WO1992020932A1 - Bearing for rectilinear sliding - Google Patents

Bearing for rectilinear sliding Download PDF

Info

Publication number
WO1992020932A1
WO1992020932A1 PCT/JP1992/000626 JP9200626W WO9220932A1 WO 1992020932 A1 WO1992020932 A1 WO 1992020932A1 JP 9200626 W JP9200626 W JP 9200626W WO 9220932 A1 WO9220932 A1 WO 9220932A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
bearing
rolling element
load
sliding
Prior art date
Application number
PCT/JP1992/000626
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Teramachi
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Publication of WO1992020932A1 publication Critical patent/WO1992020932A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • F16C29/0645Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls with load directions in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • F16C29/0604Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the load bearing section
    • F16C29/0607Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the load bearing section of parts or members for retaining the rolling elements, i.e. members to prevent the rolling elements from falling out of the bearing body or carriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/065Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with rollers

Definitions

  • the present invention relates to a bearing for linear sliding, for example, a linear sliding bearing for linearly guiding a movable body to be slid in a sliding part such as a machine tool such as an NC machine or an industrial robot.
  • a bearing for linear sliding for example, a linear sliding bearing for linearly guiding a movable body to be slid in a sliding part such as a machine tool such as an NC machine or an industrial robot.
  • linear sliding bearing used for this purpose include, for example, a horizontal portion and a pair of sleeve portions hanging downward from both sides thereof, a concave portion provided on the lower surface side, and
  • the part has a pair of upper and lower load rolling surfaces along the longitudinal direction of the inner surface, and has a relief ball trajectory corresponding to each of the load rolling surfaces.
  • a track base having an upper part fitted in the recess of the slide with a predetermined gap therebetween and having a rolling groove corresponding to each of the load rolling surfaces;
  • a pair of lids provided on the end face, and provided on the inner face side with a guide groove for communicating between the load rolling surface of the slide and each end of the relief ball track to form a ball endless track;
  • Each ball circulates in the endless track and is composed of a number of balls that apply a load between the load rolling surface of the slide base and the rolling groove of the track base.
  • the radial direction acting on the slide base It is designed to be able to apply loads in four directions: reverse radial direction and horizontal direction.
  • linear sliding bearings are provided with a gap adjusting means for adjusting a gap between the slide base and the track base, and an arbitrary preload is applied to the bearing or the applied preload is adjusted. It is known that it is possible to do this (JP-B-61-34,934 and JP-B-61-48,009).
  • the rigidity can be increased in the four directions orthogonal to the axial direction of the track by applying or adjusting the preload using the gap adjusting means. Deviations have been made to improve machining accuracy by minimizing chatter and vibration caused by caroe.
  • the rigidity of the feed drive system is, for example, when it is a feed screw or a nut device, the feed screw ⁇ the rigidity of the feed nut itself. It is determined by the rigidity of the support part of the screw ⁇ feed nut, the rigidity of the servo motor that applies rotational force to the feed screw, and the like.
  • it is necessary to increase the size of the feed screw and feed nut, and to increase the driving force of the servo motor. Problems such as drive-up costs are derived and naturally have their limitations.
  • the purpose of the present invention is not only to have rigidity in the four directions of radial direction, reverse radial direction and lateral direction, but also to provide a predetermined rigidity in the axial direction of the track base.
  • the purpose is to provide the negotiation.
  • Another object of the present invention is to provide a bearing for linear sliding, which can impart rigidity in the way of the way of the way as required and can adjust its size.
  • Another object of the present invention is to provide a bearing for linear sliding that can be employed in a machine device such as a machine tool to enable high-precision machining. Disclosure of the invention
  • a linear sliding bearing includes a horizontal portion and a pair of sleeve portions that hang downward from both sides thereof.
  • the sleeve has a pair of upper and lower rolling element rolling surfaces along the longitudinal direction of the inner surface of the sleeve, and a no-load track corresponding to each of these rolling element rolling surfaces.
  • a sliding table having a substantially inverted c-shaped cross section and a rolling element rolling surface corresponding to each of the rolling element rolling surfaces, the upper portions of which are fitted into the recesses of the sliding table while maintaining a predetermined gap therebetween.
  • the rail is mounted on both front and rear end faces of the slide base, and on the inner surface, the load rolling surface of the slide base and each end of the no-load rail are connected to each other to form an endless track.
  • the way has a substantially V-shaped groove at both ends.
  • the rolling element rolling surface is formed on the upper and lower slopes of the groove, and a lip protruding into the recess is formed along the longitudinal direction in the lower part of the sleeve in the sliding engagement.
  • One of the rolling element rolling surfaces is formed at the lower end on the distal end side of the lip portion, and the other of the rolling element rolling surfaces is formed inside the upper part of the sleeve portion. .
  • a lip protruding into the recess of the finger slide is provided inside the lower part of the slide base, and the lip can be displaced by a downward load acting on the slide base. Therefore, when a heavy downward load is applied to the slide, the lip is displaced such that its free end is rotated upward by the reaction force from the rolling element located below. As a result, the distance between the contact points between the two rolling surfaces and the rolling element sandwiching the rolling element becomes shorter than before the load is applied, so that the amount of preload applied to the rolling element increases and the rolling resistance of the rolling element Increases, so that a large sliding resistance acts when the slide slides on the track base.
  • FIG. 1 is a cross-sectional view showing the first embodiment of the linear sliding bearing of the present invention
  • Fig. 2 is a side view showing the first embodiment of the linear sliding bearing of the present invention
  • Fig. 3 Is a plan view showing the first embodiment of the linear sliding bearing of the present invention
  • FIG. 4 is a perspective perspective view showing the first embodiment of the linear sliding bearing of the present invention
  • FIG. 6 is an explanatory view showing the operation of the linear sliding bearing of the present invention
  • FIG. 6 is a cross-sectional view showing a second embodiment of the linear sliding bearing of the present invention
  • FIG. FIG. 8 is a cross-sectional view showing a case where a roller is used as a rolling element in the linear sliding bearing according to the second embodiment.
  • Fig. 1 to Fig. 4 show the first embodiment of the bearing for linear sliding of the present invention.
  • the bearing B for linear sliding of the present embodiment has a horizontal section la and left and right sleeve sections lb hanging down from both ends thereof, has a concave portion on the lower surface side, and has a substantially inclined C-shaped cross section.
  • a track base 2 whose upper part is fitted into the recess of the slide table 1 while maintaining a predetermined gap therebetween; a pair of lids 3 attached to both front and rear end surfaces of the slide table 1;
  • the sliding table 1 is composed of a number of balls 4 that circulate in a ball endless track and apply a load between the sliding table 1 and the track table 2.
  • the ball 4 is a term including all of the upper loaded ball 4a, the lower loaded ball 4b, and the unloaded ball.
  • the slide table 1 has a concave portion whose lower side is opened on the inner surface side of the horizontal portion la and each sleeve portion lb.
  • Each sleeve lb has a lip (projection) lc protruding inward from a lower portion on the inner surface thereof along the longitudinal direction.
  • the side rolling element rolling groove 11 is formed.
  • An upper rolling element rolling groove 12 that is paired with the lower rolling element rolling groove 11 is formed inside the vicinity of the root of each sleeve lb.
  • the lower rolling element rolling groove 11 is located inside the upper rolling element rolling groove 12.
  • the slide table 1 is formed with a pair of upper and lower no-load ball holes 13 and 14 which form a relief ball trajectory corresponding to the pair of upper and lower rolling element rolling grooves 11 and 12.
  • a groove 21 having a substantially V-shaped cross section is formed on the left and right rain side surfaces of the way 2, and a pair of upper and lower rolling elements formed on the slide table 1 side on the inclined surface of the groove 21.
  • Rolling member rolling grooves 23, 24 corresponding to the rolling grooves 11, 12 are formed.
  • the lower rolling element rolling groove 23 is formed in a deep part of the groove 21, and the upper rolling element rolling groove 24 is formed in a shallow part of the groove 21.
  • the rolling surface of each of the rolling grooves 11, 12, 23, and 24 is formed of a single circular groove formed in a curved surface with a radius of curvature slightly larger than the ball radius.
  • the ball 4 has only one contact surface on which contact rolling occurs.
  • the contact line connecting the ball 4 and the contact point of the opposing rolling grooves 11, 23 or 12, 24 is set at an angle of approximately 45 ° with respect to the horizontal line.
  • a pair of ball retainers 6 and 6 are attached to the lower ends of both left and right sleeves lb of the slide 1.
  • the ball retainer 6 has an upper side 6a formed relatively thick, a lower side 6b formed thinner, and a tip end of the upper side 6a. Holds the upper load ball 4a, and the lower side 6b holds the lower load ball 4b.
  • each of the lids 3 is connected and connected between the rolling element rolling grooves 11, 12 of the slide 1 and each end of the no-load ball holes 13, 14.
  • a large number of balls 4 circulate in each of these endless tracks, and the rolling grooves 11, 12 of the sliding joint 1 and the rolling grooves 23, It rolls while applying a load between it and 24.
  • the way 2 is fixed to a base or the like by a fixing member 7 as shown in FIG.
  • the lip portion lc protruding inward is provided inside the concave portion of the sliding table 1, and the lower rolling element rolling groove 11 of the sliding table 1 and the raceway 11 are provided.
  • the rolling resistance of the lower load ball 4b can be freely adjusted by appropriately adjusting the shape and thickness of the lip portion lc of the slide table 1.
  • the magnitude of the rigidity of the bearing B in the axial direction of the way can be adjusted accordingly.
  • the bearing for linear sliding in the present embodiment is the inclination angle of the lower rolling element rolling groove 11 of the slide 1 and the lower rolling element rolling groove 23 of the track 2.
  • the angle of the contact line ⁇ 2 was set to approximately 60 ° with respect to the horizontal line.
  • the lip lc of the slide table 1 is slightly thinner than that of the first embodiment, and its rigidity is set to be slightly lower.
  • Other configurations are substantially the same as those of the linear sliding bearing of the first embodiment.
  • the displacement of the lip portion lc due to heavy load is different from that of the first embodiment due to the difference in the set angle of the contact line (60 °) and the shape of the lip portion lc. growing.
  • the sliding resistance when the sliding engagement slides on the way is changed according to the load applied to the sliding base. Therefore, by adjusting the sliding resistance, rigidity in the axial direction of the way can be imparted as needed.
  • a large preload is applied to the ball by displacement of the lip portion formed on the sliding table as required, and the ball is prevented from rolling, whereby the sliding table can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

A bearing for rectilinear sliding for rectilinearly guiding a machine tool or the like wherein a predetermined rigidity can be applied in the axial direction of a track base; substantially V-shaped grooves (21) are formed at opposite sides of the track base (2); rolling element transfer channels (23, 24) are formed at upper and lower inclined surface portions of this groove (21); lip portions (1c) projecting into recesses at the lower inner sides of sleeve portions (1b) of the track base (1) are formed in the longitudinal direction of the track base; a rolling element transfer channel (11) is formed at the lower portion of the forward end of this lip portion (1c); and a rolling element transfer channel (12) is formed in the upper inner side of the sleeve portion (1b).

Description

明 細 書  Specification
直線摺動用べァリ ング 技 術 分 野  Bearing technology for linear sliding
本発明は直線摺動用ベアリ ングに係り、 例えば、 NCマシン等 の工作機械や工業用ロボッ ト等のスライ ド部において、 摺動させ るべき可動体を直線的に案内する直線摺動用べァリ ングに関す る o 背 景 技 術  The present invention relates to a bearing for linear sliding, for example, a linear sliding bearing for linearly guiding a movable body to be slid in a sliding part such as a machine tool such as an NC machine or an industrial robot. O Background technology
例えば、 工作機械等を使用して被加工物を加工する場合、 切 肖 ϋ、 研削、 その他の加工の種類、 被加工物の材質、 加工条件等に よっても異なるが、 一般に、 工作機械側の工具と被加工物との間 には加工に伴う種々の方向の荷重が作用する。 そして、 この荷重 は工作機械側の工具及び被加工物にそれぞれ反力として作用する 力 工作機械側及ぴ被加工物側がそれぞれその加工の瞬間におい て完全に固定された関係にあれば理想的な加工を行う ことがで き、 その加工精度も飛躍的に向上することになる。  For example, when machining a workpiece using a machine tool, etc., it depends on the type of machining, grinding, and other machining, the material of the workpiece, machining conditions, etc. Loads in various directions are generated between the tool and the workpiece. This load is ideal as long as the machine tool side and the workpiece side are completely fixed at the moment of machining, respectively. Machining can be performed, and the machining accuracy will be dramatically improved.
ところで、 このような工作機械等による被加工物の加工を行う 場合、 工作機械側かあるいは被加工物側のいずれか一方を固定 し、 他方を移動させながら行うが、 この移動の機構としては通常 直線摺動用べァリ ングが使用されている。  By the way, when processing a workpiece by using such a machine tool or the like, the processing is performed while either the machine tool side or the workpiece side is fixed, and the other is moved. Bearings for linear sliding are used.
この目的で使用する直線摺動用べァリ ングとしては、 例えば、 水平部とその両側より下方に向けて垂下する一対の袖部とを有し て下面側に凹部を備え、 かつ、 上記各袖部にはその内面長手方向 に沿つて上下一対の負荷転走面を有すると共にこれら各負荷転走 面に対応した逃げボール軌道を有する断面'略倒 c形状の摺動台 と、 上部が上記摺動台の凹部内に互いに所定の隙間を維持して嵌 合すると共に上記各負荷転走面に相対応する転走溝を有する軌道 台と、 上記摺動台の前後雨端面に取付けられ、 内面側には摺動台 の負荷転走面と逃げボール軌道の各端部間を互いに連通連結して ボール無限軌道を形成する案内溝を備えた一対の蓋体と、 上記各 ボール無限軌道内を循環し、 摺動台の負荷転走面と軌道台の転走 溝との間で荷重を負荷する多数のボールとから構成され、 上記摺 動台に作用するラジアル方向、 逆ラジアル方向及び左右横方向の 四方向の荷重を負荷することができるようになつている。 また、 これら直線摺動用べァリングにおいては、 上記摺動台と軌道台と の間の隙間を調整する隙間調整手段を備え、 任意の予圧をべァリ ングに付与し又は付与された予圧を調整することが可能なものが 知られている(特公昭 61-34,934号および特公昭 61-48,009号の公報 等)。 Examples of the linear sliding bearing used for this purpose include, for example, a horizontal portion and a pair of sleeve portions hanging downward from both sides thereof, a concave portion provided on the lower surface side, and The part has a pair of upper and lower load rolling surfaces along the longitudinal direction of the inner surface, and has a relief ball trajectory corresponding to each of the load rolling surfaces. A track base having an upper part fitted in the recess of the slide with a predetermined gap therebetween and having a rolling groove corresponding to each of the load rolling surfaces; A pair of lids provided on the end face, and provided on the inner face side with a guide groove for communicating between the load rolling surface of the slide and each end of the relief ball track to form a ball endless track; Each ball circulates in the endless track and is composed of a number of balls that apply a load between the load rolling surface of the slide base and the rolling groove of the track base. The radial direction acting on the slide base, It is designed to be able to apply loads in four directions: reverse radial direction and horizontal direction. Further, these linear sliding bearings are provided with a gap adjusting means for adjusting a gap between the slide base and the track base, and an arbitrary preload is applied to the bearing or the applied preload is adjusted. It is known that it is possible to do this (JP-B-61-34,934 and JP-B-61-48,009).
従って、 従来の直線摺動用ベアリ ングは、 軌道合の軸方向と直 交する上記四方向に関しては、 上記隙間調整手段を用いた予圧の 付与または調整により剛性を高めることができ、 これによつてカロ ェに伴うビビリや振動を可及的に抑制して加工精度の向上を図る 工夫がなされている。  Therefore, in the conventional linear sliding bearing, the rigidity can be increased in the four directions orthogonal to the axial direction of the track by applying or adjusting the preload using the gap adjusting means. Deviations have been made to improve machining accuracy by minimizing chatter and vibration caused by caroe.
その反面、 従来の直線摺動用ベアリ ングは、 加工工具あるいは 被加工物の送りを行う送りネジ,ナツ ト装置ゃリニヤモータ装置等 の送り駆動系の負担の軽減に主眼をおき、 摺動台が僅かな摺動抵 抗で滑らかに軌道台上を移動するよう設計されているので、 軌道 台の軸方向に関しては極めて剛性が低く、 この方向の剛性は専ら 送り駆動系の剛性に頼るしかなかった。  On the other hand, conventional linear sliding bearings focus on reducing the load on the feed drive system such as feed screws for feeding machining tools or workpieces, and nut devices and linear motor devices. It was designed to move smoothly on the way with a smooth sliding resistance, so the rigidity of the way in the axial direction was extremely low, and the rigidity in this direction had to depend exclusively on the rigidity of the feed drive system.
上記送り駆動系の剛性は、 例えばそれが送りネジ.ナツ ト装置で ある場合には、 送りネジゃ送りナッ トそれ自体の剛性、 これら送 りネジゃ送りナツ トのサポー ト部の剛性、 送りネジに回転力を与 えるサ一ボモータの剛性等によって決定される。 しかし、 この送 り駆動系の剛性を高くすることについては、 送りネジゃ送りナツ トのサイズを大きく したり、 サーボモータの駆動力をアツプさせ る等の必要が生じ、 装置の大型化や送り駆動系のコス トアツプ等 の問題が派生して自ずとその限界がある。 The rigidity of the feed drive system is, for example, when it is a feed screw or a nut device, the feed screw 剛性 the rigidity of the feed nut itself. It is determined by the rigidity of the support part of the screw り feed nut, the rigidity of the servo motor that applies rotational force to the feed screw, and the like. However, in order to increase the rigidity of the feed drive system, it is necessary to increase the size of the feed screw and feed nut, and to increase the driving force of the servo motor. Problems such as drive-up costs are derived and naturally have their limitations.
しかるに、 近年の産業界においては、 種々の生産品においてま すますその精密化あるいは高精度化が要求されるようになり、 こ れら生産品を加工する工作機械等の機械装置についてもますます その加工精度の向上が要求されるようになっている。 このため、 種々の機械装置においてその加工精度の中心を担う直線摺動用べ ァリングについても、 これらの要請に応えるべく加工精度の向上 を図ることができるものの開癸が要請されている。  However, in recent years, in the industrial world, various products have been required to be more precise or more precise, and machine equipment such as machine tools for processing these products has been increasingly used. Improvements in processing accuracy have been required. For this reason, linear sliding bearings, which play a central role in machining accuracy in various types of mechanical devices, are required to have improved cutting accuracy in order to meet these demands.
従って、 本癸明の目的は、 単にラジアル方向、 逆ラジアル及び 左右横方向の四方向の剛性を有するだけでなく、 軌道台軸方向に ついても所定の剛性を付与することができる直線摺動用べァリ ン グを提供することにある。  Therefore, the purpose of the present invention is not only to have rigidity in the four directions of radial direction, reverse radial direction and lateral direction, but also to provide a predetermined rigidity in the axial direction of the track base. The purpose is to provide the negotiation.
また、 本発明の他の目的は、 軌道台軸方向の剛性を必要に応じ て付与し、 また、 その大きさを調整することができる直線摺動用 ベアリ ングを提供することにある。  Further, another object of the present invention is to provide a bearing for linear sliding, which can impart rigidity in the way of the way of the way as required and can adjust its size.
さらに、 本癸明の他の目的は、 工作機械等の機械装置に採用し て精度の高い加工を可能とする直線摺動用べァリ ングを提供する とにめる。 発 明 の 開 示  Further, another object of the present invention is to provide a bearing for linear sliding that can be employed in a machine device such as a machine tool to enable high-precision machining. Disclosure of the invention
上記目的を達成するために、 本発明の直線摺動用べァリ ング は、 水平部とその両側より下方に向けて垂下する一対の袖部とを 有して下面側に凹部を備え、 かつ、 上記各袖部にはその内面長手 方向に沿つて上下一対の転動体転走面を有すると共にこれら各転 動体転走面に対応した無負荷軌道を有する断面略倒 c形状の摺動 台と、 上部が上記摺動台の凹部内に互いに所定の隙間を維持して 嵌合すると共に上記各転動体転走面に相対応する転動体転走面を 有する軌道台と、 上記摺動台の前後両端面に取付けられ、 内面側 には摺動台の負荷転走面と無負荷軌道の各端部間を互いに連通連 結して無限軌道を形成する案内溝を備えた一対の蓋体と、 上記各 無限軌道内を循環し、 摺動台の転動体転走面と軌道台の転動体転 走面との間で荷重を負荷しながら転走する多数の転動体とからな る直線摺動用ベアリングにおいて、 前記軌道台は、 その両端部に 略 V字状の溝を有し、 該溝の上下斜面部に前記転動体転走面が形 成され、 前記摺動合の前記袖部には、 その下部内側に前記凹部内 に突出したリップ部が長手方向に沿って形成され、 該リップ部の 先端側下部に前記転動体転走面の一方が形成され、 前記袖部の上 部内側に前記転動体転走面の他方が形成されていることを特徴と するものである。 In order to achieve the above object, a linear sliding bearing according to the present invention includes a horizontal portion and a pair of sleeve portions that hang downward from both sides thereof. The sleeve has a pair of upper and lower rolling element rolling surfaces along the longitudinal direction of the inner surface of the sleeve, and a no-load track corresponding to each of these rolling element rolling surfaces. A sliding table having a substantially inverted c-shaped cross section and a rolling element rolling surface corresponding to each of the rolling element rolling surfaces, the upper portions of which are fitted into the recesses of the sliding table while maintaining a predetermined gap therebetween. The rail is mounted on both front and rear end faces of the slide base, and on the inner surface, the load rolling surface of the slide base and each end of the no-load rail are connected to each other to form an endless track. A pair of lids with guide grooves that circulate, and circulate in each of the above endless tracks, rolling while applying a load between the rolling element rolling surface of the slide and the rolling element rolling surface of the way. In the linear sliding bearing comprising a large number of rolling elements, the way has a substantially V-shaped groove at both ends. The rolling element rolling surface is formed on the upper and lower slopes of the groove, and a lip protruding into the recess is formed along the longitudinal direction in the lower part of the sleeve in the sliding engagement. One of the rolling element rolling surfaces is formed at the lower end on the distal end side of the lip portion, and the other of the rolling element rolling surfaces is formed inside the upper part of the sleeve portion. .
上記技術的手段によれば、 指動台の凹部内に向けて突出した リップ部を摺動台の下部内側に設け、 該リップ部を摺動台に作用 する下方への負荷によって変位可能としたので、 下方への重荷重 が摺動台に加わった場合に、 前記リップ部は下方に位置する転動 体からの反力によってその自由端が上方へ回転移動するように変 位する。 その結果、 転動体を挟む両転走面と転動体との接触点間 の距離が荷重を受ける前に比較して短くなるので、 転動体に加わ る予圧量が増加し、 転動体の転がり抵抗が増加して、 摺動台が軌 道台上を摺動する際に大きな摺動抵抗が作用するようになる。 図 面 の 簡 単 な 説 明 According to the above technical means, a lip protruding into the recess of the finger slide is provided inside the lower part of the slide base, and the lip can be displaced by a downward load acting on the slide base. Therefore, when a heavy downward load is applied to the slide, the lip is displaced such that its free end is rotated upward by the reaction force from the rolling element located below. As a result, the distance between the contact points between the two rolling surfaces and the rolling element sandwiching the rolling element becomes shorter than before the load is applied, so that the amount of preload applied to the rolling element increases and the rolling resistance of the rolling element Increases, so that a large sliding resistance acts when the slide slides on the track base. Brief explanation of drawings
Fig.lは本発明の直線摺動用べァリングの第 1実施例を示す断面 図、 Fig.2は本発明の直線摺動用べァリ ングの第 1実施例を示す側 面図、 Fig.3は本癸明の直線摺動用べァリングの第 1実施例を示す 平面図、 Fig.4は本発明の直線摺動用べァリ ングの第 1実施例を示 す斜視透視図、 Fig.5は本癸明の直線摺動用べァリングの作用を示 す説明図、 Fig.6は本発明の直線摺動用べァリングの第 2実施例を 示す断面図、 Fig.7は本癸明の第 1及び第 2実施例に係る直線摺動用 ベアリングにおいてその転動体としてローラを使用した場合につ いて示す断面図である。  Fig. 1 is a cross-sectional view showing the first embodiment of the linear sliding bearing of the present invention, Fig. 2 is a side view showing the first embodiment of the linear sliding bearing of the present invention, Fig. 3 Is a plan view showing the first embodiment of the linear sliding bearing of the present invention, FIG. 4 is a perspective perspective view showing the first embodiment of the linear sliding bearing of the present invention, and FIG. FIG. 6 is an explanatory view showing the operation of the linear sliding bearing of the present invention, FIG. 6 is a cross-sectional view showing a second embodiment of the linear sliding bearing of the present invention, and FIG. FIG. 8 is a cross-sectional view showing a case where a roller is used as a rolling element in the linear sliding bearing according to the second embodiment.
符号の説明  Explanation of reference numerals
1…摺動台、 la…水平部、 lb…袖部、 lc…リ ップ部、 2…軌道 台、 3…蓋体、 4…ボール、 4a…上方負荷ボール、 4b…下方負荷 ボール、 6…ボール保持器、 11,23…下側転動体転走溝、 12,24…上 側転動体転走溝、 13,14…無負荷ボール孔、 21…溝 発明を実施するための最良の形態 以下、 本癸明の直線摺動用べァリングを添付図面に示す実施例 に基づいて具体的に説明する。  1 ... slide table, la ... horizontal part, lb ... sleeve part, lc ... rip part, 2 ... track stand, 3 ... lid, 4 ... ball, 4a ... upper load ball, 4b ... lower load ball, 6 … Ball cage, 11,23… lower rolling element rolling groove, 12,24… upper rolling element rolling groove, 13,14… no-load ball hole, 21… groove Best mode for carrying out the invention Hereinafter, the bearing for linear sliding of the present invention will be specifically described based on the embodiment shown in the accompanying drawings.
Fig.l乃至 Fig.4は、 本癸明の直線摺動用べァリングの第 1実施例 を示している。 本実施例の直線摺動用ベアリ ング Bは、 水平部 la とその両端より垂下する左右袖部 lbとを有して下面側に凹部を備 えて断面略倒 C形状に形成される摺動台 1と、 上部が上記摺動台 1 の凹部内に互いに所定の隙間を維持して嵌合する軌道台 2と、 上 記摺動台 1の前後両端面に取付けられた一対の蓋体 3と、 上記摺動 台 1に形成されたボール無限軌道内を循環して摺動台 1と軌道台 2 との間で荷重を負荷する多数のボール 4とで構成されている。 こ こでボール 4は上方負荷ボール 4a、 下方負荷ボール 4b及び無負荷 ボールの全てを含む用語である。 Fig. 1 to Fig. 4 show the first embodiment of the bearing for linear sliding of the present invention. The bearing B for linear sliding of the present embodiment has a horizontal section la and left and right sleeve sections lb hanging down from both ends thereof, has a concave portion on the lower surface side, and has a substantially inclined C-shaped cross section. A track base 2 whose upper part is fitted into the recess of the slide table 1 while maintaining a predetermined gap therebetween; a pair of lids 3 attached to both front and rear end surfaces of the slide table 1; The sliding table 1 is composed of a number of balls 4 that circulate in a ball endless track and apply a load between the sliding table 1 and the track table 2. This Here, the ball 4 is a term including all of the upper loaded ball 4a, the lower loaded ball 4b, and the unloaded ball.
上記摺動台 1は、 前述したように水平部 la及び各袖部 lbの内面 側に下方が開口した凹部を有している。 そして、 各袖部 lbには、 その内面側下部より内方に突出したリ ップ部 (突出部) lcが長手方 向に沿って形成されており、 該リップ部 lcの先端側下部に下側転 動体転走溝 11が形成されている。 また、 各袖部 lbの根元近傍内側 には、 前記下側転動体転走溝 11と対をなす上側転動体転走溝 12が 形成されている。 前記下側転動体転走溝 11は、 上側転動体転走溝 12より内側に位置している。  As described above, the slide table 1 has a concave portion whose lower side is opened on the inner surface side of the horizontal portion la and each sleeve portion lb. Each sleeve lb has a lip (projection) lc protruding inward from a lower portion on the inner surface thereof along the longitudinal direction. The side rolling element rolling groove 11 is formed. An upper rolling element rolling groove 12 that is paired with the lower rolling element rolling groove 11 is formed inside the vicinity of the root of each sleeve lb. The lower rolling element rolling groove 11 is located inside the upper rolling element rolling groove 12.
さらに、 前記摺動台 1には、 上記上下一対の転動体転走溝 11,12 に対応した逃げボール軌道を構成する上下一対の無負荷ボール孔 13,14が形成されている。  Further, the slide table 1 is formed with a pair of upper and lower no-load ball holes 13 and 14 which form a relief ball trajectory corresponding to the pair of upper and lower rolling element rolling grooves 11 and 12.
一方、 軌道台 2の左右雨側面には、 断面略 V字状の溝 21が形成さ れており、 該溝 21の傾斜面に上記摺動台 1側に形成された上下一 対の転動体転走溝 11,12に相対応する転動体転走溝 23,24が形成さ れている。 下側転動体転走溝 23は溝 21の深い部分に形成され、 上 側転動体転走溝 24は溝 21の浅い部分に形成されている。 上記転走 溝 11,12,23,24の転走面は、 ボール半径よりもやや大きい曲率半径 で曲面状に形成されたサーキユラ一溝からなり、 各転走溝 11,12,23,24はボ一ル 4が接触転走する接触面を一面のみ有してい る。 そして、 ボール 4と相対向する転走溝 11,23又は 12,24の接触点 とを結ぶ接触線は、 水平線に対していずれもほぼ 45°の角度に設 定されている。  On the other hand, a groove 21 having a substantially V-shaped cross section is formed on the left and right rain side surfaces of the way 2, and a pair of upper and lower rolling elements formed on the slide table 1 side on the inclined surface of the groove 21. Rolling member rolling grooves 23, 24 corresponding to the rolling grooves 11, 12 are formed. The lower rolling element rolling groove 23 is formed in a deep part of the groove 21, and the upper rolling element rolling groove 24 is formed in a shallow part of the groove 21. The rolling surface of each of the rolling grooves 11, 12, 23, and 24 is formed of a single circular groove formed in a curved surface with a radius of curvature slightly larger than the ball radius. The ball 4 has only one contact surface on which contact rolling occurs. The contact line connecting the ball 4 and the contact point of the opposing rolling grooves 11, 23 or 12, 24 is set at an angle of approximately 45 ° with respect to the horizontal line.
また、 摺動台 1の左右両袖部 lb下端には一対のボール保持器 6,6 が取付けられている。 上記ボール保持器 6は、 上部側 6aが比較的 厚肉に形成され、 下部側 6bが薄肉に形成され、 上部側 6aの先端部 で上方負荷ボール 4aを保持し、 下部側 6bで下方負荷ボール 4bを保 持するようになつている。 Further, a pair of ball retainers 6 and 6 are attached to the lower ends of both left and right sleeves lb of the slide 1. The ball retainer 6 has an upper side 6a formed relatively thick, a lower side 6b formed thinner, and a tip end of the upper side 6a. Holds the upper load ball 4a, and the lower side 6b holds the lower load ball 4b.
さらに、 上記各蓋体 3の内面側には Fig.4に示されるように摺動 台 1の転動体転走溝 11,12と無負荷ボール孔 13,14の各端部間を連通 連結して無限軌道を形成する案内溝が形成されており、 上記多数 のボール 4はこれら各無限軌道内を循環し、 摺動合 1の転走溝 11,12と軌道台 2の転走溝 23,24との間で荷重を負荷しながら転走す るようになっている。  In addition, as shown in Fig. 4, the inner surface side of each of the lids 3 is connected and connected between the rolling element rolling grooves 11, 12 of the slide 1 and each end of the no-load ball holes 13, 14. A large number of balls 4 circulate in each of these endless tracks, and the rolling grooves 11, 12 of the sliding joint 1 and the rolling grooves 23, It rolls while applying a load between it and 24.
なお、 軌道台 2は Fig.lに示されるように固定部材 7によってベー ス等に固定されている。  The way 2 is fixed to a base or the like by a fixing member 7 as shown in FIG.
次に、 前述のように構成された直線摺動用べァリ ングの作用を Fig.5を参照して説明する。  Next, the operation of the linear sliding bearing configured as described above will be described with reference to FIG.
軽荷重が摺動台 1に付与された場合には、 袖部 lb及びリ ップ部 lcは、 ほとんど変形しないため、 軌道台 2上を摺動する摺動台 1の 摺動抵抗は負荷ボール 4の転がり抵抗のみとなり、 摺動台 1が僅か な摺動抵抗で軌道台 2上を摺動可能となる。  When a light load is applied to the slide 1, the sleeve lb and the lip lc hardly deform, so the sliding resistance of the slide 1 that slides on the way 2 is the load ball. Only the rolling resistance of 4 is obtained, and the slide 1 can slide on the track 2 with a small sliding resistance.
一方、 下方に作用する重荷重が摺動合 1に付与された場合に は、 この下方への負荷は上方負荷ボール 4aによつては受けられ ず、 下方負荷ボール 4bによって受けられ、 摺動台 1のリ ップ部 lc は、 下方負荷ボール 4bからの反力によつて Fig.5の実線位置から仮 想線 (二点鎖線)位置まで変位する。 これは摺動台 1の袖部 lbが剛体 と考えられるのに対し、 リ ップ部 lcは袖部 lbに固定された自由端 を有する片持梁と考えられるからである。 この場合、 リ ップ部 lc は Fig.5に示す仮想回転中心 0を中心として自由端 Efが時計方向に 回転し、 その結果、 リ ップ部 lcは^変位量)だけ上方へ変位する。 このリ ップ部 lcの変位 5によって、 下方負荷ボール 4bと転走溝 11,23との接点は、 Ρι→ΡΑへ、 P2→PBへそれぞれ移動し、 接触線 は P P2よ り PAPBに移行する。 このとき、 Fig.5の作図から明ら力 なように P1P2〉PAPBとなる。 よって、 重荷重を受けると、 下方 負荷ボール 4bの予圧量が増加し、 ベアリ ングの転がり抵抗が増加 して、 摺動台 1が軌道台 2上を摺動する際に大きな摺動抵抗が作用 するようになる。 On the other hand, when a heavy load acting downward is applied to the sliding joint 1, the downward load is not received by the upper load ball 4a, but is received by the lower load ball 4b, The lip part lc of 1 is displaced from the solid line position in Fig. 5 to the virtual line (two-dot chain line) by the reaction force from the lower load ball 4b. This is because the sleeve lb of the slide 1 is considered to be a rigid body, whereas the lip lc is considered to be a cantilever having a free end fixed to the sleeve lb. In this case, the free end E f of the lip part lc rotates clockwise around the virtual center of rotation 0 shown in Fig. 5, and as a result, the lip part lc is displaced upward by the amount of displacement). . The displacement 5 of the Clip portion lc, the contact point between the lower loaded ball 4b and rolling grooves 11 and 23 is to Ρι → Ρ Α, respectively move to P2 → PB, the contact line Shifts from P P2 to P A P B. At this time, P 1 P 2 > P A P B evidently from the drawing of Fig.5. Therefore, when a heavy load is applied, the preload of the lower load ball 4b increases, the rolling resistance of the bearing increases, and a large sliding resistance acts when the slide 1 slides on the way 2. I will be.
このように、 本実施例における直線摺動用べァリングにおいて は、 摺動台 1の凹部内側に内方に突出するリップ部 lcを設け、 摺 動台 1の下側転動体転走溝 11と軌道台 2の下側転動体転走溝 23との 間を転走する下方負荷ボール 4bに所定値以上の予圧を付与させる ことによって、 摺動台 1の摺動抵抗を増加させることが可能であ り、 この摺動抵抗を高めることによって直線摺動用べァリング B における摺動合軸方向の剛性強化を図ることが可能である。  As described above, in the bearing for linear sliding in the present embodiment, the lip portion lc protruding inward is provided inside the concave portion of the sliding table 1, and the lower rolling element rolling groove 11 of the sliding table 1 and the raceway 11 are provided. By applying a preload equal to or more than a predetermined value to the lower load ball 4b rolling between the lower rolling element rolling groove 23 of the table 2 and the sliding resistance of the slide table 1 can be increased. By increasing the sliding resistance, it is possible to enhance the rigidity of the linear sliding bearing B in the sliding joint axis direction.
また、 本実施例の直線摺動用ベアリ ング Bにおいては、 摺動台 1 のリップ部 lcの形状及び厚さを適宜調整することにより下方負荷 ボ一ル 4bの転がり抵抗を自在に調整可能なので、 これに応じてべ ァリング Bの軌道台軸方向の剛性の大きさを任意に調整可能であ る o  In addition, in the bearing B for linear sliding of this embodiment, the rolling resistance of the lower load ball 4b can be freely adjusted by appropriately adjusting the shape and thickness of the lip portion lc of the slide table 1. The magnitude of the rigidity of the bearing B in the axial direction of the way can be adjusted accordingly.o
次に、 本発明に係る直線摺動用べァリングの第 2実施例を Fig.6 を参照して説明する。  Next, a second embodiment of the bearing for linear sliding according to the present invention will be described with reference to FIG.
本実施例における直線摺動用べァリ ングは、 Fig.6に示すよう に、 摺動台 1の下側転動体転走溝 11及び軌道台 2の下側転動体転走 溝 23の傾斜角度を変更し、 接触線 ΡιΡ2の角度を水平線に対してほ ぼ 60°に設定している。 そして、 摺動台 1のリ ップ部 lcは、 第 1実 施例のものに比較してやや肉薄になっており、 その剛性はやや低 く設定されている。 それ以外の構成は第 1実施例の直線摺動用ベ ァリングと略同一である。 本実施例によれば、 重負荷によるリ ップ部 lcの変位量は、 接触 線の設定角度 (60°)及びリ ップ部 lcの形状の相違に起因し第 1実施 例に比較して大き くなる。 As shown in Fig. 6, the bearing for linear sliding in the present embodiment is the inclination angle of the lower rolling element rolling groove 11 of the slide 1 and the lower rolling element rolling groove 23 of the track 2. Was changed, and the angle of the contact line ΡιΡ 2 was set to approximately 60 ° with respect to the horizontal line. The lip lc of the slide table 1 is slightly thinner than that of the first embodiment, and its rigidity is set to be slightly lower. Other configurations are substantially the same as those of the linear sliding bearing of the first embodiment. According to the present embodiment, the displacement of the lip portion lc due to heavy load is different from that of the first embodiment due to the difference in the set angle of the contact line (60 °) and the shape of the lip portion lc. growing.
従って、 本実施例における直線摺動用ベアリ ング Bにおいて は、 下方負荷転走溝 11と軌道台 2の下方転走溝 23との間を転走す る下方負荷ボール 4bに更に大きな予圧を付与させることによつ て、 摺動台 1の摺動抵抗を増加させることが可能であり、 この摺 動抵抗を高める事によって直線摺動用べァリ ング Bにおける軌道 台軸方向の剛性強化を更に図ることが可能である。  Therefore, in the bearing B for linear sliding in the present embodiment, a larger preload is applied to the lower load ball 4b rolling between the lower load rolling groove 11 and the lower rolling groove 23 of the track base 2. As a result, it is possible to increase the sliding resistance of the slide base 1, and by increasing the sliding resistance, the rigidity of the linear sliding bearing B in the axial direction of the track base is further enhanced. It is possible.
尚、 第 1,第 2実施例における直線摺動用ベアリ ングでは、 その転 動体としてボールを使用したが、 Fig.7に示すように、 球面ローラ を転動体として使用しても同様の効果を得ることが可能である。 産業上の利用可能性  In the bearings for linear sliding in the first and second embodiments, balls were used as rolling elements. However, similar effects can be obtained by using spherical rollers as rolling elements as shown in Fig. 7. It is possible. Industrial applicability
以上説明してきたように本癸明に係る直線摺動用ベアリ ングに よれば、 摺動合が軌道台上を摺動する際の摺動抵抗を摺動台に作 用する負荷に応じて変更することが可能なので、 この摺動抵抗を 調整することにより必要に応じて軌道台軸方向の剛性を付与する ことが可能である。  As described above, according to the bearing for linear sliding according to the present invention, the sliding resistance when the sliding engagement slides on the way is changed according to the load applied to the sliding base. Therefore, by adjusting the sliding resistance, rigidity in the axial direction of the way can be imparted as needed.
また、 本発明の直線摺動用ベアリ ングによれば 必要によ り摺 動台に形成されたリ ップ部の変位によりボールに大きな予圧を与 え、 その転走を妨げることによって、 摺動台を軌道台上の一箇所 に継続的に固定可能であり、 ロック装置として作用させることが 可能である。  Further, according to the bearing for linear sliding of the present invention, a large preload is applied to the ball by displacement of the lip portion formed on the sliding table as required, and the ball is prevented from rolling, whereby the sliding table can be prevented. Can be continuously fixed to one location on the rail way, and can function as a lock device.

Claims

請 求 の 範 囲 The scope of the claims
(1) 水平部とその両側より下方に向けて垂下する一対の袖部とを 有して下面側に凹部を備え、 かつ、 上記各袖部にはその内面長手 方向に沿って上下一対の転動体転走面を有すると共にこれら各転 動体転走面に対応した無負荷軌道を有する断面略倒 C形状の摺動 台と、 上部が上記摺動合の凹部内に互いに所定の隙間を維持して 嵌合すると共に上記各転動体転走面に相対応す ¾転動体転走面を 有する軌道台と、 上記摺動台の前後雨端面に取付けられ、 内面側 には摺動台の負荷転走面と無負荷軌道の各端部間を互いに連通連 結して無限軌道を形成する案内溝を備えた一対の蓋体と、 上記各 無限軌道内を循環し、 摺動合の転動体転走面と軌道台の転動体転 走面との間で荷重を負荷しながら転走する多数の転動体とからな る直線摺動用ベアリングにおいて、 前記軌道台は、 その両端部に 略 V字状の溝を有し、 該溝の上下斜面部に前記転動体転走面が形 成され、 前記摺動台の前記袖部には、 その下部内側に前記凹部内 に突出したリップ部が長手方向に沿って形成され、 該リップ部の 先端側下部に前記転動体転走面の一方が形成され、 前記袖部の上 部内側に前記転動体転走面の他方が形成されていることを特徴と する直線摺動用べァリング。  (1) It has a horizontal portion and a pair of sleeve portions hanging downward from both sides thereof, and has a recess on the lower surface side, and each of the sleeve portions has a pair of upper and lower rolls along the longitudinal direction of the inner surface thereof. A slide table having a substantially inclined C-shaped cross section having a moving body rolling surface and a no-load orbit corresponding to each of the rolling body rolling surfaces;軌道 A raceway that has rolling element rolling surfaces that correspond to the above rolling element rolling surfaces and is attached to the front and rear rain end faces of the sliding table, and the inner surface of the sliding table A pair of lids provided with a guide groove that connects the running surface and each end of the no-load track with each other to form an endless track; A linear sliding bearing consisting of a number of rolling elements that roll while applying a load between the running surface and the rolling elements of the way In the bearing, the rail has a substantially V-shaped groove at both ends thereof, the rolling element rolling surface is formed on the upper and lower slopes of the groove, and the sleeve of the slide table has A lip portion protruding into the concave portion is formed inside the lower portion along the longitudinal direction, and one of the rolling element rolling surfaces is formed at a lower portion on the tip side of the lip portion, and inside the upper portion of the sleeve portion. A bearing for linear sliding, wherein the other of the rolling element rolling surfaces is formed.
(2) 前記転動体は、 ボール又は球面ローラであることを特徴とす る請求の範囲 (1)記載の直線摺動用べァリング。 - (2) The bearing for linear sliding according to claim (1), wherein the rolling element is a ball or a spherical roller. -
(3) 前記リップ部は前記摺動台に作用する下方への負荷によつ て、 その自由端が上方へ変位するように構成したことを特徴とす る請求の範囲 (1)記載の直線摺動用べァリング。 (3) The straight line according to (1), wherein the free end of the lip is displaced upward by a downward load acting on the slide base. Bearing for sliding.
PCT/JP1992/000626 1991-05-16 1992-05-14 Bearing for rectilinear sliding WO1992020932A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140906A JP2860363B2 (en) 1991-05-16 1991-05-16 Bearing for linear sliding

Publications (1)

Publication Number Publication Date
WO1992020932A1 true WO1992020932A1 (en) 1992-11-26

Family

ID=15279561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000626 WO1992020932A1 (en) 1991-05-16 1992-05-14 Bearing for rectilinear sliding

Country Status (2)

Country Link
JP (1) JP2860363B2 (en)
WO (1) WO1992020932A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106221A (en) * 1981-12-17 1983-06-24 Hiroshi Teramachi Bearing unit for linear sliding
JPS61116120A (en) * 1984-11-13 1986-06-03 Hiroshi Teramachi Rectilinear motion roller bearing
JPS6133296Y2 (en) * 1981-11-20 1986-09-29
JPS6228919U (en) * 1985-08-06 1987-02-21

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133296Y2 (en) * 1981-11-20 1986-09-29
JPS58106221A (en) * 1981-12-17 1983-06-24 Hiroshi Teramachi Bearing unit for linear sliding
JPS61116120A (en) * 1984-11-13 1986-06-03 Hiroshi Teramachi Rectilinear motion roller bearing
JPS6228919U (en) * 1985-08-06 1987-02-21

Also Published As

Publication number Publication date
JPH0587137A (en) 1993-04-06
JP2860363B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
KR900702246B1 (en) Linear sliding bearing
US5011300A (en) Linear sliding bearing
US11105366B2 (en) Long span lead screw assembly with anti-backlash nut and wear compensated load bearing element
JPS6211216B2 (en)
WO1990010159A1 (en) Bearing for straight slide and method of setting thereof
WO1990002270A1 (en) Straight sliding bearing and straight sliding table
JPH0225051B2 (en)
JPS6344968B2 (en)
JPH0649963Y2 (en) Table unit with integrated ball screw, linear guide and mounting base
WO1992020932A1 (en) Bearing for rectilinear sliding
WO1994023219A1 (en) Linear motion guide and method of assembling the same
JP2856964B2 (en) Bearing for linear sliding
JPH0331934B2 (en)
JP3618388B2 (en) Combined type rolling guide unit
JP2952137B2 (en) Rolling guide device
JPH0451687B2 (en)
JPS6224652B2 (en)
JP3219170B2 (en) Linear guide bearing
JP6550740B2 (en) Method of setting axial clearance with ball screw nut alone and method of manufacturing ball screw using the same
JP2575926B2 (en) Linear guide device
JPH02203012A (en) Slide bearing fitting table
JPH0242895Y2 (en)
JPS63196341A (en) Feeding guide mechanism
JP4241002B2 (en) Linear guide device
JPH0155937B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

122 Ep: pct application non-entry in european phase