WO1992003243A1 - Drill - Google Patents

Drill Download PDF

Info

Publication number
WO1992003243A1
WO1992003243A1 PCT/JP1991/001081 JP9101081W WO9203243A1 WO 1992003243 A1 WO1992003243 A1 WO 1992003243A1 JP 9101081 W JP9101081 W JP 9101081W WO 9203243 A1 WO9203243 A1 WO 9203243A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
cutting edge
cutting edges
cutting
chip
Prior art date
Application number
PCT/JP1991/001081
Other languages
French (fr)
Japanese (ja)
Inventor
Masao Kubota
Original Assignee
Masao Kubota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masao Kubota filed Critical Masao Kubota
Publication of WO1992003243A1 publication Critical patent/WO1992003243A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • B23B27/1625Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped with plate-like cutting inserts of special shape clamped by a clamping member acting almost perpendicularly on the chip-forming plane
    • B23B27/1629Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped with plate-like cutting inserts of special shape clamped by a clamping member acting almost perpendicularly on the chip-forming plane in which the clamping member breaks the chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/0423Irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/08Rake or top surfaces
    • B23B2200/086Rake or top surfaces with one or more grooves
    • B23B2200/088Rake or top surfaces with one or more grooves for clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/18Configuration of the drill point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/20Number of cutting edges
    • B23B2251/202Three cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/408Spiral grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/46Drills having a centre free from cutting edges or with recessed cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/48Chip breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/50Drilling tools comprising cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/004Adjustable elements

Definitions

  • the present invention relates to a drill for drilling, and particularly to a drill for drilling which is excellent in cutting performance and cutting precision and is applied to a wide range of industrial fields such as manufacturing of machinery and equipment, and civil engineering and construction.
  • a twist drill used as a drill for drilling has a chisel edge formed at the center of the tip surface.
  • various known singings have been made to improve the cutting performance of chisel edges, and these have contributed to the improvement of the cutting performance. Since the chisel edge, which has poor machinability, is formed at the center of the tip of the drill, the drill does not bite into inclined or irregular surfaces, and the cutting performance is not sufficiently improved.
  • a clamp drill in which a chip having a cutting edge is fixed to a chip seat of a drill body, for boring.
  • a chip and a chip are used.
  • the cap seat requires high manufacturing and assembly precision.
  • two chips are provided at the center and outer periphery of the drill tip surface, and correspond to the center and outer periphery of the hole to be drilled in the work, respectively.
  • the work part to be cut is cut with the cutting edges of both chips.
  • the cutting edge of the drill is generally asymmetrical with respect to the drill axis, and the cutting force applied to the drill is imbalanced with respect to the drill axis, especially at the beginning of drilling.
  • the drill tends to run out during drilling, and the cutting accuracy of the drill is reduced.
  • a gap that does not contribute to cutting occurs between the cutting edges of both chips in the radial direction of the drill, and accordingly, the cutting performance of the drill is reduced.
  • An object of the present invention is to provide a drill excellent in cutting performance and cutting accuracy.
  • a drill according to the present invention includes a drill extending from a corresponding one of a plurality of cutting edge vertices located at a radially intermediate portion of a drill tip surface toward a drill outer peripheral end.
  • a plurality of main cutting edges each extending radially outward, and a plurality of central cutting edges each extending radially inward from the corresponding one of the plurality of cutting edge vertices toward the drill axis. It has.
  • Each of the plurality of main cutting edges and the plurality of central cutting edges extends in the direction of the drill axis toward the apex side opposite to the cutting edge and obliquely with respect to the drill axis.
  • the plurality of cutting edge vertices are provided at the same distance from the drill axis in the drill direction and at equal angular intervals in the circumferential direction of the drill, and the drill vertices are mutually identical. It is provided at an axial position.
  • a plurality of main cutting edges diagonally extending from the plurality of cutting edge vertices to the outer peripheral edge of the drill
  • the conventional swivel drill which has a plurality of central cutting edges that extend diagonally from the top of one cutting edge to the drill axis, provides a chisel edge with poor machinability at the center of the drill tip surface. Drill cutting performance can be improved compared to drills.
  • each of the main cutting edges and the corresponding central cutting edge are connected to each other at the common cutting edge apex, the main cutting edge and the central cutting edge in the radial direction of the drill are arranged. A gap that does not contribute to the cutting does not occur between the drill and the drill, and the cutting action is performed in the entire region in the drill diameter direction from the drill center to the outer periphery of the drill. Therefore, drill cutting performance can be improved.
  • the plurality of cutting edges are provided concentrically and equiangularly with respect to the drill axis and at the same drill axis position with respect to the drill axis, so that the cutting edges of the drill are formed as a whole. Symmetrical about the axis. As a result, the cutting force applied to the drill during drilling balances with respect to the drill axis, suppressing core drift of the drill and improving drill cutting accuracy.
  • FIG. 1 is a plan view of a twist drill according to a first embodiment of the present invention, as viewed from a drill tip surface;
  • FIG. 2 is a partial front view of the drill of the first embodiment
  • FIG. 2a is a diagram showing an axial cross-sectional profile of a grindstone used for grinding the drill cutting edge of the first embodiment
  • FIG. 3 is a partial side view of the drill of the first embodiment
  • Fig. 4 is a partial front view showing a clamp drill according to a second embodiment of the present invention, in which a chip mounting surface is provided in parallel with a drill axis.
  • FIG. 5 is a partial sectional view showing the jib mechanism of the drill of the second embodiment, taken along line V--V in FIG.
  • FIG. 6 is a partial cross-sectional plan view of the drill of the second embodiment, as viewed from the tip of the drill.
  • FIG. 7 is a partial cross-sectional partial front view showing in detail the arrangement of two chips in the drill of the second embodiment
  • FIG. 8 is a partial cross-sectional partial side view showing a modification of the chip arrangement
  • FIG. 9 is a partial perspective view showing another modification of the chip placement
  • FIG. 10 is a partial cross-sectional partial side view showing a modification of the drill fixing mechanism of the drill of the second embodiment.
  • FIG. 11 is a partial cross-sectional partial side view showing a modification of the drill of the second embodiment in which the chip mounting surface is inclined with respect to the drill axis.
  • FIG. 12 is a plan view of a three-blade brazing straight drill according to a third embodiment of the present invention, as viewed from the front end face of the drill.
  • FIG. 13 is a third embodiment of the present invention. Front view showing the tread of the drill, and
  • FIG. 14 is a partial side view of the drill of the third embodiment.
  • the tip face of the twist drill has first and second main cutting edges 1 and 2 for cutting a work portion corresponding to an outer peripheral portion of a hole to be drilled in a work (not shown). 2 and first and second central cutting edges 3 and 4 for cutting a work portion corresponding to the center of the hole.
  • broken lines AE and BF represent the main cutting edges AC and DF of the conventional twisted drill
  • broken lines AB represent the chisel edge of the conventional drill.
  • the first main cutting edge 1 extends obliquely outward in the drill radial direction from the vertex E of the first cutting edge located at the intermediate portion in the drill radial direction to the outer peripheral end C of the drill, and extends outward in the drill radial direction. The more to the side, the more it recedes from the first cutting edge vertex E in the drill rotation direction (No.
  • the first main cutting edge 1 is drilled in the drill axis line (tool center line) 00 so that the outer side in the radial direction of the drill is retracted from the first cutting edge vertex E toward the drill. It extends obliquely about axis 00 (Fig. 2).
  • the first main cutting edge 1 is formed so that the outer peripheral cutting edge angle ⁇ is an acute angle so as to suppress the generation of burrs on the work surface.
  • the second main cutting edge 2 extends obliquely outward in the drill radius direction from the second cutting edge vertex F in the middle part of the drill to the drill outer end D. At the same time, it extends obliquely with respect to the drill axis 00 in the drill axis direction.
  • the first and second cutting edge vertices E and F are symmetrical to each other with respect to the drill axis 00, and the positions of the drill axes in the axial direction are relative to each other. They are identical, and when the drill is lowered vertically to the work surface, both cutting edge vertices come into contact with the work surface at the same time.
  • Reference numeral 11, 21 denotes the flank associated with each of the first and second main cutting edges 1, 2, and the symbol 0 denotes the half apex angle of each of the main cutting edges 1, 2.
  • the first center cutting edge 3 is drilled from the first cutting edge vertex E, which is common to the first main cutting edge 1 and the first center cutting edge 3, to the center point Q of the drill tip surface on the drill axis. It extends diagonally inward in the radial direction, and recedes from the center point Q of the drill tip surface in the drill rotation direction toward the outer side in the half-drill direction ( Figure 1).
  • the first central cutting edge 3 is set such that, in the drill axis direction, the inner side in the drill radius direction retreats from the first cutting edge apex E toward the inside.
  • the scooping surface 30 associated with the first central cutting edge 3 is determined by the central cutting edge 3 (EQ) and the drill axis 00, and the scooping angle of the first central cutting edge 3 is 0 °. .
  • the flank 31 of the first central cutting edge 3 is formed by cutting an extension of the flank 11 associated with the first main cutting edge 1.
  • the symbol ⁇ represents the clearance angle of the first central cutting edge 3 at a right angle.
  • the second center cutting edge 4 is continuous with the second main cutting edge 2 at the second cutting edge vertex F, and the center point of the drill tip surface from the second cutting edge vertex F It extends obliquely toward Q and continues to the first central cutting edge 3 at the center point Q.
  • Reference numerals 40 and 41 refer to the second central cutting edge 4.
  • a series of scooping surfaces and flank surfaces are shown respectively.
  • a part of the scooping surfaces 30 and 40 is removed within a range permitted by the strength of the cutting edge (the scooping surface 30 is indicated by a one-point line 301 in FIG. 2).
  • the positive scooping angle is given to at least a part of both scooping surfaces to improve the cutting ability of the center cutting edges 3 and 4.
  • the cutting edges apex E and F and the cutting edges in the vicinity thereof The edge may be rounded or chamfered to increase cutting edge strength.
  • the angle between each of the central cutting edges 3 and 4 and an imaginary line extending parallel to the drill axis 00 through cutting edge apex E or F (Fig. 2) is half of that of main cutting edges 1 and 2. It is set to a value approximately equal to the apex angle ⁇ so that the cutting resistance for the main cutting edge and the cutting resistance for the central cutting edge are balanced.
  • the angle may be determined by theoretical calculation and experiment in consideration of the scooping angle and cutting speed at each part of the drill, in order to further balance the cutting resistance.
  • the contour of the axial section is 90.
  • a scooping surface 30 and a flank 41 are simultaneously formed on a drill using a forming whetstone represented by a polygonal line 34 (indicated by a two-dot chain line in FIG. 2a) forming an angle of + ⁇ .
  • the scooping surface 40 and the flank 31 are simultaneously formed by using the above-mentioned forming whetstone.
  • the central cutting edge forming portion of the drill is lightly honed using a conical grindstone to prepare the cutting edges of the central cutting edges 3 and 4.
  • the drill when the drill is lowered onto the workpiece without rotating the drill, one of the first and second cutting edge vertices E and F of the drill is cut. Or both dig into the work surface.
  • the cutting edge region including the cutting edge vertices E and F is provided at the middle part in the radial direction of the drill tip surface where a considerable cutting speed and cutting force is generated, and is formed in a V-shaped longitudinal section. It has excellent machinability and good workability. For this reason, the center of the drill tip where no cutting force is generated comes into contact with the workpiece first, and a chisel edge with poor cutting properties is formed in that part, so that the workpiece is not eroded.
  • the drill is sent at a considerable feed speed immediately after the drill tip touches a click. be able to. Also, since the tip of the drill to the work is good in this way, even if the drill is lowered diagonally to the work surface, the drill tip can escape. Absent.
  • the radially inner side of the main cutting edges 1 and 2 and the radially outer side of the central cutting edges 3 and 4 begin to contribute to the cutting.
  • the drill is sent obliquely to the work surface, initially, the cutting edges 1 and 3 on the first cutting edge vertex E side and the cutting edges 2 and 4 on the second cutting edge vertex F side Exchange
  • the work surfaces are cut with each other, and an arc-shaped groove with a V-shaped cross section is formed on the work surface.
  • all of the cutting edges 1 to 4 always contribute to the cutting, leading to the formation of a V-shaped annular groove in the work surface of the workpiece.
  • cutting edges 1 to 4 contribute to the cutting from the beginning, and an annular groove is formed in the work.
  • the drill of this embodiment has a feature that the axial length of the lip portion is shorter than that of the conventional drill, and the drill is fed from the beginning when the drill tip bites into the work. Combined with the above-mentioned feature of being able to increase the speed, substantial drilling is started within a short time after the drill drills into the work.
  • Drilling is excellent due to the cutting edges 1 to 4 that include the central cutting edges 3 and 4 that are more machinable than conventional chisel edges and are formed continuously over the entire drill diameter. It is performed efficiently with the cutting ability. Moreover, since the cutting edges 1 and 3 on the first cutting edge vertex E side and the cutting edges 2 and 4 on the second cutting edge vertex F side are formed symmetrically with respect to the drill axis 00, the cutting edge 1 , 3 and the cutting forces received by the cutting edges 2 and 4 are well balanced, and the drilling edge is stabilized and the thrust acting on the drill in the radial direction of the drill is added. G Is small.
  • the centering of the drill during drilling is suppressed, the margin for hole enlargement is small, and drilling accuracy and hole straightness are excellent. Also, cutting power can be reduced. Furthermore, the chips by the cutting edges 1 to 4 are separated from each other, so that the chips flow smoothly and the chip processing is easy.
  • the clamp drill is composed of first and second throw-away chips 100 and 200 having the same shape and dimensions as each other, and a drill body having a tip seat surface formed at a tip. 300 and two tapered jib mechanisms for compensating manufacturing errors of inserts and tip seats and adjusting machining holes (the jib mechanism corresponding to the first chip is denoted by reference numeral 90). And
  • the first chip 100 is formed in a substantially hexagonal thick plate shape as viewed from the front.
  • the main cutting edge 51 to 53 and the central cutting edge 61 to 6 respectively corresponding to the first main cutting edge 1 and the first central cutting edge 3 of the first embodiment are provided on the outer peripheral end face of the chip 100. 3 is formed.
  • the first chip 100 has its inner side surface and inner end surface abutting against the chip mounting bottom surface 101 and the inclined chip mounting surface 03 of the drill body 300, respectively.
  • the bottom surface thereof is in contact with the upper surface of the jib 91 of the jib mechanism 90 which will be described in detail later, and is detachably fixed to the drill body 300 by the bolt 13. I have.
  • the tip mounting bottom surface 101 of the drill body 300 side extends parallel to a plane passing through the drill axis line 00. --Yes.
  • the upper surface of the jib 91 cooperates with the chip seat surface of the drill body to constitute a chip seat on which the first chip 100 is placed.
  • the bolt 13 is inserted through a hole formed through the chip 100 and extending in the chip thickness direction, and is screwed into a screw hole formed in the drill body 300. I have.
  • the protector 12 fixed to the drill body 300 together with the chip 100 is arranged on the outer side of the chip to prevent chip damage due to chips. I have.
  • the tip 100 When the tip 100 is mounted in the position shown in Fig. 4, the main cutting edge 51 and the central cutting edge 61 are arranged at the drilling positions, and the other cutting edges 52, 53, 62 and 6 3 is placed in the standby position. That is, the chip 100 is used for drilling any one of the three sets of cutting edges 51, 61 or 52, 62 or 53, 63, and the remaining two sets. Cutting edges are not damaged during drilling.
  • the inner end face of the first chip 100 (the flank 53 0 associated with the main cutting edge 52) is inclined by the inclined tip of the drill body 300. It is in contact with the seat surface 0 3.
  • the main cutting edge 51 extends obliquely from the cutting edge vertex L to the drill outer peripheral end U
  • the central cutting edge 61 extends from the cutting edge vertex L to the drill axis 0 0. It extends obliquely to the point W in Fig. 4 via the vicinity of the upper center point P, and forms an angle ⁇ (preferably 70 to 75) with the drill axis 0 0.
  • the axial clearance angle ⁇ of the flank associated with the central cutting edge 62 following the margin 62 at the drill outer edge U is preferably --
  • the middle cutting edge 6 1 forms an angle (0 + ⁇ + 6 °) ° with the main cutting edge 51.
  • the symbols ⁇ , ⁇ and V, W respectively indicate the point on the standby cutting edge, which constitutes the cutting edge apex and the outer peripheral edge of the drill, when the standby cutting edge is arranged at the drilling position.
  • the symbols G, ⁇ , and ⁇ represent the intersections between the extension lines of the main cutting edges 51 to 53.
  • the symbols ⁇ and ⁇ are virtual intersections between the central cutting edge 61 and the drill axis 00 in a state where the chips 100 and 200 interfere with each other. And the virtual intersection between the main cutting edge 53 and the drill axis.
  • the second chip 200 has the same shape and dimensions as the first chip 100, and accordingly, the second chip 200 and the drill body 3 associated therewith.
  • the description of the configuration of 0 0 is omitted.
  • the first and second chips are provided on opposite surfaces of both chips. They are separated from each other by a very small distance ⁇ .
  • the micro-distance ⁇ 5 is set to a small value so that the unprocessed part of the work due to the micro-gap between both chips is easily broken during the drilling.
  • symbols t and 7t indicate the clearance angle of the blade tip and the scoop angle of the blade tip, respectively.
  • each force facing the chip faces downward with a slight degree of effect ⁇ of about 1 ° or less with respect to the force S drill axis 00.
  • the first to become --The second chips 100 and 200 may be arranged, thereby preventing interference between the chips.
  • the chips are arranged so that the chip interference portion PWT sinks a small amount to P'W'T 'to avoid chip interference.
  • the clamp drill of the present embodiment has a jib mechanism 90 associated with the first chip 100.
  • the jib mechanism 90 has a taper jib 91 interposed between the jib seat surface 04 of the drill body 300 and the bottom surface of the first chip 100.
  • Reference numeral 4 extends perpendicularly to the chip mounting bottom surface 101 of the drill body and substantially perpendicular to the inclined chip mounting surface 03.
  • a screw rod 92 screwed into the screw hole formed through the jib 91 extends parallel to the jib seat surface 04, and its tip is formed near the drill axis at the tip of the drill body. It is screwed into the screw hole.
  • Nuts 93 and 94 screwed into a screw rod 92 are arranged outside the outer end face and inside the inner end face of the jib 91, and the jib 91 is used with both nuts. It can be fixed to any jib moving position along the screw rod 92.
  • the jib mechanism (not shown) for fixing the second chip 200 to the drill body 300 and the configuration of the related drill body are the same as those of the jib mechanism 91 described above. Is omitted.
  • the jib mechanism is not an essential element. When the jib mechanism is removed, the three main cutting edges of the first and second chips 100 and 200 and the scooping surface of each of the three center cutting edges 61 to 63 3 Tip mounting of flank and drill body 300 --Process the surface with high accuracy. '
  • FIG. 10 shows a modification of the chip fixing mechanism in the clamp drill of the second embodiment.
  • the drill body 3 in the modification of FIG. The clamp 14 holding the chip 100 between it and 0 0 is tightened to the drill body side with a screw 15 so that the chip 100 is clamped. .
  • chip 200 is clamped.
  • the presser foot 14 are suitably determined in consideration of the fact that the presser foot functions as a protector and a chip breaker.
  • the drill of the modified example shown in FIG. The point where the tip mounting surface 101 is inclined with respect to the drill axis 0 0 as compared with the second embodiment in which the mounting base 101 extends parallel to the plane passing through the drill axis 00.
  • This variant has the advantage of being practical.
  • Each of the chips 100 and 200 is disposed so as to be downward with respect to the drill axis 0 0 by an angle equal to the blade tip scooping angle 7 t, and the scooping surface 102 is a chip. Extending parallel to the mounting surface 101.
  • a portion of the chip protruding beyond the drill axis line 00 toward the other chip side and a similar protruding portion of the other chip do not interfere with each other.
  • FIG. 11 shows still another modification of the second embodiment.
  • This modified example is similar to the modified example of FIG. 10 in that the tip mounting surface 101 is inclined with respect to the drill axis line 0 0, while the tip has a clearance angle at the tip of the blade. It differs from the one in Fig. 10 in that it is arranged upward with respect to the drill axis by an angle equal to at and that the flank of the main cutting edge is provided perpendicular to the chip mounting surface 101.
  • the clamp drill of this modified example in which the flank is provided perpendicular to the chip mounting surface, has an advantage that accuracy can be easily obtained.
  • the flank associated with the main cutting edge is -It is necessary to provide an appropriate clearance angle to the cutting edge so as not to interfere with the cutting edge.
  • the three-blade drill of the present embodiment has three tips attached to the drill body.
  • the first chip has a main cutting edge 71, a central cutting edge 81 reaching the drill axis 00, and an outer cutting edge 7110. Are formed, and the scooping surface associated with the outer peripheral cutting edge 710 is formed so as to form an acute angle with the outer periphery of the drill.
  • the second chip has a main cutting edge 72, a central cutting edge 82 that does not reach the drill axis 0 0, and an outer peripheral cutting edge similar to the outer peripheral cutting edge 7 10 of the first chip. 7 20 are formed.
  • the third chip has a main cutting edge 71, a central cutting edge 82, and an outer peripheral cutting edge 730 similar to the cutting edges 71, 81, 71 of the second chip. ing. As shown in Fig. 14, each chip is fixed downward to the drill axis 00 by an angle equal to the blade tip scooping angle ⁇ t, and the scooping surface is the chip mounting surface. It extends in parallel with.
  • the center of the workpiece is cut with a sharp cutting edge where the cutting edges are equidistant from the tool center axis.
  • the drill is easy to cut, and the cutting power and thrust are low. small.
  • the cutting edge at the center of the tool which has no cutting ability, has a poor cutting edge on the work, and the feed may need to be slowed down.
  • the drill of the present invention since the drill of the present invention has a reliable cutting ability at the tool tip, it has good bite to the work, and can drill holes with high efficiency without adjusting the feed.
  • Re-grinding of the central cutting edge which has a low cutting speed and low wear, may be performed every several re-grinding of the main cutting edge. Therefore, the need for drill re-polishing is eliminated.
  • the clamp drill of the present invention has no cutting edge missing part, and the entire drill tip exerts a cutting action. Therefore, the clamp drill of the present invention has a high cutting efficiency and can perform drilling in a short time.
  • the blade angle ⁇ at the outer periphery of the drill is made acute, so that burrs on the workpiece surface can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

A drill for forming a hole, being excellent in cutting performance and cutting accuracy, comprises: main cutting edges (1, 2) extending radially and outwardly of the drill from vertices (E, F) of cutting edges which are disposed symmetrically with each other with respect to the axis (00) of the drill in the radially intermediate portion of the forward end face of the drill toward the outer peripheral ends (C, D) of the drill; and central cutting edges (3, 4) extending radially and inwardly of the drill from the vertices (E, F) of the cutting edges toward a center point (Q) of the forward end face of the drill on the axis (00) of the drill. The main cutting edges (1, 2) and the central cutting edges (3, 4) extend to the sides opposite to the vertices of the cutting edges in the axial direction of the drill and obliquely with respect to the axis of the drill. During the formation of the hole, eccentricity of the drill is not caused, the main cutting edges and the central cutting edges replacing the conventional chisel edges can cut the portions of a work to be cut, which correspond to the outer peripheral portion and the central portion of the hole, highly efficiently and accurately.

Description

一 一 明 細 書  Ichiichi Akira
ド リ ル  Drill
技 術 分 野  Technical field
本発明は、 穴加工用 ド リ ルに関し、 特に、 切削性能及 び切削精度に優れ、 機械器具類の製作, 土木建築物の施 ェ等の広範な産業分野に適用される穴加工用 ド リ ルに関 する。  The present invention relates to a drill for drilling, and particularly to a drill for drilling which is excellent in cutting performance and cutting precision and is applied to a wide range of industrial fields such as manufacturing of machinery and equipment, and civil engineering and construction. About
背 景 技 術  Background technology
穴加工用 ド リ ルと して用いられる ッイ ス ト ド リ ルは、 一般には、 先端面中央部にチゼルエ ッ ジが形成されてい る。 この種の ツイ ス ト ド リ ルにおいて、 チゼルエ ッ ジの 切削性能向上を企図して、 公知の各種のシ ンニ ン グが行 われており、 切削性の改善に寄与しているが、 いずれも 切削性に劣るチゼルェ ッ ジを ド リ ル先端の中心部に形成 しているので、 傾斜面や不規則面への ド リ ルの食付きが 悪く、 切削性能向上も充分ではない。  Generally, a twist drill used as a drill for drilling has a chisel edge formed at the center of the tip surface. In this type of twist drill, various known singings have been made to improve the cutting performance of chisel edges, and these have contributed to the improvement of the cutting performance. Since the chisel edge, which has poor machinability, is formed at the center of the tip of the drill, the drill does not bite into inclined or irregular surfaces, and the cutting performance is not sufficiently improved.
又、 切れ刃を形成したチ ッ プを ド リ ル本体のチ ップ座 に固定してな る ク ラ ンプ ド リ ルを、 穴加工に用いること も公知で、 一般に、 チ ッ プ及びチ ッ プ座には高い製造, 組立精度が要求される。 斯かる要件を緩和すべく 、 従来 例えば、 2 つのチ ッ プを ド リ ル先端面の中心部及び外周 部に設け、 ワ ーク に穿設すべき穴の中心部及び外周部の 夫々 に対応する ワー ク加工部分を両チ ッ ブの切れ刃で切 削するよ う に している。  It is also known to use a clamp drill, in which a chip having a cutting edge is fixed to a chip seat of a drill body, for boring. Generally, a chip and a chip are used. The cap seat requires high manufacturing and assembly precision. Conventionally, to ease such requirements, for example, two chips are provided at the center and outer periphery of the drill tip surface, and correspond to the center and outer periphery of the hole to be drilled in the work, respectively. The work part to be cut is cut with the cutting edges of both chips.
しかしながら、 斯か-る構成のク ラ ンプ ド リ ルによれば、 ド リ ルの切れ刃は全体と して ド リ ル軸線に関して非対称 になり、 ド リ ルに加わる切削抵抗が特に穴明けの初期に おいて ド リ ル軸線に関してア ンバラ ン ス にな る。 結果と して、 ド リ ル加工中に ド リ ルに芯ブレが生じ易く 、 ドリ ルの切削精度が低下する。 又、 ド リ ル半径方向において 両チ ッ プの切れ刃間に切削に寄与しない間隙が生じ、 従 つて、 ド リ ルの切削性能が低下する。 However, according to the clamp drill having such a configuration, The cutting edge of the drill is generally asymmetrical with respect to the drill axis, and the cutting force applied to the drill is imbalanced with respect to the drill axis, especially at the beginning of drilling. As a result, the drill tends to run out during drilling, and the cutting accuracy of the drill is reduced. In addition, a gap that does not contribute to cutting occurs between the cutting edges of both chips in the radial direction of the drill, and accordingly, the cutting performance of the drill is reduced.
発 明 の 開 示  Disclosure of the invention
本発明は、 切削性能及び切削精度に優れた ド リ ルを提 供する こ とを目的とする。  An object of the present invention is to provide a drill excellent in cutting performance and cutting accuracy.
上記目的を達成するため、 本発明の ド リ ルは、 ド リ ル 先端面の半径方向中間部に位置する複数の切れ刃頂点の 対応する一つから ド リ ル外周端に向かつて ド リ ル半径方 向外方に各々延びる複数の主切れ刃と、 複数の切れ刃頂 点の対応する一つから ド リ ル軸線に向かって ド リ ル半径 方向内方に各々延びる複数の中央切れ刃とを備えている。 複数の主切れ刃及び複数の中央切れ刃の夫々は、 ドリル 軸線方向において反切れ刃頂点側にかつ ド リ ル軸線に関 して斜めに延びる。  In order to achieve the above object, a drill according to the present invention includes a drill extending from a corresponding one of a plurality of cutting edge vertices located at a radially intermediate portion of a drill tip surface toward a drill outer peripheral end. A plurality of main cutting edges each extending radially outward, and a plurality of central cutting edges each extending radially inward from the corresponding one of the plurality of cutting edge vertices toward the drill axis. It has. Each of the plurality of main cutting edges and the plurality of central cutting edges extends in the direction of the drill axis toward the apex side opposite to the cutting edge and obliquely with respect to the drill axis.
好ま し く は、 複数の切れ刃頂点は、 ド リ ル半径方向に おいて ド リ ル軸線から互いに同一距離にかつ ド リ ル周方 向において等角度間隔で設けられ、 又、 互いに同一ドリ ル軸線方向位置に設けられる。  Preferably, the plurality of cutting edge vertices are provided at the same distance from the drill axis in the drill direction and at equal angular intervals in the circumferential direction of the drill, and the drill vertices are mutually identical. It is provided at an axial position.
上述のよ う に、 本発明によれば、 複数の切れ刃頂点か ら ド リ ル外周端へ斜め-に延びる複数の主切れ刃と、 複数 一 の切れ刃頂点から ド リ ル軸線へ斜めに延びる複数の中央 切れ刃を設けたので、 切削性の悪いチ ゼルエ ツ ジを ドリ ル先端面中央部に設けた従来のッ イ ス ト ド リ ルに比べて、 ド リ ル切削性能を向上できる。 又、 主切れ刃の各々とこ れに対応する一つの中央切れ刃とが両者に共通の切れ刃 頂点において互いに連続するよ う に したので、 ド リ ル半 径方向において主切れ刃と中央切れ刃との間に切削に寄 与しない間隙が生じる こ とがな く、 ド リ ル中心か ら ドリ ル外周にわたる ド リ ル直径方向領域の全体において切削 作用が奏される。 従って、 ド リ ルの切削性能を向上でき る 0 As described above, according to the present invention, a plurality of main cutting edges diagonally extending from the plurality of cutting edge vertices to the outer peripheral edge of the drill, The conventional swivel drill, which has a plurality of central cutting edges that extend diagonally from the top of one cutting edge to the drill axis, provides a chisel edge with poor machinability at the center of the drill tip surface. Drill cutting performance can be improved compared to drills. In addition, since each of the main cutting edges and the corresponding central cutting edge are connected to each other at the common cutting edge apex, the main cutting edge and the central cutting edge in the radial direction of the drill are arranged. A gap that does not contribute to the cutting does not occur between the drill and the drill, and the cutting action is performed in the entire region in the drill diameter direction from the drill center to the outer periphery of the drill. Therefore, drill cutting performance can be improved.
好ま し く は、 複数の切れ刃頂点を ド リ ル軸線に関して 同心状かつ等角度間隔でかつ互いに同一 ド リ ル軸線方向 位置に設けたので、 ド リ ルの切れ刃は全体と して ド リ ル 軸線に関して対称になる。 結果と して、 ド リ ル加工中に ド リ ルに加わる切削抵抗が ド リ ル軸線に関してバ ラ ンス し、 ド リ ルの芯ブレが抑制されて ド リ ルの切削精度が向 上する。  Preferably, the plurality of cutting edges are provided concentrically and equiangularly with respect to the drill axis and at the same drill axis position with respect to the drill axis, so that the cutting edges of the drill are formed as a whole. Symmetrical about the axis. As a result, the cutting force applied to the drill during drilling balances with respect to the drill axis, suppressing core drift of the drill and improving drill cutting accuracy.
図 面 の 簡 単 な 説 明  Brief explanation of drawings
第 1 図は、 本発明の第 1 実施例による ツ イ ス ト ド リ ル の、 ド リ ル先端面から見た平面図、  FIG. 1 is a plan view of a twist drill according to a first embodiment of the present invention, as viewed from a drill tip surface;
第 2 図は第 1 実施例の ド リ ルの部分正面図、  FIG. 2 is a partial front view of the drill of the first embodiment,
第 2 a 図は、 第 1 実施例の ド リ ル切れ刃の研削に用い る砥石の軸断面輪郭を示す図、  FIG. 2a is a diagram showing an axial cross-sectional profile of a grindstone used for grinding the drill cutting edge of the first embodiment,
第 3 図は、 第 1 実施例の ド リ ルの部分側面図、 - - 第 4図は、 チ ッ プ取付け面を ド リ ル軸線に平行に設け た本発明の第 2実施例によるク ラ ンプ ド リ ルを示す部分 正面図、 FIG. 3 is a partial side view of the drill of the first embodiment, --Fig. 4 is a partial front view showing a clamp drill according to a second embodiment of the present invention, in which a chip mounting surface is provided in parallel with a drill axis.
第 5 図は、 第 2実施例の ド リ ルのジブ機構を第 4図の V — V線に沿って示す部分断面図、  FIG. 5 is a partial sectional view showing the jib mechanism of the drill of the second embodiment, taken along line V--V in FIG.
第 6 図は、 第 2実施例の ド リ ルの、 ド リ ル先端面から 見た一部断面平面図、  FIG. 6 is a partial cross-sectional plan view of the drill of the second embodiment, as viewed from the tip of the drill.
第 7 図は、 第 2実施例の ド リ ルにおける 2 つのチップ の配置を詳細に示す一部断面部分正面図、  FIG. 7 is a partial cross-sectional partial front view showing in detail the arrangement of two chips in the drill of the second embodiment,
第 8図は、 チ ッ プ配置の変形例を示す一部断面部分側 面図、  FIG. 8 is a partial cross-sectional partial side view showing a modification of the chip arrangement,
第 9 図はチ ッ プ記置の別の変形例を示す部分斜視図、 第 1 0 図は、 第 2実施例の ド リ ルのチ ップ固定機構の 変形例を示す一部断面部分側面図、  FIG. 9 is a partial perspective view showing another modification of the chip placement, and FIG. 10 is a partial cross-sectional partial side view showing a modification of the drill fixing mechanism of the drill of the second embodiment. Figure,
第 1 1 図は、 第 2実施例の ド リ ルの、 チ ッ プ取付け面 を ド リ ル軸線に対して傾斜させた変形例を示す一部断面 部分側面図、  FIG. 11 is a partial cross-sectional partial side view showing a modification of the drill of the second embodiment in which the chip mounting surface is inclined with respect to the drill axis.
第 1 2 図は、 本発明の第 3実施例による三枚刃ろう付 けス ト レー ト ド リ ルの、 ド リ ル先端面から見た平面図、 第 1 3 図は、 第 3実施例の ド リ ルのテ ツ ブを示す部分 正面図、 及び  FIG. 12 is a plan view of a three-blade brazing straight drill according to a third embodiment of the present invention, as viewed from the front end face of the drill. FIG. 13 is a third embodiment of the present invention. Front view showing the tread of the drill, and
第 1 4図は第 3実施例の ド リ ルの部分側面図である。  FIG. 14 is a partial side view of the drill of the third embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図〜第 3 図を参照して、 本発明の第 1実施例のッ ィ ス ト ド リ ルを説明ずる。 ツイ ス ト ド リ ルの先端面には、 図示しないワ ー クに穿 設すべき穴の外周部に対応する ワ ー ク加工部分を切削す るための第 1 及び第 2主切れ刃 1, 2 と、 穴の中央部に 対応する ワー ク加工部分を切削するための第 1 及び第 2 中央切れ刃 3, 4 とが形成されている。 なお、 第 1 図及 び第 2 図中、 破線 A E及び B F は従来のツイ ス ト ド リ ル の主切れ刃 A C , D Fの一部を表し、 破線 A B は従来の ド リ ルのチゼルエ ツ ジを表す。 With reference to FIGS. 1 to 3, the drill drill of the first embodiment of the present invention will be described. The tip face of the twist drill has first and second main cutting edges 1 and 2 for cutting a work portion corresponding to an outer peripheral portion of a hole to be drilled in a work (not shown). 2 and first and second central cutting edges 3 and 4 for cutting a work portion corresponding to the center of the hole. In Figs. 1 and 2, broken lines AE and BF represent the main cutting edges AC and DF of the conventional twisted drill, and broken lines AB represent the chisel edge of the conventional drill. Represents
第 1 主切れ刃 1 は、 ド リ ル半径方向中間部に位置する 第 1 切れ刃頂点 Eから ド リ ル外周端 Cへ ド リ ル半径方向 外方に斜めに延び、 ド リ ル半径方向外方側ほど ド リル回 転方向において第 1 切れ刃頂点 Eから後退している (第 The first main cutting edge 1 extends obliquely outward in the drill radial direction from the vertex E of the first cutting edge located at the intermediate portion in the drill radial direction to the outer peripheral end C of the drill, and extends outward in the drill radial direction. The more to the side, the more it recedes from the first cutting edge vertex E in the drill rotation direction (No.
1 図) 。 また、 第 1 主切れ刃 1 は、 ド リ ル軸線 (工具中 心線) 0 0方向において、 ド リ ル半径方向外方側ほど第 1 切れ刃頂点 Eから後退するよ う に、 ド リ ル軸線 0 0 に 関して斜めに延びている (第 2 図) 。 好ま し く は、 第 1 主切れ刃 1 はその外周刃物角 ωが鋭角になるよ う に形成 され、 ワー ク加工面でのバリ の発生を抑制するよ うにし ている。 1 Figure) Also, the first main cutting edge 1 is drilled in the drill axis line (tool center line) 00 so that the outer side in the radial direction of the drill is retracted from the first cutting edge vertex E toward the drill. It extends obliquely about axis 00 (Fig. 2). Preferably, the first main cutting edge 1 is formed so that the outer peripheral cutting edge angle ω is an acute angle so as to suppress the generation of burrs on the work surface.
第 1 主切れ刃 1 と同様、 第 2 主切れ刃 2 は、 ド リル半 怪方向中間部の第 2切れ刃頂点 Fから ド リ ル外周端 Dへ ド リ ル半径方向外方に斜めに延びる と共に、 ド リ ル軸線 方向において ド リ ル軸線 0 0 に関して斜めに延びている。 第 1 及び第 2 切れ刃頂点 E, F は、 ド リ ル軸線 0 0 に関 して互いに対称であり-、 又、 ド リ ル軸線方向位置が互い 一 一 に同一で、 ド リ ルをワ ー ク加工面に垂直に下ろ したとき に両切れ刃頂点がワ ー ク加工面に同時に当接する ように なっている。 参照符号 1 1 , 2 1 は、 第 1 及び第 2主切 れ刃 1 , 2の夫々に関連する逃げ面を表し、 記号 0は、 主切れ刃 1 , 2 の各々の半頂角を表す。 As with the first main cutting edge 1, the second main cutting edge 2 extends obliquely outward in the drill radius direction from the second cutting edge vertex F in the middle part of the drill to the drill outer end D. At the same time, it extends obliquely with respect to the drill axis 00 in the drill axis direction. The first and second cutting edge vertices E and F are symmetrical to each other with respect to the drill axis 00, and the positions of the drill axes in the axial direction are relative to each other. They are identical, and when the drill is lowered vertically to the work surface, both cutting edge vertices come into contact with the work surface at the same time. Reference numeral 11, 21 denotes the flank associated with each of the first and second main cutting edges 1, 2, and the symbol 0 denotes the half apex angle of each of the main cutting edges 1, 2.
第 1 中央切れ刃 3 は、 第 1主切れ刃 1 と第 1 中央切れ 刃 3 とに共通の第 1 切れ刃頂点 Eから ド リ ル軸線上のド リ ル先端面中心点 Qへ ド リ ル半径方向内方に斜めに延び、 ド リ ル半怪方向外方側ほど ド リ ル回転方向において ドリ ル先端面中心点 Qから後退している (第 1 図) 。 又、 第 1 中央切れ刃 3 は、 ド リ ル軸線方向において、 ド リル半 径方向内方側ほど第 1 切れ刃頂点 Eから後退する ように、  The first center cutting edge 3 is drilled from the first cutting edge vertex E, which is common to the first main cutting edge 1 and the first center cutting edge 3, to the center point Q of the drill tip surface on the drill axis. It extends diagonally inward in the radial direction, and recedes from the center point Q of the drill tip surface in the drill rotation direction toward the outer side in the half-drill direction (Figure 1). The first central cutting edge 3 is set such that, in the drill axis direction, the inner side in the drill radius direction retreats from the first cutting edge apex E toward the inside.
ノ ド リ ル軸線 0 0 に関して斜めに延びている (第 2 図) 。 第 1 中央切れ刃 3 に関連する掬い面 3 0 は、 中央切れ刃 3 ( E Q ) と ド リ ル軸線 0 0 と によつて決定され、 第 1 中央切れ刃 3 の掬い角は 0 ° である。 又、 第 1 中央切れ 刃 3 の逃げ面 3 1 は、 第 1 主切れ刃 1 に関連する逃げ面 1 1 の延長部を切削する こ とによ り形成されている。 第 2 a図中、 記号 α は第 1 中央切れ刃 3 の刃直角逃げ角を 表す。  It extends obliquely about the node axis 00 (Fig. 2). The scooping surface 30 associated with the first central cutting edge 3 is determined by the central cutting edge 3 (EQ) and the drill axis 00, and the scooping angle of the first central cutting edge 3 is 0 °. . The flank 31 of the first central cutting edge 3 is formed by cutting an extension of the flank 11 associated with the first main cutting edge 1. In FIG. 2a, the symbol α represents the clearance angle of the first central cutting edge 3 at a right angle.
第 1 中央切れ刃 3 と同様、 第 2 中央切れ刃 4 は、 第 2 切れ刃頂点 F において第 2主切れ刃 2 と連続し、 第 2切 れ刃頂点 Fから ド リ ル先端面の中心点 Qに向かつて斜め に延び、 中心点 Qにおいて第 1 中央切れ刃 3 に連続して いる。 参照符号 4 0及'び 4 1 は、 第 2中央切れ刃 4に関 一 一 連する掬い面及び逃げ面を夫々表す。 好ま し く は、 切れ 刃の強度上許される範囲内で掬い面 3 0及び 4 0 の一部 を除去して (掬い面 3 0 に対して第 2 図に一点鎮線 3 0 1 で示すよ う に) 、 両該掬い面の少な く と も一部に正の 掬い角を与え、 中央切れ刃 3及び 4 の切削性向上を図る c 又、 切れ刃頂点 E, F及びその近傍の切れ刃部分に丸み も し く は面取りを施して切れ刃の強度を増大させても良 い 0 Similarly to the first center cutting edge 3, the second center cutting edge 4 is continuous with the second main cutting edge 2 at the second cutting edge vertex F, and the center point of the drill tip surface from the second cutting edge vertex F It extends obliquely toward Q and continues to the first central cutting edge 3 at the center point Q. Reference numerals 40 and 41 refer to the second central cutting edge 4. A series of scooping surfaces and flank surfaces are shown respectively. Preferably, a part of the scooping surfaces 30 and 40 is removed within a range permitted by the strength of the cutting edge (the scooping surface 30 is indicated by a one-point line 301 in FIG. 2). The positive scooping angle is given to at least a part of both scooping surfaces to improve the cutting ability of the center cutting edges 3 and 4. c Also, the cutting edges apex E and F and the cutting edges in the vicinity thereof The edge may be rounded or chamfered to increase cutting edge strength. 0
中央切れ刃 3, 4 の各々 と、 切れ刃頂点 E又は Fを通 り ド リ ル軸線 0 0 に平行に延びる仮想線とがなす角度 (第 2 図) は、 主切れ刃 1, 2 の半頂角 ø と概ね等しい 値に設定され、 主切れ刃に対する切削抵抗と中央切れ刃 に対する切削抵抗とのバラ ンスをとるよ う に している。 なお、 切削抵抗をよ り高度にパラ ンス させるベく 、 ドリ ル各部での掬い角と切削速度とを考慮した理論計算及び 実験によって、 角度 を決定するよ う に しても良い。  The angle between each of the central cutting edges 3 and 4 and an imaginary line extending parallel to the drill axis 00 through cutting edge apex E or F (Fig. 2) is half of that of main cutting edges 1 and 2. It is set to a value approximately equal to the apex angle ø so that the cutting resistance for the main cutting edge and the cutting resistance for the central cutting edge are balanced. The angle may be determined by theoretical calculation and experiment in consideration of the scooping angle and cutting speed at each part of the drill, in order to further balance the cutting resistance.
好ま し く は、 ド リ ルの製造にあたつては、 軸断面の輪 郭が 9 0 。 + α の角度をなす折れ線 3 4 (第 2 a 図に 2 点鎖線で示す) で表される成形砥石を用いて、 ド リルに 掬い面 3 0 と逃げ面 4 1 とを同時に形成する。 次に、 ド リ ルを ド リ ル軸線の回り に 1 8 0 ° 回転させた後に、 上 記成形砥石を用いて掬い面 4 0 と逃げ面 3 1 とを同時形 成する。 更に好ま し く は、 円錐状砥石を用いて ド リルの 中央切れ刃形成部を軽く ホ— ニ ングして、 中央切り刃 3 , 4 の刃先を整える。 又、 ド リ ルの再研磨時に主切り刃の - 一 逃げ面 1 1, 2 1 だけを研ぐと切れ刃頂点 E, F間距離 が短く なる。 そ こで、 再研磨数回毎に中央切れ刃 3及び 4 の掬い面及び逃げ面を上記成形砥石を用いて再研磨し、 切れ刃頂点間距離を所定値とする。 Preferably, in the manufacture of drills, the contour of the axial section is 90. A scooping surface 30 and a flank 41 are simultaneously formed on a drill using a forming whetstone represented by a polygonal line 34 (indicated by a two-dot chain line in FIG. 2a) forming an angle of + α. Next, after the drill is rotated by 180 ° around the axis of the drill, the scooping surface 40 and the flank 31 are simultaneously formed by using the above-mentioned forming whetstone. More preferably, the central cutting edge forming portion of the drill is lightly honed using a conical grindstone to prepare the cutting edges of the central cutting edges 3 and 4. Also, when re-grinding the drill, -If only flank 11 and 21 are sharpened, the distance between cutting edge vertices E and F becomes shorter. Therefore, the scooping surface and the flank of the central cutting edges 3 and 4 are polished again using the above-mentioned grinding wheel every several times of re-polishing, and the distance between the cutting edge vertices is set to a predetermined value.
第 1 実施例のッイ ス ト ド リ ルによる穴加工にあたり、 ド リ ルを回転させな力 ら ワ ー ク に下ろすと、 ド リ ルの第 1, 第 2切れ刃頂点 E , Fの一方又は双方がワー ク加工 面に食い込む。 切れ刃頂点 E, Fを含む切れ刃領域は、 相当な切削速度及び切削力が発生する ド リ ル先端面半径 方向中間部に設けられ、 しかも縱断面 V字形状に形成さ れているので、 切削性に富み、 ワ ークへの食いつ きが良 い。 このため、 切削力が生じない ド リ ル先端中心部がヮ ー ク に最初に当接するよう にされ、 しかも当該部分に切 削性に劣るチゼルエ ッ ジが形成されていてワ ーク への食 いっきが悪い従来の ド リ ルの場合とは異なり、 本実施例 の ド リ ルによる穴加工では、 ド リ ル先端がヮ一ク に当接 した直後から相当な送り速度で ド リ ルを送るこ とができ る。 又、 この様にワ ー ク への ド リ ル先端の食いつ きが良 いので、 ド リ ルをヮ 一 ク加工面に斜めに下ろ した場合に も ド リ ルの刃先が逃げる こ とがない。  In drilling with the twist drill of the first embodiment, when the drill is lowered onto the workpiece without rotating the drill, one of the first and second cutting edge vertices E and F of the drill is cut. Or both dig into the work surface. The cutting edge region including the cutting edge vertices E and F is provided at the middle part in the radial direction of the drill tip surface where a considerable cutting speed and cutting force is generated, and is formed in a V-shaped longitudinal section. It has excellent machinability and good workability. For this reason, the center of the drill tip where no cutting force is generated comes into contact with the workpiece first, and a chisel edge with poor cutting properties is formed in that part, so that the workpiece is not eroded. Unlike conventional drills, which have poor grip, in drilling with a drill in this embodiment, the drill is sent at a considerable feed speed immediately after the drill tip touches a click. be able to. Also, since the tip of the drill to the work is good in this way, even if the drill is lowered diagonally to the work surface, the drill tip can escape. Absent.
そ して、 ド リ ルをワ ーク側に更に送る と、 主切れ刃 1 , 2 の半径方向内方側及び中央切れ刃 3 , 4 の半径方向外 方側が切削に寄与し始める。 ド リ ルをワ ー ク加工面に対 して斜めに送る場合、 当初は、 第 1 切れ刃頂点 E側の切 れ刃 1, 3 と第 2切れ刃頂点 F側の切れ刃 2, 4 とが交 互にワ ー ク加工面を切削し、 ワ ー ク加工面に断面 V字形 の円弧状溝が形成される。 その後の ド リ ル送り に伴って 切れ刃 1 〜 4 の全てが常に切削に寄与するよ う になり、 ワーク加工面に断面 V字形の環状溝が形成される に至る。 ド リ ルをワー ク加工面に対して垂直に送る場合は、 当初 から切れ刃 1 〜 4が切削に寄与 し、 ワ ー ク に環状溝が形 成される。 When the drill is further fed to the work side, the radially inner side of the main cutting edges 1 and 2 and the radially outer side of the central cutting edges 3 and 4 begin to contribute to the cutting. When the drill is sent obliquely to the work surface, initially, the cutting edges 1 and 3 on the first cutting edge vertex E side and the cutting edges 2 and 4 on the second cutting edge vertex F side Exchange The work surfaces are cut with each other, and an arc-shaped groove with a V-shaped cross section is formed on the work surface. With the subsequent drill feed, all of the cutting edges 1 to 4 always contribute to the cutting, leading to the formation of a V-shaped annular groove in the work surface of the workpiece. When the drill is fed perpendicular to the work surface, cutting edges 1 to 4 contribute to the cutting from the beginning, and an annular groove is formed in the work.
更に ド リ ルを送る と、 主切れ刃 1 , 2 の半径方向外方 側及び中央切れ刃 3, 4 の半径方向内方側が切削に寄与 し始める。 次いで、 切れ刃 1 〜 4 の全体 C E , E Q , Q F , F Dが切削に寄与するに至り、 実質的な穴加工が開 始される。 本実施例の ド リ ルは、 リ ッ プ部の軸方向長さ が従来のものよ り も短いと云う特徴を有し、 ワ ー クへの ド リ ル先端の食いつき当初から ド リ ル送り速度を大き く できる と云う上述の特徴と相ま って、 ド リ ルがワ ークに 食いついてか ら短時間内に実質的な穴加工が開始される。  When the drill is further fed, the radially outer sides of the main cutting edges 1 and 2 and the radially inner sides of the central cutting edges 3 and 4 begin to contribute to cutting. Next, the entire CE, EQ, QF, and FD of the cutting edges 1 to 4 contribute to the cutting, and substantial drilling is started. The drill of this embodiment has a feature that the axial length of the lip portion is shorter than that of the conventional drill, and the drill is fed from the beginning when the drill tip bites into the work. Combined with the above-mentioned feature of being able to increase the speed, substantial drilling is started within a short time after the drill drills into the work.
穴加工は、 従来のチ ゼルエ ッ ジに比べて切削性に富む 中央切れ刃 3 , 4 を含みかつ ド リ ル直径全体にわたって 連铳して形成された切れ刃 1〜 4 によ り、 優れた切削能 力で効率的に行われる。 しかも、 第 1 切れ刃頂点 E側の 切れ刃 1, 3 と第 2切れ刃頂点 F側の切れ刃 2 , 4 とは ド リ ル軸線 0 0 に関して対称に形成されているので、 切 れ刃 1 , 3 が受ける切削抵抗と切れ刃 2, 4 が受ける切 削抵抗とが良好にバラ ン ス し、 ド リ ル刃先が安定すると 共に ド リ ルに加わる ド リ ル半径方向に作用する ス ラ ス ト が小さい。 こ のため、 穴加工中の ド リ ルの芯ブレが抑制 され、 穴の拡大代が小さ く、 穴加工精度及び穴の真直度 に優れる。 又、 切削動力を低減でき る。 更に、 切れ刃 1 〜 4 による切り屑同士は互いに分かれるので、 切り屑が 円滑に流れ、 切り屑処理が容易である。 Drilling is excellent due to the cutting edges 1 to 4 that include the central cutting edges 3 and 4 that are more machinable than conventional chisel edges and are formed continuously over the entire drill diameter. It is performed efficiently with the cutting ability. Moreover, since the cutting edges 1 and 3 on the first cutting edge vertex E side and the cutting edges 2 and 4 on the second cutting edge vertex F side are formed symmetrically with respect to the drill axis 00, the cutting edge 1 , 3 and the cutting forces received by the cutting edges 2 and 4 are well balanced, and the drilling edge is stabilized and the thrust acting on the drill in the radial direction of the drill is added. G Is small. As a result, the centering of the drill during drilling is suppressed, the margin for hole enlargement is small, and drilling accuracy and hole straightness are excellent. Also, cutting power can be reduced. Furthermore, the chips by the cutting edges 1 to 4 are separated from each other, so that the chips flow smoothly and the chip processing is easy.
以下、 第 4 図〜第 7 図を参照して、 本発明の第 2実施 例の二枚刃式ク ラ ンプ ド リ ルを説明する。  Hereinafter, a two-blade clamp drill according to a second embodiment of the present invention will be described with reference to FIGS.
このク ラ ンプ ド リ ルは、 互いに同一形状, 寸法の第 1 及び第 2 ス ロ ーァウェイ チ ッ プ 1 0 0, 2 0 0 と、 先端 にチ ッ プ座面が形成された ド リ ル本体 3 0 0 と、 チップ 及びチ ッ プ座の製造誤差を補償しかつ加工穴怪を調整す るための 2 つのテーパジブ機構 (第 1 チ ッ ブに対応する ジブ機構を参照符号 9 0 で示す) とを備えている。  The clamp drill is composed of first and second throw-away chips 100 and 200 having the same shape and dimensions as each other, and a drill body having a tip seat surface formed at a tip. 300 and two tapered jib mechanisms for compensating manufacturing errors of inserts and tip seats and adjusting machining holes (the jib mechanism corresponding to the first chip is denoted by reference numeral 90). And
第 1 チ ッ プ 1 0 0 は、 正面視略六角形の厚板状に形成 されている。 チ ッ プ 1 0 0 の外周端面には、 第 1 実施例 の第 1 主切れ刃 1 及び第 1 中央切れ刃 3 に夫々対応する 主切れ刃 5 1 ~ 5 3及び中央切れ刃 6 1〜 6 3 が形成さ れている。 第 1 チ ッ プ 1 0 0 は、 その内方側面及び内方 端面を ド リ ル本体 3 0 0 のチ ッ プ取付け底面 1 0 1及び 傾斜チ ッ プ取付面 0 3 に夫々当接させ、 かつ、 その底面 を後で詳述する ジブ機構 9 0 の ジブ 9 1 の上面に当接さ せた状態で、 ボル ト 1 3 によ り ド リ ル本体 3 0 0 に離脱 自在に固定されている。  The first chip 100 is formed in a substantially hexagonal thick plate shape as viewed from the front. The main cutting edge 51 to 53 and the central cutting edge 61 to 6 respectively corresponding to the first main cutting edge 1 and the first central cutting edge 3 of the first embodiment are provided on the outer peripheral end face of the chip 100. 3 is formed. The first chip 100 has its inner side surface and inner end surface abutting against the chip mounting bottom surface 101 and the inclined chip mounting surface 03 of the drill body 300, respectively. In addition, the bottom surface thereof is in contact with the upper surface of the jib 91 of the jib mechanism 90 which will be described in detail later, and is detachably fixed to the drill body 300 by the bolt 13. I have.
本実施例では、 ド リ ル本体 3 0 0側のチ ッ プ取付け底 面 1 0 1 は、 ド リ ル軸線 0 0 を通る平面に平行に延びて - - いる。 ジブ 9 1 の上面は、 ド リ ル本体のチ ッ プ座面と協 働して第 1 チ ッ プ 1 0 0 が載置されるチ ッ ブ座を構成し ている。 ボル ト 1 3 は、 チ ッ プ 1 0 0 に貫通形成されか っチ ッ プ厚さ方向に延びる穴を挿通する と共に ド リ ル本 体 3 0 0 に形成したネ ジ穴に螺合している。 チ ッ プ 1 0 0 と共に ド リ ル本体 3 0 0 に固定されたプロテク 夕 1 2 は、 チ ッ プの外方側面側に配され、 切り屑によるチップ 損傷を防止する よ う にな っている。 In this embodiment, the tip mounting bottom surface 101 of the drill body 300 side extends parallel to a plane passing through the drill axis line 00. --Yes. The upper surface of the jib 91 cooperates with the chip seat surface of the drill body to constitute a chip seat on which the first chip 100 is placed. The bolt 13 is inserted through a hole formed through the chip 100 and extending in the chip thickness direction, and is screwed into a screw hole formed in the drill body 300. I have. The protector 12 fixed to the drill body 300 together with the chip 100 is arranged on the outer side of the chip to prevent chip damage due to chips. I have.
第 4 図に示す姿勢でチ ッ プ 1 0 0 を装着した場合、 主 切れ刃 5 1 及び中央切れ刃 6 1 が穴加工位置に配され、 その他の切れ刃 5 2 , 5 3 , 6 2及び 6 3 は待機位置に 配される。 即ち、 チ ッ プ 1 0 0 は、 3組の切れ刃 5 1 , 6 1 又は 5 2, 6 2又は 5 3, 6 3 のいずれか任意の一 組を穴加工に供する と共に、 残りの 2組の切れ刃が穴加 ェ中に損傷しないよ う になっている。  When the tip 100 is mounted in the position shown in Fig. 4, the main cutting edge 51 and the central cutting edge 61 are arranged at the drilling positions, and the other cutting edges 52, 53, 62 and 6 3 is placed in the standby position. That is, the chip 100 is used for drilling any one of the three sets of cutting edges 51, 61 or 52, 62 or 53, 63, and the remaining two sets. Cutting edges are not damaged during drilling.
第 4 図に示すチ ッ プ装着状態では、 第 1 チ ッ プ 1 0 0 の内方端面 (主切れ刃 5 2 に関連する逃げ面 5 3 0 ) が ド リ ル本体 3 0 0 の傾斜チ ッ プ座面 0 3 に当接している。 そ して、 第 1 実施例と同様、 主切れ刃 5 1 は切れ刃頂点 Lから ド リ ル外周端 Uへ斜めに延び、 中央切れ刃 6 1 は 切れ刃頂点 L から ド リ ル軸線 0 0上の中心点 Pの近傍を 経て第 4 図の点 Wへ斜めに延び、 ド リ ル軸線 0 0 と角度 Θ (好ま し く は 7 0 。 〜 7 5。 ) をな している。 ド リ ル 外周端 U におけるマー ジン部 6 2 0 に続き中央切れ刃 6 2 に関連する逃げ面の—軸方向逃げ角 σ は、 好ま し く は、 - - In the mounted state of the chip shown in FIG. 4, the inner end face of the first chip 100 (the flank 53 0 associated with the main cutting edge 52) is inclined by the inclined tip of the drill body 300. It is in contact with the seat surface 0 3. Then, as in the first embodiment, the main cutting edge 51 extends obliquely from the cutting edge vertex L to the drill outer peripheral end U, and the central cutting edge 61 extends from the cutting edge vertex L to the drill axis 0 0. It extends obliquely to the point W in Fig. 4 via the vicinity of the upper center point P, and forms an angle Θ (preferably 70 to 75) with the drill axis 0 0. The axial clearance angle σ of the flank associated with the central cutting edge 62 following the margin 62 at the drill outer edge U is preferably --
2。 〜 5 ° に設定されている。 中奂切れ刃 6 1 は主切れ 刃 5 1 に対して角度 ( 0 + σ + 6 Ο ) ° をなしている。 2. It is set to ~ 5 °. The middle cutting edge 6 1 forms an angle (0 + σ + 6 °) ° with the main cutting edge 51.
第 4図において、 記号 Μ, Ν及び V , Wの夫々 は、 待 機切れ刃が穴加工位置に配されたときに切れ刃頂点及び ド リ ル外周端を構成する待機切れ刃上の点を表す。 記号 G , Η及び Κは、 主切れ刃 5 1 〜 5 3 の延長線同士の交 点を表す。 記号 Ρ , Τは、 チ ッ プ 1 0 0 , 2 0 0 同士が 互いに干渉する仮想的なチ ッ プ装着状態での、 中央切れ 刃 6 1 と ド リ ル軸線 0 0 との仮想的な交点及び主切れ刃 5 3 と ド リ ル軸線との仮想的な交点を表す。  In Fig. 4, the symbols Μ, Ν and V, W respectively indicate the point on the standby cutting edge, which constitutes the cutting edge apex and the outer peripheral edge of the drill, when the standby cutting edge is arranged at the drilling position. Represent. The symbols G, Η, and を represent the intersections between the extension lines of the main cutting edges 51 to 53. The symbols Ρ and Τ are virtual intersections between the central cutting edge 61 and the drill axis 00 in a state where the chips 100 and 200 interfere with each other. And the virtual intersection between the main cutting edge 53 and the drill axis.
上述のよ う に、 第 2 チ ッ プ 2 0 0 は第 1 チ ッ プ 1 0 0 と同一形状, 寸法であり、 従って、 第 2 チ ッ プ 2 0 0及 びこれに関連する ド リ ル本体 3 0 0 の構成については説 明を省略する。  As described above, the second chip 200 has the same shape and dimensions as the first chip 100, and accordingly, the second chip 200 and the drill body 3 associated therewith. The description of the configuration of 0 0 is omitted.
第 4図に示すチ ッ プの切れ刃同士の千渉を回避すべく、 本実施例では、 第 7図に示すよ う に、 第 1 及び第 2チッ プは、 両チ ッ プの対向面同士が微少距離 δだけ離隔する よ う に Εされている。 微少距離 <5 は、 両チ ッ プ間の微少 間隙による ワ ーク未加工部分が穴加工の進行中に容易に 破碎されるよ うな小さい値に設定される。 第 7 図中、 記 号な t及び 7 t は刃先端逃げ角及び刃先端掬い角を夫々 In order to avoid collision between the cutting edges of the chips shown in FIG. 4, in the present embodiment, as shown in FIG. 7, the first and second chips are provided on opposite surfaces of both chips. They are separated from each other by a very small distance δ. The micro-distance <5 is set to a small value so that the unprocessed part of the work due to the micro-gap between both chips is easily broken during the drilling. In Fig. 7, symbols t and 7t indicate the clearance angle of the blade tip and the scoop angle of the blade tip, respectively.
5C 9 o 5C 9 o
チ ッ プ間に微少間隙を設ける代わり に、 第 8図に示す よ う に、 チ ッ プ対向面の各々力 S ド リ ル軸線 0 0 に対して 概ね 1 ° 以下の微少埒度 φだけ下向きになるよ う に第 1 , - - 第 2 チ ッ プ 1 0 0 , 2 0 0 を配置しても良く、 これによ りチ ッ プ同士の干渉が防止される。 或は、 第 9 図に示す よ う に、 チ ッ プ干渉部分 P W Tが P ' W ' T ' まで微少量 沈めむよ う にチ ッ プを配置して、 チ ッ プの干渉を回避で さる o Instead of providing a minute gap between the chips, as shown in Fig. 8, each force facing the chip faces downward with a slight degree of effect φ of about 1 ° or less with respect to the force S drill axis 00. The first to become --The second chips 100 and 200 may be arranged, thereby preventing interference between the chips. Alternatively, as shown in Fig. 9, the chips are arranged so that the chip interference portion PWT sinks a small amount to P'W'T 'to avoid chip interference. o
再び第 4図を参照する と、 本実施例のク ラ ンプ ドリ ル は、 第 1 チ ッ プ 1 0 0 に関連する ジブ機構 9 0 を備えて いる。 ジブ機構 9 0 は、 ド リ ル本体 3 0 0 のジブ座面 0 4 と第 1 チ ッ プ 1 0 0 の底面と の間に介在するテ—パジ ブ 9 1 を有し、 ジブ座面 0 4 は、 ド リ ル本体のチ ップ取 付底面 1 0 1 に直交しかつ傾斜チ ッ プ取付面 0 3 に略直 交して延びている。 ジブ 9 1 に貫通形成したネ ジ穴に螺 合するネ ジ棒 9 2 はジブ座面 0 4 に平行して延び、 その 先端部は、 ド リ ル本体先端部の ド リ ル軸線付近に形成し たネ ジ穴に螺合している。 ジブ 9 1 の外方端面の外側及 び内方端面の内側にはネ ジ棒 9 2 に螺合するナ ツ ト 9 3 , 9 4が配され、 両ナ ツ トを用いてジブ 9 1 をネ ジ棒 9 2 に沿う任意の ジブ移動位置に固定可能になっている。  Referring again to FIG. 4, the clamp drill of the present embodiment has a jib mechanism 90 associated with the first chip 100. The jib mechanism 90 has a taper jib 91 interposed between the jib seat surface 04 of the drill body 300 and the bottom surface of the first chip 100. Reference numeral 4 extends perpendicularly to the chip mounting bottom surface 101 of the drill body and substantially perpendicular to the inclined chip mounting surface 03. A screw rod 92 screwed into the screw hole formed through the jib 91 extends parallel to the jib seat surface 04, and its tip is formed near the drill axis at the tip of the drill body. It is screwed into the screw hole. Nuts 93 and 94 screwed into a screw rod 92 are arranged outside the outer end face and inside the inner end face of the jib 91, and the jib 91 is used with both nuts. It can be fixed to any jib moving position along the screw rod 92.
第 2 チ ッ プ 2 0 0 を ド リ ル本体 3 0 0 に固定するため のジブ機構 (図示略) 及びこれに関連する ド リ ル本体の 構成は上記ジブ機構 9 1 と同一であり、 説明を省略する。 なお、 ジブ機構は必須要素ではない。 ジブ機構を除去し た場合、 第 1 , 第 2 チ ッ プ 1 0 0, 2 0 0 の各々 の 3つ の主切れ刃及び 3 つの中央切れ刃 6 1 〜 6 3 の各々の掬 い面及び逃げ面ならびに ド リ ル本体 3 0 0 のチ ッ プ取付 - - 面を精度良く 加工する。 ' The jib mechanism (not shown) for fixing the second chip 200 to the drill body 300 and the configuration of the related drill body are the same as those of the jib mechanism 91 described above. Is omitted. The jib mechanism is not an essential element. When the jib mechanism is removed, the three main cutting edges of the first and second chips 100 and 200 and the scooping surface of each of the three center cutting edges 61 to 63 3 Tip mounting of flank and drill body 300 --Process the surface with high accuracy. '
上記ク ラ ン プ ド リ ルの組立てにあたっては、 ネ ジ棒上 でのジブ移動位置を調整して、 リ ッ プハイ ト (第 1 , 第 When assembling the above clamp drill, adjust the jib moving position on the screw rod to adjust the lip height (first and second).
2 チ ッ プの相対切れ刃高さ) を零にする と共に、 ドリル 軸線 0 0 と主切れ刃の ド リ ル外周側端との ド リ ル半径方 向距離を目標穴径に合致させる。 2) and make the distance between the drill axis 00 and the outer edge of the main cutting edge in the drill radius direction the same as the target hole diameter.
上記ク ラ ンプ ド リ ルの切削作用は上記ッィ ス ト ドリ ル のものと略同様であるので、 説明を省略する。  Since the cutting action of the clamp drill is substantially the same as that of the drill drill, the description is omitted.
第 1 0 図は、 上記第 2実施例のク ラ ンプ ド リ ルにおけ るチ ッ プ固定機構に係る変形例を示す。 ボル ト挿通穴を 形成したチ ッ プをボル ト 1 3 によ り ド リ ル本体 3 0 0 に 固定する第 2 実施例とは異なり、 第 1 0 図の変形例では、 ド リ ル本体 3 0 0 との間にチ ッ プ 1 0 0 を挟持した押え 金 1 4 をネ ジ 1 5 によ り ドリ ル本体側に締め付けて、 チ ッ プ 1 0 0 をク ラ ンプするよう にしている。 同様に、 チ ッ プ 2 0 0 がク ラ ンプされる。  FIG. 10 shows a modification of the chip fixing mechanism in the clamp drill of the second embodiment. Unlike the second embodiment in which the chip having the bolt insertion hole formed therein is fixed to the drill body 300 by the bolt 13, the drill body 3 in the modification of FIG. The clamp 14 holding the chip 100 between it and 0 0 is tightened to the drill body side with a screw 15 so that the chip 100 is clamped. . Similarly, chip 200 is clamped.
この変形例によれば、 チ ッ プにボル ト挿通穴を穿設す る必要がないので、 チ ッ プの破断が生じにく く なる。 又、 ネ ジ 1 5 をチ ッ プに貫通させる必要がないので、 ネジ 1 5 の直径を相当程度まで大き く でき、 ネ ジの破断も生じ にく く なる。 更に、 小型のチ ッ プも強固にク ラ ンプ可能 になる。 なお、 押え金 1 4 の寸法, 形状は、 押え金がプ ロテク タ及びチ ッ プブレーカの機能を奏する こ とを勘案 して、 好適に決定される。  According to this modification, it is not necessary to form a bolt insertion hole in the chip, so that the chip is less likely to break. Further, since it is not necessary to penetrate the screw 15 through the chip, the diameter of the screw 15 can be increased to a considerable extent, and the screw is less likely to break. In addition, small chips can be firmly clamped. The size and shape of the presser foot 14 are suitably determined in consideration of the fact that the presser foot functions as a protector and a chip breaker.
更に、 第 1 0 図に示す変形例の ド リ ルは、 チ ッ プの取 - 付け底面 1 0 1 が ド リ ル軸線 0 0 を通る平面に平行に延 びる第 2実施例に比べて、 チ ッ プ取付け面 1 0 1 を ドリ ル軸線 0 0 に対して傾斜させた点が相違する。 こ の変形 例には、 実用性に富むと云う利点がある。 チ ッ プ 1 0 0, 2 0 0 の各々 は、 刃先端掬い角 7 t に等しい角度だけ ド リ ル軸線 0 0 に対して下向きになるよ う に配され、 掬い 面 1 0 2 はチ ッ プ取付け面 1 0 1 と平行に延びている。 各チ ッ プの、 側面視、 ド リ ル軸線 0 0 を越えて他方のチ ッ プ側に突出 した部分と他方のチ ッ プの同様の突出部分 とが互いに干渉する こ とはない。 好ま し く は、 ワ ーク加 工面でのバリ の発生防止のため、 主切れ刃の ド リ ル外周 側を沈めて主切れ刃が ド リ ル外周と鋭角をなすよ うにす る o Further, the drill of the modified example shown in FIG. -The point where the tip mounting surface 101 is inclined with respect to the drill axis 0 0 as compared with the second embodiment in which the mounting base 101 extends parallel to the plane passing through the drill axis 00. Are different. This variant has the advantage of being practical. Each of the chips 100 and 200 is disposed so as to be downward with respect to the drill axis 0 0 by an angle equal to the blade tip scooping angle 7 t, and the scooping surface 102 is a chip. Extending parallel to the mounting surface 101. In each of the chips, a portion of the chip protruding beyond the drill axis line 00 toward the other chip side and a similar protruding portion of the other chip do not interfere with each other. Preferably, in order to prevent burrs from being generated on the work surface, sink the outer periphery of the drill to the main cutting edge so that the main cutting edge forms an acute angle with the outer periphery of the drill.o
第 1 1 図は、 第 2実施例の更に別の変形例を示す。 こ の変形例は、 チ ッ プ取付け面 1 0 1 を ド リ ル軸線 0 0 に 対して傾斜させた点が第 1 0 図の変形例と共通する一方 で、 チ ッ プを刃先端逃げ角 a t に等しい角度だけ ドリル 軸線に対して上向きに配した点と、 主切れ刃の逃げ面を チ ッ プ取付け面 1 0 1 に垂直に設けた点とが第 1 0図の ものと異なる。 逃げ面をチ ッ プ取付け面に垂直に設けた この変形例のク ラ ンプ ド リ ルには、 精度が出し易いと云 う利点がある。 但し、 この変形例では、 各チ ッ プの、 他 方のチ ッ プ側に突出する部分を沈めて、 チ ッ プ突出部分 同士間に干渉が生じないよ う にする必要がある。 又、 主 切れ刃に関連する逃げ面が ド リ ル外周端において加工穴 - に干渉しないよ う に、 切れ刃に適当な逃げ角を付与する 必要がある。 FIG. 11 shows still another modification of the second embodiment. This modified example is similar to the modified example of FIG. 10 in that the tip mounting surface 101 is inclined with respect to the drill axis line 0 0, while the tip has a clearance angle at the tip of the blade. It differs from the one in Fig. 10 in that it is arranged upward with respect to the drill axis by an angle equal to at and that the flank of the main cutting edge is provided perpendicular to the chip mounting surface 101. The clamp drill of this modified example, in which the flank is provided perpendicular to the chip mounting surface, has an advantage that accuracy can be easily obtained. However, in this modified example, it is necessary to sink a portion of each chip protruding toward the other chip so that no interference occurs between the chip protruding portions. In addition, the flank associated with the main cutting edge is -It is necessary to provide an appropriate clearance angle to the cutting edge so as not to interfere with the cutting edge.
以下、 第 1 2 図〜第 1 4図を参照して、 本発明の第 3 実施例による再研磨可能なス ト レー ト三枚刃 ド リ ルを説 明する。  Hereinafter, with reference to FIG. 12 to FIG. 14, a regrindable straight three-blade drill according to a third embodiment of the present invention will be described.
本実施例の三枚刃 ド リ ルは、 ド リ ル本体にろ う付され た 3 つのチ ッ プを備えている。 第 1 2図及び第 1 3図に 示すよ う に、 第 1 チ ッ プには、 主切れ刃 7 1 と、 ドリル 軸線 0 0 に達する中央切れ刃 8 1 と、 外周切れ刃 7 1 0 とが形成され、 外周切れ刃 7 1 0 に関連する掬い面は、 ド リ ル外周と鋭角をなすように形成されている。 第 2チ ッ プには、 主切れ刃 7 2 と、 ド リ ル軸線 0 0 に達しない 中央切れ刃 8 2 と、 第 1 チ ッ プの外周切れ刃 7 1 0 と同 様の外周切れ刃 7 2 0 が形成されている。 第 3 チ ップに は、 第 2 チ ッ プの切れ刃 7 1 , 8 1, 7 1 0 と同様の主 切れ刃 7 1 , 中央切れ刃 8 2及び外周切れ刃 7 3 0が形 成されている。 第 1 4図に示すように、 各々のチ ップは、 刃先端掬い角 Ί t に'等しい角度だけ ド リ ル軸線 0 0に対 して下向きに固定され、 掬い面はチ ッ プ取付け面と平行 に延びている。  The three-blade drill of the present embodiment has three tips attached to the drill body. As shown in FIGS. 12 and 13, the first chip has a main cutting edge 71, a central cutting edge 81 reaching the drill axis 00, and an outer cutting edge 7110. Are formed, and the scooping surface associated with the outer peripheral cutting edge 710 is formed so as to form an acute angle with the outer periphery of the drill. The second chip has a main cutting edge 72, a central cutting edge 82 that does not reach the drill axis 0 0, and an outer peripheral cutting edge similar to the outer peripheral cutting edge 7 10 of the first chip. 7 20 are formed. The third chip has a main cutting edge 71, a central cutting edge 82, and an outer peripheral cutting edge 730 similar to the cutting edges 71, 81, 71 of the second chip. ing. As shown in Fig. 14, each chip is fixed downward to the drill axis 00 by an angle equal to the blade tip scooping angle Ίt, and the scooping surface is the chip mounting surface. It extends in parallel with.
本発明によれば、 次に列記する利点が達成される。  According to the present invention, the following advantages are achieved.
( 1 ) 切れ味の悪い従来のチ ゼルエ ッ ジに代えて、 切 れ刃頂点が工具中心軸から互いに等距離にあり切れ味の 良い中央切れ刃で、 ワ ーク加工部の中心部を切削するの で、 ド リ ルの切削性が良く 、 又、 切削動力も ス ラ ス ト も 小さい。 (1) Instead of the conventional sharp-edged chisel edge, the center of the workpiece is cut with a sharp cutting edge where the cutting edges are equidistant from the tool center axis. The drill is easy to cut, and the cutting power and thrust are low. small.
( 2 ) 従来の ド リ ルでは、 切削能力の無い工具中心に 先端切れ刃があるので、 ワ ー ク への食いつきが悪 く、 送 りを遅く すべき場合がある。 これに対して、 本発明の ド リ ルは工具先端に確実に切削能力がある ので、 ワ ークへ の食いつきが良く、 送りを加減する こ とな く高能率で穴 加工できる。  (2) With conventional drills, the cutting edge at the center of the tool, which has no cutting ability, has a poor cutting edge on the work, and the feed may need to be slowed down. On the other hand, since the drill of the present invention has a reliable cutting ability at the tool tip, it has good bite to the work, and can drill holes with high efficiency without adjusting the feed.
( 3 ) 刃先が逃げないので、 傾斜面や不規則面にも支 障な く穴を明ける こ とができ る。  (3) Since the cutting edge does not escape, holes can be drilled without any trouble on inclined or irregular surfaces.
( 4 ) リ ッ プ部の軸方向長さが小さいので、 ワ ークに 食いついてからフルに穴明けを開始するまでの時間が短 く、 加工能率が高い。  (4) Since the length of the lip portion in the axial direction is small, the time from when the workpiece is eaten until the start of full drilling is short, and machining efficiency is high.
( 5 ) 切削速度が小さ く摩耗が少ない中央切れ刃の再 研磨は、 主切れ刃の再研磨数回毎に行えば良い。 従って、 ド リ ル再研磨の手数が省ける。  (5) Re-grinding of the central cutting edge, which has a low cutting speed and low wear, may be performed every several re-grinding of the main cutting edge. Therefore, the need for drill re-polishing is eliminated.
( 6 ) 本発明をッイ ス ト ド リ ルに適用する場合、 従来 の ド リ ルの先端部のみを改造し、 或は、 本発明のチップ を従来のチ ッ プに代えて装着すれば足り る。 従って、 本 発明のッイ ス ト ド リ ルは容易に提供でき る。  (6) When applying the present invention to a twist drill, only the tip of the conventional drill is modified, or the chip of the present invention is mounted instead of the conventional chip. Is enough. Therefore, the twist drill of the present invention can be easily provided.
( 7 ) 本発明のチ ッ プ及びこ れに適合する ド リ ル本体 の製作には特に困難がな く、 ク ラ ンプ ド リ ルへの本発明 の適用は容易である。  (7) There is no particular difficulty in manufacturing the chip of the present invention and the drill body conforming thereto, and the present invention is easily applied to a clamp drill.
( 8 ) ジブ機構を設ける こ と によ り チ ッ プ及びチップ 座の製作精度を補償可能かつ加工穴径を調整可能なので、 本発明は応用範囲が広い。 一 一 (8) By providing the jib mechanism, the manufacturing accuracy of the chip and the tip seat can be compensated and the hole diameter can be adjusted, so that the present invention has a wide application range. One one
( 9 ) 各種切れ刃による切り屑同士を分けるこ とがで きるので、 切り屑の流れが円滑で、 切り屑処理が容易で ある。 (9) Since chips can be separated from each other by various cutting edges, the flow of the chips is smooth and the processing of the chips is easy.
( 1 0 ) 従来の ド リ ルとは異なり、 本発明のク ラ ンプ ド ルには切れ刃欠落部がな く 、 ド リ ル先端部全体が切 削作用を奏する。 従って、 本発明のク ラ ンプ ド リ ルは切 削能率が良く 、 短時間で穴加工ができる。  (10) Unlike the conventional drill, the clamp drill of the present invention has no cutting edge missing part, and the entire drill tip exerts a cutting action. Therefore, the clamp drill of the present invention has a high cutting efficiency and can perform drilling in a short time.
( 1 1 ) 切れ味の悪い従来のチゼルヱ ッ ジに代えて切 れ味の良い中央切れ刃を設けた本発明によれば、 ウェブ の厚い強力 ド リ ルを提供できる。  (11) According to the present invention in which a well-cut central cutting edge is provided in place of the conventional chisel edge having poor sharpness, a strong drill with a thick web can be provided.
( 1 2 ) ド リ ル外周での刃物角 ωを鋭角にして、 ヮ ー ク加工面でのバリ の発生を抑制できる。  (12) The blade angle ω at the outer periphery of the drill is made acute, so that burrs on the workpiece surface can be suppressed.

Claims

請 求 の 範 囲 The scope of the claims
. ド リ ル先端面の半径方向中間部に位置する複数の切 れ刃頂点の対応する一つから ド リ ル外周端に向かって ド リ ル半径方向外方に各々延びる複数の主切れ刃と、 前記複数の切れ刃頂点の対応する一つから ド リ ル軸線 に向かって ド リ ル半径方向内方に各々延びる複数の中 央切れ刃と を備え、 前記複数の主切れ刃及び前記複数 の中央切れ刃の夫々を、 ド リ ル軸線方向において反切 れ刃頂点側にかつ前記 ド リ ル軸線に関して斜めに延在 させた ド リ ル。 A plurality of main cutting edges each extending radially outward from the corresponding one of the plurality of cutting edge vertices located at a radially intermediate portion of the drill tip surface toward the outer periphery of the drill; A plurality of central cutting edges each extending inward in a drill radial direction from a corresponding one of the plurality of cutting edge vertices toward a drill axis, and the plurality of main cutting edges and the plurality of A drill in which each of the central cutting edges extends in the direction of the drill axis on the side opposite to the cutting edge and obliquely with respect to the drill axis.
. 前記複数の切れ刃頂点を ド リ ル半径方向において前 記 ド リ ル軸線から互いに同一距離に設けた請求の範囲 第 1 項記載の ド リ ル。The drill according to claim 1, wherein the plurality of cutting edge vertices are provided at the same distance from the drill axis in the drill radius direction.
. 前記複数の切れ刃頂点を ド リ ル周方向において等角 度間隔で設けた請求の範囲第 1 項記載の ド リ ル。 2. The drill according to claim 1, wherein the plurality of cutting edge vertices are provided at equal angular intervals in a drill circumferential direction.
. 前記複数の切れ刃頂点を互いに同一 ド リ ル軸線方向 位置に設けた請求の範囲第 1 項記載の ド リ ル。 The drill according to claim 1, wherein the plurality of cutting edge vertices are provided at the same drill axial direction position.
PCT/JP1991/001081 1990-08-15 1991-08-14 Drill WO1992003243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/214314 1990-08-15
JP2214314A JPH04101708A (en) 1990-08-15 1990-08-15 Drill

Publications (1)

Publication Number Publication Date
WO1992003243A1 true WO1992003243A1 (en) 1992-03-05

Family

ID=16653700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001081 WO1992003243A1 (en) 1990-08-15 1991-08-14 Drill

Country Status (2)

Country Link
JP (1) JPH04101708A (en)
WO (1) WO1992003243A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029783A1 (en) * 1994-05-03 1995-11-09 Johne & Co. Präzisionswerkzeuge GmbH Drilling tool
CN104191000A (en) * 2014-09-28 2014-12-10 江西杰浩硬质合金工具有限公司 Staggered teeth-structured four-blade hole expanding drill
US20150266108A1 (en) * 2012-09-28 2015-09-24 Kyocera Corporation Drill and method for manufacturing cut workpieces using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516242A (en) * 1994-03-24 1996-05-14 Andronica; Randall Cutting tool and shank
JP6127341B2 (en) * 2013-03-01 2017-05-17 住友電工ハードメタル株式会社 3-flute twist drill
JP6235737B2 (en) * 2015-08-27 2017-11-22 株式会社ビック・ツール 3-flute drill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964212A (en) * 1982-09-14 1984-04-12 アンドレ−アス・マイエル Multi-edge drill
JPS61270011A (en) * 1985-05-27 1986-11-29 Mitsubishi Metal Corp Throw away drill with two sheets of edges

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964212A (en) * 1982-09-14 1984-04-12 アンドレ−アス・マイエル Multi-edge drill
JPS61270011A (en) * 1985-05-27 1986-11-29 Mitsubishi Metal Corp Throw away drill with two sheets of edges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029783A1 (en) * 1994-05-03 1995-11-09 Johne & Co. Präzisionswerkzeuge GmbH Drilling tool
US20150266108A1 (en) * 2012-09-28 2015-09-24 Kyocera Corporation Drill and method for manufacturing cut workpieces using same
US9662718B2 (en) * 2012-09-28 2017-05-30 Kyocera Corporation Drill and method for manufacturing cut workpieces using same
CN104191000A (en) * 2014-09-28 2014-12-10 江西杰浩硬质合金工具有限公司 Staggered teeth-structured four-blade hole expanding drill

Also Published As

Publication number Publication date
JPH04101708A (en) 1992-04-03

Similar Documents

Publication Publication Date Title
US5145294A (en) Milling cutter capable of using indexable inserts of various shapes
US3076357A (en) Spade drill blade
US20040258490A1 (en) Rotary metal cutting tool
US5322394A (en) Highly stiff end mill
CA2421081A1 (en) Milling cutter using inserts of various shapes
JP6838164B2 (en) Taper reamer
CN112334258B (en) Double-sided tangential milling insert
JPS6244304A (en) Thinning of drill
CN110366467A (en) Combined countersink drill
WO1992003243A1 (en) Drill
JPH01127214A (en) Rough cutting end mill
JPH0929531A (en) Finishing end mill
US20010031181A1 (en) Indexable drill and cutting inserts therefor
JP3249549B2 (en) Drilling cutter device
CN109158664B (en) Indexable drilling tool
CN109158665B (en) Indexable drilling tool
JPH0131370Y2 (en)
JPH0319003B2 (en)
JPH0351057Y2 (en)
JPS6246491Y2 (en)
JPH04146015A (en) Throw-away tip and end mill
JPS59161208A (en) Rolling cutter
JPH0523886B2 (en)
JPH0487718A (en) Reamer
JPH0970706A (en) Twist drill, and grinding method for it

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE