WO1991013324A1 - Liquid level detecting apparatus and liquid level detecting method - Google Patents

Liquid level detecting apparatus and liquid level detecting method Download PDF

Info

Publication number
WO1991013324A1
WO1991013324A1 PCT/JP1991/000270 JP9100270W WO9113324A1 WO 1991013324 A1 WO1991013324 A1 WO 1991013324A1 JP 9100270 W JP9100270 W JP 9100270W WO 9113324 A1 WO9113324 A1 WO 9113324A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
liquid level
arm
liquid
force
Prior art date
Application number
PCT/JP1991/000270
Other languages
French (fr)
Japanese (ja)
Inventor
Dong Zhi Jin
Original Assignee
The Furukawa Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/772,352 priority Critical patent/US5315873A/en
Priority claimed from JP4834490A external-priority patent/JPH03251723A/en
Priority claimed from JP2055778A external-priority patent/JP2795516B2/en
Priority claimed from JP7721690A external-priority patent/JPH03276025A/en
Priority claimed from JP7721790A external-priority patent/JPH03276026A/en
Priority claimed from JP7721890A external-priority patent/JPH03276027A/en
Priority claimed from JP8346290A external-priority patent/JPH03282330A/en
Application filed by The Furukawa Electric Corporation filed Critical The Furukawa Electric Corporation
Publication of WO1991013324A1 publication Critical patent/WO1991013324A1/en
Priority to KR1019910701468A priority patent/KR920701793A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/003Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm with a probe suspended by rotatable arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/003Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the level of the molten metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/0038Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm using buoyant probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields

Definitions

  • the present invention relates to a liquid level detection device for detecting a liquid level of a liquid filled in a container, and more specifically, to a liquid melting furnace for a bot or a tundish.
  • the present invention relates to a detection device suitable for detecting the liquid level of a molten metal at a high temperature.
  • molten metal is handled.
  • the continuous hot water process is being controlled by a computer to improve work efficiency.
  • FIGS. 1 and 2 Conventional sensors for detecting such a liquid level are shown in FIGS. 1 and 2.
  • FIG. 1 Conventional sensors for detecting such a liquid level are shown in FIGS. 1 and 2.
  • FIG. 1 Conventional sensors for detecting such a liquid level are shown in FIGS. 1 and 2.
  • the sensor shown in FIG. 1 includes a detector A inserted into the molten metal, and a signal processing circuit B.
  • the detector A is composed of a primary coil D 1 and a secondary coil D 2, and a guide tube C arranged so as to surround both the coils.
  • the primary coil D1 and the secondary coil D2 are formed by heat-resistant MI cables.
  • Detector A is inserted in molten metal E.
  • the signal processing circuit section B supplies a high-frequency current to the primary coil D1, and detects a back electromotive force of the primary coil D1 generated by the high-frequency current and an induced electromotive force generated in the secondary coil D2. Mix and output both.
  • the induced electromotive force generated by the primary coil D 1 is also generated in the molten metal E around the guide tube C, and is generated on the molten metal E side as the detector A is inserted deeper into the molten metal E.
  • the induced electromotive force also increases, and the induced electromotive force generated in the secondary coil D 2 decreases. Therefore, the level of the liquid level G of the molten metal E is detected based on the magnitude of the output signal of the signal processing circuit B.
  • a pair of coils F 1 and F 2 are arranged above the liquid level G of the molten metal E, and the primary coil F 1 has a high frequency of 100 kHz.
  • liquid level sensor shown in Fig. 1 had the following problems.
  • the detector A For accurate measurement, the detector A must be inserted into the molten metal E in the range of 200 to 500 mm. Therefore, when the amount of the molten metal E decreases and the liquid level G decreases, accurate measurement cannot be performed.
  • the primary coil D 1 Since the temperature of the molten metal E is very high, the primary coil D 1, Among the secondary coils D2, the temperature of the part inserted into the molten metal E rises, and the inductance of the coil fluctuates greatly. Therefore, complicated temperature compensation of the sensor is required.
  • the maximum operating temperature is about 800, it cannot be used for copper having a molten metal temperature of about 150, for example, and the range of use is limited.
  • liquid level sensor shown in Fig. 2 has the following problems.
  • the coils Fl and F2 are not in contact with the molten metal E, the coil must be cooled because the heat-resistant temperature of the coil is as low as 120. Therefore, a cooling device is required, and the liquid level detecting device is increased in size and cost.
  • the task of spraying complicated drugs is required.
  • liquid level detecting device for liquids other than molten metal disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 15-86003.
  • This liquid level detection device floats in the solution. Floating and connecting a vertically movable rod at the top of the float, the ⁇ -rod is supported by bearings, is erected, and the upper end of the rod is brought into contact with the pressure sensor, and the buoyancy applied to the float In some cases, the liquid level is detected by measuring pressure with a pressure sensor.
  • this conventional apparatus has a problem that the liquid level of the molten metal cannot be detected. Furthermore, in this device, in addition to the buoyancy that the float receives, the weight of the float and rod is added to the pressure sensor, so the range of the pressure sensor must be increased, and the resolution is reduced. Further, there is a problem that a part of the buoyancy is lost due to a frictional force received by the mouth from the bearing or the like, and the buoyancy cannot be accurately detected by the pressure sensor, and a measurement error increases. Disclosure of the invention
  • the present invention provides a detection device and a method thereof having a small temperature drift and a high detection accuracy even if the detection target is a high-temperature liquid such as a molten metal.
  • the second purpose is a detection device and a method thereof having a small temperature drift and a high detection accuracy even if the detection target is a high-temperature liquid such as a molten metal.
  • one end of the probe is inserted into the liquid and the other end is outside the liquid, and a probe capable of providing buoyancy in accordance with the liquid level of the liquid, and the other end of the probe is fixed. Accordingly, a free end facing the fixed end is provided with an arm receiving a force across a fulcrum, and is provided in contact with the free end of the arm.
  • a liquid level detecting device having a force detecting means for detecting such a pressing force is provided.
  • the probe when a probe fixed to one end of an arm arranged in a substantially horizontal direction is inserted into the liquid, the probe receives buoyancy from the liquid, and the free end side of the arm receives the buoyancy. Receives the appropriate pressing force. At that time, the force generated on the free end side of the arm is detected by the force detecting means. By performing predetermined arithmetic processing on the detected force, the insertion depth of the probe into the liquid is calculated, and the liquid level is detected.
  • the buoyancy experienced by an object in a liquid according to the Archimedes principle is equal to the product of the volume of the object and the specific gravity of the liquid, so if the specific gravity of the liquid is constant, the change in the volume of the probe in the solution.
  • a predetermined calculation process is performed to accurately detect the liquid level.
  • the arm is formed in a crank shape, and the height of the fulcrum and the height of the liquid level of the liquid are made substantially equal.
  • At least the probe, the arm, and the buoyancy detector are mounted on a pedestal that can be moved up and down, and are vertically moved up and down, and the pedestal is provided with a detection unit for measuring an ascending and descending distance. You can do so.
  • the probe can be raised and lowered according to the level of the liquid.
  • the depth of the probe can be kept constant at all times.
  • a compensator having a larger coefficient of thermal expansion than the arm is closely attached along the arm, and the arm and the compensator are fixed at the probe side end, and the opposite end of the compensator is a free end.
  • the temperature of the molten metal is as high as 100 ° C. or more, so that the heat thermally expands the arm.
  • the effect of the thermal expansion is large on the metal melt side from the support and hardly on the force detection means side from the support. Therefore, the ratio of the distance to both ends of the arm based on the support is different from that at normal temperature, and an error occurs in the calculation of the liquid level based on the buoyancy.
  • the arm heated by the heat of the molten metal extends from the support to the one end to which the probe is connected.
  • the compensator is fixed at one end of the arm and not at the support, the compensator heated by the heat of the molten metal has the free end side starting from the fixed side with the arm. Extending towards. In other words, the directions in which the arm and the compensator extend are opposite, so that the extension of both is canceled, the thermal expansion and contraction of the arm is automatically compensated, and the effect of temperature on the liquid level measurement of the molten metal is greatly reduced.
  • the probe When detecting the liquid level using the above-described apparatus, first, the probe is moved up and down to insert the probe into the solution, and based on the movement distance of the probe at this time and the buoyancy received by the probe. Alternatively, the distance may be compared with the travel distance of the probe obtained by performing the processing, and the calibration may be automatically performed based on the calibration coefficient obtained from the difference between the two. By doing so, various parameters such as the cross-sectional area of the probe and the specific gravity of the liquid necessary for the arithmetic processing are automatically calibrated, and the measurement accuracy is improved. BRIEF DESCRIPTION OF THE FIGURES
  • Fig. 1 and Fig. 2 are configuration diagrams showing a conventional example.
  • FIG. 3 is a configuration diagram of the liquid level detecting device according to the first embodiment of the present invention.
  • Fig. 4 is an enlarged sectional view showing the mounting structure of the probe and arm shown in Fig. 3.
  • FIG. 5 is an explanatory diagram of the force applied to the force detector shown in FIG.
  • FIG. 6 is an enlarged view showing the vicinity of the force detector shown in FIG.
  • FIG. 7 is a basic configuration diagram of the first embodiment.
  • Figure 8 shows the effect of extraneous noise.
  • FIG. 9 is a configuration diagram showing a main part of the liquid detection device according to the second embodiment.
  • FIG. 10 is a basic configuration diagram of the second embodiment.
  • FIG. 11 is a basic configuration diagram showing a third embodiment of the present invention
  • FIG. 12 is a diagram showing the effect of noise of the third embodiment
  • FIG. 13 is a third embodiment.
  • FIG. 14 is a graph showing the experimental results of FIG. 14.
  • FIG. 14 is a block diagram showing a fourth embodiment of the present invention.
  • Fig. 15 to Fig. 17 are explanatory diagrams of semi-continuous construction equipment to which the fourth embodiment is applied.
  • FIG. 18 is a block diagram showing the fifth embodiment of the present invention
  • FIG. 19 is a flowchart showing the fifth embodiment
  • FIG. 20 is an experimental diagram of the fifth embodiment.
  • FIG. 2 is a configuration diagram showing a device used for
  • FIGS. 21 to 23 show the experimental results of the fifth embodiment.
  • FIGS. 24 and 25 are configuration diagrams showing the sixth embodiment of the present invention.
  • FIGS. 26 and 27 are block diagrams showing a seventh embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION FIG. 3 shows a first embodiment of the present invention, and shows a liquid level detecting device used for detecting a liquid level of a high-temperature molten metal.
  • the molten metal tank 1 is filled with the molten metal 2, and the lower part 3 a of the round bar-shaped probe 3 is inserted into the molten metal 2.
  • Probe 3 is made of ceramics having excellent heat resistance and a relatively low coefficient of thermal expansion.
  • the upper part 3 b of the probe 3 is connected to one end 4 of the arm. Specifically, as shown in FIGS. 3 and 4, the probe 3 is sandwiched between two clamps 5 attached to the tip of the arm 4 and both clamps 5 : 5 are screwed. Secure by tightening in step 6. To replace probe 3, loosen screw 6 and remove probe 3.
  • maintenance such as adjustment of the mounting position of the probe 3 and replacement work can be easily performed by simple work for the screw 6.
  • the arm 4 is held substantially horizontally by the support 7 at the position of the center of gravity, so that the load of the arm 4 is applied to the force detector 8 connected to the other end 4 b of the arm 4 as little as possible.
  • the arm 4 is formed in a crank shape, and the fulcrum of the arm 4 by the support 7 is set at substantially the same height as the liquid level of the molten metal 2, so that the flow of the molten metal 2 gives the probe 3 as much as possible. Try to be smaller.
  • the arm 4 is formed of a material having excellent rigidity or a shape having excellent rigidity without being bent or distorted, and the buoyancy received at one end 4 a of the arm 4 is reduced. It is to be transmitted to the force detector 8 as accurately as possible.
  • the force detector 8 is constituted by a load cell. As shown in Fig. 5, the force F applied to the load cell can be decomposed into a vertical component F1 and a horizontal component F2. Of these, the effect of the buoyancy of the probe 3 is given only to the vertical component F 1, so it is necessary to minimize the force of the horizontal component F 2 applied to the mouth cell. For this reason, in this example, as shown in Figs. 3 and 6, a bearing 12 is provided at the point of action above the load allowance 10 of a commercially available load cell, and a horizontal component is applied. F 2 is reversed. This improves the measurement accuracy.
  • the force detector 8 is connected to the signal processor 13 to calculate the electric signal output from the force detector 8 to calculate the liquid level of the molten metal 2 in the molten metal 1 and to detect the level. Shows liquid level You can do it.
  • the operation is as follows.
  • Fig. 7 shows the basic configuration of the device shown in Fig. 3.
  • the distance from the fulcrum 7 of the arm 4 to the center of the buoyancy received by the probe 3 provided at one end 4a is L1 and the distance from the other end 4b to the point of action on the force detector 8 at the other end 4b is L2.
  • D be the diameter and P be the specific gravity of molten metal 2.
  • the change F of the force received by the force detector 8 when the liquid level rises from the state shown in the figure and the intrusion depth of the probe 3 changes by ⁇ S can be obtained by Expression (1).
  • ⁇ F (Ll ZL2) (? R 4) D 2 p AS ⁇ ' ⁇ (1)
  • ⁇ S A FZk - (2)
  • k (LI / L2) (7 ⁇ / 4) is a D z p.
  • the force detector 8, between the signal processing circuit 1 3, namely e are disposed a low pass filter one 1 5, since the plant environment, such as metals dissolved ⁇ rather severe , Affected by mechanical vibration. Such mechanical vibration is transmitted to the molten metal detection device, and a large noise is generated in the liquid level detection signal.
  • the shape of the arm 4 is a crank shape.
  • the arm 4 may have a straight shape as shown in FIG. 7, for example, and may have any shape.
  • the installation position is not limited to this, and the force detector 8 may be installed, for example, in the pole direction or above.
  • the probe since the ceramic probe is used, the probe has excellent high temperature resistance characteristics, and since no coil is used, the temperature drift is small and the detection accuracy is high. In addition, since the probe 3 has excellent high temperature resistance, the probe replacement interval becomes longer. In addition, maintenance is easy because the probe is easily exchanged. Furthermore, if the probe 3 is deeply penetrated into the molten metal 2, even if the liquid level of the molten metal 2 is slightly reduced, the liquid level can be detected as long as the probe 3 receives the buoyancy of the molten metal 2. it can. Therefore, there is no need to adjust the measurable distance according to the increase or decrease of the liquid level of the molten metal as in the conventional example, and the measurement is facilitated.
  • FIG. 9 shows a second embodiment of the present invention.
  • a compensator 20 formed in a rod shape from a material having a higher coefficient of thermal expansion than that of the arm 4 is mounted on the arm 4 in close contact. Since the compensator 20 is attached so as to be in close contact with the arm 4, the temperature distribution of the two is the same. If the coefficient of thermal expansion of the arm 4 is 1 and the coefficient of thermal expansion of the compensator 20 is S2, then S2> S1.
  • the compensator 20 is fixed to the arm 4 at the end 20 a of the arm 4 on the probe 3 side, and the other end 20 b is in a free state.
  • a weight 21 is attached to the other end 20 b of the compensator 20.
  • the weight of the weight 21 is obtained in relation to the length of the arm 4, the length of the compensator 20, their coefficient of thermal expansion, and the like, and is specifically determined according to the following method. .
  • the greatest influence of temperature is the variation of the length L1 from the center of buoyancy to the fulcrum 0 to which the probe 3 provided at one end 4a of the arm 4 receives.
  • the effect of this variation is considered based on the system shown in simplified form in FIG.
  • the moment M due to the gravity of the system with respect to the fulcrum 0 is obtained by the equation (3).
  • ⁇ 1 L0 (10 lm T l) (Wl + W2 / 2)
  • the liquid level fluctuation ⁇ decreases as the outer diameter D of the probe 3 increases, but when the outer diameter D increases, the weight W1 also increases. Therefore, consideration must be given to the combination.
  • the weights Wl and W2 are It should be as light as possible.
  • the center of gravity of the probe 3 and the clamp 5 supporting the probe 3 is a, and the weight of the center of gravity is W1.
  • the thermal conductivity of arm 4 and compensator 20 is so good that their temperature changes in response to environmental temperature changes, but the lateral temperature distribution is uniform over the entire length.
  • the thermal conductivity of the material of each member such as the probe 3 and the arm 4 does not change within the temperature change range.
  • b is the position of the center of gravity of the compensator 20
  • W2 is the weight of the compensator 20 at the position of the center of gravity
  • c is the position of the center of gravity of the arm 4
  • W3 is the position of the center of gravity of the arm 4 at the position of the center of gravity.
  • Weight, d indicates the position of the center of gravity of the weight 21 and W4 indicates the weight at the position of the center of gravity.
  • Equation (11) is obtained.
  • W 2/2 ⁇ ⁇ / ⁇ 2- ⁇ ⁇ (W l + W 3/2)
  • temperature compensation can be performed by changing the length and the weight distribution of the compensator 20 so that each numerical value satisfies the expression (12). .
  • the position of the center of gravity J of the system slightly fluctuates due to the non-uniform temperature, but the influence on the liquid level measurement of the molten metal 2 can be greatly suppressed.
  • the other end 20 b is connected to one end of the compensator 20. May be made thicker than the end 20a of the first end to substitute for the weight 21 and the other end 20b may satisfy the above expression (11).
  • the third embodiment of the present invention relates to a specific arithmetic processing in the signal processor 13, and when the output signal of the force detector 8 is arithmetically processed in the signal processing device 13, the sampling is finely performed at a constant period. Then, data for several periods of the resonance frequency are averaged to suppress the resonance noise.
  • Each component of the liquid level detection device has a unique vibration frequency according to its length, weight, material, and the like. This unique vibration frequency is due to extraneous vibration from the environment where the liquid level detector is installed. Vibrates and resonates. Consider this resonance. To simplify the explanation, consider the equation of motion of the measurement system shown in Fig. 11.
  • ⁇ / H p LA / (L 2 K / I) (14)
  • the sensitivity of the sensor is proportional to p, A, and L, and the resonance angular frequency ⁇ of the system is as follows.
  • I (d 2 5 / dt z ) -I ⁇ a ⁇ ⁇ sin ⁇ t
  • the force F applied to the force detector 8 is a combined force of the buoyancy of the probe 3 and the force due to resonance. .
  • the force due to the resonance is the largest source of error. Suppressing this resonance in a mechanical way adversely affects the sensitivity of the sensor and should be avoided as much as possible.
  • it is also possible to remove the resonant Roh size b in electrical low-pass filter 1 5 usually, the resonant frequency is very low in the system (about 1 0 H Z), moreover than its amplitude level signal Because of its large size, a low-pass filter with a very low cut-off frequency must be used to completely cut the resonance noise.
  • the level signal may be cut at the same time. That is, it is necessary to consider both the response of the level system and the S / N ratio.
  • the resonance signal is suppressed by sampling the output signal of the force detector 8 or the like.
  • the output of the force detector 8 is subjected to digital signal processing in consideration of the following two points.
  • the output signal from the force detector 8 was finely sampled for about 0.17 msec using a computer, converted into AZD, written into memory, The data for several periods of the resonance frequency were averaged by a computer, converted to a level, and displayed on the display.
  • the average value of the data is calculated by the above method using a computer.
  • N the number of data to be averaged, and increase N by 3 to 90.
  • the resonance period of the detector used in the experiment is about 76.5 msec.
  • N The larger the absolute value of N, the smaller the variation of the maximum deviation. In other words, if N is increased to some extent, a large error does not occur even if the resonance frequency of the measurement system fluctuates slightly. Instead, the response of the liquid level detector is slightly slower.
  • FIG. 14 shows a fourth embodiment of the present invention. Shown in the figure As described above, in the present embodiment, the bridge 22 moving vertically to the bottom of the shield case 16 accommodating the arm 4, the force detector 8, the signal processing circuit 13, and the low-pass filter 15 in each of the above-described embodiments is provided. Connected. By raising and lowering the pedestal 22, at least the probe 3, the arm 4 supported by the support 5, and the force detector 8 move up and down while being kept horizontal. Further, the gantry 22 is provided with a displacement sensor 124 for measuring the vertical movement distance.
  • a Z stage is used as the gantry 22, and a linear scale is used as the displacement sensor 24.
  • the gantry 22 is operated in accordance with the vertical movement of the liquid surface of the molten metal 2 so that the probe 3 can be moved up and down.
  • the configuration as in this example is based on the following reasons.
  • This example is suitable for use in liquid level detection in a liquid level control method in a semi-continuous production facility as shown in FIG.
  • the control method shown in the figure is as follows.
  • the molten metal 2 is poured from the spat 32 into the pedestal 31 arranged between the molds 30, and when the poured molten metal 2 is solidified, the pedestal 31 is moved. It is lowered in the direction of the arrow in FIG. 16 and the molten metal 2 is poured from the spurt 32 onto the molten metal 2, and the molten metal 2 is turned back to form the mold 3 as shown in FIG.
  • the desired amount of hot water is poured into 0.
  • the probe 3 may be solidified in the molten metal 2. In such a situation, the liquid level detection device becomes unmeasurable, and in addition, lumps may be discarded. Therefore, the insertion depth of probe 3 must be precisely controlled. However, even if the liquid level of the molten metal 2 in the mold 30 rises, if the position of the probe 3 is fixed, the insertion depth of the probe 3 into the molten metal 2 changes, and the liquid level is accurately detected. I can't.
  • the pedestal 22 is moved up and down as described above, and the probe 3, the arm 4, etc. are moved up and down while keeping the horizontal position according to the change in the liquid level, and the insertion depth of the probe 3 is always constant. It was kept in the.
  • the gantry 14 is provided with the displacement sensor 24 that can measure the vertical movement distance, the vertical movement distance of the gantry 22 and, consequently, the vertical movement distance of the probe 3 are accurately controlled. be able to.
  • the life of the probe 3 that comes into direct contact with the hot metal melt 2 is limited, and must be replaced after a certain period of use.
  • the mounting state of the probe 3 changes, and it is difficult to allow the probe 3 to be inserted into the metal melt 2 in the same state in the vertical e.
  • the installation environment of the liquid level detection device for the molten metal 2 is high temperature, it is required to remove or attach it so as not to interfere with other operations. For this reason, it is difficult to hold the detector itself horizontally.
  • the outer diameter D of the probe 3 varies greatly.
  • the outer diameter of the probe 3 varies due to uneven attachment of oxides in the metal melt 2 to the surface of the probe 3.
  • This level changes the moment due to the weight of the system, and the load angle of the force detector 8 also changes.
  • Standard data on the specific gravity of hot metal melt is inadequate and the exact value is unknown.
  • impurities may be mixed into the molten metal for various purposes, even if the specific gravity of the high-temperature molten metal is known to a certain degree, the exact specific gravity can be determined based on the type of impurities and the amount of the impurities. Can not do it.
  • the moment of the repulsive force of the load cell changes with the change of the installation position.
  • the probe 2 can be moved up and down, and the probe 3 is inserted into the molten metal 2. At the same time, the displacement of the probe 2 is measured by the displacement sensor 24 to read the insertion depth of the probe 3. The signal is output from the signal processor 13 based on the read insertion depth and the buoyancy of the molten metal 2 received by the probe 3. The depth is compared with the depth of entry, and calibration is automatically performed by the computer based on the calibration coefficient for the difference between the two.
  • this setting it is performed by visually checking that the probe 3 actually enters the molten metal, or detecting that the probe 3 receives buoyancy.
  • the PC first reads the output of the A / D conversion board and records the level calculated based on the buoyancy as the initial value SO. At the same time, the counter result of the encoder is read and the level actually measured on the linear scale is stored as the initial value AO.
  • the bath controller lowers the Z stage to a certain position through the stage controller.
  • the computer reads the output S1 of the AZD conversion board and the output A1 of the encoder in the same manner as B, and calculates the calibration coefficient K from the following equation.
  • the computer reads the output S x of the AZD conversion board in the same manner as B, and calculates the relative level as in the following equation.
  • the amount of rise and fall of the probe 3 at this time corresponds to the actual fluctuation of the liquid level of the molten metal, but the inside diameter of the probe insertion hole 4 4 formed in the furnace lid 43 of the electric furnace is only 110 mm. Therefore, the volume effect of the probe 3 in which the liquid level of the molten metal in the furnace lid 43 changes at a constant rate due to the change in the insertion depth of the probe 3 must be considered. This volume effect is corrected by a personal computer.
  • the time constant-of the low-pass filter 15 was set to 0, 35 sec, Isec, and 3 sec, respectively.
  • test results are shown in Fig. 21 to Fig. 23 for each time constant of the low-pass filter.
  • the horizontal axis shows the measured values on the linear scale
  • the vertical axis shows the depth calculated based on buoyancy.
  • the level of the molten metal level detector was not calibrated when it was mounted on the gantry 40, no large detection error was generated simply by calibrating it with the parameter calibration method of the present invention.
  • the usefulness of using a low-pass filter was confirmed.
  • the measurement error was at most 1.8 mm.
  • the maximum error caused by artificial vibration with a wooden hammer is about 1.5 mm. Since the vibration around the electric furnace is not large, a large error does not occur even if the time constant of the low-pass filter is set to 0 or 3 sec.
  • FIG. 24 shows a fifth embodiment of the present invention.
  • a cylindrical shield tube 45 is provided so as to cover the lower part 3 a of the probe 3 inserted into the molten metal 2.
  • the shield tube 45 is made of a high temperature resistant material such as ceramics, and the inner diameter of the shield tube 45 is larger than the outer diameter of the probe 3.
  • the shield tube 45 is open at the top and bottom, so that the molten metal 2 can flow into the shield tube 45.
  • the shield pipe 45 is attached to the shield case 16 with the connecting member 46.When the probe 3 is moved up and down by the operation of the gantry 22, the shield pipe 4 ⁇ is also moved up and down accordingly. It is like that.
  • the reason for arranging the shield pipe 45 in this manner is as follows.
  • the molten metal 2 is flowing in the molten metal tank 1, and when measuring the liquid level of the molten metal during the flow, the lower part 3a of the probe 3 It becomes an obstacle and receives a force like F 6 from the fluid. In addition, a vortex may be generated near the probe 3 depending on the flow condition. When the oxide floating in the molten metal 2 hits the probe 3, a large force is applied to the probe 3. For simplicity, all such horizontal forces are F6. If this F6 exists, equation (1) becomes
  • FIG. 26 and FIG. 27 show a seventh embodiment of the present invention.
  • the magnetic bearing device 50 is used to support the arm 4.
  • a support shaft 51 is formed of a magnetic material
  • an electromagnet 52 is disposed on the outer periphery of two places above and below the support shaft 51
  • a displacement sensor 53 is disposed.
  • the displacement sensor 53 detects the distance from the support shaft 51
  • the displacement sensor 53 detects the distance from the support shaft 51.
  • the controller controls the amount of electricity supplied to the electromagnet 52 so that the magnet does not contact the electromagnet 52.
  • the support shaft 51 is erected in a non-contact state.
  • the horizontal force F 6 applied to the probe 3 by the flow of the molten metal 2 or the like is reduced to the guide function of the magnetic bearing device 50, namely, the support shaft.
  • the function of receiving magnetic force from each electromagnet 52 so that 51 is kept in a non-contact state does not affect the force detector 8.
  • the loss is small and the buoyancy applied to the probe 3 can be efficiently transmitted to the force detector 8.
  • the liquid metal is exemplified as the liquid, but it goes without saying that the liquid detection device of the present invention can be used for detecting the liquid level of ordinary liquids as well as other high-temperature liquids.
  • Each of the above embodiments relates to a liquid level detecting device, but it is also possible to provide a specific gravity measuring device using the device having the above configuration.
  • the specific gravity P of the liquid is calculated by detecting the force ⁇ F applied to the force detector 8 when the probe 3 is inserted into the liquid by the predetermined amount ⁇ S.
  • the insertion depth AS is measured, for example, by the displacement sensor 24 used in the fourth embodiment and the like.
  • the liquid level detecting device of the present invention can be used for detecting liquid levels of various liquids, and can be suitably used particularly for measuring liquid levels of high-temperature liquids. Further, according to the present invention, specific gravity detection measurement of a liquid can also be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Level Indicators Using A Float (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

A liquid level detecting apparatus using the Archimedean principle, suitable for measuring the liquid level of a liquid, particularly molten metal at high temperature. This apparatus comprises: a probe (3) inserted into the molten metal (2) and subjected to a buoyancy proportional to the liquid level; an arm (4) for supporting the probe at one end thereof; a supporting means (7) for supporting the arm; a force detector (8) disposed below the other end of the arm, for detecting the buoyancy received by the probe (3) through the arm; and a signal processing means (13) processing an electric output signal from the force detector to determine a liquid level equivalent to the processed output. Through the utilization of the Archimedean principle, under which, when it is assumed that the specific gravity of a liquid is constant, a change in the volume of the probe disposed in the solution, namely, a change in the depth of immersion is directly proportional to a change in buoyancy, a force is detected and processed, to thereby detect the liquid level.

Description

明 細 書 液面検出装置およびその方法 技術分野  Description Liquid level detection device and method
本発明は容器内に充塡された液体の液位を検出する液面検 出装置に関するものであり、 より特定的には、 金属溶解炉の ボッ ト, タ ンディ ッ シュ内などに充塡された高温度の金属溶 湯の液位を検出するのに適した検出装置に関する。 背景技術  The present invention relates to a liquid level detection device for detecting a liquid level of a liquid filled in a container, and more specifically, to a liquid melting furnace for a bot or a tundish. The present invention relates to a detection device suitable for detecting the liquid level of a molten metal at a high temperature. Background art
非鉄金属の精練、 溶解铸造などの分野では金属溶湯が取扱 われている。 特に、 溶解铸造の分野では作業の効率化を図る ために連続铸湯プロセスをコ ンビュータ制御化することが進 められている。 そのためには連続铸湯プロセス全体の情報を 正確に把握することが重要である。 この情報把握の一つとし て、 金属溶湯の液位を検出する。  In the fields of nonferrous metal refining and melting, molten metal is handled. In particular, in the field of melting and smelting, the continuous hot water process is being controlled by a computer to improve work efficiency. For that purpose, it is important to accurately obtain information on the entire continuous hot water process. As one of this information grasp, the liquid level of the molten metal is detected.
そのような液位を検出する従来のセ ンサーとしては、 第 1 図, 第 2図に示されるものが知られている。  Conventional sensors for detecting such a liquid level are shown in FIGS. 1 and 2. FIG.
第 1図のセ ンサーは、 金属溶湯内に挿入される検出器 Aと 、 信号処理回路部 B とから構成される。 検出器 Aは、 一次コ ィ ル D 1 , 二次コ イ ル D 2 と、 それら両コ イ ルの周囲を囲む ようにして配置された案内管 Cとから構成される。 一次コィ ル D 1 と二次コ イ ル D 2 は、 耐熱性の高い M I ケーブルで形 成される。 検出器 Aは金属溶湯 E内に挿入されている。 信号処理回路部 Bは、 一次コ イ ル D 1 に高周波電流を供給 し、 その高周波電流によって発生する一次コイル D 1 の逆起 電力並びに二次コィ ル D 2に生じる誘導起電力を検出し、 両 者を混合し、 出力する。 The sensor shown in FIG. 1 includes a detector A inserted into the molten metal, and a signal processing circuit B. The detector A is composed of a primary coil D 1 and a secondary coil D 2, and a guide tube C arranged so as to surround both the coils. The primary coil D1 and the secondary coil D2 are formed by heat-resistant MI cables. Detector A is inserted in molten metal E. The signal processing circuit section B supplies a high-frequency current to the primary coil D1, and detects a back electromotive force of the primary coil D1 generated by the high-frequency current and an induced electromotive force generated in the secondary coil D2. Mix and output both.
一次コイル D 1 により生じる誘導起電力は、 案内管 Cの周 囲にある金属溶湯 Eにも発生し、 検出器 Aの金属溶湯 E内へ の挿入深度が深いほど、 金属溶湯 E側に発生する誘導起電力 も大き く なり、 二次コ イ ル D 2 に生じる誘導起電力が小さ く なる。 したがって、 信号処理回路 Bの出力信号の大小により 、 金属溶湯 Eの液面 Gの高低レベルを検出する。  The induced electromotive force generated by the primary coil D 1 is also generated in the molten metal E around the guide tube C, and is generated on the molten metal E side as the detector A is inserted deeper into the molten metal E. The induced electromotive force also increases, and the induced electromotive force generated in the secondary coil D 2 decreases. Therefore, the level of the liquid level G of the molten metal E is detected based on the magnitude of the output signal of the signal processing circuit B.
第 2図に示されるセ ンサ一は、 一対のコ イ ル F 1 , F 2を 金属溶湯 Eの液面 Gの上方に配置し、 一次コ イ ル F 1 に 1 0 0 k H z の高周波電流を流し、 二次コ イ ル F 2に発生する誘 導起電力を増幅し, リ ニアライ ズした結果を出力する。  In the sensor shown in FIG. 2, a pair of coils F 1 and F 2 are arranged above the liquid level G of the molten metal E, and the primary coil F 1 has a high frequency of 100 kHz. A current flows, the induced electromotive force generated in the secondary coil F2 is amplified, and the linearized result is output.
コ イ ル F l , F 2が液面 Gに近付く にしたがって、 金属溶 湯 Eに発生する誘導起電力が増加するので、 上記出力からコ ィ ル F l , F 2 の下端と液面 G との距離 Lを検出し、 液位を 検出する。  As the coils Fl, F2 approach the liquid surface G, the induced electromotive force generated in the molten metal E increases, so the lower end of the coils Fl, F2 and the liquid surface G Detect the distance L between the two and detect the liquid level.
しかし、 第 1図に示された液面センサーでは、 次のような 問題があった。  However, the liquid level sensor shown in Fig. 1 had the following problems.
正確な測定を行うには、 金属溶湯 E内に検出器 Aを 2 0 0 〜 5 0 0 m m揷入しなければならない。 したがって、 金属溶 湯 Eが少な く なり、 液面 Gが下がると、 正確な測定ができな く なる。  For accurate measurement, the detector A must be inserted into the molten metal E in the range of 200 to 500 mm. Therefore, when the amount of the molten metal E decreases and the liquid level G decreases, accurate measurement cannot be performed.
金属溶湯 Eの温度は非常に高温であるため、 一次コ イ ル D 1 , 二次コ イル D 2のう ち、 金属溶湯 E内に挿入されている 部分の温度が上昇し、 そのコ イ ルのイ ンダクタ ンスが大き く 変動する。 したがって、 煩雑なセ ンサ一の温度補償が必要と なる。 Since the temperature of the molten metal E is very high, the primary coil D 1, Among the secondary coils D2, the temperature of the part inserted into the molten metal E rises, and the inductance of the coil fluctuates greatly. Therefore, complicated temperature compensation of the sensor is required.
最高使用温度が 8 0 0て程度であるため、 例えば金属溶湯 の温度が約 1 1 5 0ての銅に対しては使用できず、 使用範囲 が限定されてしまう。  Since the maximum operating temperature is about 800, it cannot be used for copper having a molten metal temperature of about 150, for example, and the range of use is limited.
また、 第 2図に示された液面セ ンサ一では、 次のような問 題がある。  In addition, the liquid level sensor shown in Fig. 2 has the following problems.
コ イ ル F l , F 2 は、 金属溶湯 Eと接触はしていないが、 コ イルの耐熱温度が 1 2 0 て と低いため、 コ イ ルを冷却する 必要がある。 したがって、 冷却装置を要し、 液面検出装置が 大型化し、 コス ト高となる。 この問題を解決するため、 金属 溶湯 Eの液面上に硼素などの薬剤を撒き、 金属溶湯 Eからの 輻射熱を抑え、 コ イ ル F 1 , F 2 の温度上昇を防止する手段 もあるが、 この薬剤は金属溶湯 E内に不純物として侵入し、 溶湯の品質を低下させる。 さ らに、 煩雑な薬剤を撒く 作業が 必要となる。  Although the coils Fl and F2 are not in contact with the molten metal E, the coil must be cooled because the heat-resistant temperature of the coil is as low as 120. Therefore, a cooling device is required, and the liquid level detecting device is increased in size and cost. In order to solve this problem, there is a method of spraying a chemical such as boron on the liquid surface of the molten metal E to suppress the radiant heat from the molten metal E and prevent the temperature of the coils F 1 and F 2 from rising. This chemical enters the molten metal E as an impurity and degrades the quality of the molten metal. In addition, the task of spraying complicated drugs is required.
コ イ ル F l , F 2 と、 金属溶湯 Eの液面 Gとの距離 が、 2 0〜 1 2 0 m mの範囲でしか測定できないため、 金属溶湯 Eの液位が大き く変化すると、 正確な測定ができな く なる。  Since the distance between the coils F 1 and F 2 and the liquid surface G of the molten metal E can be measured only within the range of 20 to 120 mm, accurate measurement can be performed if the liquid level of the molten metal E changes significantly. Measurement becomes impossible.
2 つのコ イ ル F l > F 2 の温度ドリ フ トが大きい。  The temperature drift for the two coils Fl> F2 is large.
以上の従来の液面検出セ ンサの他に、 例えば特開平 1 一 5 8 6 0 3号に開示された金属溶湯以外の液体の液面検出装置 が知られている。 この液面検出装置は、 溶液中にフロー トを 浮かせ、 フロー トの上部に上下移動可能なロ ッ ドを接続し、 π ッ ドは軸受けにて支持し、 起立され、 そのロ ッ ドの上端を 圧力セ ンサーに接触させ、 フロー トに加わる浮力を圧力セン サ一にて測定する こ とにより液面を検出するものもある。 In addition to the above-described conventional liquid level detecting sensors, there is known a liquid level detecting device for liquids other than molten metal disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 15-86003. This liquid level detection device floats in the solution. Floating and connecting a vertically movable rod at the top of the float, the π-rod is supported by bearings, is erected, and the upper end of the rod is brought into contact with the pressure sensor, and the buoyancy applied to the float In some cases, the liquid level is detected by measuring pressure with a pressure sensor.
しかし、 この従来の装置は、 金属溶湯の液面検出ができな いという問題を有している。 さらにこの装置は、 フロー トが 受ける浮力に加え、 フロー ト, ロ ッ ドの重量が圧力セ ンサー に加わるため、 圧力セ ンサ一のレンジを大き く しなければな らず、 分解能が低下する。 さらに、 軸受け等から口 ッ ドが受 ける摩擦力により、 浮力の一部が消失し、 浮力を圧力センサ 一で正確に検出できず、 測定誤差が大き く なるという問題を 有する。 発明の開示  However, this conventional apparatus has a problem that the liquid level of the molten metal cannot be detected. Furthermore, in this device, in addition to the buoyancy that the float receives, the weight of the float and rod is added to the pressure sensor, so the range of the pressure sensor must be increased, and the resolution is reduced. Further, there is a problem that a part of the buoyancy is lost due to a frictional force received by the mouth from the bearing or the like, and the buoyancy cannot be accurately detected by the pressure sensor, and a measurement error increases. Disclosure of the invention
本発明は、 検出精度が高く、 しかも構造が簡潔な液面検出 装置並びにその方法を提供することを第 1 の目的とする。  It is a first object of the present invention to provide a liquid level detection device having a high detection accuracy and a simple structure, and a method therefor.
さ らに、 本発明は、 検出対象がたとえ金属溶湯などのよう に高温度の液体であつても、 温度ドリ フ トが小さ く、 検出精 度の高い検出装置並びにその方法を提供することを第 2の目 的とする。  Furthermore, the present invention provides a detection device and a method thereof having a small temperature drift and a high detection accuracy even if the detection target is a high-temperature liquid such as a molten metal. The second purpose.
本発明によれば、 一端が液体内に挿入され他端が液体外に あり、 液体の液位に応じた浮力を Sけるプローブと、 このプ ローブの他端を固定し、 前記プローブの浮力に応じて前記固 定端と対向する自由端が支点を挟んで力を受けるアームと、 このアームの自由端に当接して設けられ、 アームの自由端に かかる押圧力を検出する力検出手段とを有する液面検出装置 が提供される。 According to the present invention, one end of the probe is inserted into the liquid and the other end is outside the liquid, and a probe capable of providing buoyancy in accordance with the liquid level of the liquid, and the other end of the probe is fixed. Accordingly, a free end facing the fixed end is provided with an arm receiving a force across a fulcrum, and is provided in contact with the free end of the arm. A liquid level detecting device having a force detecting means for detecting such a pressing force is provided.
かかる構成としたことにより、 略水平方向に配置されたァ ームの一端に固定されたプローブを液体内に挿入させると、 プローブがその液体から浮力を受けてアームの自由端側がそ の浮力に応じた押圧力を受ける。 そのときアームの自由端側 に生じる力を力検出手段で検出する。 その検出した力に対し て、 所定の演算処理することにより、 プローブの液体内への 挿入深度が算出され、 液位が検出される。  With this configuration, when a probe fixed to one end of an arm arranged in a substantially horizontal direction is inserted into the liquid, the probe receives buoyancy from the liquid, and the free end side of the arm receives the buoyancy. Receives the appropriate pressing force. At that time, the force generated on the free end side of the arm is detected by the force detecting means. By performing predetermined arithmetic processing on the detected force, the insertion depth of the probe into the liquid is calculated, and the liquid level is detected.
すなわち、 アルキメ デスの原理に従い液体中にある物体が 受ける浮力は、 物体の体積と液体の比重との積に等しいので 、 液体の比重が一定であるとすると、 溶液中のプローブの体 積の変化、 つまり、 侵入深度の変化が、 浮力の変化に比例す ることを利用して、 所定の演算処理を行い、 液位を正確に検 出する。  In other words, the buoyancy experienced by an object in a liquid according to the Archimedes principle is equal to the product of the volume of the object and the specific gravity of the liquid, so if the specific gravity of the liquid is constant, the change in the volume of the probe in the solution In other words, utilizing the fact that the change in the penetration depth is proportional to the change in the buoyancy, a predetermined calculation process is performed to accurately detect the liquid level.
好適には、 アームをク ラ ンク状に形成し、 前記支点の高さ と、 前記液体の液位の高さとを略一致させる。  Preferably, the arm is formed in a crank shape, and the height of the fulcrum and the height of the liquid level of the liquid are made substantially equal.
これにより、 プローブの受ける浮力とは関係のない水平方 向の力が力検出手段側に加わることが防止でき、 液位検出の 精度が向上する。  As a result, it is possible to prevent a force in the horizontal direction irrespective of the buoyancy received by the probe from being applied to the force detecting means, thereby improving the accuracy of liquid level detection.
また好適には、 少な く とも前記プローブ, アーム, 浮力検 出器が、 昇降移動可能な架台に載置され、 水平に昇降される とともに、 その架台に昇降距離を測定するための検出手段を 設けるようにするこ とができる。  Preferably, at least the probe, the arm, and the buoyancy detector are mounted on a pedestal that can be moved up and down, and are vertically moved up and down, and the pedestal is provided with a detection unit for measuring an ascending and descending distance. You can do so.
すると、 液面の上下に応じてプローブも昇降させることが でき、 常にプローブの揷入深度を一定に保つことができる。 さらには好適には、 前記アームより熱膨張係数の大きな捕 償体を、 アームに沿って密着させ、 プローブ側端部でアーム と補償体とを固定するとともに、 補償体の反対側端を自由端 とする。 Then, the probe can be raised and lowered according to the level of the liquid. The depth of the probe can be kept constant at all times. More preferably, a compensator having a larger coefficient of thermal expansion than the arm is closely attached along the arm, and the arm and the compensator are fixed at the probe side end, and the opposite end of the compensator is a free end. And
本発明の液面検出装置を例えば金属溶湯の液位の検出に用 いる と、 金属溶湯は 1 0 0 0 'C以上と高温であるため、 その 熱によってアームが熱膨張する。 その熱膨張の影響は、 支持 具から金属溶湯側が大き く、 支持具から力検出手段側ではほ とんどない。 したがって、 そのままでは支持具を基準にした アームの両端までの距離の比が常温の時と異なり、 浮力に基 づく液位の算出に誤差を生じる。  When the liquid level detecting device of the present invention is used for detecting the liquid level of a molten metal, for example, the temperature of the molten metal is as high as 100 ° C. or more, so that the heat thermally expands the arm. The effect of the thermal expansion is large on the metal melt side from the support and hardly on the force detection means side from the support. Therefore, the ratio of the distance to both ends of the arm based on the support is different from that at normal temperature, and an error occurs in the calculation of the liquid level based on the buoyancy.
しかしながら上記の構成によれば、 アームは支持具により 支持されているため、 金属溶湯の熱により加熱されたアーム は、 支持具を起点とし、 プローブの接続された一方の端部に 向けて延びる。 一方、 補償体は、 アームの一方端部で固定さ れ、 支持具側では固定されていないため、 金属溶湯の熱で加 熱された補償体は、 アームとの固定側を起点として自由端側 に向けて延びる。 すなわち、 アームと補償体の延びる方向は 逆であるため、 両者の延びが相殺され、 アームの熱膨脹収縮 が自動的に補償され、 金属溶湯の液面測定に対しての温度の 影響が大幅に抑えられる。  However, according to the above configuration, since the arm is supported by the support, the arm heated by the heat of the molten metal extends from the support to the one end to which the probe is connected. On the other hand, since the compensator is fixed at one end of the arm and not at the support, the compensator heated by the heat of the molten metal has the free end side starting from the fixed side with the arm. Extending towards. In other words, the directions in which the arm and the compensator extend are opposite, so that the extension of both is canceled, the thermal expansion and contraction of the arm is automatically compensated, and the effect of temperature on the liquid level measurement of the molten metal is greatly reduced. Can be
また、 上記の装置を用いて液位を検出するに際し、 まず、 プローブを昇降させてプローブを溶液内に挿入させ、 このと きのプローブの移動距離と、 プローブが受けた浮力に基づい て演箕処理して得られたプローブの移動距離とを比較し、 そ の両者の差により得られる校正係数に基づいて自動的に校正 するようにしてもよい。 このようにすることにより、 演算処 理に必要なプローブの断面積や液体の比重などの各種パラメ ータが自動的に校正され、 測定精度が向上する。 図面の簡単な説明 When detecting the liquid level using the above-described apparatus, first, the probe is moved up and down to insert the probe into the solution, and based on the movement distance of the probe at this time and the buoyancy received by the probe. Alternatively, the distance may be compared with the travel distance of the probe obtained by performing the processing, and the calibration may be automatically performed based on the calibration coefficient obtained from the difference between the two. By doing so, various parameters such as the cross-sectional area of the probe and the specific gravity of the liquid necessary for the arithmetic processing are automatically calibrated, and the measurement accuracy is improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図, 第 2図は従来例を示す構成図であり,  Fig. 1 and Fig. 2 are configuration diagrams showing a conventional example.
第 3図は本発明の第 1実施例の液面検出装置の構成図であ ¾ ,  FIG. 3 is a configuration diagram of the liquid level detecting device according to the first embodiment of the present invention.
第 4図は第 3図に示したプローブとアームの取付構造を示 す拡大断面図であり,  Fig. 4 is an enlarged sectional view showing the mounting structure of the probe and arm shown in Fig. 3.
第 5図は第 3図に示した力検出器に加わる力の説明図であ FIG. 5 is an explanatory diagram of the force applied to the force detector shown in FIG.
¾ , ¾,
第 6図は第 3図に示した力検出器の付近を示す拡大図であ ,  FIG. 6 is an enlarged view showing the vicinity of the force detector shown in FIG.
第 7図は第 1実施例の基本構成図であり,  FIG. 7 is a basic configuration diagram of the first embodiment.
第 8図は外来ノ イズの影響を示す図であり,  Figure 8 shows the effect of extraneous noise.
第 9図は第 2実施例の液体検出装置の要部を示す構成図で あり,  FIG. 9 is a configuration diagram showing a main part of the liquid detection device according to the second embodiment.
第 1 0図は第 2実施例の基本構成図であり,  FIG. 10 is a basic configuration diagram of the second embodiment.
第 1 1図は本発明の第 3実施例を示す基本構成図であり, 第 1 2図は第 3実施例のノ ィ ズの影響を示す図であり, 第 1 3図は第 3実施例の実験結果を示すグラフであり, 第 1 4図は本発明の第 4実施例を示す構成図であり, 第 1 5図〜第 1 7図は第 4実施例が適用される半連続铸造 設備の説明図であり, FIG. 11 is a basic configuration diagram showing a third embodiment of the present invention, FIG. 12 is a diagram showing the effect of noise of the third embodiment, and FIG. 13 is a third embodiment. FIG. 14 is a graph showing the experimental results of FIG. 14. FIG. 14 is a block diagram showing a fourth embodiment of the present invention. Fig. 15 to Fig. 17 are explanatory diagrams of semi-continuous construction equipment to which the fourth embodiment is applied.
第 1 8図は本発明の第 5実施例を示すプロ ック図であり, 第 1 9図は第 5実施例を示すフローチャー ト図であり, 第 2 0図は第 5実施例の実験に用いた装置を示す構成図で あり,  FIG. 18 is a block diagram showing the fifth embodiment of the present invention, FIG. 19 is a flowchart showing the fifth embodiment, and FIG. 20 is an experimental diagram of the fifth embodiment. FIG. 2 is a configuration diagram showing a device used for
第 2 1図〜第 2 3図は第 5実施例の実験結果を示す図であ 第 2 4図, 第 2 5図は本発明の第 6実施例を示す構成図で あり,  FIGS. 21 to 23 show the experimental results of the fifth embodiment. FIGS. 24 and 25 are configuration diagrams showing the sixth embodiment of the present invention.
第 2 6図, 第 2 7図は本発明の第 7実施例を示す構成図で ある。 発明を実施するための最良の形態 第 3図は本発明の第 1実施例を示し、 高温度の金属溶湯の 液位検出に用いられる液面検出装置を示している。  FIGS. 26 and 27 are block diagrams showing a seventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION FIG. 3 shows a first embodiment of the present invention, and shows a liquid level detecting device used for detecting a liquid level of a high-temperature molten metal.
溶湯槽 1内には、 金属溶湯 2が充填されており、 金属溶湯 2内に丸棒状のプローブ 3 の下部 3 aが挿入されている。 ブ ローブ 3 は、 耐熱性に優れ、 熱膨張率が比較的小さいセラ ミ ックスから形成されている。 ブローブ 3の上部 3 b は、 ァー ム の一端 4 に接続されている。 具体的には、 第 3図, 第 4図に示すように、 アーム 4の先端に取り付けられた 2枚の 挟着具 5 , 5間にプローブ 3を挟み、 両挟着具 5 : 5をビス 6 にて締付けるこ とにより固定する。 プローブ 3を交換する には、 ビス 6を緩めてプローブ 3を取外すことにより行う。 このよう に、 本実施例では、 ビス 6 に対する簡単な作業でプ ローブ 3 の取付位置の調節, 交換作業等のメ ンテナンスが簡 易となる。 The molten metal tank 1 is filled with the molten metal 2, and the lower part 3 a of the round bar-shaped probe 3 is inserted into the molten metal 2. Probe 3 is made of ceramics having excellent heat resistance and a relatively low coefficient of thermal expansion. The upper part 3 b of the probe 3 is connected to one end 4 of the arm. Specifically, as shown in FIGS. 3 and 4, the probe 3 is sandwiched between two clamps 5 attached to the tip of the arm 4 and both clamps 5 : 5 are screwed. Secure by tightening in step 6. To replace probe 3, loosen screw 6 and remove probe 3. As described above, in the present embodiment, maintenance such as adjustment of the mounting position of the probe 3 and replacement work can be easily performed by simple work for the screw 6.
アーム 4 は、 その重心位置で支持具 7 によりほぼ水平に保 持され、 アーム 4 の荷重が、 アーム 4 の他端 4 b に連繋した 力検出器 8にできるだけ加わらないようにしてある。 また、 アーム 4 は、 クラ ンク状に形成し、 支持具 7によるアーム 4 の支点を金属溶湯 2 の液位とほぼ同じ高さにし、 金属溶湯 2 の流れがプローブ 3に与えるモーメ ン トをできるだけ小さ く なるようにしている。 さ らに、 アーム 4 は、 剛性に優れた材 料で形成し、 或いは剛性に優れた形状に形成し、 湾曲したり 、 歪んだりせず、 アーム 4 の一端部 4 a で受けた浮力が、 力 検出器 8 にできるだけ正確に伝達されるようにしてある。  The arm 4 is held substantially horizontally by the support 7 at the position of the center of gravity, so that the load of the arm 4 is applied to the force detector 8 connected to the other end 4 b of the arm 4 as little as possible. Further, the arm 4 is formed in a crank shape, and the fulcrum of the arm 4 by the support 7 is set at substantially the same height as the liquid level of the molten metal 2, so that the flow of the molten metal 2 gives the probe 3 as much as possible. Try to be smaller. Further, the arm 4 is formed of a material having excellent rigidity or a shape having excellent rigidity without being bent or distorted, and the buoyancy received at one end 4 a of the arm 4 is reduced. It is to be transmitted to the force detector 8 as accurately as possible.
力検出器 8 は、 ロー ドセルで構成している。 第 5図に示す ように、 ロー ドセルに加わる力 Fは、 垂直分力 F 1 と水平分 力 F 2 に分解できる。 このう ち、 プローブ 3の浮力の影響は 、 垂直分力 F 1 にのみ与えられるため、 水平分力 F 2 の口一 ドセルに加わる力を最小限に抑える必要がある。 このため、 本例では、 通常市販されているロードセルの荷重当金 1 0 の 上方の作用点に第 3図, 第 6図に示すようにべァリ ング 1 2 を配設し、 水平分力 F 2 を逆がすようにしている。 これによ り、 測定精度が向上する。  The force detector 8 is constituted by a load cell. As shown in Fig. 5, the force F applied to the load cell can be decomposed into a vertical component F1 and a horizontal component F2. Of these, the effect of the buoyancy of the probe 3 is given only to the vertical component F 1, so it is necessary to minimize the force of the horizontal component F 2 applied to the mouth cell. For this reason, in this example, as shown in Figs. 3 and 6, a bearing 12 is provided at the point of action above the load allowance 10 of a commercially available load cell, and a horizontal component is applied. F 2 is reversed. This improves the measurement accuracy.
力検出器 8 は、 信号処理器 1 3 に接続されており、 力検出 器 8からの電気信号出力を演算処理して、 金属溶湯 1 内にお ける金属溶湯 2 の液位を求めると共に、 検出した液位を表示 できるようになつている。 その動作は以下のようになる。 第 3図に示す装置の基本構成を、 第 7図に示す。 アーム 4 の支点 7から一端 4 aに設けられたブローブ 3が受ける浮力 の中心までの距離を L1 , 他端 4 bの力検出器 8への作用点 までの距離を L2 とし、 プローブ 3の外径を D, 金属溶湯 2 の比重を P とする。 図示する状態から液面が上昇し、 プロ一 ブ 3の侵入深度が Δ Sだけ変化した場合の力検出器 8の受け る力の変化厶 Fは、 式 ( 1 ) で求められる。 The force detector 8 is connected to the signal processor 13 to calculate the electric signal output from the force detector 8 to calculate the liquid level of the molten metal 2 in the molten metal 1 and to detect the level. Shows liquid level You can do it. The operation is as follows. Fig. 7 shows the basic configuration of the device shown in Fig. 3. The distance from the fulcrum 7 of the arm 4 to the center of the buoyancy received by the probe 3 provided at one end 4a is L1 and the distance from the other end 4b to the point of action on the force detector 8 at the other end 4b is L2. Let D be the diameter and P be the specific gravity of molten metal 2. The change F of the force received by the force detector 8 when the liquid level rises from the state shown in the figure and the intrusion depth of the probe 3 changes by ΔS can be obtained by Expression (1).
△ F = ( Ll ZL2 ) ( ?r 4 ) D2 p A S ·'· ( 1 ) ここで、 LI , L2 , D, ρが一定であると仮定すると、 厶 Fは厶 Sに比例する。 したがって、 信号処理回路 1 3に予 め LI , L2 , D, ρを入力しておき、 厶 Fを正確に測定す ることにより、 式 ( 2 ) からプローブ 3の侵入深度の変化、 すなわち、 金属溶湯 2の増減による液位変化 Δ Sが求められ る。 厶 S = A FZk - ( 2 ) ただし、 k = ( LI /L2 ) ( 7Γ / 4 ) Dz pである。 さ らに本例では、 力検出器 8 と、 信号処理回路 1 3 との間 に、 ローパスフィルタ一 1 5を配設している e すなわち、 金 属溶解铸造等の工場の環境はかなり厳しいので、 機械的振動 の影響を受ける。 このような機械的振動が金属溶湯検出装置 に伝達されて液位検出信号に大きなノ ィズが生じる。 Δ F = (Ll ZL2) (? R 4) D 2 p AS · '· (1) Here, assuming that LI, L2, D, and ρ are constant, mu m F is proportional to mu S. Therefore, by inputting LI, L2, D, and ρ in advance into the signal processing circuit 13 and accurately measuring the distance F, the change in the penetration depth of the probe 3 from the equation (2), The liquid level change ΔS due to the increase and decrease of the molten metal 2 is obtained.厶S = A FZk - (2) However, k = (LI / L2) (7Γ / 4) is a D z p. In this example of al, the force detector 8, between the signal processing circuit 1 3, namely e are disposed a low pass filter one 1 5, since the plant environment, such as metals dissolved铸造rather severe , Affected by mechanical vibration. Such mechanical vibration is transmitted to the molten metal detection device, and a large noise is generated in the liquid level detection signal.
このノ イ ズとして液面検出装置に人為的にボイ ン ト Xの時 に振動を与えてロー ドセルの出力波形を調べると、 第 8図の 信号 aのようになった。 この図から明らかなように、 機械的 振動によるノ ィズは非常に大きいだけでなく、 その振動周波 数は不規則である。 これを除去するには、 検出装置の下に防 振ゴムを敷く などしてもよいが、 防振ゴムは耐熱性が悪いた め、 本例の如く金属溶湯用の検出装置には不適当である。 そこで本例では、 口一バスフ ィ ルター 1 5 で、 そのノ イ ズ を電気的に除去するようにしたのである。 その結果、 第 8図 の信号 bのように、 ノ イ ズがほとんど除去された。 This noise is caused when the point X is artificially applied to the liquid level detection device. When the output waveform of the load cell was examined by applying vibration to the, the signal a in Fig. 8 was obtained. As is clear from this figure, the noise due to mechanical vibration is not only very large, but also its vibration frequency is irregular. In order to remove this, a rubber vibration insulator may be laid under the detector, but the rubber rubber has poor heat resistance, so it is not suitable for a detector for molten metal as in this example. is there. Therefore, in this example, the noise is electrically removed by the mouth-to-mouth filter 15. As a result, almost no noise was removed, as shown by signal b in FIG.
上記アーム 4 , 支持具 7 , 力検出器 8 , 信号処理回路 1 Arm 4, support 7, force detector 8, signal processing circuit 1
3並びにローバスフ ィ ルタ一 1 5 は、 シールドケース 1 6内 に内蔵されている。 3 and the low-pass filter 15 are housed in a shield case 16.
なお、 上記実施例では、 アーム 4 の形状をク ラ ンク状とし たが、 例えば第 7図のように直線状にしても良く、 形状は任 意にすることができる。  In the above embodiment, the shape of the arm 4 is a crank shape. However, the arm 4 may have a straight shape as shown in FIG. 7, for example, and may have any shape.
また、 力検出器 8をアーム 4 の他端 4 bの下方に設けたが 、 設置位置はこれに限らず、 例えば、 極方向、 上方等に設置 しても良い。  Further, although the force detector 8 is provided below the other end 4 b of the arm 4, the installation position is not limited to this, and the force detector 8 may be installed, for example, in the pole direction or above.
上記のように、 本実施例ではセラ ミ ックス製のプローブが 使用されているので、 耐高温度特性に優れ、 コ イルを使用し ていないため、 温度ドリ フ ト も小さ く、 検出精度が高く なる また、 プローブ 3 は耐高温度特性に優れているので、 プロ ーブの交換間隔が長く なる。 さ らに、 プローブの交換が容易 であるためメ ンテナ ンスも容易である。 さらに、 金属溶湯 2内にプローブ 3を深めに侵入させてお けば、 金属溶湯 2 の液位が多少減少してもプローブ 3が金属 溶湯 2 の浮力を受ける限り、 液位を検出することができる。 したがって、 従来例のように金属溶湯の液位の増減に応じて 測定可能距離を調節する必要がなく、 測定が容易になる。 As described above, in this embodiment, since the ceramic probe is used, the probe has excellent high temperature resistance characteristics, and since no coil is used, the temperature drift is small and the detection accuracy is high. In addition, since the probe 3 has excellent high temperature resistance, the probe replacement interval becomes longer. In addition, maintenance is easy because the probe is easily exchanged. Furthermore, if the probe 3 is deeply penetrated into the molten metal 2, even if the liquid level of the molten metal 2 is slightly reduced, the liquid level can be detected as long as the probe 3 receives the buoyancy of the molten metal 2. it can. Therefore, there is no need to adjust the measurable distance according to the increase or decrease of the liquid level of the molten metal as in the conventional example, and the measurement is facilitated.
第 9図に、 本発明の第 2実施例を示す。 本実施例では、 ァ ーム 4 の上に、 そのアーム 4 より熱膨張率の大きい材質で棒 状に成形された補償体 2 0が密着状態で取付けられている。 この補償体 2 0 は、 アーム 4に密着するように取付けられて いるので、 両者の温度分布は同じとなっている。 アーム 4の 熱膨張率を え 1 とし、 捕償体 2 0 の熱膨張率をス 2 とすると 、 ス 2 > ス 1 となっている。  FIG. 9 shows a second embodiment of the present invention. In this embodiment, a compensator 20 formed in a rod shape from a material having a higher coefficient of thermal expansion than that of the arm 4 is mounted on the arm 4 in close contact. Since the compensator 20 is attached so as to be in close contact with the arm 4, the temperature distribution of the two is the same. If the coefficient of thermal expansion of the arm 4 is 1 and the coefficient of thermal expansion of the compensator 20 is S2, then S2> S1.
補償体 2 0 は、 アーム 4のプローブ 3側の端部 2 0 aでァ —ム 4 に固定されており、 他方の端部 2 0 bは、 自由状態と なっている。 補償体 2 0の他方の端部 2 0 bには、 重り 2 1 が取付けられている。 その重り 2 1 の重量は、 アーム 4 の長 さ、 補償体 2 0の長さ、 並びにそれらの熱膨張率などとの関 係で求められ、 具体的には、 以下の方法にしたがって決定さ れる。  The compensator 20 is fixed to the arm 4 at the end 20 a of the arm 4 on the probe 3 side, and the other end 20 b is in a free state. A weight 21 is attached to the other end 20 b of the compensator 20. The weight of the weight 21 is obtained in relation to the length of the arm 4, the length of the compensator 20, their coefficient of thermal expansion, and the like, and is specifically determined according to the following method. .
ぐ重量の決定 >  Determination of weight
上記した侵入深度の変化 Δ S と、 力検出器 8に加わる力の 変化 Δ Fとの関係を示した式 ( 1 ) の内、 約 1 2 0 0 とい う金属溶湯 2 の温度の影響により、 D , p : L 1 , L 2 が熱 膨張収縮によって変化する。 このう ち、 プローブ 3の外径 D は、 温度が上がると大き く なり、 金属溶湯 2 の比重 p は温度 が上がると小さ く なる。 したがって、 温度変化によるプロ一 ブ 3の外径 Dの変動と金属溶湯の比重 pの変動は、 互いに打 ち消し合い、 厶 Fへ与える影響は無視できるほど小さ く なる また、 アーム 4の支点 0からアームの他端 4 bの力検出器 8への作用点までの長さ L2 の部分は、 金属镕湯 2からかな り離れているので、 温度変化が小さ く、 その変動による厶 F への影響は無視できる。 In the equation (1) showing the relationship between the change in the penetration depth ΔS described above and the change in the force applied to the force detector 8 ΔF, due to the influence of the temperature of the molten metal 2 of about 1200, D, p : L 1 and L 2 change due to thermal expansion and contraction. Of these, the outer diameter D of the probe 3 becomes larger as the temperature rises, and the specific gravity p of the molten metal 2 becomes When it rises, it becomes smaller. Therefore, the variation in the outer diameter D of the probe 3 and the variation in the specific gravity p of the molten metal due to the temperature change cancel each other out, and the effect on the drum F becomes so small as to be negligible. The length L2 from the arm to the other end 4b of the arm to the point of application to the force detector 8 is very far from the metal bath 2, so the temperature change is small, and the change in temperature F The effect is negligible.
温度の影響の最も大きいのは、 アーム 4の一方の端部 4 a に設けられたプローブ 3が受ける浮力の中心から支点 0まで の長さ L1 の変動である。 この変動による影響を第 1 0図に 簡略して示した系に基づいて考える。 ここでアーム 4の温度 変化は、 その長手方向どの箇所においても同じであると仮定 すると、 室温の場合は支点 0に対して系の重力によるモーメ ン ト Mは、 式 ( 3 ) によって求められる。  The greatest influence of temperature is the variation of the length L1 from the center of buoyancy to the fulcrum 0 to which the probe 3 provided at one end 4a of the arm 4 receives. The effect of this variation is considered based on the system shown in simplified form in FIG. Here, assuming that the temperature change of the arm 4 is the same at any point in the longitudinal direction, at room temperature, the moment M due to the gravity of the system with respect to the fulcrum 0 is obtained by the equation (3).
M= ( 1 /2 ) L0 W2 + L0 W1  M = (1/2) L0 W2 + L0 W1
= L0 ( Wl + W2 / 2 ) …… ( 3 ) ただし、 L0 は室温でのアーム 4の支点 0から一方端部  = L0 (Wl + W2 / 2) …… (3) where L0 is one end from the fulcrum 0 of the arm 4 at room temperature
4 aまでの長さである。  Length up to 4a.
LI = L0 ( 1 +ΔΤ ΐ ) であるため ( スは熱膨張率) 、 温度が ΔΤだけ上昇した後のモーメ ン ト Μ 1 は、 式 ( 4 ) に よつて求められる。 Since LI = L0 (1 + ΔΤ ΐ) (where S is the thermal expansion coefficient), the moment Μ1 after the temperature rises by ΔΤ can be obtained by equation (4).
Μ 1 = L0 ( 1 十厶 T l ) ( Wl + W2 / 2 )  Μ 1 = L0 (10 lm T l) (Wl + W2 / 2)
··· ( 4 ) 生じたモーメ ン トの差厶 Mは、 式 ( 3 ) と式 ( 4 ) との差 から式 ( 5 ) により求められる。 ··· ( Four ) The difference M between the generated moments is obtained by the equation (5) from the difference between the equations (3) and (4).
△ M = L 0 厶 T え (W1 + W2 / 2 ) - ( 5 ) 一方、 金属溶湯 2 の液位が Δ Sだけ変動した場合、 支点 0 に対するモーメ ン トの変動厶 Mは、 式 ( 6 ) で求められる。  Δ M = L 0 m T (W1 + W2 / 2)-(5) On the other hand, when the liquid level of the molten metal 2 fluctuates by ΔS, the fluctuation of the moment with respect to the fulcrum 0 is expressed by the equation (6) ).
△ M - A S f Tr Z A D Z p L O ." ( 6 ) 式 ( 6 ) を式 ( 5 ) に代入し、 熱膨張によるモーメ ン ト変 動厶 Mを液位.変動厶 ε に換算すると、 式 ( 7 ) が得られる。 Δ M-AS f Tr ZADZ p LO. "(6) Substituting equation (6) into equation (5), and converting the moment variation M due to thermal expansion into liquid level. 7) is obtained.
L 0 A T A ( Wl +W2 / 2 ) = L 0 A T A (Wl + W2 / 2) =
e ( π / 4 ) D 2 p L 0 ε = Δ T A ( 2 Wl + W2 ) / ( π D 2 p ) - ( T ) 上記式 ( 7 ) より、 以下のことがわかる。 e (π / 4) D 2 p L 0 ε = Δ TA (2 Wl + W2) / (π D 2 p) - (T) from the formula (7), the following can be known.
材料の熱膨脹率スはかなり小さいが、 プローブ 3 とアーム 4 の重量 ( 2 W1 + W2 ) は浮力と比べて非常に大きい。 し かも温度変動 Δ Τも非常に大きいので、 熱膨張による検出誤 差となる液位変動 ε はかなり大き く、 無視できない。  Although the coefficient of thermal expansion of the material is quite small, the weight of probe 3 and arm 4 (2 W1 + W2) is very large compared to buoyancy. Since the temperature fluctuation Δ Τ is very large, the liquid level fluctuation ε, which is a detection error due to thermal expansion, is quite large and cannot be ignored.
前記液位変動 ε は、 プローブ 3 の外径 Dが大きいほど小さ く なるが、 外径 Dが大き く なると、 重量 W1 も重く なるので その兼合を考慮しなければならない。  The liquid level fluctuation ε decreases as the outer diameter D of the probe 3 increases, but when the outer diameter D increases, the weight W1 also increases. Therefore, consideration must be given to the combination.
前記液位変動 eを小さ くするためには、 重量 Wl , W2 を なるべく軽く すべきである。 ここで、 垂直方向の力のモーメ ン トだけを考え、 プローブ 3 とそれを支持している挟着具 5 の重心位置を a , その重心 位置の重量を W1 として、 次のような幾つかの仮定をする。 アーム 4 と補償体 2 0 とは、 充分細く、 かつ充分長いので 、 縦方向の温度分布はすべて均一である。 In order to reduce the liquid level fluctuation e, the weights Wl and W2 are It should be as light as possible. Here, only the moment of the vertical force is considered, and the center of gravity of the probe 3 and the clamp 5 supporting the probe 3 is a, and the weight of the center of gravity is W1. Make assumptions. Since the arm 4 and the compensator 20 are sufficiently thin and sufficiently long, the vertical temperature distributions are all uniform.
アーム 4 と補償体 2 0の熱伝導率は非常に良いので、 環境 の温度変化に対応してそれらの温度が変化するが、 横方向の 温度分布は全長に亙って均一である。  The thermal conductivity of arm 4 and compensator 20 is so good that their temperature changes in response to environmental temperature changes, but the lateral temperature distribution is uniform over the entire length.
プローブ 3 , アーム 4などの各部材の材料の熱伝導率は温 度の変化範囲内では変化しないものとする。 第 9図, 第 1 0図において、 bは補償体 2 0の重心位置、 W2 はその重心位置における補償体 2 0の重量、 c はアーム 4 の重心位置、 W3 はその重心位置におけるアーム 4 の重量 、 d は重り 2 1 の重心位置、 W4 はその重心位置における重 量を示す。  The thermal conductivity of the material of each member such as the probe 3 and the arm 4 does not change within the temperature change range. 9 and 10, b is the position of the center of gravity of the compensator 20, W2 is the weight of the compensator 20 at the position of the center of gravity, c is the position of the center of gravity of the arm 4, and W3 is the position of the center of gravity of the arm 4 at the position of the center of gravity. Weight, d indicates the position of the center of gravity of the weight 21 and W4 indicates the weight at the position of the center of gravity.
ここである一定の温度 TO での系の重心を J とすると、 第 7図の S I , S 2 , S3 , S 4 は、 それぞれ、 a , b , c , dの位置から系の重心 Jまでの水平方向の距離を示す。 これ らの関係で式 ( 8 ) が成り立つ。  Assuming that the center of gravity of the system at a certain temperature TO is J, SI, S 2, S3, and S 4 in Fig. 7 are from the positions a, b, c, and d to the center J of the system, respectively. Indicates the horizontal distance. Equation (8) holds with these relationships.
Wl S 1 十 W2 S 2 十 W3 S 3 = W4 S 4 … ( 8 ) ここで周囲の温度の変化によって系の温度が TO から T1 まで上舁する場合を考える。 このときのアーム 4 と補償体 2 0 との長さの変化をそれぞれ厶 L 1 , 厶 L3 とする。 系の重 心 Jの位置が変化しないようになるためには、 式 ( 9 ) が成 り立たなければならない。 Wl S 1 10 W2 S 2 10 W3 S 3 = W4 S 4… (8) Here, consider the case where the temperature of the system rises from TO to T1 due to changes in the ambient temperature. The changes in the length of the arm 4 and the compensator 20 at this time are denoted by L1 and L3, respectively. In order for the position of the center of gravity J of the system not to change, equation (9) must be established.
Wl ( S 1 十 厶 L l ) +W2 ( S2 + A L l / 2 — Δ L3 / 2 ) + W3 ( S3 + Δ L 1 / 2 )  Wl (S 110 m L l) + W2 (S2 + A L l / 2 — Δ L3 / 2) + W3 (S3 + Δ L 1/2)
= W4 ( S 4 + A L3 — 厶 L )  = W4 (S 4 + A L3 — mm L)
… ( 9 ) こ こで、 厶 L I と A L3 の関係は、 … (9) Here, the relationship between um L I and A L3 is
Figure imgf000018_0001
Figure imgf000018_0001
であるため、 この式 ( 1 0 ) 並びに式 ( 8 ) を式 ( 9 ) に 代入すると、 式 (11) が得られる。  By substituting Equations (10) and (8) into Equation (9), Equation (11) is obtained.
W4 = [ λ 1 / ( λ 2 - λ 1 ) ] X [Wl -W2 ( ス 2  W4 = [λ 1 / (λ 2-λ 1)] X [Wl -W2 (
— ス 1 ) 2 ス 1 十 W3 / 2 ]  — S 1) 2 S 10 W3 / 2]
… (11) したがって、 重り 2 1 の重量 W4 は、 上記式 ( 1 1 ) を満 足する値にすることにより、 系の重心位置 Jが周囲の温度に 影響されないことになる。  (11) Therefore, by setting the weight W4 of the weight 21 to a value that satisfies the above equation (11), the center of gravity position J of the system is not affected by the ambient temperature.
具体的には、 例えばアーム 4 の材質としては、 S U S 4 3 0、 熱膨張係数ス 1 = 1 3. 1 X 1 0 -6を用い、 補償体 2 0 の材質として S U S 3 0 4、 熱膨張係数ス 2 = 2 0. 1 X 1 0 を用い、 重り 2 1 として炭素鐧を用いることができる。 また、 上記式 ( 1 1 ) から次の式が導き出される。 Specifically, as the material for example arm 4, SUS 4 3 0, thermal expansion coefficient scan 1 = 1 3. 1 X 1 0 - 6 was used, SUS 3 0 4 as the material of the compensator 2 0, thermal expansion Using coefficient 2 = 20.1 X 10, carbon 鐧 can be used as weight 21. The following equation is derived from the above equation (11).
W4 十 W2 ノ 2 = ス 1 ノス 2 — ス 1 ( Wl + W3 / 2 ) こ こで、 W 4 = 0 とすると、 W4 10 W2 No 2 = S 1 Nos 2 — S 1 (Wl + W3 / 2) Here, if W 4 = 0, then
W 2 / 2 = λ ϊ / λ 2 - λ ΐ ( W l + W 3 / 2 )  W 2/2 = λ ϊ / λ 2-λ ΐ (W l + W 3/2)
… (12 ) すなわち、 重り 2 1 がない場合には、 補償体 2 0 の長さや 、 重量分布などを変えるなどして各数値が式 (12 ) を満たす ようにすることにより、 温度補償を行える。  … (12) That is, when there is no weight 21, temperature compensation can be performed by changing the length and the weight distribution of the compensator 20 so that each numerical value satisfies the expression (12). .
なお、 実際には、 系の温度分布は均一ではないので、 温度 の不均一によって系の重心 Jの位置が若干変動するが、 金属 溶湯 2の液位測定に対しての影響は大幅に抑えられる。 , また、 本発明では、 上記実施例のように補償体 2 0 の他方 の端部 2 0 bに重り 2 1 を設けるのではなく、 その他方の端 部 2 0 bを補償体 2 0 の一方の端部 2 0 a より太く して重り 2 1 の代用とし、 その他方の端部 2 0 bが前記式 (11 ) を満 足するよう にしても良い。  Actually, since the temperature distribution of the system is not uniform, the position of the center of gravity J of the system slightly fluctuates due to the non-uniform temperature, but the influence on the liquid level measurement of the molten metal 2 can be greatly suppressed. . According to the present invention, instead of providing the weight 21 at the other end 20 b of the compensator 20 as in the above embodiment, the other end 20 b is connected to one end of the compensator 20. May be made thicker than the end 20a of the first end to substitute for the weight 21 and the other end 20b may satisfy the above expression (11).
本発明の第 3実施例は、 信号処理器 1 3 での具体的な演算 処理に関し、 力検出器 8 の出力信号を信号処理装置 1 3 にて 演算処理する際に、 一定周期で細かく サンプリ ングして共振 周波数の数周期分のデータを平均化し、 共振ノ イ ズを抑える よう にしている。  The third embodiment of the present invention relates to a specific arithmetic processing in the signal processor 13, and when the output signal of the force detector 8 is arithmetically processed in the signal processing device 13, the sampling is finely performed at a constant period. Then, data for several periods of the resonance frequency are averaged to suppress the resonance noise.
このよう にしたのは以下の理由よる。  This was done for the following reasons.
液面検出装置の各構成部材は、 それぞれの長さ、 重量、 材 質等に応じて固有の振動周波数を有する。 この固有の振動周 波数は、 液面検出装置が設置されている環境からの外来振動 により振動し共振する。 この共振ついて考察する。 説明を簡 単にするため第 1 1図に示した測定系の運動方程式について 考える。 Each component of the liquid level detection device has a unique vibration frequency according to its length, weight, material, and the like. This unique vibration frequency is due to extraneous vibration from the environment where the liquid level detector is installed. Vibrates and resonates. Consider this resonance. To simplify the explanation, consider the equation of motion of the measurement system shown in Fig. 11.
第 1 1図の測定系に置いて、 力検出器 8 として用いている ロー ドセルの変位は非常に小さいので、 回転角 0の非常に小 さい範囲の微小振動だけを考えてよい。 そこで s i n S = 6 とおく と、 運動方程式は次式のようになる。  In the measurement system shown in Fig. 11, the displacement of the load cell used as the force detector 8 is very small, so only small vibrations in a very small range with a rotation angle of 0 may be considered. Therefore, if we set s in S = 6, the equation of motion is as follows.
Δ h L p A = I ( d 2 θ / d t z ) 十い θ Κ Δ h L p A = I (d 2 θ / dt z ) Not enough θ Κ
… (13) ただし、  … (13) However,
I : 系の慣性モ一メ ン ト  I: Moment of inertia of the system
K : π - ドセルの弾性係数  K: π-doseel elastic modulus
Δ h : レベルの変化量  Δh: Level change
A : プローブの断面積 前記式 ( 1 3 ) から次式が導き出される。  A: Probe cross section The following equation is derived from the above equation (13).
Δ = ( I / p L A ) . ( d 2 6 / d t 2 ) Δ = (I / p LA) . (D 2 6 / dt 2)
+ L Θ K / p A  + L Θ K / p A
これをラプラス変換して整理すると、  When this is Laplace transformed and arranged,
H = ( I / o L A ) © s 2 ÷ ( L K/ p A ) Θ H = (I / o LA) © s 2 ÷ (LK / p A) Θ
Θ / H = p L A/ ( L 2 K/ I ) (14) センサ一の感度は p、 A及び Lに比例し、 また系の共振角 周波数 ωは次式のようになる。 Θ / H = p LA / (L 2 K / I) (14) The sensitivity of the sensor is proportional to p, A, and L, and the resonance angular frequency ω of the system is as follows.
ω = ( L 2 Κ/ I ) 1 /2 … (15) 次に、 力検出器 8に与えられる力 Fについて考える。 ω = (L 2 Κ / I) 1/2 (15) Next, the force F applied to the force detector 8 will be considered.
θ = Θ m s i n <y t  θ = Θ m s i n <y t
d 2 θ / ά t z = - Θ m ω ζ s i n ά> t d 2 θ / ά t z =-Θ m ω ζ sin ά> t
I ( d 2 5 / d t z ) = - I Θ a ω ζ s i n ω t I (d 2 5 / dt z ) =-I Θ a ω ζ sin ω t
= - Θ m L z K s i n <y t また、 F = L 2 βより、 =-Θ m L z K sin <yt From F = L 2 β,
F = A h L p A + 5m L 2 K s i n ω t - (16) 式 ( 1 6 ) より力検出器 8に与えられる力 Fは、 プローブ 3 の浮力と共振による力との合成力になる。 その共振による 力は最も大きな誤差原因である。 この共振を機械的な方法で 抑えると、 セ ンサーの感度に悪影響を与えるため、 できるだ け避けるべきである。 また電気的なローバスフィルター 1 5 でその共振ノ イ ズを除去することもできるが、 通常、 系の共 振周波数は非常に低く (約 1 0 H Z ) 、 しかもその振幅はレ ベル信号より大きいので、 共振ノ イズを完全にカ ツ 卜するた めにカ ツ トオフ周波数の非常に低いローバスフ ィ ルタ一を使 わなければならない。 そうすると、 レベル信号も同時にカ ツ トされるおそがある。 すなわち、 レベル系のレスポンスと S /N比を共に考慮する必要がある。 そこで、 上記のように力 検出器 8 の出力信号をサンプリ ングなどして共振ノ イ ズを抑 えるようにした。 F = A h L p A + 5 m L 2 K sin ω t-(16) From equation (16), the force F applied to the force detector 8 is a combined force of the buoyancy of the probe 3 and the force due to resonance. . The force due to the resonance is the largest source of error. Suppressing this resonance in a mechanical way adversely affects the sensitivity of the sensor and should be avoided as much as possible. Although it is also possible to remove the resonant Roh size b in electrical low-pass filter 1 5, usually, the resonant frequency is very low in the system (about 1 0 H Z), moreover than its amplitude level signal Because of its large size, a low-pass filter with a very low cut-off frequency must be used to completely cut the resonance noise. Then, the level signal may be cut at the same time. That is, it is necessary to consider both the response of the level system and the S / N ratio. Thus, as described above, the resonance signal is suppressed by sampling the output signal of the force detector 8 or the like.
<実験結果 > <Experimental results>
実際に実験室内で検出装置に共振による誤差の大きさを測 定した。 つまり、 力検出器 8の出力波形をス ト レージオシ口 スコープで測定し、 その波形を第 1 2図に示す。 銅の溶湯の レベル 1 mmの変化による出力の変化は約 3 6 mVに相当す るもので、 第 1 2図に示した波形の最大誤差は約 1 3 mmに 相当する。 現場の環境はとても厳しいので、 誤差はもつと大 きいと考えられる。 Actually measure the magnitude of the error due to resonance in the detection device in the laboratory. Specified. That is, the output waveform of the force detector 8 was measured with a storage scope, and the waveform is shown in FIG. The change in output due to the change of the copper melt level by 1 mm is equivalent to about 36 mV, and the maximum error of the waveform shown in Fig. 12 is equivalent to about 13 mm. Since the environment at the site is very harsh, errors are considered to be large.
本発明では前記共振による誤差を小さ くするため、 次の二 つのことを考慮して、 力検出器 8の出力をデジタル信号処理 するようにした。  In the present invention, in order to reduce the error due to the resonance, the output of the force detector 8 is subjected to digital signal processing in consideration of the following two points.
前記式 ( 1 5 ) に示したように系の共振周波数 ωに影響す るパラメータ L、 K、 I は比較的に安定である。  As shown in the above equation (15), the parameters L, K, and I that affect the resonance frequency ω of the system are relatively stable.
溶湯の液面検出装 Sにおいてはレスボンスに対する要求は あまり厳し く ない。  In the liquid level detector S for the molten metal, the requirements for the response are not so severe.
具体的な実験として、 コ ンピュータを利用して力検出器 8 からの出力信号を約 0. 1 7 m s e cの一定時間で細かく サ ンプルし、 それを AZD変換してメ モ リ に書き込み、 コ ンビ ュ一タにより共振周波数の数周期分のデータを平均化し、 レ ベルに換算し、 ディ スプレーに表示した。  As a specific experiment, the output signal from the force detector 8 was finely sampled for about 0.17 msec using a computer, converted into AZD, written into memory, The data for several periods of the resonance frequency were averaged by a computer, converted to a level, and displayed on the display.
このデジタル信号処理方法の効果を確認するために次の実 験を行った。  The following experiment was performed to confirm the effect of this digital signal processing method.
プローブ 3を水の中に挿入し、 その挿入レベルが変化しな いようにする。 また、 コ ンピュータを利用して上述の方法で データの平均値を計算する。 この場合、 平均化するデータの 数を Nとし、 その Nを 3から 9 0ずつ増加する。 その平均値 AVを次の式で計箕する。 A V =∑ R i /N Insert Probe 3 into the water so that its level does not change. The average value of the data is calculated by the above method using a computer. In this case, let N be the number of data to be averaged, and increase N by 3 to 90. The average value AV is calculated by the following equation. AV = ∑ R i / N
= I  = I
Nが同じ場合で、 3 m s e c ごとに一つ平均値を取り、 3 0 0個の平均値の中から最大値と最小値を探し出し、 その差 を計算して最大偏差とした。 第 1 3図にその実験結果を示す 。 同図の横軸は平均化するデータ数 Nを示し、 縦軸は最大偏 差を示す。 When N was the same, one average was taken every 3 ms, the maximum and minimum were found from among the 300 averages, and the difference was calculated as the maximum deviation. Figure 13 shows the experimental results. The horizontal axis in the figure shows the number N of data to be averaged, and the vertical axis shows the maximum deviation.
実験結果から本方法の効果は非常に大きいことが確認され た、 また次のことも解った。  From the experimental results, it was confirmed that the effect of this method was very large, and the following was also understood.
実験に用いた検出装置の共振周期は約 7 6. 5 m s e cで ある。  The resonance period of the detector used in the experiment is about 76.5 msec.
最大偏差が最も小さいのは、 N個のデータのサンプル時間 ( N X 0. 1 7 m s e c ) がほぼ共振周期の整数倍の場合で ある。 つまり、 N = 4 5 0 , 9 0 0 , 1 3 5 0 , 1 8 0 0 , 2 2 5 0 …の場合である。  The maximum deviation is the smallest when the sample time (N X 0.17 msec) of the N data is almost an integral multiple of the resonance period. That is, this is the case where N = 450, 900, 1350, 1800, 2250 ....
Nの絶対値が大きいほど、 最大偏差の変動は小さ く なる。 言い換えれば、 Nをある程度大き くすれば、 測定系の共振周 波数がやや変動しても大きな誤差を生じない。 その代わりに 液面検出装置のレスポンスはやや遅く なる。  The larger the absolute value of N, the smaller the variation of the maximum deviation. In other words, if N is increased to some extent, a large error does not occur even if the resonance frequency of the measurement system fluctuates slightly. Instead, the response of the liquid level detector is slightly slower.
実験に用いた装置の Nは 1 8 0 0にした。 つまり、 一つの レベルデータを計算するには約 0. 3 s e c必要となる。 第 1 4図は本発明の第 4実施例を示している。 同図に示す ように、 本例では、 上記した各実施例におけるアーム 4 , 力 検出器 8 , 信号処理回路 1 3並びにローパスフ ィ ルター 1 5 を収納するシールドケース 1 6の底部に上下移動させる架合 2 2を連結している。 この架台 2 2を昇降させることにより 、 少な く ともプローブ 3、 支持具 5 に支持されたアーム 4、 力検出器 8が水平にに保って上下移動するようになる。 さら に、 架台 2 2 には、 その上下移動距離を計測するための変位 センサ一 2 4を設けてある。 具体的には、 架台 2 2 としては 、 Zステージを用い、 変位センサー 2 4 としては、 リ ニアス ケールを用いている。 そして、 金属溶湯 2の液面の上下移動 に合わせて、 架台 2 2を作動させ、 プローブ 3を上下に移動 できるようにしている。 The N of the apparatus used in the experiment was set at 180.000. In other words, it takes about 0.3 sec to calculate one level data. FIG. 14 shows a fourth embodiment of the present invention. Shown in the figure As described above, in the present embodiment, the bridge 22 moving vertically to the bottom of the shield case 16 accommodating the arm 4, the force detector 8, the signal processing circuit 13, and the low-pass filter 15 in each of the above-described embodiments is provided. Connected. By raising and lowering the pedestal 22, at least the probe 3, the arm 4 supported by the support 5, and the force detector 8 move up and down while being kept horizontal. Further, the gantry 22 is provided with a displacement sensor 124 for measuring the vertical movement distance. Specifically, a Z stage is used as the gantry 22, and a linear scale is used as the displacement sensor 24. The gantry 22 is operated in accordance with the vertical movement of the liquid surface of the molten metal 2 so that the probe 3 can be moved up and down.
本例のように構成したのは、 以下の理由からなる。  The configuration as in this example is based on the following reasons.
本例は、 第 1 5図に示すような、 半連続铸造設備における 湯面制御方法の液位検出に使用するのに適している。  This example is suitable for use in liquid level detection in a liquid level control method in a semi-continuous production facility as shown in FIG.
図示する制御方法は、 铸型 3 0の間に配置された受台 3 1 にスパゥ ト 3 2から金属溶湯 2を注湯し、 注湯された金属溶 湯 2が固まったら受台 3 1を第 1 6図の矢印方向に降下させ て、 その金属溶湯 2 の上にさ らにスパゥ ト 3 2から金属溶湯 2を注湯し、 これを操り返して第 1 7図にように铸造型 3 0 内に所望量だけ注湯するようにしている。  The control method shown in the figure is as follows. The molten metal 2 is poured from the spat 32 into the pedestal 31 arranged between the molds 30, and when the poured molten metal 2 is solidified, the pedestal 31 is moved. It is lowered in the direction of the arrow in FIG. 16 and the molten metal 2 is poured from the spurt 32 onto the molten metal 2, and the molten metal 2 is turned back to form the mold 3 as shown in FIG. The desired amount of hot water is poured into 0.
この半連繞铸造設備における湯面制御方法では、 金属溶湯 2 の正しい液位を検出するためには、 铸造型 3 0内の金属溶 湯 2 の量にかかわらず金属溶湯 2へのプローブ 3 の揷入深度 は常に一定でなければならない。 すなわち、 この半連続铸造 設備では、 第 1 7図のように、 铸造型 3 0 の内部に冷却水を 流している。 それゆえに、 金属溶湯 2 は、 铸造型 3 0 の近辺 から徐々に固まる。 結果として、 第 1 7図に示すように、 金 属溶湯 2内部に固体と液体の境界面 3 3が存在し、 しかも、 金属溶湯 2 の液位が徐々に上昇するにつれてその境界面 3 3 も 3 4の位置まで上昇する。 この場合プローブ 3が固定され て上昇しないと、 プローブ 3が金属溶湯 2 に固められるおそ れがある。 そういう状況になったら液面検出装置は測定不能 になってしまい、 しかも、 铸塊も廃品になるおそれもある。 それゆえにプローブ 3 の挿入深度は正確に制御しなければな らない。 しかし、 铸造型 3 0内の金属溶湯 2の液位が上昇し てもプローブ 3 の位置が固定されていると、 金属溶湯 2への プローブ 3の挿入深度が変わってしまい、 正確に液位検出が できない。 In this method of controlling the level of the molten metal in the semi-circular production facility, in order to detect the correct liquid level of the molten metal 2, regardless of the amount of the molten metal 2 in the molding die 30, the probe 3 is applied to the molten metal 2. Input depth must always be constant. That is, this semi-continuous structure In the equipment, as shown in Fig. 17, cooling water is flowing inside the mold 30. Therefore, the molten metal 2 gradually solidifies near the mold 30. As a result, as shown in FIG. 17, a boundary 33 between solid and liquid exists inside the molten metal 2, and the boundary 33 also increases as the liquid level of the molten metal 2 gradually rises. 3 Ascend to position 4. In this case, if the probe 3 is fixed and does not rise, the probe 3 may be solidified in the molten metal 2. In such a situation, the liquid level detection device becomes unmeasurable, and in addition, lumps may be discarded. Therefore, the insertion depth of probe 3 must be precisely controlled. However, even if the liquid level of the molten metal 2 in the mold 30 rises, if the position of the probe 3 is fixed, the insertion depth of the probe 3 into the molten metal 2 changes, and the liquid level is accurately detected. I can't.
そこで、 本例では上述のごと く架台 2 2を上下させ、 液位 の変化に応じてブローブ 3 , アーム 4 などを水平位置を保つ て上下に移動させるようにし、 プローブ 3 の挿入深度を常に 一定に保持するようにしたのである。  Therefore, in this example, the pedestal 22 is moved up and down as described above, and the probe 3, the arm 4, etc. are moved up and down while keeping the horizontal position according to the change in the liquid level, and the insertion depth of the probe 3 is always constant. It was kept in the.
さ らに、 本例では、 架台 1 4にその上下移動距離を計測で きる変位セ ンサー 2 4を設けたため、 架台 2 2の上下移動距 離、 ひいては、 プローブ 3 の昇降距離を正確に制御すること ができる。  In addition, in this example, since the gantry 14 is provided with the displacement sensor 24 that can measure the vertical movement distance, the vertical movement distance of the gantry 22 and, consequently, the vertical movement distance of the probe 3 are accurately controlled. be able to.
次に、 上記第 4実施例に示す昇降可能な架合 2 2を有する 検出装置を用い、 本装置の各種パラメ ータの校正方法につい て説明する。 金属溶湯の液面検出装置において、 検出精度を高めるには 、 プローブ 3を垂直に金属溶湯に挿入することが重要である 。 プローブ 3 は、 金属溶湯内に斜めに挿入されると、 同じプ ローブ 3では垂直に挿入されている場合と断面積が異なる。 このため、 金属溶湯の液位が同じてもプローブ 3の受ける浮 力が異なり測定誤差が生じるからである。 Next, a method of calibrating various parameters of the present apparatus using the detecting apparatus having the vertically movable bridge 22 shown in the fourth embodiment will be described. It is important to insert the probe 3 vertically into the molten metal in order to increase the detection accuracy in the molten metal level detector. When the probe 3 is inserted obliquely into the metal melt, the cross-sectional area of the same probe 3 is different from that when it is inserted vertically. For this reason, even if the liquid level of the molten metal is the same, the buoyancy received by the probe 3 differs and a measurement error occurs.
しかし、 高温の金属溶湯 2 と直接接触するプローブ 3の寿 命は限られているので、 使用後一定の期間が経過したら交換 しなければならない。 プローブ 3を交換するとそのためにプ ローブ 3の取付状態が変り、 プローブ 3が同じ状態で金属溶 湯 2内に垂 eに揷入されるようにすることは難しい。  However, the life of the probe 3 that comes into direct contact with the hot metal melt 2 is limited, and must be replaced after a certain period of use. When the probe 3 is replaced, the mounting state of the probe 3 changes, and it is difficult to allow the probe 3 to be inserted into the metal melt 2 in the same state in the vertical e.
また、 金属溶湯 2の液面検出装置の設置環境は高温である ため、 他の作業に邪魔にならないように取り外したり、 取付 けたりすることが要求される。 このため、 同検出装置自体を 水平に保持するのが困難である。  In addition, since the installation environment of the liquid level detection device for the molten metal 2 is high temperature, it is required to remove or attach it so as not to interfere with other operations. For this reason, it is difficult to hold the detector itself horizontally.
このため、 精度の高い液面検出を行うためには、 プローブ 3を交換するたびに、 液面検出に直接関係のある各種パラメ —タを校正しなければならない。 この場合の重要なパラメ一 タとしては次のようなものがある。  Therefore, in order to perform highly accurate liquid level detection, every time the probe 3 is replaced, various parameters directly related to the liquid level detection must be calibrated. Important parameters in this case are as follows.
プ口一ブの外径  Outside diameter
セラ ミ ックでは、 寸法精度を高くするのが困難であるため 、 プローブ 3 の外径 Dのばらつきが大きい。 また、 プローブ 3 の外径は、 プローブ 3 の表面に金属溶湯 2中に淳いている 酸化物が不均一に付着することによってもばらつく。  In the ceramics, it is difficult to increase the dimensional accuracy, so that the outer diameter D of the probe 3 varies greatly. In addition, the outer diameter of the probe 3 varies due to uneven attachment of oxides in the metal melt 2 to the surface of the probe 3.
プローブの中心鼬と鉛直方向との角度 β この角度^は、 ^9 = 0度であることが理想である力、 実際 には ± 5度以上の誤差がある。 ^の影響を考慮にいれると、 式 ( 1 ) は、 次のようになる。 Angle β between probe center put and vertical direction This angle ^ has a force ideally at ^ 9 = 0 degrees, and actually has an error of ± 5 degrees or more. Taking into account the effect of ^, equation (1) becomes
A F = ( 1 / c 0 s ) X ( L 1 / L 2 )  A F = (1 / c 0 s) X (L 1 / L 2)
X ( π / 4 ) D 2 X p X A S 〜 (17 ) 金属溶湯 2の液面検出装置の水平度 X (π / 4) D 2 X p XAS ~ (17) horizontally of the liquid level detecting apparatus of the metal melt 2
この水平度によって系の重量によるモーメ ン トが変化し、 力検出器 8の荷重角度も変化する。  This level changes the moment due to the weight of the system, and the load angle of the force detector 8 also changes.
金属溶湯の比重 0  Specific gravity of molten metal 0
高温の金属溶湯の比重に関する標準データは不十分であり 、 正確な値は不明である。 また、 金属溶湯には各種目的で不 純物が混入されることがあるため、 高温溶融金属の比重があ る程度わかっていても、 その不純物の種類、 その混入量など によって正確な比重を把握することができない。  Standard data on the specific gravity of hot metal melt is inadequate and the exact value is unknown. In addition, since impurities may be mixed into the molten metal for various purposes, even if the specific gravity of the high-temperature molten metal is known to a certain degree, the exact specific gravity can be determined based on the type of impurities and the amount of the impurities. Can not do it.
ロー ドセルの ¾置位置  Load cell position
設置位置の変動につてロー ドセルの反発力のモーメ ン トが 変化する。  The moment of the repulsive force of the load cell changes with the change of the installation position.
これら各種のパラメータは一つの共通点がある。 つまり、 金属溶湯の液位の測定に対して線形的な影響を与えるこ とで ある。 本例では、 この共通点に着目している。  These various parameters have one common feature. In other words, it has a linear effect on the measurement of the liquid level of the molten metal. This example focuses on this common point.
上下移動できる架台 2 2を作動させて、 プローブ 3を金属 溶湯 2内に挿入させると共に、 変位センサー 2 4 により架台 2 2 の昇降距離を計測してプローブ 3 の挿入深度を読み取る 。 この読み取られた挿入深度と、 プローブ 3が受けた金属溶 湯 2 の浮力に基づいて前記信号処理器 1 3 より出力される揷 入深度とを比較し、 その両者の差の校正係数に基づいてコ ン ピュータにより自動的に校正する。 The probe 2 can be moved up and down, and the probe 3 is inserted into the molten metal 2. At the same time, the displacement of the probe 2 is measured by the displacement sensor 24 to read the insertion depth of the probe 3. The signal is output from the signal processor 13 based on the read insertion depth and the buoyancy of the molten metal 2 received by the probe 3. The depth is compared with the depth of entry, and calibration is automatically performed by the computer based on the calibration coefficient for the difference between the two.
具体的には、 第 1 8図のブロ ック図, 第 1 9図のフローチ ャ一 トに示すようになる。  Specifically, it is as shown in the block diagram of FIG. 18 and the flowchart of FIG.
ステップ 0 1〜ステップ 0 3  Step 0 1 to Step 0 3
プローブ 3を金属溶湯に挿入するように金属溶湯の液面検 出装置をセッ トする。  Set the molten metal level detector so that probe 3 is inserted into the molten metal.
このセ ッ 卜の方法としては、 目視をして実際にプローブ 3 が溶湯内に入るのを確認したり、 ブローブ 3が浮力を受ける のを検出するなどにより行われる。  As a method of this setting, it is performed by visually checking that the probe 3 actually enters the molten metal, or detecting that the probe 3 receives buoyancy.
ステ ップ 0 4  Step 0 4
パソコ ンはまず A/D変換ボー ドの出力を読み込んで浮力 に基づいて演算処理されたレベルを初期値 SO として記録す る。 これと同時にエンコーダのカウ ンター結果を読み込んで 、 リ ニアスケールにて実測されたレベルを初期値 AO として 記憶する。  The PC first reads the output of the A / D conversion board and records the level calculated based on the buoyancy as the initial value SO. At the same time, the counter result of the encoder is read and the level actually measured on the linear scale is stored as the initial value AO.
ステップ 0 5  Step 0 5
金属溶湯の液位の変動の最も小さいタイ ミ ングでバソコ ン がステージコ ン ト ロ一ラを通して Zステージをある位置に下 げる。  At the timing when the liquid level fluctuation of the molten metal is the smallest, the bath controller lowers the Z stage to a certain position through the stage controller.
ステップ 0 6〜ステップ 0 7  Step 06 to Step 07
パソコ ンは前記 Bと同じように A Z D変換ボー ドの出力 S 1 とエンコーダーの出力 A1 をそれぞれ読み込んで、 次の式 から校正係数 Kを計算する。  The computer reads the output S1 of the AZD conversion board and the output A1 of the encoder in the same manner as B, and calculates the calibration coefficient K from the following equation.
K= ( Al - AO ) / ( SI - SO ) … (18) これにより ' 正が終了する。 K = (Al-AO) / (SI-SO)… (18) This ends' positive.
以後、 通常の金属溶湯の液位を検出する作業になる。 パソ コ ンは、 前記 B と同じように AZD変換ボー ドの出力 S x を それぞれ読み込んで次式のように相対レベルを計算する。  Thereafter, the operation for detecting the liquid level of the normal molten metal is performed. The computer reads the output S x of the AZD conversion board in the same manner as B, and calculates the relative level as in the following equation.
S = K ( S X - R0 ) 十 AO … (19) 本発明の効果を確認するため、 電気炉を利用して現場テス トを行った。 この実験装置の構成は、 第 2 0図の通りであり 、 これは第 1 4図の装置とほぼ同じであるが、 この実験装置 では架台 4 0 して、 ジャ ッキを使用して、 人力により架台 4 0 の上の金属溶湯の液面検出装置を上下移動させ、 その垂 直方向の昇降量をリ ニアスケールで測定した。 このジャ ッキ 4 0を高さ調整用ハン ドル 4 2 の回転操作により昇降移動さ せてプローブ 3を昇降移動させた。 このときのプローブ 3 の 昇降量は、 実際の金属溶湯の液位の変動に相当するが、 電気 炉の炉蓋 4 3 に形成されているプローブ差込孔 4 4 の内径が 1 1 0 m mしかないので、 プローブ 3 の挿入深度の変化によ つて炉蓋 4 3 の溶湯の液面が一定の比率で変化するブローブ 3 の体積効果を考慮しなければならない。 この体積効果の修 正をパソコ ンで行う。  S = K (S X -R0) tens AO (19) In order to confirm the effects of the present invention, an on-site test was performed using an electric furnace. The configuration of this experimental device is as shown in Fig. 20. This is almost the same as the device of Fig. 14, but in this experimental device, the stand 40 is used, and a jack is used. As a result, the liquid level detecting device for the molten metal on the gantry 40 was moved up and down, and the vertical movement was measured on a linear scale. The jack 40 was moved up and down by rotating the height adjustment handle 42 to move the probe 3 up and down. The amount of rise and fall of the probe 3 at this time corresponds to the actual fluctuation of the liquid level of the molten metal, but the inside diameter of the probe insertion hole 4 4 formed in the furnace lid 43 of the electric furnace is only 110 mm. Therefore, the volume effect of the probe 3 in which the liquid level of the molten metal in the furnace lid 43 changes at a constant rate due to the change in the insertion depth of the probe 3 must be considered. This volume effect is corrected by a personal computer.
また、 このテス トでは、 ローパスフ ィ ルター 1 5 の時定数 -をそれぞれ 0 , 3 5 s e c , I s e c , 3 s e c に設定し た。  In this test, the time constant-of the low-pass filter 15 was set to 0, 35 sec, Isec, and 3 sec, respectively.
この状態において、 前記の校正手順でデータをとつた。 リ ニァスケールの出力 (計測値) は標準データとし、 ロー ドセ ルの出力に基づいて検出装置の実測値とした。 In this state, data was obtained by the above-described calibration procedure. The linear scale output (measured value) is standard data, The actual value of the detection device was used based on the output of the detector.
このテス ト結果をローパスフ ィ ルターの時定数別に第 2 1 図〜第 2 3図に示す。 各図とも、 横軸がリニァスケールの計 測値、 縦軸が浮力に基づいて算出された深度を示す。  The test results are shown in Fig. 21 to Fig. 23 for each time constant of the low-pass filter. In each figure, the horizontal axis shows the measured values on the linear scale, and the vertical axis shows the depth calculated based on buoyancy.
このテス トで次のことが確認された。  The test confirmed the following:
金属溶湯の液面検出装置を架台 4 0 に取付けるときにその 水平度をまつたく校正しなかったが、 本発明のパラメータの 校正方法によって校正するだけで大きな検出誤差は生じない 。 ローパスフ ィ ルターを使用する ことの有用性が確認された 。 測定誤差は最大で 1 . 8 m mであった。 木製のハンマーで 人為的な振動を与えた場合に生じた最大誤差は約 1 . 5 m m である。 電気炉周囲の振動は大き く ないので、 ローパスフィ ルターの時定数てを 0 , 3 s e c に設定しても大きな誤差は 生じない。  Although the level of the molten metal level detector was not calibrated when it was mounted on the gantry 40, no large detection error was generated simply by calibrating it with the parameter calibration method of the present invention. The usefulness of using a low-pass filter was confirmed. The measurement error was at most 1.8 mm. The maximum error caused by artificial vibration with a wooden hammer is about 1.5 mm. Since the vibration around the electric furnace is not large, a large error does not occur even if the time constant of the low-pass filter is set to 0 or 3 sec.
第 2 4図は本発明の第 5実施例を示している。 同図に示す ように、 本例では、 金属溶湯 2内に挿入されるプローブ 3の 下部 3 aの周囲を覆うようにして、 円筒状のシールド管 4 5 を配設している。 このシールド管 4 5 はセラ ミ ツク等の耐高 温材料により製作されており、 シールド管 4 5 の内径はプロ ーブ 3の外径より も大きい。 またシールド管 4 5 は、 上下が 開口されており、 シール ド管 4 5内に、 金属溶湯 2が流入可 能としている。 シール ド管 4 5 は、 連結部材 4 6 にてシール ドケース 1 6 に取付けられており、 架台 2 2の作動によりプ ローブ 3を上下移動させると、 それにともなってシール ド管 4 δ も上下移動するようになつている。 このように、 シール ド管 4 5を配設したのは、 以下の理由 による。 FIG. 24 shows a fifth embodiment of the present invention. As shown in the figure, in the present example, a cylindrical shield tube 45 is provided so as to cover the lower part 3 a of the probe 3 inserted into the molten metal 2. The shield tube 45 is made of a high temperature resistant material such as ceramics, and the inner diameter of the shield tube 45 is larger than the outer diameter of the probe 3. The shield tube 45 is open at the top and bottom, so that the molten metal 2 can flow into the shield tube 45. The shield pipe 45 is attached to the shield case 16 with the connecting member 46.When the probe 3 is moved up and down by the operation of the gantry 22, the shield pipe 4δ is also moved up and down accordingly. It is like that. The reason for arranging the shield pipe 45 in this manner is as follows.
第 2 7図に示すように、 金属溶湯 2 は、 溶湯槽 1内で流動 しており、 その流動中の溶湯の液位を測定する場合、 プロ一 ブ 3 の下方部 3 a は、 流れの障害物になり、 流体から F 6 の ような力を受ける。 また、 流れの状態によってプローブ 3 の 近辺に渦流が発生する可能性もある。 また金属溶湯 2中に浮 いている酸化物がプローブ 3 にぶつかると、 大きな力がプロ ーブ 3に加わる。 説明を簡単にするために、 このような水平 方向のすべての力を F6 とする。 この F6 が存在する場合、 式 ( 1 ) は次のようになる。  As shown in Fig. 27, the molten metal 2 is flowing in the molten metal tank 1, and when measuring the liquid level of the molten metal during the flow, the lower part 3a of the probe 3 It becomes an obstacle and receives a force like F 6 from the fluid. In addition, a vortex may be generated near the probe 3 depending on the flow condition. When the oxide floating in the molten metal 2 hits the probe 3, a large force is applied to the probe 3. For simplicity, all such horizontal forces are F6. If this F6 exists, equation (1) becomes
A F = ( L1 Z L2 ) ( ?ιノ 4 ) D 2 p厶 S AF = (L1 Z L2) (? Ι ノ 4) D 2 p m S
+ Δ F 6 ( L4 /L2 ) … (20) この式 (20) 中の A F 6 ( L4 ノ L2 ) は、 ノ イズだと言 う ことが明らかである。 しかも厶 F6 は非常に不安定であり 、 それを信号処理方法で正確に補償するのは困難である。 場 合によつて液位が測定不可能となることも充分考えられる。  + Δ F 6 (L4 / L2)… (20) It is clear that A F 6 (L4 L L2) in equation (20) is noise. Moreover, F6 is very unstable, and it is difficult to compensate for it with the signal processing method. It is quite possible that the liquid level cannot be measured in some cases.
そこで本例では、 上述のごと く シール ド管 4 5を設け、 プ ローブ 3に水平方向の力 F 6 が加わらないようにしている。 第 2 6図, 第 2 7図は本発明の第 7実施例を示している。 本実施例では、 アーム 4の支持に、 磁気軸受装置 5 0を用い ている。 この磁気軸受装置 5 0 は、 支持軸 5 1 を磁性体で形 成し、 その支持軸 5 1 の上下 2箇所の外周に電磁石 5 2を配 置すると共に、 変位センサ一 5 3を配設する。 そして、 変位 セ ンサ一 5 3 にて支持軸 5 1 との距離を検出し、 支持軸 5 1 が電磁石 5 2 に接触しないように、 コ ン ト ローラーで電磁石 5 2への通電量を制御するようになっている。 これにより、 支持軸 5 1 は、 非接触状態で起立される。 Therefore, in this example, as described above, the shield tube 45 is provided so that the horizontal force F 6 is not applied to the probe 3. FIG. 26 and FIG. 27 show a seventh embodiment of the present invention. In this embodiment, the magnetic bearing device 50 is used to support the arm 4. In this magnetic bearing device 50, a support shaft 51 is formed of a magnetic material, and an electromagnet 52 is disposed on the outer periphery of two places above and below the support shaft 51, and a displacement sensor 53 is disposed. . Then, the displacement sensor 53 detects the distance from the support shaft 51, and the displacement sensor 53 detects the distance from the support shaft 51. The controller controls the amount of electricity supplied to the electromagnet 52 so that the magnet does not contact the electromagnet 52. Thus, the support shaft 51 is erected in a non-contact state.
このような磁気軸受装置 5 0を液面検出装置に利用すると 、 金属溶湯 2の流れ等によりプローブ 3に加わる水平方向の 力 F 6 は、 磁気軸受装置 5 0のガイ ド機能、 すなわち、 支持 軸 5 1 を非接触状態に保たせるように各電磁石 5 2から磁力 を受ける機能により、 力検出器 8 に影響しない。 また、 非接 触式のため、 損失が少なく、 プローブ 3に加わる浮力を効率 良く力検出器 8 に伝えられる。  When such a magnetic bearing device 50 is used as a liquid level detecting device, the horizontal force F 6 applied to the probe 3 by the flow of the molten metal 2 or the like is reduced to the guide function of the magnetic bearing device 50, namely, the support shaft. The function of receiving magnetic force from each electromagnet 52 so that 51 is kept in a non-contact state does not affect the force detector 8. In addition, since it is a non-contact type, the loss is small and the buoyancy applied to the probe 3 can be efficiently transmitted to the force detector 8.
本発明の実施に際しては、 上述した実施例を適宜組合せる ことができる。 また、 本発明は上述した実施例に限定されず 、 上述した実施例に対する種々の変形形態をとることができ る。  In carrying out the present invention, the above-described embodiments can be appropriately combined. Further, the present invention is not limited to the above-described embodiment, and can take various modifications to the above-described embodiment.
以上、 液体として金属溶湯について例示したが、 本発明の 液体検出装置は、 他の高温液体はもとより、 通常の液体の液 位検出に利用できることはいうまでもない。  As described above, the liquid metal is exemplified as the liquid, but it goes without saying that the liquid detection device of the present invention can be used for detecting the liquid level of ordinary liquids as well as other high-temperature liquids.
さ らに本発明の他の実施例について述べる。  Further, another embodiment of the present invention will be described.
上記した各実施例はいずれも液面検出装置に関するもので あるが、 上記構成の装置を用い、 比重測定装置を提供するこ ともできる。  Each of the above embodiments relates to a liquid level detecting device, but it is also possible to provide a specific gravity measuring device using the device having the above configuration.
上記式 (1)を変形すると以下のようになる。  The above equation (1) is transformed as follows.
P -厶 F / A S ' k · · · ( 21 ) ここで kは ( L1 Z L2 ) ( πノ 4 ) D2 であり、 定数で ある。 P-rum F / AS 'k · · · (21) Where k is (L1 Z L2) (π Bruno 4) and D 2, is a constant.
従って、 この原理を用い、 プローブ 3を液体内に所定量 Δ Sだけ挿入したとき力検出器 8へ加わる力 Δ Fを検出するこ とにより液体の比重 Pが算出される。 挿入深度 A Sの測定と しては、 例えば第 4実施例等に用いた変位センサ— 2 4等で 行な る。 産業上の利用可能性  Accordingly, using this principle, the specific gravity P of the liquid is calculated by detecting the force ΔF applied to the force detector 8 when the probe 3 is inserted into the liquid by the predetermined amount ΔS. The insertion depth AS is measured, for example, by the displacement sensor 24 used in the fourth embodiment and the like. Industrial applicability
本発明の液面検出装置は、 種々の液体の液位検出に用いる ことができ、 特に高温液体の液位測定に好適に利用できる。 また、 本発明によれば液体の比重検出測定も行なう ことが できる。  INDUSTRIAL APPLICABILITY The liquid level detecting device of the present invention can be used for detecting liquid levels of various liquids, and can be suitably used particularly for measuring liquid levels of high-temperature liquids. Further, according to the present invention, specific gravity detection measurement of a liquid can also be performed.

Claims

請求の範囲 The scope of the claims
1 . 一端が液体 ( 2 ) 内に挿入され他端が液体外にあり、 液体の液位に応じた浮力を受けるプローブ ( 3 ) と、  1. A probe (3), one end of which is inserted into the liquid (2) and the other end is outside the liquid, and which receives buoyancy according to the liquid level of the liquid
該プローブの他端を固定し、 前記プローブの浮力に応じて 前記固定端と対向する自由端が支点 ( 7 ) を挟んで力を受け るアーム ( 4 ) と、  An arm (4) in which the other end of the probe is fixed, and a free end facing the fixed end receives a force across a fulcrum (7) according to the buoyancy of the probe;
該アームの自由端に当接して設けられ、 アームの自由端に かかる力を検出する力検出手段 ( 8 ) とを具備する液面検出 Liquid level detecting means provided in contact with the free end of the arm, and force detecting means (8) for detecting a force applied to the free end of the arm.
2 . 前記力検出手段からの検出信号を入力し、 その検出信 号を用いて前記プローブの前記液体内への挿入深度を算出し て前記液体の液位を検出する信号処理手段 ( 1 3 ) をさらに 具備する請求の範囲第 1項記載の液面検出装置。 2. Signal processing means for receiving a detection signal from the force detection means, calculating the insertion depth of the probe into the liquid using the detection signal, and detecting the liquid level of the liquid (13). 2. The liquid level detecting device according to claim 1, further comprising:
3 . 前記信号処理手段は少なく とも、 前記検出信号に舍ま れる機械的振動成分を除去するフィルター手段を具備する請 求の範囲第 2項記載の液面検出装置。  3. The liquid level detecting device according to claim 2, wherein the signal processing means includes at least a filter means for removing a mechanical vibration component included in the detection signal.
4 . 前記フィルタ一手段がローバスフィルターであること を特徴とする請求の範囲第 3項記載の液面検出装置。  4. The liquid level detecting device according to claim 3, wherein the filter is a low-pass filter.
5 . 前記信号処理手段は、 前記力検出手段の出力信号を一 定周期でサンプリ ングして共振周波数の数周期分のデータを 平均化し、 共振ノ イ ズを除去するようにしたことを特徴とす る請求の範囲第 2項〜第 4項のいずれかに記載の液面検出装 置。  5. The signal processing unit samples the output signal of the force detection unit at a constant period, averages data for several periods of the resonance frequency, and removes resonance noise. The liquid level detecting device according to any one of claims 2 to 4.
6 . 前記プローブが、 セラ ミ ックなどの耐高温性の材料で 形成されていることを特徴とする請求の範囲第 1項〜第 5項 のいずれかに記載の液面検出装置。 6. The probe according to any one of claims 1 to 5, wherein the probe is formed of a high temperature resistant material such as a ceramic. The liquid level detection device according to any one of the above.
7 . 前記アームはク ラ ンク状に形成され、 前記支点の高さ と、 前記'液体の液位の高さとを略一致させたことを特徴とす る請求の範囲第 1項〜第 6項のいずれかに記載の液面検出装 置。  7. The arm according to claim 1, wherein the arm is formed in a crank shape, and a height of the fulcrum and a height of the liquid level of the liquid substantially coincide with each other. The liquid level detecting device according to any one of the above.
8 . 少な く とも前記プローブ, アーム, 力検出手段が、 上 下移動可能な架台 ( 2 2 ) に載置され、 水平に上下されると ともに、 その架台に上下距離を測定するための検出手段 ( 2 4 ) を設けてなることを特徴とする請求の範囲第 1 項〜第 7 項のいずれかに記載の液面検出装置。  8. At least the probe, the arm, and the force detecting means are mounted on a platform (22) which can be moved up and down, and are vertically moved up and down, and the detecting means for measuring the vertical distance on the platform. The liquid level detecting device according to any one of claims 1 to 7, wherein (24) is provided.
9 . 前記プローブの上部を 2枚の挟着具 ( 5 ) で挟み、 両 挟着具をビス ( 6 ) により締付けることによりプローブをァ ームに着脱自在に固定するようにしたことを特徴とする請求 の範囲第 1項〜第 8項のいずれかに記載の液面検出装置。  9. The upper part of the probe is sandwiched between two clamps (5), and the probe is detachably fixed to the arm by tightening both clamps with screws (6). The liquid level detecting device according to any one of claims 1 to 8, wherein:
1 0 . 前記力検出手段としてロードセルを用い、 ロー ドセ ルの作用点にベア リ ング ( 1 2 ) を設け、 そのベア リ ングを アームの自由端に接触させるようにしたことを特徴とする請 求の範囲第 1項〜第 9項のいずれかに記載の液面検出装置。  10. A load cell is used as the force detecting means, a bearing (12) is provided at the point of application of the load cell, and the bearing is brought into contact with the free end of the arm. 10. The liquid level detecting device according to any one of claims 1 to 9, wherein
1 1, 前記アームより熱膨張係数の大きな補償体 ( 2 0 ) を、 アームに沿って密着させ、 プローブ側端部でアームと補 償体とを固定するとともに、 捕償体の反対側端を自由端とす るようにしたことを特徴とする請求の範囲第 1項〜第 1 0項 のいずれかに記載の液面検出装置。  11. A compensator (20) having a larger coefficient of thermal expansion than the arm is closely attached along the arm, the arm and the compensator are fixed at the probe end, and the opposite end of the compensator is attached to the probe. The liquid level detecting device according to any one of claims 1 to 10, wherein the liquid level detecting device has a free end.
1 2 . 前記捕償体の自由端側に、 重り ( 2 1 ) を装着した こ とを特徴とする請求の範囲第 1 1項記載の液面検出装置- 12. The liquid level detecting device according to claim 11, wherein a weight (21) is attached to a free end side of the catcher.
1 3 . 前記プローブの下部外周に、 シールド管 ( 4 5 ) を 配設したことを特徴とする請求の範囲第 1項〜第 1 2項のい ずれかに記載の液面検出装置。 13. The liquid level detecting device according to any one of claims 1 to 12, wherein a shield tube (45) is provided on an outer periphery of a lower portion of the probe.
1 4 . 前記アームの支持を、 アームに垂設された支持軸 ( 5 1 ) と、 その支持軸の外周位所定位置に配置された電磁石 からなる磁気軸受装置 ( 5 0 ) で行うようにしたことを特徴 とする請求の範囲第 1項〜第 1 3項のいずれかに記載の液面 検出装置。  14. The arm is supported by a magnetic bearing device (50) including a support shaft (51) suspended from the arm and an electromagnet disposed at a predetermined position on the outer periphery of the support shaft. The liquid level detecting device according to any one of claims 1 to 13, characterized in that:
1 5 . 略水平方向に配置されたアームの一端に固定された プローブを液体内に挿入し、 その液体からプローブが受ける 浮力に応じた力を前記アームの他端倒で検出し、 その検出し た力から、 前記プローブの液体内への挿入深度を算出する液 面検出方法。  15 5. A probe fixed to one end of an arm arranged in a substantially horizontal direction is inserted into the liquid, and a force corresponding to the buoyancy received by the probe from the liquid is detected at the other end of the arm, and the detection is performed. A liquid level detection method for calculating the insertion depth of the probe into the liquid from the applied force.
1 6 . プローブを上下させてプローブを溶液内に挿入させ 、 このときのプローブの移動距離と、 プローブが受けた浮力 に基づいて演算処理して得られたプローブの移動距離とを比 較し、 その両者の差により得られる校正係数に基づいて液面 検出用パラメータを自動的に校正する請求の範囲第 1 5項記 載の液面検出方法。  16. Move the probe up and down to insert the probe into the solution, and compare the moving distance of the probe at this time with the moving distance of the probe obtained by performing arithmetic processing based on the buoyancy received by the probe. The liquid level detection method according to claim 15, wherein the liquid level detection parameter is automatically calibrated based on a calibration coefficient obtained from a difference between the two.
1 7, 液体に所定の深さだけ挿入される、 プローブと、 該 プローブの浮力に対応した力を検出する力検出手段と、 該カ 検出手段が検出した力と前記プローブの挿入量に基づいて前 記液体の比重を算出する手段とを有する比重測定装置。  17. A probe inserted into the liquid by a predetermined depth, force detecting means for detecting a force corresponding to the buoyancy of the probe, and a force detected by the force detecting means and an insertion amount of the probe. Means for calculating the specific gravity of the liquid.
1 8 . プローブを液体内に所定深さだけ挿入し、 そのとき のプローブがその液体より受ける浮力に対応した力を検出し 、 その検出した力をプローブの挿入深度からその液体の比重 を算出する比重測定方法。 1 8. Insert the probe into the liquid to the specified depth, and detect the force corresponding to the buoyancy that the probe receives from the liquid at that time. A specific gravity measurement method that calculates the specific gravity of the liquid from the probe insertion depth using the detected force.
PCT/JP1991/000270 1990-02-28 1991-02-28 Liquid level detecting apparatus and liquid level detecting method WO1991013324A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/772,352 US5315873A (en) 1990-02-28 1990-02-28 Liquid level detection apparatus and method thereof
KR1019910701468A KR920701793A (en) 1990-02-28 1991-10-28 Liquid level detection device and method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2/48344 1990-02-28
JP4834490A JPH03251723A (en) 1990-02-28 1990-02-28 Liquid level detector for molten metal
JP2/55778 1990-03-07
JP2055778A JP2795516B2 (en) 1990-03-07 1990-03-07 Liquid level detection device for molten metal
JP7721690A JPH03276025A (en) 1990-03-27 1990-03-27 Liquid level position detector for molten metal
JP2/77216 1990-03-27
JP7721790A JPH03276026A (en) 1990-03-27 1990-03-27 Liquid level position detector for molten metal
JP2/77218 1990-03-27
JP2/77217 1990-03-27
JP7721890A JPH03276027A (en) 1990-03-27 1990-03-27 Liquid level position detector for molten metal
JP2/83462 1990-03-30
JP8346290A JPH03282330A (en) 1990-03-30 1990-03-30 Liquid level position detecting device for molten metal

Publications (1)

Publication Number Publication Date
WO1991013324A1 true WO1991013324A1 (en) 1991-09-05

Family

ID=27550313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000270 WO1991013324A1 (en) 1990-02-28 1991-02-28 Liquid level detecting apparatus and liquid level detecting method

Country Status (5)

Country Link
US (1) US5315873A (en)
EP (2) EP0470269A4 (en)
KR (1) KR920701793A (en)
CA (1) CA2053925A1 (en)
WO (1) WO1991013324A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100228410B1 (en) * 1997-07-09 1999-11-01 이상용 Liquid water level flux measuring system and measuring method use strain gauge type loadcell
US6029514A (en) * 1998-08-21 2000-02-29 Gintec Active Safety, Ltd. Device for measuring the volume of liquid in a container
US6367325B1 (en) 2000-01-13 2002-04-09 Visteon Global Technologies, Inc. Motor vehicle fuel level sensor
DE20006302U1 (en) * 2000-04-06 2001-10-25 Band Zink Gmbh Coating device
US6532814B2 (en) 2000-12-05 2003-03-18 American Leak Detection, Inc. Apparatus and method for detecting a leak in a swimming pool
DE10116075C1 (en) * 2001-03-30 2002-05-29 Conducta Endress & Hauser Process for producing a blown glass body comprises determining the position of the surface of a glass melt in an adjusting position of an immersion tube, controlling the position, and bombarding the immersion tube with a blowing pressure
DE10210877A1 (en) * 2002-03-12 2003-11-27 Wabco Gmbh & Co Ohg Valve device for actuating cylinders
CN1325900C (en) * 2003-11-27 2007-07-11 赵万山 Digital display type liquefied petroleum gas density meter device
DE102005011049B4 (en) * 2005-03-08 2010-09-23 Eurocopter Deutschland Gmbh Fuel level measuring device
US8220482B1 (en) 2007-11-13 2012-07-17 Kona Labs LLC Devices, methods, and algorithms for rapid measurement of mean surface level change of liquids in containers
KR200452796Y1 (en) * 2008-07-29 2011-03-22 이용수 Device for detecting the fuel level in a fuel tank
US9410336B2 (en) * 2009-06-01 2016-08-09 Richard DeVerse Automated system for monitoring and maintenance of fluid level in swimming pools and other contained bodies of water
US20150300864A1 (en) * 2014-04-16 2015-10-22 James P. Wiebe Liquid level sensor system
TWI524057B (en) * 2014-08-22 2016-03-01 財團法人國家實驗研究院 Liquid level measuring device
DE102017104696A1 (en) * 2017-03-07 2018-09-13 Krones Ag Device for determining the filling level of a filling product in a filling product reservoir
DE102018105900B4 (en) * 2018-03-14 2023-07-20 Ersa Gmbh Wave soldering machine and method for determining the height of the soldering wave
US11313142B1 (en) 2018-07-13 2022-04-26 Taylor Fife Swimming pool leveling system and method of use
US10942531B1 (en) * 2018-07-13 2021-03-09 Taylor Fife Swimming pool leveling system and method of use
CN112525291B (en) * 2020-12-16 2024-06-14 深圳市纵维立方科技有限公司 Printing apparatus and liquid level depth detection method
CN114620203A (en) * 2022-03-16 2022-06-14 江苏科技大学 Ship engine room equipment monitoring device
CN115684188B (en) * 2022-11-09 2023-10-10 无锡福田包装制品有限公司 Electric motor car shell spraying quality inspection device
CN116210575A (en) * 2022-12-26 2023-06-06 合肥创农生物科技有限公司 Water planting cabinet capable of automatically weighing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746123A (en) * 1980-09-04 1982-03-16 Asano Seiki Kk Measuring device for liquid level
JPS61114131A (en) * 1984-11-09 1986-05-31 Kubota Ltd Detection of molten metal surface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2416570A (en) * 1942-12-02 1947-02-25 Roy F Coleman Force system
US2550031A (en) * 1947-10-23 1951-04-24 Cananea Cons Copper Company Pulp density indicator
FR1207973A (en) * 1958-09-15 1960-02-19 Stationary mounted gauge for liquid tanks
DE2928054A1 (en) * 1978-08-01 1980-02-21 Centre Rech Metallurgique METHOD AND DEVICE FOR CONTINUOUSLY CASTING METALS
GB2043902B (en) * 1979-02-19 1983-07-20 Scriven E T Liquid storage tank with measuring device and method for its operation
JPS60239629A (en) * 1984-05-14 1985-11-28 Kiichi Taga Level gauge for measuring buoyancy of float with strain gauge
JPS61144131A (en) * 1984-12-18 1986-07-01 Toshiba Corp Burst radio communication equipment
SE453014B (en) * 1985-03-06 1988-01-04 Systemteknik Ab VETSKENIVAGIVARE
JP2534511B2 (en) * 1987-08-19 1996-09-18 エービー テトラパック Liquid level control device in filling section of packaging machine
US4981042A (en) * 1988-10-03 1991-01-01 Reeves Goodwyn G Apparatus for determining the density of a liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746123A (en) * 1980-09-04 1982-03-16 Asano Seiki Kk Measuring device for liquid level
JPS61114131A (en) * 1984-11-09 1986-05-31 Kubota Ltd Detection of molten metal surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0470269A4 *

Also Published As

Publication number Publication date
KR920701793A (en) 1992-08-12
EP0689039A3 (en) 1997-11-26
CA2053925A1 (en) 1991-08-29
EP0689039A2 (en) 1995-12-27
EP0470269A1 (en) 1992-02-12
US5315873A (en) 1994-05-31
EP0470269A4 (en) 1993-11-03

Similar Documents

Publication Publication Date Title
WO1991013324A1 (en) Liquid level detecting apparatus and liquid level detecting method
KR101254395B1 (en) Device for measuring level of molten metal and method thereof
KR890001980B1 (en) Apparatus for measuring viscosity
CN109550906A (en) The measuring device and its measurement method of molten steel flow velocity in a kind of continuous cast mold
JPH03180260A (en) Continuous measurement of thickness of liquid slag on surface of molten metal bath in metallurgical container
KR960015056B1 (en) Device for monitoring physical state of an object
US4037761A (en) Indication of levels in receptacles
JP3138953B2 (en) Slag thickness measuring device
CN110595419A (en) System and method for measuring thickness of liquid slag layer of casting powder
JPH04348230A (en) Dipping type level gauge for high temperature molten metal, dipping type temperature measuring apparatus with level measuring function for high temperature molten metal and surveillance probe with level measuring function
KR0129056B1 (en) Measuring apparatus for thickness of slag in ladle
US5687187A (en) Process and device for regulating the position of the tip of an electric furnace electrode
JP2763719B2 (en) Flow velocity / flow direction detector in the level detector
US4235423A (en) Indication of levels in receptacles
KR0163375B1 (en) Solder wettability measuring instrument
JP2909922B2 (en) Temperature compensation method for thermomechanical analysis
CN219531939U (en) Measuring device for thickness of bottom slag of melting tank
EP0067668A2 (en) Apparatus for measuring a metal surface position
KR900002109Y1 (en) Measuring device for amount of alumina in slag
JPH04328432A (en) Force measuring apparatus and liquid-level detecting apparatus and gravity measuring apparatus utilizing force measuring apparatus
JPH03257330A (en) Apparatus for detecting position of liquid surface of molten metal
JPH03276025A (en) Liquid level position detector for molten metal
JPH03276027A (en) Liquid level position detector for molten metal
JPH03251723A (en) Liquid level detector for molten metal
JPH0670609B2 (en) Vibration vibrometer vibrating piece immersion method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991905330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2053925

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1991905330

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1991905330

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991905330

Country of ref document: EP