electrolyzed.
3. 固体状の として、 パラジウムまたはパラジウム/銀の組成が 75/2 5〜 99 / 1重量比から成るパラジゥム一銀合金を使用することを特徴とする請 求項 1に記載の方法。  3. The method according to claim 1, characterized in that as solid, palladium or a palladium-silver alloy having a palladium / silver composition of 75/25 to 99/1 by weight is used.
4. 固体状の^として、 パラジウム及び銀以外の固体状の元素を含有させた ノ、。ラジウムまたはパラジウム/銀以外の固体状の元素の組成が 75/25〜99 / 1 比から成るパラジゥム一銀以外の固体状の元素の合金を使用することを 特徵とする請求項 1に記載の方法。  4. Solid ^ contains solid elements other than palladium and silver. The method according to claim 1, wherein an alloy of a solid element other than palladium-silver is used, wherein the composition of the solid element other than radium or palladium / silver has a ratio of 75/25 to 99/1. .
5. 一種以上の導電性の水素難吸蔵性固体状元素からなり、 その表面粗さが R a≤ 5 /mである陰極を使用することを特徵とする請求項 1に記載の方法。 5. The method according to claim 1, characterized in that a cathode comprising one or more conductive solid elements hardly occluding hydrogen and having a surface roughness of Ra≤5 / m is used.
6. 陰極に使用する固体状元素を陽極として支持電解質を添加した水及び/ま たは重水の電解を行い、 陰極に使用する固体状元素の表面を予め平滑化しておく ことを特徵とする請求項 5に記載の方法。 6. A claim characterized in that the solid element used for the cathode is subjected to electrolysis of water and / or heavy water to which a supporting electrolyte is added using the solid element used for the cathode as an anode, and the surface of the solid element used for the cathode is previously smoothed. Item 5. The method according to Item 5.
7. としてイリジウム、 ルテニウム、 銀、 銅、 ニッケル、 カドミウム、 鉄、 インジウム、 :^、 スズ、 アルミニウム、 鉛、 金、 白金、 ステンレス鋼、 ハステ ロイ及び炭素のいずれか一種を使用することを特徵とする請求項 5に記載の方法。 7. It is characterized by using any one of iridium, ruthenium, silver, copper, nickel, cadmium, iron, indium, ^^, tin, aluminum, lead, gold, platinum, stainless steel, Hastelloy and carbon 6. The method of claim 5, wherein the method comprises:
8. 支持電解質が、 NaCl、 KC1、 LiCl、 RbCl、 CsCl、 a OH、 KOH、 LiOH、 RbOH、 CsOH、 NaOD、 KOD、 L i OD、 RbOD、 CsOD、 Na2C032C03、 Li2C03、 Rb2C03及び Cs2C03 (L i OD、 NaOD、 KOD、 Rb OD及び C s ODは重水にのみ添加される) から選択さ れる請求項 1に記載の方法。 8. supporting electrolyte, NaCl, KC1, LiCl, RbCl , CsCl, a OH, KOH, LiOH, RbOH, CsOH, NaOD, KOD, L i OD, RbOD, CsOD, Na 2 C0 3, 2 C0 3, Li 2 C0 3, Rb 2 C0 3 and Cs 2 C0 3 is selected from (L i OD, NaOD, KOD , Rb OD and C s OD is added only to the heavy water) 2. The method of claim 1, wherein the method comprises:
9 . 陰極の温度を上下させるかあるいは直流電圧を印加して陰極内の水素また は重水素を陰極系内で移動させることにより多重中性子原子核の発生とその重力 崩壊を生起し易くすることを特徵とする請求項 1に記載の方法。  9. The feature is that the generation of multiple neutron nuclei and its gravitational collapse are easily caused by raising or lowering the temperature of the cathode or applying a DC voltage to move hydrogen or deuterium in the cathode in the cathode system. The method of claim 1 wherein:
10. 電解液に全体が没するように設置された陰極を電解時にその上端が液面上 に出るように引き上げて陰極内部の水素及び/または重水素を陰極系内で移動さ せることにより多重中性子原子核の発生とその重力崩壊を生起し易くすることを 特徴とする請求項 1に記載の方法。  10. Multiplexing by pulling up the cathode installed so that the whole is immersed in the electrolyte so that the upper end of the cathode is above the liquid surface during electrolysis, and moving hydrogen and / or deuterium inside the cathode in the cathode system The method according to claim 1, wherein the method facilitates generation of neutron nuclei and gravitational collapse thereof.
11. 放射性廃棄物に由来する放射性元素を含む固体状の元素を陰極として使用す ることを特徴とする請求項 1に記載の方法。  11. The method according to claim 1, wherein a solid element containing a radioactive element derived from radioactive waste is used as a cathode.
PCT/JP1993/000019 1992-01-10 1993-01-08 Energy generating method based on gravitational collapse WO1993014503A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/3349 1992-01-10
JP334992 1992-01-10
JP4567292 1992-03-03
JP4/45672 1992-03-03

Publications (1)

Publication Number Publication Date
WO1993014503A1 true WO1993014503A1 (en) 1993-07-22

Family

ID=26336909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000019 WO1993014503A1 (en) 1992-01-10 1993-01-08 Energy generating method based on gravitational collapse

Country Status (1)

Country Link
WO (1) WO1993014503A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042035A2 (en) * 1997-03-19 1998-09-24 Patterson James A Electrolytic deactivating of radioactive material
WO1999005683A1 (en) * 1997-07-24 1999-02-04 Blanchard Rheal Method for inducing electron capture by protons
WO1999019881A1 (en) * 1996-10-15 1999-04-22 Patterson James A Low temperature electrolytic nuclear transmutation
WO1999045544A1 (en) * 1998-02-18 1999-09-10 Jun Toyama Holography fusion reactor bin for semiconductor laser array tunable oscillation hologram jointly using semiconductor laser array turnable oscillation hologram bin and gravitational wave, method for gravitational wave holography and apparatus therefor
WO2003098640A2 (en) * 2002-05-17 2003-11-27 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Processing radioactive materials with hydrogen isotope nuclei
US7244887B2 (en) 2000-02-25 2007-07-17 Lattice Energy Llc Electrical cells, components and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285283A (en) * 1989-04-26 1990-11-22 Bridgestone Corp Nuclear fusion
JPH036490A (en) * 1989-06-05 1991-01-11 Akira Fujishima Control method of low temperature nuclear fusion reaction by electrochemical method
JPH0335194A (en) * 1989-06-30 1991-02-15 Matsushita Electric Ind Co Ltd Heating method and heating device using electrochemical reaction of heavy water
JPH0353195A (en) * 1989-07-21 1991-03-07 Matsushita Electric Ind Co Ltd Energy generator
JPH0378691A (en) * 1989-08-23 1991-04-03 Hitachi Ltd Method for energy generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285283A (en) * 1989-04-26 1990-11-22 Bridgestone Corp Nuclear fusion
JPH036490A (en) * 1989-06-05 1991-01-11 Akira Fujishima Control method of low temperature nuclear fusion reaction by electrochemical method
JPH0335194A (en) * 1989-06-30 1991-02-15 Matsushita Electric Ind Co Ltd Heating method and heating device using electrochemical reaction of heavy water
JPH0353195A (en) * 1989-07-21 1991-03-07 Matsushita Electric Ind Co Ltd Energy generator
JPH0378691A (en) * 1989-08-23 1991-04-03 Hitachi Ltd Method for energy generation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUSION TECHNOLOGY, Vol. 19, No. 4, (1991), T. MATSUMOTO, "Observation of Quadneutrons and Gravity Decay During Cold Fusion", p. 2125-2130. *
LECTURE THESES ON THE RESEARCH PRESENTATION OF THE ENERGY RESOURCES SOCIETY, Vol. 10, (1991), TAKAAKI MATSUMOTO, "Cold Neuclear Fusion and its Later Progress", p. 207-212. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019881A1 (en) * 1996-10-15 1999-04-22 Patterson James A Low temperature electrolytic nuclear transmutation
WO1998042035A2 (en) * 1997-03-19 1998-09-24 Patterson James A Electrolytic deactivating of radioactive material
WO1998042035A3 (en) * 1997-03-19 2000-01-20 James A Patterson Electrolytic deactivating of radioactive material
WO1999005683A1 (en) * 1997-07-24 1999-02-04 Blanchard Rheal Method for inducing electron capture by protons
WO1999045544A1 (en) * 1998-02-18 1999-09-10 Jun Toyama Holography fusion reactor bin for semiconductor laser array tunable oscillation hologram jointly using semiconductor laser array turnable oscillation hologram bin and gravitational wave, method for gravitational wave holography and apparatus therefor
US7244887B2 (en) 2000-02-25 2007-07-17 Lattice Energy Llc Electrical cells, components and methods
WO2003098640A2 (en) * 2002-05-17 2003-11-27 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Processing radioactive materials with hydrogen isotope nuclei
WO2003098640A3 (en) * 2002-05-17 2004-08-19 Oregon State Processing radioactive materials with hydrogen isotope nuclei

Similar Documents

Publication Publication Date Title
US4487670A (en) Process for treating solutions containing tritiated water
US6793799B2 (en) Method of separating and recovering rare FP in spent nuclear fuels and cooperation system for nuclear power generation and fuel cell power generation utilizing the same
CA3110330C (en) Electrochemical separation mechanism in a molten salt reactor
JP6788378B2 (en) Water electrolysis cell and multi-pole water electrolysis tank
CN106796820A (en) Reactivity control in fusedsalt reactor
WO1993014503A1 (en) Energy generating method based on gravitational collapse
US20150122666A1 (en) Gas Production Device and Method
JP2004337843A (en) Method and apparatus for concentrating hydrogen isotope water
JP3400250B2 (en) Production methods for metal hydrides
US10450660B2 (en) Recovery of tritium from molten lithium blanket
JPH05134098A (en) Production method of useful element from water
EP0431152A1 (en) Electrochemical nuclear apparatus for producing tritium, heat, and radiation
WO1991006959A2 (en) Media for solid state fusion
JP2005062025A (en) Method for increasing nuclear transmutation quantity from nuclear transmutation device and nuclear transmutation device
CA2023216A1 (en) Method of preparing electrodes for use in heat-generating apparatus
Bellanger et al. Tritium recovery from tritiated water by electrolysis
WO1992002020A1 (en) Electrochemically assisted excess heat production
JP7288881B2 (en) Hydrogen supply system
JPH0335194A (en) Heating method and heating device using electrochemical reaction of heavy water
JPH07174878A (en) Negative electrode for ordinary temperature nuclear fusion chain reaction, its manufacture, electrolyte for chain reaction
JP2009128052A (en) Nuclear battery
JPH02281184A (en) Cathode for low temperature nuclear fusion reactor by electrochemical technique and nuclear fusion method using said cathode
Sadeghi et al. Electrodissolution system for rhodium fragmented electroplated targets used for the industrial cyclotron production of 103 Pd
JPH05107376A (en) Method for producing energy
JP2012093304A (en) Cobalt reduction device and cobalt reduction method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA