WO1993012470A1 - Als carrier für die elektrophotographie geeignete teilchen - Google Patents

Als carrier für die elektrophotographie geeignete teilchen Download PDF

Info

Publication number
WO1993012470A1
WO1993012470A1 PCT/EP1992/002819 EP9202819W WO9312470A1 WO 1993012470 A1 WO1993012470 A1 WO 1993012470A1 EP 9202819 W EP9202819 W EP 9202819W WO 9312470 A1 WO9312470 A1 WO 9312470A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
carrier
oxide
oxygen
gas phase
Prior art date
Application number
PCT/EP1992/002819
Other languages
English (en)
French (fr)
Inventor
Joerg Adel
Norbert Mronga
Erwin Czech
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE59207555T priority Critical patent/DE59207555D1/de
Priority to US08/244,712 priority patent/US5496674A/en
Priority to JP5510580A priority patent/JPH08500908A/ja
Priority to EP93900028A priority patent/EP0616703B1/de
Publication of WO1993012470A1 publication Critical patent/WO1993012470A1/de

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1131Coating methods; Structure of coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1139Inorganic components of coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • Particles suitable as carriers for electrophotography are Particles suitable as carriers for electrophotography
  • the present invention relates to new particles (I) suitable as carriers for electrography
  • the invention also relates to further new particles (II) suitable as carriers for electrophotography
  • the invention further relates to processes for the production of these particles and their use for the production of two-component electrophotographic developers and two-component electrophotographic developers which contain these particles.
  • Two-component developers are used in electrophotographic copiers and laser printers to develop an electrophotographically generated latent image and usually consist of carrier particles and toner particles.
  • the carrier particles are magnetizable particles with sizes of generally 20 to 1,000 ⁇ m.
  • the toner particles consist essentially of a coloring component and binder and are about 5 to 30 microns in size.
  • the electrostatic, latent image is created in the copying process by selective exposure of an electrostatically charged photoconductor roller with light reflected from the original generated. In the laser printer, this is done by a laser beam.
  • toner particles are transported to the photoconductor roller via a "magnetic brush", that is carrier particles aligned along the field lines of a sector magnet.
  • the toner particles adhere electrostatically to the carrier particles and receive an electrostatic charge opposite to the carrier particles during transport in the magnetic field due to friction.
  • the toner particles thus transferred from the magnetic brush to the photoconductor roller result in a "toner image” which is subsequently transferred to electrostatically charged paper and fixed.
  • the carrier particles used have to meet a number of requirements: They should be magnetizable and thus enable the magnetic brush to be assembled quickly. Furthermore, their surface should have a low conductivity in order to prevent a short circuit between the sector magnet and the photoconductor roller. This conductivity should remain constant over long operating times of the carrier in order to keep the triboelectric charge of the developer constant for a long time. Last but not least, the carrier particles should also be flowable and not clump in the developer reservoir.
  • the carrier particles consisting of hard or in particular soft magnetic material generally have to be coated.
  • the invention was based on the object of providing new carriers for electrophotography which are distinguished by favorable application properties, and thus of making it possible to optimally match the carrier to the toner used in each case.
  • suitable particles (I) were selected as carriers for electrophotography
  • the cores of the particles (I) and (II) according to the invention which are suitable as carriers for electrophotography can be made from the usual soft magnetic materials such as iron, steel, magnetite, ferrites (for example nickel / zinc, manganese / zinc and tree ferrites), Cobalt and nickel as well as particles of these metals or metal compounds which are embedded in polymer resins normally used for this purpose.
  • Hard magnetic materials such as strontium or barium ferrite or neodymium iron borides are also suitable.
  • the cores can additionally be coated with iron and / or titanium oxide or mixtures thereof and in the case of carriers (II) with iron oxide. This type of coating is described in the above-mentioned EP-A-303 918.
  • the metal oxide shells of the carrier cores (I) and (II) according to the invention are mainly composed of the following oxides: aluminum oxide (A1 2 0 3 ), chro (III) oxide (Cr 2 0 3 ), molybdenum (VI) oxide (Mo0 3 ), tungsten (VI) oxide (W0 3 ), silicon dioxide (Si0 2 ), tin dioxide (Sn0 2 ) and zirconium dioxide (Zr0 2 ) and in the case of the carrier (II) titanium dioxide (Ti0 2 ).
  • the oxide shell of the carrier (I) can also consist of mixtures of the oxides mentioned, which have been deposited in succession or simultaneously, and of mixed oxides.
  • the thickness of the oxide shell is not critical per se. In principle, both very thin and very thick layers are possible.
  • the optimal thickness of the oxide shell depends on the respective application. As a rule, it is approximately 2 nm to 500 nm, preferably 10 nm to 200 nm.
  • volatile compounds of the corresponding metals are decomposed hydrolytically and / or oxidatively in the gas phase in the presence of the carrier cores to be coated (“chemical vapor deposition”).
  • the corresponding carbonyls, halides and alcoholates are preferably used.
  • the chlorides are particularly preferred for the halides, but the bromides and iodides, e.g. Aluminum tribromide can be used.
  • the alcoholates can be both aromatic and aliphatic compounds. Particularly preferred here are, for example, phenolates and benzyl alcoholates and especially C 1 -C 4 -alkanolates such as methanolates, ethanolates, n- and isopropanolates and n-, tert.- and isobutanolates.
  • Very particularly preferred starting compounds are chromium, molybdenum and tungsten hexacarbonyl, aluminum trichloride and silicon, tin and zirconium tetrachloride.
  • titanium dioxide essentially titanium dioxide, titanium tetraalcoholates such as titanium tetraphenolate, titanium tetrabenzyl alcoholate and titanium tetra-C 1 -C 4 -alkanolates such as titanium tetra-methanolate, ethanolate, n-propanolate, -n-, -iso- and -tert.-butanolate and preferably titanium tetraisopropanolate.
  • titanium tetraalcoholates such as titanium tetraphenolate, titanium tetrabenzyl alcoholate and titanium tetra-C 1 -C 4 -alkanolates
  • titanium tetra-methanolate ethanolate
  • n-propanolate -n-, -iso- and -tert.-butanolate
  • titanium tetraisopropanolate titanium tetraisopropanolate.
  • the carbonyls are preferably decomposed by oxidation with oxygen or air, while the halides and alcoholates are preferably decomposed by hydrolysis with water vapor in the presence or absence of oxygen.
  • the alcoholates and halides can also be oxidatively decomposed, but higher temperatures (about 200 to 600 ° C.) are required for this, in particular in the case of the halides.
  • higher temperatures about 200 to 600 ° C.
  • temperature-stable cores such as steel and ferrite cores are suitable for a coating carried out in this way.
  • the procedure is expediently as follows:
  • the carrier cores are first fluidized in an heatable reaction vessel, preferably in a moving fixed bed or a fluidized bed, with an inert gas such as nitrogen and heated to a temperature of generally 100 to 400 ° C., preferably 200 to 300 ° C.
  • the evaporated metal compound in a mixture with an inert gas such as nitrogen and the respective reactant, either air or other oxygen / nitrogen mixtures for oxidation or water vapor with a carrier gas such as nitrogen or air for hydrolysis are then fed in separately.
  • the concentration of oxygen, water vapor and, above all, metal compound in the respective carrier gas should preferably be below about 5% by volume in order to ensure a uniform coating of the carrier surface with metal oxide.
  • the thickness of the metal oxide layer formed naturally depends on the amount of metal compound supplied and can thus be controlled over the duration of the coating.
  • the product After cooling, the product can then be discharged and used without further treatment.
  • the coating of the carrier cores via the gas phase decomposition of corresponding metal compounds is the preferred procedure for producing the carrier according to the invention. In principle, however, this can also be carried out by precipitating the metal oxide or hydroxide from an aqueous metal salt solution or from an organic solvent and subsequent heat treatment.
  • the carriers according to the invention have homogeneous, abrasion-resistant metal oxide layers. Their surface shows the desired low conductivity. Depending on the toner used in each case, they allow both positive and negative toner charging and can therefore be selected specifically for the respective intended use. In addition, they have a long service life and can therefore, overall, be advantageous with the commercially available toners for the production of electrophotographic two-component developers are used.
  • the raw carrier was coated in a moving fixed bed.
  • a temperature-controlled metal nozzle was inserted through the motor shaft of the rotary evaporator into the center of the carrier bed in the flask, which contained two separate water-cooled gas inlet tubes and a gas-tight thermocouple.
  • the quartz bulb was heated by a 6 1 heating element.
  • the metal compound evaporated in each case in an evaporator vessel upstream of the nozzle was fed in a nitrogen stream through an inlet pipe.
  • the second inlet pipe was used to supply nitrogen and air for oxidation or air loaded with water vapor in a further upstream evaporator vessel.
  • A spherical steel carrier with an average particle size of 75 to 180 ⁇ m, type TC 100 (Pometon S.p.A., Italy),
  • C Ferrite carrier with an average particle size of 20 to 60 ⁇ m, CM 30-60 SH (Höganäs, Sweden)
  • the carrier coated in this way was then cooled and discharged under a nitrogen stream of 50 l / h.
  • R means resistance [ohm]; t time of measurement [s]; C: capacity [F];
  • the resistance R is usually given in logarithmic values.
  • the measurement results are listed in Table 2.
  • Tl positively chargeable toner for the commercial Siemens ND 2/3 laser printer
  • T2 negatively chargeable toner for the IBM 3827 commercial laser printer
  • T3 "neutral toner” without pigment and other additives: ground in a laboratory pencil mill to an average particle size of 26.7 ⁇ m and sieved to 36 ⁇ m Styrene butyl acrylate resin (Neocryl® B 1062 toner resin; Polyvinylchemie, Netherlands).
  • the carrier particles were first mixed with the respective toner in a weight ratio of 98.5: 1.5 and shaken in a glass vessel for 2 minutes. A weighed amount of this mixture was then poured into a hard-blow-off cell coupled to an electrometer (Q / M meter from PES Laboratory, Dr. R. Epping, Neufahrn). The mesh size of the screens used in the cell was 40 ⁇ m and was selected such that no carrier was discharged, but the toner powder could be blown out completely. After the toner had been blown out and suctioned off, the charge was determined and the weight of the blown out toner was determined by weighing back.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Als Carrier für die Elektrophotographie geeignete Teilchen (I) aus: a) einem magnetischen Kern und b) einer Hülle aus Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- oder Zirkonoxid oder deren Mischungen, sowie Teilchen (II) aus: a) einem magnetischen Kern und b) einer Hülle aus Titanoxid, erhältlich durch Zersetzung von Titantetraalkoholaten in der Gasphase durch Reaktion mit Wasserdampf und/oder Sauerstoff in Gegenwart bewegter Kerne. Herstellung und Verwendung dieser Teilchen in elektrophotographischen Zweikomponenten-Entwicklern.

Description

Als Carrier für die Ele trophotographie geeignete Teilchen
Beschreibung
Die vorliegende Erfindung betrifft neue als Carrier für die Elektrographie geeignete Teilchen (I) aus
a) einem magnetischen Kern und
b) einer Hülle aus Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- oder Zirkonoxid oder deren Mischungen.
Außerdem betrifft die Erfindung weitere neue als Carrier für die Elektrophotographie geeignete Teilchen (II) aus
a) einem magnetischen Kern und
b) einer Hülle aus Titanoxid,
erhältlich durch Zersetzung von Titantetraalkoholaten in der Gasphase durch Reaktion mit Wasserdampf und/oder Sauerstoff in Gegenwart bewegter Kerne.
Weiterhin betrifft die Erfindung Verfahren zur Herstellung dieser Teilchen sowie ihre Verwendung zur Herstellung von elektrophotographischen Zweikomponenten-Entwicklern und elektrophotographische Zweikomponenten-Entwickler, welche diese Teilchen enthalten.
Zweikomponenten-Entwickler werden in elektrophotographischen Kopiergeräten und Laserdruckern zur Entwicklung eines elek- trophotographisch erzeugten, latenten Bildes eingesetzt und bestehen üblicherweise aus Carrierteilchen und Tonerteil- chen. Bei den Carrierteilchen handelt es sich um magneti- sierbare Teilchen mit Größen von in der Regel 20 bis 1 000 μm. Die Tonerteilchen bestehen im wesentlichen aus einer farbgebenden Komponente und Bindemittel und sind etwa 5 bis 30 μm groß .
Das elektrostatische, latente Bild wird beim Kopierprozeß durch selektive Belichtung einer elektrostatisch aufgelade¬ nen Photoleiterwalze mit vom Original reflektiertem Licht erzeugt. Beim Laserdrucker geschieht dies durch einen Laser¬ strahl.
Zur Entwicklung des elektrostatischen Bildes werden Toner- teilchen über eine "Magnetbürste", das sind entlang der Feldlinien eines Sektormagneten ausgerichtete Carrierteil¬ chen, zur Photoleiterwalze transportiert. Die Tonerteilchen haften dabei elektrostatisch an den Carrierteilchen und er¬ halten beim Transport im Magnetfeld durch Reibung eine den Carrierteilchen entgegengesetzte elektrostatische Aufladung. Die so von der Magnetbürste auf die Photoleiterwalze über¬ tragenen Tonerteilchen ergeben ein "Tonerbild", das anschließend auf elektrostatisch aufgeladenes Papier über¬ tragen und fixiert wird.
An die verwendeten Carrierteilchen sind dabei eine Reihe von Anforderungen zu stellen: Sie sollen magnetisierbar sein und so einen schnellen Aufbau der Magnetbürste ermöglichen. Weiterhin soll ihre Oberfläche eine geringe Leitfähigkeit aufweisen, um einen Kurzschluß zwischen Sektormagnet und Photoleiterwalze zu verhindern. Diese Leitfähigkeit soll über lange BetriebsZeiten des Carriers konstant bleiben, um auch die triboele trische Aufladung des Entwicklers lange konstant zu halten. Nicht zuletzt sollen die Carrierteilchen auch fließfähig sein und nicht im Entwicklervorratsgefäß verklumpen.
Um diesen Anforderungen zu genügen, müssen, die aus hart- oder insbesondere weichmagnetischem Material bestehen- den Carrierteilchen in der Regel beschichtet werden.
Aus der EP-A-303 918 ist die Beschichtung von Stahl- und Ferri carriern mit Eisenoxid oder Titandioxid bekannt, das durch oxidative oder hydrolytische Zersetzung von Eisen- pentacarbonyl bzw. Titantetrachlorid aus der Gasphase auf den Carrierteilchen abgeschieden wird.
Weiterhin ist es auch allgemein bekannt, die Oberfläche der Carrierteilchen mit Polymeren, insbesondere polymeren Fluor- kohlenwasserstoffen, zu belegen oder die Oberfläche metalli¬ scher Carrierteilchen durch Oxidation zu passivieren. Besonders die letztgenannten Beschichtungsarten haben jedoch zahlreiche Nachteile. Konstante und ausreichend dicke Schichten sind nur schwierig herzustellen, außerdem haben mit Polymeren beschichtete Carrier aufgrund der schlechten Haftung der Polymerschicht auf der Carrieroberflache nur eine geringe Lebensdauer.
Der Erfindung lag die Aufgabe zugrunde, neue Carrier für die Elektrophotographie bereitzustellen, die sich durch günstige Anwendungseigenschaften auszeichnen, und damit die Möglich¬ keit zu schaffen, eine optimale Abstimmung des Carriers auf den jeweils verwendeten Toner zu ermöglichen.
Demgemäß wurden als Carrier für die Elektrophotographie geeignete Teilchen (I) aus
a) einem magnetischen Kern und
b) einer Hülle aus Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- oder Zirkonoxid oder deren Mischungen
gefunden.
Außerdem wurde ein Verfahren zur Herstellung der Teil- chen (I) gefunden, welches dadurch gekennzeichnet ist, daß man flüchtige Aluminium-, Chlor-, Molybdän-, Wolfram-, Sili¬ cium-, Zinn- und/oder Zirkonverbindungen durch Reaktion mit Wasserdampf und/oder Sauerstoff in der Gasphase in Gegenwart bewegter Kerne zersetzt.
Weiterhin wurden neue als Carrier für die Elektrophoto¬ graphie geeignete Teilchen (II) aus
a) einem magnetischen Kern und
b) einer Hülle aus Titanoxid,
welche durch Zersetzung von Titantetraalkoholaten in der Gasphase durch Reaktion mit Wasserdampf und/oder Sauerstoff in Gegenwart bewegter Kerne erhältlich sind, und das hierdurch definierte Verfahren zur Herstellung der Teilchen (II) gefunden.
Nicht zuletzt wurden die Verwendung der Teilchen (I) und (II) zur Herstellung von elektrophotographischen Zweikompo- nenten-Entwicklern und elektrophotographische Zweikomponen¬ ten-Entwickler, welche die Teilchen enthalten, gefunden.
Die Kerne der erfindungsgemäßen als Carrier für die Elektro- photographie geeigneten Teilchen (I) und (II) können aus den üblichen weichmagnetischen Materialien wie Eisen, Stahl, Magnetit, Ferriten (beispielsweise Nickel/Zink-, Mangan/ Zink- und Ba iumferriten) , Kobalt und Nickel sowie in übli¬ cherweise für diesen Zweck eingesetzten Polymerharzen einge- betteten Teilchen dieser Metalle oder Metallverbindungen be¬ stehen. Außerdem sind hartmagnetische Materialien wie Stron¬ tium- oder Bariumferrit oder Neodymeisenboride geeignet.
Im Fall der Carrier (I) können die Kerne zusätzlich mit Ei- sen- und/oder Titanoxid oder deren Mischungen und im Fall der Carrier (II) mit Eisenoxid beschichtet sein. Diese Art der Beschichtung ist in der obengenannten EP-A-303 918 be¬ schrieben.
Die e findungsgemäßen Metalloxidhüllen der Carrierkerne (I) und (II) sind in der Hauptsache aus den folgenden Oxiden aufgebaut: Aluminiumoxid (A1203) , Chro (III)oxid (Cr203) , Molybdän(VI)oxid (Mo03) , Wolfram(VI)oxid (W03) , Silicium- dioxid (Si02) , Zinndioxid (Sn02) und Zirkondioxid (Zr02) sowie im Fall der Carrier (II) Titandioxid (Ti02) . Weitere Oxide der Metalle in anderen Oxidationsstufen sowie basische Oxide sind, abhängig von der Art der Herstellung, in der Regel höchstens in geringen Mengen enthalten. Die Oxidhülle der Carrier (I) kann auch aus Mischungen der genannten Oxi- de, die nacheinander oder gleichzeitig abgeschieden wurden, sowie aus Mischoxiden bestehen.
Die Dicke der Oxidhülle ist an sich nicht kritisch. Im Prin¬ zip sind sowohl sehr dünne als auch sehr dicke Schichten möglich. Die optimale Dicke der Oxidhülle ist vom jeweiligen Anwendungszweck abhängig. In der Regel beträgt sie etwa 2 n bis 500 nm, vorzugsweise 10 nm bis 200 nm. Zur Bildung der Oxidhülle werden bei den erfindungsgemäßen Verfahren zur Herstellung der Carrier (I) und (II) flüchtige Verbindungen der entsprechenden Metalle hydrolytisch und/oder oxidativ in der Gasphase in Gegenwart der zu beschichteten Carrierkerne zersetzt ("chemical vapor deposition") .
Dabei werden bevorzugt die entsprechenden Carbonyle, Haloge¬ nide und Alkoholate eingesetzt.
Besonders bevorzugt sind bei den Halogeniden die Chloride, es können aber auch die Bromide und Iodide, z.B. Aluminium- tribromid, verwendet werden.
Bei den Alkoholaten kann es sich sowohl um aromatische als auch aliphatische Verbindungen handeln. Besonders bevorzugt sind hier beispielsweise Phenolate und Benzylalkoholate und vor allem Cι-C4-Alkanolate wie Methanolate, Ethanolate, n- und Isopropanolate und n-, tert.- und Isobutanolate.
Ganz besonders bevorzugte Ausgangsverbindungen sind Chrom-, Molybdän- und Wolframhexacarbonyl, Aluminiumtrichlorid und Silicium-, Zinn- und Zirkontetrachlorid.
Bei der erfindungsgemäßen Herstellung der mit Titanoxid, im wesentlichen Titandioxid beschichteten Carrier (II) werden Titantetraalkoholate wie Titantetraphenolat, Titantetraben- zylalkoholat und Titantetra-Cι-C4-alkanolate wie Titantetra- methanolat, -ethanolat, -n-propanolat, -n-, -iso- und -tert.-butanolat und bevorzugt Titantetraisopropanolat ein¬ gesetzt.
Die Zersetzung der Carbonyle erfolgt dabei vorzugsweise durch Oxidation mit Sauerstoff oder Luft, während die Halo- genide und Alkoholate bevorzugt durch Hydrolyse mit Wasser¬ dampf in An- oder Abwesenheit von Sauerstoff zersetzt wer¬ den. Die Alkoholate und Halogenide können auch oxidativ zer¬ setzt werden, dafür sind jedoch insbesondere bei den Haloge¬ niden, höhere Temperaturen (etwa 200 bis 600°C) erforder- lieh. Für eine auf diese Weise durchgeführte Beschichtung sind daher in der Regel nur temperaturstabile Kerne wie Stahl- und Ferritkerne geeignet. Verfahrenstechnisch geht man zweckmäßigerweise folgender¬ maßen vor:
Die Carrierkerne werden zunächst in einem beheizbaren Reak- tionsgefäß, vorzugsweise in einem bewegten Festbett oder einem Wirbelbett, mit einem inerten Gas wie Stickstoff fluidisiert und auf eine Temperatur von in der Regel 100 bis 400°C, bevorzugt 200 bis 300°C, erhitzt. Dann werden die verdampfte Metallverbindung im Gemisch mit einem inerten Gas wie Stickstoff und der jeweilige Reaktionspartner, entweder Luft oder andere Sauerstoff/Stickstoff-Gemische zur Oxida- tion oder Wasserdampf mit einem Trägergas wie Stickstoff oder Luft zur Hydrolyse, getrennt zugeführt. Die Konzentra¬ tion von Sauerstoff, Wasserdampf und vor allem Metallverbin- d ng im jeweiligen Trägergas sollte dabei vorzugsweise unter etwa 5 Vol.-% liegen, um eine gleichmäßige Beschichtung der Carrieroberflache mit Metalloxid zu gewährleisten.
Die Dicke der gebildeten Metalloxidschicht hängt naturgemäß von der zugeführten Menge an Metallverbindung ab und kann damit über die Beschichtungsdauer gesteuert werden.
Nach dem Abkühlen kann das Produkt dann ausgetragen und ohne weitere Nachbehandlung verwendet werden.
Die Beschichtung der Carrierkerne über die Gasphasehzer- setzung entsprechender Metallverbindungen ist die bevorzugte Vorgehensweise zur Herstellung der erfindungsgemäßen Car¬ rier. Prinzipiell kann diese aber auch durch Auffällen des Metalloxids oder -hydroxids aus einer wäßrigen Metallsalz¬ lösung oder aus einem organischen Lösungsmittel und anschließende Temperaturbehandlung erfolgen.
Die erfindungsgemäßen Carrier weisen homogene, abrasions- feste Metalloxidschichten auf. Ihre Oberfläche zeigt die ge¬ wünschte geringe Leitfähigkeit. Sie erlauben in Abhängigkeit vom jeweils verwendeten Toner sowohl eine positive als auch eine negative Toneraufladung und können daher gezielt für den jeweiligen Verwendungszweck ausgewählt werden. Außerdem haben sie hohe Lebensdauer und können daher insgesamt vor¬ teilhaft mit den handelsüblichen Tonern zur Herstellung von elektrophotographischen Zweikomponenten-Entwicklern einge¬ setzt werden.
Beispiele
A. Herstellung von erfindungsgemäßen Carriern
Die Beschichtung der Rohcarrier erfolgte in einem bewegten Festbett. Als Reaktionsgefäß diente dabei ein 500 ml-Quarz- kolben mit einem Durchmesser von 10 cm, der an einem Rota¬ tionsverdampfer befestigt wurde. Durch die Motorwelle des Rotationsverdampfers wurde eine temperierbare Metalldüse in die Mitte der Carrierschüttung im Kolben eingeführt, die zwei getrennte wassergekühlte Gaseinleitungsrohre und ein gasdicht sitzendes Thermoelement enthielt. Die Beheizung des Quarzkolbens erfolgte über einen 6 1-Heizpilz . Durch ein Einleitungsrohr wurde die in einem der Düse vorgeschalteten Verdampfergefäß jeweils verdampfte Metallverbindung im Stickstoffström zugeführt. Das zweite Einleitungsrohr wurde zur Zuleitung von Stickstoff und von Luft zur Oxidation oder von in einem weiteren vorgeschalteten Verdampfergefäß mit Wasserdampf beladener Luft benutzt.
In der oben beschriebenen Apparatur wurden x kg des "Roh- carriers"
A: kugelförmiger Stahlcarrier der mittleren Teilchengröße 75 bis 180 μm, Typ TC 100 (Fa. Pometon S.p.A., Italien) ,
B: Ferritcarrier der mittleren Teilchengröße 45 bis 105 μm, Typ KBN 100 (Fa. Hitachi, Japan) oder
C: Ferritcarrier der mittleren Teilchengröße 20 bis 60 μm, CM 30-60 SH (Fa. Höganäs, Schweden)
bei 50 U/min in einem Stickstoffström von 40 1/h auf 250°C aufgeheizt. Über das auf die Verdampfungstemperatur V [°C] aufgeheizte Verdampfergefäß wurden y g (ml) Metallverbindung in einem Stickstoffström von n 1/h in d h in die Apparatur eingeleitet. Zusätzlich wurden zur Oxidation s 1/h Luft oder über das zweite auf 20°C temperierte Verdampfergefäß zur Hy¬ drolyse mit Wasserdampf beladene Luft (w 1/h) zugeführt.
Der so beschichtete Carrier wurde anschließend unter einem Stickstoffström von 50 1/h abgekühlt und ausgetragen.
Einzelheiten zu den Versuchen sowie deren Ergebnisse sind in Tabelle 1 zusammengestellt.
Tabelle 1
Figure imgf000011_0001
= ml ** = Wasser auf 40°C temperiert
B. Messung des elektrischen Widerstandes und der elektro¬ statischen Aufladbarkeit von erfindungsgemäßen Carriern
B.l. Elektrischer Widerstand
Der elektrische Widerstand der Carrier aus den Beispielen 1 bis 14 wurde mit dem C-Meter von PES-Laboratorium (Dr. R. Epping, Neufahrn) gemessen. Dazu wurden die Carrier- teilchen 30 s in einem Magnetfeld von 900 Gauß bei einer Spannung U0 von 100 V bewegt (Kapazität C = 1 nF) .
Der Widerstand R kann nach der folgenden Formel aus dem zeitlichen Spannungsabfall nach dem Abstellen des angelegten elektrischen Feldes berechnet werden:
R = t/[C/ln(U0/ü)]
Dabei bedeuten R Widerstand [Ohm] ; t Zeit der Messung [s] ; C: Kapazität [F] ;
U0: Spannung zu Beginn der Messung [V] ; U: Spannung am Ende der Messung [V] .
Der Widerstand R wird dabei normalerweise in logarithmierten Werten angegeben. Die Meßergebnisse sind in Tabelle 2 aufge¬ führt.
B.2. Elektrostatische Aufladbarkeit Q/M
Die elektrostatische Aufladbarkeit Q/M der Carrier aus den Beispielen 1 bis 14 wurde gegen die folgenden Toner bestimmt:
Tl: positiv aufladbarer Toner für den kommerziellen Siemens ND 2/3-Laserdrucker;
T2: negativ aufladbarer Toner für den kommerziellen IBM-3827-Laserdrucker;
T3: "Neutraltoner" ohne Pigment und weitere Zusätze: in einer Laborstiftmühle auf eine mittlere Teilchengröße von 26,7 μm gemahlenes und mit 36 μm abgesiebtes Styrolbutylacrylatharz (Neocryl® B 1062-Tonerharz; Polyvinylchemie, Niederlande) .
Dazu wurden die Carrierteilchen zunächst mit dem jeweiligen Toner im Gewichtsverhältnis 98,5:1,5 gemischt und in einem Glasgefäß 2 min geschüttelt. Danach wurde eine abgewogene Menge dieser Mischung in eine mit einem Elektrometer gekop¬ pelte Hard-blow-off-Zelle (Q/M-Meter von PES-Laboratorium, Dr. R. Epping, Neufahrn) gefüllt. Die Maschenweite der in der Zelle eingesetzten Siebe betrug 40 μm und war so ge¬ wählt, daß kein Carrieraustrag erfolgte, das Tonerpulver jedoch vollständig ausgeblasen werden konnte. Nach erfolgtem Ausblasen und Absaugen des Toners wurde die Aufladung be¬ stimmt und durch Zurückwägen auf das Gewicht des ausgebla¬ senen Toners bezogen.
Die Meßergebnisse sind in Tabelle 2 zusammengestellt
Tabelle 2
Figure imgf000013_0001

Claims

Patentansprüche
1. Als Carrier für die Elektrophotographie geeignete Teilchen (I) aus
a) einem magnetischen Kern und
b) einer Hülle aus Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- oder Zirkonoxid oder deren Mischungen.
2. Als Carrier für die Elektrophotographie geeignete Teilchen (II) aus
a) einem magnetischen Kern und
b) einer Hülle aus Titanoxid,
erhältlich durch Zersetzung von Titantetraalkoholaten in der Gasphase durch Reaktion mit Wasserdampf und/oder Sauerstoff in Gegenwart bewegter Kerne.
3. Verfahren zur Herstellung der Teilchen (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man flüchtige Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- und/oder Zirkonverbindungen durch Reaktion mit Wasserdampf und/oder Sauerstoff in der Gasphase in Ge¬ genwart bewegter Kerne zersetzt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als flüchtige Verbindungen die Metallhalogenide, -carbonyle oder -alkoholate einsetzt.
5. Verfahren zur Herstellung der Teilchen (II) gemäß
Anspruch 2, dadurch gekennzeichnet, daß man Titantetra- alkoholate in der Gasphase durch Reaktion mit Wasser¬ dampf und/oder Sauerstoff in Gegenwart bewegter Kerne zersetzt.
6. Verwendung der Teilchen gemäß Anspruch 1 oder 2 zur Herstellung von elektrophotographischen Zweikomponenten- Entwicklern.
7. Elektrophotographische Zweikomponenten-Entwickler, enthaltend die Teilchen gemäß Anspruch 1 oder 2.
GEÄNDERTE ANSPRÜCHE [beim Internationalen Büro am 29. März 1993 (29.03.93) eingegangen, ursprüngliche Ansprüche 1-3 und 5-7 geändert; ursprünglicher Anspruch 4 unverändert (2 sei en)]
1. Carrier für die Elektrophotographie (I) aus
a) einem magnetischen Kern und
b) einer Hülle aus Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- oder Zirkonoxid oder deren Mischungen.
2. Carrier für die Elektrophotographie (II) aus
a) einem magnetischen Kern und
b) einer Hülle aus Titanoxid,
erhältlich durch Zersetzung von Titantetraalkoholaten in der Gasphase durch Reaktion mit Wasserdampf und/oder Sauerstoff in Gegenwart bewegter Kerne.
3. Verfahren zur Herstellung der Carrier (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man flüchtige Aluminium-, Chrom-, Molybdän-, Wolfram-, Silicium-, Zinn- und/oder Zirkonverbindungen durch Reaktion mit Wasserdampf und/oder Sauerstoff in der Gasphase in Gegenwart bewegter Kerne zersetzt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als flüchtige Verbindungen die Metallhalogenide,
-carbonyle oder -alkoholate einsetzt.
5. Verfahren zur Herstellung der Carrier (II) gemäß Anspruch 2, dadurch gekennzeichnet, daß man Titantetra- alkoholate in der Gasphase durch Reaktion mit Wasser¬ dampf und/oder Sauerstoff in Gegenwart bewegter Kerne zersetz .
6. Verwendung der Carrier gemäß Anspruch 1 oder 2 zur Herstellung von elektrophotographischen Zweikomponenten- Entwicklern. 7. Elektrophotographische Zweikomponenten-Entwickler, enthaltend die Carrier gemäß Anspruch 1 oder 2.
PCT/EP1992/002819 1991-12-12 1992-12-05 Als carrier für die elektrophotographie geeignete teilchen WO1993012470A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59207555T DE59207555D1 (de) 1991-12-12 1992-12-05 Als carrier für die elektrophotographie geeignete teilchen
US08/244,712 US5496674A (en) 1991-12-12 1992-12-05 Particles suitable as carriers for electrophotography
JP5510580A JPH08500908A (ja) 1991-12-12 1992-12-05 キャリヤーとして電子写真法に適当な粒子
EP93900028A EP0616703B1 (de) 1991-12-12 1992-12-05 Als carrier für die elektrophotographie geeignete teilchen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4140900A DE4140900A1 (de) 1991-12-12 1991-12-12 Als carrier fuer die elektrophotographie geeignete teilchen
DEP4140900.0 1991-12-12

Publications (1)

Publication Number Publication Date
WO1993012470A1 true WO1993012470A1 (de) 1993-06-24

Family

ID=6446830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/002819 WO1993012470A1 (de) 1991-12-12 1992-12-05 Als carrier für die elektrophotographie geeignete teilchen

Country Status (7)

Country Link
US (1) US5496674A (de)
EP (1) EP0616703B1 (de)
JP (1) JPH08500908A (de)
CA (1) CA2125479A1 (de)
DE (2) DE4140900A1 (de)
ES (1) ES2093956T3 (de)
WO (1) WO1993012470A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609897A2 (de) 1993-02-05 1994-08-10 Nittetsu Mining Co., Ltd. Puder mit einen Schicht und Herstellungsverfahren
EP0662644A2 (de) * 1993-12-24 1995-07-12 Kao Corporation Elektrophotographischer Träger und dessen Herstellungsverfahren
EP0668543A1 (de) * 1994-02-07 1995-08-23 Basf Aktiengesellschaft Zinndioxidbeschichtete Carrier für die Elekktrophotographie
EP0668542A2 (de) * 1994-02-07 1995-08-23 Basf Aktiengesellschaft Metalloxid- und metallbeschichtete Carrier für die Elektrophotographie
EP0674238A2 (de) * 1994-03-23 1995-09-27 Basf Aktiengesellschaft Zweifach mit Metalloxid beschichtete Carrier für die Elektrophotographic
EP1156375A2 (de) * 2000-05-17 2001-11-21 Heidelberger Druckmaschinen Aktiengesellschaft Elektrophotographisches Verfahren unter Benutzung von Hartmagnetträgern
US6723481B2 (en) 2000-05-17 2004-04-20 Heidelberger Druckmaschinen Ag Method for using hard magnetic carriers in an electrographic process
EP3252536A4 (de) * 2015-01-28 2018-07-25 Powdertech Co., Ltd. Ferritteilchen mit aussenhüllenstruktur

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286134B2 (ja) * 1995-10-12 2002-05-27 ファイラックインターナショナル株式会社 流体燃料の改質用セラミックス触媒
DE19614637A1 (de) * 1996-04-13 1997-10-16 Basf Ag Goniochromatische Glanzpigmente auf der Basis von beschichteten Siliciumdioxidplättchen
US6228549B1 (en) 2000-05-17 2001-05-08 Heidelberg Digital L.L.C. Magnetic carrier particles
US6232026B1 (en) 2000-05-17 2001-05-15 Heidelberg Digital L.L.C. Magnetic carrier particles
US7452597B2 (en) 2002-11-13 2008-11-18 Ciba Specialty Chemicals Corporation Interference pigments comprising a layer of silicon oxide
CN1909931B (zh) * 2004-01-15 2011-01-12 皇家飞利浦电子股份有限公司 用于分子成像的超声造影剂
DE602005026820D1 (de) 2004-08-23 2011-04-21 Basf Se Verfahren zur herstellung von blättchenförmigen pi0)
US7635518B1 (en) * 2005-02-04 2009-12-22 University Of Louisiana At Lafayette Dendritic magnetic nanostructures and method for making same
EP2167587B1 (de) 2007-07-12 2011-02-09 Basf Se Interferenzpigmente auf basis von perlitschuppen
JP5542947B2 (ja) 2009-10-28 2014-07-09 ビーエーエスエフ ソシエタス・ヨーロピア 改善されたきらめき効果を有する顔料
KR101821431B1 (ko) 2010-02-04 2018-01-23 바스프 에스이 개선된 스파클링 효과를 갖는 안료 조성물
US8585818B1 (en) * 2013-03-14 2013-11-19 Basf Se Coated perlite flakes
KR20200125971A (ko) 2018-04-04 2020-11-05 알타나 아게 착색된 헥토라이트 및 코팅된 착색된 헥토라이트를 기재로 하는 효과 안료 및 그의 제조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2149525A (en) * 1983-10-19 1985-06-12 Canon Kk Electrophotographic developer composition
EP0177276A2 (de) * 1984-09-29 1986-04-09 Kabushiki Kaisha Toshiba Gepresster Magnetpulverkern
EP0303918A2 (de) * 1987-08-17 1989-02-22 BASF Aktiengesellschaft Carrier für Reprographie und Verfahren zur Herstellung dieser Carrier
US4882224A (en) * 1988-03-30 1989-11-21 Tdk Corporation Magnetic particles, method for making and electromagnetic clutch using same
EP0359041A2 (de) * 1988-09-13 1990-03-21 BASF Aktiengesellschaft Oxidbeschichtete Carrier, ein Verfahren zur Herstellung dieser Carrier und deren Verwendung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440085A (en) * 1963-12-16 1969-04-22 Nuclear Materials & Equipment Method of and apparatus for producing coated particles
JPS52145224A (en) * 1976-05-28 1977-12-03 Ricoh Co Ltd Dry type developing powder
US4345013A (en) * 1977-02-28 1982-08-17 Black Copy Company, Inc. Dual purpose magnetic toner
JPS59127058A (ja) * 1983-01-11 1984-07-21 Hitachi Metals Ltd 電子写真用現像剤
JPS59127057A (ja) * 1983-01-11 1984-07-21 Hitachi Metals Ltd 電子写真用現像剤
JPS59131942A (ja) * 1983-01-18 1984-07-28 Hitachi Metals Ltd 電子写真用現像剤
US4917952A (en) * 1987-09-29 1990-04-17 Toda Kogyo Corp. Electroconductive iron oxide particles
ES2066851T3 (es) * 1988-05-24 1995-03-16 Anagen Uk Ltd Particulas atraibles magneticamente y metodo de preparacion.
DE3837782A1 (de) * 1988-11-08 1990-05-10 Starck Hermann C Fa Sauerstoffhaltiges molybdaenmetallpulver sowie verfahren zu dessen herstellung
US5093201A (en) * 1989-01-13 1992-03-03 Minolta Camera Kabushiki Kaisha Polyolefinic resin-coated uneven electrophotographic carrier particles
US5135832A (en) * 1990-11-05 1992-08-04 Xerox Corporation Colored toner compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2149525A (en) * 1983-10-19 1985-06-12 Canon Kk Electrophotographic developer composition
EP0177276A2 (de) * 1984-09-29 1986-04-09 Kabushiki Kaisha Toshiba Gepresster Magnetpulverkern
EP0434669A2 (de) * 1984-09-29 1991-06-26 Kabushiki Kaisha Toshiba Verfahren zur Herstellung eines gecoateden magnetischen Pulvers und gepresster magnetischer Pulverkern
EP0303918A2 (de) * 1987-08-17 1989-02-22 BASF Aktiengesellschaft Carrier für Reprographie und Verfahren zur Herstellung dieser Carrier
US4882224A (en) * 1988-03-30 1989-11-21 Tdk Corporation Magnetic particles, method for making and electromagnetic clutch using same
EP0359041A2 (de) * 1988-09-13 1990-03-21 BASF Aktiengesellschaft Oxidbeschichtete Carrier, ein Verfahren zur Herstellung dieser Carrier und deren Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPIL Section Ch, Week 3387, Derwent Publications Ltd., London, GB; Class A12, AN 87-232455 [33] *
DATABASE WPIL Section Ch, Week 3688, Derwent Publications Ltd., London, GB; Class L02, AN 88-253416 [36] *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609897B2 (de) 1993-02-05 2002-11-06 Nittetsu Mining Co., Ltd. Pulver mit einer Schicht und Herstellungsverfahren
EP0609897A2 (de) 1993-02-05 1994-08-10 Nittetsu Mining Co., Ltd. Puder mit einen Schicht und Herstellungsverfahren
EP0662644A3 (de) * 1993-12-24 1996-07-03 Kao Corp Elektrophotographischer Träger und dessen Herstellungsverfahren.
EP0662644A2 (de) * 1993-12-24 1995-07-12 Kao Corporation Elektrophotographischer Träger und dessen Herstellungsverfahren
EP0668542A2 (de) * 1994-02-07 1995-08-23 Basf Aktiengesellschaft Metalloxid- und metallbeschichtete Carrier für die Elektrophotographie
EP0668542A3 (de) * 1994-02-07 1995-11-29 Basf Ag Metalloxid- und metallbeschichtete Carrier für die Elektrophotographie.
US5614346A (en) * 1994-02-07 1997-03-25 Basf Aktiengesellschaft Metal oxide- and metal-coated carriers for electrophotography
EP0668543A1 (de) * 1994-02-07 1995-08-23 Basf Aktiengesellschaft Zinndioxidbeschichtete Carrier für die Elekktrophotographie
EP0674238A2 (de) * 1994-03-23 1995-09-27 Basf Aktiengesellschaft Zweifach mit Metalloxid beschichtete Carrier für die Elektrophotographic
US5534378A (en) * 1994-03-23 1996-07-09 Basf Aktiengesellschaft Carriers doubly coated with metal oxide and intended for electro-photography
EP0674238A3 (de) * 1994-03-23 1996-07-17 Basf Ag Zweifach mit Metalloxid beschichtete Carrier für die Elektrophotographic.
EP1156375A2 (de) * 2000-05-17 2001-11-21 Heidelberger Druckmaschinen Aktiengesellschaft Elektrophotographisches Verfahren unter Benutzung von Hartmagnetträgern
EP1156375A3 (de) * 2000-05-17 2002-08-21 Heidelberger Druckmaschinen Aktiengesellschaft Elektrophotographisches Verfahren unter Benutzung von Hartmagnetträgern
US6723481B2 (en) 2000-05-17 2004-04-20 Heidelberger Druckmaschinen Ag Method for using hard magnetic carriers in an electrographic process
EP3252536A4 (de) * 2015-01-28 2018-07-25 Powdertech Co., Ltd. Ferritteilchen mit aussenhüllenstruktur

Also Published As

Publication number Publication date
EP0616703B1 (de) 1996-11-20
CA2125479A1 (en) 1993-06-24
EP0616703A1 (de) 1994-09-28
DE4140900A1 (de) 1993-06-17
DE59207555D1 (de) 1997-01-02
ES2093956T3 (es) 1997-01-01
JPH08500908A (ja) 1996-01-30
US5496674A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP0616703B1 (de) Als carrier für die elektrophotographie geeignete teilchen
EP0668542A2 (de) Metalloxid- und metallbeschichtete Carrier für die Elektrophotographie
EP0353627B1 (de) Ineinander dispergierte zwei-phasige Ferrit-Zusammensetzung
EP0353630B1 (de) Seltene Erden enthaltende magnetische Trägerteilchen
US3669885A (en) Electrically insulating carrier particles
DE60126015T2 (de) Elektrografische Verfahren, die Entwicklerzusammensetzungen aus hartmagnetischen Trägerpartikeln verwenden
DE602004011302T2 (de) Trägerteilchen für die Elektrofotografie, Entwickler, Entwickler-Container, Bildaufzeichnungsgerät, Bilderzeugungsmethode und Prozesskartusche
EP1156376B1 (de) Magnetische Trägerteilchen
DE3617919A1 (de) Positiv aufladbarer entwickler
US4925762A (en) Carrier for reprography and production of this carrier
DE3540297A1 (de) Verfahren zur erzeugung eines bildes
DE1522557A1 (de) Verfahren zur Entwicklung von Ladungs- und Leitfaehigkeitsbildern
CA1075953A (en) Electrophoretic developer containing metal alkyl sulphonate surfactant and toner suspended in carrier liquid
JPH08194338A (ja) 静電荷像現像用キャリア及びその製造方法、並びに画像形成方法
DE3100391A1 (de) Ladungsbild-entwicklungsverfahren
EP0674238A2 (de) Zweifach mit Metalloxid beschichtete Carrier für die Elektrophotographic
DE69919628T2 (de) Magnetische Teilchen geeignet für elektrische Aufladung, Aufladungselement, Verfahrenskassette, und elektrophotographischer Apparat
DE69823770T2 (de) Elektrophotographisches Gerät, Bilderzeugungsverfahren und Arbeitseinheit
DE3943017A1 (de) Elektrophotographisches bilderzeugungsverfahren, bei dem ein amorphes silicium enthaltendes lichtempfangendes element mit einer zum tragen eines ladungsbildes dienenden schicht und einer zum tragen eines entwickelten bildes dienenden schicht und ein feinteiliger isolierender toner verwendet werden
DE10218791A1 (de) Schwarzer Toner für Entwicklung mit zwei Bestandteilen
EP0668543A1 (de) Zinndioxidbeschichtete Carrier für die Elekktrophotographie
EP4130885A1 (de) Ferritteilchen, kernmaterial für elektrofotografischen entwicklerträger, elektrofotografischer entwicklerträger und elektrofotografischer entwickler
DE3246143C2 (de)
US4072522A (en) Method of treating photoconductive zinc oxide
JPH0119142B2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993900028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2125479

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08244712

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993900028

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993900028

Country of ref document: EP