WO1992002840A1 - Imaging instrument of observing magnified object - Google Patents

Imaging instrument of observing magnified object Download PDF

Info

Publication number
WO1992002840A1
WO1992002840A1 PCT/JP1991/001021 JP9101021W WO9202840A1 WO 1992002840 A1 WO1992002840 A1 WO 1992002840A1 JP 9101021 W JP9101021 W JP 9101021W WO 9202840 A1 WO9202840 A1 WO 9202840A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
incident
guide
source means
Prior art date
Application number
PCT/JP1991/001021
Other languages
French (fr)
Japanese (ja)
Inventor
Masao Yamamoto
Katuyuki Igarashi
Original Assignee
Scalar Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP20138590A external-priority patent/JPH0486717A/en
Priority claimed from JP20138690A external-priority patent/JPH0486718A/en
Priority claimed from JP2224329A external-priority patent/JP2950946B2/en
Priority claimed from JP2224330A external-priority patent/JP2950947B2/en
Application filed by Scalar Corp. filed Critical Scalar Corp.
Publication of WO1992002840A1 publication Critical patent/WO1992002840A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Definitions

  • Imaging device for magnifying observation
  • the present invention can be used in various fields such as medical, academic, and industrial fields, for example, by processing the outer surface or surface layer of an observation object such as human skin, microscopic organisms, or integrated circuits in the same position as it is.
  • TECHNICAL FIELD The present invention relates to an image pickup device for magnifying observation that can be magnified and observed without performing image processing. (Background technology)
  • Japanese Patent Publication Nos. 26642/2001 and 305852/27 or U.S. Pat.No. 4,930,851 describe an imaging device for magnifying observation. Have been.
  • imaging devices are used by reproducing an image of an observation object taken by the imaging device on a display, that is, a display means, for observation.
  • a display that is, a display means
  • - Stand-free observation that is, an observation device itself like a conventional microscope. Requires a state in which the object is fixed in a predetermined prone position.
  • the imaging tool is moved to the side of the observation target.
  • ⁇ ⁇ which can be easily carried by anyone without any skill or skill, e.g., 50x to 100x It is capable of magnifying observations at a high magnification of 0x.
  • the illumination light that illuminates the observation object generally includes the incident light that illuminates the observation object from the front and the steep angle that is almost parallel to the front of the observation object
  • transmitted light that illuminates the surface layer from the inside with light transmitted inside.
  • the incident light is suitable for the whole observation, but is easily affected by the reflected light from the surface of the observation object, and the side light is shaded so that it cannot be seen only by the incident light.
  • the transmitted light can be used only for translucent objects.However, it is possible to observe the surface of the object with a certain depth in shadow. Each has its own strengths and weaknesses. Therefore, if these lights can be freely selected and appropriately combined, more effective observation can be performed.
  • the aforementioned Japanese Patent Publication No. 308527/1999 discloses one of them, in which a converging guide is formed in a hemispherical or hemispherical shape, so that side light (horizontal light) is generated.
  • the main component is that the incident light and transmitted light are appropriately combined to enable good observation.
  • the technology of the above-mentioned U.S. Pat. No. 4,930,851, which is another one, enables selection of image light, and enables more versatile observation. I have. However, none of them can select illumination light.
  • an object of the present invention is to provide an imaging device capable of selecting the type of illumination light.
  • a front portion has a hemispherical shape, an irradiation hole is formed at the center thereof, and a base end surface is formed at a base end surface through which illumination light from the light source means can enter the solid interior.
  • Light guide at the tip the observation area of the observation object illuminated by the illumination light from the focusing guide is formed into an image by the optical means on the imaging means, and is incident on the base end face of the focusing guide. Surfaces and reflection surfaces are formed alternately, and illumination light from light source means is selectively applied to the entrance surface and the reflection surface.
  • the illumination light provided by the light source means passes through the inner space of the converging guide, the incident light illuminates the observation object from the front through the irradiation hole, and the solid reflection inside the converging guide.
  • Side light that irradiates the observation object at a steep angle near parallel to the front by emitting through the inner surface of the irradiation hole, and irradiates the observation object from a part other than the irradiation hole and once the surface layer
  • transmitted light that illuminates the observation object from the inside is obtained. Then, by selectively irradiating the illumination light from the light source means to the entrance surface and the reflection surface formed on the base end surface of the light guide, it is possible to select either the incident light or the side incident light.
  • both can be combined in an appropriate ratio. That is, if the illumination light from the light source means is applied only to the reflecting surface, only the incident light is obtained, and if it is applied only to the incident surface, only the side incident light is obtained. If the light is applied to both surfaces at an appropriate ratio, the incident light and the side light can be combined at an appropriate ratio.
  • a mask body is interposed between the light source means and the base end face of the focusing guide, and the light from the light source means is selectively applied to the incident surface and the reflection surface by operating the mask body.
  • the light source means is formed in two systems of a side light source means and an incident light source means, and the side light source means is provided on the incident surface, and the incident light source is provided.
  • the light sources can be selectively turned on and off by associating the means with the reflecting surfaces.
  • Each of the imaging devices is divided into a detachable front block and a rear block, and an optical unit and a light source of a light source unit are incorporated in the front block, and signals from the imaging unit and the imaging unit are stored in the rear block.
  • the signal processing means for processing and outputting the processed signal to the display means may be incorporated.
  • the incorporation of the light source and the signal processing means into the imaging device means that the light source becomes closer to the object to be observed when it comes to the light source, so that the output of the light source can be smaller, and the light source itself can be used.
  • the signal processing means is much closer to the imaging means, so that the capacity of the signal processing means can be much smaller than in the conventional case. This leads to a significantly smaller signal processing means.
  • the incorporation of the light source and the signal processing means into the imaging device leads to the downsizing of the light source and the signal processing means, and the organic association that this downsizing also allows the incorporation leads to the overall downsizing. Is what it is.
  • FIG. 1 is a perspective view showing a relationship between a light guide means, a mask body, and a light collecting guide.
  • FIG. 2 is a partial cross-sectional view of the imaging device.
  • FIG. 3 is a plan view seen from the direction indicated by arrow A in FIG.
  • FIG. 4 is an explanatory diagram of a case where illumination light is incident on an incident surface.
  • FIG. 5 is an explanatory diagram of a case where illumination light is incident on a reflecting surface.
  • Fig. 6 is a side view of the imaging device.
  • FIG. 7 is a perspective view showing a relationship between the light guide means and the light collecting guide.
  • FIG. 8 is a partial cross-sectional view of the imaging device.
  • FIG. 9 is a plan view seen from the direction of arrow B in FIG.
  • FIG. 10 is an explanatory diagram of a case where illumination light is incident on an incident surface.
  • FIG. 11 is an explanatory diagram of a case where illumination light is applied to a reflecting surface.
  • FIG. 12 is a side view including a partial cross section of the imaging device.
  • FIG. 13 is a partial cross-sectional view of the distal end portion of the imaging device.
  • FIG. 14 is a perspective view showing the relationship between a light-condensing guide, a mask body, and a light source.
  • FIG. 15 is an explanatory diagram of a case where illumination light is incident on the incident surface.
  • FIG. 16 is an explanatory diagram of a case where illumination light is incident on a reflecting surface.
  • FIG. 17 is a side view including a partial cross section of the imaging device.
  • FIG. 18 is a partial cross-sectional view of the distal end portion of the imaging device.
  • FIG. 19 is a perspective view showing the relationship between the light-condensing guide and the light source.
  • FIG. 20 is an explanatory diagram of a case where illumination light is incident on an incident surface.
  • FIG. 21 is an explanatory diagram of a case where illumination light is incident on a reflecting surface.
  • an imaging device 1 includes an imaging device main body 2, a light-condensing guide 3, a light-shielding eave 4, and a mask body 5 (FIGS. 1 and 2). .
  • the imaging device main body 2 is a cylindrical one having a built-in light guide means 6 and an optical means 7 for enlarging an image of the observation object M.
  • an imaging device 8 (CCD device) is further built in.
  • the signal is By c, it is sent to an observation display via a processing device (not shown), and this observation display enables magnification observation of 50 to thousands times.
  • the light guide means 6 guides illumination light from a light source provided in an amplifier (not shown), and forms a light source means together with the light source.
  • the light guide means 6 forms an illuminating means together with the condensing guide 3 described later.
  • the light guide means 6 is formed of a large number of optical fibers 19.
  • the ends of the optical fibers 9 are arranged in an annular shape at the connection between the imaging device main body 2 and the light-condensing guide 3, and each of the optical fibers 9 arranged in this circular shape is
  • the base 3 faces the base end face 10 of the base 3.
  • the optical fibers 19 are sparsely shown in FIG. 1 and FIG. 2, they are actually arranged densely as shown in FIG.
  • the focusing guide 3 has its tip abutted on the surface of the object M to be observed, so that the focus of the objective lens of the optical means 7 (not shown in FIGS. 1 and 2) can be adjusted.
  • the cylindrical rear part 3 r, the hemispherical front part 3 f, and the force consist of the same.
  • the base end face 10 formed at the end of the rear part 3 r has the same shape.
  • the incident surface 1 2 and the reflecting surface 1 3 A small irradiation hole 14 is formed in the front part 3 f at the center of its tip.
  • the entrance surface 12 is for allowing the illumination light from the optical fiber 19 to penetrate into the solid inside the condensing guide 3, and is made to be orthogonal to the traveling direction of the illumination light.
  • the reflecting surface 13 reflects the entire illumination light from the optical fiber 9 and guides the illumination light to the inner space between the condensing guide 3 and the light shielding eaves 4. Is in an inclined state in which the light can be totally reflected.
  • the light-shielding eaves 4 are for blocking the other light so that only the image light from the observation object M is guided to the optical means 7 of the imaging device main body 2. Although it has a cylindrical shape according to the inner surface shape, the front part 4 f is formed in a conical cylindrical shape, and a light-collecting hole 15 is formed at the tip thereof.
  • the mask body 5 is used to selectively apply the illumination light from the light guide means 6 to the entrance surface 12 or the reflection surface 13 of the base end surface 10 of the condensing guide 3.
  • 6 is a disc-like shape with four slit holes 1 ⁇ formed around the entrance surface 12 to the reflection surface 13 according to the size, arrangement interval, and number of the reflection surfaces 13. It is disposed between the distal end of the means 6 and the base end face 10 of the focusing guide 3 so as to be freely rotatable as indicated by an arrow X.
  • the illumination light passes from the incident surface 12 to the focusing guide 3.
  • the observation object M is limited to only the side emission L s that irradiates the observation object M at a steep angle close to the front of the object, and conversely. If the slit 17 is aligned only with the reflecting surface 13, as shown in FIG. 5, the illuminating light is totally reflected by the reflecting surface 13 and passes through the focusing guide 3.
  • the imaging device according to this embodiment is provided with a means for selectively applying illumination light to the entrance surface 112 and the reflection surface 113 formed on the base end surface 110 of the light-collecting guide 103 described later.
  • the only difference is the imaging device 1 according to the first embodiment.
  • the light guide means 106 d for the incident light and the light guide means 106 s for the side light are provided. It is divided into two systems. Each system is composed of a large number of optical fibers] 09 d, 109 s, and each optical fiber 109 d, 109 s has its tip collected with the imaging device main body 102. At the connection with the optical guide 103, the optical fibers 109 d and 109 s arranged in an annular shape are condensed guides for each system. Of the base end face 110 of the light-emitting element 110 face the incident surface 112 to the reflecting surface 113. Each system can selectively perform ON / OFF control of illumination light and intensity control of illumination light for each system.
  • the illumination light is totally reflected by the reflective surface 113 and the inner surface of the light-collecting guide 103 and the outer surface of the light-shielding eaves 104, as shown in Fig. 11. Only the incident light L d that illuminates the observation object M from the front from the irradiation hole 1 1 4 through the inner space between the light source and the illumination light from the side light guide means 6 s and the incident light guide light If the illumination light from the means 106 d is applied to both the entrance surface 1 1 2 and the reflection surface 1 1 3 while changing the intensity of each, the side light Ls and the incident light L d are combined at an appropriate ratio be able to.
  • the imaging device 201 is a modified example of the imaging device 1 according to the first embodiment, and is divided into a front block 203 and a rear block 204 as shown in FIG.
  • the front block 203 can be attached to and detached from the rear block 204, and the front block 203 includes optical means 205 for enlarging an observation object and a light source 200 for light source means. 6 is built-in, and the light-collecting guide 207 is connected to the tip of the camera, while the rear block 204 is used to capture an enlarged image of the observation object M obtained by the optical means 205.
  • a signal processing means 221 for processing the signal from the means 220 and the imaging means 220 is built-in.
  • the optical means 205 comprises a cylindrical holder 208 holding an objective lens 209 and other lenses, and a tip of the holder 208. — 1 o—
  • the portion is provided with a light-shielding eave 210 formed in a tapered shape.
  • the optical means 205 basically has a configuration in which the tip of the focusing guide 207 contacts the surface of the observation object M so that the focus of the objective lens 209 is adjusted to the surface of the observation object M. Non-contact observation is also possible by adjusting the positioning force ⁇ , by adjusting the screwing state of the focusing guide 207 to the front block 203.
  • the light source 206 is disposed so as to face the base end surface 21 3 of the light-collecting guide 207 at a position corresponding to the outside of the light-shielding eave 210 of the holder 208, and the light is optically transmitted. Care is taken to avoid direct entry into means 205.
  • a large number of small light emitting sources 206b may be arranged in an annular shape, or an annular lamp may be used.
  • the converging guide 207 is the same as the converging guide 3 of the first embodiment.
  • the tip of the converging guide is brought into contact with the surface of the object M to be observed.
  • the surface of the observation object M is aligned with the focal point of the observation object M, and the illumination light from the light source 206 is divided into the incident light L d, the side irradiation light L s, and the transmitted light L t and irradiates the observation object M. ( Figure 13).
  • the screw is screwed to the front end of the front block 203 by a screwing screw 214 formed on the rear portion 207 r. In this screwed state, the above-mentioned focusing is performed. ing. More specifically, as shown in FIG.
  • a mask body 21 6 similar to that of the first embodiment is provided between the base end face 2 13 of the light-collecting guide 2 07 and the light source 206, and this mask body 2 1 6 allows the same control of the illumination light as in the first embodiment.
  • this mask body 2 16 irradiates the irradiation light from the light source 206 with the incident surface 2 13 s of the base end surface 2 13 of the focusing guide 2 07 or the reflection surface.
  • the disk is formed in a disk shape with four slit holes 218 formed. It is arranged rotatably.
  • the irradiating light will be limited to the reflecting surface 2 1 It is totally reflected by 3d, passes through the space inside the light guide cap 7, and is limited to only the incident light Ld that illuminates the object M from the front from the irradiation hole 2 15 through the illumination hole 2 15 and enters the slit hole 2 18 Surface 2 1 3 s and reflective surface 2 1
  • the side light Ls and the incident light Ld can be combined at an appropriate ratio.
  • the front block 203 can be attached to and detached from the rear block 204, a plurality of special specifications corresponding to the enlargement ratio and the type of the target observation object are prepared in advance, and these special blocks are prepared. Selective things It is possible to use properly.
  • the rear block 204 is an imaging unit 220 that captures an enlarged image of the observation object M obtained by the optical unit 205, and in this example,
  • Signal processing means 221 for processing signals from the CCD element 220 and the CCD element 220 is incorporated. Also, this rear block 20
  • the imaging device 301 has a structure in which the structure of the third embodiment, which is divided into front and rear blocks, is combined with the structure of selecting illumination light by two light sources in the second embodiment. There are special features.
  • the image pickup device 301 is divided into a front block 303 and a rear block 304, and the front block 303 is arranged with respect to the rear block 304.
  • the front block 303 is provided with optical means for enlarging an object to be observed.
  • a light guide for the light source means and a light source for the light source means are built in, and a light-collecting guide is connected to the front end thereof, while the rear block is connected to the light guide.
  • the light source 303 is formed by arranging a plurality of small light-emitting sources 312 in an annular shape on the outer side of the light-shielding eave 310 toward the base end surface 13 of the light-collecting guide 3107. Eight blocks, including a fixed number of light sources 3 1 2, are blocked into eight blocks, and each block is alternately a side emission light source.
  • the light source for incident light is 300 s to 300 d
  • the light source for side light is 300 s to 300 d
  • the incident light source 3 06 d corresponds to the reflection surface 3 13 d
  • the light source for the side light source is 30 s and the light source for the incident light source
  • the side light source 300 s is turned on by operating the switch 324 s of the switches 324 s and 324 d for ONZOFF of the light sources 306 s and 306 d. If illumination light is applied only to the incident surface 3 13 s, as shown in FIG. 20, this illumination light is transmitted from the incident surface 3 13 s to the solid inside of the focusing guide 3 07. And the light passes through the inside of the irradiation hole 315 through total internal reflection and exits from the inner surface of the irradiation hole 315, so that only the side light Ls that irradiates the observation object M at a sharp angle close to the front of the object M is obtained.
  • the illumination light from 0 6 s and the illumination light from the incident light 3 0 6 d are applied to both the entrance surface 3 13 s and the reflection surface 3 13 d while changing the intensity of each, the side emission light L s and the incident light L d can be combined at an appropriate ratio. Since the other structure is the same as that of the third embodiment, the corresponding parts are denoted by the corresponding reference numerals in the 300s in the figure, and the description thereof is omitted.
  • the imaging device can select the incident light, side emission light, and transmitted light, and can combine the respective light amounts at an appropriate ratio, and use such an imaging device. This will further expand the field of application of magnification observation.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An imaging instrument for observing a magnified object, which enables the selection of illuminating beams of light classified as sideway incident, downward incident, and transmitted beams. The instrument is provided with a condensing guide at the tip thereof for controlling illuminating beams of light from the light source and throwing light on an object to be observed. On the base surface of said guide, light receiving surfaces and light reflective ones are alternately formed and illuminating light from the light source is selectively thrown on said light receiving surfaces and reflective ones, whereby, when light falls on the receiving surfaces, sideway incident beams are obtained whereas, when on the reflective surfaces, downward ones obtained.

Description

明 細 書  Specification
拡大観察用の撮像具  Imaging device for magnifying observation
〔技術分野〕 〔Technical field〕
この発明は、 医療、 学術、 産業等の各種の分野において、 例え ば人の皮膚、 微細な生物、 あるいは集積回路のような観察物の外 面乃至表層をそれがあるままの位置で何らの加工を施すことなく 拡大して観察することのできる拡大観察用の撮像具に関する。 〔背景技術〕  The present invention can be used in various fields such as medical, academic, and industrial fields, for example, by processing the outer surface or surface layer of an observation object such as human skin, microscopic organisms, or integrated circuits in the same position as it is. TECHNICAL FIELD The present invention relates to an image pickup device for magnifying observation that can be magnified and observed without performing image processing. (Background technology)
例えば、 日本国特許公開平成 1年第 2 6 4 6 2号公報及び 3 0 8 5 2 7号公報あるいは米国特許第 4 9 3 0 8 5 1号明細書等に 拡大観察用の撮像具が示されている。  For example, Japanese Patent Publication Nos. 26642/2001 and 305852/27 or U.S. Pat.No. 4,930,851 describe an imaging device for magnifying observation. Have been.
これらの撮像具は、 撮像具で取り入れた観察物の像をディスプ レイつまり表示手段に再生して観察するようにして用いるもので- スタン ドフリーの観察、 つまり従来の顕微鏡のように観察装置自 体は所定の伏態で固定された状態を必要とし、 この観察装置に所 定の様式で加工した観察対象物のサンプルをセッ 卜して観察する という観察に対し、 撮像具を観察対象物の側に手で持って行って 観察対象物をそのままの状態で観察するというスタン ドフ リーの 観察を':亍ぇ、 何らの技能や熟練を必要とせず誰でも手軽に例えば 5 0倍〜 1 0 0 0倍という高倍率での拡大観察を行えるというも のである。  These imaging devices are used by reproducing an image of an observation object taken by the imaging device on a display, that is, a display means, for observation.- Stand-free observation, that is, an observation device itself like a conventional microscope. Requires a state in which the object is fixed in a predetermined prone position. In contrast to observation in which a sample of an observation target processed in a predetermined manner is set in the observation device and observation is performed, the imaging tool is moved to the side of the observation target. ': 亍 ぇ, which can be easily carried by anyone without any skill or skill, e.g., 50x to 100x It is capable of magnifying observations at a high magnification of 0x.
この種の拡大観察において最も大切なことは、 観察物の観察部 位を照明する照明光の制御乃至観察物からの影像光の制御である。 すなわち、 一般に観察物を照明する照明光には、 観察物を正面か ら照らす落射光と、 観察物の正面に対し平行に近い急角度で照明 する側射光と、 及び透光性の観察物の場合に内部に透過した光で 内側から表層を照らす透過光とがある。 そして、 落射光は、 全体 的な観察に適するが、 観察物の表面からの反射光の影響を受けや すく、 また側射光は、 陰影を与えることにより落射光だけでは見 えないような立体構造の観察を可能とするのに秀れており、 さら に透過光は、 透光性の観察物の場合にしか使えないが、 観察物の 表層をある程度の深さを以て影絵的に観察できるというように、 それぞれが固有の長所と短所を持っている。 したがって、 これら の各光を自由に選択し、 また適当に組み合わせることができれば、 より有効な観察を行えることになる。 The most important thing in this kind of magnifying observation is control of illumination light for illuminating the observation position of the observation object or control of image light from the observation object. In other words, the illumination light that illuminates the observation object generally includes the incident light that illuminates the observation object from the front and the steep angle that is almost parallel to the front of the observation object And, in the case of a translucent observation object, transmitted light that illuminates the surface layer from the inside with light transmitted inside. The incident light is suitable for the whole observation, but is easily affected by the reflected light from the surface of the observation object, and the side light is shaded so that it cannot be seen only by the incident light. It is excellent for observing images, and the transmitted light can be used only for translucent objects.However, it is possible to observe the surface of the object with a certain depth in shadow. Each has its own strengths and weaknesses. Therefore, if these lights can be freely selected and appropriately combined, more effective observation can be performed.
このような光の処理に関しては、 既に幾つかの技術が提案され ている。  Regarding such light processing, several technologies have already been proposed.
例えば、 前記の日本国特許公開平成 1年第 3 0 8 5 2 7号は、 その一つで、 集光ガイ ドを半球状乃至半球面体状に形成すること により、 側射光 (水平光) を主体として落射光及び透過光が適度 に組み合わさり良好な観察を行えるようになつている。 また、 他 の一つである前記の米国特許第 4 9 3 0 8 5 1号の技術は、 影像 光の選択が可能となるようにされており、 より多面的な観察が可 能となっている。 しかし、 これらは何れも照明光の選択が可能で ない。  For example, the aforementioned Japanese Patent Publication No. 308527/1999 discloses one of them, in which a converging guide is formed in a hemispherical or hemispherical shape, so that side light (horizontal light) is generated. The main component is that the incident light and transmitted light are appropriately combined to enable good observation. Further, the technology of the above-mentioned U.S. Pat. No. 4,930,851, which is another one, enables selection of image light, and enables more versatile observation. I have. However, none of them can select illumination light.
したがって、 この発明は、 照明光の種類の選択が可能であるよ うな撮像具の提供を目的とする。  Therefore, an object of the present invention is to provide an imaging device capable of selecting the type of illumination light.
〔発明の開示〕  [Disclosure of the Invention]
この発明による撮像具は、 前部が半球面体状とされその中心に 照射孔が形成されると共に、 光源手段からの照明光が中実内部に 入射可能な基端面が基端部が形成されてなる集光ガイ ドを先端部 に備え、 この集光ガイ ドよりの照明光にて照明された観察物の観 察部位を光学手段にて撮像手段に結像させるようになっており、 そして集光ガイ ドの基端面に入射面と反射面とが交互に形成され この入射面と反射面とに対し、 光源手段からの照明光が選択的に 当てられるようにされている。 In the imaging device according to the present invention, a front portion has a hemispherical shape, an irradiation hole is formed at the center thereof, and a base end surface is formed at a base end surface through which illumination light from the light source means can enter the solid interior. Light guide at the tip In this case, the observation area of the observation object illuminated by the illumination light from the focusing guide is formed into an image by the optical means on the imaging means, and is incident on the base end face of the focusing guide. Surfaces and reflection surfaces are formed alternately, and illumination light from light source means is selectively applied to the entrance surface and the reflection surface.
この撮像具では、 光源手段にて与えられる照明光から、 集光ガ ィ ドの内側空間を通って照射孔より観察物を正面から照らす落射 光と、 集光ガイ ドの中実内部を全反射により通過して来て照射孔 の内側面から出射することにより観察物をその正面に対し平行に 近い急角度で照射する側射光と、 及び照射孔以外の部位から観察 物に当りその表層を一旦透過した後に観察物を内部から照らすこ とになる透過光とが得られる。 そして、 集光ガイ ドの基端面に形 成されている入射面と反射面とに対し、 光源手段からの照明光を 選択的に当てることにより、 落射光または側射光の何れかの選択 を行え、 また両者を適宜の比率で組み合わせることができる。 す なわち、 光源手段からの照明光を反射面だけに当てるようにすれ ば落射光だけが得られ、 逆に入射面だけに当てるようにすれば側 射光だけが得られ、 また入射、 反射の両面に適宜の比率で当てる ようにすれば、 落射光と側射光を適宜の比率で組み合わせること ができる。  In this imaging device, the illumination light provided by the light source means passes through the inner space of the converging guide, the incident light illuminates the observation object from the front through the irradiation hole, and the solid reflection inside the converging guide. Side light that irradiates the observation object at a steep angle near parallel to the front by emitting through the inner surface of the irradiation hole, and irradiates the observation object from a part other than the irradiation hole and once the surface layer After the transmission, transmitted light that illuminates the observation object from the inside is obtained. Then, by selectively irradiating the illumination light from the light source means to the entrance surface and the reflection surface formed on the base end surface of the light guide, it is possible to select either the incident light or the side incident light. Alternatively, both can be combined in an appropriate ratio. That is, if the illumination light from the light source means is applied only to the reflecting surface, only the incident light is obtained, and if it is applied only to the incident surface, only the side incident light is obtained. If the light is applied to both surfaces at an appropriate ratio, the incident light and the side light can be combined at an appropriate ratio.
このような照明光の制御については、 光源手段と集光ガイ ドの 基端面との間にマスク体を介在させ、 マスク体の操作により光源 手段からの光を入射面と反射面に対し選択的に当てるようにする ことができる。  For such control of illumination light, a mask body is interposed between the light source means and the base end face of the focusing guide, and the light from the light source means is selectively applied to the incident surface and the reflection surface by operating the mask body. Can be used.
また、 光源手段を側射光用光源手段と落射光用光源手段との 2 系統に形成し、 側射光用光源手段を入射面に、 また落射光用光源 手段を反射面にそれぞれ対応させ、 各光源手段を選択的に O N · O F Fさせるようにすることもできる。 In addition, the light source means is formed in two systems of a side light source means and an incident light source means, and the side light source means is provided on the incident surface, and the incident light source is provided. The light sources can be selectively turned on and off by associating the means with the reflecting surfaces.
前記各撮像具については、 接 '離自在な前方プロックと後方ブ 口ックに分割し、 前方プロックに光学手段及び光源手段の光源を 内蔵させ、 後方プロックに撮像手段及び撮像手段からの信号を処 理して表示手段に出力する信号処理手段を内蔵させる構成とする ことができる。  Each of the imaging devices is divided into a detachable front block and a rear block, and an optical unit and a light source of a light source unit are incorporated in the front block, and signals from the imaging unit and the imaging unit are stored in the rear block. The signal processing means for processing and outputting the processed signal to the display means may be incorporated.
このようにすることにより、 外部にコントローラつまり信号処 理手段を設ける必要がないで、 その分、 全体を小型化できる。 し かも、 この光源及び信号処理手段の撮像具への内蔵は、 光源につ いてみると、 光源がそれだけ観察物に近くなるから、 光源の出力 がより小さくて済むということであり、 光源自体を格段に小型化 できることに結び付き、 また信号処理手段についてみると、 信号 処理手段がそれだけ撮像手段に近くなるから、 信号処理手段の容 量が従来の場合に比べ格段に小さくて済むということであり、 信 号処理手段を格段に小型化できることに結び付く。 つまり、 光源 及び信号処理手段の撮像具への内蔵は光源及び信号処理手段の小 型化に結び付き、 この小型化がまた内蔵化を可能にするという有 機的関連が全体の小型化をもたらしているものである。  By doing so, there is no need to provide an external controller, that is, a signal processing means, and the whole can be reduced in size. Furthermore, the incorporation of the light source and the signal processing means into the imaging device means that the light source becomes closer to the object to be observed when it comes to the light source, so that the output of the light source can be smaller, and the light source itself can be used. This means that the signal processing means is much closer to the imaging means, so that the capacity of the signal processing means can be much smaller than in the conventional case. This leads to a significantly smaller signal processing means. In other words, the incorporation of the light source and the signal processing means into the imaging device leads to the downsizing of the light source and the signal processing means, and the organic association that this downsizing also allows the incorporation leads to the overall downsizing. Is what it is.
〔図面の簡単な説明〕  [Brief description of drawings]
第 1図は、 導光手段、 マスク体及び集光ガイ ドの関係を示す斜 視図。  FIG. 1 is a perspective view showing a relationship between a light guide means, a mask body, and a light collecting guide.
第 2図は、 撮像具の部分断面図。  FIG. 2 is a partial cross-sectional view of the imaging device.
第 3図は、 第 2図中の矢示 A方向から見た平面図。  FIG. 3 is a plan view seen from the direction indicated by arrow A in FIG.
第 4図は、 入射面に照明光が当たる場合についての説明図。 第 5図は、 反射面に照明光が当たる場合についての説明図。 第 6図は、 撮像具の側面図。 FIG. 4 is an explanatory diagram of a case where illumination light is incident on an incident surface. FIG. 5 is an explanatory diagram of a case where illumination light is incident on a reflecting surface. Fig. 6 is a side view of the imaging device.
第 7図は、 導光手段と集光ガイ ドの関係を示す斜視図。  FIG. 7 is a perspective view showing a relationship between the light guide means and the light collecting guide.
第 8図は、 撮像具の部分断面図。  FIG. 8 is a partial cross-sectional view of the imaging device.
第 9図は、 第 8図中の矢示 B方向から見た平面図。  FIG. 9 is a plan view seen from the direction of arrow B in FIG.
第 1 0図は、 入射面に照明光が当たる場合についての説明図。 第 1 1図は、 反射面に照明光が当たる場合についての説明図。 第 1 2図は、 撮像具の一部断面を含む側面図。  FIG. 10 is an explanatory diagram of a case where illumination light is incident on an incident surface. FIG. 11 is an explanatory diagram of a case where illumination light is applied to a reflecting surface. FIG. 12 is a side view including a partial cross section of the imaging device.
第 1 3図は、 撮像具の先端部分の部分断面図。  FIG. 13 is a partial cross-sectional view of the distal end portion of the imaging device.
第 1 4図は、 集光ガイ ド、 マスク体及び光源との関係を示す斜 視図。  FIG. 14 is a perspective view showing the relationship between a light-condensing guide, a mask body, and a light source.
第 1 5図は、 入射面に照明光が当たる場合についての説明図。 第 1 6図は、 反射面に照明光が当たる場合についての説明図。 第 1 7図は、 撮像具の一部断面を含む側面図。  FIG. 15 is an explanatory diagram of a case where illumination light is incident on the incident surface. FIG. 16 is an explanatory diagram of a case where illumination light is incident on a reflecting surface. FIG. 17 is a side view including a partial cross section of the imaging device.
第 1 8図は、 撮像具の先端部分の部分断面図。  FIG. 18 is a partial cross-sectional view of the distal end portion of the imaging device.
第 1 9図は、 集光ガイ ドと光源との関係を示す斜視図。  FIG. 19 is a perspective view showing the relationship between the light-condensing guide and the light source.
第 2 0図は、 入射面に照明光が当たる場合についての説明図。 第 2 1図は、 反射面に照明光が当たる場合についての説明図。 〔発明を実施するための形態〕  FIG. 20 is an explanatory diagram of a case where illumination light is incident on an incident surface. FIG. 21 is an explanatory diagram of a case where illumination light is incident on a reflecting surface. [Mode for Carrying Out the Invention]
以下、 この発明の実施例を説明する。  Hereinafter, embodiments of the present invention will be described.
第 1実施例 (第 1図〜第 6図)  First embodiment (Figs. 1 to 6)
この実施例による撮像具 1 は、 第 6図に示すように、 撮像具本 体 2、 集光ガイ ド 3、 遮光庇 4及びマスク体 5 (第 1図及び第 2 図) より形成されている。  As shown in FIG. 6, an imaging device 1 according to this embodiment includes an imaging device main body 2, a light-condensing guide 3, a light-shielding eave 4, and a mask body 5 (FIGS. 1 and 2). .
撮像具本体 2は、 導光手段 6及び観察物 Mの像を拡大するため の光学手段 7を内蔵した円筒状のもので、 この例では、 さらに撮 像素子 8 ( C C D素子) を内蔵しており、 その信号がケーブル 8 cにより図外の処理装置を介して観察用ディスプレイに送られ、 この観察用ディスプレイにより 5 0倍〜数千倍の拡大観察ができ るようになっている。 The imaging device main body 2 is a cylindrical one having a built-in light guide means 6 and an optical means 7 for enlarging an image of the observation object M. In this example, an imaging device 8 (CCD device) is further built in. And the signal is By c, it is sent to an observation display via a processing device (not shown), and this observation display enables magnification observation of 50 to thousands times.
導光手段 6は、 図外のアンプに設けられている光源から照明光 を導くようになつており、 光源と共に光源手.段を形成している。 そして、 この導光手段 6は、 さらに後述の集光ガイ ド 3と共に照 明手段を形成する。  The light guide means 6 guides illumination light from a light source provided in an amplifier (not shown), and forms a light source means together with the light source. The light guide means 6 forms an illuminating means together with the condensing guide 3 described later.
具体的には、 導光手段 6は、 第 1図〜第 3図に示すように、 多 数の光ファイバ一 9で形成されている。 そして、 各光ファイバ一 9はその先端が撮像具本体 2と集光ガイ ド 3 との接続部において 円環状に配列され、 この円環状に配列された各光フアイバー 9が- 後述の集光ガイ ド 3の基端面 1 0に向き合うようにされている。 尚、 第 1図及び第 2図中では光ファイバ一 9が疎らに示されてい るが、 実際は第 3図に示すような緻密な配列となっている。  Specifically, as shown in FIGS. 1 to 3, the light guide means 6 is formed of a large number of optical fibers 19. The ends of the optical fibers 9 are arranged in an annular shape at the connection between the imaging device main body 2 and the light-condensing guide 3, and each of the optical fibers 9 arranged in this circular shape is The base 3 faces the base end face 10 of the base 3. Although the optical fibers 19 are sparsely shown in FIG. 1 and FIG. 2, they are actually arranged densely as shown in FIG.
集光ガイ ド 3は、 その先端を観察物 Mの表面に当接させること により光学手段 7 (第 1図及び第 2図では図示が省略されてい る) の対物レンズの焦点に対し観察物 Mの表面が合うようにする ためのものであると共に、 導光手段 6からの照明光を落射光 L d 、 側射光 L s、 及び透過光 L tとに分けて観察物 Mに照射するため のもので、 例えばァクリル樹脂のような透明性の高い合成樹脂で 作られている。 そして、 後部 3 rに形成されている螺合ネジ 1 1 により撮像具本体 2の先端に螺着されており、 この螺着状態にお いて前述の焦点合わせがなされるようになっている。  The focusing guide 3 has its tip abutted on the surface of the object M to be observed, so that the focus of the objective lens of the optical means 7 (not shown in FIGS. 1 and 2) can be adjusted. To irradiate the observation object M with the illumination light from the light guide means 6 being divided into incident light Ld, side light Ls, and transmitted light Lt. It is made of highly transparent synthetic resin such as acryl resin. Then, it is screwed to the tip of the imaging device main body 2 by a screwing screw 11 formed on the rear portion 3r, and the above-mentioned focusing is performed in this screwed state.
より詳細には、 円筒状の後部 3 rと半球面状とされた前部 3 f と力、らなり、 後部 3 rの端に形成されている基端面 1 0には、 そ れぞれ同じ長さとされた入射面 1 2と反射面 1 3とが 4面ずつ交 互に形成され、 前部 3 f にはその先端の中心に小さな照射孔 1 4 が穿設されている。 入射面 1 2は、 光ファイバ一 9からの照明光 を集光ガイ ド 3の中実内部に透入させるためのもので、 照明光の 進行方向に対し直交するようにされており、 逆に反射面 1 3は、 光フアイバー 9からの照明光を全部反射させて集光ガイ ド 3と遮 光庇 4との間の内側空間に導くためのもので、 照明光の進行方向 に対し照明光を全反射させ得る傾斜状態とされている。 More specifically, the cylindrical rear part 3 r, the hemispherical front part 3 f, and the force consist of the same. The base end face 10 formed at the end of the rear part 3 r has the same shape. The incident surface 1 2 and the reflecting surface 1 3 A small irradiation hole 14 is formed in the front part 3 f at the center of its tip. The entrance surface 12 is for allowing the illumination light from the optical fiber 19 to penetrate into the solid inside the condensing guide 3, and is made to be orthogonal to the traveling direction of the illumination light. The reflecting surface 13 reflects the entire illumination light from the optical fiber 9 and guides the illumination light to the inner space between the condensing guide 3 and the light shielding eaves 4. Is in an inclined state in which the light can be totally reflected.
遮光庇 4は、 それ以外の光を遮って観察物 Mからの影像光だけ を撮像具本体 2の光学手段 7に導くようにするためのもので、 後 部 4 rは集光ガイ ド 3の内面形状に合わせて円筒状になっている が、 前部 4 f は円錐筒状とされており、 その先端に集光孔 1 5が 形成されている。  The light-shielding eaves 4 are for blocking the other light so that only the image light from the observation object M is guided to the optical means 7 of the imaging device main body 2. Although it has a cylindrical shape according to the inner surface shape, the front part 4 f is formed in a conical cylindrical shape, and a light-collecting hole 15 is formed at the tip thereof.
マスク体 5は、 導光手段 6からの照明光を集光ガイ ド 3の基端 面 1 0の入射面 1 2または反射面 1 3に選択的に当てるためのも ので、 中心に通孔 1 6力《、 また周囲に、 入射面 1 2乃至反射面 1 3のサイズ、 配列間隔及び数に対応させて 4個のスリ ッ 卜孔 1 Ί が形成された円盤状とされており、 導光手段 6の先端と集光ガイ ド 3の基端面 1 0との間に矢示 Xの如く回動自在として配されて いる。  The mask body 5 is used to selectively apply the illumination light from the light guide means 6 to the entrance surface 12 or the reflection surface 13 of the base end surface 10 of the condensing guide 3. 6 is a disc-like shape with four slit holes 1 に formed around the entrance surface 12 to the reflection surface 13 according to the size, arrangement interval, and number of the reflection surfaces 13. It is disposed between the distal end of the means 6 and the base end face 10 of the focusing guide 3 so as to be freely rotatable as indicated by an arrow X.
すなわち、 このマスク体 5を回動させてスリ ッ ト孔 1 7を入射 面 1 2だけに合わせれば、 第 4図に示すように、 照明光は、 入射 面 1 2から集光ガイ ド 3の内部に入りこの内部を全反射により通 過して照射孔 1 4の側面から出ることにより観察物 Mをその正面 に対し平行に近い急角度で照射する側射光 L sだけに限られ、 逆 に、 スリ ッ ト孔 1 7を反射面 1 3だけに合わせれば、 第 5図に示 すように、 照明光は、 反射面 1 3で全部反射され集光ガイ ド 3の 内面と遮光庇 4の外面との間の空間を通って照射孔 1 4より観察 物 Mを正面から照らす落射光 L dだけに限られ、 またスリ ッ ト孔 1 7を入射面 1 2と反射面〗 3の両方に適宜の比率で合うように させれば、 側射光し' sと落射光 L dとを適宜の比率で組み合わせ ることができる。 尚、 マスク体 5を回動させるための機構として は周知の技術を適宜に採用できる。 That is, when the mask body 5 is rotated to align the slit hole 17 with only the incident surface 12, as shown in FIG. 4, the illumination light passes from the incident surface 12 to the focusing guide 3. By entering the interior, passing through the interior by total internal reflection and exiting from the side of the irradiation hole 14, the observation object M is limited to only the side emission L s that irradiates the observation object M at a steep angle close to the front of the object, and conversely. If the slit 17 is aligned only with the reflecting surface 13, as shown in FIG. 5, the illuminating light is totally reflected by the reflecting surface 13 and passes through the focusing guide 3. It passes through the space between the inner surface and the outer surface of the light-shielding eaves 4 and is limited to only the incident light L d that illuminates the observation object M from the front from the irradiation hole 14 and reflects the slit hole 17 to the entrance surface 12 By making both surfaces 3 fit at an appropriate ratio, the side emission light s and the incident light Ld can be combined at an appropriate ratio. In addition, as a mechanism for rotating the mask body 5, a known technique can be appropriately adopted.
第 2実施例 (第 7図〜第〗 1図)  Second embodiment (Fig. 7 to Fig. 1)
この実施例による撮像具は、 後述の集光ガイ ド 1 0 3の基端面 1 1 0に形成されている入射面 1 1 2及び反射面 1 1 3に対し照 明光を選択的に当てる手段において第 1実施例による撮像具 1 と 異なるだけである。  The imaging device according to this embodiment is provided with a means for selectively applying illumination light to the entrance surface 112 and the reflection surface 113 formed on the base end surface 110 of the light-collecting guide 103 described later. The only difference is the imaging device 1 according to the first embodiment.
すなわち、 この撮像具では、 その導光手段 1 0 6力 第 7図及 び第 8図に示すように、 落射光用導光手段 1 0 6 dと側射光用導 光手段 1 0 6 sとの二系統に分けられている。 各系はそれぞれ多 数の光ファイバ一 ] 0 9 d、 1 0 9 sで形成されており、 各光フ アイバー 1 0 9 d、 1 0 9 sはその先端が撮像具本体 1 0 2と集 光ガイ ド 1 0 3との接続部において円環状に配列され、 この円環 状に配列された各光フアイバー 1 0 9 d、 1 0 9 sがその系統ご とに集光ガイ ド 1 0 3の基端面 1 1 0に形成されている入射面 1 1 2乃至反射面 1 1 3に向き合うようにされている。 そして、 各 系は系ごとに照明光の O N · 0 F F制御及び照明光の強弱制御を 選択的に行えるようになっている。  That is, in this imaging device, as shown in FIGS. 7 and 8, the light guide means 106 d for the incident light and the light guide means 106 s for the side light are provided. It is divided into two systems. Each system is composed of a large number of optical fibers] 09 d, 109 s, and each optical fiber 109 d, 109 s has its tip collected with the imaging device main body 102. At the connection with the optical guide 103, the optical fibers 109 d and 109 s arranged in an annular shape are condensed guides for each system. Of the base end face 110 of the light-emitting element 110 face the incident surface 112 to the reflecting surface 113. Each system can selectively perform ON / OFF control of illumination light and intensity control of illumination light for each system.
したがって、 側射光用導光手段 1 0 6 sのみを O Nとして入射 面 1 1 2だけに照明光を当てるようにすれば、 第 1 0図に示すよ うに、 この照明光が入射面 1 1 2から集光ガイ ド 1 0 3の内部に 入りこの内部を全反射により通過して照射孔 1 1 4の側面から出 ることにより観察物をその正面に対し平行に近い急角度で照射す る側射光 L sだけが得られ、 逆に、 落射光用導光手段 1 0 6 dの みを O Nとして反射面 1 1 3だけに照明光を当てるようにすれば. 第 1 1図に示すように、 照明光が反射面 1 1 3で全部反射され集 光ガイ ド 1 0 3の内面と遮光庇 1 0 4の外面との間の内側空間を 通って照射孔 1 1 4より観察物 Mを正面から照らす落射光 L dだ けが得られ、 また側射光用導光手段 6 sからの照明光と落射光用 導光手段 1 0 6 dからの照明光とを各々の強弱を変えて入射面 1 1 2と反射面 1 1 3の両方に当てれば、 側射光 L sと落射光 L d とを適宜の比率で組み合わせることができる。 Therefore, if only the side light guide means 106 s is turned ON and the illumination light is applied only to the incident surface 112, as shown in FIG. Enters the inside of the condensing guide 103 from the outside, passes through this inside by total internal reflection, and exits from the side of the irradiation hole 114. As a result, only the side light Ls, which irradiates the observation object at a steep angle close to the front of the object, is obtained. Conversely, only the incident light guide means 106 d is turned on and the reflection surface 1 1 As shown in Fig. 11, the illumination light is totally reflected by the reflective surface 113 and the inner surface of the light-collecting guide 103 and the outer surface of the light-shielding eaves 104, as shown in Fig. 11. Only the incident light L d that illuminates the observation object M from the front from the irradiation hole 1 1 4 through the inner space between the light source and the illumination light from the side light guide means 6 s and the incident light guide light If the illumination light from the means 106 d is applied to both the entrance surface 1 1 2 and the reflection surface 1 1 3 while changing the intensity of each, the side light Ls and the incident light L d are combined at an appropriate ratio be able to.
尚、 その他の構造は第 1実施例の場合と同様なので、 図面中で 対応する部分に 1 0 0番台で対応する符号を付して示し、 その説 明を省略している。  Since other structures are the same as those in the first embodiment, corresponding parts in the drawings are denoted by corresponding reference numerals in the 100's and their description is omitted.
第 3実施例 (第 1 2図〜第 1 6図)  Third embodiment (Figs. 12 to 16)
この実施例による撮像具 2 0 1は、 第 1実施例による撮像具 1 の変形例で、 第 1 2図に示すように、 前方ブロック 2 0 3と後方 ブロック 2 0 4とに分割されており、 前方プロック 2 0 3が後方 プロック 2 0 4に対し着脱できるようにされ、 そして、 前方プロ ック 2 0 3には、 観察物拡大用の光学手段 2 0 5及び光源手段用 の光源 2 0 6が内蔵されると共に、 その先端部に集光ガイ ド 2 0 7が接続される一方で、 後方プロック 2 0 4には、 光学手段 2 0 5により得られる観察物 Mの拡大像を捉える撮像手段 2 2 0及び 撮像手段 2 2 0からの信号を処理する信号処理手段 2 2 1が内蔵 されている点に特徴がある。  The imaging device 201 according to this embodiment is a modified example of the imaging device 1 according to the first embodiment, and is divided into a front block 203 and a rear block 204 as shown in FIG. The front block 203 can be attached to and detached from the rear block 204, and the front block 203 includes optical means 205 for enlarging an observation object and a light source 200 for light source means. 6 is built-in, and the light-collecting guide 207 is connected to the tip of the camera, while the rear block 204 is used to capture an enlarged image of the observation object M obtained by the optical means 205. It is characterized in that a signal processing means 221 for processing the signal from the means 220 and the imaging means 220 is built-in.
光学手段 2 0 5は、 筒状のホルダ 2 0 8に対物レンズ 2 0 9及 びその他のレンズを保持させてなるもので、 ホルダ 2 0 8の先端 — 1 o— The optical means 205 comprises a cylindrical holder 208 holding an objective lens 209 and other lenses, and a tip of the holder 208. — 1 o—
部には先窄まり状に形成した遮光庇 2 1 0が設けられている。 こ の光学手段 2 0 5は、 基本的には集光ガイ ド 2 0 7の先端が観察 物 Mの表面に当接することにより対物レンズ 2 0 9の焦点が観察 物 Mの表面に合うように位置決めされる力 <、 集光ガイ ド 2 0 7の 前方プロック 2 0 3に対する螺合状態を調整することにより非接 触観察も可能なようになっている。 The portion is provided with a light-shielding eave 210 formed in a tapered shape. The optical means 205 basically has a configuration in which the tip of the focusing guide 207 contacts the surface of the observation object M so that the focus of the objective lens 209 is adjusted to the surface of the observation object M. Non-contact observation is also possible by adjusting the positioning force <, by adjusting the screwing state of the focusing guide 207 to the front block 203.
光源 2 0 6は、 ホルダ 2 0 8の遮光庇 2 1 0の外側に対応する 位置において集光ガイ ド 2 0 7の基端面 2 1 3に対向するように 配されており、 その光が光学手段 2 0 5に直接入ることのないよ うに配慮されている。 光源 2 0 6としては、 第 1 4図に示すよう に、 小さな発光源 2 0 6 bを多数個円環状に配列してもよいし、 また円環状のランプを用いてもよい。  The light source 206 is disposed so as to face the base end surface 21 3 of the light-collecting guide 207 at a position corresponding to the outside of the light-shielding eave 210 of the holder 208, and the light is optically transmitted. Care is taken to avoid direct entry into means 205. As the light source 206, as shown in FIG. 14, a large number of small light emitting sources 206b may be arranged in an annular shape, or an annular lamp may be used.
集光ガイ ド 2 0 7は、 第 1実施例の集光ガイ ド 3と同様のもの で、 その先端を観察物 Mの表面に当接させることにより光学手段 2 0 5の対物レンズ 2 0 9の焦点に対し観察物 Mの表面が合うよ うになり、 また光源 2 0 6からの照明光を落射光 L d、 側射光 L s、 及び透過光 L tとに分けて観察物 Mに照射する (第 1 3図) 。 そして、 後部 2 0 7 rに形成されている螺合ネジ 2 1 4により前 方プロック 2 0 3の先端に螺着されており、 この螺着状態におい て前述の焦点合わせがなされるようになっている。 より詳細には、 第 1 4図に示すように、 円筒状の後部 2 0 7 rと半球面状とされ た前部 2 0 7 f とからなり、 後部 2 0 7 rの端に形成されている 基端面 2 1 3には、 第 1実施例の場合と同様に、 それぞれ同じ長 さとされた入射面 2 1 3 sと反射面 2 1 3 dとが 4面ずつ交互に 形成され、 前部 2 0 7 f にはその先端の中心に小さな照射孔 2 1 5が穿設されている。 この集光ガイ ド 2 0 7の基端面 2 1 3と光源 2 0 6との間には 第 1実施例の場合と同様のマスク体 2 1 6が設けられており、 こ のマスク体 2 1 6により、 第 1実施例の場合と同様の照明光の制 御を行えるようになっている。 The converging guide 207 is the same as the converging guide 3 of the first embodiment. The tip of the converging guide is brought into contact with the surface of the object M to be observed. The surface of the observation object M is aligned with the focal point of the observation object M, and the illumination light from the light source 206 is divided into the incident light L d, the side irradiation light L s, and the transmitted light L t and irradiates the observation object M. (Figure 13). The screw is screwed to the front end of the front block 203 by a screwing screw 214 formed on the rear portion 207 r. In this screwed state, the above-mentioned focusing is performed. ing. More specifically, as shown in FIG. 14, it is composed of a cylindrical rear part 207 r and a hemispherical front part 207 f, formed at the end of the rear part 207 r. In the same manner as in the first embodiment, four incident surfaces 2 13 s and four reflecting surfaces 2 13 d having the same length are alternately formed on the base end surface 2 13. A small irradiation hole 2 15 is drilled at the center of the tip of the 2 07 f. A mask body 21 6 similar to that of the first embodiment is provided between the base end face 2 13 of the light-collecting guide 2 07 and the light source 206, and this mask body 2 1 6 allows the same control of the illumination light as in the first embodiment.
すなわち、 このマスク体 2 1 6は、 光源 2 0 6からの照射光を 集光ガイ ド 2 0 7の基端面 2 1 3の入射面 2 1 3 sまたは反射面 In other words, this mask body 2 16 irradiates the irradiation light from the light source 206 with the incident surface 2 13 s of the base end surface 2 13 of the focusing guide 2 07 or the reflection surface.
2 1 3 dに選択的に当てるためのもので、 中心に通孔 2 1 Ίが、 また周囲に、 入射面 2 1 3 s及び反射面 2 1 3 dのサイズ、 配列 間隔及び数に対応させて 4個のスリ ッ ト孔 2 1 8が形成された円 盤状とされており、 光源 2 0 6と集光ガイ ド 2 0 7の基端面 2 1 3との間に矢示 Xの如く回動自在として配されている。 It is intended to selectively apply to 2 13 d, with a through hole 21 に at the center, and corresponding to the size, arrangement interval and number of incident surface 2 13 s and reflective surface 2 13 d around As shown by an arrow X between the light source 206 and the base end face 21 3 of the light-collecting guide 207, the disk is formed in a disk shape with four slit holes 218 formed. It is arranged rotatably.
したがって、 このマスク体 2 1 6を回動させてスリ ッ ト孔 2 1 8を入射面 2 1 3 sだけに合わせれば、 第 1 5図に示すように、 照射光は、 入射面 2 1 3 sから集光ガイ ド 2 0 7の中実内部に入 りこの内部を全反射により通過して照射孔 2 1 5の側面から出る ことにより被観察物 Mをその正面に対し平行に近い急角度で照射 する側射光 L sだけに限られ、 逆に、 スリ ッ ト孔 2 1 8を反射面 1 3 dだけに合わせれば、 第 1 6図に示すように、 照射光は、 反射面 2 1 3 dで全部反射され導光キヤップ 7の内側空間を通つ て照射孔 2 1 5より被観察物 Mを正面から照らす落射光 L dだけ に限られ、 またスリ ッ ト孔 2 1 8を入射面 2 1 3 sと反射面 2 1 Therefore, when the mask body 2 16 is rotated to align the slit hole 2 18 with the incident surface 2 13 s only, as shown in FIG. From s, it enters the solid inside of the focusing guide 207, passes through this inside by total internal reflection, and exits from the side of the irradiation hole 215. In contrast, if the slit hole 2 18 is aligned only with the reflecting surface 13 d, as shown in FIG. 16, the irradiating light will be limited to the reflecting surface 2 1 It is totally reflected by 3d, passes through the space inside the light guide cap 7, and is limited to only the incident light Ld that illuminates the object M from the front from the irradiation hole 2 15 through the illumination hole 2 15 and enters the slit hole 2 18 Surface 2 1 3 s and reflective surface 2 1
3 dの両方に適宜の比率で合うようにさせれば、 側射光 L sと落 射光 L dとを適宜の比率で組み合わせることができる。 If both sides 3d are matched at an appropriate ratio, the side light Ls and the incident light Ld can be combined at an appropriate ratio.
この前方プロック 2 0 3は、 後方プロック 2 0 4に対し着脱で きるものであるから、 拡大率や対象観察物の種類に応じた専用仕 様のものを予め複数用意して置き、 この専用仕様のものを選択的 に使い分けることが可能である。 Since the front block 203 can be attached to and detached from the rear block 204, a plurality of special specifications corresponding to the enlargement ratio and the type of the target observation object are prepared in advance, and these special blocks are prepared. Selective things It is possible to use properly.
後方プロック 2 0 4は、 前述のように、 光学手段 2 0 5により 得られる観察物 Mの拡大像を捉える撮像手段 2 2 0、 この例では As described above, the rear block 204 is an imaging unit 220 that captures an enlarged image of the observation object M obtained by the optical unit 205, and in this example,
C C D素子 2 2 0及び C C D素子 2 2 0からの信号を処理する信 号処理手段 2 2 1を内蔵している。 また、 この後方プロック 2 0Signal processing means 221 for processing signals from the CCD element 220 and the CCD element 220 is incorporated. Also, this rear block 20
4は、 先端面に前方プロック 2 0 3の接続のための嵌合筒 2 2 2 が突設され、 後端部からは表示手段に接続するケーブル 2 2 3が 導出されており、 さらに光源 2 0 6の O N / O F F用のスィッチ4 is provided with a fitting tube 222 for connecting a front block 203 on a front end surface thereof, and a cable 222 connected to a display means is led out from a rear end portion. 0 6 ON / OFF switch
2 4が側面に設けられ、 このスィ ッチ 2 4からの導線の端子 2 5 が先端面に臨まされており、 前方プロック 2 0 3の後端面に臨ま されている光源 2 0 6からの導線の端子 2 2 6と接続するように なっている。 24 is provided on the side surface, and the terminal 25 of the lead from this switch 24 faces the front end face, and the lead from the light source 206 faces the rear end face of the front block 203. Terminal 2 2 6
第 4実施例 (第 1 7図〜第 2 1図)  Fourth embodiment (Fig. 17 to Fig. 21)
この実施例による撮像具 3 0 1は、 第 3実施例における前後両 プロックへの分割という構造に、 第 2実施例の 2系統の光源手段 による照明光の選択という構造を組み合わせた構造を持つ点に特 徵がある。  The imaging device 301 according to this embodiment has a structure in which the structure of the third embodiment, which is divided into front and rear blocks, is combined with the structure of selecting illumination light by two light sources in the second embodiment. There are special features.
すなわち、 この撮像具 3 0 1は、 第 1 7図に示すように、 前方 プロック 3 0 3と後方プロック 3 0 4とに分割されており、 前方 ブロック 3 0 3が後方プロック 3 0 4に対し着脱できるようにさ れ、 そして、 前方プロック 3 0 3には、 観察物拡大用の光学手段 That is, as shown in FIG. 17, the image pickup device 301 is divided into a front block 303 and a rear block 304, and the front block 303 is arranged with respect to the rear block 304. The front block 303 is provided with optical means for enlarging an object to be observed.
3 0 5及び光源手段用の光源 3 0 6が内蔵されると共に、 その先 端部に集光ガイ ド 3 0 7が接続される一方で、 後方ブロック 3 0A light guide for the light source means and a light source for the light source means are built in, and a light-collecting guide is connected to the front end thereof, while the rear block is connected to the light guide.
4には、 光学手段 3 0 5により得られる観察物 Mの拡大像を捉え る撮像手段 3 2 0及び撮像手段 3 2 0からの信号を処理する信号 処理手段 3 2 1が内蔵されている。 光源 3 0 6は、 複数の小さな発光源 3 1 2を遮光庇 3 1 0の外 側において集光ガイ ド 3 0 7の基端面 1 3に向けて円環状に配列 してなるもので、 それぞれ一定の個数の発光源 3 1 2を含む 8個 のプロックにプロック化され、 各プロックが交互に側射光用光源4 incorporates imaging means 320 for capturing an enlarged image of the observation object M obtained by the optical means 305 and signal processing means 321 for processing a signal from the imaging means 320. The light source 303 is formed by arranging a plurality of small light-emitting sources 312 in an annular shape on the outer side of the light-shielding eave 310 toward the base end surface 13 of the light-collecting guide 3107. Eight blocks, including a fixed number of light sources 3 1 2, are blocked into eight blocks, and each block is alternately a side emission light source.
3 0 6 s乃至落射光用光源 3 0 6 dとされており、 側射光用光源It is assumed that the light source for incident light is 300 s to 300 d, and the light source for side light
3 0 6 s は集光ガイ ド 3 0 7の基端面 3 1 3の入射面 3 1 3 sに 対応し、 落射光用光源 3 0 6 dは、 反射面 3 1 3 dにそれぞれ対 応するようになっていて、 側射光用光源 3 0 6 sと落射光用光源3 06 s corresponds to the entrance surface 3 13 s of the base end surface 3 13 of the focusing guide 3 07, and the incident light source 3 06 d corresponds to the reflection surface 3 13 d The light source for the side light source is 30 s and the light source for the incident light source
3 0 6 dとが個々に 0 N Z O F F制御を行えるようになつている3 0 6 d can individually perform 0 N Z O F F control
(第 1 9図) 。 (Fig. 19).
したがって、 光源 3 0 6 s、 3 0 6 dの O N Z O F F用のスィ ツチ 3 2 4 s及び 3 2 4 dの内のスィツチ 3 2 4 sを操作して側 射光用光源 3 0 6 sのみを O Nとし、 入射面 3 1 3 sだけに照明 光を当てるようにすれば、 第 2 0図に示すように、 この照明光が 入射面 3 1 3 sから集光ガイ ド 3 0 7の中実内部に入りこの内部 を全反射により通過して照射孔 3 1 5の内側面から出ることによ り観察物 Mをその正面に対し平行に近い急角度で照射する側射光 L sだけが得られ、 逆に、 スィッチ 3 2 4 dを操作して落射光用 光源 3 0 6 dのみを O Nとし、 反射面 3 1 3 dだけに照明光を当 てるようにすれば、 第 2 1図に示すように、 照明光が反射面 3 1 3 dで全部反射され集光ガイ ド 3 0 7の内側空間を通って照射孔 3 1 5より観察物 Mを正面から照らす落射光 L dだけが得られ、 また側射光用光源 3 0 6 sからの照明光と落射光用光源 3 0 6 d からの照明光とを各々の強弱を変えて入射面 3 1 3 s と反射面 3 1 3 dの両方に当てれば、 側射光 L sと落射光 L dとを適宜の比 率で組み合わせることができる。 尚、 その他の構造については第 3実施例のものと同様の構造な ので、 図中には対応する部分に 3 0 0番台で対応する符号を付し て示し、 その説明を省略している。 Therefore, only the side light source 300 s is turned on by operating the switch 324 s of the switches 324 s and 324 d for ONZOFF of the light sources 306 s and 306 d. If illumination light is applied only to the incident surface 3 13 s, as shown in FIG. 20, this illumination light is transmitted from the incident surface 3 13 s to the solid inside of the focusing guide 3 07. And the light passes through the inside of the irradiation hole 315 through total internal reflection and exits from the inner surface of the irradiation hole 315, so that only the side light Ls that irradiates the observation object M at a sharp angle close to the front of the object M is obtained. Conversely, by operating the switch 3 2 4 d to turn on only the light source for incident light 3 06 d and irradiating only the reflecting surface 3 13 d with illumination light, as shown in Fig. 21 Then, the illumination light is totally reflected by the reflecting surface 3 13 d, passes through the inner space of the condensing guide 3 07, and only the incident light L d illuminating the observation object M from the front from the irradiation hole 3 15 is obtained. Light source for sidelight 3 If the illumination light from 0 6 s and the illumination light from the incident light 3 0 6 d are applied to both the entrance surface 3 13 s and the reflection surface 3 13 d while changing the intensity of each, the side emission light L s and the incident light L d can be combined at an appropriate ratio. Since the other structure is the same as that of the third embodiment, the corresponding parts are denoted by the corresponding reference numerals in the 300s in the figure, and the description thereof is omitted.
〔産業上の利用可能性〕  [Industrial applicability]
この発明による撮像具は、 落射光、 側射光、 及び透過光につい て、 その選択が可能であると共に、 それぞれの光量を適宜比率で の組合わせることが可能であり、 このような撮像具を用いること により、 拡大観察の応用分野がより一層拡大する。  The imaging device according to the present invention can select the incident light, side emission light, and transmitted light, and can combine the respective light amounts at an appropriate ratio, and use such an imaging device. This will further expand the field of application of magnification observation.

Claims

請求の範囲 ). 前部が半球面体状とされその中心に照射孔が形成されると共 に、 光源手段からの照明光が中実内部に入射可能な基端面が基端 部が形成されてなる集光ガイ ドを先端部に備え、 この集光ガイ ド よりの照明光にて照明された観察物の観察部位を光学手段にて撮 像手段に結像させるようになっている拡大観察用の撮像具におい て、 The front part has a hemispherical shape, an irradiation hole is formed in the center thereof, and a base end part is formed on the base end surface through which illumination light from the light source means can enter the solid inside. A light-condensing guide is provided at the distal end, and the observation area of the observation object illuminated by the illumination light from the light-condensing guide is focused on the imaging means by optical means. In the imaging device of
集光ガイ ドの基端面に入射面と反射面とを交互に形成し、 この 入射面と反射面とに対し、 光源手段からの照明光を選択的に当て るようにしたことを特徴とする拡大観察用の撮像具。  An entrance surface and a reflection surface are alternately formed on the base end surface of the light-condensing guide, and the illumination light from the light source means is selectively applied to the entrance surface and the reflection surface. Imaging tool for magnifying observation.
(2) . 光源手段と集光ガイ ドの基端面との間にマスク体を介在させ、 マスク体の操作により光源手段からの光を入射面と反射面に対し 選択的に当てるようにした請求の範囲 1に記載の撮像具。  (2) A request in which a mask body is interposed between the light source means and the base end face of the light collecting guide, and light from the light source means is selectively applied to the incident surface and the reflection surface by operating the mask body. The imaging device according to range 1.
(3) . 光源手段を側射光用光源手段と落射光用光源手段との 2系統 に形成し、 側射光用光源手段を入射面に、 また落射光用光源手段 を反射面にそれぞれ対応させるようにした請求の範囲 1に記載の 撮像具。  (3). The light source means is formed in two systems of the side light source means and the incident light source means, and the side light source means corresponds to the incident surface, and the incident light source means corresponds to the reflection surface. The imaging device according to claim 1, wherein
(4) . 接 ·離自在な前方ブロックと後方ブロックに分割し、 前方ブ 口ックに光源手段の光源及び光学手段を内蔵させ、 後方プロック に撮像手段及び撮像手段からの信号を処理して表示手段に出力す る信号処理手段を内蔵させた請求の範囲 1〜請求の範囲 3の何れ かに記載の撮像具。  (4) Divide into a front block and a rear block that can be freely connected and detached. The front block incorporates the light source and optical means of the light source means, and the rear block processes the signals from the imaging means and the imaging means. The imaging device according to any one of claims 1 to 3, further comprising a signal processing unit for outputting to the display unit.
PCT/JP1991/001021 1990-07-31 1991-07-31 Imaging instrument of observing magnified object WO1992002840A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP20138590A JPH0486717A (en) 1990-07-31 1990-07-31 Objective means for macroobservation
JP2/201385 1990-07-31
JP20138690A JPH0486718A (en) 1990-07-31 1990-07-31 Objective means for macroobservation
JP2/201386 1990-07-31
JP2224329A JP2950946B2 (en) 1990-08-28 1990-08-28 Magnifying observation device
JP2224330A JP2950947B2 (en) 1990-08-28 1990-08-28 Magnifying observation device
JP2/224329 1990-08-28
JP2/224330 1990-08-28

Publications (1)

Publication Number Publication Date
WO1992002840A1 true WO1992002840A1 (en) 1992-02-20

Family

ID=27476059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001021 WO1992002840A1 (en) 1990-07-31 1991-07-31 Imaging instrument of observing magnified object

Country Status (1)

Country Link
WO (1) WO1992002840A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120110A (en) * 1984-11-13 1986-06-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Lighting apparatus for bright and dark field microscope
JPS61174505A (en) * 1984-11-19 1986-08-06 カ−ル・ツアイス−スチフツング Direct illuminator for microscope
JPH01308527A (en) * 1988-06-07 1989-12-13 Sukara Kk Light guide device for illumination in magnification imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120110A (en) * 1984-11-13 1986-06-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Lighting apparatus for bright and dark field microscope
JPS61174505A (en) * 1984-11-19 1986-08-06 カ−ル・ツアイス−スチフツング Direct illuminator for microscope
JPH01308527A (en) * 1988-06-07 1989-12-13 Sukara Kk Light guide device for illumination in magnification imaging apparatus

Similar Documents

Publication Publication Date Title
US6898004B2 (en) Microscope system
US7015444B2 (en) Optical-scanning examination apparatus
JP2006030992A (en) Apparatus for microscope observation and/or microscope detection and its use
US6075643A (en) Reflected fluorescence microscope with multiple laser and excitation light sources
JP3861357B2 (en) Microscope revolver and microscope integrated with optical device
JP2005274591A (en) Confocal microscope
WO1992002840A1 (en) Imaging instrument of observing magnified object
WO1992002842A1 (en) Imaging instrument for observing magnified object
JP2006003747A (en) Optical scanning type observation apparatus
JP2950946B2 (en) Magnifying observation device
WO1992002841A1 (en) Imaging instrument for observing magnified object
JP3016579B2 (en) Magnifying observation device
JP2007135777A (en) Switching type imaging fiber apparatus
JP4825959B2 (en) Split imaging fiber device
JP2950947B2 (en) Magnifying observation device
JP2950945B2 (en) Magnifying observation device
JP3179850B2 (en) Illumination unit used for imaging device of observation device
JP2005189475A (en) Microscope system
JP2944158B2 (en) Objective for magnification observation
JP2004295122A (en) Illumination switching device and its method
JP3097929B2 (en) Transmitted light-incident light selection type condensing guide
JPH04107411A (en) Enlarging observation device
JP2938526B2 (en) Objective for magnification observation
JP3066872B2 (en) Magnifying observation device
JP3016584B2 (en) Objective for magnification observation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE