WO1991009148A1 - Device for vacuum treatment and device for and method of film formation using said device - Google Patents

Device for vacuum treatment and device for and method of film formation using said device Download PDF

Info

Publication number
WO1991009148A1
WO1991009148A1 PCT/JP1990/001601 JP9001601W WO9109148A1 WO 1991009148 A1 WO1991009148 A1 WO 1991009148A1 JP 9001601 W JP9001601 W JP 9001601W WO 9109148 A1 WO9109148 A1 WO 9109148A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature
stage
infrared radiation
radiation thermometer
Prior art date
Application number
PCT/JP1990/001601
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Okamoto
Shigeru Kobayashi
Hideaki Shimamura
Susumu Tsuzuku
Eisuke Nishitani
Satoshi Kishimoto
Yuji Yoneoka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2225388A external-priority patent/JP2923008B2/en
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to DE19904092221 priority Critical patent/DE4092221T1/de
Priority to KR1019910700879A priority patent/KR940007608B1/en
Priority to DE4092221A priority patent/DE4092221C2/en
Publication of WO1991009148A1 publication Critical patent/WO1991009148A1/en
Priority to US08/260,321 priority patent/US6171641B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • C23C16/466Cooling of the substrate using thermal contact gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Definitions

  • the present invention relates to a vacuum processing apparatus for performing various types of processing on a substrate in a vacuum, a film forming apparatus and a film forming method using the same, and particularly to a vacuum processing apparatus suitable for use in a semiconductor device manufacturing process and The present invention relates to a film forming apparatus and a film forming method using the same.
  • a typical process equipment whose temperature is the most important setting condition is a so-called furnace body such as an oxidation furnace.
  • the inside of this type of furnace is an oxidizing atmosphere that replaces the atmosphere.
  • the replacement atmosphere is atmospheric pressure or higher, and the silicon wafer in the furnace body, for example, is heated by radiation from the heater installed around the quartz tube and heat conduction by the atmospheric pressure atmosphere in the quartz tube. To be done. That is, since there is a medium that conducts heat, the temperature can be measured relatively accurately by using a probe such as a thermocouple installed in the heat conducting atmosphere.
  • a photoresist baking device used in the step of applying a photoresist used as a mask in the etching step can be cited.
  • baking is performed in an atmospheric pressure atmosphere, Place the silicone on a heat block that has a larger heat capacity than the silicone heated to the specified baking temperature, and then place the silicone vacuum on the heat block side. Presses the entire silicone wafer against the heat block by atmospheric pressure. For this reason, the wafer temperature is balanced with the temperature of the heat block, so that the temperature of the wafer can be accurately controlled and managed by a temperature probe such as a thermocouple attached to the heat block. .
  • Many semiconductor manufacturing processes rely on highly pure materials and well-controlled reactions in a dust-free environment, and therefore often require processing in vacuum.
  • thermocouple It has been attempted to accurately measure the temperature of the uhha during the process by attaching the thermocouple to the woofer, but in order to measure the temperature of the uhah with the thermocouple in point contact with the uhah, the contact state of the It is difficult to stabilize the temperature constant, and there is a drawback that the measurement temperature is not reproducible. Also, when the wafer is heated by infrared radiation, the uhha is almost transparent in a wide range of the infrared region, so heat is not transferred only to the thermocouple by conduction from the wafer, but the thermocouple itself. The temperature of the wafer may be difficult to measure accurately because it may be heated by the lamp heater.
  • the wafer is heated by a small force as compared with the use of the vacuum chuck under the atmospheric pressure.
  • the temperature is not uniform and reproducible because it is clamped on the top block.
  • the biggest drawback is that heat transfer from the heat block to the uhha takes longer due to the lower density of the heat transfer medium. Even if the heat block and the woo reach the thermal equilibrium in the end, it takes several seconds to several tens of seconds as described in the above example, and the reproducibility of the maturing conduction time is further increased. It is thought that various factors have an impact on the above.
  • a method of measuring the radiation intensity from a wafer in the infrared region using an infrared thermometer has been proposed. That is, in this method, the wafer is placed on a heating stage in a sputtering apparatus and heated, while the infrared thermometer is used to heat the wafer through a through hole formed in a target installed facing the wafer. The temperature is measured. That is, the infrared emissivity of wafer at a specific temperature is measured in advance by the calibration sample, and the wafer temperature in the sputter is controlled by the measured value.
  • the same metal as the target material for example, a silicon wafer on which aluminum of several 100 A is deposited is used, but the side to be observed by the infrared thermometer of HUHA. Since the infrared emissivity from the wafer surface differs depending on the presence or absence of a metal film on the surface of the wafer, it is not possible to control the temperature before film formation.
  • the ideal method for controlling the temperature of the HUHA using an infrared thermometer is to calibrate the infrared thermometer using the wafer itself on which the film is actually formed, and to determine the difference in infrared emissivity depending on the presence or absence of the film and its state. It is a method that can be measured without being affected by. However, no one that can be put to practical use has been proposed yet.
  • an object of the present invention is to eliminate the above-mentioned conventional problems, and the first object thereof is to provide an improved vacuum processing apparatus capable of accurately measuring and controlling the temperature of a substrate in a vacuum.
  • the second purpose is to apply this vacuum processing apparatus, for example, a film forming apparatus such as a sputtering apparatus or a CVD (Chemical Vapor Depth Initiation) apparatus, and the third purpose is to A film forming method using an improved film forming apparatus, and a fourth purpose is It is to provide a method for measuring the substrate temperature.
  • a first infrared radiation thermometer for measuring radiant heat of a substrate on a temperature calibration stage which is provided with means for heating or cooling the substrate placed on the stage to a known set temperature;
  • the emissivity is calculated from the output of the infrared radiation thermometer based on the known temperature of the substrate, and the infrared ray sensitivity correction value for displaying the temperature of the substrate correctly by the first infrared radiation thermometer is calculated.
  • thermometer for measuring the radiation heat of the substrate on the stage in this vacuum processing chamber; and an infrared sensitivity correction value obtained from the output of the second infrared radiation thermometer at the temperature calibration stage.
  • thermometer equipped with means for heating or cooling the substrate placed on the stage to a known set temperature; the first infrared radiation temperature for measuring the radiant heat of the substrate on this temperature calibration stage The emissivity is obtained from the output of the first infrared radiation thermometer based on the known temperature of the substrate, and the temperature of the substrate is corrected by the first infrared radiation thermometer. Means for calculating the infrared sensitivity correction value for displaying the temperature; a stage on which the substrate exiting the temperature calibration stage is placed; a means for heating or cooling the substrate to a predetermined set temperature; and a vacuum for the substrate.
  • a vacuum processing chamber provided with a processing means; a second infrared radiation thermometer for measuring the radiant heat of the substrate on the stage in the vacuum processing chamber; and an output of the second infrared radiation thermometer.
  • Each of the above stages was provided with an observation hole for observing the temperature of the substrate by the infrared radiation thermometer, and the infrared light from the substrate was guided to the infrared radiation thermometer.
  • An optical path for the purpose which is in the plane of the stage in contact with the substrate, has a gas introducing means for filling the space formed by the substrate and the stage with a predetermined gas pressure and can close the observation hole.
  • the vacuum processing apparatus described in ⁇ or (2) above which is provided with a means for controlling the temperature of the base plate, which comprises a movable optical path closing shutter, (4)
  • a means for controlling the temperature of the base plate which comprises a movable optical path closing shutter, (4)
  • Each of the above stages has an observation hole for observing the temperature of the substrate by the infrared radiation thermometer, and an optical path for guiding infrared light from the substrate to the infrared thermometer. It has a gas introducing means for filling a predetermined gas with a predetermined gas pressure in the space formed by the base and the stage, which is in the plane of the stage in contact with the substrate.
  • Each of the above stages has a means for controlling the substrate temperature, which comprises a second window plate thinner than the thickness of the first window plate between the first window plate and the infrared thermometer.
  • the above-mentioned first window plate is capable of transmitting even infrared radiant light of a longer wavelength than the second window plate, and is provided with a means for controlling the substrate temperature. (1) or with the vacuum processing device described in ( 2 ),
  • the first and second infrared radiation thermometers are each configured to perform measurement at the same infrared wavelength, and the vacuum processing apparatus according to (1) or) may be used. Also,
  • the means for heating or cooling the temperature of the substrate in the temperature calibration chamber to a known predetermined temperature comprises means for bringing the substrate into thermal contact with a member having a larger heat capacity than the substrate.
  • the means for bringing the base body into thermal contact with a member having a larger heat capacity than the base body has a means for evacuating the space where the base body and the member come into contact with a vacuum, by the vacuum processing apparatus according to the above paragraph). Also,
  • the means for heating or cooling the temperature of the substrate on the temperature calibration stage to a known predetermined temperature is inside the vacuum processing chamber, and means for thermally contacting the substrate with a member having a larger heat capacity than the substrate. , In the space where the base and the forest contact
  • the vacuum processing apparatus according to any one of (1) to (7) above, which is provided with means for enclosing a gas having a pressure of 5 pascals or more. 3) The substrate temperature calibration stage, the vacuum processing chamber, and The vacuum processing apparatus according to (1) or ( 2 ) above, in which a substrate temperature adjusting chamber is provided between the two, and each stage is provided with the first, second, and third infrared radiation thermometers. , Also,
  • At least one of the means for heating the substrate in the vacuum processing chamber is the vacuum processing apparatus according to any one of the above ⁇ to (9), which comprises a lamp heating means.
  • At least one of the means for heating or cooling the substrate on the temperature calibration stage is provided in the stage, and at the same time, the second heating or cooling is provided close to the upper surface of the substrate.
  • Each of the stages in the vacuum processing chamber has a temperature for adjusting the amount of temperature deviated from the predetermined set temperature in the vacuum processing chamber from the temperature of the substrate obtained from the output of the second infrared radiation thermometer.
  • the vacuum processing apparatus according to any one of (1) to (12) above, comprising a control means.
  • a first infrared radiation thermometer for measuring radiant heat of a substrate on temperature calibration which is provided with means for heating or cooling the substrate placed on a stage to a known set temperature; the first infrared ray The emissivity is obtained from the output of the line radiation thermometer based on the known temperature of the substrate, and the emissivity is measured by the first infrared radiation thermometer.
  • a vacuum film formation processing chamber provided with means for performing vacuum film formation processing on the substrate; a second infrared radiation temperature for measuring radiant heat of the substrate on a stage in the vacuum film formation processing chamber.
  • the film is provided in close proximity to the substrate in the chamber and has a shutter mechanism whose main surface is calibrated by a member that is a mirror surface sufficiently for the measurement wavelength of the infrared thermometer. Achieved by the device. And more specifically,
  • the CVD film forming apparatus which comprises the vacuum film forming chamber formed of a vacuum film forming chamber capable of forming a thin film under a predetermined condition by the CVD method. To be done. Also, (21). A substrate temperature adjusting chamber is provided between the substrate temperature calibration chamber and the vacuum film formation chamber, and each chamber is equipped with an infrared radiation thermometer.
  • the set temperature of the substrate temperature adjusting chamber is kept at a temperature lower or higher than those of the substrate temperature calibration chamber and the vacuum film forming chamber on the substrate.
  • a second film forming step of forming a film to a predetermined film thickness by controlling the temperature of the substrate to a third film forming temperature higher than the second set temperature in the substrate temperature adjusting chamber.
  • a rapid cooling step which is achieved by the film forming method by the film forming apparatus according to the above (21).
  • the infrared radiation thermometer for measuring the temperature of the substrate whose temperature is to be measured and the surface of the substrate opposite to the surface of the substrate whose temperature is measured by the infrared radiation thermometer are Achieved by a substrate temperature measurement method in which a mirror surface with sufficient reflectance for the infrared wavelength to be measured is installed almost perpendicular to the optical axis measured by the radiation thermometer, and the temperature of the substrate is measured. To be done. Or
  • the infrared radiation thermometer for measuring the temperature of the substrate to be heat-treated or cooled and the temperature of the substrate, and the infrared radiation thermometer at the measurement wavelength on the opposite side of the substrate should be sufficient.
  • the method of controlling the substrate temperature including the mirror surface having a high reflectance and the heating or cooling means for performing the above treatment it is preferable that (28).
  • the method for controlling a substrate temperature according to (27) wherein the heating or cooling means controls the substrate to a predetermined temperature by the value measured by the infrared radiation thermometer.
  • the heating means performs at least the first and second heating, and after the first heating, the substrate temperature is measured using the mirror surface and the infrared radiation thermometer.
  • the substrate Before subjecting the substrate to the prescribed processing in the vacuum processing chamber, in the temperature calibration stage, the substrate is heated or cooled to a known temperature and the first infrared radiation thermometer and thermocouple are used to The temperature is measured, and the infrared radiation thermometer correction value, that is, the emissivity is calculated based on the measurement result. Based on the result of this deduction, the temperature of the substrate in the subsequent vacuum processing chamber is accurately measured by the second and third thermometers. And that The temperature control system is operated based on the measurement result of 1. to set the temperature of the substrate in the vacuum processing chamber to a predetermined value, and vacuum processing such as film forming processing is performed in a precisely temperature-controlled state.
  • the temperature of the substrate is controlled in the vacuum processing chamber thereafter by measuring the calibration temperature with the first infrared radiation thermometer and thermocouple at different temperatures. It is possible to control the process temperature in a wide temperature range when performing -1.
  • thermometer and thermocouple by providing a plurality of means as heating means or cooling means for measuring the calibration temperature by the above-mentioned first infrared radiation thermometer and thermocouple, calibration at different temperatures can be performed in a shorter time. Can be done in.
  • thermometer instead of using the first infrared thermometer described above, it is also possible to obtain the emissivity by obtaining the absorptance from the reflectance and the transmissivity using the lamp of the measurement wavelength.
  • thermometer In order to observe the substrate with an infrared radiation thermometer while heating or cooling the substrate, it is necessary to provide a through hole (opening window) in the heating or cooling stage, but this through hole does not affect the temperature distribution of the substrate. Uniformity may occur. Therefore, as a countermeasure against this, it is possible to heat both the front and back sides of the substrate, but the stage is divided into two, and one of the substrate heating or cooling stages is not provided with an opening window and is dedicated to temperature control. Opening window on the other temperature measuring stage When providing the temperature measurement, the temperature may be measured by moving the substrate from the one stage to the other stage.
  • disposing the shutter close to the substrate when measuring the temperature of the substrate plays an extremely important role in accurately measuring the temperature of the substrate.
  • the first role is that in the case of a device that deposits a metal film by sputtering or CVD, regardless of the presence or absence of the metal film, the infrared rays are the same as when the metal film is deposited by this shutter. Since the emissivity can be obtained, it is possible to correct the apparent difference in the infrared emissivity before and after film formation, and to enable correct temperature control of the substrate based on accurate temperature measurement.
  • the second role is to block stray light penetrating the substrate and entering the infrared radiation thermometer to prevent measurement errors due to stray light.
  • This shutter mechanism is indispensable especially on the thermometer side of the substrate before film formation.
  • an absorber is used together with the shutter, the level of the stray light component can be accurately obtained in the measurement with the absorber being used, so the measurement boundary due to stray light can always be known.
  • FIG. 1 is a schematic partial cross-sectional block diagram of a vacuum processing apparatus showing an embodiment of the present invention
  • FIG. FIG. 3 is a schematic cross-sectional block diagram showing an example of a stage
  • FIG. 3 is a partial cross-sectional block diagram showing a vacuum processing apparatus according to another embodiment of the present invention
  • FIG. 5 is a partial cross-sectional block diagram for schematically explaining a vacuum processing apparatus showing another embodiment of the present invention
  • FIG. 5 and FIG. 6 are a sputter stage and a substrate, respectively, in which a shutter mechanism is arranged.
  • Fig. 7 is a schematic cross-sectional configuration diagram showing an example of the temperature adjustment stage
  • FIG. 7 is a characteristic curve diagram showing the results of temperature measurement with and without shutters
  • Fig. 8 is a combination of window plate materials.
  • FIG. 9 shows infrared transmission characteristics of Ba F 2 (barium fluoride)
  • FIG. 10 shows the same in the case of Ca F 2 (calcium fluoride).
  • FIG. 11 shows another preferred embodiment of the present invention
  • FIG. 12 shows a sectional view of a stage according to another embodiment of the present invention in which the stage is divided into two in the same chamber
  • FIG. FIG. 14 is a cross-sectional view of a stage in which temperature control means is provided on both sides of a substrate
  • FIG. 14 is an explanatory view showing one temperature profile during film formation.
  • the infrared radiation thermometer is used as the main means of thermometry, it is calibrated for each substrate (for example, silicon wafer). Specifically, each substrate is heated or cooled to a known temperature before the substrate is processed by the target vacuum processing device, and the temperature of one or more points is increased. In, the temperature of the substrate is measured by the first infrared radiation thermometer. From the reading of the first infrared radiation thermometer obtained at this time, correct the infrared radiation thermometer in the vacuum processing chamber after the temperature calibration stage. Of course, the emissivity can be obtained by other means. Depending on the product, it is possible to save labor by doing this for each mouth.
  • the infrared radiation thermometer after the temperature calibration stage is calibrated, for example, with a rough correction, or with a single coefficient for a narrow temperature range. If there are multiple temperature calibration points, there is a method such as importing each temperature calibration data into the computer and performing calculation for correction.
  • the temperature calibration stage described above is not limited to vacuum, but may be under atmospheric pressure. In an atmospheric pressure environment, not only is the structure of the device generally simple, but it is easier to control the temperature of the target uhha to the temperature of the heat block (stage) heated or cooled to a known temperature. It is possible to approach.
  • a vacuum chuck can be used on the stage to bring the substrate into close contact with a heat block having a larger heat capacity than the substrate. This is possible, and by doing so, the temperature of the substrate can be brought closer to the heat block temperature more accurately and in a short time.
  • the atmosphere of the chamber with the temperature calibration stage should be replaced with the atmosphere, for example, nitrogen atmosphere. More preferred.
  • the substrate when the substrate that was in the atmosphere is taken into the vacuum processing tank, the substrate is removed in order to sufficiently remove the moisture adsorbed on the substrate surface.
  • the temperature of the substrate which has already been heated up and raised is lowered to a film formation start temperature of, for example, about 100 in the vacuum chamber.
  • a film formation start temperature for example, about 100 in the vacuum chamber.
  • the substrate is heated or cooled to a known temperature in advance before the predetermined vacuum treatment, and the substrate temperature is measured by the first infrared radiation thermometer.
  • One or more secondary infrared radiation thermometers for use in the processing process Is equipped with a function to calibrate the
  • a film-forming device that needs to accurately control the temperature of the substrate, such as a CVD device, is configured, a process more suitable for electronic components can be realized.
  • the first and second infrared radiation thermometers described above can be calibrated more accurately if they are measured at the same infrared wavelength.
  • the above-mentioned first infrared radiation thermometer is calibrated at a known temperature with a heated substrate, if heating to a known temperature is performed in a vacuum, it is a so-called so-called “removal of moisture adsorbed on the substrate”. Since it can also be used as a single quenching process, the scale of the device can be reduced, which is preferable in some cases.
  • the infrared radiation temperature is set in advance. If the meter is calibrated, the radiant heating by the lamp can be performed instead of using the heat book, and a cheaper sputtering device can be constructed.
  • the lamp light may enter the infrared radiation thermometer as stray light.
  • the measurement wavelength of the infrared radiation temperature Kuraj is the same as the wavelength radiated by the lamp. Are essentially different wavelength ranges.
  • a mirror surface is installed on the side of the substrate opposite to the side where the infrared temperature is present. like this In this way, the temperature can be obtained in this way during the lamp heating, and the additional heating conditions can be determined from the result.
  • the infrared lamp containing silica glass which is widely used, cannot perform efficient heating.
  • this type of infrared lamp is prone to stray light with respect to the infrared radiation thermometer, it is more preferable to use a lamp with a short wavelength, which has a high absorption efficiency in the silicon microwave.
  • the temperature at which film formation on the substrate starts in the vacuum processing chamber is lower than the baking heating temperature in vacuum for removing the adsorbed moisture from the substrate, after baking, It is necessary to cool the substrate to a predetermined temperature in a vacuum chamber and adjust the substrate to a predetermined film formation start temperature.
  • a stage equipped with a first infrared radiation thermometer for performing temperature calibration in the temperature calibration chamber and baking of the substrate in vacuum are provided. And a stage for cooling the film to a temperature at which a predetermined film formation is started before starting the film formation, and the substrate temperature on the cooling stage is calculated by the correction value obtained by the first infrared radiation thermometer.
  • a sputtering device equipped with a second infrared radiation thermometer that can be accurately measured by calculation and use is required.
  • the substrate is close to the surface on the opposite side of the surface observed by the infrared radiation thermometer through the opening window of the stage to the measurement wavelength of the infrared radiation thermometer.
  • a shutter mechanism whose main surface is composed of a member that is sufficiently mirror surface, it is possible to block stray light penetrating the base and entering the infrared radiation thermometer.
  • FIG. 1 is a schematic configuration diagram showing an embodiment in which the vacuum processing apparatus of the present invention is applied to a sputtering film forming apparatus.
  • the substrate to be deposited is a silicon wafer and the A thin film is deposited on the substrate by sputtering.
  • the vacuum processing apparatus 1 of the present invention comprises a substrate temperature calibration chamber 2 having a substrate temperature calibration stage 5, a substrate temperature regulation chamber 3 having a substrate temperature regulation stage 6 for heating and cooling the substrate, and a sputtering system. It consists of a film stage 7, an A target 8 and a sputter deposition chamber 4 with a sputter electrode 9. And these chambers are connected by gate valves GV 1 and GV 2, respectively, and are independent. In addition, an exhaust system is connected to the substrate temperature calibration chamber 2 and the sputtering film formation chamber 4, so that one side can maintain a predetermined vacuum state and the other side uses gas.
  • a predetermined gas is introduced from the inlet, and air or nitrogen gas can be introduced to the substrate temperature calibration chamber 2 to set it to atmospheric pressure, and sputter gas is introduced to the sputter deposition chamber 4 by a predetermined discharge. It is configured so that it can be set in the environment in which plasma occurs. Furthermore, each stage is provided with heating and cooling means as will be described later, and an opening window 19 consisting of a through-hole for observing radiant infrared rays from the substrate 10 is provided. The first, second and third infrared radiation thermometers 11, 1, 14 and 15 are optically coupled to each other through this opening window 19 and are connected to the substrate temperature configuration stage 5. A thermocouple 12 is provided to accurately measure the temperature of stage 5.
  • thermocouple 12 input the output from each infrared radiation thermometer and the output of thermocouple 12 to calculate the emissivity of the first infrared radiation thermometer 11 or to calculate the emissivity of the second infrared radiation thermometer 1 2 based on this calculation result.
  • the infrared radiation thermometers 14 and 15 are corrected to measure the correct temperature of the substrate 10 on each stage, and finally the prescribed stage temperature is also based on these measured data.
  • Substrate temperature controller for controlling the temperature of the entire so-called vacuum processing apparatus by feeding back the command to set to the heating and cooling means of each stage to control the temperature of the stage to a predetermined value 1 Equipped with 3.
  • the substrate temperature calibration chamber normally emits infrared radiation from the substrate 10 which is set to a known temperature higher than the film formation start temperature.
  • Infrared radiation thermometer 1 1 1 Measure and measure the emissivity to calibrate this infrared radiation thermometer.
  • the substrate temperature adjustment chamber 3 has a temperature adjustment function before the substrate is transferred to the next sputter film formation chamber 4, and the sputter film formation chamber 4 has a function of forming a film on the substrate by sputtering.
  • the well-known 10 is set to 2 0 0'C and 300 on the calibration stage 5, and is gradually stepped to 3 temperature points at 4 00. Is heated to.
  • the 0 heating and cooling methods in these stages 5, 6 and 7 will be collectively described later.
  • the back surface of the base body 1.0 heated on the calibration stage 5 is observed and measured by the first infrared radiation thermometer 11 and the thermocouple 12 and the arithmetic processing unit of the base body temperature controller 13 is observed.
  • the temperature readings for each temperature step are obtained with. That is, the temperature of the calibration stage, which is parallel to the substrate temperature, is measured with the thermocouple 12 and the emissivity at that time is taken as the substrate temperature, and the emissivity at that time is observed with the infrared radiation thermometer 11 to determine the substrate temperature controller.
  • the temperature calculation value based on this emissivity is obtained by the arithmetic processing unit of 13.
  • the emissivity obtained from this first infrared radiation thermometer 11 can be inversely determined, and so in subsequent vacuums.
  • the emissivity was used to correct the emissivity from the second and third infrared radiation thermometers 14 and 15. Read.
  • the inside of the substrate temperature calibration chamber 2 is evacuated to the empty state, and then the wafer 10 is set to the gate valve GV 1. It is opened and transferred from the calibration chamber 2 to the substrate temperature adjustment chamber 3 under vacuum, and the temperature is measured by the second infrared radiation thermometer 1 4. Based on the measurement results, the temperature of the stage 6 is adjusted by the substrate degree controller 13 and the temperature of the wafer 10 is adjusted to an arbitrary temperature. In this example, the wafer set at 100 ⁇ and then the wafer 10 is transferred to the stage 7 of the vacuum sputter deposition chamber 4 by opening the gate valve GV2, and the third infrared radiation thermometer.
  • the temperature is measured by 15 and based on the result, the temperature of the stage 7 is adjusted to an arbitrary temperature, and the temperature of the substrate 10 is controlled to an arbitrary temperature to perform sputtering film formation.
  • a set of 2 0 'C, A £ sno. Film formation was performed.
  • the wafer 10 was transported to the calibration chamber 2 again, and the emissivity was re-calibrated, and this emissivity was used to correct the temperature measurement during the subsequent sputter film formation.
  • a transport mechanism using a heat resistant belt such as silicone rubber or a robot is used.
  • the structure of the stage on which the substrate is placed is The outline, the heating and cooling methods, and the method for measuring the emissivity of the wafer will be described using an example of the sputtering stage 7.
  • the sputter stage 7 has a built-in electrothermal heater 18 for heating the stage and transfers heat to the wafer in vacuum.For example, it has a structure in which heat transfer gas such as air or nitrogen gas flows. A clamp 17 is installed to make the heat transfer gas contact uniformly. In addition, the temperature of the woofer
  • an opening window 19 that constitutes a radiation observation cavity for measurement with an external radiation thermometer 15.
  • a cooling medium such as Freon is circulated instead of the heater 18 to cool the stage, and the wafer is cooled by the heat transfer gas in the same manner as above.
  • the heat transfer gas is not used and the chamber is evacuated and the vacuum chuck is used to maintain the adhesion to the stage and transfer heat by heat conduction. It has become.
  • an infrared radiation thermometer lis 1 15 is installed at the bottom of each stage to measure the temperature on the backside of the wafer, so that stray light from inside each chamber does not enter the infrared thermometer.
  • a stray light blocking cylinder 16 is installed between each stage and the infrared radiation thermometer.
  • the treatment in vacuum is the film formation of i ⁇ on the substrate by sputtering 7.
  • the emissivity increases significantly due to the reflection from the A film. Therefore, the emissivity obtained by measuring with the substrate temperature calibration chamber before the film formation process cannot be used due to the subsequent film formation process.
  • the wafer after the film formation process is heated again to a known temperature set in advance by the composition chamber, the emissivity is measured again on the new surface, and recalibration is performed. Therefore, for example, by measuring the wafer just after the film formation with an infrared radiation thermometer and measuring the emissivity after the film formation (second time) to obtain the correct emissivity, It is possible to know the wafer temperature correctly.
  • the heating condition setting is changed so as to reduce the amount of substrate heating performed during film formation or before film formation.
  • the apparent infrared emissivity value may vary greatly depending on the presence or absence of the film.
  • the second temperature calibration chamber 32 is used to calibrate the infrared emissivity of the substrate after film formation, and the spa
  • the figure shows an example in which a film is added to the deposition chamber 4 and added.
  • the temperature of the substrate is measured with an infrared radiation thermometer 15 during film formation by sputtering.
  • the infrared emissivity correction value obtained in the substrate temperature calibration stage 2 cannot be used.
  • the substrate 10 is transferred from the sputtering film formation chamber 4 to the second temperature calibration chamber 32, and the heating or cooling stage 3 3 is transferred in the same manner as the temperature calibration chamber 2. Heating or cooling to a specified temperature with, the temperature is measured with an infrared radiation thermometer 34 and a thermocouple 35, and the infrared emissivity of the substrate 10 after film formation at the specified temperature is calculated from the indicated values of both.
  • the temperature of the substrate during film formation can be accurately known. If the temperature of the substrate 10 during film formation obtained in this way is higher than the predetermined value, the heating means of the substrate temperature adjusting chamber 3 or the heating means of the substrate temperature adjusting chamber 3 must be adjusted to properly adjust the temperature of the substrate. Alternatively, by appropriately feeding feedback to the cooling means, the film forming process for the next substrate can be properly performed.
  • the temperature calibration chamber for calibrating the infrared emissivity of the substrate after film formation is not necessarily separate from the temperature calibration chamber 2 for calibrating the infrared emissivity of the substrate before film formation, as in this example. No need to prepare. That is, after the film formation is performed by the sputter film formation chamber 4, the substrate is conveyed again to the temperature calibration chamber 2 via the substrate temperature adjustment chamber 3 and here, the second temperature calibration chamber 3 is used. The same infrared emissivity calibration as in 2 may be performed.
  • This embodiment also describes an example of an apparatus for forming aluminum A £ on a silicon substrate by sputtering, as in the first embodiment.
  • FIG. 4 shows a schematic configuration diagram of the sputtering apparatus, which is basically the same as FIG. 1, but in this example, as will be described later in detail, the substrate 10 mounted on each stage is The shutters 20, 21 and 22 are arranged in close proximity to each other.
  • the substrate 10 is first heated or cooled to a predetermined temperature by the heating or cooling stage 5 in the temperature calibration chamber 2 and the temperature is measured by the first infrared radiation thermometer 1 1 and the thermocouple 1 2 and both instructions are given.
  • the infrared emissivity of the substrate 10 at a given temperature is calculated from the value.
  • the apparent infrared emissivity value may vary greatly depending on the presence or absence of the film. Therefore, the difference in apparent infrared emissivity due to the presence or absence of the film can be reduced.
  • the shutter 20 should be closed.
  • the substrate 10 is transferred from the temperature calibration chamber 2 to the substrate temperature adjusting chamber 3 and heated or cooled by the heating or cooling soot 6 while the substrate 10 is heated by the second infrared radiation thermometer 14.
  • the temperature of the heating or cooling stage 6 is adjusted to the specified temperature through the substrate temperature controller 13 by correcting the emissivity value of the substrate 10 at the specified temperature obtained by the calibration chamber 2.
  • the temperature of the substrate 10 is adjusted to a predetermined temperature. As with the temperature calibration chamber 2, the temperature on the thermometer side of the substrate temperature adjustment chamber 3 is also measured with the shutter 21 closed.
  • the substrate 10 is transferred to the sputtering film forming chamber 4 and heated or cooled by the sputtering stage 7.
  • the shutter 22 is closed on the substrate, and the third infrared radiation thermometer
  • the temperature of the base body 10 can be measured by means of 15 and the correct temperature can be known by correcting it with the emissivity value of the base body 10 obtained by the calibration chamber 2. Further, by knowing the correct temperature in this way, the temperature of the heating or cooling stage 7 is adjusted to a predetermined temperature through the substrate temperature controller 13 and the temperature of the substrate 10 is controlled to a predetermined temperature to effect sputtering. Start film formation.
  • the substrate 10 is returned to the substrate temperature adjusting chamber 3, and the temperature is measured by the second infrared radiation thermometer 14 while being heated or cooled at the stage 6.
  • the temperature of the stage 6 is adjusted to the predetermined temperature through the substrate temperature controller 13 and the substrate temperature is set to the predetermined value. Set to.
  • the substrate is unloaded from the vacuum processing apparatus 1 through the temperature calibration chamber 2 and proceeds to the next step.
  • the temperature measurement of the first infrared thermometer 11 and the temperature of the substrate 10 by the thermocouple 12 in the substrate temperature calibration stage 2 was performed at a plurality of temperatures, and the second and third infrared radiation thermometers 1
  • the use of 4 and 15 enables more accurate control of the process temperature.
  • by providing a plurality of means for heating or cooling the substrate for measurement with the first infrared radiation thermometer 11 for calibrating the substrate temperature it is possible to measure the substrate at a plurality of similar temperatures. The temperature can be calibrated in a shorter time.
  • the temperature calibration is described as being incorporated in the sputtering device, but it is also possible to prepare it separately as mentioned above.
  • a means for measuring reflection and transmission can be used instead of the first infrared thermometer.
  • Figure 5 shows a schematic diagram of the sputter stage 7 in Figure 4 as a representative example of the stage.
  • the structure of the stage is basically the same as that of the example of FIG. 2, except that the shutter 2 2 is provided in the vicinity of the upper part of the base 10 in this embodiment.
  • the apparent infrared emissivity value may vary greatly depending on the presence or absence of the film. Since the difference in apparent infrared emissivity due to the presence or absence of the film can be reduced by installing the sensor, the measurement by the infrared thermometer for temperature calibration as shown in Fig. 3 and the second temperature calibration chamber 3 2 are installed. As a result, it is no longer necessary to perform twice before and after film formation, and only once.
  • This shutter has an openable and closable mechanism that closes the substrate surface during temperature measurement and opens during film formation.
  • a stainless steel disc is supported by a rotatable drive shaft. It is configured to open and close by rotating.
  • an infrared A shutter 22 whose main surface is composed of a member that is sufficiently specular for the measurement wavelength of the radiation thermometer is provided. Is configured to block so as not to enter.
  • the role of the shutter mechanism is to firstly correct the increase in the apparent emissivity due to the radiated light from the wafer reflected by the metal film when the metal film is formed on the wafer substrate.
  • the second is the improvement of measurement accuracy due to the improvement of the infrared radiation intensity
  • the third is the blocking of stray light.
  • Fig. 6 shows a schematic configuration diagram of stage 6 in Fig. 4, which is basically the same configuration as stage 7 in Fig. 5.
  • the stage 6 has a built-in heater 18 and has a structure in which the heat transfer gas flows in the space between the stage 6 and the base body 10 in vacuum, so that the heat transfer gas can be brought into uniform contact with the base body.
  • Clamp 17 is installed.
  • An opening window 19 for measuring the temperature of the substrate 10 with an infrared radiation thermometer 14 and a stray light blocking cylinder 16 are connected, and a window plate 2 made of a material that transmits infrared rays is provided at both ends of the cylinder 16. 3 and 24 are installed.
  • the structure is such that the cylinder 16 itself is heated and water-cooled so that it does not become a source of stray light. To further reduce the effect of stray light, it is possible to cool it and then subject the inner wall of the cylinder 16 to a blackbody treatment.
  • the shutter 21 is arranged in the vicinity of the base body 10 in the same manner as in FIG.
  • the shutter may have any structure as long as (1) it has an infrared reflectance in a specular state, and ( 2 ) it has a function of blocking stray light. For example, it is synchronized with the temperature measurement timing of the substrate.
  • Various configurations can be adopted, such as a structure in which the substrate is driven to open and close freely, or a fixed shutter is provided in one region of the chamber and the substrate is moved to the lower part of the shutter during measurement. If the shutter temperature drops due to the appearance of this shutter on the wafer, it is advisable to heat the shutter temperature close to the approximate temperature.
  • FIG. 7 is a characteristic curve showing the difference in infrared emissivity of the silicon wafer substrate with and without shutters.
  • FIG. 7 (a) shows the comparative example without a shutter
  • FIG. 7 (b) shows the measurement result of the present example with the shutter.
  • the apparent infrared emissivity of the wafer before the aluminum ⁇ film formation (without the ⁇ film) in Fig. 7) is smaller than the apparent infrared emissivity rate of HUHA after the film formation (with the A £ film).
  • the apparent infrared emissivity after deposition of A is shown in Fig. 7 (b). It turned out to be almost the same as Uha. From this, it can be seen that it is possible to measure at a constant emissivity by measuring the substrate temperature using a shutter.
  • the temperature observation window plate made of a material that is almost transparent to the measurement wavelength of the infrared radiation thermometer has its own temperature raised. As a result, synchrotron radiation is emitted, which limits the lower limit temperature of measurement.
  • the lower limit temperature for measurement can be lowered by using different materials for the first and second window plates will be described using the sputtering stage 7 in FIG.
  • no shutter is used on the substrate, but it goes without saying that the same purpose can be achieved by using a shutter.
  • An electric heater 18 is provided inside the sputter stage 7-1. If a coolant such as liquid nitrogen is introduced into the sputter stage 7 instead of the heater, it can be used for cooling the substrate.
  • Reference numeral 30 denotes a small window provided on the sputter stage 7-1, in which the first window plate 24 is fitted.
  • a material that can transmit infrared rays efficiently such as barium fluoride or calcium fluoride, is used. For this reason, the airtightness of the space formed by the substrate 10 and the sputter stage 7 is maintained, and the pressure in this space is kept at a suitable pressure within a few Torr.
  • the optical path 3 It is provided to pass 6.
  • the infrared thermometer 14 is installed in the atmosphere. For this reason, the optical path 36 must pass through the boundary between the atmosphere and the vacuum. 3 1 is an observation window for this purpose, and the second window plate 2 3 will be described later, but a material that transmits infrared rays efficiently, for example, Futsui Imano, 'ryuum, Futsui Imano canalium, etc. are used. Since this second window plate 23 has to withstand atmospheric pressure, it is usually done with a thickness of about 5 l to secure its strength.
  • '32 is to introduce Ar gas into the space formed by the substrate 10 and the sputter stage.
  • the sputter stage 7-1 is preheated to a predetermined temperature, the substrate 10 is placed, the substrate 10 is pressed against the sputter stage 7-1 by the clamp 17 and Ar gas is introduced. Then, the heat transfer from the sputter stage 7-1 to the substrate 10 starts, and the substrate temperature starts to rise rapidly.
  • the sputtering target 8 installed facing the substrate 10 may start a process such as film formation by sputtering. If it is too low, adjust the temperature of the scatter stage and continue heating until it reaches the specified temperature.
  • the first window plate 24 which comes into direct contact with the gas as the heating medium filling the space created by the substrate 10 and the sputter stage 7-1, is the same as the substrate 10. Is heated by the heat medium.
  • the infrared thermometer 14 "sees" the substrate through the first window plate 2 4 and the second window plate 2 3, but the second window plate 2 3 will be described later.
  • the window plate 24 will be described first. If the thickness of the first window plate 2 4 is large, it will The intensity of the infrared radiant light is reduced. Similarly, the fact that the thickness of the first window plate 24 is large and the absorption loss is large means that when the temperature of the first window plate 24 rises, radiation from the partition plate itself is generated accordingly. I mean.
  • the thickness of the first window plate 24 be as thin as possible. If the first window plate 24 separates the atmosphere directly from the substrate and the space between the sputter stage and the stutter stage, as described above, in order to provide strength to withstand atmospheric pressure, a thickness of about 5 «is provided. Is necessary. However, if barium fluoride with a thickness of 5 «is heated to 400 ⁇ c, extremely strong radiation will occur and the infrared radiation from the substrate 10 placed ahead of it will be observed. Can not. Moreover, since the first window plate 24 and the substrate 10 use the heating method using gas, both of them move to converge to the same temperature. Therefore, from this point as well, the first window plate 24 needs to be thin.
  • both the first and second window plates 24 and 23 must be made of a material such as fluorinated fluoride.
  • the normal pressure of Ar for sputtering the first window plate 24 is several m Torr.
  • the pressure in the space formed by the substrate 10 and the sputter stage 7-1 is several Torr in height. Therefore, the pressure applied to the front and rear of the first partition plate 14 is very small.
  • the partition plate does not need strength. This is because the second window plate 23 is responsible for the interface with atmospheric pressure. Therefore, the first window plate 2 4 is enough for strength if it has a thickness of 1 «.
  • Figure 9 shows the infrared transmission characteristics of barium fluoride. This characteristic was shown at room temperature and 500 ⁇ Data source is “Characteristics of Physical Properties” (Kyoritsu Shuppan, May 15, 1974, 1st printing, 1st printing), pages 4 9 1 to 4 9 2 Barium fluoride), pages 468 to 469 (calcium fluoride).
  • the substrate When depositing by sputtering A, the substrate is
  • the first window plate 24 will be radiated by raising the temperature to 500 ° C. Infrared light is transmitted through the second window plate 23 because the second window plate 23 is at room temperature. It is also observed that it is infrared light from substrate 10.
  • Figure 10 shows the infrared light transmission characteristics of calcium fluoride at room temperature, but the transmission characteristics are extended to longer wavelengths than the transmission characteristics of room temperature fluoride shown in Figure 9. I know that not. If this calcium fluoride is used for the second window plate 23, even if the first window plate 2 is heated and starts to radiate by itself, this infrared radiation will be emitted after the partition plate 24. This unwanted radiation does not enter the infrared thermometer 14 that is being reserved. ⁇ Thus, stable measurement is possible regardless of the temperature of the first window plate 24.
  • Reference numeral 30 is a small window provided on the sputter stage 7 and is used to detect infrared radiation emitted from the back surface of the substrate (in this example, Si uh) 10 placed on the sputter stage 7-1. External line (radiation) It is provided to pass the optical path 36 for observation with the thermometer 5.
  • the infrared thermometer 14 is installed in the atmosphere. For this reason, the optical path 36 must pass through the boundary between the atmosphere and the vacuum.
  • Yes. 2 3 is a window for this purpose, and the window material is made of a material that efficiently transmits infrared rays, such as barium fluoride or fluorine-containing power.
  • the pipe 8 is for introducing Ar gas into the space defined by the substrate 10 and the sputtering stage.
  • the substrate 10 is clamped by the clamp 17 to the spatter stage.
  • the small window 30 of the sputter stage 7-1 is sealed by the lid 35. That is, the lid 35 is supported by the crank-shaped drive shaft 34, and the drive shaft 34 can move up and down. In Fig. 11 the lid is lowered to the midway position, but the lid 35 can be lowered further and it can be rotated after it has reached the position sufficiently lower than the spatter stage 7-1. , It is possible to retract the observation optical path 36 of the infrared thermometer to a position where it does not interfere.
  • the drive shaft 3 4 can be lifted from the position shown in Fig. 9, and at the top dead center, the small window 30 of the sputter stage 7 — 1 can be completely closed by the lid 3 5 from below. ..
  • the drive shaft 34 has risen to the top dead center and is closed by the lid 35 of the small window 30 of the slaughter stage 7-1. In this way, heat transfer from the sputter stage 7-1 to the substrate 10 starts, and the temperature of the substrate begins to rise rapidly.
  • the drive shaft 35 is rotated downward, and it is removed from the optical path 36, so that the infrared thermometer 14 can observe the back surface of the substrate 10. Since the lid 35 is lowered, the gas pressure of several Torr cannot be maintained between the back surface of the substrate 10 and the sputter stage 7-1, so that the temperature rise of the substrate 10 is almost stopped.
  • a sputtering target 8 installed facing the substrate 10 may start a process such as film formation by sputtering, or if it seems too low. If so, use lid 35 again and continue heating by filling it with gas.
  • the through hole (opening window) 19 as shown in Fig. 12 may be used. After heating or cooling the substrate 10 with a stage 25 dedicated to heating or cooling provided separately in a remote place, the substrate 10 is transferred to a stage having an opening window 19 and the infrared radiation thermometer is transferred. With the configuration in which the temperature is measured at 27, the temperature distribution of the substrate 10 can be measured in a more uniform state.
  • Example 7
  • the substrate When the substrate is heated or cooled only from either the front side or the back side, a temperature difference occurs between the front side and the back side of the substrate. Therefore, by providing heating or cooling means 28 and 29 on each side so that the temperature can be controlled from both the front and back sides of the substrate as shown in Fig. 13, the temperature difference between the two sides can be controlled. Can be reduced. Further, by this, the nonuniformity of the temperature distribution on the substrate due to the opening window 19 can also be reduced.
  • the silicon wafer 10 is heated to 500 at the temperature calibration chamber 2 to remove adsorbed moisture, etc., and the temperature is measured by the thermocouple 12 and the infrared radiation thermometer 1 1 is used as a base. The emissivity is calibrated, and the uhha is then transported to the substrate temperature control chamber 3.
  • This emissivity calibration can also be performed by irradiating the uch with light of the measurement wavelength, without depending on this method, to determine the transmissivity / reflectance.
  • the HUHA substrate 10 transferred to the substrate temperature adjustment chamber 3 is measured by the infrared radiation thermometer 14 and cooled to a predetermined temperature of 200 by the temperature control of the stage 6. And transferred to the sputtering film forming chamber 4.
  • the substrate 10 is snow-coated by a temperature profile as shown in FIG. Target 8 had a composition of 1% Si-3% Cu-A ⁇ .
  • the temperature of the substrate 10 is controlled to 230, and the film)! :number
  • the first sputter film formation up to 100 A is carried out, the sputter is once stopped, and the substrate is transferred to the substrate temperature adjusting chamber 3.
  • the temperature of the substrate 10 is controlled to 300 ° (: by heating, and the crystal grains of the A ⁇ film obtained by the first sputter deposition are grown to improve the orientation and the like.
  • the substrate is again conveyed to the subcatalyst film forming chamber 4, and after setting the substrate temperature to about 400, the second sputter film formation is restarted and the film is formed to a film thickness of about 1 m.
  • a silicon substrate is used as a substrate and an A & thin film is formed on the surface by sputtering.
  • the temperature of the substrate can be controlled with high accuracy via the stage, the wafer can be controlled with high accuracy.
  • the crystallinity and the thin film microstructure with good reproducibility were obtained, and it was possible to achieve high quality film formation. For example, when a thin film of several hundred people is heated at a heating temperature of 350, no improvement in crystallinity can be obtained. It was Therefore, such a film forming method cannot be industrially realized without the present invention capable of knowing an accurate temperature.
  • the vacuum processing apparatus of the present invention can be applied to a film forming apparatus using a CVD (Chem Dic Vapor Deposition) in addition to the above sputtering device.
  • CVD Chemical Vapor Deposition
  • this is effective when a tungsten substrate is used as a substrate and a tungsten film is formed on this substrate by a known method using CVD.
  • the degree of camellia of the temperature control of the substrate influences the quality of the formed film, and the film-forming apparatus of the present invention can sufficiently meet such requirements.
  • the film forming apparatus can be realized by using the vacuum processing chamber as the film forming processing chamber as in the above-described embodiment, the vacuum processing chamber can be used not only in the film forming chamber but also in the dry etching such as plasma etching. It is also possible to use a etching treatment chamber, and the temperature control of the substrate to be etched can be realized in the same manner as in the above-mentioned embodiment.
  • the present invention it is possible to accurately control the temperature of a substrate in a vacuum, to realize a vacuum processing apparatus capable of accurately controlling the temperature of a substrate, and to form a film on it.
  • a vacuum processing apparatus capable of accurately controlling the temperature of a substrate
  • a film on it By applying this to an apparatus, it is possible to easily control the temperature before and after film formation, which requires precise temperature control, and during film formation, and thus it is possible to form a high quality film.

Abstract

A vacuum treatment device for conducting various treatments of wafers in a vacuum tank and a method of film formation using said device, which is characterized in that temperature control of the wafers during film formation is performed using a radiation thermometer and, in particular, wafers are conveyed to each stage in a vacuum film forming chamber after emissivities thereof are corrected by a temperature correction stage in combination with the shutter, and are temperature-controlled to a fixed temperature to form a film thereon.

Description

明 細 書  Specification
真空処理装置及びそれを用いた成膜装置と成膜方法 技術分野  Vacuum processing apparatus and film forming apparatus and film forming method using the same
本発明は、 真空内で基体に様々な処理を施す真空処理 装置及びそれを用いた成膜装置と成膜方法に関するもの であって、 特に半導体装置の製造工程に用いるに好適な 真空処理装置及びそれを用いた成膜装置と成膜方法に関 する ものである。  The present invention relates to a vacuum processing apparatus for performing various types of processing on a substrate in a vacuum, a film forming apparatus and a film forming method using the same, and particularly to a vacuum processing apparatus suitable for use in a semiconductor device manufacturing process and The present invention relates to a film forming apparatus and a film forming method using the same.
背景技術  Background technology
半導体装置の製造に用いるプロセス装置では、 良く制 御された反応等を実現するためプロセス温度の正確な制 御が重要である。 温度が最も重要な設定条件になつてい るプロセス装置の代表は、 酸化炉等の所謂炉体である。 この種の炉体の中は、 大気と置換した酸化性雰囲気であ る。 この場合の置換雰囲気は大気圧またはそれ以上であ り、 炉体中の例えばシリ コ ンウェハは石英のチューブの 回りに設置されたヒータからの輻射と石英チューブ中の 大気圧雰囲気による熱伝導によって加熱される。 即ち、 熱を伝導させる媒体が存在するので、 温度の測定はその 熱伝導雰囲気に設置した熱電対などの測定子を使って比 較的正確に行なう ことができる。  In the process equipment used to manufacture semiconductor devices, accurate control of the process temperature is important to achieve well-controlled reactions. A typical process equipment whose temperature is the most important setting condition is a so-called furnace body such as an oxidation furnace. The inside of this type of furnace is an oxidizing atmosphere that replaces the atmosphere. In this case, the replacement atmosphere is atmospheric pressure or higher, and the silicon wafer in the furnace body, for example, is heated by radiation from the heater installed around the quartz tube and heat conduction by the atmospheric pressure atmosphere in the quartz tube. To be done. That is, since there is a medium that conducts heat, the temperature can be measured relatively accurately by using a probe such as a thermocouple installed in the heat conducting atmosphere.
また、 熱伝導の媒体を用いない例としては、 例えば蝕 刻工程でのマスクに用いるホ ト レジス トを塗布する工程 で用いるホ ト レジス トのべ一ク装置を挙げるこ とができ る。 この装置では、 ベーキングを大気圧雰囲気で行うが、 所定のベーク温度に加熱したシリ コ ンゥヱハより も大き な熱容量を持つヒー トブロ ック上にシリ コ ンゥヱハを置 載し、 更にシリ コ ンゥヱハをヒ一 トブロ ック側に設けら れた真空チヤ ッ クによって、 シリ コ ンゥヱハ全面を大気 圧によってヒー トブロ ックに押し付ける。 このためにゥ ェハの温度がヒー トブロ ックの温度に平衡するので、 ヒ — トブロ ッ クに取付けた熱電対等の温度測定子によつて 正確にウェハの温度を制御、 管理することができる。 半 導体製造プロセスの多 く は、 純度の高い材料や、 塵埃の 無い環境での良く制御された反応を利用するものである ため、 しばしば真空中での処理が必要となる。 As an example of not using a heat-conducting medium, for example, a photoresist baking device used in the step of applying a photoresist used as a mask in the etching step can be cited. With this device, baking is performed in an atmospheric pressure atmosphere, Place the silicone on a heat block that has a larger heat capacity than the silicone heated to the specified baking temperature, and then place the silicone vacuum on the heat block side. Presses the entire silicone wafer against the heat block by atmospheric pressure. For this reason, the wafer temperature is balanced with the temperature of the heat block, so that the temperature of the wafer can be accurately controlled and managed by a temperature probe such as a thermocouple attached to the heat block. . Many semiconductor manufacturing processes rely on highly pure materials and well-controlled reactions in a dust-free environment, and therefore often require processing in vacuum.
従来、 半導体製造装置において真空中でのゥ ハの正 確な温度制御は、 以下に述べるような理由から本質的に 困難であつた。  Conventionally, accurate temperature control of wafers in a vacuum in semiconductor manufacturing equipment has been essentially difficult for the following reasons.
即ち、 ラ ンプヒータでの加熱では熱を伝える媒体が存 在しないために輻射のみによってゥュハは加熱されるた めに、 良く知られるように金属鏡面では小さな吸収しか おこらず、 また黒体では大きな吸収が起こり、 結果とし て加熱されるゥェハの表面状態によつて加熱される度合 が大き く異なることになる。  That is, when heating with a lamp heater, since there is no medium to transfer heat, the uhha is heated only by radiation, and as is well known, only a small absorption occurs on the metal mirror surface, and a large absorption on the black body. Occurs, and as a result, the degree of heating is greatly different depending on the surface state of the wafer to be heated.
熱電対をゥヱハに取り付けるこ とによってプロセス中 のゥュハ温度を正確に測定することも試みられてきたが 熱電対をゥュハに点接触させた状態でゥュハの温度を測 定するため熱電対の接触状態を一定に安定させることが II難で、 測定温度に再現性が乏しい欠点がある。 また、 赤外線の輻射によってウェハを加熱する場合、 赤外領域の広い範囲でゥュハが殆ど透明であるため、 熱 電対にウェハからの伝導によつてのみ熱が伝わるのでは な く 、 熱電対自身がラ ンプヒータによって加熱されてし まう場合もあり正確なウェハの測温は困難である。 It has been attempted to accurately measure the temperature of the uhha during the process by attaching the thermocouple to the woofer, but in order to measure the temperature of the uhah with the thermocouple in point contact with the uhah, the contact state of the It is difficult to stabilize the temperature constant, and there is a drawback that the measurement temperature is not reproducible. Also, when the wafer is heated by infrared radiation, the uhha is almost transparent in a wide range of the infrared region, so heat is not transferred only to the thermocouple by conduction from the wafer, but the thermocouple itself. The temperature of the wafer may be difficult to measure accurately because it may be heated by the lamp heater.
また、 真空中に強制的に伝導媒体を持ち込む方法もあ る。 例えば、 特開昭 5 6 — 4 8 1 3 2号または特開昭 δ 8 - 2 1 3 4 3 4号に述べられているように、 シリ コ ンウェハを真空雰囲気中に設置されたヒ — トブロ ックに ク ラ ンプし、 シリ コ ンウェハの裏面とヒ ー トブロ ッ ク と の間に 1 トール前後の圧力でガスを充塡することによつ て、 ヒー トブロ ックの温度にウェハの温度を平衡させる という ものである。 この場合もヒ一 トブロ ックに取付け た熱電対等の温度測定子によってウェハの温度ができる しかしながらこの例では、 大気圧下での真空チャ ッ ク の使用に比較して小さな力によってウェハをヒ ー トプロ ックにク ラ ンプするものであるため温度の均一性、 再現 性が十分でない。 最大の欠点は、 熱伝導媒体の密度が低 いためにヒー トブロ ックからゥュハへの熱伝導に時間が 掛ることである。 最終的にはヒー トブロ ック とゥヱハと が熱的に平衡に達するとしても、 上記の例にも述べられ ているように数秒から数十秒の時間が掛り、 更にこの熟 伝導時間の再現性については様々な要因が影響を与える と考えられる。  There is also a method of forcibly bringing a conductive medium into a vacuum. For example, as described in Japanese Unexamined Patent Publication No. 5-6-48132 or Japanese Unexamined Patent Publication No. δ-8-2131434, it is a heat blower in which a silicon wafer is placed in a vacuum atmosphere. The temperature of the wafer is adjusted to the temperature of the heat block by filling the gas between the backside of the silicon wafer and the heat block at a pressure of about 1 Torr. Is to be balanced. In this case as well, the temperature of the wafer can be controlled by a temperature sensor such as a thermocouple attached to the heat block. However, in this example, the wafer is heated by a small force as compared with the use of the vacuum chuck under the atmospheric pressure. The temperature is not uniform and reproducible because it is clamped on the top block. The biggest drawback is that heat transfer from the heat block to the uhha takes longer due to the lower density of the heat transfer medium. Even if the heat block and the woo reach the thermal equilibrium in the end, it takes several seconds to several tens of seconds as described in the above example, and the reproducibility of the maturing conduction time is further increased. It is thought that various factors have an impact on the above.
以上述べるように、 いずれの加熱手段をとるにしても、 真空中で非接触でゥ ハの温度を測定する必要がある。 その方法の一つとして赤外線温度計を用いて赤外領域の ウェハからの輻射強度を測定する方法が提案されている。 即ち、 この方法はスパッタ リ ング装置においてウェハ をヒー トステージに置載して加熱しながら、 ウェハに対 向して設置されたタ—ゲッ トにあけた貫通孔を通じて赤 外線温度計によってゥ ハの温度を測定するものである。 つまり、 予め校正用試料によって特定の温度でのゥ ハ の赤外線輻射率を測定しておき、 その値によってスパタ 中のウェハ温度を制御するものである。 As described above, whichever heating means is used, It is necessary to measure the temperature of the wafer without contact in vacuum. As one of the methods, a method of measuring the radiation intensity from a wafer in the infrared region using an infrared thermometer has been proposed. That is, in this method, the wafer is placed on a heating stage in a sputtering apparatus and heated, while the infrared thermometer is used to heat the wafer through a through hole formed in a target installed facing the wafer. The temperature is measured. That is, the infrared emissivity of wafer at a specific temperature is measured in advance by the calibration sample, and the wafer temperature in the sputter is controlled by the measured value.
なお、 この種の技術に関連するものとしては例えば特 開平 1 — 1 2 9 9 6 6号公報を挙げることができる。 発明の開示  Note that, as one related to this type of technology, for example, Japanese Patent Laid-Open No. 1-1296966 can be cited. Disclosure of the invention
しかし、 この方法には以下に述べるようにウェハの輻 射率は必ずしも一定しないために、 正確な測温は困難で あり幾つかの問題点がある。  However, since the emissivity of the wafer is not always constant in this method as described below, accurate temperature measurement is difficult and there are some problems.
即ち、 校正用試料にはターゲッ ト材と同一の金属、 例 えばアル ミを数 1 0 0 A成膜したシ リ コ ンウ ェハを用い るが、 ゥュハの赤外線温度計によつて観察する側の表面 の金属膜の有無によって、 このウェハ表面からの赤外線 輻射率が異なるため、 成膜前の温度制御を行う ことがで きない。  That is, as the calibration sample, the same metal as the target material, for example, a silicon wafer on which aluminum of several 100 A is deposited is used, but the side to be observed by the infrared thermometer of HUHA. Since the infrared emissivity from the wafer surface differs depending on the presence or absence of a metal film on the surface of the wafer, it is not possible to control the temperature before film formation.
また、 成膜開始後も、 ある程度の膜厚 (例えば、 アル ミを 5 0 0 〜 1 0 0 O A ) に成膜するまでは正確な温度 測定を行う ことができない。 また、 金属膜を成膜する場合には鏡面が形成され、 非 常に小さな輻射率となり、 測定が難しく なる場合もある 真空中でのゥュハの正確な温度計測とそれに伴う温度 制御を行うためには、 同じ金属膜を形成したゥュハでも 製品ロ ッ トによって赤外線輻射率に相違があるため、 こ の例のように校正用のゥ ハを別に用意する方式では、 実際に成膜を行う ウェハそのものでないため正確な温度 制御ができない。 Further, even after the film formation is started, accurate temperature measurement cannot be performed until the film is formed to a certain film thickness (for example, aluminum to 500 to 100 OA). In addition, when a metal film is formed, a mirror surface is formed, and the emissivity becomes extremely small, which may make measurement difficult.In order to perform accurate temperature measurement of the uhha in a vacuum and the accompanying temperature control, However, since the infrared emissivity differs depending on the product lot even for wafers on which the same metal film is formed, the method in which a separate wafer for calibration is prepared as in this example is not the actual wafer for film formation. Therefore, accurate temperature control is not possible.
上述のように従来用いられてきた真空処理装置では、 様々な温度制御手段は用いられているものの、 そのプロ セスの温度を正確に知って制御できているものは無かつ た。  As described above, in the vacuum processing apparatus that has been conventionally used, although various temperature control means are used, none of them can accurately control the temperature of the process.
即ち、 赤外線温度計を用いたゥュハの温度制御の理想 的な方法は、 実際に成膜を行う ウェハそのものを用いて 赤外線温度計の校正を行い、 膜の有無やその状態による 赤外線輻射率の違いに左右されずに測定できる方法であ る。 しかしながら、 未だ実用に供し得るものが提案され ていない。  In other words, the ideal method for controlling the temperature of the HUHA using an infrared thermometer is to calibrate the infrared thermometer using the wafer itself on which the film is actually formed, and to determine the difference in infrared emissivity depending on the presence or absence of the film and its state. It is a method that can be measured without being affected by. However, no one that can be put to practical use has been proposed yet.
したがって、 本発明の目的は、 上記従来の問題点を解 消することに有り、 その第 1 の目的は、 真空中での基体 の温度を正確に計測し、 制御できる改良された真空処理 装置を、 第 2 の目的は、 この真空処理装置を応用した、 例えばスパッタ装置や C V D ( Ch em i ca l V a por Dep os i t i on )装置のような成膜装置を、 第 3 の目的は、 この改良 された成膜装置による成膜方法を、 そして第 4の目的は 基体温度の測定方法をそれぞれ提供するこ とにある。 これら目的達成手段を以下に具体的に述べれば、 上記 第 1 の目的は、 Therefore, an object of the present invention is to eliminate the above-mentioned conventional problems, and the first object thereof is to provide an improved vacuum processing apparatus capable of accurately measuring and controlling the temperature of a substrate in a vacuum. The second purpose is to apply this vacuum processing apparatus, for example, a film forming apparatus such as a sputtering apparatus or a CVD (Chemical Vapor Depth Initiation) apparatus, and the third purpose is to A film forming method using an improved film forming apparatus, and a fourth purpose is It is to provide a method for measuring the substrate temperature. To describe these means for achieving the objectives concretely, the first objective above is
(1) . ステージに載置された基体を既知の設定温度に加熱 または冷却する手段を備えた温度校正ステ—ジ上の基体 の輻射熱を測定する第 1 の赤外線輻射温度計と ; 前記第 1 の赤外線輻射温度計の出力から前記基体の既知の温度 に基づいて輻射率を求め、 前記第 1 の赤外線輻射温度計 により前記基体の温度を正し く表示せしめるための赤外 線感度補正値を演算する手段と ; 温度校正ステージを出 た基体が載置されるステージと、 この基体を所定の設定 温度に加熱または冷却する手段と、 前記基体に真空処理 する手段とを備えた真空処理チヤ ンバと ; この真空処理 チャ ンバ内のステージ上の前記基体の輻射熱を測定する 第 2 の赤外線輻射温度計と ; 前記第 2 の赤外線輻射温度 計の出力から前記温度校正ステージで求めた赤外線感度 補正値に基づき真空処理チヤ ンバ内に置かれた基体の真 の温度を算出する手段と ; を備えて成る真空処理装置に より、 達成される。 そして好ま しく は、  (1). A first infrared radiation thermometer for measuring radiant heat of a substrate on a temperature calibration stage, which is provided with means for heating or cooling the substrate placed on the stage to a known set temperature; The emissivity is calculated from the output of the infrared radiation thermometer based on the known temperature of the substrate, and the infrared ray sensitivity correction value for displaying the temperature of the substrate correctly by the first infrared radiation thermometer is calculated. Means for calculating; a vacuum processing chamber provided with a stage on which the substrate exiting the temperature calibration stage is mounted, means for heating or cooling the substrate to a predetermined set temperature, and means for vacuum processing the substrate. And a second infrared radiation thermometer for measuring the radiation heat of the substrate on the stage in this vacuum processing chamber; and an infrared sensitivity correction value obtained from the output of the second infrared radiation thermometer at the temperature calibration stage. And a means for calculating the true temperature of the substrate placed in the vacuum processing chamber on the basis of the above; And preferably,
(2) . ステージに載置された基体を既知の設定温度に加熱 または冷却する手段を備えた温度校正チヤ ンバと ; この 温度校正ステージ上の基体の輻射熱を測定する第 1 の赤 外線輻射温度計と ; 前記第 1 の赤外線輻射温度計の出力 から前記基体の既知の温度に基づいて輻射率を求め、 前 記第 1 の赤外線輻射温度計により前記基体の温度を正し く表示せしめるための赤外線感度補正値を演算する手段 と ; 温度校正ステージを出た基体が載置されるステージ と、 この基体を所定の設定温度に加熱または冷却する手 段と、 前記基体に真空処理する手段とを備えた真空処理 チャ ンバと ; この真空処理チャ ンバ内のステージ上の前 記基体の輻射熱を測定する第 2 の赤外線輻射温度計と ; 前記第 2 の赤外線輻射温度計の出力から前記温度校正チ ャ ンバで求めた赤外線感度補正値に基づき真空処理チヤ ンバ内に置かれた基体の真の温度を算出する手段と ; こ の第 2の赤外線輻射温度計の出力から求めた基体の温度 力 真空処理チャ ンバ内の前記所定の設定温度からずれ た分量の温度を調整する温度制御手段と ; 上記各々のチ ヤ ンバ内の基体上に近接して配設され、 赤外線温度計の 測定波長に対して充分に鏡面である部材でその主面が構 成されたシャ ツタ機構とを具備して成る真空処理装置に より、 達成される。 さらにまた、 (2) .Temperature calibration chamber equipped with means for heating or cooling the substrate placed on the stage to a known set temperature; the first infrared radiation temperature for measuring the radiant heat of the substrate on this temperature calibration stage The emissivity is obtained from the output of the first infrared radiation thermometer based on the known temperature of the substrate, and the temperature of the substrate is corrected by the first infrared radiation thermometer. Means for calculating the infrared sensitivity correction value for displaying the temperature; a stage on which the substrate exiting the temperature calibration stage is placed; a means for heating or cooling the substrate to a predetermined set temperature; and a vacuum for the substrate. A vacuum processing chamber provided with a processing means; a second infrared radiation thermometer for measuring the radiant heat of the substrate on the stage in the vacuum processing chamber; and an output of the second infrared radiation thermometer. And means for calculating the true temperature of the substrate placed in the vacuum processing chamber based on the infrared sensitivity correction value obtained by the temperature calibration chamber from the above; obtained from the output of the second infrared radiation thermometer Temperature control means for adjusting the temperature of the substrate in the vacuum processing chamber for adjusting the amount of temperature deviating from the predetermined set temperature; and an infrared thermometer which is arranged in close proximity to the substrate in each of the above chambers. This is achieved by a vacuum processing apparatus including a shutter mechanism whose main surface is made up of a member that is sufficiently mirror surface for the measurement wavelength. Furthermore,
(3) . 上記各々のステージには、 該赤外線輻射温度計によ つて基体の温度を観測するための設けられた観察用穴、 また基体からの赤外光を赤外線輻射温度計にまで導く た めの光路、 基体に接するステージの面内にあり、 基体と ステージとの成す空間に所定のガスを所定のガス圧力で 満たすためのガス導入手段を持ち、 該観察用穴を塞ぐこ とのできる、 可動式の光路閉塞用のシャ ツタからなる基 板温度の制御手段をそなえてなる上記 ωもし く は (2)記載 の真空処理装置により、 また、 (4) . 上記各々のステージには、 該赤外線輻射温度計によ つて基体の温度を観測するための観察用穴、 また基体か らの赤外光を赤外線温度計にまで導く ための光路、 基体 に接するステージの面内にあり、 基体とステージとの成 す空間に所定のガスを所定のガス圧力で満たすためのガ ス導入手段を持ち、 該赤外線輻射温度計の測定波長に対 してほぼ透明な材料でできた該観察用穴の基板側と赤外 線温度計側との真空雰囲気を仕切るための第 1 の窓板を 備えてなる基板温度の制御手段をそなえた上記 ωもしく は (2)記載の真空処理装置により、 また、 (3). Each of the above stages was provided with an observation hole for observing the temperature of the substrate by the infrared radiation thermometer, and the infrared light from the substrate was guided to the infrared radiation thermometer. An optical path for the purpose, which is in the plane of the stage in contact with the substrate, has a gas introducing means for filling the space formed by the substrate and the stage with a predetermined gas pressure and can close the observation hole. The vacuum processing apparatus described in ω or (2) above, which is provided with a means for controlling the temperature of the base plate, which comprises a movable optical path closing shutter, (4) Each of the above stages has an observation hole for observing the temperature of the substrate by the infrared radiation thermometer, and an optical path for guiding infrared light from the substrate to the infrared thermometer. It has a gas introducing means for filling a predetermined gas with a predetermined gas pressure in the space formed by the base and the stage, which is in the plane of the stage in contact with the substrate. The above-mentioned ω with the means for controlling the substrate temperature, which comprises a first window plate for partitioning the vacuum atmosphere between the substrate side of the observation hole and the infrared thermometer side made of a substantially transparent material With the vacuum processing device described in (2),
ほ) . 上記各々のステージは、 第 1 の窓板と、 赤外線温度 計との間に第 1 の窓板の厚さより も薄い第 2の窓板を備 えてなる基板温度の制御手段をそなえた上記 (1)もし く は )記載の真空処理装置により、 また、 Each of the above stages has a means for controlling the substrate temperature, which comprises a second window plate thinner than the thickness of the first window plate between the first window plate and the infrared thermometer. With the vacuum processing apparatus described in (1) or above,
(6) . 上記第 1 の窓板は、 第 2の窓板に比較して、 より長 い波長の赤外線輻射光までを透過させることができるも のからなる基板温度の制御手段をそなえた上記 (1)もしく は (2)記載の真空処理装置により、 また、 (6) The above-mentioned first window plate is capable of transmitting even infrared radiant light of a longer wavelength than the second window plate, and is provided with a means for controlling the substrate temperature. (1) or with the vacuum processing device described in ( 2 ),
(7) . 上記第 1及び第 2 の赤外線輻射温度計は、 それぞれ 同一の赤外領域の波長にて測定を行うようにして成る上 記 (1)もしく は )記載の真空処理装置により、 また、 (7) The first and second infrared radiation thermometers are each configured to perform measurement at the same infrared wavelength, and the vacuum processing apparatus according to (1) or) may be used. Also,
(8) . 上記温度校正ステ一ジ上の基体を既知の所定温度に 加熱または冷却する手段を、 上記真空処理チャ ンバ外に 配設して成る上記 (1)も し く は (2)記載の真空処理装置によ り、 また、 (9) . 上記温度校正ステージ上の基体を既知の所定温度に 加熱または冷却する手段は、 大気との置換雰囲気内に存 在するようにして成る上記 (1)乃至 )何れか記載の真空処 理装置により、 また、 (8). Description in (1) or (2) above, in which means for heating or cooling the substrate on the temperature calibration stage to a known predetermined temperature is provided outside the vacuum processing chamber. With the vacuum processing equipment of (9) The means for heating or cooling the substrate on the temperature calibration stage to a known predetermined temperature is such that it exists in a substitution atmosphere with the atmosphere, and the vacuum treatment according to any one of (1) to By the processing device,
αο) . 上記温度校正チャ ンバ内の基体の温度を既知の所定 温度に加熱または冷却する手段は、 基体より も熱容量の 大きな部材に前記基体を熱的に接触させる手段をもつて 構成して成る上記 (1)乃至 (9)何れか記載の真空処理装置に より、 また、 αο). The means for heating or cooling the temperature of the substrate in the temperature calibration chamber to a known predetermined temperature comprises means for bringing the substrate into thermal contact with a member having a larger heat capacity than the substrate. With the vacuum processing apparatus according to any one of (1) to (9) above,
. 上記基体を基体より も熱容量の大きな部材に熱的に 接触させる手段は、 基体と部材とが接触する空間を真空 に排気する手段を持って構成して成る上記 )記載の真空 処理装置により、 また、  The means for bringing the base body into thermal contact with a member having a larger heat capacity than the base body has a means for evacuating the space where the base body and the member come into contact with a vacuum, by the vacuum processing apparatus according to the above paragraph). Also,
02) . 上記温度校正ステージ上の基体の温度を既知の所定 温度に加熱または冷却する手段は真空処理チャ ンバ内に あり、 基体を基体より も熱容量の大きな部材に熱的に接 触させる手段と、 この基体と部林とが接触する空間には 02). The means for heating or cooling the temperature of the substrate on the temperature calibration stage to a known predetermined temperature is inside the vacuum processing chamber, and means for thermally contacting the substrate with a member having a larger heat capacity than the substrate. , In the space where the base and the forest contact
5パスカル以上の圧力の気体を封入する手段とを配設し て成る上記 (1)乃至 (7)何れか記載の真空処理装置により、 な3) . 基体温度校正ステージと、 真空処理チャ ンバとの間 に基体温度調整チヤ ンバを配設し、 ステージごとに第 1 、 第 2及び第 3の赤外線輻射温度計とを備えて成る上記 (1) もしく は (2)記載の真空処理装置により、 また、 The vacuum processing apparatus according to any one of (1) to (7) above, which is provided with means for enclosing a gas having a pressure of 5 pascals or more. 3) The substrate temperature calibration stage, the vacuum processing chamber, and The vacuum processing apparatus according to (1) or ( 2 ) above, in which a substrate temperature adjusting chamber is provided between the two, and each stage is provided with the first, second, and third infrared radiation thermometers. , Also,
(14) . 少な く とも上記真空処理チャ ンバ内の基体が載置さ れるステージを、 基体を所定温度に加熱もレ く は冷却す る手段の配設された第 1 のステー ジと、 温度測定用の第 2のステージとに分割し、 第 1 のステージで基体の温度 設定を行い、 次いで第 2のステージに基体を移動して温 度測定する手段を具備して成る上記 (1)乃至 (13)何れか記載 の真空処理装置により、 また、 (14) At least heat or cool the stage on which the substrate is mounted in the vacuum processing chamber to a specified temperature. It is divided into a first stage equipped with a means for measuring and a second stage for temperature measurement, the temperature of the substrate is set on the first stage, and then the substrate is moved to the second stage. The vacuum processing apparatus according to any one of (1) to (13) above, which is provided with a means for measuring temperature,
α¾ . 少な く とも上記真空処理チャ ンバ内の基体を加熱す る手段の一つが、 ラ ンプ加熱手段から成る上記 ω乃至 (9) 何れか記載の真空処理装置により、 また、 α ¾. At least one of the means for heating the substrate in the vacuum processing chamber is the vacuum processing apparatus according to any one of the above ω to (9), which comprises a lamp heating means.
御. 少な く とも上記温度校正ステー ジ上の基体を加熱も し く は冷却する手段の一方を上記ステ— ジに備えると共 に、 前記基体上面に近接して第 2の加熱もし く は冷却す る手段を配設し、 前記基板を両面から温度制御するよう に成した上記 (1)乃至 (13)何れか記載の真空処理装置により、 達成される。 そしてまた、 At least one of the means for heating or cooling the substrate on the temperature calibration stage is provided in the stage, and at the same time, the second heating or cooling is provided close to the upper surface of the substrate. This is achieved by the vacuum processing apparatus according to any one of (1) to (13) above, which is provided with a means for controlling the temperature of the substrate from both sides. and again,
上記真空処理チャ ンバ内の各々のステージは、 第 2 の赤外線輻射温度計の出力から求めた基体の温度から真 空処理チヤ ンバ内の前記所定の設定温度からずれた分量 の温度を調整する温度制御手段を具備して成る上記 (1)乃 至 (12)何れか記載の真空処理装置。  Each of the stages in the vacuum processing chamber has a temperature for adjusting the amount of temperature deviated from the predetermined set temperature in the vacuum processing chamber from the temperature of the substrate obtained from the output of the second infrared radiation thermometer. The vacuum processing apparatus according to any one of (1) to (12) above, comprising a control means.
上記第 2 の目的は、  The second purpose above is
(18 . ステー ジに載置された基体を既知の設定温度に加熱 または冷却する手段を備えた温度校正上の基体の輻射熱 を測定する第 1 の赤外線輻射温度計と ; 前記第 1 の赤外 線輻射温度計の出力から前記基体の既知の温度に基づい て輻射率を求め、 前記第 1 の赤外線輻射温度計により前 記基体の温度を正し く表示せしめるための赤外線感度補 正値を演算する手段と ; 温度校正ステージを出た基体が 載置されるステージと、 この基体を所定の設定温度に加 熱または冷却する手段と、 前記基体に真空成膜処理する 手段とを備えた真空成膜処理チャ ンバと ; この真空成膜 処理チャ ンバ内のステージ上の前記基体の輻射熱を測定 する第 2 の赤外線輻射温度計と ; 前記第 2 の赤外線輻射 温度計の出力から前記温度校正ステー ジで求めた赤外線 感度補正値に基づき真空成膜処理チャ ンバ内に置かれた 基体の真の温度を算出する手段と ; この第 2 の赤外線輻 射温度計の出力から求めた基体の温度が、 真空成膜処理 チャ ンバ内の前記所定の設定温度からずれた分量の温度 を調整する温度制御手段と ; 上記各々のチャ ンバ内の基 体上に近接して配設され、 赤外線温度計の測定波長に対 して充分に鏡面である部材でその主面が校正されたシャ ッタ機構とを具備して成る成膜装置により、 達成される。 そしてさ らに具体的に好ま しく は、 (18. A first infrared radiation thermometer for measuring radiant heat of a substrate on temperature calibration, which is provided with means for heating or cooling the substrate placed on a stage to a known set temperature; the first infrared ray The emissivity is obtained from the output of the line radiation thermometer based on the known temperature of the substrate, and the emissivity is measured by the first infrared radiation thermometer. Means for calculating an infrared sensitivity correction value for displaying the temperature of the substrate correctly; a stage on which the substrate exiting the temperature calibration stage is mounted, and this substrate is heated or cooled to a predetermined set temperature. And a vacuum film formation processing chamber provided with means for performing vacuum film formation processing on the substrate; a second infrared radiation temperature for measuring radiant heat of the substrate on a stage in the vacuum film formation processing chamber. A means for calculating the true temperature of the substrate placed in the vacuum film forming chamber based on the infrared sensitivity correction value obtained by the temperature calibration stage from the output of the second infrared radiation thermometer; Temperature control means for adjusting the temperature of the substrate, which is obtained from the output of the second infrared radiation thermometer, deviating from the predetermined set temperature in the vacuum film forming chamber; The film is provided in close proximity to the substrate in the chamber and has a shutter mechanism whose main surface is calibrated by a member that is a mirror surface sufficiently for the measurement wavelength of the infrared thermometer. Achieved by the device. And more specifically,
α$ . 上記真空成膜処理チャ ンバをスパッタ リ ング法によ つて所定条件で薄膜を形成することのできる真空成膜処 理チャ ンバで構成して成る上記 (18)記載のスパッ タ リ ング 成膜装置により、 そしてまた、 α $. The sputtering described in (18) above, which is composed of a vacuum film formation processing chamber capable of forming a thin film under predetermined conditions by a sputtering method. Depending on the film forming device, and also
(20) . 上記真空成膜処理チャ ンバを C V D法によって所定 条件で薄膜を形成する こ とのでき る真空成膜処理チヤ ン バで構成して成る上記 )記載の C V D成膜装置により、 達成される。 また、 (21 ) . 上記基体温度校正チャ ンバと、 真空成膜処理チヤ ンバとの間に基体温度調整チヤ ンバを配設し、 各チャ ン バ内には、 各々赤外線輻射温度計とを備えて成る上記 (18) 記載の成膜装置により、 また、 (20) Achieved by the CVD film forming apparatus according to the above), which comprises the vacuum film forming chamber formed of a vacuum film forming chamber capable of forming a thin film under a predetermined condition by the CVD method. To be done. Also, (21). A substrate temperature adjusting chamber is provided between the substrate temperature calibration chamber and the vacuum film formation chamber, and each chamber is equipped with an infrared radiation thermometer. With the film forming apparatus according to (18) above,
(22) . 上記基体温度調整チャ ンバの設定温度を、 基体温 度校正チヤ ンバ及び基体への真空成膜処理チャ ンバより も低温も し く は高温の異なる温度に保持して成る上記 (21 )記載の成膜装置により、 そしてまた、 (22) The set temperature of the substrate temperature adjusting chamber is kept at a temperature lower or higher than those of the substrate temperature calibration chamber and the vacuum film forming chamber on the substrate. ) Described above, and also,
(23 ) . 上記真空成膜処理チャ ンバがスパッタ リ ング成膜 チヤ ンバから成る上記(21 )もし く は(22)記載の成膜装置 により、 達成される。  (23). This can be achieved by the film forming apparatus according to the above (21) or (22), wherein the vacuum film forming chamber is a sputtering film forming chamber.
上記第 3の目的は、  The third purpose above is
(24) . 成膜処理をするための所定の基体を基体温度校正 チャ ンバ内のステージに載置し、 基体を所定温度に加熱 する工程と、 次いで真空下で所定温度に冷却し、 基体を 真空成膜処理チャ ンバ内のステージに搬送して所定の第 1 の成膜設定温度に制御して成膜を開始する工程と、 次 いで基体温度を前記第 1 の成膜設定温度より も高い第 2 の設定温度に制御して所定厚みになるまで成膜する工程 と、 成膜終了後、 前記第 2 の成膜設定温度以下に急冷す る工程とを有して成る上記 (18)記載の成膜装置による成膜 方法により、 また、  (24) The step of placing a predetermined substrate for film formation on the stage in the substrate temperature calibration chamber, heating the substrate to a predetermined temperature, and then cooling it to a predetermined temperature under vacuum, The process of transferring to a stage in the vacuum film formation processing chamber and controlling film formation at a predetermined first film formation setting temperature and then starting film formation, and then setting the substrate temperature higher than the first film formation setting temperature. (18) above, which comprises a step of controlling the film thickness to a predetermined thickness by controlling to a second set temperature, and a step of quenching the film to a temperature below the second film setting temperature after the film formation is completed. According to the film forming method by the film forming apparatus of
( 25) . 成膜処理をするための所定の基体を基体温度校正 ステージに載置し、 基体を所定温度に加熱する工程と、 次いで基体を基体温度調整チヤ ンバ内のステージに搬送 して所定温度に冷却する工程と、 次いで基体を真空成膜 処理チャ ンバ内のステージに搬送して第 1 の成膜温度に 制御し、 第 1 の成膜を開始する工程と、 一旦成膜を停止 しこの基体を前記基体温度調整チャ ンバ内もし く は他の ステージに移し、 前記第 1 の成膜温度より も高い第 2 の 設定温度に一定時間保持して成膜の結晶粒を増大するェ 程と、 基体の温度を前記基体温度調整チャ ンバ内の第 2 の設定温度より も高い第 3 の成膜温度に制御して所定膜 厚まで成膜を行う第 2 の成膜工程と、 急冷する工程とを 有して成る上記(21 )記載の成膜装置による成膜方法によ り、 達成される。 (25). A step of placing a predetermined substrate for film forming processing on the substrate temperature calibration stage and heating the substrate to a predetermined temperature, and then transferring the substrate to the stage in the substrate temperature adjusting chamber. Cooling the substrate to a predetermined temperature, then transporting the substrate to the stage in the vacuum film formation processing chamber to control the first film formation temperature and start the first film formation. Then, the substrate is moved to the substrate temperature control chamber or another stage, and the second set temperature, which is higher than the first film formation temperature, is maintained for a certain period of time to increase the number of crystal grains in the film formation. And a second film forming step of forming a film to a predetermined film thickness by controlling the temperature of the substrate to a third film forming temperature higher than the second set temperature in the substrate temperature adjusting chamber. And a rapid cooling step, which is achieved by the film forming method by the film forming apparatus according to the above (21).
上記第 4の目的は、  The fourth purpose above is
(26) . 温度を測定する対象の基体とその基体の温度を測 定しょう とする赤外線輻射温度計と赤外線輻射温度計で 温度の測定を行なう基体の表面とは逆の表面に、 前記赤 外線輻射温度計で測定する光軸とほぼ垂直に、 その測定 する赤外線波長に対して充分な反射率を有する鏡面を設 置し、 上記基体の温度を測定するようにした基体温度の 測定方法により達成される。 または、  (26). The infrared radiation thermometer for measuring the temperature of the substrate whose temperature is to be measured and the surface of the substrate opposite to the surface of the substrate whose temperature is measured by the infrared radiation thermometer are Achieved by a substrate temperature measurement method in which a mirror surface with sufficient reflectance for the infrared wavelength to be measured is installed almost perpendicular to the optical axis measured by the radiation thermometer, and the temperature of the substrate is measured. To be done. Or
( 27) . 加熱処理又は冷却処理を行なう対象の基体とその 基体の温度を測定しょう とする赤外線輻射温度計、 赤外 線輻射温度計とは基体の反対側にある測定波長に於いて 十分に高い反射率を有する鏡面と、 上記処理を行なう加 熱又は冷却手段とを備えた基体温度の制御方法により、 好ま し く は、 (28) . 上記加熱又は冷却手段は上記赤外線輻射温度計か らの測定値により基体を所定の温度に制御するものであ ることを特徴とした上記(27)記載の基体温度の制御方法 により、 または、 (27) The infrared radiation thermometer for measuring the temperature of the substrate to be heat-treated or cooled and the temperature of the substrate, and the infrared radiation thermometer at the measurement wavelength on the opposite side of the substrate should be sufficient. By the method of controlling the substrate temperature including the mirror surface having a high reflectance and the heating or cooling means for performing the above treatment, it is preferable that (28). By the method for controlling a substrate temperature according to (27), wherein the heating or cooling means controls the substrate to a predetermined temperature by the value measured by the infrared radiation thermometer. Or
(29) . 上記鏡面は必要に応じて基体の反対側の赤外線輻 射温度計の光軸に移動できるものであることを特徴と し た上記(27)乃至(28)の温度制御方法により、 または、(29). By the temperature control method of (27) to (28), wherein the mirror surface can be moved to the optical axis of the infrared radiation thermometer on the opposite side of the substrate, if necessary. Or
(30) . 上記加熱手段は少な く とも第 1 回目と第 2回目の 加熱を行ない、 第 1回目の加熱後に前記鏡面と赤外線輻 射温度計を用いて基体温度の測定を行なう、 その結果か ら第 2の加熱により 目標の加熱温度が得られるように第 2の加熱条件を設定する手段を備えたことを特徴とした 上記(27)乃至(29)の基体温度の制御方法により、 または-(30) The heating means performs at least the first and second heating, and after the first heating, the substrate temperature is measured using the mirror surface and the infrared radiation thermometer. The method for controlling a substrate temperature according to any one of (27) to (29) above, further comprising means for setting a second heating condition so that a target heating temperature can be obtained by the second heating.
(31 ) . 鏡面のおかれる場所には鏡面とは逆に測定波長に て十分に低い反射を有する物体を導入できるようにした ことを以て特徴とした上記(27)乃至(30)記載の基体温度 の測定方法により、 達成される。 (31) The substrate temperature as set forth in (27) to (30) above, characterized in that an object having a reflection sufficiently low at the measurement wavelength, contrary to the mirror surface, can be introduced into the place where the mirror surface is placed. It is achieved by the measuring method of.
これら上述した目的達成手段の作用を説明する。  The operation of the above-mentioned object achieving means will be described.
真空処理チヤ ンバにて基体に所定の処理を行う前に、 温度校正ステージ内においては、 基体を既知の温度に加 熱または冷却し第 1 の赤外線輻射温度計と熱電対によつ て基体の温度を測定し、 その測定結果に基づいて赤外線 輻射温度計の補正値、 つまり輻射率を演算する。 この演 箕結果に基づいてその後の真空処理チヤ ンバ内の基体の 温度を第 2、 第 3の温度計で正確に測定する。 そしてそ の測定結果に基づいて温度制御系を作動させて真空処理 チャ ンバ内の基体の温度を所定値に設定して成膜処理等 の真空処理を正確に温度管理された状態で行う。 Before subjecting the substrate to the prescribed processing in the vacuum processing chamber, in the temperature calibration stage, the substrate is heated or cooled to a known temperature and the first infrared radiation thermometer and thermocouple are used to The temperature is measured, and the infrared radiation thermometer correction value, that is, the emissivity is calculated based on the measurement result. Based on the result of this deduction, the temperature of the substrate in the subsequent vacuum processing chamber is accurately measured by the second and third thermometers. And that The temperature control system is operated based on the measurement result of 1. to set the temperature of the substrate in the vacuum processing chamber to a predetermined value, and vacuum processing such as film forming processing is performed in a precisely temperature-controlled state.
また、 温度校正ステージにおいては、 第 1 の赤外線輻 射温度計と熱電対による校正温度の測定を異なる複数の 温度にて行う こ とによって、 以後の真空処理チ ャ ンバ内 での基体の温度制御を行う際に、 広い温度範囲でのプロ セス温度の制御が可能になる - 1 。  In the temperature calibration stage, the temperature of the substrate is controlled in the vacuum processing chamber thereafter by measuring the calibration temperature with the first infrared radiation thermometer and thermocouple at different temperatures. It is possible to control the process temperature in a wide temperature range when performing -1.
5  Five
更に、 上述した第 1 の赤外線輻射温度計と熱電対によ る校正温度の測定のための加熱手段または冷却手段とし て複数の手段を設けるこ とによって、 異なる複数の温度 による校正をより短時間で行う ことができる。  Further, by providing a plurality of means as heating means or cooling means for measuring the calibration temperature by the above-mentioned first infrared radiation thermometer and thermocouple, calibration at different temperatures can be performed in a shorter time. Can be done in.
上述した第 1 の赤外線温度計を用いる代わりに、 測定 波長のラ ンプを用いて、 その反射率、 透過率から吸収率 を求め、 輻射率を求めることもできる。  Instead of using the first infrared thermometer described above, it is also possible to obtain the emissivity by obtaining the absorptance from the reflectance and the transmissivity using the lamp of the measurement wavelength.
また、 同一の製品であればロ ッ ト毎の校正値の取得で 十分である場合もある。  In the case of the same product, it may be sufficient to obtain the calibration value for each lot.
基体を加熱または冷却中に基体を赤外線輻射温度計に て観察するために加熱または冷却用ステージに貫通孔 (開口窓) を設ける必要があるが、 この貫通孔のために 基体の温度分布に不均一性が生じるこ とがある。 そこで この対策としては、 基体表裏両面を加熱するようにして も可能であるが、 ステージを 2分割し、 一方の基板加熱 または冷却用ステージには開口窓を設けず温度制御専用 のステージと し、 他方の温度測定用ステージに開口窓を 設け、 温度測定に当たってはこの一方のステージから他 方のステ—ジへ基板を移動して温度測定を行うようにし ても良い。 In order to observe the substrate with an infrared radiation thermometer while heating or cooling the substrate, it is necessary to provide a through hole (opening window) in the heating or cooling stage, but this through hole does not affect the temperature distribution of the substrate. Uniformity may occur. Therefore, as a countermeasure against this, it is possible to heat both the front and back sides of the substrate, but the stage is divided into two, and one of the substrate heating or cooling stages is not provided with an opening window and is dedicated to temperature control. Opening window on the other temperature measuring stage When providing the temperature measurement, the temperature may be measured by moving the substrate from the one stage to the other stage.
本発明において基体の温度測定時に基体に近接してシ ャ ッタを配設することは、 基板の正確な温度測定をする 上で極めて重要な役割を果たす。  In the present invention, disposing the shutter close to the substrate when measuring the temperature of the substrate plays an extremely important role in accurately measuring the temperature of the substrate.
その第 1 の役割は、 金属膜をスパッタ或いは C V D等 により成膜する装置の場合には、 金属膜の有無にかかわ らず、 このシャ ツタにより金属膜が成膜しているのと同 じ赤外線輻射率を得ることができるため、 成膜前後での 見掛けの赤外線輻射率の違いを補正することができ、 正 確な温度測定に基づく基板の正しい温度制御を可能とす ることにあり、 第 2の役割は、 基体を貫通して赤外線輻 射温度計に入射する迷光を遮断し、 迷光による測定誤差 を防止することにある。  The first role is that in the case of a device that deposits a metal film by sputtering or CVD, regardless of the presence or absence of the metal film, the infrared rays are the same as when the metal film is deposited by this shutter. Since the emissivity can be obtained, it is possible to correct the apparent difference in the infrared emissivity before and after film formation, and to enable correct temperature control of the substrate based on accurate temperature measurement. The second role is to block stray light penetrating the substrate and entering the infrared radiation thermometer to prevent measurement errors due to stray light.
このシャ 'ンタ機構は、 特に、 成膜前の基体の温度計側 には必ず必要となる。 シャ ツタとともに吸収体を用いる 場合には、 吸収体をひかえての測定では、 迷光成分のレ ベルを正確に得ることができるので、 迷光による測定跟 界を常に把握しておく ことができる。  This shutter mechanism is indispensable especially on the thermometer side of the substrate before film formation. When an absorber is used together with the shutter, the level of the stray light component can be accurately obtained in the measurement with the absorber being used, so the measurement boundary due to stray light can always be known.
なお、 ここで説明できなかったその他の作用について は、 実施例の項で具体的に説明する。  It should be noted that other actions that could not be explained here will be specifically described in the section of Examples.
図面の簡単な説明 Brief description of the drawings
第 1図は、 本発明の一実施例を示す真空処理装置の概 略説明用一部断面プロ ック構成図、 第 2図は、 スパッタ ステー ジの一例を示す概略断面構成図、 第 3図は、 本発 明の他の一実施例を示す真空処理装置の概略説明用一部 断面ブロ ック構成図、 第 4図は、 本発明の更に異なる他 の一実施例を示す真空処理装置の概略説明用一部断面ブ ロ ッ ク構成図、 第 5図及び第 6図は、 それぞれシ ャ ツタ 機構を配設したスパッタステー ジ及び基体温度調整ステ — ジの一例を示す概略断面構成図、 第 7図は、 シャ ツタ の有無による温度計測結果を示した特性曲線図、 第 8図 は窓板の材料の組み合せを好適なものと した本発明の一 実施例、 第 9図は Ba F 2 (フ ッ化バリ ウム) の赤外光透過 特性、 第 1 0図は、 同じ く Ca F 2 (フ ッ化カルシウ ム) の 場合、 第 1 1図は、 他の本発明の好適な実施例、 第 1 2 図は、 同一チヤ ンバ内でステージを 2分割した本発明の 他の実施例となるステー ジの断面図、 第 1 3図は、 温度 制御手段を基体の両面に配設したステー ジの断面図、 そ して第 1 4図は、 成膜時の一温度プロフ ァ イ ルを示した 説明図である。 FIG. 1 is a schematic partial cross-sectional block diagram of a vacuum processing apparatus showing an embodiment of the present invention, and FIG. FIG. 3 is a schematic cross-sectional block diagram showing an example of a stage, FIG. 3 is a partial cross-sectional block diagram showing a vacuum processing apparatus according to another embodiment of the present invention, and FIG. FIG. 5 is a partial cross-sectional block diagram for schematically explaining a vacuum processing apparatus showing another embodiment of the present invention, FIG. 5 and FIG. 6 are a sputter stage and a substrate, respectively, in which a shutter mechanism is arranged. Fig. 7 is a schematic cross-sectional configuration diagram showing an example of the temperature adjustment stage, Fig. 7 is a characteristic curve diagram showing the results of temperature measurement with and without shutters, and Fig. 8 is a combination of window plate materials. One embodiment of the present invention, FIG. 9 shows infrared transmission characteristics of Ba F 2 (barium fluoride), and FIG. 10 shows the same in the case of Ca F 2 (calcium fluoride). FIG. 11 shows another preferred embodiment of the present invention, and FIG. 12 shows a sectional view of a stage according to another embodiment of the present invention in which the stage is divided into two in the same chamber, and FIG. FIG. 14 is a cross-sectional view of a stage in which temperature control means is provided on both sides of a substrate, and FIG. 14 is an explanatory view showing one temperature profile during film formation.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
目的を達成するために本発明者等は以下に詳述するよ うな検討を行い、 種々の知見を得た。  In order to achieve the object, the present inventors conducted various studies as described in detail below, and obtained various findings.
即ち、 本発明では、 赤外線輻射温度計を主たる温度計 測の手段として用いるために、 基体 (例えばシ リ コ ンゥ ュハ) ごとに校正する。 具体的には対象とする真空処理 装置によって基体の処理を行う前に、 基体ごとに既知の 温度に加熱乃至は冷却を行い、 1点乃至は複数点の温度 において、 第 1 の赤外線輻射温度計によつて基体の温度 を測定する。 この時に得られる第 1 の赤外線輻射温度計 の指示値から、 温度校正ステージ以降、 真空処理チャ ン バ内の赤外線輻射温度計に捕正をかける。 もちろん他の 手段によって輻射率を求めることも可能である。 また、 製品によっては口 ッ ト毎にこれを行うなどの省力化も可 である。 具体的には、 この捕正値を予め知って、 例えば 粗い補正、 または狭い温度範囲を対象としていれば単な る係数を以て、 温度校正ステージ以降の赤外線輻射温度 計の校正を行う。 複数の温度校正点を持つ場合には、 コ ンピュータにそれぞれの温度校正データを取り込み、 補 正のための演算を行う等の方法がある。 That is, in the present invention, since the infrared radiation thermometer is used as the main means of thermometry, it is calibrated for each substrate (for example, silicon wafer). Specifically, each substrate is heated or cooled to a known temperature before the substrate is processed by the target vacuum processing device, and the temperature of one or more points is increased. In, the temperature of the substrate is measured by the first infrared radiation thermometer. From the reading of the first infrared radiation thermometer obtained at this time, correct the infrared radiation thermometer in the vacuum processing chamber after the temperature calibration stage. Of course, the emissivity can be obtained by other means. Depending on the product, it is possible to save labor by doing this for each mouth. Specifically, by knowing this correction value in advance, the infrared radiation thermometer after the temperature calibration stage is calibrated, for example, with a rough correction, or with a single coefficient for a narrow temperature range. If there are multiple temperature calibration points, there is a method such as importing each temperature calibration data into the computer and performing calculation for correction.
上記した温度校正ステージは、 真空に限らず大気圧の 環境下にあっても構わない。 大気圧の環境下であれば、 装置構造が一般に簡易になるばかりでな く、 既知の温度 に加熱乃至は冷却したヒー トブロ ック (ステージ) の温 度に対象とするゥュハの温度をより容易に近ずけること が可能である。  The temperature calibration stage described above is not limited to vacuum, but may be under atmospheric pressure. In an atmospheric pressure environment, not only is the structure of the device generally simple, but it is easier to control the temperature of the target uhha to the temperature of the heat block (stage) heated or cooled to a known temperature. It is possible to approach.
具体的には、 温度校正ステージを大気圧下に設定する 場合には、 ステージに真空チャ ックを使用して基体を基 体より も大きな熱容量を持ったヒー トブロ ックに密着さ せることが可能であり、 こうすることによってより正確 に、 また短時間で基体の温度をヒー トブロ ック温度に近 づけることができる。  Specifically, when setting the temperature calibration stage under atmospheric pressure, a vacuum chuck can be used on the stage to bring the substrate into close contact with a heat block having a larger heat capacity than the substrate. This is possible, and by doing so, the temperature of the substrate can be brought closer to the heat block temperature more accurately and in a short time.
上記した温度校正点の温度を高く とる必要のあるとき は、 雰囲気によっては対象とする基体の表面が酸化され るなどの問題が生ずるので、 温度校正ステージのあるチ ヤ ンバの雰囲気を大気との置換雰囲気、 例えば窒素ゃァ ルゴ ン雰囲気とすることがより好ま しい。 When it is necessary to raise the temperature at the above temperature calibration point However, there is a problem that the surface of the target substrate will be oxidized depending on the atmosphere.Therefore, the atmosphere of the chamber with the temperature calibration stage should be replaced with the atmosphere, for example, nitrogen atmosphere. More preferred.
温度校正ステージを真空下に設定する場合には、 上記 したようなヒー トブロ ック と基体との熱伝導を良好にす るため、 これら両者間に 5 パスカル以上の圧力で加熱も し く は冷却ガスを熱伝導媒体として介在させるこ とによ つて比較的短時間のう ちに基体温度がヒー トブロ ックに 近づく 。  When setting the temperature calibration stage under vacuum, in order to improve the heat conduction between the heat block and the substrate as described above, heating or cooling with a pressure of 5 Pascal or more is necessary between them. By interposing gas as the heat transfer medium, the substrate temperature approaches the heat block in a relatively short time.
例えば、 スパッタ法によって薄膜を基体上に形成する 装置にあっては、 大気中にあった基体を真空処理槽内に 取り込むに際し、 基体の表面に吸着している水分を充分 に除去するために基体を 1 5 0 以上に加熱する必要が あったり、 また、 これとは逆にすでに昇温加熱された基 体の温度を例えば 1 0 0 で程度の成膜開始温度にまで真 空槽内で降温する必要のある場合等がある。 この昇温、 降温の場合には、 温度制御の都度正確な温度の測定が必 要であり、 これらの温度を測定する赤外線輻射温度計に ついて予め基体ごと又は、 種類の違った基体ごとに温度 校正を行う ことが必要である。 即ち所定の真空処理を行 う前に予め既知の温度に基体を加熱乃至は冷却し、 第 1 の赤外線輻射温度計によってこの基体温度を測定するな どしてこの測定結果にもとづいて以降の真空処理プロセ スで使用する単数または複数の第 2 の赤外線輻射温度計 を校正するこ とのできる機能を備え、 スパッタ装置やFor example, in an apparatus for forming a thin film on a substrate by the sputtering method, when the substrate that was in the atmosphere is taken into the vacuum processing tank, the substrate is removed in order to sufficiently remove the moisture adsorbed on the substrate surface. However, on the contrary, the temperature of the substrate which has already been heated up and raised is lowered to a film formation start temperature of, for example, about 100 in the vacuum chamber. There are cases where it is necessary to do so. In the case of this temperature increase / decrease, it is necessary to measure the temperature accurately each time the temperature is controlled, and the infrared radiation thermometer for measuring these temperatures must be prepared in advance for each substrate or for each substrate of a different type. It is necessary to calibrate. That is, the substrate is heated or cooled to a known temperature in advance before the predetermined vacuum treatment, and the substrate temperature is measured by the first infrared radiation thermometer. One or more secondary infrared radiation thermometers for use in the processing process Is equipped with a function to calibrate the
C V D装置の如く基体の温度を正確に制御する必要のあ る成膜装置を構成すれば、 より電子部品に好適なプロセ スを実現できる。 If a film-forming device that needs to accurately control the temperature of the substrate, such as a CVD device, is configured, a process more suitable for electronic components can be realized.
上記した第 1及び第 2 の赤外線輻射温度計による測定 は、 同一の赤外領域の波長にて行う ことがより正確な校 正を可能とする。  The first and second infrared radiation thermometers described above can be calibrated more accurately if they are measured at the same infrared wavelength.
また、 上記した既知温度での第 1 の赤外線輻射温度計 の校正を加熱した基体で行う場合に、 既知温度への加熱 行為を真空中で行えば基体に吸着した水分の除去のため の所謂べ一キ ング処理と兼用させるこ とができるので、 装置規模を縮小させることができ、 好ましい場合もある < 例えば、 スバッタ装置の真空処理チャ ンバ内で基体の 昇温を行う場合、 予め赤外線輻射温度計が校正されてい れば、 ヒー トブックを用いる代わりに、 ラ ンプによる輻 射加熱を行う ことができ、 より安価なスパッタ装置を構 成する ことができる。  Further, when the above-mentioned first infrared radiation thermometer is calibrated at a known temperature with a heated substrate, if heating to a known temperature is performed in a vacuum, it is a so-called so-called “removal of moisture adsorbed on the substrate”. Since it can also be used as a single quenching process, the scale of the device can be reduced, which is preferable in some cases. <For example, when the temperature of the substrate is raised in the vacuum processing chamber of the slaughter system, the infrared radiation temperature is set in advance. If the meter is calibrated, the radiant heating by the lamp can be performed instead of using the heat book, and a cheaper sputtering device can be constructed.
真空処理チヤ ンバ内でラ ンプによる加熱を用いる際に は、 ラ ンプの光が赤外線輻射温度計に迷光として入る場 合があるので、 赤外線輻射温度倉十の測定波長はランプの 輻射する波長とは異なった波長域であることが本質的に 好ましい。  When the lamp heating is used in the vacuum processing chamber, the lamp light may enter the infrared radiation thermometer as stray light.Therefore, the measurement wavelength of the infrared radiation temperature Kuraj is the same as the wavelength radiated by the lamp. Are essentially different wavelength ranges.
赤外線温度計への基体からの赤外線入射を増加させる こ とと、 迷光とを低減する目的で基体の赤外線温度のあ る側とは反対側に鏡面を設置することを行う。 このよう にすれば、 ラ ンプ加熱の途中でこのようにして温度を求 め、 その結果から更に追加の加熱条件を決定するなどが できる。 In order to increase the incidence of infrared rays from the substrate to the infrared thermometer and to reduce stray light, a mirror surface is installed on the side of the substrate opposite to the side where the infrared temperature is present. like this In this way, the temperature can be obtained in this way during the lamp heating, and the additional heating conditions can be determined from the result.
基体として例えばシリ コ ンウェハを用いる場合には、 シリ コ ンゥヱハが赤外領域で殆ど透明であることから、 一般に広く用いられている石英ガラス入りの赤外線ラ ン プでは効率的な加熱ができない。 また、 この種の赤外線 ラ ンプでは赤外線輻射温度計に対して迷光となりやすい ので、 ラ ンプとしてはシリ コ ンゥヱ八の吸収効率の高い 短波長のものを用いることがより好ま しい。  When a silicon wafer is used as the substrate, for example, since the silicon wafer is almost transparent in the infrared region, the infrared lamp containing silica glass, which is widely used, cannot perform efficient heating. In addition, since this type of infrared lamp is prone to stray light with respect to the infrared radiation thermometer, it is more preferable to use a lamp with a short wavelength, which has a high absorption efficiency in the silicon microwave.
基体からの吸着水分の除去のための真空中でのベーキ ング加熱温度に比較して、 真空処理チャ ンバ内で基体へ の成膜を開始する温度が低い場合には、 ベーキングを行 つた後で、 真空槽の中で基体を所定温度まで冷却し、 基 体を所定の成膜開始温度に合わせなければならない。 こ のような成膜プロセスを高精度で実現するためには、 温 度校正チヤ ンバ内の温度校正を行うための第 1 の赤外線 輻射温度計を備えたステージと、 真空中で基体のベーキ ングを行うステージと、 更に成膜を開始する前に所定の 成膜を開始する温度に冷却するステージと、 そして冷却 ステージでの基体温度を第 1 の赤外線輻射温度計で得ら れた補正値を演算し用いるこ とで正確に測定できる第 2 の赤外線輻射温度計とを備えたスパッタ装置が必要であ る。 但し、 温度校正を行う部分が謂ゆるスパッタ装置本 体に近接して、 あるいは組み込まれている必要は、 必ず しもない。 If the temperature at which film formation on the substrate starts in the vacuum processing chamber is lower than the baking heating temperature in vacuum for removing the adsorbed moisture from the substrate, after baking, It is necessary to cool the substrate to a predetermined temperature in a vacuum chamber and adjust the substrate to a predetermined film formation start temperature. In order to realize such a film formation process with high accuracy, a stage equipped with a first infrared radiation thermometer for performing temperature calibration in the temperature calibration chamber and baking of the substrate in vacuum are provided. And a stage for cooling the film to a temperature at which a predetermined film formation is started before starting the film formation, and the substrate temperature on the cooling stage is calculated by the correction value obtained by the first infrared radiation thermometer. A sputtering device equipped with a second infrared radiation thermometer that can be accurately measured by calculation and use is required. However, it is essential that the part for temperature calibration be close to or built in the main body of the so-called sputter device. I don't know.
基体を赤外線輻射温度計にて観察するためには加熱ま たは冷却用ステージに観察用の貫通孔 (開口窓) を設け る必要があるが、 このため基体の温度分布に不均一性が 生じることがある。 この場合、 同一チャ ンバ内でステ一 ジを 2分割し、 共に同一の温度になるように調整してお く。 即ち、 一方の加熱または冷却用ステージには赤外線 輻射温度計による基体温度観察用の開口窓を設けず、 他 方の温度測定用ステージに開口窓を設け、 一方のステー ジで基体を加熱または冷却後速やかに他方のステ一ジに 搬送し温度測定をすることによってこのような不均一性 を低減することができる。  In order to observe the substrate with an infrared radiation thermometer, it is necessary to provide a through-hole (opening window) for observation on the heating or cooling stage, which causes non-uniformity in the temperature distribution of the substrate. Sometimes. In this case, divide the stage into two in the same chamber and adjust them so that they both have the same temperature. That is, one heating or cooling stage is not provided with an opening window for observing the substrate temperature by an infrared radiation thermometer, the other temperature measuring stage is provided with an opening window, and one of the stages heats or cools the substrate. Such non-uniformity can be reduced by immediately transferring to the other stage and measuring the temperature.
温度校正点を複数点設けることによってより正確なプ ロセス温度の制御が可能になるが、 基体温度校正チャ ン バ内の加熱手段または冷却手段を複数設けることによつ て複数の温度での校正をより短時間に行う ことができる , また、 スパッタ リ ングにより金属膜を成膜する装置の 場合、 基体に成膜される金属膜が観察される表面とは逆 の表面に輻射する赤外線を反射するため、 後述するよう なシャ ツタが無ければ、 膜の有無によつて赤外線輻射温 度計に入射する輻射の大きさが異なり、 見掛けの赤外線 輻射率が異なるが、 シャ ツタにより基体の赤外線輻射温 度計によつて観察される表面とは反対側の表面へ輻射す る赤外線が殆ど反射されるため、 成膜前後での見掛けの 赤外線輻射率の差を著しく低減することができる。 また、 基体の加熱または冷却用ステージにおいて、 ス テ一ジの開口窓を通して基体が赤外線輻射温度計によつ て観察される表面の反対側の表面に近接して赤外線輻射 温度計の測定波長に対して充分に鏡面である部材でその 主面が構成されたシャ ツタ機構を配設するこ とによって 基体を貫通して赤外線輻射温度計に入射する迷光を遮断 するこ とができる。 By providing multiple temperature calibration points, more accurate process temperature control is possible, but by providing multiple heating or cooling means in the substrate temperature calibration chamber, calibration at multiple temperatures is possible. In a device that deposits a metal film by sputtering, infrared rays radiated on the surface opposite to the surface on which the metal film deposited on the substrate is observed are reflected. Therefore, if there is no shutter as described below, the amount of radiation incident on the infrared thermometer differs depending on the presence or absence of the film, and the apparent infrared emissivity differs, but the infrared radiation of the substrate depends on the shutter. Since most of the infrared rays radiated to the surface opposite to the surface observed by the thermometer are reflected, the difference in apparent infrared emissivity before and after film formation can be significantly reduced. In addition, in the stage for heating or cooling the substrate, the substrate is close to the surface on the opposite side of the surface observed by the infrared radiation thermometer through the opening window of the stage to the measurement wavelength of the infrared radiation thermometer. On the other hand, by arranging a shutter mechanism whose main surface is composed of a member that is sufficiently mirror surface, it is possible to block stray light penetrating the base and entering the infrared radiation thermometer.
以上の知見に基づいて本発明は成されたものである。 以下、 図面を用いて、 本発明の一実施例を説明する。 実施例 1 .  The present invention has been accomplished based on the above findings. An embodiment of the present invention will be described below with reference to the drawings. Example 1.
第 1図は、 本発明真空処理装置をスパッタ成膜装置に 適用した一実施例を示した概略構成図である。 この実施 例では、 成膜対象である基体をシリ コ ンゥヱハとし、 こ の上に A 薄膜をスパッ タ リ ングにより成膜する一例を 代表例として説明する。  FIG. 1 is a schematic configuration diagram showing an embodiment in which the vacuum processing apparatus of the present invention is applied to a sputtering film forming apparatus. In this example, a typical example will be described in which the substrate to be deposited is a silicon wafer and the A thin film is deposited on the substrate by sputtering.
本発明の真空処理装置 1 は、 基体温度校正ステージ 5 をもつ基体温度校正チヤ ンバ 2 と、 基体の加熱及び冷却 を行う基体温度調整ステ一ジ 6をもつ基体温度調整チヤ ンバ 3 と、 スパッタ成膜ステージ 7 と A ターゲッ ト 8 とスパッタ電極 9 とをもつスパッタ成膜チャ ンバ 4 との 三つのチャ ンバから構成されている。 そしてこれらのチ ヤ ンバはそれぞれゲ— トバルブ GV 1 及び GV2 により接続 され独立している。 また、 基体温度校正チヤ ンバ 2 とス パッタ成膜チヤ ンバ 4 とには、 排気系が接続され、 一方 では所定の真空状態に保持できると共に、 他方ではガス 導入口から所定のガスを導入し基体温度校正チャ ンバ 2 においては空気や窒素ガスを導入して大気圧にまで設定 でき、 スパッタ成膜チャ ンバ 4 においてはスパフ タガス を導入して所定の放電によりブラズマが生ずる環境に設 定できるように構成されている。 更にまた、 各ステージ には後述するように加熱及び冷却手段が設けられている と共に、 基体 1 0からの輻射赤外線を観測するための貫 通口から成る開口窓 1 9が配設されており、 この開口窓 1 9を通して光学的に結合されて第 1 、 第 2及び第 3 の 赤外線輻射温度計 1 1 、 1 4及び 1 5が接続されている < 基体温度構成ステージ 5 には、 基体温度構成ステージ 5 の温度を正確に測定するための熱電対 1 2が設けられて いる。 そして各赤外線輻射温度計からの出力及び熱電対 1 2 の出力を入力して、 第 1 の赤外線輻射温度計 1 1 の 輻射率を演算したり、 この演算結果に基づいて第 2、 第 3 の赤外線輻射温度計 1 4及び 1 5 の捕正をし、 それぞ れのステージ上の基体 1 0 の正しい温度を計測したり、 最終的にはこれらの計測データにも基づき所定のステ― ジ温度に設定する指令を各ステージの加熱及び冷却手段 にフィ ― ドバック してステージの温度を所定値に設定コ ン ト ロールする、 所謂真空処理装置全体の温度を管理す るための基体温度制御器 1 3を備えている。 The vacuum processing apparatus 1 of the present invention comprises a substrate temperature calibration chamber 2 having a substrate temperature calibration stage 5, a substrate temperature regulation chamber 3 having a substrate temperature regulation stage 6 for heating and cooling the substrate, and a sputtering system. It consists of a film stage 7, an A target 8 and a sputter deposition chamber 4 with a sputter electrode 9. And these chambers are connected by gate valves GV 1 and GV 2, respectively, and are independent. In addition, an exhaust system is connected to the substrate temperature calibration chamber 2 and the sputtering film formation chamber 4, so that one side can maintain a predetermined vacuum state and the other side uses gas. A predetermined gas is introduced from the inlet, and air or nitrogen gas can be introduced to the substrate temperature calibration chamber 2 to set it to atmospheric pressure, and sputter gas is introduced to the sputter deposition chamber 4 by a predetermined discharge. It is configured so that it can be set in the environment in which plasma occurs. Furthermore, each stage is provided with heating and cooling means as will be described later, and an opening window 19 consisting of a through-hole for observing radiant infrared rays from the substrate 10 is provided. The first, second and third infrared radiation thermometers 11, 1, 14 and 15 are optically coupled to each other through this opening window 19 and are connected to the substrate temperature configuration stage 5. A thermocouple 12 is provided to accurately measure the temperature of stage 5. Then, input the output from each infrared radiation thermometer and the output of thermocouple 12 to calculate the emissivity of the first infrared radiation thermometer 11 or to calculate the emissivity of the second infrared radiation thermometer 1 2 based on this calculation result. The infrared radiation thermometers 14 and 15 are corrected to measure the correct temperature of the substrate 10 on each stage, and finally the prescribed stage temperature is also based on these measured data. Substrate temperature controller for controlling the temperature of the entire so-called vacuum processing apparatus by feeding back the command to set to the heating and cooling means of each stage to control the temperature of the stage to a predetermined value 1 Equipped with 3.
そして各チャ ンバの機能について説明すると、 基体温 度校正チヤ ンバは、 通常、 成膜開始温度より も高い既知 の温度に設定された基体 1 0からの赤外線輻射を第 1 の 赤外線輻射温度計 1 1 で測定し、 輻射率を箕出してこの 赤外線輻射温度計の校正を行う。 基体温度調整チヤ ンバ 3 は、 次のスパッタ成膜チャ ンバ 4に基体を搬送する前 の温度調整機能をもち、 スパッタ成膜チヤ ンバ 4 は、 基 体にスパッタにより成膜を行う機能を持つ。 Explaining the function of each chamber, the substrate temperature calibration chamber normally emits infrared radiation from the substrate 10 which is set to a known temperature higher than the film formation start temperature. Infrared radiation thermometer 1 1 1 Measure and measure the emissivity to calibrate this infrared radiation thermometer. The substrate temperature adjustment chamber 3 has a temperature adjustment function before the substrate is transferred to the next sputter film formation chamber 4, and the sputter film formation chamber 4 has a function of forming a film on the substrate by sputtering.
以下に各ステージの温度を制御して基体 1 0を所定温 度に保持して A ターゲッ ト 8からシリ コ ンゥヱハ基体 1 0上に Α £薄膜をスパッタ成膜する具体例につき説明 する。  A specific example in which the temperature of each stage is controlled to hold the substrate 10 at a predetermined temperature and the A thin film is sputter-deposited from the A target 8 on the silicon wafer substrate 10 will be described.
まず、 大気圧下におかれた基体温度校正チャ ンバ 2内 において、 ウエノヽ 1 0 は校正ステージ 5上で 2 0 0 'C、 3 0 0 で、 4 0 0 での 3温度点に段階的に加熱される。 なお、 これらステージ 5、 6、 7で 0加熱、 冷却法につ いては、 とりまとめて後述する。  First, in the substrate temperature calibration chamber 2 under atmospheric pressure, the well-known 10 is set to 2 0 0'C and 300 on the calibration stage 5, and is gradually stepped to 3 temperature points at 4 00. Is heated to. The 0 heating and cooling methods in these stages 5, 6 and 7 will be collectively described later.
この校正ステ一ジ 5上で加熱された基体 1 . 0 の裏面を、 第 1 の赤外線輻射温度計 1 1 と熱電対 1 2 で観察及び測 定し、 基体温度制御器 1 3の演算処理部で各温度段階の 温度の指示値を得る。 つまり、 熱電対 1 2で基体温度と 平行になっている校正ステージの温度を実測し、 その温 度を基体温度としてその時の輻射率を赤外線輻射温度計 1 1 で観察して、 基体温度制御器 1 3 の演算処理部でこ の輻射率に基づく温度の指示値を得る。  The back surface of the base body 1.0 heated on the calibration stage 5 is observed and measured by the first infrared radiation thermometer 11 and the thermocouple 12 and the arithmetic processing unit of the base body temperature controller 13 is observed. The temperature readings for each temperature step are obtained with. That is, the temperature of the calibration stage, which is parallel to the substrate temperature, is measured with the thermocouple 12 and the emissivity at that time is taken as the substrate temperature, and the emissivity at that time is observed with the infrared radiation thermometer 11 to determine the substrate temperature controller. The temperature calculation value based on this emissivity is obtained by the arithmetic processing unit of 13.
ゥュハ 1 0 は、 予め既知温度に加熱設定されているの で、 この第 1 の赤外線輻射温度計 1 1 から得られた輻射 率を逆箕して求める こ とができるので、 以後の真空中で の基体温度調整チヤ ンバ 3 とスパッタ成膜チヤ ンバ 4 の 処理温度は、 この輻射率を使用して、 第 2、 第 3 の赤外 線輻射温度計 1 4、 1 5から輻射率を補正して読み取る。 Since the uhha 10 is preheated to a known temperature, the emissivity obtained from this first infrared radiation thermometer 11 can be inversely determined, and so in subsequent vacuums. For the processing temperatures of the substrate temperature adjustment chamber 3 and the sputter deposition chamber 4, the emissivity was used to correct the emissivity from the second and third infrared radiation thermometers 14 and 15. Read.
第 1 の赤外線輻射温度計 1 1 による輻射率の校正が終 了した時点で、 基体温度校正チヤ ンバ 2内を排気して真 空状態とした後、 ウェハ 1 0 は、 ゲ— トバルブ GV 1 を開 いて校正チャ ンバ 2から真空下の基体温度調整チヤ ンバ 3 に搬送され、 第 2 の赤外線輻射温度計 1 4 により温度 測定される。 その測定結果から基体度制御器 1 3 により ステージ 6 の温度調整を行い、 ウ ェハ 1 0 の温度を任意 の温度に調整する。 この例では、 1 0 0 でにセ ッ ト した < その後ゥヱハ 1 0 は、 ゲー トバルブ GV2 を開いて真空状 態のスパッタ成膜チヤ ンバ 4のステージ 7 に搬送され、 第 3 の赤外線輻射温度計 1 5 により温度測定され、 その 結果をもとにステージ 7 の温度を任意の温度に調整し、 基体 1 0 の温度を任意の温度に制御してスパ ッタ成膜を 行う。 この例では、 2 5 0 'Cにセ ッ ト して A £ のスノ、。 ッ タ成膜を行なった。 スパッタ成膜後、 ゥヱハ 1 0を再度 校正チャ ンバ 2に搬送し、 輻射率の再校正を行い、 この 輻射率を以後のスパッタ成膜時の温度測定時の補正に用 いた。  When the emissivity calibration by the first infrared radiation thermometer 1 1 is completed, the inside of the substrate temperature calibration chamber 2 is evacuated to the empty state, and then the wafer 10 is set to the gate valve GV 1. It is opened and transferred from the calibration chamber 2 to the substrate temperature adjustment chamber 3 under vacuum, and the temperature is measured by the second infrared radiation thermometer 1 4. Based on the measurement results, the temperature of the stage 6 is adjusted by the substrate degree controller 13 and the temperature of the wafer 10 is adjusted to an arbitrary temperature. In this example, the wafer set at 100 <and then the wafer 10 is transferred to the stage 7 of the vacuum sputter deposition chamber 4 by opening the gate valve GV2, and the third infrared radiation thermometer. The temperature is measured by 15 and based on the result, the temperature of the stage 7 is adjusted to an arbitrary temperature, and the temperature of the substrate 10 is controlled to an arbitrary temperature to perform sputtering film formation. In this example, a set of 2 0 'C, A £ sno. Film formation was performed. After the sputter film formation, the wafer 10 was transported to the calibration chamber 2 again, and the emissivity was re-calibrated, and this emissivity was used to correct the temperature measurement during the subsequent sputter film formation.
なお、 各チャ ンバ間を搬送するための簡易手段として は、 例えばシリ コー ンゴム等の耐熱性ベルトを用いた搬 送機構、 ロボッ ト等が用いられる。  As a simple means for transporting between the chambers, for example, a transport mechanism using a heat resistant belt such as silicone rubber or a robot is used.
次に、 第 2図により基体を載置するステージの構造の 概略、 加熱、 冷却方法及びウ ェハの輻射率の測定方法に ついて、 スパッタステージ 7 の例を用いて説明する。Next, referring to FIG. 2, the structure of the stage on which the substrate is placed is The outline, the heating and cooling methods, and the method for measuring the emissivity of the wafer will be described using an example of the sputtering stage 7.
(1) 基板ステージの構造と加熱、 冷却方法 : (1) Substrate stage structure and heating / cooling method:
スパッタステージ 7 はステージを加熱するための電熱 ヒータ 1 8を内臓し、 真空中でゥ ハに熱を伝達する例 えば、 空気や窒素ガス等の伝熱ガスが流れる構造となつ ており、 ゥヱハに伝熱ガスを均一に接触させるためのク ラ ンプ 1 7が設置されてい 2る。 また、 ゥヱハの温度を赤  The sputter stage 7 has a built-in electrothermal heater 18 for heating the stage and transfers heat to the wafer in vacuum.For example, it has a structure in which heat transfer gas such as air or nitrogen gas flows. A clamp 17 is installed to make the heat transfer gas contact uniformly. In addition, the temperature of the woo
7  7
外線輻射温度計 1 5により測定するため輻射線観測用空 洞を構成する開口窓 1 9が設けてある。 ウェハを冷却す る場合には、 図示していないが、 ヒータ 1 8 の替りにフ レオ ン等の冷却媒体を循環させステージを冷却し、 上記 と同様に伝熱ガスにより ウェハを冷却する。 There is an opening window 19 that constitutes a radiation observation cavity for measurement with an external radiation thermometer 15. Although not shown, when cooling the wafer, a cooling medium such as Freon is circulated instead of the heater 18 to cool the stage, and the wafer is cooled by the heat transfer gas in the same manner as above.
また、 校正ステ一ジ 5ではチヤ ンバ内が大気圧である ため伝熱ガスは用いず真空排気を行い、 真空チヤ ックに よりステージとの密着性を保ち熱伝導により熱伝達を行 う よう になっている。  Also, in the calibration stage 5, since the chamber is at atmospheric pressure, the heat transfer gas is not used and the chamber is evacuated and the vacuum chuck is used to maintain the adhesion to the stage and transfer heat by heat conduction. It has become.
(2) 輻射率の測定 :  (2) Emissivity measurement:
次に赤外線輻射温度計によるゥ ハ基体の温度計測方 法について説明する。 本実施例では、 赤外線輻射温度計 l i s 1 1 5を各ステージの下部に設置し、 ウェハ の裏側の温度を測定するようになっており、 各チャ ンバ 内からの迷光が赤外線温度計に入射しないように迷光遮 断用円筒 1 6を各ステージと赤外線輻射温度計の間に設 けてある。 本実施例では、 真空中での処理はスパ 7タ リ ングによ る基体への i\ の成膜である。 基体が A 金属の成膜を 受けると、 Α 膜からの反射される分だけ輻射率が大幅 に高く なる。 したがって基体温度校正チャ ンバで成膜処 理前に測定して求めた輻射率は、 その後の成膜処理によ り使用できなく なる。 Next, a method of measuring the temperature of the wafer substrate by the infrared radiation thermometer will be described. In this embodiment, an infrared radiation thermometer lis 1 15 is installed at the bottom of each stage to measure the temperature on the backside of the wafer, so that stray light from inside each chamber does not enter the infrared thermometer. A stray light blocking cylinder 16 is installed between each stage and the infrared radiation thermometer. In this example, the treatment in vacuum is the film formation of i \ on the substrate by sputtering 7. When the substrate undergoes the deposition of A metal, the emissivity increases significantly due to the reflection from the A film. Therefore, the emissivity obtained by measuring with the substrate temperature calibration chamber before the film formation process cannot be used due to the subsequent film formation process.
本発明では成膜処理が終了したウェハを再び構成チヤ ンバにて予め設定された既知の温度に加熱し、 再び新し い表面に対して輻射率を測定し、 再校正をする。 これに よって例えば成膜終了直後のゥ ハを赤外線輻射温度計 で測定しておき、 成膜後の ( 2回目の) 輻射率測定によ つて正しい輻射率を箕出することで、 成膜直後のウェハ 温度を正しく知ることが可能である。  In the present invention, the wafer after the film formation process is heated again to a known temperature set in advance by the composition chamber, the emissivity is measured again on the new surface, and recalibration is performed. Therefore, for example, by measuring the wafer just after the film formation with an infrared radiation thermometer and measuring the emissivity after the film formation (second time) to obtain the correct emissivity, It is possible to know the wafer temperature correctly.
例えば成膜直後のウェハの温度が高すぎる場合には、 成膜中乃至は成膜前に行う基板加熱量を減少させるよう に、 加熱条件の設定を変える。  For example, if the temperature of the wafer immediately after film formation is too high, the heating condition setting is changed so as to reduce the amount of substrate heating performed during film formation or before film formation.
成膜開始時の設定温度を変更することなしに、 成膜終 了直後の温度だけ低下させたい場合には、 基体ステージ でのガス冷却を行い、 基体裏面のガス圧力を調整する こ とで、 成膜中の基体冷却の設定を成膜中に変化させるこ とができる。  If you want to lower the temperature just after the film formation is finished without changing the set temperature at the start of film formation, you can cool the gas at the substrate stage and adjust the gas pressure on the back surface of the substrate. The setting for cooling the substrate during film formation can be changed during film formation.
上記実施例では、 シリ コ ンゥヱハを基体として、 その 表面に U薄膜をスパッタ リ ングにより成膜する例を示 したが、 ステージを介して基体の温度制御が高精度に行 えるためゥュハ内で再現性が良い結晶性が得られ高品質 の成膜を達成するこ とができた。 In the example above, an example was shown in which a silicon thin film was used as the substrate and a U thin film was formed on the surface by sputtering.However, since the temperature control of the substrate can be performed with high precision through the stage, it can be reproduced in the wafer. High quality with good crystallinity It was possible to achieve the film formation of.
実施例 2 .  Example 2.
赤外線輻射温度計によって観察される基体 1 0 の反対 側に金属膜を成膜する場合、 膜の有無によって見掛けの 赤外線輻射率の値が大き く異なる場合がある。 第 3図で はこのような目的のスパッタ装置において、 成膜後の基 体の赤外線輻射率を校正するために第 2 の温度校正チ ヤ ンバ 3 2を、 第 1 図のスパ 2ッ 9タ成膜チャ ンバ 4に付加し て増設した例を示したものである。  When a metal film is formed on the opposite side of the substrate 10 observed by an infrared radiation thermometer, the apparent infrared emissivity value may vary greatly depending on the presence or absence of the film. In Fig. 3, in a sputter device for such a purpose, the second temperature calibration chamber 32 is used to calibrate the infrared emissivity of the substrate after film formation, and the spa The figure shows an example in which a film is added to the deposition chamber 4 and added.
スパッタによって成膜中に赤外線輻射温度計 1 5 によ つて基体の温度を測定する。 しかしながらこの場合には 基体 1 0 の表面には既に金属膜が形成されているために 基体温度校正ステ—ジ 2 において得られた赤外線輻射率 の捕正値は使用する こ とができない。 このためにスパッ タ成膜後、 スパ ッタ成膜チャ ンバ 4から基体 1 0を第 2 の温度校正チ ャ ンバ 3 2 に搬送し、 温度校正チャ ンバ 2 と同様に加熱または冷却ステージ 3 3 によって所定の温 度に加熱または冷却し、 赤外線輻射温度計 3 4および熱 電対 3 5 によって温度を測定し両者の指示値から所定の 温度における成膜後の基体 1 0の赤外線輻射率を算出す る。 そう して成膜中に知り得た温度データをこの値で補 正することで成膜中の基体の温度を正確に知ることがで きる。 もし、 こう して知り得た成膜中の基体 1 0 の温度 が所定の値より も高過ぎた場合には、 基体の温度を適正 に調整するために基体温度調整チヤ ンバ 3 の加熱手段ま たは冷却手段に適宜フイ ー ドバックをかけることで、 次 の基体に対する成膜処理を適正に行う ことができる。 The temperature of the substrate is measured with an infrared radiation thermometer 15 during film formation by sputtering. However, in this case, since the metal film has already been formed on the surface of the substrate 10, the infrared emissivity correction value obtained in the substrate temperature calibration stage 2 cannot be used. For this reason, after the sputtering film formation, the substrate 10 is transferred from the sputtering film formation chamber 4 to the second temperature calibration chamber 32, and the heating or cooling stage 3 3 is transferred in the same manner as the temperature calibration chamber 2. Heating or cooling to a specified temperature with, the temperature is measured with an infrared radiation thermometer 34 and a thermocouple 35, and the infrared emissivity of the substrate 10 after film formation at the specified temperature is calculated from the indicated values of both. Suru By correcting the temperature data obtained during film formation with this value, the temperature of the substrate during film formation can be accurately known. If the temperature of the substrate 10 during film formation obtained in this way is higher than the predetermined value, the heating means of the substrate temperature adjusting chamber 3 or the heating means of the substrate temperature adjusting chamber 3 must be adjusted to properly adjust the temperature of the substrate. Alternatively, by appropriately feeding feedback to the cooling means, the film forming process for the next substrate can be properly performed.
なお、 成膜後の基体の赤外線輻射率を校正するための 温度校正チャ ンバは、 必ずしもこの例のように成膜前の 基体の赤外線輻射率を校正するための温度校正チヤンバ 2 とは別個に用意する必要はない。 即ち、 スパッタ成膜 チャ ンバ 4にて成膜を行った後、 基体を再び、 基体温度 調整チャ ンバ 3を経て温度校正チャ ンバ 2へ搬送し、 こ こで上記第 2の温度校正チヤ ンバ 3 2 と同様の赤外線輻 射率の校正を行ってもよい。  The temperature calibration chamber for calibrating the infrared emissivity of the substrate after film formation is not necessarily separate from the temperature calibration chamber 2 for calibrating the infrared emissivity of the substrate before film formation, as in this example. No need to prepare. That is, after the film formation is performed by the sputter film formation chamber 4, the substrate is conveyed again to the temperature calibration chamber 2 via the substrate temperature adjustment chamber 3 and here, the second temperature calibration chamber 3 is used. The same infrared emissivity calibration as in 2 may be performed.
実施例 3 . Example 3.
先の実施例 1及び 2では、 基体が成膜を受けると基体 の輻射率が変化するため輻射率の校正を再度やり直すと いう必要があつたが、 本実施例ではその点を改良し、 一 度の輻射率の校正でその後の成膜処理においてもこの輻 射率を基準として赤外線輻射温度計の補正ができるとい う ものである。  In Examples 1 and 2 described above, it was necessary to calibrate the emissivity again because the emissivity of the substrate changed when the substrate was subjected to film formation, but in this example, this point was improved and It is said that the infrared emissivity thermometer can be corrected with this emissivity as a reference in the subsequent film formation process by calibrating the emissivity with respect to the temperature.
この実施例も実施例 1 と同様にシリ コ ンゥュハ基体に アルミ A £をスパッタリ ングにより成膜する装置例につ いて説明するものである。  This embodiment also describes an example of an apparatus for forming aluminum A £ on a silicon substrate by sputtering, as in the first embodiment.
第 4図はスパッタ装置の概略構成図を示したもので、 基本的には第 1図と同様であるが、 この例では後で詳述 するように各ステージに載置された基体 1 0 に近接して シャ ツタ 2 0、 2 1、 2 2がそれぞれ配設されているこ とである。 基体 1 0 は先ず温度校正チヤ ンバ 2中で加熱または冷 却ステージ 5 によって所定の温度に加熱または冷却され 第 1 の赤外線輻射温度計 1 1 および熱電対 1 2 によって 温度を測定し、 両者の指示値から所定の温度における基 体 1 0の赤外線輻射率を算出する。 基体の赤外線温度計 によって観察される側とは反対側に金属膜をスパッタ成 膜する場合、 膜の有無によって見掛けの赤外線輻射率の 値が大き く異なる場合があるが、 このシ ャ ツタの設置に よつて膜の有無による見掛けの赤外線輻射率の差を低減 する こ とができる。 FIG. 4 shows a schematic configuration diagram of the sputtering apparatus, which is basically the same as FIG. 1, but in this example, as will be described later in detail, the substrate 10 mounted on each stage is The shutters 20, 21 and 22 are arranged in close proximity to each other. The substrate 10 is first heated or cooled to a predetermined temperature by the heating or cooling stage 5 in the temperature calibration chamber 2 and the temperature is measured by the first infrared radiation thermometer 1 1 and the thermocouple 1 2 and both instructions are given. The infrared emissivity of the substrate 10 at a given temperature is calculated from the value. When a metal film is sputter-deposited on the side of the substrate opposite to the side observed by the infrared thermometer, the apparent infrared emissivity value may vary greatly depending on the presence or absence of the film. Therefore, the difference in apparent infrared emissivity due to the presence or absence of the film can be reduced.
なお、 赤外線輻射温度計 1 1 による計測に当たっては、 シャ ツタ 2 0を閉ざした状態で測定する。  In addition, when measuring with the infrared radiation thermometer 11, the shutter 20 should be closed.
次に基体 1 0 は温度校正チヤ ンバ 2から基体温度調整 チャ ンバ 3 に搬送され、 加熱または冷却スージ 6 にて加 熱または冷却しながら第 2 の赤外線輻射温度計 1 4によ つて基体 1 0 の温度を測定し、 校正チャ ンバ 2 にて求め た所定の温度での基体 1 0 の輻射率の値との補正により 基体温度制御器 1 3を通じて加熱または冷却ステージ 6 の温度を所定の温度に調節し基体 1 0 の温度を所定の温 度に制御する。 なお、 この基体温度調整チャ ンバ 3での 温度計側も温度校正チ ヤ ンバ 2 の時と同様にシ ャ ッタ 21 を閉ざした状態で測定する。  Next, the substrate 10 is transferred from the temperature calibration chamber 2 to the substrate temperature adjusting chamber 3 and heated or cooled by the heating or cooling soot 6 while the substrate 10 is heated by the second infrared radiation thermometer 14. The temperature of the heating or cooling stage 6 is adjusted to the specified temperature through the substrate temperature controller 13 by correcting the emissivity value of the substrate 10 at the specified temperature obtained by the calibration chamber 2. The temperature of the substrate 10 is adjusted to a predetermined temperature. As with the temperature calibration chamber 2, the temperature on the thermometer side of the substrate temperature adjustment chamber 3 is also measured with the shutter 21 closed.
その後基体 1 0 はスパッタ成膜チャ ンバ 4に搬送され スパッタステージ 7 にて加熱または冷却する。 この時シ ャ ッタ 2 2を基体上に閉ざし、 第 3の赤外線輻射温度計 1 5 によつて基体 1 0 の温度を測定し、 校正チャ ンバ 2 にて求めた基体 1 0 の輻射率の値との補正により正しい 温度を知ることができる。 更にこのようにして正しい温 度を知ることによって、 基体温度制御器 1 3を通じて加 熱または冷却ステージ 7 の温度を所定の温度に調節し、 基体 1 0の温度を所定の温度に制御してスパッタ成膜を 開始する。 成膜終了後、 基体 1 0 は基体温度調整チヤ ン バ 3 に戻され、 ステージ 6にて加熱もしく は冷却されな がら第 2 の赤外線輻射温度計 1 4によつて温度測定され る。 この時、 校正チャンバ 2にて求めた所定の温度での 基体の放射率の値との補正により、 基体温度制御器 1 3 を通じてステージ 6の温度を所定温度に調節して基体温 度を所定値に設定する。 その後基体は温度校正チャ ンバ 2を経て真空処理装置 1から搬出され次の工程に進む。 なお、 基体温度校正ステージ 2における第 1 の赤外線 温度計 1 1 と熱電対 1 2 による基体 1 0 の温度測定を複 数の温度において行い、 なおかつ第 2および第 3の赤外 線輻射温度計 1 4、 1 5を用いることによって、 より正 確なプロセス温度の制御が可能になる。 また図示してい ないが、 基体温度校正のため第 1 の赤外線輻射温度計 11 で測定するための、 基体を加熱または冷却する手段を複 数個設けることによって、 同様な複数の温度における基 体の温度の校正をより短時間で行う ことが可能になる。 After that, the substrate 10 is transferred to the sputtering film forming chamber 4 and heated or cooled by the sputtering stage 7. At this time, the shutter 22 is closed on the substrate, and the third infrared radiation thermometer The temperature of the base body 10 can be measured by means of 15 and the correct temperature can be known by correcting it with the emissivity value of the base body 10 obtained by the calibration chamber 2. Further, by knowing the correct temperature in this way, the temperature of the heating or cooling stage 7 is adjusted to a predetermined temperature through the substrate temperature controller 13 and the temperature of the substrate 10 is controlled to a predetermined temperature to effect sputtering. Start film formation. After the film formation is completed, the substrate 10 is returned to the substrate temperature adjusting chamber 3, and the temperature is measured by the second infrared radiation thermometer 14 while being heated or cooled at the stage 6. At this time, by correcting the value of the emissivity of the substrate at the predetermined temperature obtained in the calibration chamber 2, the temperature of the stage 6 is adjusted to the predetermined temperature through the substrate temperature controller 13 and the substrate temperature is set to the predetermined value. Set to. After that, the substrate is unloaded from the vacuum processing apparatus 1 through the temperature calibration chamber 2 and proceeds to the next step. It should be noted that the temperature measurement of the first infrared thermometer 11 and the temperature of the substrate 10 by the thermocouple 12 in the substrate temperature calibration stage 2 was performed at a plurality of temperatures, and the second and third infrared radiation thermometers 1 The use of 4 and 15 enables more accurate control of the process temperature. Although not shown, by providing a plurality of means for heating or cooling the substrate for measurement with the first infrared radiation thermometer 11 for calibrating the substrate temperature, it is possible to measure the substrate at a plurality of similar temperatures. The temperature can be calibrated in a shorter time.
以上は温度校正をスパッタ装置に組み込んだ形で説明 しているが、 前述したように全く別途用意することも可 能である し、 第 1 の赤外線温度計の代わりに反射透過を 測定する手段を用いることもできる。 In the above, the temperature calibration is described as being incorporated in the sputtering device, but it is also possible to prepare it separately as mentioned above. However, instead of the first infrared thermometer, a means for measuring reflection and transmission can be used.
第 5図にステージの代表例として第 4図のスパッタス テージ 7 の概略構成図を示す。 ステージの構成は、 基本 的には第 2図の例と同一であるが、 本実施例では基体 10 の上部に近接してシャ ツタ 2 2 の設けられている点が異 なる。  Figure 5 shows a schematic diagram of the sputter stage 7 in Figure 4 as a representative example of the stage. The structure of the stage is basically the same as that of the example of FIG. 2, except that the shutter 2 2 is provided in the vicinity of the upper part of the base 10 in this embodiment.
つまり、 基体の赤外線温度計によって観察される側と は反対側に金属膜をスパッタ成膜する場合、 膜の有無に よって見掛けの赤外線輻射率の値が大き く異なる場合が あるが、 このシャ ツタの設置によって膜の有無による見 掛けの赤外線輻射率の差を低減できるため、 第 3図のよ うに温度校正のための赤外線温度計による測定を、 第 2 の温度校正チヤンバ 3 2を配設するなどして成膜前後で 2回行う必要が無く なり 1 回で済むようになる。  In other words, when a metal film is formed by sputtering on the side of the substrate opposite to the side observed by the infrared thermometer, the apparent infrared emissivity value may vary greatly depending on the presence or absence of the film. Since the difference in apparent infrared emissivity due to the presence or absence of the film can be reduced by installing the sensor, the measurement by the infrared thermometer for temperature calibration as shown in Fig. 3 and the second temperature calibration chamber 3 2 are installed. As a result, it is no longer necessary to perform twice before and after film formation, and only once.
このシャ ツタは、 温度測定時に基体表面を閉ざし、 成 膜中は開放される開閉自在な機構を有しており、 例えば ステンレス製の円板が回転可能の駆動軸に支持され、 こ の駆動軸を回動することにより開閉する構成となってい ¾。  This shutter has an openable and closable mechanism that closes the substrate surface during temperature measurement and opens during film formation. For example, a stainless steel disc is supported by a rotatable drive shaft. It is configured to open and close by rotating.
また、 シリ コ ンゥュハ基体 1 0 は赤外線に対してほと んど透明であることから、 基体を貫通して赤外線輻射温 度計に迷光が入射し、 基板の温度測定精度が低下する場 合がある。 その対策としてこの例では、 赤外線温度計に よって観察される側の反対側に基体に近接して、 赤外線 輻射温度計の測定波長に対して充分鏡面である部材によ つてその主面が構成されたシャ ツタ 2 2を備え、 赤外線 輻射温度計 1 5 による基体 1 0の温度測定中に、 この迷 光が入射しないよう遮断する構成となっている。 In addition, since the silicon substrate 10 is almost transparent to infrared rays, stray light may penetrate the substrate and enter the infrared radiation thermometer, which may reduce the temperature measurement accuracy of the substrate. is there. As a measure against this, in this example, an infrared A shutter 22 whose main surface is composed of a member that is sufficiently specular for the measurement wavelength of the radiation thermometer is provided. Is configured to block so as not to enter.
このようにシャ ツタ機構の役割は、 第 1 には金属膜を ゥュハ基体に成膜する際に金属膜により反射されるゥェ ハからの輻射光による見掛けの放射率の増加分を補正す ることであり、 第 2 にはこれにより赤外線輻射光強度の 向上による測定精度の向上であり、 第 3 には迷光の遮断 である。  As described above, the role of the shutter mechanism is to firstly correct the increase in the apparent emissivity due to the radiated light from the wafer reflected by the metal film when the metal film is formed on the wafer substrate. The second is the improvement of measurement accuracy due to the improvement of the infrared radiation intensity, and the third is the blocking of stray light.
なお、 第 6図は第 4図のステージ 6の概略構成図を示 したもので、 基本的には第 5図のステージ 7 と同様の構 成である。 ステージ 6にはヒータ 1 8を内蔵し、 真空中 ではステージ 6 と基体 1 0 との間の空間に伝熱ガスが流 れる構造になっており、 基体に伝熱ガスを均一に接触さ せるためのクラ ンプ 1 7が設置されている。 基体 1 0 の 温度を赤外線輻射温度計 1 4で測定するための開口窓 19 と迷光遮断用円筒 1 6が接続されており、 円筒 1 6の両 端には赤外線を透過する材質の窓板 2 3、 2 4が装着さ れている。 また、 円筒 1 6 自身が加熱され迷光の発生源 にならないように水冷する構造となっている。 迷光の影 響をさ らに低減する場合には、 冷却を行った上で円筒 16 の内壁を黒体処理することで可能となる。 また、 この例 も第 5図の場合と同様に基体 1 0に近接して第 5図と同 様にシャ ツタ 2 1が配設されている。 なお、 上記シャ ツタは、 (1)鏡面状態の赤外線反射率を 有するもの、 (2)迷光の遮断機能を有するものであれば何 れの構造でも良く、 例えば基体の温度測定タィ ミ ングに 同期して開閉自在に駆動する構成、 或いは、 チャ ンバの 一領域に固定シャ ッタを設け、 測定時に基板をシャ ッタ 下部に移動する機構とするなど種々の構成を採用するこ とができる ό このシャ ッタがウェハ上に現れることでゥ ュハの温度が低下する等の場合には、 シャ ツタの温度を 概略ゥュハ温度に近く加熱しておく とよい。 Note that Fig. 6 shows a schematic configuration diagram of stage 6 in Fig. 4, which is basically the same configuration as stage 7 in Fig. 5. The stage 6 has a built-in heater 18 and has a structure in which the heat transfer gas flows in the space between the stage 6 and the base body 10 in vacuum, so that the heat transfer gas can be brought into uniform contact with the base body. Clamp 17 is installed. An opening window 19 for measuring the temperature of the substrate 10 with an infrared radiation thermometer 14 and a stray light blocking cylinder 16 are connected, and a window plate 2 made of a material that transmits infrared rays is provided at both ends of the cylinder 16. 3 and 24 are installed. In addition, the structure is such that the cylinder 16 itself is heated and water-cooled so that it does not become a source of stray light. To further reduce the effect of stray light, it is possible to cool it and then subject the inner wall of the cylinder 16 to a blackbody treatment. Also in this example, as in the case of FIG. 5, the shutter 21 is arranged in the vicinity of the base body 10 in the same manner as in FIG. The shutter may have any structure as long as (1) it has an infrared reflectance in a specular state, and ( 2 ) it has a function of blocking stray light. For example, it is synchronized with the temperature measurement timing of the substrate. Various configurations can be adopted, such as a structure in which the substrate is driven to open and close freely, or a fixed shutter is provided in one region of the chamber and the substrate is moved to the lower part of the shutter during measurement. If the shutter temperature drops due to the appearance of this shutter on the wafer, it is advisable to heat the shutter temperature close to the approximate temperature.
第 7図はシャ ツタの有無によるシリ コ ンウェハ基体の 赤外線輻射率の違いを示した特性曲線である。 第 7図 (a) は、 シャ ツタ無しの比較例、 第 7図 (b)は、 シャ ツタを設 けた本実施例の測定結果を示している。 これから明らか なように、 第 7図 )のアルミ Α 成膜前 ( Α 膜無し) のウェハの見掛けの赤外線輻射率は 成膜後 ( A £膜 有り) のゥュハの見掛けの赤外線輻射率より小さ く両者 にかなりの差が生じているが、 A £成膜前のゥヱハにシ ャ ッタを設置することによって、 第 7図 (b)に示すように 見掛けの赤外線輻射率が A 成膜後のゥュハとほぼ同等 になることが分かった。 これにより シャ ツタを用いて基 体温度を計測することにより一定の放射率で計測可能と 成ることが分かる。  Figure 7 is a characteristic curve showing the difference in infrared emissivity of the silicon wafer substrate with and without shutters. FIG. 7 (a) shows the comparative example without a shutter, and FIG. 7 (b) shows the measurement result of the present example with the shutter. As is clear from this, the apparent infrared emissivity of the wafer before the aluminum Α film formation (without the Α film) in Fig. 7) is smaller than the apparent infrared emissivity rate of HUHA after the film formation (with the A £ film). Although there is a considerable difference between the two, by installing a shutter in the wafer before deposition of A £, the apparent infrared emissivity after deposition of A is shown in Fig. 7 (b). It turned out to be almost the same as Uha. From this, it can be seen that it is possible to measure at a constant emissivity by measuring the substrate temperature using a shutter.
実施例 4 . Example 4.
赤外線輻射温度計の測定波長に対してほぼ透明な材料 でできた温度観察用窓板は、 それ自身の温度が上昇され ることにより放射光を放出するため、 これにより測定下 限温度を律速する。 本実施例では、 第 1 と第 2の窓板の 材質の異なるものを用いて測定下限温度の低下を可能と した例を第 8図のスパッタステ -ジ 7 を用いて説明する。 本実施例は基体上にシャ ッタを用いていないがシャ ッタ を用いても同様に目的を達成することは云うまでもない。 The temperature observation window plate made of a material that is almost transparent to the measurement wavelength of the infrared radiation thermometer has its own temperature raised. As a result, synchrotron radiation is emitted, which limits the lower limit temperature of measurement. In the present embodiment, an example in which the lower limit temperature for measurement can be lowered by using different materials for the first and second window plates will be described using the sputtering stage 7 in FIG. In this embodiment, no shutter is used on the substrate, but it goes without saying that the same purpose can be achieved by using a shutter.
スパッタステージ 7 - 1 はその内部には電熱ヒータ 18 が設けられてある。 ヒータの代わりにスパッタステージ 7 の内部に液体窒素等の冷媒を導入する等すれば、 基板 の冷却に用いることができる。  An electric heater 18 is provided inside the sputter stage 7-1. If a coolant such as liquid nitrogen is introduced into the sputter stage 7 instead of the heater, it can be used for cooling the substrate.
3 0 はスパッタステージ 7 — 1 に設けられた小窓であ り、 第 1 の窓板 2 4が嵌め込まれている。 この材料につ いては後述するが、 赤外線を効率良く透過させることの できる材料、 例えばフ ッ化バリ ウム、 フッ化カルシウム 等を用いている。 このために基板 1 0 とスパッタステー ジ 7 とで為す空間の機密性は保たれ、 この空間の圧力は 好適な数 Torr内外の圧力に保たれる。  Reference numeral 30 denotes a small window provided on the sputter stage 7-1, in which the first window plate 24 is fitted. Although this material will be described later, a material that can transmit infrared rays efficiently, such as barium fluoride or calcium fluoride, is used. For this reason, the airtightness of the space formed by the substrate 10 and the sputter stage 7 is maintained, and the pressure in this space is kept at a suitable pressure within a few Torr.
スパッタステージ 7 - 1上に置載された基板 (本例で は S iゥュハ) 1 0の裏面からの赤外線の輻射光を、 赤外 線 (輻射) 温度計 5で観察するために、 光路 3 6を通す ために設けられている。  In order to observe the infrared radiation from the backside of the substrate (Si wafer in this example) 10 placed on the sputter stage 7-1 with the infrared (radiation) thermometer 5, the optical path 3 It is provided to pass 6.
赤外線温度計 1 4 は大気中に設置されている。 このた めに光路 3 6 は大気と真空との境を通らなければならな い。 3 1 はこのための観察窓であり、 第 2の窓板 2 3 に は後述するが赤外線を効率良く透過させる材料、 例えば フ ツイ匕ノ、 'リ ウ ム、 フ ツイ匕カノレシゥ ム等を用いている。 こ の第 2 の窓板 2 3 は大気圧に耐えなければならないので 強度を確保するために通常 5 «程度の厚さのものを用い る こ と力 行なわれている。 The infrared thermometer 14 is installed in the atmosphere. For this reason, the optical path 36 must pass through the boundary between the atmosphere and the vacuum. 3 1 is an observation window for this purpose, and the second window plate 2 3 will be described later, but a material that transmits infrared rays efficiently, for example, Futsui Imano, 'ryuum, Futsui Imano canalium, etc. are used. Since this second window plate 23 has to withstand atmospheric pressure, it is usually done with a thickness of about 5 ℓ to secure its strength.
ノ、。ィ フ' 3 2 は基体 1 0 とスパ ッ タ ステージとが為す空 間に A rガスを導入するためのものである。 スパッタステ ー ジ 7 - 1 があらかじめ所定の温度に加熱されており、 基板 1 0が置載され、 スパッタステージ 7 — 1 に基板 10 がク ラ ンプ 1 7によって押しつけられ、 A rガスが導入さ れると、 スパッタステージ 7 — 1 から基板 1 0への熱の 伝達が開始し、 基板の温度は速やかに上昇を始める。  No ,. If '32 is to introduce Ar gas into the space formed by the substrate 10 and the sputter stage. The sputter stage 7-1 is preheated to a predetermined temperature, the substrate 10 is placed, the substrate 10 is pressed against the sputter stage 7-1 by the clamp 17 and Ar gas is introduced. Then, the heat transfer from the sputter stage 7-1 to the substrate 10 starts, and the substrate temperature starts to rise rapidly.
もし基板が所望の温度であることがわかれば、 例えば ば基板 1 0に対向して設置されたスパ ッ タ リ ングターゲ ッ ト 8 によって、 スパッタ リ ングによる成膜などの処理 を開始すればよい し、 もし低すぎるようであれば、 スバ ッタステー ジの温度を調整するなどして、 所定の温度に なるまで加熱を続ければよい。  If it is known that the substrate is at the desired temperature, for example, the sputtering target 8 installed facing the substrate 10 may start a process such as film formation by sputtering. If it is too low, adjust the temperature of the scatter stage and continue heating until it reaches the specified temperature.
基板 1 0 のすぐ後にあって、 基板 1 0 とスパッタステ ージ 7 - 1 とが作る空間に充満する熱媒体としてのガス に直接触れる第 1 の窓板 2 4 は、 基板 1 0 と同様にガス によ る熱媒体で加熱される。  Immediately after the substrate 10, the first window plate 24, which comes into direct contact with the gas as the heating medium filling the space created by the substrate 10 and the sputter stage 7-1, is the same as the substrate 10. Is heated by the heat medium.
赤外線温度計 1 4は第 1 の窓板 2 4 と第 2 の窓板 2 3 を介して基板を 「見ている」 が、 第 2 の窓板 2 3 につい ては後に述べるとして、 第 1 の窓板 2 4について最初に 述べる。 第 1 の窓板 2 4 の厚さが厚いと、 当.然基板から の赤外線輻射光の強度は低下する。 同じに第 1 の窓板 2 4の厚みが大で吸収損失が大きいという ことは、 第 1 の 窓板 2 4の温度が上がった時に、 その分仕切板自身から の輻射が発生するという ことを意味している。 The infrared thermometer 14 "sees" the substrate through the first window plate 2 4 and the second window plate 2 3, but the second window plate 2 3 will be described later. The window plate 24 will be described first. If the thickness of the first window plate 2 4 is large, it will The intensity of the infrared radiant light is reduced. Similarly, the fact that the thickness of the first window plate 24 is large and the absorption loss is large means that when the temperature of the first window plate 24 rises, radiation from the partition plate itself is generated accordingly. I mean.
従って第 1 の窓板 2 4の厚さはできる限り薄いことが 望ましい。 もし第 1 の窓板 2 4が直接大気と基板とスパ ッタステージとがっく る空間との間を仕切るようにする と、 大気圧に耐える強度を付与するためには先述したよ うに 5 «程度の厚さが必要である。 然し乍ら 5 «もの厚 さをもったフ ッ化バリ ウムを 4 0 0 'cに加熱すれば、 非 常に強い輻射がおき、 その先に置いてある基板 1 0の輻 射する赤外線を観察するとができない。 また、 第 1 の窓 板 2 4 と基板 1 0 はガスを使った加熱方式を採っている ために、 何れも同一の温度に収束しよう と動く ことにな る。 従ってこの点からも第 1 の窓板 2 4は薄いものであ ることが必要である。  Therefore, it is desirable that the thickness of the first window plate 24 be as thin as possible. If the first window plate 24 separates the atmosphere directly from the substrate and the space between the sputter stage and the stutter stage, as described above, in order to provide strength to withstand atmospheric pressure, a thickness of about 5 «is provided. Is necessary. However, if barium fluoride with a thickness of 5 «is heated to 400 ´c, extremely strong radiation will occur and the infrared radiation from the substrate 10 placed ahead of it will be observed. Can not. Moreover, since the first window plate 24 and the substrate 10 use the heating method using gas, both of them move to converge to the same temperature. Therefore, from this point as well, the first window plate 24 needs to be thin.
赤外線を効率良く透過させる材料はなかなかなく、 一 般に使用されているガラスや、 石英ガラス等は赤外線を 透過させる窓材としては全く好適でない。 従って第 1、 第 2 の窓板 2 4、 2 3 は共にフ ッ化バリ ゥム等の材料で 構成しなければならない。  There are very few materials that efficiently transmit infrared rays, and commonly used glass, quartz glass, and the like are completely unsuitable as window materials that transmit infrared rays. Therefore, both the first and second window plates 24 and 23 must be made of a material such as fluorinated fluoride.
第 1 の窓板 2 4 はスパッタ リ ングを行なう Arの通常の 圧力は数 m Torr である。 また基板 1 0 とスパッタステ ージ 7 — 1 とで為す空間の圧力は高さ数 Torrである。 従 つて第 1 の仕切板 1 4の前後に加わる圧力は僅少であり 仕切板に強度は必要が無い。 これは第 2 の窓板 2 3が大 気圧とのィ ンタフヱースを受け持っているからである。 第 1 の窓板 2 4 は従って、 1 «の厚さがあれば強度的 には充分である。 以上の実施例の説明から基板側の第 1 の窓板 2 には第 1 の窓板 2 4 と赤外線温度計との間の 第 2の窓板 2 3より も薄いものを用いることによって、 第 1 の窓板 2 4からの輻射光の影響を低減できることが 充分に述べられた。 The normal pressure of Ar for sputtering the first window plate 24 is several m Torr. The pressure in the space formed by the substrate 10 and the sputter stage 7-1 is several Torr in height. Therefore, the pressure applied to the front and rear of the first partition plate 14 is very small. The partition plate does not need strength. This is because the second window plate 23 is responsible for the interface with atmospheric pressure. Therefore, the first window plate 2 4 is enough for strength if it has a thickness of 1 «. From the above description of the embodiment, by using a thinner first window plate 2 on the substrate side than the second window plate 23 between the first window plate 24 and the infrared thermometer, It was fully stated that the effect of radiant light from the window plate 24 of 1 can be reduced.
第 9図はフ ッ化バリ ウムの赤外光の透過特性を示した ものである。 この特性は常温と 5 0 0 でについて示した < データの出典は 「基礎物性図表」 (共立出版昭和 4 7年 5月 1 5 日第 1刷発行) の 4 9 1 〜 4 9 2頁 (フ フ化バ リ ウム) 、 4 6 8から 4 6 9頁 (フ ッ化カルシウム) で ある。  Figure 9 shows the infrared transmission characteristics of barium fluoride. This characteristic was shown at room temperature and 500 <Data source is “Characteristics of Physical Properties” (Kyoritsu Shuppan, May 15, 1974, 1st printing, 1st printing), pages 4 9 1 to 4 9 2 Barium fluoride), pages 468 to 469 (calcium fluoride).
A のスパッタ リ ングによる成膜では成膜中に基板 When depositing by sputtering A, the substrate is
(通常は S iゥュハ等) を最大で 5 0 0 'C程度まで加熱す ることが有る。 第 9図の 1 0 0 0 その場合には、 常温で 1 4 mまで透過していた赤外光が、 1 0 m程度まで しか透過しな く なつている。 この場合には 1 0 mから 1 4 μ mでは赤外光の吸収が起こり、 即ちその分、 赤外 光の輻射も発生していることになる。 (Usually Si Uha, etc.) may be heated up to a maximum of about 500'C. In the case of 100 in Fig. 9, the infrared light transmitted up to 14 m at room temperature is transmitted only up to about 10 m. In this case, absorption of infrared light occurs from 10 m to 14 μm, that is, infrared radiation is also generated correspondingly.
第 2 の窓板 2 3を第 1 の窓板 2 と同様にフ ッ化バリ ゥムで構成すると、 第 1 の窓板 2 4が 5 0 0 'Cに昇温し たことによって、 輻射される赤外光が、 第 2 の窓板 2 3 が常温であるために、 第 2 の窓板 2 3を透過してしまい、 恰も基板 1 0からの赤外光であるように観察されてしま つ o If the second window plate 23 is made of fluorinated fluoride as in the case of the first window plate 2, the first window plate 24 will be radiated by raising the temperature to 500 ° C. Infrared light is transmitted through the second window plate 23 because the second window plate 23 is at room temperature. It is also observed that it is infrared light from substrate 10.
第 1 0図はフ ッ化カルシゥムの赤外光の常温での透過 特性であるが、 第 9図に示した常温のフ ッ化バリ ゥムの 透過特性より、 長波長側に透過特性が伸びていないこと が判る。 このフ ッ化カルシゥムを第 2の窓板 2 3に使用 すれば、 例え第 1 の窓板 2 が加熱され、 それ自身で輻 射を始めても、 この赤外輻射光は仕切板 2 4の後に控え ている赤外線温度計 1 4にはこの不要輻射は入射しない < 従って、 第 1 の窓板 2 4の温度によらず安定な測定が可 能と成るのである。  Figure 10 shows the infrared light transmission characteristics of calcium fluoride at room temperature, but the transmission characteristics are extended to longer wavelengths than the transmission characteristics of room temperature fluoride shown in Figure 9. I know that not. If this calcium fluoride is used for the second window plate 23, even if the first window plate 2 is heated and starts to radiate by itself, this infrared radiation will be emitted after the partition plate 24. This unwanted radiation does not enter the infrared thermometer 14 that is being reserved. <Thus, stable measurement is possible regardless of the temperature of the first window plate 24.
実施例 5 . Example 5.
この実施例では、 スバッタステージに設けられた基体 の温度測定用の観測窓に窓板がない場合でも加熱及び冷 却が問題無く行なえるための例を図 1 1 を用いて説明す る。 本実施例は基体上にシャ ッタを角いていないがシャ ッタを用いても同様に目的を達成することは云うまでも ない。  In this embodiment, an example in which heating and cooling can be performed without problems even if there is no window plate in the observation window for temperature measurement of the substrate provided on the slaughter stage will be described with reference to FIG. In this embodiment, the shutter is not angled on the substrate, but it goes without saying that the same purpose can be achieved by using the shutter.
3 0 はスパッタステージ 7 に設けられた小窓であり、 スパッタステージ 7 — 1 の上に置載された基板 (本例で は S iゥュハ) 1 0 の裏面からの赤外線の輻射光を、 赤外 線 (輻射) 温度計 5で観察するために、 光路 3 6を通す ために設けられている。  Reference numeral 30 is a small window provided on the sputter stage 7 and is used to detect infrared radiation emitted from the back surface of the substrate (in this example, Si uh) 10 placed on the sputter stage 7-1. External line (radiation) It is provided to pass the optical path 36 for observation with the thermometer 5.
赤外線温度計 1 4は大気中に設置されている。 このた めに光路 3 6 は大気と真空との境を通らなければならな い。 2 3 はこのための窓でぁり、 窓材には赤外線を効率 良く 透過させる材料、 例えばフ ッ化バリ ウム、 フ ツ化力 ルシゥム等を用いている。 パィ プ 8 は基板 1 0 とスパッタステージとが為す空間 に Arガスを導入するためのものである。 基板 1 0 はク ラ ンプ 1 7 によってスパフタステージに押えつけられてい る。 The infrared thermometer 14 is installed in the atmosphere. For this reason, the optical path 36 must pass through the boundary between the atmosphere and the vacuum. Yes. 2 3 is a window for this purpose, and the window material is made of a material that efficiently transmits infrared rays, such as barium fluoride or fluorine-containing power. The pipe 8 is for introducing Ar gas into the space defined by the substrate 10 and the sputtering stage. The substrate 10 is clamped by the clamp 17 to the spatter stage.
スパッタステージ 7 — 1 の小窓 3 0 は蓋 3 5 によって - 密閉される。 すなわち蓋 3 5 はク ラ ンク状の ドライ ブシ ャフ ト 3 4によって支持されている力 、 この ドライ ブシ ャフ ト 3 4 は上下と面転ができる。 第 1 1 図では蓋は中 途の位置まで下がっているが、 更に蓋 3 5 はその位置を 下げる こ とができ、 スパフタステージ 7 — 1 の充分に下 の位置まできてから、 回転し、 赤外線温度計の観察用の 光路 3 6 を邪魔しない位置まで退避する こ とができる。  The small window 30 of the sputter stage 7-1 is sealed by the lid 35. That is, the lid 35 is supported by the crank-shaped drive shaft 34, and the drive shaft 34 can move up and down. In Fig. 11 the lid is lowered to the midway position, but the lid 35 can be lowered further and it can be rotated after it has reached the position sufficiently lower than the spatter stage 7-1. , It is possible to retract the observation optical path 36 of the infrared thermometer to a position where it does not interfere.
ドライ ブシャフ ト 3 4 は逆に第 9 図の位置より上昇す る こ とができ、 上死点ではスパッタステージ 7 — 1 の小 窓 3 0を下から蓋 3 5 によって完全に塞ぐこ とができる。  On the contrary, the drive shaft 3 4 can be lifted from the position shown in Fig. 9, and at the top dead center, the small window 30 of the sputter stage 7 — 1 can be completely closed by the lid 3 5 from below. ..
このために基板 1 0 とスパッタステージ 7 ― 1 とで為 す空間の機密性は保たれ、 この空間の圧力は好適な数 T o rr内外の圧力に保たれる。  For this reason, the airtightness of the space formed by the substrate 10 and the sputter stage 7-1 is maintained, and the pressure in this space is maintained at a pressure within a suitable number Torr.
基板 1 0 力、'、 ク ラ ンプ 1 7 でスパッタステージ 7 — 1 に固定され、 基板端と、 スパッタステージ端部とがよ く 密着し、 基板 1 0 の表面とスパッタステージ 7 — 1 との なす空間に、 弁 3 3 を調節する こ とにより、 例えば Arガ スを導入する。 It is fixed to the sputter stage 7-1 with the substrate 10 force, ', and the clamp 17 so that the substrate edge and the sputter stage end are in close contact, and the surface of the substrate 10 and the sputter stage 7-1 are By adjusting the valve 3 3 in the space, Introduce
このとき、 ドライブシャ フ ト 3 4はその上死点まで上 昇しており、 スバッタステージ 7 — 1 の小窓 3 0のフタ 3 5によって塞いでいる。 このようにすると、 スパフ タ ステージ 7 - 1 から基板 1 0への熱の伝達が開始し、 基 板の温度は速やかに上昇を始める。 適当な時間がたつた 時に ドライブシャフ ト 3 5を下降回転させ、 光路 3 6よ り除き、 赤外線温度計 1 4により基板 1 0の裏面を観察 することができるようになる。 ふた 3 5が下降したこと で、 基板 1 0の裏面とスパッタステージ 7 — 1 とのあい だに数 Torrのガス圧力を維持することはできないので、 基板 1 0の温度上昇はほぼ停滞する。  At this time, the drive shaft 34 has risen to the top dead center and is closed by the lid 35 of the small window 30 of the slaughter stage 7-1. In this way, heat transfer from the sputter stage 7-1 to the substrate 10 starts, and the temperature of the substrate begins to rise rapidly. After a suitable time, the drive shaft 35 is rotated downward, and it is removed from the optical path 36, so that the infrared thermometer 14 can observe the back surface of the substrate 10. Since the lid 35 is lowered, the gas pressure of several Torr cannot be maintained between the back surface of the substrate 10 and the sputter stage 7-1, so that the temperature rise of the substrate 10 is almost stopped.
もし基板が所望の温度であることがわかれば、 例えば 基板 1 0に対向して設置されたスパッタリ ングターゲッ ト 8によって、 スパッタリ ングによる成膜などの処理を 開始すればよいし、 もし低すぎるようであれば、 再びふ た 3 5を用い、 ガスを充満させることで加熱を続ければ よい。  If it is known that the substrate is at the desired temperature, for example, a sputtering target 8 installed facing the substrate 10 may start a process such as film formation by sputtering, or if it seems too low. If so, use lid 35 again and continue heating by filling it with gas.
実施例 6 . Example 6.
加熱または冷却ステージに基体の赤外線温度測定のた めの開口窓 1 9により基体の温度分布が不均一になる場 合には、 第 1 2図に示すように貫通孔 (開口窓) 1 9 よ り離れた場所に分離して設けた加熱または冷却専用のス テ一ジ 25にて基体 1 0を加熱または冷却した後、 基体 10 を開口窓 1 9のあるステージに搬送し赤外線輻射温度計 2 7 にて温度測定を行う構成とするこ とによつて基体 10 の温度分布がより均一な状態て測定するこ とができる。 実施例 7 . If the temperature distribution of the substrate is not uniform due to the aperture window 19 for infrared temperature measurement of the substrate on the heating or cooling stage, the through hole (opening window) 19 as shown in Fig. 12 may be used. After heating or cooling the substrate 10 with a stage 25 dedicated to heating or cooling provided separately in a remote place, the substrate 10 is transferred to a stage having an opening window 19 and the infrared radiation thermometer is transferred. With the configuration in which the temperature is measured at 27, the temperature distribution of the substrate 10 can be measured in a more uniform state. Example 7.
基体の加熱または冷却を表面または裏面の何れか一方 側からのみ行った場合、 基体の表面側と裏面側とには温 度差が生じる。 そこで、 第 1 3図に示すように基体の表 面と裏面との両側から温度制御できるように、 それぞれ の側に加熱または冷却手段 2 8、 2 9を設けるこ とによ り両面の温度差を低減することができる。 また、 これに より開口窓 1 9による基体上の温度分布の不均一性をも 低減するこ とができる。  When the substrate is heated or cooled only from either the front side or the back side, a temperature difference occurs between the front side and the back side of the substrate. Therefore, by providing heating or cooling means 28 and 29 on each side so that the temperature can be controlled from both the front and back sides of the substrate as shown in Fig. 13, the temperature difference between the two sides can be controlled. Can be reduced. Further, by this, the nonuniformity of the temperature distribution on the substrate due to the opening window 19 can also be reduced.
実施例 8 . Example 8.
第 4図のスパッタ装置 1 を用いて、 シ リ コ ンウェハ基 体 1 0上にアルミ A 膜をスパッタ リ ングにより成膜す る他の実施例を説明する。  Another embodiment in which an aluminum A film is formed on the silicon wafer substrate 10 by sputtering using the sputtering apparatus 1 shown in FIG. 4 will be described.
シ リ コ ンゥヱハ基体 1 0 は、 温度校正チヤ ンバ 2 で 5 0 0 でまで加熱されて吸着水分等が除去され、 熱電対 1 2で測温されると共にこれをベースとして赤外線輻射 温度計 1 1 の放射率の校正を行い、 次いでゥュハは基体 温度調整チヤ ンバ 3 に搬送される。  The silicon wafer 10 is heated to 500 at the temperature calibration chamber 2 to remove adsorbed moisture, etc., and the temperature is measured by the thermocouple 12 and the infrared radiation thermometer 1 1 is used as a base. The emissivity is calibrated, and the uhha is then transported to the substrate temperature control chamber 3.
この輻射率の校正は、 この方法によらずとも、 測定波 長の光をゥュハに照射することで、 透過/反射率を求め、 行う こ ともできる。 基体温度調整チャ ンバ 3 に搬送され たゥュハ基体 1 0 は、 赤外線輻射温度計 1 4で測温され、 ステージ 6の温度制御により所定の 2 0 0 でまで冷却さ れ、 スパ ッタ成膜チャ ンバ 4 に搬送される。 このスパ ッ タ成膜チャ ンバ 4内で基体 1 0 は、 第 1 4図に示すよう な温度プロフ ァ イ ルによってスノ、 °ッタされる。 ターゲッ ト 8 は 1 % S i - 3 % Cu - A ίの組成のものを用いた。 先 ず始めに、 基体 1 0の温度を 2 3 0 でに制御し、 膜)!:数This emissivity calibration can also be performed by irradiating the uch with light of the measurement wavelength, without depending on this method, to determine the transmissivity / reflectance. The HUHA substrate 10 transferred to the substrate temperature adjustment chamber 3 is measured by the infrared radiation thermometer 14 and cooled to a predetermined temperature of 200 by the temperature control of the stage 6. And transferred to the sputtering film forming chamber 4. In the sputtering film forming chamber 4, the substrate 10 is snow-coated by a temperature profile as shown in FIG. Target 8 had a composition of 1% Si-3% Cu-Aί. First of all, the temperature of the substrate 10 is controlled to 230, and the film)! :number
1 0 0 Α程度までの第 1 のスパッタ成膜を行い、 そこで 一旦スパッタを停止し、 基体は基体温度調整チャ ンバ 3 に搬送される。 基体温度調整チャ ンバ 3では、 基体 1 0 の温度を 3 0 0 ·(:に加熱制御し、 第 1 のスパッタ成膜で 得た A £膜の結晶粒を成長させ配向性等を向上させる。 次に、 基体は再びスバッタ成膜チヤ ンバ 4に搬送され、 基体温度を 4 0 0 で程度に設定した後、 第 2 のスパッタ 成膜を再開させ、 膜厚 1 m程度まで成膜を行う。 これ により結晶粒が大き く、 配向性のよい A スパッタ膜が 得られる。 スパッタ終了後基体は直ちに基体温度調整チ ヤ ンバ 3に搬送され、 5 0 で程度まで急冷される。 これ により、 A £スパッタ膜中の S i及び Cuの折出を抑制する ことができた。 The first sputter film formation up to 100 A is carried out, the sputter is once stopped, and the substrate is transferred to the substrate temperature adjusting chamber 3. In the substrate temperature adjusting chamber 3, the temperature of the substrate 10 is controlled to 300 ° (: by heating, and the crystal grains of the A∘ film obtained by the first sputter deposition are grown to improve the orientation and the like. Next, the substrate is again conveyed to the subcatalyst film forming chamber 4, and after setting the substrate temperature to about 400, the second sputter film formation is restarted and the film is formed to a film thickness of about 1 m. As a result, an A sputtered film with large crystal grains and good orientation can be obtained.After the completion of sputtering, the substrate is immediately transferred to the substrate temperature control chamber 3 and rapidly cooled to about 50. As a result, A £ It was possible to suppress the protrusion of Si and Cu in the sputtered film.
上記実施例では、 シ リ コ ンゥヱハを基体として、 その 表面に A &薄膜をスパッタリ ングにより成膜する例を示 したが、 ステ—ジを介して基体の温度制御が高精度に行 えるためゥュハ内で再現性が良い結晶性及び薄膜の微細 構造が得られ、 品質の優れた成膜を達成することができ た。 例えば、 数 1 0 0 人の薄い膜を加熱する際にその加 熱温度が 3 5 0 で以上では結晶性の向上が得られなかつ た。 従って、 正確な温度を知ることができる本発明な く しては工業的にこのような成膜方法を実現させることは できない。 In the above embodiment, an example is shown in which a silicon substrate is used as a substrate and an A & thin film is formed on the surface by sputtering. However, since the temperature of the substrate can be controlled with high accuracy via the stage, the wafer can be controlled with high accuracy. The crystallinity and the thin film microstructure with good reproducibility were obtained, and it was possible to achieve high quality film formation. For example, when a thin film of several hundred people is heated at a heating temperature of 350, no improvement in crystallinity can be obtained. It was Therefore, such a film forming method cannot be industrially realized without the present invention capable of knowing an accurate temperature.
なお、 本発明の真空処理装置は、 上記のスパッタ装置 のほか C V D ( Chem i ca i Vapor Depos i t i on )による成 膜装置等にも適応可能であることは言うまでもない。 例えば、 シリ コ ンゥヱハ基板を基体として、 この基板 上に C V Dにより既知の方法でタ ングステン膜を成膜す る場合などに有効である。  It is needless to say that the vacuum processing apparatus of the present invention can be applied to a film forming apparatus using a CVD (Chem Dic Vapor Deposition) in addition to the above sputtering device. For example, this is effective when a tungsten substrate is used as a substrate and a tungsten film is formed on this substrate by a known method using CVD.
この種の成膜装置においては、 いずれも基体の温度制 御の椿度が、 形成される膜質を左右することから、 本発 明の成膜装置は、 それに十分応え得るものである。  In all of the film-forming apparatuses of this type, the degree of camellia of the temperature control of the substrate influences the quality of the formed film, and the film-forming apparatus of the present invention can sufficiently meet such requirements.
なお、 上記実施例のように真空処理チャ ンバを成膜処 理チャ ンバとすれば成膜装置が実現されるが、 この真空 処理チャ ンバを成膜チャンバ以外にも例えばプラズマエ ツチング等の ドライ ェ ツチング処理のチヤンバとするこ とも可能であり、 エ ッチングする基板の温度制御につい ては上記実施例と同様に実現できる。  Although the film forming apparatus can be realized by using the vacuum processing chamber as the film forming processing chamber as in the above-described embodiment, the vacuum processing chamber can be used not only in the film forming chamber but also in the dry etching such as plasma etching. It is also possible to use a etching treatment chamber, and the temperature control of the substrate to be etched can be realized in the same manner as in the above-mentioned embodiment.
以上説明したように本発明によれば、 真空中での基体 の正確な温度制御を可能とするものであり、 基板の正確 な温度管理のできる真空処理装置を実現すると共に、 そ れを成膜装置に応用することにより正確な温度制御を必 要とする成膜前後、 及び成膜中の温度の管理が容易にで きるので、 高品質な膜の形成を可能とする。  As described above, according to the present invention, it is possible to accurately control the temperature of a substrate in a vacuum, to realize a vacuum processing apparatus capable of accurately controlling the temperature of a substrate, and to form a film on it. By applying this to an apparatus, it is possible to easily control the temperature before and after film formation, which requires precise temperature control, and during film formation, and thus it is possible to form a high quality film.

Claims

請 求 の 範 囲 The scope of the claims
1 . ステージに載置された基体を既知の設定温度に加 熱または冷却する手段を備えた温度校正ステージと ; 基 体の輻射熱を測定する第 1 の赤外線輻射温度計と ; 前記 第 1 の赤外線輻射温度計の出力から前記基体の既知の温 度に基づいて輻射率を求め、 前記第 1 の赤外線輻射温度 計により前記基体の温度を正し く表示せしめるための赤 外線感度補正値を演算する手段と ; 該ステージと同一な いしは異なる基体が載置されるステージと、 この基体を 所定の設定温度に加熱または冷却する手段と、 前記基体 に真空処理する手段とを備えた真空処理チヤ ンバと ; 前 記基体の輻射熱を測定する第 2の赤外線輻射温度計と ; 前記第 2の赤外線輻射温度計の出力から前記温度校正チ ャ ンバで求めた赤外線感度補正値に基づき真空処理チャ ンバ内に置かれた基体の真の温度を算出する手段とを備 えて成る真空処理装置。  1. A temperature calibration stage equipped with a means for heating or cooling the substrate placed on the stage to a known set temperature; a first infrared radiation thermometer for measuring the radiation heat of the substrate; a first infrared ray From the output of the radiation thermometer, the emissivity is obtained based on the known temperature of the substrate, and the infrared sensitivity correction value for displaying the temperature of the substrate correctly by the first infrared radiation thermometer is calculated. Means; a vacuum processing chamber provided with a stage on which a substrate that is the same as or different from the stage is placed, a device that heats or cools the substrate to a predetermined set temperature, and a device that performs a vacuum process on the substrate. A second infrared radiation thermometer for measuring the radiant heat of the substrate, and a vacuum processing chamber based on the infrared sensitivity correction value obtained from the output of the second infrared radiation thermometer by the temperature calibration chamber. And a means for calculating the true temperature of the substrate placed on the substrate.
2 . ステージに載置された基体を既知の設定温度に加 熱または冷却する手段を備えた温度校正ステージと ; 基 体の輻射熱を測定する第 1 の赤外線輻射温度計と ; 前記 第 1 の赤外線輻射温度計の出力から前記基体の既知の温 度に基づいて輻射率を求め、 前記第 1 の赤外線輻射温度 計により前記基体の温度を正しく表示せしめるための赤 外線感度補正値を演箕する手段と ; 前記基体が載置され る前記ステージ又は、 これとは異なるステージと、 この 基体を所定の設定温度に加熱または冷却する手段と、 前 記基体に真空処理する手段とを備えた真空処理チャ ンバ と ; 前記基体の輻射熱を測定する第 2 の赤外線輻射温度 計と ; 前記第 2 の赤外線輻射温度計の出力から前記温度 校正チヤ ンバで求めた赤外線感度捕正値に基づき真空処 理チヤ ンバ内に置かれた基体の真の温度を箕出する手段 と ; 上記各々のステージ上の基体上に近接して配設され. 赤外線温度計の測定波長に対して充分に鏡面である部材 でその主面が構成されたシャ ツタ機構とを具備して成る 真空処理装置。 2. A temperature calibration stage equipped with a means for heating or cooling the substrate placed on the stage to a known set temperature; a first infrared radiation thermometer for measuring the radiant heat of the base; A means for determining the emissivity from the output of the radiation thermometer based on the known temperature of the substrate, and deducting an infrared sensitivity correction value for correctly displaying the temperature of the substrate by the first infrared radiation thermometer. And the stage on which the substrate is placed, or a stage different therefrom, and means for heating or cooling the substrate to a predetermined set temperature, A vacuum processing chamber provided with means for performing vacuum processing on the substrate; a second infrared radiation thermometer for measuring radiant heat of the substrate; and an output from the second infrared radiation thermometer for the temperature calibration chamber. A means for deriving the true temperature of the substrate placed in the vacuum processing chamber based on the obtained infrared sensitivity correction value; and arranged in close proximity to the substrate on each of the above stages. A vacuum processing apparatus comprising a shutter mechanism whose main surface is composed of a member that is sufficiently a mirror surface for the measurement wavelength of.
3 . 上記各々のステージには、 該赤外線輻射温度計に よつて基体の温度を観測するための設けられた観察用穴、 また基体からの赤外光を赤外線輻射温度計にまで導く た めの光路、 基体に接するステージの面内にあり、 基体と ステージとの成す空間に所定のガスを所定のガス圧力で 満たすためのガス導入手段を持ち、 該観察用穴を塞ぐこ とのできる、 可動式の光路閉塞用のシャ ツタからなる基 板温度の制御手段をそなえてなる第 1項もし く は第 2項 記載の真空処理装置。  3. Each of the above stages has an observation hole for observing the temperature of the substrate by the infrared radiation thermometer, and also for guiding infrared light from the substrate to the infrared radiation thermometer. An optical path, which is in the plane of the stage in contact with the substrate, has a gas introducing means for filling the space formed by the substrate and the stage with a prescribed gas pressure with a prescribed gas pressure, and is capable of closing the observation hole. The vacuum processing apparatus according to the first or second item, which is provided with a means for controlling the substrate temperature, which comprises a shutter for closing the optical path.
4 . 上記各々のステージには、 該赤外線輻射温度計に よって基体の温度を観測するための観察用穴、 また基体 からの赤外光を赤外線温度計にまで導く ための光路、 基 体に接するステージの面内にあり、 基体とステージとの 成す空間に所定のガスを所定のガス圧力で満たすための ガス導入手段を持ち、 該赤外線輻射温度計の測定波長に 対してほぼ透明な材料でできた該観察用穴の基板側と赤 外線温度計側との真空雰囲気を仕切るための第 1 の窓板 を備えてなる基板温度の制御手段を備えた第 1項もしく は第 2項記載の真空処理装置。 4. Each of the above stages is in contact with an observation hole for observing the temperature of the substrate by the infrared radiation thermometer, an optical path for guiding infrared light from the substrate to the infrared thermometer, and the substrate. It is in the plane of the stage and has a gas introducing means for filling a predetermined gas with a predetermined gas pressure in the space formed by the substrate and the stage, and is made of a material which is almost transparent to the measurement wavelength of the infrared radiation thermometer. The substrate side of the observation hole and red 2. The vacuum processing apparatus according to item 1 or 2, which further comprises a substrate temperature control means provided with a first window plate for partitioning a vacuum atmosphere from the outside thermometer side.
5 . 上記各々のステージは、 第 1 の窓板と、 赤外線温 度計との間に第 1 の窓板の厚さより も薄い第 2の窓板を 備えてなる基板温度の制御手段をそなえた第 1項もしく は第 2項記載の真空処理装置。  5. Each of the above stages was equipped with a means for controlling the substrate temperature, which comprised a first window plate and a second window plate that was thinner than the thickness of the first window plate between the infrared thermometer. The vacuum processing apparatus according to item 1 or 2.
6 . 上記第 1 の窓板は、 第 2の窓板に比較して、 より 長い波長の赤外線輻射光までを透過させることができる ものからなる基板温度の制御手段をそなえた第 1項もし 第 2項記載の真空処理装置。  6.If the first window plate has a means for controlling the substrate temperature that is capable of transmitting infrared radiant light having a longer wavelength than the second window plate, the first window plate may be used. The vacuum processing device according to item 2.
7 . 上記第 1及び第 2の赤外線輻射温度計は、 それぞ れ同一の赤外領域の波長にて測定を行うようにして成る 請求項 1 もしく は 2記載の真空処理装置。  7. The vacuum processing apparatus according to claim 1 or 2, wherein each of the first and second infrared radiation thermometers is configured to perform measurement at the same infrared wavelength.
8 . 上記温度校正ステージ上の基体を既知の所定温度 に加熱または冷却する手段を、 上記真空処理チャ ンバ外 に配設して成る請求項 1 もし く は 2記載の真空処理装置 < 8. The vacuum processing apparatus according to claim 1 or 2, wherein means for heating or cooling the substrate on the temperature calibration stage to a known predetermined temperature is provided outside the vacuum processing chamber.
9 . 上記温度校正ステージ上の基体を既知の所定温度 に加熱または冷却する手段は、 大気との置換雰囲気内に 存在するようにして成る請求項 1乃至 4何れか記載の真 空処理装置。 9. The vacuum treatment apparatus according to any one of claims 1 to 4, wherein the means for heating or cooling the substrate on the temperature calibration stage to a known predetermined temperature is present in an atmosphere replacing the atmosphere.
10 . 上記温度校正ステージ上の基体の温度を既知の所 定温度に加熱または冷却する手段は、 基体より も熱容量 の大きな部材に前記基体を熱的に接触させる手段をもつ て構成して成る請求項 1乃至 5何れか記載の真空処理装 10. The means for heating or cooling the temperature of the substrate on the temperature calibration stage to a known fixed temperature comprises means for thermally contacting the substrate with a member having a larger heat capacity than the substrate. The vacuum processing apparatus according to any one of Items 1 to 5
11 . 上記基体を基体より も熱容量の大きな部材に熱的 に接触させる手段は、 基体と部材とが接触する空間を真 空に排気する手段を持って構成して成る請求項 6記載の 真空処理装置。 11. The vacuum processing according to claim 6, wherein the means for thermally contacting the base with a member having a larger heat capacity than the base comprises means for exhausting the space where the base and the member are in contact with each other to the air. apparatus.
12 . 上記温度校正ステージ上の基体の温度を既知の所 定温度に加熱または冷却する手段は真空処理チヤ ンバ内 にあり、 基体を基体より も熱容量の大きな部材に熱的に 接触させる手段と、 この基体と部材とが接触する空間に は 5パスカル以上の圧力の気体を封入する手段とを配設 して成る請求項 1乃至 3何れか記載の真空処理装置。 12. The means for heating or cooling the temperature of the substrate on the temperature calibration stage to a known fixed temperature is in the vacuum processing chamber, and means for thermally contacting the substrate with a member having a larger heat capacity than the substrate, 4. The vacuum processing apparatus according to claim 1, wherein a means for enclosing a gas having a pressure of 5 Pascal or more is arranged in a space where the base body and the member are in contact with each other.
13 . 基体温度校正ステージと、 真空処理チャ ンバとの 間に基体温度調整ステージを配設し、 基体の温度調整ス テージには第 3の赤外線輻射温度計を備えて成る請求項 1 もしく は 2記載の真空処理装置。 13. The substrate temperature adjusting stage is provided between the substrate temperature calibrating stage and the vacuum processing chamber, and the substrate temperature adjusting stage is provided with a third infrared radiation thermometer. 2. The vacuum processing device described in 2.
14 . 少な く とも上記真空処理チャ ンバ内の基体が載置 されるステージを、 基体を所定温度に加熱もしく は冷却 する手段の配設された第 1 のステージと、 温度測定用を 行う第 2 のステージとに分割し、 第 1 のステージで基体 の温度設定を行い、 次いで第 2のステージに基体を移動 して温度測定する手段を具備して成る請求項 1乃至 9何 れか記載の真空処理装置。  14 At least the stage on which the substrate in the vacuum processing chamber is placed, the first stage provided with means for heating or cooling the substrate, and the first stage for temperature measurement. 10. The method according to claim 1, further comprising means for dividing the temperature into the second stage, setting the temperature of the substrate on the first stage, and then moving the substrate to the second stage to measure the temperature. Vacuum processing equipment.
15 . 少な く とも上記真空処理チャ ンバ内の基体を加熱 する手段の一つが、 ランプ加熱手段から成る請求項 1乃 至 9何れか記載の真空処理装置。 15. The vacuum processing apparatus according to any one of claims 1 to 9, wherein at least one of the means for heating the substrate in the vacuum processing chamber comprises a lamp heating means.
16 . 少な く とも上記温度校正ステージ上の基体を加熱 もし く は冷却する手段の一方を上記ステージに備えると 共に、 前記基体上面に近接して第 2の加熱もしく は冷却 する手段を配設し、 前記基板を両面から温度制御するよ うに成した請求項 1乃至 9何れか記載の真空処理装置。16.At least one means for heating or cooling the substrate on the temperature calibration stage is provided on the stage and a second heating or cooling means is provided close to the upper surface of the substrate. 10. The vacuum processing apparatus according to claim 1, wherein the temperature of the substrate is controlled from both sides.
17 . 上記真空処理チャ ンバ一内の各々のステージは、 第 2の赤外線輻射温度計の出力から求めた基体の温度か ら真空処理チャ ンバー内の前記所定の設定温度からずれ た分量の温度を調整する温度制御手段を具備して成る請 求項 1乃至 1 2何れか記載の真空処理装置。 17. Each stage in the vacuum processing chamber has a temperature that is deviated from the predetermined set temperature in the vacuum processing chamber from the temperature of the substrate obtained from the output of the second infrared radiation thermometer. 13. The vacuum processing apparatus according to any one of claims 1 to 12 comprising a temperature control means for adjusting.
18 . ステージに載置された基体を既知の設定温度に加 熱または冷却する手段を備えた温度校正ステージと ; こ のステージ上の基体の輻射熱を測定する第 1 の赤外線輻 射温度計と ; 前記第 1 の赤外線輻射温度計の出力から前 記基体の既知の温度に基づいて輻射率を求め、 前記第 1 の赤外線輻射温度計により前記基体の温度を正しく表示 せしめるための赤外線感度補正値を演算する手段と ; 温 度校正ステージとは同一ないしは異なるステージと、 こ の基体を所定の設定温度に加熱または冷却する手段と、 前記基体に真空成膜処理する手段とを備えた真空成膜処 理チャ ンバと ; この真空成膜処理チヤ ンバ内のステージ に置載された前記基体の輻射熱を測定する第 2の赤外線 輻射温度計と ; 前記第 2の赤外線輻射温度計の出力から 前記温度校正ステージで求めた赤外線感度補正値に基づ き真空成膜処理チヤ ンバ内に置かれた基体の真の温度を 算出する手段と ; この第 2 の赤外線輻射温度計の出力か ら求めた基体の温度が、 真空成膜処理チャ ンバ内の前記 所定の設定温度からずれた分量の温度を調整する温度制 御手段と ; 上記各々のチャ ンバ内の基体上に近接して配 設され、 赤外線温度計の測定波長に対して充分に鏡面で ある部材でその主面が構成されたシャ ッタ機構とを具備 して成る成膜装置。 18. A temperature calibration stage equipped with means for heating or cooling the substrate placed on the stage to a known set temperature; a first infrared radiation thermometer for measuring the radiant heat of the substrate on this stage; From the output of the first infrared radiation thermometer, the emissivity is obtained based on the known temperature of the base body, and the infrared sensitivity correction value for correctly displaying the temperature of the base body by the first infrared radiation thermometer is set. Means for calculating; a vacuum film forming process comprising a stage which is the same as or different from the temperature calibration stage, a device for heating or cooling the substrate to a predetermined set temperature, and a device for vacuum film forming treatment on the substrate. A second infrared radiation thermometer for measuring the radiant heat of the substrate placed on the stage in the vacuum film forming chamber; and a temperature calibration from the output of the second infrared radiation thermometer. Based on the infrared sensitivity correction value obtained on the stage, the true temperature of the substrate placed in the vacuum deposition chamber A means for calculating; a temperature control means for adjusting the amount of temperature in which the temperature of the substrate obtained from the output of the second infrared radiation thermometer deviates from the predetermined set temperature in the vacuum film forming chamber. And a shutter mechanism, which is arranged close to the substrate in each of the above chambers and whose main surface is composed of a member that is sufficiently mirror surface for the measurement wavelength of the infrared thermometer. Film forming device.
19 . 上記真空成膜処理チャ ンバをスパッ タ リ ング法に よつて所定条件で薄膜を形成するこ とのできる真空成膜 処理チャ ンバで構成して成る請求項 1 8記載のスパック リ ング成膜装置。  19. The sputtering film forming method according to claim 18, wherein the vacuum film forming processing chamber is composed of a vacuum film forming processing chamber capable of forming a thin film under a predetermined condition by a sputtering method. Membrane device.
20 . 上記真空成膜処理チャ ンバを C V D法によって所 定条件で薄膜を形成するこ とのできる真空成膜処理チヤ ンバで構成して成る請求項 1 8記載の C V D成膜装置。  20. The CVD film forming apparatus according to claim 18, wherein the vacuum film forming processing chamber is composed of a vacuum film forming processing chamber capable of forming a thin film under a predetermined condition by a CVD method.
21 . 上記基体温度校正ステージと、 真空成膜処理チヤ ンバとの間に基体温度調整ステージを配設し、 前記チヤ ンバ内には、 基体の温度調整用ステージとこのステージ に赤外線輻射温度計とを備えて成る請求項 1 8記載の成 膜装。 21. A substrate temperature adjusting stage is provided between the substrate temperature calibrating stage and the vacuum film formation processing chamber. Inside the chamber, a substrate temperature adjusting stage and an infrared radiation thermometer are attached to this stage. The film-forming apparatus according to claim 18, further comprising:
22 . 上記基体温度調整チャ ンバの設定温度を、 基体温 度校正ステージ及び基体への真空成膜処理チヤ ンバより も低温もし く は高温の異なる温度に保持して成る請求項 2 1 記載の成膜装置。  22. The method according to claim 21, wherein the set temperature of the substrate temperature adjusting chamber is maintained at a temperature lower or higher than those of the substrate temperature calibration stage and the vacuum film forming chamber on the substrate. Membrane device.
23 . 上記真空成膜処理チャ ンバがスパッタ リ ング成膜 チャ ンバから成る上記 2 1 もし く は 2 2記載の成膜装置。 23. The film forming apparatus as described in 21 or 22 above, wherein the vacuum film forming chamber is a sputtering film forming chamber.
24 . 成膜処理をするための所定の基体を基体温度校正 ステージに載置し、 基体を所定温度に加熱する工程と、 次いで真空下で所定温度に冷却し、 基体を真空成膜処理 チャ ンバ内のステージに搬送して所定の第 1 の成膜設定 温度に制御して成膜を開始する工程と、 次いで基体温度 を前記第 1 の成膜設定温度より も高い第 2 の設定温度に 制御して所定厚みになるまで成膜する工程と、 成膜終了 後、 前記第 2 の成膜設定温度以下に急冷する工程とを有 して成る請求項 1 8記載の成膜装置による成膜方法。 24. A step of placing a predetermined substrate for film formation processing on a substrate temperature calibration stage and heating the substrate to a predetermined temperature, and then cooling the substrate to a predetermined temperature under vacuum, and vacuum forming the substrate on the substrate. The step of transporting the film to a stage inside to control film formation to a predetermined first film formation set temperature and then starting film formation, and then controlling the substrate temperature to a second set temperature higher than the first film formation set temperature. 19. The film forming method by the film forming apparatus according to claim 18, further comprising a step of forming a film to a predetermined thickness and a step of rapidly cooling the film to a temperature below the second film forming preset temperature after the film forming is completed. ..
25 . 成膜処理をするための所定の基体を基体温度校正 ステージに載置し、 基体を所定温度に加熱する工程と、 次いで基体を基体温度調整ステージに搬送して所定温度 に冷却する工程と、 次いで基体を真空成膜処理チャ ンバ 内のステ—ジに搬送して第 1 の成膜温度にて、 第 1 の成 膜を開始する工程と、 一旦成膜を停止しこの基体を前記 基体温度調整チヤ ンバ内もしく ば他の温度調整チヤ ンバ 中のステージに移し、 前記第 1 の成膜温度より も高い第 2 の設定温度に一定時間保持して膜の結晶粒を増大する 工程と、 基体の温度を前記基体温度調整チャンバ内の第 2 の設定温度より も高い第 3 の成膜温度に制御して所定 膜厚まで成膜を行う第 2の成膜工程と、 この基体を他の 基体温度調整ステージにより、 急冷する工程とを有して 成る請求項 1 6記載の成膜装置による成膜方法。  25. A step of placing a predetermined substrate for film formation processing on a substrate temperature calibration stage and heating the substrate to a predetermined temperature, and then carrying the substrate to a substrate temperature adjusting stage and cooling it to a predetermined temperature. Then, the step of transferring the substrate to the stage in the vacuum film forming chamber to start the first film forming at the first film forming temperature, and once stopping the film forming A step of increasing the crystal grains of the film by moving to a stage in the temperature adjusting chamber or in another temperature adjusting chamber, and maintaining the second set temperature higher than the first film forming temperature for a certain time. A second film forming step of forming a film to a predetermined film thickness by controlling the temperature of the substrate to a third film forming temperature higher than the second set temperature in the substrate temperature adjusting chamber, 17. The film forming method by the film forming apparatus according to claim 16, further comprising a step of rapidly cooling the substrate temperature adjusting stage.
26 . 温度を測定する対象の基体とその基体の温度を測 定しょう とする赤外線輻射温度計と赤外線輻射温度計で 温度の測定を行なう基体の表面とは逆の表面に、 前記赤 外線輻射温度計で測定する光軸とほぼ垂直に、 その測定 する赤外線波長に対して充分な反射率を有する鏡面を設 置し、 上記基体の温度を測定するようにした基体温度の 測定方法。 26. With an infrared radiation thermometer and an infrared radiation thermometer to measure the temperature of the substrate whose temperature is to be measured A mirror surface having a sufficient reflectance for the infrared wavelength to be measured is provided on the surface opposite to the surface of the substrate on which the temperature is measured, substantially perpendicular to the optical axis measured by the infrared radiation thermometer. A method for measuring the temperature of a substrate, wherein the temperature of the substrate is measured.
27 . 加熱処理又は冷却処理を行なう対象の基体とその 基体の温度を測定しょう とする赤外線輻射温度計、 赤外 線輻射温度計とは基体の反対側にある測定波長に於いて 十分に高い反射率を有する鏡面と、 上記処理を行なう加 熱又は冷却手段とを備えた基体温度の制御方法。  27. Infrared radiation thermometer for measuring the temperature of the substrate to be heated or cooled and the temperature of the substrate, and the infrared radiation thermometer has a sufficiently high reflection at the measurement wavelength on the opposite side of the substrate. A method for controlling a substrate temperature, comprising a mirror surface having a refractive index and heating or cooling means for performing the above-mentioned treatment.
28 . 上記加熱又は冷却手段は上記赤外線輻射温度計か らの測定値により基体を所定の温度に制御するものであ ることを特徴とした 2 7項記載の基体温度の制御方法。 28. The method for controlling the substrate temperature according to item 27, wherein the heating or cooling means controls the substrate to a predetermined temperature based on the value measured by the infrared radiation thermometer.
29 . 上記鏡面は必要に応じて基体の反対側の赤外線輻 射温度計の光軸に移動できるものであることを特徴とし た請求項 2 7乃至 2 8項記載の温度制御方法。 29. The temperature control method according to claim 27, wherein the mirror surface can be moved to the optical axis of the infrared radiation thermometer on the opposite side of the substrate, if necessary.
30 , 上記加熱手段は少な く とも第 1 回目と第 2回目の 加熱を行ない、 第 1 回目の加熱後に前記鏡面と赤外線輻 射温度計を用いて基体温度の測定を行なう、 その結果か ら第 2の加熱により 目標の加熱温度が得られるように第 2 の加熱条件を設定する手段を備えたことを特徴とした 請求項 2 7乃至 2 9項記載の基体温度の制御方法。  30.The above heating means performs at least the first and second heating, and after the first heating, the substrate temperature is measured using the mirror surface and the infrared radiation thermometer. The substrate temperature control method according to any one of claims 27 to 29, further comprising means for setting a second heating condition so that a target heating temperature can be obtained by heating the second heating temperature.
31 . 鏡面のおかれる場所には鏡面とは逆に測定波長に て十分に低い反射を有する物体を導入できるようにした こ とを以て特徴とした請求項 2 7乃至 3 0記載の基体温 度の測定方法。 31. The substrate temperature according to claim 27, characterized in that an object having a reflection sufficiently low at the measurement wavelength, contrary to the mirror surface, can be introduced into the place where the mirror surface is placed. How to measure degrees.
PCT/JP1990/001601 1989-12-11 1990-12-10 Device for vacuum treatment and device for and method of film formation using said device WO1991009148A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19904092221 DE4092221T1 (en) 1989-12-11 1990-12-10
KR1019910700879A KR940007608B1 (en) 1989-12-11 1990-12-10 Device for vacuum treatment and device for and method of film formation using said device
DE4092221A DE4092221C2 (en) 1989-12-11 1990-12-10 Vacuum processing equipment and processes
US08/260,321 US6171641B1 (en) 1989-12-11 1994-06-15 Vacuum processing apparatus, and a film deposition apparatus and a film deposition method both using the vacuum processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1/318749 1989-12-11
JP31874989 1989-12-11
JP2225388A JP2923008B2 (en) 1989-12-11 1990-08-29 Film forming method and film forming apparatus
JP2/225388 1990-08-29

Publications (1)

Publication Number Publication Date
WO1991009148A1 true WO1991009148A1 (en) 1991-06-27

Family

ID=27306321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001601 WO1991009148A1 (en) 1989-12-11 1990-12-10 Device for vacuum treatment and device for and method of film formation using said device

Country Status (2)

Country Link
DE (2) DE4092221T1 (en)
WO (1) WO1991009148A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601409B2 (en) 2002-09-05 2009-10-13 Exxonmobil Chemical Patents Inc. Stretch film
CN104750140A (en) * 2013-12-31 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber heating control method and device
WO2016151968A1 (en) * 2015-03-25 2016-09-29 住友化学株式会社 Substrate treatment device and substrate treatment method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562947A (en) * 1994-11-09 1996-10-08 Sony Corporation Method and apparatus for isolating a susceptor heating element from a chemical vapor deposition environment
JP4263761B1 (en) 2008-01-17 2009-05-13 トヨタ自動車株式会社 Depressurized heating apparatus, heating method thereof, and manufacturing method of electronic product
DE102008026002B9 (en) * 2008-05-29 2013-05-16 Von Ardenne Anlagentechnik Gmbh Method for temperature measurement on substrates and vacuum coating system
US8900663B2 (en) 2009-12-28 2014-12-02 Gvd Corporation Methods for coating articles
DE102010009795B4 (en) * 2010-03-01 2014-05-15 Von Ardenne Anlagentechnik Gmbh Method and device for producing metal back contacts for wafer-based solar cells
JP5026549B2 (en) * 2010-04-08 2012-09-12 シャープ株式会社 Heating control system, film forming apparatus including the same, and temperature control method
GB202109051D0 (en) * 2021-06-24 2021-08-11 Lam Res Ag Device for holding a wafer-shaped article

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346486A (en) * 1976-10-08 1978-04-26 Toshiba Corp Evaporating apparatus
JPS5635748B2 (en) * 1974-04-26 1981-08-19
JPS5928627B2 (en) * 1979-12-15 1984-07-14 工業技術院長 Temperature measurement method for vapor phase plating base material
JPS618919A (en) * 1984-06-25 1986-01-16 Nec Corp Temperature detecting method of semiconductor wafer in film-forming apparatus
JPS6113551Y2 (en) * 1981-07-14 1986-04-26
JPS61186473A (en) * 1985-02-12 1986-08-20 Mitsubishi Electric Corp Thin film forming device
JPS62113034A (en) * 1985-11-13 1987-05-23 Kokusai Electric Co Ltd Temperature measuring apparatus for semiconductor during the heating of lamp
JPS6324133A (en) * 1986-07-09 1988-02-01 Sumitomo Electric Ind Ltd Measuring method for surface temperature of base material in plasma
JPS6380408A (en) * 1986-09-22 1988-04-11 セイコーエプソン株式会社 Thin film manufacturing apparatus
JPH01279763A (en) * 1988-04-28 1989-11-10 Konica Corp Vapor growth device
JPH01315134A (en) * 1988-03-25 1989-12-20 Tokyo Electron Ltd Treatment
JPH0268927A (en) * 1988-09-02 1990-03-08 Mitsubishi Electric Corp Semiconductor manufacturing device
JPH02240923A (en) * 1989-03-15 1990-09-25 Hitachi Ltd Method and apparatus for vacuum treatment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813252A (en) * 1956-06-11 1959-05-13 Standard Telephones Cables Ltd Improvements in or relating to vacuum deposition equipment
GB1372753A (en) * 1971-01-11 1974-11-06 Honeywell Inc Apparatus for processing a workpiece with a laser beam
DD254114A3 (en) * 1985-07-30 1988-02-17 Univ Dresden Tech PYROMETRIC MEASURING PROCEDURE
DE3707672A1 (en) * 1987-03-10 1988-09-22 Sitesa Sa EPITAXY SYSTEM
DE4039007A1 (en) * 1989-12-06 1991-06-13 Hitachi Ltd IR temp. measuring appts. - produces IR image for conversion into IR temp. distribution data

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635748B2 (en) * 1974-04-26 1981-08-19
JPS5346486A (en) * 1976-10-08 1978-04-26 Toshiba Corp Evaporating apparatus
JPS5928627B2 (en) * 1979-12-15 1984-07-14 工業技術院長 Temperature measurement method for vapor phase plating base material
JPS6113551Y2 (en) * 1981-07-14 1986-04-26
JPS618919A (en) * 1984-06-25 1986-01-16 Nec Corp Temperature detecting method of semiconductor wafer in film-forming apparatus
JPS61186473A (en) * 1985-02-12 1986-08-20 Mitsubishi Electric Corp Thin film forming device
JPS62113034A (en) * 1985-11-13 1987-05-23 Kokusai Electric Co Ltd Temperature measuring apparatus for semiconductor during the heating of lamp
JPS6324133A (en) * 1986-07-09 1988-02-01 Sumitomo Electric Ind Ltd Measuring method for surface temperature of base material in plasma
JPS6380408A (en) * 1986-09-22 1988-04-11 セイコーエプソン株式会社 Thin film manufacturing apparatus
JPH01315134A (en) * 1988-03-25 1989-12-20 Tokyo Electron Ltd Treatment
JPH01279763A (en) * 1988-04-28 1989-11-10 Konica Corp Vapor growth device
JPH0268927A (en) * 1988-09-02 1990-03-08 Mitsubishi Electric Corp Semiconductor manufacturing device
JPH02240923A (en) * 1989-03-15 1990-09-25 Hitachi Ltd Method and apparatus for vacuum treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601409B2 (en) 2002-09-05 2009-10-13 Exxonmobil Chemical Patents Inc. Stretch film
CN104750140A (en) * 2013-12-31 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber heating control method and device
CN104750140B (en) * 2013-12-31 2017-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber method for heating and controlling and device
WO2016151968A1 (en) * 2015-03-25 2016-09-29 住友化学株式会社 Substrate treatment device and substrate treatment method
US10294566B2 (en) 2015-03-25 2019-05-21 Sumitomo Chemical Company, Limited Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
DE4092221C2 (en) 1994-04-21
DE4092221T1 (en) 1992-01-30

Similar Documents

Publication Publication Date Title
JP2923008B2 (en) Film forming method and film forming apparatus
US5815396A (en) Vacuum processing device and film forming device and method using same
US7833348B2 (en) Temperature control method of epitaxial growth apparatus
US5352248A (en) Pyrometer temperature measurement of plural wafers stacked on a processing chamber
US5782974A (en) Method of depositing a thin film using an optical pyrometer
EP1163499B1 (en) Determination of the substrate temperature by measuring the thickness of a copper oxide layer
US5098198A (en) Wafer heating and monitor module and method of operation
JP2002506988A (en) Substrate temperature measuring method and substrate temperature measuring device
WO1991009148A1 (en) Device for vacuum treatment and device for and method of film formation using said device
JP3334162B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
US6924231B2 (en) Single wafer processing method and system for processing semiconductor
JP4056148B2 (en) Temperature measurement method using a radiation thermometer
JPH04247870A (en) Vacuum treating device and film forming method using this device, and film formation
JP3244463B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
JPH07150353A (en) Vacuum treating device and film forming device and film forming method using the same
JP3244462B2 (en) Film formation method
JPH07150352A (en) Film formation
JPH05217930A (en) Wafer heating apparatus
JPH0561574B2 (en)
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
WO2021106597A1 (en) Substrate processing device and substrate processing method
KR100629015B1 (en) Method and device for calibrating measurements of temperatures independent of emissivity
US20220384206A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
EP0452777A2 (en) Wafer heating and monitoring system and method of operation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

RET De translation (de og part 6b)

Ref document number: 4092221

Country of ref document: DE

Date of ref document: 19920130

WWE Wipo information: entry into national phase

Ref document number: 4092221

Country of ref document: DE