WO1991000906A1 - Chimeric and transgenic animals capable of producing human antibodies - Google Patents

Chimeric and transgenic animals capable of producing human antibodies Download PDF

Info

Publication number
WO1991000906A1
WO1991000906A1 PCT/US1990/003894 US9003894W WO9100906A1 WO 1991000906 A1 WO1991000906 A1 WO 1991000906A1 US 9003894 W US9003894 W US 9003894W WO 9100906 A1 WO9100906 A1 WO 9100906A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal
human
immunoglobulin
fragment
exogenous
Prior art date
Application number
PCT/US1990/003894
Other languages
French (fr)
Inventor
Clive Wood
Randal J. Kaufman
Federick W. Alt
Original Assignee
Genetics Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetics Institute, Inc. filed Critical Genetics Institute, Inc.
Publication of WO1991000906A1 publication Critical patent/WO1991000906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/462Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates generally to immunoglobulin rearrangement in chimeric and transgenic animals, and more specifically to a mouse containing in its germline, and capable of transmitting to its progeny, the ability to generate immunoglobulins characterized by the presence of human heavy chains.
  • Immunoglobulins are the proteins which form antibodies.
  • the basic unit of an immunoglobulin (Ig) molecule is a complex of two identical heavy (H) and two identical light (L) polypeptide chains. Both types of chains contain a region of variable a ino acid seguence at the amino terminal end (V region) in which reside the primary determinants of antigen binding specificity. Each chain also has a region of constant amino acid sequence (C region) comprising the remainder of the chain, in which reside the primary determinants of the effector functions of the antibody, such as complement fixation and antibody-dependent cellular cytotoxicity.
  • variable region of heavy and light chains can be further subdivided into regions of relatively conserved amino acid sequence, framework regions, and regions of highly variable amino acid sequence, hypervariable regions or complementarity determining region ⁇ (CDRs) .
  • CDRs complementarity determining region ⁇
  • variable regions of both the heavy and light chain genes are assembled from component gene segments.
  • the heavy chain variable region gene is assembled from three different elements, variable (V H ) , diversity (D) , and joining (J H ) segments. Families of these segments are encoded in separate clusters along the chromosome. Formation of a functional heavy chain variable region gene involves both joining of a D segment to a J H segment and joining of a V H segment to the pre ⁇ existing DJ K complex to form the complete V H DJ H heavy chain variable region gene.
  • V L variable gene segment
  • J L joining segment
  • kb variable region -several kilobases
  • Human or partially human monoclonal antibodies have been obtained by several methods which have proven less than satisfactory for a variety of reasons.
  • the production of mouse/human hybridomas has been limited because such lines are unstable genetically and progressively lose human chromosomes. Epstein Barr Virus transformed human B lymphocytes tend to produce small quantities of Ig and are unstable.
  • the production of human/human hybridomas has been very limited, due to the lack of a.suitable fusion partner, the lack of sufficient numbers of human B-cells immunized against a desired antigen, poorly defined fusion protocols, and poorly defined culture conditions to support hybrid survival and antibody production.
  • such cells predominantly produce antibodies of only the IgM isotype, which is not appropriate for many clinical uses.
  • hybridomas Another serious limitation with human hybridomas is the difficulty of growing such cell lines in large quantities, jln vitro culture of such hybridomas is very costly and produces limited quantities of Ig compared to the large amounts that can be obtained from harvesting monoclonal antibodies from murine hybridomas.
  • heterologous genes from heterologous species organisms in an animal capable of expressing and regulating the foreign gene construct has been the subject of much recent research.
  • U. S. patent 4,736,866 describes a transgenic animal carrying a recombinant activated oncogene sequence; and J. Van Brunt, Biotechnology. (10):1149 (October 1988).
  • Buccini et al, Nature, 326:409 (1987) and Goodhardt et al, Proc. Natl. Acad. Sci.. USA, 84 . :4229 (1987) refer to the rearrangement of unarranged chicken and rabbit immunoglobulin gene segments in mice.
  • a non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing exogenous immunoglobulin (Ig) heavy chain gene segments.
  • the animal of the invention is capable of rearranging these segments and producing antibodies characterized by the presence of rearranged exogenous Ig heavy chains . ..
  • the animal of the invention is also capable of producing an antibody also characterized by the presence of light Ig chains endogenous to said animal.
  • the animal of the invention may produce antibody characterized by the presence of exogenous Ig light chains.
  • the exogenous gene segments are of human origin.
  • Another aspect of this invention is an unrearranged DNA fragment for use in producing the animal of the invention.
  • This DNA fragment is composed of at least the following elements: at least one exogenous variable Ig gene segment, at least one exogenous D Ig gene segment, at least one exogenous J Ig gene segment, and at least one ⁇ heavy chain constant Ig region.
  • the ⁇ constant region is of exogenous or endogenous species origin,, and is required to mediate allelic exclusion in the animal, of this invention.
  • the unrearranged DNA fragment also contains an exogenous gamma constant Ig region.
  • the unrearranged DNA fragment of the invention may also contain a switch region of exogenous or endogenous species origin, and exogenous or endogenous species heavy chain enhancers. More preferably the exogenous segments of this unrearranged fragment are of human origin.
  • Still another aspect of the present invention is a method for producing the non-human eukaryotic animal of the present invention comprising introducing into the germline of said animal an unrearranged DNA fragment of this invention.
  • a further aspect of the present invention is a method for producing the non-human eukaryotic animal of the invention comprising transfecting into a stem cell of the animal a heterologous DNA sequence carrying unrearranged gene segments of exogenous, preferably human, Ig heavy chains. This method may permit introduction into the animal of human DNA of greater than 50kb, if desired.
  • Yet another aspect of the invention is a hybridoma cell line and a monoclonal antibody secreted therefrom characterized by the presence of human Ig heavy chains.
  • the monoclonal antibody thus produced may further be characterized by the presence of either human or endogenous animal light chains.
  • An additional aspect of the invention is a method for producing the hybridoma cell line by use of a cell of an animal of the present invention and a method for obtaining a desired monoclonal antibody of the invention.
  • Fig. 1 i-s a graphical illustration of a murine unrearranged DNA fragment according to the present invention.
  • Fig. 2 is a graphical illustration of a more complex human unrearranged DNA fragment according to the present invention.
  • the present invention provides an animal developed by recombinant genetic engineering techniques which is capable of rearranging in a lymphoid specific manner introduced unrearranged exogenous, preferably human, immunoglobulin genes.
  • the animal is thereby capable of producing in vivo resulting B cells which express and use the exogenous Ig polypeptides in a manner identical to the use of its own endogenous Igs produced in the animal's normal B cells.
  • the animal of this invention produces in vivo a diversity of mature B lymphocytes, characterized by the presence of exogenous Ig heavy chains.
  • the animal is capable of using the rearranged products of the unrearranged DNA fragment, e.g., a functionally rearranged exogenous heavy chain, in an immune response.
  • a further characteristic of the animal is an ability to transmit this ability to at least some of its progeny.
  • the animals of this invention are designed by the integration into their germlines of DNA carrying unrearranged or only partially rearranged exogenous Ig gene segments.
  • the unrearranged DNA fragment carrying the gene segments may be microinjected into the fertilized egg of an animal to develop a transgenic animal or transfected into a stem cell which is used to repopulate an embryo to develop a chimeric animal.
  • the human DNA fragments are introduced into a cell of the animal in a manner providing that the introduced DNA is stably maintained in a proportion of those cells and transmitted in the germline of the resulting animal.
  • an unrearranged gene fragment of the invention is constructed to carry at a minimum DNA sequences encoding at least one exogenous variable Ig gene segment, at least one D Ig gene segment, at least one exogenous J Ig gene segment, and at least one ⁇ constant Ig region.
  • the unrearranged gene fragment further contains an exogenous gamma constant Ig region.
  • the ⁇ region may be of exogenous origin or from the animal itself, but is preferably human. This ⁇ region is required to signal appropriate allelic exclusion in the resulting animal.
  • the D gene may be of exogenous origin, e.g., human, or from the animal itself. Additionally a synthetic D gene of about 10 to 20 amino acids in length containing flanking sequences from an animal may be employed in the construct of the invention.
  • the unrearranged gene fragment of this invention optionally contains multiple copies of the unrearranged or partially rearranged human heavy or light chain variable and constant region gene segments.
  • Human gene segments for use in constructing the unrearranged DNA fragment for insertion into a cell of the selected animal of this invention include a D gene which is a short chemically synthesizable fragment.
  • D gene region is described in J. V. Ravetch et al, Cell, 22:583 (1981).
  • Other useful D regions for the unrearranged DNA fragment of the present invention are described in Y. Ichihara et al, Eur. J. Immunol. , 18:649 (1988) . It is expected that other D regions will eventually be isolated and their sequences determined. These D regions may also form useful components of the unrearranged DNA fragment of the present invention in a manner analogous to the use of the above exemplary D gene segments.
  • the D gene need not be of human origin.
  • the flanking regions of the D gene may be of one species' origin, which the coding sequence of the D gene may be from another species.
  • a synthetic D gene may be made by conventional techniques.
  • Presently preferred for use in the construct are any human D or any murine D gene, a variety of which are known in the art, as identified above.
  • the J gene regions of the human Ig DNA sequences for use in an unrearranged DNA fragment of the present invention are published. See, e.g. Ravetch et al, cited above; and P. A. Hieter et al, J. Biol. Chem.. 257:1516 (1982).
  • the J gene region described by Ravetch, cited above may be obtained requested from the author, based on its publication in the journal, Cell. Additionally, ⁇ and gamma (1 through 4) human gene sequences are published and may be purchased from the Medical Research Council (MRC) in England and employed in the unrearranged DNA fragment. See, e.g., J. W. Ellison et al, Nucl. Acids Res.
  • the constant regions may desirably be constructed by employing -conventional recombinant techniques. See, e.g., T. Maniatis et al, Molecular Cloning (A Laboratory - Manual) , Cold Spring Harbor Laboratory (1982) and J.
  • Human V gene families I through VI are also published and may be constructed by conventional recombinant techniques for insertion into the unrearranged,DNA fragment of the invention. See, e.g. Berman, J. E. et al, EMBO J. , 2: 27 (1988).
  • the DNA sequences of these genes identified above may be synthesized or obtained by conventional recombinant techniques and employed in the unrearranged DNA fragment construct according to the present invention.
  • One of skill in the art can obtain members of these gene families by employing conventional cross- hybridization techniques using a representative member of each family.
  • the unrearranged DNA fragment's human heavy chain gene segments, V, D, and J, will assemble with animal's own light chains during B lymphocyte maturation to generate antibodies characterized by human heavy chains.
  • unrearranged human light chain gene segments may be employed in another unrearranged DNA fragment to enable the resulting animal to produce a diversity of B lymphocytes with both human heavy and light chains.
  • the two unrearranged DNA fragments bearing the human heavy chain genes and the human light chain gene, respectively, may be injected into the same animal.
  • one animal carrying the first unrearranged DNA fragment may be mated with another animal carrying the second unrearranged DNA fragment to produce progeny capable of using both unrearranged DNA fragments.
  • an animal of this invention may be capable of generating antibodies containing human heavy chains and homologous light chains or antibodies characterized by the presence of both human heavy and light chains.
  • the unrearranged DNA fragment of the invention may also contain appropriate transcriptional enhancer and promoter elements.
  • the animal of the present invention will contain human or homologous animal, e.g., murine, constant region "switch" regions proximal to each constant region.
  • the switch regions may also be employed in the design of the unrearranged DNA fragment which is integrated in the animal.
  • the switch region is located immediately upstream of the coding regions of the Ig constant genes in the unrearranged DNA fragment.
  • Such murine switch regions for use in the unrearranged DNA fragment are also published and may be sequenced or obtained by recombinant technology by one of skill in the art. See, e.g. T.
  • Ig heavy chain enhancer sequences useful in the unrearranged DNA fragment of the invention are described in J. Banerji et al, Cell, 3_3_:729 (1983); S. D. Gillies et al, Cell, 3_3:717 (1983); P. Augereau et al, EMBO J.. 5_(8):1791 (1986); and S. Pettersson et al, Nature, 344:165 (1990) and may be obtained by analogous methods.
  • the constructed unrearranged DNA fragment may contain human DNA sequences as well as appropriate sequences from other non-human sources, e.g., the animal itself.
  • other human heavy and light chain gene segments or other non-human sequences such as the switch regions, suitable promoters or enhancers, when their sequences are known, will also be useful to form unrearranged DNA fragments according to the teachings of the present invention and may be used in analogous manner to the exemplary sequences described herein.
  • the gene segments useful in the unrearranged DNA fragments may be obtained by preparing lambda phage genomic and cDNA libraries and identifying specific Ig genes according to known techniques. See, T. Maniatis et al and Sambrook et al, cited above.
  • the unrearranged DNA fragment of this invention may vary considerably in size and is preferably approximately 25 to 50 kb in length for ease of manipulation in cosmids. Larger DNA fragments of human origin may be used for construction of a chimeric animal or transgenic animal and will be propagated in yeast artificial chromosome vectors (YACS) .
  • YACS yeast artificial chromosome vectors
  • animals of the invention may be produced alternatively by isolating a contiguous human DNA fragment carrying naturally unrearranged DNA sequences encoding multiple human Ig heavy chain segments, e.g., V H , D and J H .
  • V H , D and J H multiple human Ig heavy chain segments
  • These naturally unrearranged fragments may be considerably larger in size than the ⁇ ni-jearranged DNA fragment constructs described above and may require propagation in YACS vectors.
  • An example of such a contiguous DNA fragment that could be isolated, in this way is described by Berman, J. E. et al, EMBQ J. , 2:727 (1988). This fragment is of 85-100 kb containing a human V gene segment, multiple human D segments, and the complete human J H - C ⁇ region.
  • the constructed unrearranged DNA fragments may be propagated in conventional plasmids or cosmids known to those of skill in the art.
  • conventional vectors useful for transgene replication are the cosmid vectors p E15 or pWE16, supplied commercially by Stratagene, La Jolla, California.
  • the larger chromosomal DNA sequences may be propagated in conventional yeast artificial chromosome vectors in yeast as described in D. T. Burke, et al, Science, 236:806 (1987).
  • the animal of the invention is developed by introducing into a cell of the animal this human DNA. This introduction is performed so that the introduced DNA is stably maintained and transmitted in the germline of the animal.
  • Expression of functional Ig genes depends on an accurate rearrangement of DNA in the cells of the animal to bring the several gene segments e.g. variable, diversity, and joining for the heavy chain and variable and joining for the light chain, into juxtaposition.
  • the mechanism of allelic exclusion operates to prevent further rearrangement in a second chromosome once a complete functional unit is achieved in one chromosome.
  • the unrearranged or partially rearranged gene segments in the fragment allow for maximum diversity to be generated in the animal through the use of alternative V H , D and J H genes, and the generation of junctional diversity. Additionally the utilization of unrearranged genes is expected to lead to a more physiological response than programming an animal with completely assembled Ig genes.
  • Transgenic animals can be produced by several standard procedures, the most common being microinjection of the cloned unrearranged DNA fragment into one of the pronuclei of a fertilized egg according to the procedure described in R. Brinster et al, PNAS USA, j32.:4438 (1985). See also, Cqnstantini et al, J. Cell. Phvsiol.. Suppl.:219-226 (1982) ; E. Robertson et al, Nature. 323:445 (1986) ; M. R. Kuehn et al, Nature, .32_6:295 (1987); M. Hooper et al, Nature, 326:292 (1987); and B.
  • the microinjected embryos are developed to term in the uterus of a pseudo pregnant animal. As many as 25% of the resulting progeny can contain the injected unrearranged DNA fragment.
  • This procedure introduces the cloned human Ig genes into every cell of the resulting transgenic animal. Such introduced Ig genes are expressed almost exclusively in the same tissues in which the homologous endogenous genes are expressed.
  • the animals containing the unrearranged DNA fragments generally contain the foreign DNA stably integrated in all cells. This DNA is thereafter propagated in the germline.
  • a naturally unrearranged human DNA fragment as described above, can be introduced into isolated embryonal stem cells of the animal to create chimeric animals.
  • Cells which have integrated the human DNA are grown in culture, and can be used to repopulate animal embryos. Such cells could be selected for those bearing the human DNA by the polymerase chain reaction, with appropriate primers [See, e.g., R. K. Saiki, et al, Science, 239:487 (1988).
  • a drug resistance gene e.g., neo, may be linked to the introduced DNA and the cells selected for growth in the presence of the drug.
  • the resulting chimeric animal contains a population of cells, some of which descend from the altered pluripotent stem cell which carry the human DNA.
  • transgenic animal can then be derived from such a chimeric animal by breeding.
  • Such techniques for obtaining chimeric and transgenic animals are described in K. R. Thomas et al, Cell, 5.1:503 (1987); E. Robertson et al, Nature, 323:445 (1986); M. Hooper et al, Nature, 326:292 (1987) and M. R. Kuehn et al, Nature, 326:295 (1987) .
  • the resulting animal of the invention is thus a chimeric or transgenic non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing human immunoglobulin gene segments.
  • the animal of the invention is capable of rearranging the human Ig gene segments to form human or partially human antibodies characterized by human heavy chains, which can be used in an immune response to an exogenous antigen.
  • the invention provides a genetically engineered chimeric or transgenic animal capable of producing a Adversity of antibodies characterized by the presence of human heavy chains.
  • a chimeric animal is an animal which derives a specific subset of its cells from a single particular pluripotent stem cell which is introduced into the embryo of a normal animal. That stem cell and its progeny can be distinguished from other cells of the resulting animal, for example, by containing specific DNA sequences which were present in the introduced stem cell and not in the other stem cells that eventually develop to produce the animal.
  • a chimeric animal according to this invention will have a population of cells that contain the heterologous DNA fragment containing unrearranged or partially unrearranged sequences for the heterologous Ig heavy chain genes and a population of cells which do not contain the introduced DNA.
  • the original chimeric animal will have only a certain percentage of its progeny bearing and expressing the foreign DNA.
  • Selective breeding of chimeric animals according to techniques known to one of skill in the art can eventually produce a transgenic animal.
  • a transgenic animal is an animal that carries specifically introduced heterologous DNA, such as an unrearranged DNA fragment of this invention, integrated into its genome so that the introduced sequence is present in every cell of the animal. A transgenic animal is therefore able to transmit the heterologous DNA sequence to some or all of its progeny.
  • the original transgenic animal is heterozygous with respect to the foreign DNA, only some of its progeny will inherit the foreign DNA-from it. If the original heterozygous transgenic animal is mated with a normal animal, the progeny will either be heterozygous or non-transgenic. If the transgenic animal is mated with another heterozygous transgenic animal, some of the progeny will be heterozygous, some will not inherit the foreign DNA at all, and some will be homozygous. The homozygous transgenic animal when mated with other homozygous transgenic animals will always produce homozygous transgenic animals carrying the foreign DNA.
  • all animals whether chimeric, or homozygous transgenic or heterozygous.transgenic for the human DNA, will express some level of antibody characterized by the presence of human Ig heavy chains. All such animals capable of producing antibody characterized by the presence of human Ig heavy chains at any level are encompassed by the present invention.
  • any non-human eukaryotic animal may be employed in the present invention, preferably the animals will be conventionally used laboratory animals, such as rodents. More particularly, the animals of the invention are anticipated to be laboratory strains of mice. Any animal carrying the unrearranged DNA fragment of the invention may generate a mixture of its homologous antibodies as well as antibodies characterized by human Ig heavy chains. Natural antigen-independent antibody developmental processes cause the animal to produce mature B lymphocytes to circulate in the transgenic or chimeric animal.
  • the animal's serum or tissue may be examined using commercially available anti-human Ig antisera in an enzyme-linked immunosorbent assay (ELISA) [See, e.g., Voller A. et al, "The Enzyme Linked Immunosorbent Assay", Dynatech Europe, Under House, Guernsey UK (1979) and Bos, E. S. et al, J. Immunoassay, 2.:187 ' (1981) ] .
  • ELISA enzyme-linked immunosorbent assay
  • the tail DNA is prepared and probed in a Southern blot by using a portion of the unrearranged DNA fragment as a probe.
  • the spleen of the animal is removed by conventional splenectomy (spleen cells contain predominantly B lymphocytes) and the tissue examined on a Southern blot for hybridization and rearrangement.
  • An alternative method of detecting appropriate Ig rearrangement is to prepare RNA from central (fetal liver and bone marrow) and peripheral (spleen) lymphoid organs and assay for expression of the rearranged DNA in the fragment via Northern blot analyses with probes specific for human V H and C regions.
  • strains of transgenic or chimeric animals containing different human Ig genes are mated, by standard breeding techniques, and progeny selected that contain multiple different human Ig transgenes. Such progeny are identified by the procedures described above.
  • Hybridoma cell lines secreting monoclonal antibodies directed to a particular antigenic epitope may be developed from the chimeric or transgenic animals of the present invention.
  • the animal is immunized with a selected antigen, for example, a tumor antigen (to generate an anti-tumor antibody), an antibody to an infectious agent, e g., a bacterium or ** •mvirus, e.g., HIV, or other antigenic substance of choice.
  • the mature B lymphocytes in the animals of the invention then generate a specific antibody response to the antigen.
  • Such an antibody response would include heavy chains expressed from the foreign DNA fragments, now rearranged.
  • the unrearranged DNA fragments in the animals have functionally rearranged to produce a human Ig heavy chain and/or Ig light chain, during the pre-B cell stage, the remainder of the differentiation of the B cells is normal.
  • Spleen B cells are isolated from the animals after primary or secondary immunization. Traditional Kohler and Milstein techniques are employed and the splenic B lymphocytes fused with a selected myeloma cell line.
  • hybridoma cell line which when cultured in appropriate culture medium and under suitable conditions known to those of skill in the art secretes a selected monoclonal antibody.
  • the development of a hybridoma cell line according to this invention is not limited to the selection of specific myeloma cell lines or antigens. These hybridoma cell lines are screened by standard techniques for the production of anti-specific antigen antibodies. Hybridomas which use the transgenic heavy chain genes to produce antibody are identifiable by use of a transgene specific probe. Exemplary probes are antisera against the human Ig constant regions.
  • the transgene construct may also incorporate a
  • DHFR or other selectable and/or amplifiable marker.
  • This marker gene may be linked with an independent promoter element, such as DHFR cDNA linked to an SV40 promoter and polyadenylation sequences.
  • DHRF cDNA may be placed immediately downstream of an encephalomyelocarditis virus or polio virus leader 26 sequence without an independent promoter element [See, e.g., J. Pelletier et al, Nature, 334:320 (1988); S. K. Jang et al, J. Virol. , .63..-1651 (1989)].
  • This latter structure may be placed immediately downstream of the coding sequence of the secreted exon terminus for the heavy chain constant region, upstream of necessary polyA addition sequences. This ensures the presence and expression of the DHFR message that is expected in,resulting hybridomas expressing the Ig transgene. If the structure is attached in this manner to the gamma constant region in a construct similar to that of Example 2 with ⁇ and gamma constant regions, selection for expresion of DHFR by conventional means would allow selection of cells that have class switched from transgene ⁇ to gamma expression. In either strategy, the presence of the marker gene would allow selection for the maintenance of the chromosome bearing the transgene and may amplify transgene sequences.
  • Monoclonal antibodies characterized by the presence of human Ig heavy chains have great potential therapeutic use in the treatment of a variety of human disorders amenable to antibody treatment.
  • the presence of the human heavy chains in these antibodies are likely to be considerably less provocative of an anaphylactic response in a human patient than antibodies characterized by the presence of non-human heavy chains.
  • Monoclonal antibodies have immense potential for use as prophylactic, diagnostic, and therapeutic agents in the treatment of various types of human ailments. Potential or actual applications of these reagents include the provision of passive immunity against various microorganisms and viruses when injected into human patients.
  • these antibodies may be employed in the neutralization of viruses, parasites, and bacteria, for example, bacterial toxins or snake venoms.
  • the antibodies may also be used to neutralize pharmaceutical drugs with low toxicity thresholds, such as digoxin, or in treating drug overdoses. Additionally such antibodies may neutralize B lineage cells producing autoimmune antibodies or T lineage cells producing cell- mediated self-destructive responses. Among other conditions which can be neutralized by use of these antibodies are allergic responses. Significantly, the neutralization of tumor cells is another important area of therapy for the antibodies of this invention. These antibodies may also be employed in mediating normal antibody functions.
  • An unrearranged DNA fragment construct according to this invention is called pV ⁇ [See Fig. 1A] . It contains the murine germline V 186 . 2 segment [Bothwell, A.L.M. et al, Cell. 2_4:625 (1981)], which is known to be used in the antibody response to 4-hydroxy-3-nitrophenyl (NP) .
  • a panel of hybridomas are generated from the transgenic mice containing this construct, immunized with the NP-hapten conjugated to keyhole limpet hemocyanin.
  • This V segment is upstream of a D Q52 -J H 2 rearrangement / with unrearranged J H 3 and J H 4 segments and the heavy chain enhancer downstream.
  • This D Q52 -J H 2 rearrangement is generated by recombination of these sequences after transfection into the Abelson murine leukemia virus-transformed pre-B cell line, 38B9 [Blackwell, T.K. and Alt, F. W. , Cell. 37:105 (1984)].
  • the nucleotide sequence of this DJ H join, called 112-2 has been determined [Blackwell, T. K. et al, Nature, 324:585 (1986].
  • the "spacer" between the 3' end of the V 186 has been determined [Blackwell, T. K. et al, Nature, 324:585 (1986].
  • the D JH 2 segment is comprised of approximately 3.5 kb of sequence derived from the V 186 .
  • Downstream of the heavy chain enhancer is the coding sequences for the murine ⁇ constant region, derived from a genomic clone, called p ⁇ 5 [Alt, F. . et al, Cell. 22:381 (1981)].
  • This clone contains an approximately 10.5 kb Eco RI fragment bearing the ⁇ coding region. The entire Eco RI fragment is incorporated into pV ⁇ .
  • This construct is designed with the intention of excising the V 186 . 2 -DJ H - ⁇ region on a single Not I fragment of approximately 22 kb, that can be purified for microinjection.
  • a DNA fragment construct contains no vector DNA that could potentially interfere with the rearrangement or expression of the immunoglobulin gene.
  • the cos id construct, pV ⁇ is prepared as follows: i) The 10.5 kb genomic ⁇ fragment is cloned into a derivative of pSP65, called pSP65N, having a unique Not I site. Another plasmid for this use is the Bluescript plasmid [Stratagene, La Jolla, CA] .
  • Plasmid pSP65N is prepared from pSP65 [Promega Biotec, Madison, WI] by destroying the unique Hindlll site, and replacing it with a unique Not I site using synthetic oligodeoxy ribonucleotides.
  • the genomic ⁇ fragment is an Eco RI fragment, and therefore, can be cloned into Eco RI- digested pSP65N.
  • appropriate restriction enzymes that cleave within the ⁇ sequence such as Bgl II and Xho I, a clone can be selected that has the 3' end of the fragment. This plasmid is called pSP65N ⁇ .
  • V 186.2 and D Jf) 2 segments are on Eco RI fragments of approximately 7 kb and 4 kb, respectively.
  • the Eco RI fragment bearing V 186.2 is cloned into the Eco RI site of pSP65N, and a clone selected that has the Not I site of the plasmid at the 5' end of the V 186 . 2 coding region.
  • the Eco RI site proximal to the Not I site is destroyed, by carrying out a partial Eco RI digestion, purifying the single cut DNA from a low melt agarose gel, digesting with T4 DNA polymerase in the presence of all of the four different deoxynucleoside triphosphates, and religating.
  • pSP65NV is digested with Eco RI, and the Eco RI fragment bearing the DJ H 2 segment is ligated into this site.
  • a resultant clone is selected that has the V and DJ H 2 segments in the correct orientation.
  • Such a clone has a Xho I site immediately upstream of the DJ H 2, and 2.4 kb from the 3' Eco RI site.
  • the internal Eco RI site of this clone is destroyed, by a similar procedure to that used in (ii) above.
  • pSP65NVDJ has a Not I-Eco RI fragment of approximately 11 kb.
  • pV ⁇ is constructed by ligating the 11 kb Not I-Eco RI fragment of pSP65NVDJ with the 10.5 kb Eco RI-Not I ⁇ fragment generated by complete Not I - partial Eco RI digest of pSP65N ⁇ , in the presence of a Not I - digested cosmid vector.
  • a derivative of the cosmid vector p E15 [Stratagene, La Jolla] is used in the construction of this unrearranged DNA fragment construct in which the SV40 promoter-neo gene cassette has been replaced by a mutant dihydrofolate reductase (DHFR) gene.
  • DHFR dihydrofolate reductase
  • This gene is useful as a dominant selectable marker.
  • This gene is incorporated into the DNA construct flanking the Ig gene segments, and is used for co-amplifying and increasing the expression of the rearranged DNA in resultant hybridomas from the transgenic animal.
  • An example of the use of a mutant DHFR gene to amplify the expression of linked DNA sequences is provided by H. Dora et al, J. Immunol., 139:4232 (1987).
  • This ligation is carried out under standard conditions for cosmid ligations.
  • the ligation products are incubated with jLn vitro bacteriophage lambda packaging extracts, and then used to infect __)___ coli HB101.
  • the resultant colonies are screened by restriction enzyme digestion analysis, and in situ hybridization to the different fragments that make up the desired construct.
  • Another unrearranged DNA fragment construct according to this invention comprises an unrearranged human V H gene segment, the human J H locus with a single upstream, unrearranged D segment, the murine ⁇ gene including its upstream ⁇ switch region, the murine gamma 2b switch region, and the human gamma 1 coding region.
  • the murine ⁇ may be changed for the human ⁇ region, since both regions have been found to signal allelic exclusion in transgenic mouse models.
  • Human switch regions may also be substituted for switch regions of murine origin, i) The human 1-9II V H gene segment of the V H 4 family described in Berman, J. E. et al, EMBO J.
  • J H fragment also includes one unrearranged D segment [J. V. Ravetch et al, Cell, 22:583 (1981)].
  • a clone, called pSP65NHVJ, is selected in which the J H locus is in the correct orientation to the V H segment, placing the D segment between the V H and J H segments.
  • pSP65NHVJ The murine germline ⁇ gene found on plasmid p ⁇ [Grosschedl et al, Cell, .38.:647 (1984)], is excised therefrom on an approximately 10.5 kb Eco Rl-Xho I fragment. This fragment is cloned into the Bluescript plasmid digested with Eco RI and Xho I. The resulting clone is then digested with Xho I, which cleaves in the vector polylinker.
  • the cleaved DNA is treated with T4 DNA polymerase in the presence of all four deoxynucleoside triphosphates, and then ligated with synthetic DNA linkers containing an Sfi I site.
  • the DNA is then digested with Sfi I and religated.
  • the resulting plasmid, p ⁇ Sfi I contains an approximately 10.5 kb genomic fragment, with a unique Eco RI site at the 5' end, and a unique Sfi I site at the 3' end.
  • the murine gamma 2b switch region is excised from the genomic clone SL1 in a bacteriophage lambda vector, on an Eco RI-Hindlll fragment of approximately 4.4 kb [See, e.g., Stanton and Marcu, Nucl. Acids Res. , JL0 . :5993 (1982)].
  • This DNA is cloned into the Eco RI and flindlll sites of the Bluescript plasmid.
  • the 5* vector Not I site is then destroyed, and replaced with the same synthetic Sfi I linkers, as described in (ii) .
  • the 3' vector Sal I site is destroyed, and synthetic Not I linkers are used to create a new Not I site.
  • the resulting clone is called pBS gamma 2b.
  • the human gamma l gene is excised from the clone HG3 on a Hindlll fragment [Ellison, J. . et al, Nucleic Acids Res.. 10:4071 (1982)]. This Hindlll fragment is cloned into the Hindlll site of pBS gamma 2b.
  • a recombinant clone, called pBS gamma 1 is selected that has the gamma 1 gene in the correct orientation, with respect to the gamma 2b switch region.
  • the same or similar gamma 1 fragments may be obtained from other genomic human gamma 1 clones, if desired.
  • the following fragments are then prepared: (1) a Not I-partial Eco RI V H -D-J H fragment of pSP65NHVJ (2 kb) ; (2) an Eco Rl-Sfi I ⁇ fragment of p ⁇ Sfi I (10.5 kb) ; and (3) a Sfi I-Not I Sgamma 2b-human gamma 1 fragment of pBS gamma 1.
  • These fragments are then ligated with a Not I digested cosmid vector, under standard cosmid ligation conditions, as in Example 1.
  • Clones are identified that contain a V-D-J H - ⁇ -S gamma2b-gamma 1 unrearranged DNA fragment construct. Such a construct is excised from the clone by Not I digestion, and purified for microinjection.
  • Example 3 Production of a Transgenic Mouse
  • the unrearranged DNA fragment constructs described in Examples 1 and 2 are employed to produce transgenic mice, as follows:
  • mice were obtained essentially as described by B. Hogan et al, "Manipulating the Mouse Embryo, A Laboratory Manual", Cold Spring Harbor
  • mice are transgenic, according to the invention.
  • Sail-EcoRI double digestion of the unrearranged DNA fragment construct should generate an llkb fragment containing V186-2 and DJ H 2. Rearrangement of these two gene segments and deletion of the spacer DNA is predicted to generate a Sall-EcoRI fragment of approximately 4kb.
  • tail DNA of 1763 is found to have an unrearranged band of llkb, and the endogenous _T H band of approximately 6.2kb.
  • a 4kb band is found, indicating rearrangement of the DNA fragment in the spleen but not the tail tissue of the animal.
  • the remaining spleen DNA preparation of mouse 1763 is digested with Sail and EcoRI, and the DNA in the 3.5-4.5kb size range is eluted from a preparative agarose gel.
  • This DNA is cloned into the bacteriophage lambda vector, lambda ZAP [Stratagene] .
  • the resulting plaques are screened with a J H probe and picked.
  • the inserts are converted to plas ids using the lambda ZAP excision method. These plasmids are rescreened with the same probe, and positive colonies isolated.
  • the nucleotide sequence of each insert is then determined using synthetic oligonucleotides to prime chain synthesis. Two oligonucleotides are employed, one hybridizing to the 3' end of J H 2, and the other hybridizing to the 5' end of V 186.2 .
  • the nucleotide sequence of four of the DNA fragment rearrangements from spleen DNA are determined from the ATG initiation codon of V 186 . 2 to the 3 ' end of the DJ R 2 segment. From the sequence of the V H -to-DJ H joins of the first four rearranged V region sequences, the DNA fragments are observed to be rearranged with junctional variation occurring. These rearranged V H -DJ dock joins appear indistinguishable from those expected for endogenous gene segments. In two of the four sequences, there is a loss of one or more base pairs from the 3' end of V 186 . 2 . In all four sequences, there is a loss of two or more base- pairs from the 5' sequence of the DJ H segment.
  • N-regions are inserted between the recombined V and DJ H segments of one or three base- pairs.
  • this sample of junction sequences is small, there appears to be a preference for G-C base- pairs in the N-regions.
  • This observation is consistent with the known nucleotide preference of terminal deoxynucleotidyl transferase, which has been implicated in adding the extra bases of the N-region to such junctions. [See, e.g., F. W. Alt et al, Proc. Natl. Acad. Sci. USA, 29:4118 (1982) and Kurosawa et al, J. Exp. Med.. 155:201 (1982)].
  • sequences of the rearranged DNA fragment V regions are identical, outside the region of the V H -to DJ H join, and identical to the known sequences of V 186 _ 2 and J H 2.
  • no somatic mutation occurs in the sequenced rearranged DNA constructs, a result that would be expected from the analysis of rearrangements in total spleen DNA.
  • Numerous modifications and variations in practice of this invention are expected to occur to those skilled in the art. For example, as more human immunoglobulin gene sequences are identified, one of skill in the art can easily apply the teaching of the this invention to construct appropriate transgenes for the preparation of a transgenic animal capable of expressing an antibody characterized by the presence of that particular immunoglobulin. Such modifications therefore are believed to fall within the scope of this invention.

Abstract

This invention provides a chimeric or transgenic non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing exogenous immunoglobulin gene segments. This animal is capable of rearranging these segments and producing antibodies characterized by the presence of rearranged exogenous species Ig heavy chains.

Description

CHIMERIC AND TRANSGENIC ANIMALS CAPABLE OF PRODUCING HUMAN ANTIBODIES
The present invention relates generally to immunoglobulin rearrangement in chimeric and transgenic animals, and more specifically to a mouse containing in its germline, and capable of transmitting to its progeny, the ability to generate immunoglobulins characterized by the presence of human heavy chains.
Background of the Invention
Immunoglobulins are the proteins which form antibodies. The basic unit of an immunoglobulin (Ig) molecule is a complex of two identical heavy (H) and two identical light (L) polypeptide chains. Both types of chains contain a region of variable a ino acid seguence at the amino terminal end (V region) in which reside the primary determinants of antigen binding specificity. Each chain also has a region of constant amino acid sequence (C region) comprising the remainder of the chain, in which reside the primary determinants of the effector functions of the antibody, such as complement fixation and antibody-dependent cellular cytotoxicity. The variable region of heavy and light chains can be further subdivided into regions of relatively conserved amino acid sequence, framework regions, and regions of highly variable amino acid sequence, hypervariable regions or complementarity determining region^ (CDRs) . [See, e.g., S. Tonegawa, Nature, 302;575 (1983) ] ..
The variable regions of both the heavy and light chain genes are assembled from component gene segments. The heavy chain variable region gene is assembled from three different elements, variable (VH) , diversity (D) , and joining (JH) segments. Families of these segments are encoded in separate clusters along the chromosome. Formation of a functional heavy chain variable region gene involves both joining of a D segment to a JH segment and joining of a VH segment to the pre¬ existing DJK complex to form the complete VHDJH heavy chain variable region gene.
Assembly of the variable region of light chains involves the joining of a variable gene segment (VL) to a joining segment (JL) to form a complete VLJL variable region -several kilobases (kb) upstream of the DNA sequences wljich encode the corresponding light chain constant region (CL) . No D segments are involved in light chain variable regions. Through the standard hybridoma technique, numerous monoclonal antibodies which are directed to a single antigenic determinant on an antigen have been developed in laboratory animals for potential human therapeutic use. To date, the majority of monoclonal antibodies used clinically have been of murine origin. Although these reagents have been useful, a serious problem with the use of murine antibodies in humans is the neutralization of the injected antibody by host anti-Ig responses. Such host responses to mouse Ig can result in allergies, serum sickness, or immune- complex diseases. Additionally the host antibodies neutralize injected murine antibodies and rapidly clear them. The use of human immunoglobulin sequences could produce therapeutic antibodies with longer serum half- lives and possibly improved effector functions, compared to murine antibodies.
Human or partially human monoclonal antibodies have been obtained by several methods which have proven less than satisfactory for a variety of reasons. The production of mouse/human hybridomas has been limited because such lines are unstable genetically and progressively lose human chromosomes. Epstein Barr Virus transformed human B lymphocytes tend to produce small quantities of Ig and are unstable. The production of human/human hybridomas has been very limited, due to the lack of a.suitable fusion partner, the lack of sufficient numbers of human B-cells immunized against a desired antigen, poorly defined fusion protocols, and poorly defined culture conditions to support hybrid survival and antibody production. Furthermore, such cells predominantly produce antibodies of only the IgM isotype, which is not appropriate for many clinical uses. Another serious limitation with human hybridomas is the difficulty of growing such cell lines in large quantities, jln vitro culture of such hybridomas is very costly and produces limited quantities of Ig compared to the large amounts that can be obtained from harvesting monoclonal antibodies from murine hybridomas.
The expression of heterologous genes from heterologous species organisms in an animal, e.g., mice, capable of expressing and regulating the foreign gene construct has been the subject of much recent research. U. S. patent 4,736,866 describes a transgenic animal carrying a recombinant activated oncogene sequence; and J. Van Brunt, Biotechnology. (10):1149 (October 1988). Buccini et al, Nature, 326:409 (1987) and Goodhardt et al, Proc. Natl. Acad. Sci.. USA, 84.:4229 (1987) refer to the rearrangement of unarranged chicken and rabbit immunoglobulin gene segments in mice. Although the genes do rearrange, this report does not show whether a diversity of variable regions can be generated at the level of junctional diversity or combinatorial diversity, and used properly in an immune response. Additionally, a human rearranged μ transgene has been shown to mediate allelic exclusion in mice [Nussenzweig et al, Science, 23_6:816 (1987)].
Even more recently, human cells have been injected into immunodeficient scid mice to provide them with the capability of generating substantially human antibodies. However, each mouse capable of generating the human antibodies must be individually made. The ability to make human antibodies is not transmitted in the germline from the originally injected mouse to its progeny. Furthermore the human antibody producing cells generated in this mouse would be 'human' and therefore, presumably the same problems could arise as mentioned above in regard to production of hybridomas and EBV lines.
Thus, there remains a need in the art for an efficient and satisfactory method and compositions for providing a reliable source of human antibodies.
Summary of the Invention
As one aspect of the present invention there is provided a non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing exogenous immunoglobulin (Ig) heavy chain gene segments. The animal of the invention is capable of rearranging these segments and producing antibodies characterized by the presence of rearranged exogenous Ig heavy chains... The animal of the invention is also capable of producing an antibody also characterized by the presence of light Ig chains endogenous to said animal. Alternatively, the animal of the invention may produce antibody characterized by the presence of exogenous Ig light chains. Preferably the exogenous gene segments are of human origin.
Another aspect of this invention is an unrearranged DNA fragment for use in producing the animal of the invention. This DNA fragment is composed of at least the following elements: at least one exogenous variable Ig gene segment, at least one exogenous D Ig gene segment, at least one exogenous J Ig gene segment, and at least one μ heavy chain constant Ig region. The μ constant region is of exogenous or endogenous species origin,, and is required to mediate allelic exclusion in the animal, of this invention.
In a preferred embodiment, the unrearranged DNA fragment also contains an exogenous gamma constant Ig region. The unrearranged DNA fragment of the invention may also contain a switch region of exogenous or endogenous species origin, and exogenous or endogenous species heavy chain enhancers. More preferably the exogenous segments of this unrearranged fragment are of human origin.
Still another aspect of the present invention is a method for producing the non-human eukaryotic animal of the present invention comprising introducing into the germline of said animal an unrearranged DNA fragment of this invention.
A further aspect of the present invention is a method for producing the non-human eukaryotic animal of the invention comprising transfecting into a stem cell of the animal a heterologous DNA sequence carrying unrearranged gene segments of exogenous, preferably human, Ig heavy chains. This method may permit introduction into the animal of human DNA of greater than 50kb, if desired.
Yet another aspect of the invention is a hybridoma cell line and a monoclonal antibody secreted therefrom characterized by the presence of human Ig heavy chains. The monoclonal antibody thus produced may further be characterized by the presence of either human or endogenous animal light chains. An additional aspect of the invention is a method for producing the hybridoma cell line by use of a cell of an animal of the present invention and a method for obtaining a desired monoclonal antibody of the invention. Other aspects and advantages of the present invention will be apparent upon consideration of the following detailed description of preferred embodiments thereof.
Brief Summary of the Drawings
Fig. 1 i-s a graphical illustration of a murine unrearranged DNA fragment according to the present invention; and
Fig. 2 is a graphical illustration of a more complex human unrearranged DNA fragment according to the present invention.
Detailed Description of the Invention
The present invention provides an animal developed by recombinant genetic engineering techniques which is capable of rearranging in a lymphoid specific manner introduced unrearranged exogenous, preferably human, immunoglobulin genes. The animal is thereby capable of producing in vivo resulting B cells which express and use the exogenous Ig polypeptides in a manner identical to the use of its own endogenous Igs produced in the animal's normal B cells. The animal of this invention produces in vivo a diversity of mature B lymphocytes, characterized by the presence of exogenous Ig heavy chains. The animal is capable of using the rearranged products of the unrearranged DNA fragment, e.g., a functionally rearranged exogenous heavy chain, in an immune response. A further characteristic of the animal is an ability to transmit this ability to at least some of its progeny.
The animals of this invention are designed by the integration into their germlines of DNA carrying unrearranged or only partially rearranged exogenous Ig gene segments. The unrearranged DNA fragment carrying the gene segments may be microinjected into the fertilized egg of an animal to develop a transgenic animal or transfected into a stem cell which is used to repopulate an embryo to develop a chimeric animal. The human DNA fragments are introduced into a cell of the animal in a manner providing that the introduced DNA is stably maintained in a proportion of those cells and transmitted in the germline of the resulting animal.
To enable the animal to produce B lymphocytes characterized by exogenous Ig heavy chains, an unrearranged gene fragment of the invention is constructed to carry at a minimum DNA sequences encoding at least one exogenous variable Ig gene segment, at least one D Ig gene segment, at least one exogenous J Ig gene segment, and at least one μ constant Ig region. Desirably the unrearranged gene fragment further contains an exogenous gamma constant Ig region.
The μ region may be of exogenous origin or from the animal itself, but is preferably human. This μ region is required to signal appropriate allelic exclusion in the resulting animal. The D gene may be of exogenous origin, e.g., human, or from the animal itself. Additionally a synthetic D gene of about 10 to 20 amino acids in length containing flanking sequences from an animal may be employed in the construct of the invention.
To further enhance the diversity of B lymphocytes produced by the animal, the unrearranged gene fragment of this invention optionally contains multiple copies of the unrearranged or partially rearranged human heavy or light chain variable and constant region gene segments.
Human gene segments for use in constructing the unrearranged DNA fragment for insertion into a cell of the selected animal of this invention include a D gene which is a short chemically synthesizable fragment. One such D gene region is described in J. V. Ravetch et al, Cell, 22:583 (1981). Other useful D regions for the unrearranged DNA fragment of the present invention are described in Y. Ichihara et al, Eur. J. Immunol. , 18:649 (1988) . It is expected that other D regions will eventually be isolated and their sequences determined. These D regions may also form useful components of the unrearranged DNA fragment of the present invention in a manner analogous to the use of the above exemplary D gene segments. However, as provided above, the D gene need not be of human origin. The flanking regions of the D gene may be of one species' origin, which the coding sequence of the D gene may be from another species. Additionally a synthetic D gene may be made by conventional techniques. Presently preferred for use in the construct are any human D or any murine D gene, a variety of which are known in the art, as identified above.
The J gene regions of the human Ig DNA sequences for use in an unrearranged DNA fragment of the present invention are published. See, e.g. Ravetch et al, cited above; and P. A. Hieter et al, J. Biol. Chem.. 257:1516 (1982). The J gene region described by Ravetch, cited above, may be obtained requested from the author, based on its publication in the journal, Cell. Additionally, μ and gamma (1 through 4) human gene sequences are published and may be purchased from the Medical Research Council (MRC) in England and employed in the unrearranged DNA fragment. See, e.g., J. W. Ellison et al, Nucl. Acids Res. , JL0(13):4071 (1982); N. Takahashi et al, Cell.79:671 (1982); and P. A. Hieter, et al, Nature, 294:536 (1981). Alternatively, the constant regions may desirably be constructed by employing -conventional recombinant techniques. See, e.g., T. Maniatis et al, Molecular Cloning (A Laboratory - Manual) , Cold Spring Harbor Laboratory (1982) and J.
Sambrook et al, Molecular Cloning (A Laboratory Manual) , Cold Spring Harbor Laboratory (1989) . Such techniques for obtaining constant regions for use in the constructs of this invention can permit alterations deliberately designed into the recombinant genes. Such alterations or modifications of the genes can permit changed or enhanced functions, e.g., higher binding affinities, to be displayed by the gene, in comparision to isolated human genes. Human delta, epsilon and alpha constant regions may also be employed in an unrearranged DNA fragment of this invention. These gene sequences are described in J. G. Flanagan et al, Nature,300:709 (1982). Recombinant forms of these genes are also desirably employed in the construct of this invention.
Human V gene families I through VI are also published and may be constructed by conventional recombinant techniques for insertion into the unrearranged,DNA fragment of the invention. See, e.g. Berman, J. E. et al, EMBO J. , 2: 27 (1988). The DNA sequences of these genes identified above may be synthesized or obtained by conventional recombinant techniques and employed in the unrearranged DNA fragment construct according to the present invention. One of skill in the art can obtain members of these gene families by employing conventional cross- hybridization techniques using a representative member of each family.
The unrearranged DNA fragment's human heavy chain gene segments, V, D, and J, will assemble with animal's own light chains during B lymphocyte maturation to generate antibodies characterized by human heavy chains. Alternatively, unrearranged human light chain gene segments may be employed in another unrearranged DNA fragment to enable the resulting animal to produce a diversity of B lymphocytes with both human heavy and light chains. The two unrearranged DNA fragments bearing the human heavy chain genes and the human light chain gene, respectively, may be injected into the same animal. Alternatively, one animal carrying the first unrearranged DNA fragment may be mated with another animal carrying the second unrearranged DNA fragment to produce progeny capable of using both unrearranged DNA fragments. Thus an animal of this invention may be capable of generating antibodies containing human heavy chains and homologous light chains or antibodies characterized by the presence of both human heavy and light chains. Hιman light chains for optional insertion in an unrearranged DNA fragment of this invention are also described in the art. See, Jirik et al, Proc. Natl. Acad. Sci. , U.S.A. , 83.=4229 (1986) and M. Pech et al, ______
Mol. Biol. , 176:189 (1984). The unrearranged DNA fragment of the invention may also contain appropriate transcriptional enhancer and promoter elements. Immediately upstream of the coding regions of the human Igs, the animal of the present invention will contain human or homologous animal, e.g., murine, constant region "switch" regions proximal to each constant region. The switch regions may also be employed in the design of the unrearranged DNA fragment which is integrated in the animal. The switch region is located immediately upstream of the coding regions of the Ig constant genes in the unrearranged DNA fragment. Such murine switch regions for use in the unrearranged DNA fragment are also published and may be sequenced or obtained by recombinant technology by one of skill in the art. See, e.g. T. Nikaido et al, Nature, 292:845 (1981) and J. V. Ravetch et al, Proc. Natl. Acad. Sci. USA,22:6734 (1980). Similarly, Ig heavy chain enhancer sequences useful in the unrearranged DNA fragment of the invention are described in J. Banerji et al, Cell, 3_3_:729 (1983); S. D. Gillies et al, Cell, 3_3:717 (1983); P. Augereau et al, EMBO J.. 5_(8):1791 (1986); and S. Pettersson et al, Nature, 344:165 (1990) and may be obtained by analogous methods.
Thus the constructed unrearranged DNA fragment may contain human DNA sequences as well as appropriate sequences from other non-human sources, e.g., the animal itself. In addition to the segments referenced above and described in the examples below, other human heavy and light chain gene segments or other non-human sequences, such as the switch regions, suitable promoters or enhancers, when their sequences are known, will also be useful to form unrearranged DNA fragments according to the teachings of the present invention and may be used in analogous manner to the exemplary sequences described herein. The gene segments useful in the unrearranged DNA fragments may be obtained by preparing lambda phage genomic and cDNA libraries and identifying specific Ig genes according to known techniques. See, T. Maniatis et al and Sambrook et al, cited above.
Assembly of these human Ig gene segments and other DNA segments identified above into an unrearranged DNA fragment according to the present invention employs traditional gene assembly techniques described in T. Maniatis et al, cited above. The unrearranged DNA fragment of this invention may vary considerably in size and is preferably approximately 25 to 50 kb in length for ease of manipulation in cosmids. Larger DNA fragments of human origin may be used for construction of a chimeric animal or transgenic animal and will be propagated in yeast artificial chromosome vectors (YACS) .
Specific examples of an unrearranged DNA fragment constructed of murine components, and an unrearranged DNA fragment constructed of human gene segments are disclosed, along with the procedures for constructin these fragments, in Examples 1 and 2 below. In addition to use of the unrearranged DNA fragments described in the Examples below, animals of the invention may be produced alternatively by isolating a contiguous human DNA fragment carrying naturally unrearranged DNA sequences encoding multiple human Ig heavy chain segments, e.g., VH, D and JH. These naturally unrearranged fragments may be considerably larger in size than the μni-jearranged DNA fragment constructs described above and may require propagation in YACS vectors. An example of such a contiguous DNA fragment that could be isolated, in this way is described by Berman, J. E. et al, EMBQ J. , 2:727 (1988). This fragment is of 85-100 kb containing a human V gene segment, multiple human D segments, and the complete human JH - Cμ region.
Once the unrearranged DNA fragment of interest has been constructed as described above or in the examples below, or once an appropriate large human DNA fragment is isolated, these DNA sequences are propagated. The constructed unrearranged DNA fragments may be propagated in conventional plasmids or cosmids known to those of skill in the art. For example, conventional vectors useful for transgene replication are the cosmid vectors p E15 or pWE16, supplied commercially by Stratagene, La Jolla, California. The larger chromosomal DNA sequences may be propagated in conventional yeast artificial chromosome vectors in yeast as described in D. T. Burke, et al, Science, 236:806 (1987).
Once the unrearranged DNA fragment is so propagated, the animal of the invention is developed by introducing into a cell of the animal this human DNA. This introduction is performed so that the introduced DNA is stably maintained and transmitted in the germline of the animal. Expression of functional Ig genes depends on an accurate rearrangement of DNA in the cells of the animal to bring the several gene segments e.g. variable, diversity, and joining for the heavy chain and variable and joining for the light chain, into juxtaposition. The mechanism of allelic exclusion operates to prevent further rearrangement in a second chromosome once a complete functional unit is achieved in one chromosome. Several advantages exist for introducing into the animal of the invention human Ig genes in an unrearranged (or partially rearranged) state in the unrearranged DNA fragment of this invention. The unrearranged or partially rearranged gene segments in the fragment allow for maximum diversity to be generated in the animal through the use of alternative VH, D and JH genes, and the generation of junctional diversity. Additionally the utilization of unrearranged genes is expected to lead to a more physiological response than programming an animal with completely assembled Ig genes.
Transgenic animals can be produced by several standard procedures, the most common being microinjection of the cloned unrearranged DNA fragment into one of the pronuclei of a fertilized egg according to the procedure described in R. Brinster et al, PNAS USA, j32.:4438 (1985). See also, Cqnstantini et al, J. Cell. Phvsiol.. Suppl.:219-226 (1982) ; E. Robertson et al, Nature. 323:445 (1986) ; M. R. Kuehn et al, Nature, .32_6:295 (1987); M. Hooper et al, Nature, 326:292 (1987); and B. Hogan, Nature, 3_26:240 (1987). The microinjected embryos are developed to term in the uterus of a pseudo pregnant animal. As many as 25% of the resulting progeny can contain the injected unrearranged DNA fragment. This procedure introduces the cloned human Ig genes into every cell of the resulting transgenic animal. Such introduced Ig genes are expressed almost exclusively in the same tissues in which the homologous endogenous genes are expressed. The animals containing the unrearranged DNA fragments generally contain the foreign DNA stably integrated in all cells. This DNA is thereafter propagated in the germline.
Alternatively, a naturally unrearranged human DNA fragment, as described above, can be introduced into isolated embryonal stem cells of the animal to create chimeric animals. Cells which have integrated the human DNA are grown in culture, and can be used to repopulate animal embryos. Such cells could be selected for those bearing the human DNA by the polymerase chain reaction, with appropriate primers [See, e.g., R. K. Saiki, et al, Science, 239:487 (1988). Alternatively a drug resistance gene, e.g., neo, may be linked to the introduced DNA and the cells selected for growth in the presence of the drug. The resulting chimeric animal contains a population of cells, some of which descend from the altered pluripotent stem cell which carry the human DNA. Other cells of the animal descending from unaltered stem cells do not carry the human DNA. A transgenic animal can then be derived from such a chimeric animal by breeding. Such techniques for obtaining chimeric and transgenic animals are described in K. R. Thomas et al, Cell, 5.1:503 (1987); E. Robertson et al, Nature, 323:445 (1986); M. Hooper et al, Nature, 326:292 (1987) and M. R. Kuehn et al, Nature, 326:295 (1987) . The resulting animal of the invention is thus a chimeric or transgenic non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing human immunoglobulin gene segments. The animal of the invention is capable of rearranging the human Ig gene segments to form human or partially human antibodies characterized by human heavy chains, which can be used in an immune response to an exogenous antigen.
Another characteristic of the animal of the present invention is its ability to stably maintain the human DNA fragments in its germline and to transmit the introduced DNA carrying the unrearranged heterologous human Ig gene segments to either all or a portion of its progeny. Thus, the invention provides a genetically engineered chimeric or transgenic animal capable of producing a Adversity of antibodies characterized by the presence of human heavy chains. A chimeric animal is an animal which derives a specific subset of its cells from a single particular pluripotent stem cell which is introduced into the embryo of a normal animal. That stem cell and its progeny can be distinguished from other cells of the resulting animal, for example, by containing specific DNA sequences which were present in the introduced stem cell and not in the other stem cells that eventually develop to produce the animal. Thus a chimeric animal according to this invention will have a population of cells that contain the heterologous DNA fragment containing unrearranged or partially unrearranged sequences for the heterologous Ig heavy chain genes and a population of cells which do not contain the introduced DNA. The original chimeric animal will have only a certain percentage of its progeny bearing and expressing the foreign DNA. Selective breeding of chimeric animals according to techniques known to one of skill in the art can eventually produce a transgenic animal. A transgenic animal is an animal that carries specifically introduced heterologous DNA, such as an unrearranged DNA fragment of this invention, integrated into its genome so that the introduced sequence is present in every cell of the animal. A transgenic animal is therefore able to transmit the heterologous DNA sequence to some or all of its progeny. If the original transgenic animal is heterozygous with respect to the foreign DNA, only some of its progeny will inherit the foreign DNA-from it. If the original heterozygous transgenic animal is mated with a normal animal, the progeny will either be heterozygous or non-transgenic. If the transgenic animal is mated with another heterozygous transgenic animal, some of the progeny will be heterozygous, some will not inherit the foreign DNA at all, and some will be homozygous. The homozygous transgenic animal when mated with other homozygous transgenic animals will always produce homozygous transgenic animals carrying the foreign DNA.
According to the present invention, all animals, whether chimeric, or homozygous transgenic or heterozygous.transgenic for the human DNA, will express some level of antibody characterized by the presence of human Ig heavy chains. All such animals capable of producing antibody characterized by the presence of human Ig heavy chains at any level are encompassed by the present invention.
Although any non-human eukaryotic animal may be employed in the present invention, preferably the animals will be conventionally used laboratory animals, such as rodents. More particularly, the animals of the invention are anticipated to be laboratory strains of mice. Any animal carrying the unrearranged DNA fragment of the invention may generate a mixture of its homologous antibodies as well as antibodies characterized by human Ig heavy chains. Natural antigen-independent antibody developmental processes cause the animal to produce mature B lymphocytes to circulate in the transgenic or chimeric animal. To identify offspring carrying the human genes and/or to determine if the antibodies are characterized by human Ig heavy chains, the animal's serum or tissue may be examined using commercially available anti-human Ig antisera in an enzyme-linked immunosorbent assay (ELISA) [See, e.g., Voller A. et al, "The Enzyme Linked Immunosorbent Assay", Dynatech Europe, Borough House, Guernsey UK (1979) and Bos, E. S. et al, J. Immunoassay, 2.:187' (1981) ] . In addition, when the transgenic or chimeric animal is a mouse, the tail DNA is prepared and probed in a Southern blot by using a portion of the unrearranged DNA fragment as a probe. To identify appropriate rearrangement of the DNA fragment in the resulting animal, the spleen of the animal is removed by conventional splenectomy (spleen cells contain predominantly B lymphocytes) and the tissue examined on a Southern blot for hybridization and rearrangement. An alternative method of detecting appropriate Ig rearrangement is to prepare RNA from central (fetal liver and bone marrow) and peripheral (spleen) lymphoid organs and assay for expression of the rearranged DNA in the fragment via Northern blot analyses with probes specific for human VH and C regions.
To obtain animals containing larger numbers of human VH genes than the numbers present on each individual unrearranged DNA fragment construct, strains of transgenic or chimeric animals containing different human Ig genes are mated, by standard breeding techniques, and progeny selected that contain multiple different human Ig transgenes. Such progeny are identified by the procedures described above.
Hybridoma cell lines secreting monoclonal antibodies directed to a particular antigenic epitope may be developed from the chimeric or transgenic animals of the present invention. To obtain such hybridoma cell lines, the animal is immunized with a selected antigen, for example, a tumor antigen (to generate an anti-tumor antibody), an antibody to an infectious agent, e g., a bacterium or **•mvirus, e.g., HIV, or other antigenic substance of choice.
The mature B lymphocytes in the animals of the invention then generate a specific antibody response to the antigen. Such an antibody response would include heavy chains expressed from the foreign DNA fragments, now rearranged. Once the unrearranged DNA fragments in the animals have functionally rearranged to produce a human Ig heavy chain and/or Ig light chain, during the pre-B cell stage, the remainder of the differentiation of the B cells is normal. Spleen B cells are isolated from the animals after primary or secondary immunization. Traditional Kohler and Milstein techniques are employed and the splenic B lymphocytes fused with a selected myeloma cell line. This fusion results in a hybridoma cell line, which when cultured in appropriate culture medium and under suitable conditions known to those of skill in the art secretes a selected monoclonal antibody. The development of a hybridoma cell line according to this invention is not limited to the selection of specific myeloma cell lines or antigens. These hybridoma cell lines are screened by standard techniques for the production of anti-specific antigen antibodies. Hybridomas which use the transgenic heavy chain genes to produce antibody are identifiable by use of a transgene specific probe. Exemplary probes are antisera against the human Ig constant regions. The transgene construct may also incorporate a
DHFR or other selectable and/or amplifiable marker. This marker gene may be linked with an independent promoter element, such as DHFR cDNA linked to an SV40 promoter and polyadenylation sequences. Alternatively, DHRF cDNA may be placed immediately downstream of an encephalomyelocarditis virus or polio virus leader 26 sequence without an independent promoter element [See, e.g., J. Pelletier et al, Nature, 334:320 (1988); S. K. Jang et al, J. Virol. , .63..-1651 (1989)].
This latter structure may be placed immediately downstream of the coding sequence of the secreted exon terminus for the heavy chain constant region, upstream of necessary polyA addition sequences. This ensures the presence and expression of the DHFR message that is expected in,resulting hybridomas expressing the Ig transgene. If the structure is attached in this manner to the gamma constant region in a construct similar to that of Example 2 with μ and gamma constant regions, selection for expresion of DHFR by conventional means would allow selection of cells that have class switched from transgene μ to gamma expression. In either strategy, the presence of the marker gene would allow selection for the maintenance of the chromosome bearing the transgene and may amplify transgene sequences.
These monoclonal antibodies characterized by the presence of human Ig heavy chains have great potential therapeutic use in the treatment of a variety of human disorders amenable to antibody treatment. The presence of the human heavy chains in these antibodies are likely to be considerably less provocative of an anaphylactic response in a human patient than antibodies characterized by the presence of non-human heavy chains. Monoclonal antibodies have immense potential for use as prophylactic, diagnostic, and therapeutic agents in the treatment of various types of human ailments. Potential or actual applications of these reagents include the provision of passive immunity against various microorganisms and viruses when injected into human patients. Also, these antibodies may be employed in the neutralization of viruses, parasites, and bacteria, for example, bacterial toxins or snake venoms. The antibodies may also be used to neutralize pharmaceutical drugs with low toxicity thresholds, such as digoxin, or in treating drug overdoses. Additionally such antibodies may neutralize B lineage cells producing autoimmune antibodies or T lineage cells producing cell- mediated self-destructive responses. Among other conditions which can be neutralized by use of these antibodies are allergic responses. Significantly, the neutralization of tumor cells is another important area of therapy for the antibodies of this invention. These antibodies may also be employed in mediating normal antibody functions.
Other methods for use of these antibodies are in antibody dependent cell mediated cytotoxicity, or as a targeting agent for another therapeutic reagent or a detectable label for diagnosis, e.g., a radioactive label. The following examples illustrate the construction of unrearranged DNA fragments according to the invention and the development of chimeric and transgenic animals carrying these fragments. These examples do not limit the invention and are descriptive only.
Example 1 - Construction of an Unrearranged Murine Immunoglobulin Gene in a Cos id Vector
An unrearranged DNA fragment construct according to this invention is called pVμ [See Fig. 1A] . It contains the murine germline V186.2 segment [Bothwell, A.L.M. et al, Cell. 2_4:625 (1981)], which is known to be used in the antibody response to 4-hydroxy-3-nitrophenyl (NP) . A panel of hybridomas are generated from the transgenic mice containing this construct, immunized with the NP-hapten conjugated to keyhole limpet hemocyanin.
This V segment is upstream of a DQ52-JH2 rearrangement/ with unrearranged JH3 and JH4 segments and the heavy chain enhancer downstream. This DQ52-JH2 rearrangement is generated by recombination of these sequences after transfection into the Abelson murine leukemia virus-transformed pre-B cell line, 38B9 [Blackwell, T.K. and Alt, F. W. , Cell. 37:105 (1984)]. The nucleotide sequence of this DJH join, called 112-2, has been determined [Blackwell, T. K. et al, Nature, 324:585 (1986]. The "spacer" between the 3' end of the V186.2 coding region and the DJH2 segment is comprised of approximately 3.5 kb of sequence derived from the V186.2 genomic clone and 3 kb of the sequence upstream of the genomic DQ52 segment. Downstream of the heavy chain enhancer is the coding sequences for the murine μ constant region, derived from a genomic clone, called pμ5 [Alt, F. . et al, Cell. 22:381 (1981)]. This clone contains an approximately 10.5 kb Eco RI fragment bearing the μ coding region. The entire Eco RI fragment is incorporated into pVμ.
This construct is designed with the intention of excising the V186.2-DJH-μ region on a single Not I fragment of approximately 22 kb, that can be purified for microinjection. Such a DNA fragment construct contains no vector DNA that could potentially interfere with the rearrangement or expression of the immunoglobulin gene. The cos id construct, pVμ is prepared as follows: i) The 10.5 kb genomic μ fragment is cloned into a derivative of pSP65, called pSP65N, having a unique Not I site. Another plasmid for this use is the Bluescript plasmid [Stratagene, La Jolla, CA] . Plasmid pSP65N is prepared from pSP65 [Promega Biotec, Madison, WI] by destroying the unique Hindlll site, and replacing it with a unique Not I site using synthetic oligodeoxy ribonucleotides. The genomic μ fragment is an Eco RI fragment, and therefore, can be cloned into Eco RI- digested pSP65N. Using appropriate restriction enzymes that cleave within the μ sequence, such as Bgl II and Xho I, a clone can be selected that has the 3' end of the fragment. This plasmid is called pSP65Nμ. ii) The V186.2 and DJf)2 segments are on Eco RI fragments of approximately 7 kb and 4 kb, respectively. The Eco RI fragment bearing V186.2 is cloned into the Eco RI site of pSP65N, and a clone selected that has the Not I site of the plasmid at the 5' end of the V186.2 coding region. The Eco RI site proximal to the Not I site is destroyed, by carrying out a partial Eco RI digestion, purifying the single cut DNA from a low melt agarose gel, digesting with T4 DNA polymerase in the presence of all of the four different deoxynucleoside triphosphates, and religating. After bacterial transformation with the ligation products, a clone is identified by restriction enzyme digest analysis with only the Eco RI site proximal to the Not I site destroyed. This clone is called pSP65NV. iii) pSP65NV is digested with Eco RI, and the Eco RI fragment bearing the DJH2 segment is ligated into this site. A resultant clone is selected that has the V and DJH2 segments in the correct orientation. Such a clone has a Xho I site immediately upstream of the DJH2, and 2.4 kb from the 3' Eco RI site. The internal Eco RI site of this clone is destroyed, by a similar procedure to that used in (ii) above. The resultant clone, called pSP65NVDJ, has a Not I-Eco RI fragment of approximately 11 kb. iv) pVμ is constructed by ligating the 11 kb Not I-Eco RI fragment of pSP65NVDJ with the 10.5 kb Eco RI-Not I μ fragment generated by complete Not I - partial Eco RI digest of pSP65Nμ, in the presence of a Not I - digested cosmid vector. A derivative of the cosmid vector p E15 [Stratagene, La Jolla] is used in the construction of this unrearranged DNA fragment construct in which the SV40 promoter-neo gene cassette has been replaced by a mutant dihydrofolate reductase (DHFR) gene. This gene is useful as a dominant selectable marker. This gene is incorporated into the DNA construct flanking the Ig gene segments, and is used for co-amplifying and increasing the expression of the rearranged DNA in resultant hybridomas from the transgenic animal. An example of the use of a mutant DHFR gene to amplify the expression of linked DNA sequences is provided by H. Dora et al, J. Immunol., 139:4232 (1987). This ligation is carried out under standard conditions for cosmid ligations. The ligation products are incubated with jLn vitro bacteriophage lambda packaging extracts, and then used to infect __)___ coli HB101. The resultant colonies are screened by restriction enzyme digestion analysis, and in situ hybridization to the different fragments that make up the desired construct.
Example 2 - Construction of an Unrearranged Human Ig Gene in a Cosmid .Vector
Another unrearranged DNA fragment construct according to this invention comprises an unrearranged human VH gene segment, the human JH locus with a single upstream, unrearranged D segment, the murine μ gene including its upstream μ switch region, the murine gamma 2b switch region, and the human gamma 1 coding region. The murine μ may be changed for the human μ region, since both regions have been found to signal allelic exclusion in transgenic mouse models. Human switch regions may also be substituted for switch regions of murine origin, i) The human 1-9II VH gene segment of the VH4 family described in Berman, J. E. et al, EMBO J. , 2:727 (1988) present on an Eco RI fragment of approximately 2.4 kb, is cloned into Eco RI-digested pSP65N. A recombinant clone is selected that has the vector Not I site at the 5' end of the VH sequence. The Eco RI site adjacent to the Not I site is destroyed, as described in Example 1. Alternatively the 8-1B V gene segment of the VH3 family could be excised on an EcoRI fragment, and used in the same manner. The resulting clone is digested with Eco
RI, and the human JH fragment is cloned into it. This JH fragment also includes one unrearranged D segment [J. V. Ravetch et al, Cell, 22:583 (1981)].
A clone, called pSP65NHVJ, is selected in which the JH locus is in the correct orientation to the VH segment, placing the D segment between the VH and JH segments. ii) The murine germline μ gene found on plasmid pμ [Grosschedl et al, Cell, .38.:647 (1984)], is excised therefrom on an approximately 10.5 kb Eco Rl-Xho I fragment. This fragment is cloned into the Bluescript plasmid digested with Eco RI and Xho I. The resulting clone is then digested with Xho I, which cleaves in the vector polylinker. The cleaved DNA is treated with T4 DNA polymerase in the presence of all four deoxynucleoside triphosphates, and then ligated with synthetic DNA linkers containing an Sfi I site. The DNA is then digested with Sfi I and religated. The resulting plasmid, pμSfi I contains an approximately 10.5 kb genomic fragment, with a unique Eco RI site at the 5' end, and a unique Sfi I site at the 3' end. 34 iii) The murine gamma 2b switch region is excised from the genomic clone SL1 in a bacteriophage lambda vector, on an Eco RI-Hindlll fragment of approximately 4.4 kb [See, e.g., Stanton and Marcu, Nucl. Acids Res. , JL0.:5993 (1982)]. This DNA is cloned into the Eco RI and flindlll sites of the Bluescript plasmid. The 5* vector Not I site is then destroyed, and replaced with the same synthetic Sfi I linkers, as described in (ii) . Then the 3' vector Sal I site is destroyed, and synthetic Not I linkers are used to create a new Not I site. The resulting clone is called pBS gamma 2b. iv) The human gamma l gene is excised from the clone HG3 on a Hindlll fragment [Ellison, J. . et al, Nucleic Acids Res.. 10:4071 (1982)]. This Hindlll fragment is cloned into the Hindlll site of pBS gamma 2b. A recombinant clone, called pBS gamma 1, is selected that has the gamma 1 gene in the correct orientation, with respect to the gamma 2b switch region. The same or similar gamma 1 fragments may be obtained from other genomic human gamma 1 clones, if desired. v The following fragments are then prepared: (1) a Not I-partial Eco RI VH-D-JH fragment of pSP65NHVJ (2 kb) ; (2) an Eco Rl-Sfi I μ fragment of pμSfi I (10.5 kb) ; and (3) a Sfi I-Not I Sgamma 2b-human gamma 1 fragment of pBS gamma 1. These fragments are then ligated with a Not I digested cosmid vector, under standard cosmid ligation conditions, as in Example 1. The ligation products are packaged, and used to transform _______ coli HB101. Clones are identified that contain a V-D-JH-μ-S gamma2b-gamma 1 unrearranged DNA fragment construct. Such a construct is excised from the clone by Not I digestion, and purified for microinjection.
Example 3 - Production of a Transgenic Mouse The unrearranged DNA fragment constructs described in Examples 1 and 2 are employed to produce transgenic mice, as follows:
Transgenic mice were obtained essentially as described by B. Hogan et al, "Manipulating the Mouse Embryo, A Laboratory Manual", Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY (1986) using mouse F1 strain C57BL6 X CBA. Thirty-six offspring are obtained from a series of injections of the DNA construct described in Example 1. Tail DNA preparations from these mice are digested with Eco RI and Xho I, and examined by Southern blot hybridization using a JH locus probe. All mice are found to have the germ line JH locus bands of 2.9kb and 3.5kb. In addition, ten mice are found to have a 2.4kb band, which is the size predicted for the Xhgl- EcoRI fragment containing the DJH2 segment of the unrearranged DNA fragment. Thus, these ten mice are transgenic, according to the invention.
To determine whether or not V to DJ rearrangement is occurring in the transgene in the B cells of the transgenic mice, survival splenectomy is performed on two of the founder transgenic mice. Preliminary Southern blot analysis indicates that they contain multiple copies of the unrearranged DNA construct. The spleen DNA prepared from the mouse designated 1763 is digested with Sail and EcoRI and examined by Southern blot hybridization to a JH locus probe. Sai cuts at the 5* end of the construct, and EcoRI cuts downstream of JH.
Sail-EcoRI double digestion of the unrearranged DNA fragment construct should generate an llkb fragment containing V186-2 and DJH2. Rearrangement of these two gene segments and deletion of the spacer DNA is predicted to generate a Sall-EcoRI fragment of approximately 4kb. By analysis of this Southern blot, tail DNA of 1763 is found to have an unrearranged band of llkb, and the endogenous _TH band of approximately 6.2kb. In spleen DNA, in addition .to 11 and 6.2kb bands, a 4kb band is found, indicating rearrangement of the DNA fragment in the spleen but not the tail tissue of the animal. To further characterize this DNA construct rearrangement, the remaining spleen DNA preparation of mouse 1763 is digested with Sail and EcoRI, and the DNA in the 3.5-4.5kb size range is eluted from a preparative agarose gel. This DNA is cloned into the bacteriophage lambda vector, lambda ZAP [Stratagene] . The resulting plaques are screened with a JH probe and picked. The inserts are converted to plas ids using the lambda ZAP excision method. These plasmids are rescreened with the same probe, and positive colonies isolated. The nucleotide sequence of each insert is then determined using synthetic oligonucleotides to prime chain synthesis. Two oligonucleotides are employed, one hybridizing to the 3' end of JH2, and the other hybridizing to the 5' end of V186.2.
The nucleotide sequence of four of the DNA fragment rearrangements from spleen DNA are determined from the ATG initiation codon of V186.2 to the 3 ' end of the DJR2 segment. From the sequence of the VH-to-DJH joins of the first four rearranged V region sequences, the DNA fragments are observed to be rearranged with junctional variation occurring. These rearranged VH-DJ„ joins appear indistinguishable from those expected for endogenous gene segments. In two of the four sequences, there is a loss of one or more base pairs from the 3' end of V186.2. In all four sequences, there is a loss of two or more base- pairs from the 5' sequence of the DJH segment. In three of the four sequences, "N-regions" are inserted between the recombined V and DJH segments of one or three base- pairs. Although this sample of junction sequences is small, there appears to be a preference for G-C base- pairs in the N-regions. This observation is consistent with the known nucleotide preference of terminal deoxynucleotidyl transferase, which has been implicated in adding the extra bases of the N-region to such junctions. [See, e.g., F. W. Alt et al, Proc. Natl. Acad. Sci. USA, 29:4118 (1982) and Kurosawa et al, J. Exp. Med.. 155:201 (1982)].
The sequences of the rearranged DNA fragment V regions are identical, outside the region of the VH-to DJH join, and identical to the known sequences of V186_2 and JH2. Thus, no somatic mutation occurs in the sequenced rearranged DNA constructs, a result that would be expected from the analysis of rearrangements in total spleen DNA. Numerous modifications and variations in practice of this invention are expected to occur to those skilled in the art. For example, as more human immunoglobulin gene sequences are identified, one of skill in the art can easily apply the teaching of the this invention to construct appropriate transgenes for the preparation of a transgenic animal capable of expressing an antibody characterized by the presence of that particular immunoglobulin. Such modifications therefore are believed to fall within the scope of this invention.

Claims

40 CLAIMS
1. A non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing exogenous immunoglobulin gene segments, said animal capable of rearranging said segments and producing antibodies characterized by the presence of rearranged exogenous species Ig heavy chains.
2. The animal according to claim 1 wherein said exogenous segments are human immunoglobulin gene segments.
3. The animal according to claim 1 selected from the groups consisting of a chimeric animal, a heterozygous transgenic animal or a homozygous transgenic animal.
4. The animal according to claim 2 comprising a rodent.
5. The animal according to claim 4 comprising a mouse.
6. The animal according to claim 1 capable of producing said antibody characterized by the presence of light Ig chains endogenous to said animal.
7. The animal according to claim 1 capable of producing said antibody characterized by the presence of exogenous species immunoglobulin light chains.
8. The animal according to claim 7 wherein said light chains are of human origin.
9. The animal according to claim 1 wherein said gene segments comprise at least one exogenous variable immunoglobulin gene segment, at least one D immunoglobulin gene segment, at least one exogenous J immunoglobulin gene segment, and at least one μ heavy chain constant immunoglobulin region.
10. The animal according to claim 2 wherein said gene segments comprise at least one human variable immunoglobulin gene segment, at least one D immunoglobulin gene segment, at least one human J immunoglobulin gene segment, and at least one μ heavy chain constant immunoglobulin region.
11. The animal according to claim 10 wherein said μ constant region is of human or murine origin.
12. The animal according to claim 9 wherein said gene segments further comprise an exogenous gamma heavy chain constant region.
13. The animal according to claim 10 wherein said gene segments further comprise a human gamma heavy chain constant region.
14. An unrearranged DNA fragment for use in producing the animal of claim 1 comprising substantially the construct of FIG. 1.
15. An unrearrangement DNA fragment for use in producing the animal of claim 2 comprising substantially the construct of FIG. 2.
16. An unrearranged DNA fragment for use in producing the animal of claim 1 comprising substantially at least one exogenous variable immunoglobulin gene segment, at least one D immunoglobulin gene segment, at least one exogenous J immunoglobulin gene segment, and at least one μ constant immunoglobulin region.
17. An unrearranged DNA fragment for use in producing the animal of claim 2 comprising substantially at least one human variable immunoglobulin gene segment, at least one D immunoglobulin gene segment, at least one human J immunoglobulin gene segment, and at least one μ constant immunoglobulin region.
18. The fragment according to claim 17 wherein said μ constant region is of human or murine origin.
19. The fragment according to claim 16 wherein said gene segments further comprise an exogenous gamma constant region.
20. The fragment according to claim 17 wherein said gene segments further comprise a human gamma constant region.
21. The fragment according to claim 16 comprising a switch region.
22. The transgene according to claim 16 comprising an immunoglobulin heavy chain enhancer.
23. The fragment according to claim 17 comprising a murine switch region.
24^ The fragment according to claim 17 comprising an immunoglobulin heavy chain enhancer.
25. A method for producing a non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing exogenous immunoglobulin gene segments, said animal capable of rearranging said segments and producing antibodies characterized by the presence of rearranged exogenous Ig heavy chains comprising microinjecting into a cell of said animal the fragment of claim 16.
26. A method for producing a non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing human immunoglobulin gene segments, said animal capable of rearranging said segments and producing antibodies characterized by the presence of rearranged human Ig heavy chains comprising microinjecting into a cell of said animal the fragment of claim 17.
27. A hybridoma cell line secreting a monoclonal antibody characterized by the presence of human immunoglobulin heavy chains.
28. A monoclonal antibody characterized by the presence of human immunoglobulin heavy chains produced by an animal according to claim 2.
29. A method for producing a hybridoma cell line secreting a monoclonal antibody characterized by the presence of human immunoglobulin heavy chains comprising introducing into the animal of claim 1 a selected antigen, and fusing splenic B cells from said animal with a selected myeloma cell or plasmacytoma.
30. A method for producing a monoclonal antibody characterized by the presence of human immunoglobulin heavy chains comprising culturing the cell line of claim 29 in suitable medium and collecting the antibody secreted therefrom.
31. A method for producing a non-human eukaryotic animal having incorporated into its germline unrearranged DNA fragments bearing human immunoglobulin gene segments, said animal capable of rearranging said segments and producing antibodies characterized by the presence of rearranged human Ig heavy chains comprising transfecting into a stem cell of said animal a human DNA sequence carrying unrearranged gene segments of human immunoglobulin heavy chains.
PCT/US1990/003894 1989-07-12 1990-07-11 Chimeric and transgenic animals capable of producing human antibodies WO1991000906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37894489A 1989-07-12 1989-07-12
US378,944 1989-07-12

Publications (1)

Publication Number Publication Date
WO1991000906A1 true WO1991000906A1 (en) 1991-01-24

Family

ID=23495178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/003894 WO1991000906A1 (en) 1989-07-12 1990-07-11 Chimeric and transgenic animals capable of producing human antibodies

Country Status (1)

Country Link
WO (1) WO1991000906A1 (en)

Cited By (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546073A1 (en) * 1990-08-29 1993-06-16 Genpharm Int Transgenic non-human animals capable of producing heterologous antibodies.
WO1994025585A1 (en) * 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5545806A (en) * 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
WO1996034096A1 (en) * 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
EP0746609A1 (en) * 1991-12-17 1996-12-11 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies
WO1997013852A1 (en) * 1995-10-10 1997-04-17 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5625126A (en) * 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) * 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) * 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1998024893A2 (en) * 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
US5789650A (en) * 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5814318A (en) * 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5874299A (en) * 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5877397A (en) * 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
EP0939763A1 (en) * 1996-03-20 1999-09-08 Abgenix, Inc. Directed switch-mediated dna recombination
US6075181A (en) * 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6150584A (en) * 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
AU743883B2 (en) * 1991-12-17 2002-02-07 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6657103B1 (en) 1990-01-12 2003-12-02 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
AU781922B2 (en) * 1991-12-17 2005-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7041870B2 (en) 2000-11-30 2006-05-09 Medarex, Inc. Transgenic transchromosomal rodents for making human antibodies
US7041871B1 (en) 1995-10-10 2006-05-09 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7084260B1 (en) 1996-10-10 2006-08-01 Genpharm International, Inc. High affinity human antibodies and human antibodies against human antigens
EP1798240A1 (en) 2005-12-15 2007-06-20 Industrial Technology Research Institute Recombinant triplex scaffold-based polypeptides
US7282568B2 (en) 2002-12-16 2007-10-16 Medarex, Inc. Human monoclonal antibodies against interleukin 8 (IL-8)
WO2008060776A2 (en) 2006-10-03 2008-05-22 University Of Medicine And Dentistry Of New Jersey Atap peptides, nucleic acids encoding the same and associated methods of use
EP1958966A2 (en) 1994-07-01 2008-08-20 Dana-Farber Cancer Institute Methods for modulating T cell responses by manipulating a common cytokine receptor gamma chain
EP2065402A1 (en) 2007-11-30 2009-06-03 Industrial Technology Research Institut Trimeric collagen scaffold antibodies
WO2009086003A1 (en) 2007-12-20 2009-07-09 Xoma Technology Ltd. Methods for the treatment of gout
US7704503B2 (en) 2005-02-14 2010-04-27 Wyeth Llc Use of IL-17F in diagnosis and therapy of airway inflammation
WO2010069331A2 (en) 2008-12-19 2010-06-24 H. Lundbeck A/S Modulation of the vps 10-domain receptor family for the treatment of mental and behavioural disorders
US7745391B2 (en) 2001-09-14 2010-06-29 Compugen Ltd. Human thrombospondin polypeptide
WO2010075475A1 (en) 2008-12-23 2010-07-01 Abbott Laboratories SOLUBLE FMS-LIKE TYROSINE KINASE-1 (sFLT-1) ANTIBODY AND RELATED COMPOSITION, KIT, METHODS OF USING, AND MATERIALS AND METHOD FOR MAKING
US7807798B2 (en) 1997-05-05 2010-10-05 Amgen Fremont Inc. Human monoclonal antibodies to epidermal growth factor receptor
WO2010112034A2 (en) 2009-04-02 2010-10-07 Aarhus Universitet Compositions and methods for treatment and diagnosis of synucleinopathies
EP2251026A1 (en) 2000-06-08 2010-11-17 Immune Disease Institute, Inc. Methods and compositions for inhibiting immunoglobulin-mediated reperfusion injury
EP2264163A2 (en) 2001-02-16 2010-12-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
EP2277542A1 (en) 2001-06-01 2011-01-26 Cornell Research Foundation Inc. Modified antibodies to prostrate-specific membrane antigen and uses thereof
EP2290077A2 (en) 2004-03-01 2011-03-02 Immune Disease Institute, Inc. Natural IGM antibodies and inhibitors thereof
US7910798B2 (en) 2006-03-31 2011-03-22 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
WO2011038301A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Screening methods
WO2011038302A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Novel modulators
WO2011116023A1 (en) 2010-03-18 2011-09-22 Abbott Laboratories METHODS OF ASSAYING URINARY NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN (uNGAL) IN THE PROGNOSIS OF CADAVERIC KIDNEY TRANSPLANT FUNCTION IN A PATIENT, INCLUDING A PATIENT DIAGNOSED WITH DELAYED GRAFT FUNCTION (DGF), A METHOD OF ASSAYING uNGAL IN THE ASSESSMENT OF RISK OF DGF IN A PATIENT DIAGNOSED WITH EARLY GRAFT FUNCTION (EGF), AND RELATED KITS
WO2011119484A1 (en) 2010-03-23 2011-09-29 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
EP2386318A1 (en) 2003-05-15 2011-11-16 Iogenetics, Inc. Targeted biocides
WO2011163558A1 (en) 2010-06-25 2011-12-29 Abbott Laboratories Materials and methods for assay of anti-hepatitis c virus (hcv) antibodies
WO2012010321A1 (en) 2010-07-23 2012-01-26 Erasmus University Medical Center Rotterdam Foetal haemoglobin inhibitor
WO2012010855A1 (en) 2010-07-23 2012-01-26 Medical Research Council Intracellular immunity
EP2436695A1 (en) 2005-04-14 2012-04-04 Wyeth LLC Methods for treating and preventing fibrosis by IL-21 / IL-21R antagonists
AU2008200005B2 (en) * 1996-12-03 2012-05-17 Amgen Fremont Inc. Transgenic Mammals Having Human Ig Loci Including Plural Vh and Vk Regions and Antibodies Produced Therefrom
WO2012064674A1 (en) 2010-11-09 2012-05-18 Abbott Laboratories Materials and methods for immunoassay of pterins
EP2471809A1 (en) 2006-07-11 2012-07-04 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
EP2478918A2 (en) 2005-11-10 2012-07-25 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Compositions and methods for the treatment of addiction and other neuropsychiatric disorders
US8278421B2 (en) 2006-03-20 2012-10-02 Xoma Techolology Ltd. Human antibodies specific for gastrin materials and methods
EP2508608A1 (en) 2003-06-09 2012-10-10 Alnylam Pharmaceuticals Inc. Method of treating neurodegenerative disease
WO2012167143A1 (en) 2011-06-03 2012-12-06 Xoma Technology Ltd. Antibodies specific for tgf-beta
WO2013040142A2 (en) 2011-09-16 2013-03-21 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
WO2013096516A1 (en) 2011-12-19 2013-06-27 Xoma Technology Ltd. Methods for treating acne
WO2013102149A1 (en) 2011-12-31 2013-07-04 Abbott Laboratories Truncated human vitamin d binding protein and mutation and fusion thereof and related materials and methods of use
WO2013117735A1 (en) 2012-02-09 2013-08-15 Medical Research Council Conjugate comprising an agent and an antiviral ligand and its use in a method for delivering the agent intracellularly
WO2013144567A1 (en) 2012-03-28 2013-10-03 Kymab Limited Transgenic non-human vertebrate for the expression of class - switched, fully human, antibodies
US8653020B2 (en) 2008-01-25 2014-02-18 Aarhus Universitet Selective exosite inhibition of PAPP-A activity against IGFBP-4
WO2014058875A2 (en) 2012-10-09 2014-04-17 Biogen Idec Ma Inc. Combination therapies and uses for treatment of demyelinating disorders
EP2732823A1 (en) 2008-06-25 2014-05-21 H. Lundbeck A/S Modulation of the TrpV : Vps10p-domain receptor system for the treatment of pain
US8759105B2 (en) 2000-10-31 2014-06-24 Regeneron Pharmaceuticals, Inc. Method for genetically modifying mouse embryonic stem cell by homologous recombination
US9078886B2 (en) 2010-06-16 2015-07-14 Embera Neurotherapeutics, Inc. Compositions for the treatment of addiction, psychiatric disorders, and neurodegenerative disease
WO2015122995A1 (en) 2014-02-11 2015-08-20 Visterra, Inc. Antibody moleules to dengue virus and uses thereof
EP2501817B1 (en) 2010-02-08 2015-08-26 Regeneron Pharmaceuticals, Inc. Common light chain mouse
WO2015138920A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
EP2701499B1 (en) 2011-04-25 2016-02-10 Regeneron Pharmaceuticals, Inc. Non-human animals expressing antibodies having a common light chain
WO2016040880A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies of alk inhibitors
WO2016054555A2 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
US9309315B2 (en) 2005-08-18 2016-04-12 Genmab A/S Therapy with CD4 binding peptides and radiation
WO2016061142A1 (en) 2014-10-14 2016-04-21 Novartis Ag Antibody molecules to pd-l1 and uses thereof
US9346873B2 (en) 2008-09-30 2016-05-24 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
WO2016100882A1 (en) 2014-12-19 2016-06-23 Novartis Ag Combination therapies
US9434782B2 (en) 2009-07-08 2016-09-06 Kymab Limited Animal models and therapeutic molecules
WO2016141111A1 (en) 2015-03-03 2016-09-09 Xoma (Us) Llc Treatment of post-prandial hyperinsulinemia and hypoglycemia after bariatric surgery
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
WO2016161410A2 (en) 2015-04-03 2016-10-06 Xoma Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
US9499838B2 (en) 2001-05-11 2016-11-22 Kyowa Hakko Kirin Co., Ltd. Human artificial chromosome containing human antibody λ light chain gene and non-human animal containing the human artificial chromosome capable of genetic transmission
EP3124045A2 (en) 2006-12-20 2017-02-01 Xoma (Us) Llc Treatment of il-1 beta related diseases
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
WO2017019894A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to lag-3
US9580491B2 (en) 2010-03-31 2017-02-28 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US9622459B2 (en) 2011-12-20 2017-04-18 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
WO2017083515A2 (en) 2015-11-10 2017-05-18 Visterra, Inc. Antibody molecule-drug conjugates and uses thereof
WO2017091683A1 (en) 2015-11-25 2017-06-01 Visterra, Inc. Antibody molecules to april and uses thereof
WO2017106810A2 (en) 2015-12-17 2017-06-22 Novartis Ag Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
US9686970B2 (en) 2010-08-02 2017-06-27 Regeneron Pharmaceuticals, Inc. Mice that make VL binding proteins
US9738701B2 (en) 2003-05-30 2017-08-22 Merus N.V. Method for selecting a single cell expressing a heterogeneous combination of antibodies
US9758805B2 (en) 2012-04-20 2017-09-12 Merus N.V. Methods and means for the production of Ig-like molecules
US9765133B2 (en) 2008-06-27 2017-09-19 Merus N.V. Antibody producing non-human mammals
WO2017158421A1 (en) 2016-03-14 2017-09-21 University Of Oslo Anti-viral engineered immunoglobulins
WO2017158436A1 (en) 2016-03-17 2017-09-21 Oslo Universitetssykehus Hf Fusion proteins targeting tumour associated macrophages for treating cancer
WO2017158426A1 (en) 2016-03-14 2017-09-21 University Of Oslo Engineered immunoglobulins with altered fcrn binding
WO2017165736A1 (en) 2016-03-25 2017-09-28 Visterra, Inc. Formulation of antibody molecules to dengue virus
WO2017165464A1 (en) 2016-03-21 2017-09-28 Elstar Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
WO2017181098A2 (en) 2016-04-15 2017-10-19 Visterra, Inc. Antibody molecules to zika virus and uses thereof
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
EP3248618A1 (en) 2009-04-22 2017-11-29 Massachusetts Institute Of Technology Innate immune suppression enables repeated delivery of long rna molecules
EP3254687A1 (en) 2001-10-04 2017-12-13 Genetics Institute LLC Methods and compositions for modulating interleukin-21 receptor activity
WO2017221072A2 (en) 2016-06-21 2017-12-28 University Of Oslo Hla binding vaccine moieties and uses thereof
EP3263581A1 (en) 2005-05-17 2018-01-03 University of Connecticut Compositions and methods for immunomodulation in an organism
WO2018013714A1 (en) 2016-07-13 2018-01-18 Biogen Ma Inc. Dosage regimens of lingo-1 antagonists and uses for treatment of demyelinating disorders
WO2018026748A1 (en) 2016-08-01 2018-02-08 Xoma (Us) Llc Parathyroid hormone receptor 1 (pth1r) antibodies and uses thereof
WO2018052556A1 (en) 2016-08-02 2018-03-22 Visterra, Inc. Engineered polypeptides and uses thereof
US9924705B2 (en) 2012-03-28 2018-03-27 Kymab Limited Animal models and therapeutic molecules
WO2018057955A1 (en) 2016-09-23 2018-03-29 Elstar Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
US9932408B2 (en) 2011-02-25 2018-04-03 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US9930871B2 (en) 2013-02-20 2018-04-03 Regeneron Pharmaceuticals, Inc. Non-human animals with modified immunoglobulin heavy chain sequences
US9932398B2 (en) 2011-10-17 2018-04-03 Regeneron Pharmaceuticals, Inc. Restricted immunoglobulin heavy chain mice
WO2018064255A2 (en) 2016-09-28 2018-04-05 Xoma (Us) Llc Antibodies that bind interleukin-2 and uses thereof
US9963716B2 (en) 2011-09-26 2018-05-08 Kymab Limited Chimaeric surrogate light chains (SLC) comprising human VpreB
US9969814B2 (en) 2010-02-08 2018-05-15 Regeneron Pharmaceuticals, Inc. Methods for making fully human bispecific antibodies using a common light chain
WO2018119402A1 (en) 2016-12-23 2018-06-28 Visterra, Inc. Binding polypeptides and methods of making the same
WO2018136626A1 (en) 2017-01-18 2018-07-26 Visterra, Inc. Antibody molecule-drug conjugates and uses thereof
WO2018151820A1 (en) 2017-02-16 2018-08-23 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
WO2018158719A1 (en) 2017-03-02 2018-09-07 Novartis Ag Engineered heterodimeric proteins
WO2018187227A1 (en) 2017-04-03 2018-10-11 Concologie, Inc. Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents
WO2018195283A1 (en) 2017-04-19 2018-10-25 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
WO2018201047A1 (en) 2017-04-28 2018-11-01 Elstar Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
US10130081B2 (en) 2011-08-05 2018-11-20 Regeneron Pharmaceuticals, Inc. Humanized universal light chain mice
WO2018222901A1 (en) 2017-05-31 2018-12-06 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
US10149462B2 (en) 2013-10-01 2018-12-11 Kymab Limited Animal models and therapeutic molecules
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018237157A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
EP3431496A1 (en) 2017-07-19 2019-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anti- isoasp7 amyloid beta antibodies and uses thereof
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Multispecific molecules that bind to bcma and uses thereof
US10238093B2 (en) 2012-06-12 2019-03-26 Regeneron Pharmaceuticals, Inc. Humanized non-human animals with restricted immunoglobulin heavy chain loci
EP3461841A1 (en) 2017-10-02 2019-04-03 Certest Biotec, S.L. Antibodies and test devices for the detection of bacteria of the genus campylobacter
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
US10253101B2 (en) 2015-08-06 2019-04-09 Xoma (Us) Llc Antibody fragments against the insulin receptor and uses thereof to treat hypoglycemia
WO2019070726A1 (en) 2017-10-02 2019-04-11 Visterra, Inc. Antibody molecules to cd138 and uses thereof
WO2019077132A1 (en) 2017-10-19 2019-04-25 Debiopharm International S.A. Combination product for the treatment of cancer
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
WO2019113464A1 (en) 2017-12-08 2019-06-13 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
WO2019129137A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
WO2019129136A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-pd-l1 antibody and uses thereof
EP3514179A1 (en) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Antibody molecules to pd-1 and uses thereof
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
WO2019200229A1 (en) 2018-04-13 2019-10-17 Novartis Ag Dosage regimens for anti-pd-l1 antibodies and uses thereof
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
WO2019246293A2 (en) 2018-06-19 2019-12-26 Atarga, Llc Antibody molecules to complement component 5 and uses thereof
WO2020010250A2 (en) 2018-07-03 2020-01-09 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and uses thereof
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020069372A1 (en) 2018-09-27 2020-04-02 Elstar Therapeutics, Inc. Csf1r/ccr2 multispecific antibodies
US10667501B2 (en) 2012-05-17 2020-06-02 Kymab Limited Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins
WO2020128898A1 (en) 2018-12-20 2020-06-25 Novartis Ag Pharmaceutical combinations
WO2020165868A1 (en) 2019-02-15 2020-08-20 Perkinelmer Cellular Technologies Germany Gmbh Low-power microscope-objective pre-scan and high-power microscope-objective scan in x,y and z-direction for imaging objects such as cells using a microscope
WO2020172601A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2020172571A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
WO2020172598A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Multifunctional molecules that bind to t cells and uses thereof to treat autoimmune disorders
WO2020172605A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Antibody molecules that bind to nkp30 and uses thereof
WO2020172596A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and thereof
US10787522B2 (en) 2014-03-21 2020-09-29 Regeneron Pharmaceuticals, Inc. VL antigen binding proteins exhibiting distinct binding characteristics
EP3714906A1 (en) 2007-10-03 2020-09-30 Cornell University Treatment of proliferative disorders using radiolabelled antibodies to psma
WO2020205523A1 (en) 2019-03-29 2020-10-08 Atarga, Llc Anti fgf23 antibody
WO2020257289A2 (en) 2019-06-17 2020-12-24 Visterra, Inc. Humanized antibody molecules to cd138 and uses thereof
US10881085B2 (en) 2014-03-21 2021-01-05 Regeneron Pharmaceuticals, Inc. Non-human animals that make single domain binding proteins
WO2021021606A1 (en) 2019-07-26 2021-02-04 Visterra, Inc. Interleukin-2 agents and uses thereof
US10934571B2 (en) 2002-07-18 2021-03-02 Merus N.V. Recombinant production of mixtures of antibodies
WO2021079188A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
WO2021079195A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
US11051497B2 (en) 2011-09-19 2021-07-06 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
WO2021146320A1 (en) 2020-01-13 2021-07-22 Visterra, Inc. Antibody molecules to c5ar1 and uses thereof
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US11111314B2 (en) 2015-03-19 2021-09-07 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
WO2021203024A1 (en) 2020-04-03 2021-10-07 Visterra, Inc. Antibody molecule-drug conjugates and uses thereof
WO2021217085A1 (en) 2020-04-24 2021-10-28 Marengo Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
WO2021220218A1 (en) 2020-05-01 2021-11-04 Novartis Ag Immunoglobulin variants
WO2021220215A1 (en) 2020-05-01 2021-11-04 Novartis Ag Engineered immunoglobulins
US11179377B2 (en) 2017-03-10 2021-11-23 Embera Neurotherapeutics, Inc. Pharmaceutical compositions and uses thereof
WO2021262999A1 (en) 2020-06-24 2021-12-30 Visterra, Inc. Antibody molecules to april and uses thereof
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022046920A2 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2022046922A2 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Antibody molecules that bind to nkp30 and uses thereof
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022047046A1 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Methods of detecting trbc1 or trbc2
WO2022120224A1 (en) 2020-12-04 2022-06-09 Visterra, Inc. Methods of using interleukin-2 agents
WO2022159590A1 (en) 2021-01-20 2022-07-28 Visterra, Inc. Interleukin-2 mutants and uses thereof
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022182872A2 (en) 2021-02-24 2022-09-01 Alladapt Immunotherapeutics, Inc. Compositions and methods for identification of cross-reactive allergenic proteins and treatment of allergies
WO2022195551A1 (en) 2021-03-18 2022-09-22 Novartis Ag Biomarkers for cancer and methods of use thereof
WO2022216993A2 (en) 2021-04-08 2022-10-13 Marengo Therapeutics, Inc. Multifuntional molecules binding to tcr and uses thereof
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
US11512131B2 (en) 2017-12-27 2022-11-29 Innovent Biologies (Suzhou) Co., Ltd. Anti-PD-L1 antibody and uses thereof
US11564380B2 (en) 2009-07-08 2023-01-31 Kymab Limited Animal models and therapeutic molecules
US11572405B2 (en) 2018-01-12 2023-02-07 Bristol-Myers Squibb Company Combination therapy with anti-IL-8 antibodies and anti-PD-1 antibodies for treating cancer
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
WO2023097254A1 (en) 2021-11-24 2023-06-01 Visterra, Inc. Engineered antibody molecules to cd138 and uses thereof
WO2023102463A1 (en) 2021-12-01 2023-06-08 Visterra, Inc. Methods of using interleukin-2 agents
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
WO2023139292A1 (en) 2022-01-24 2023-07-27 Cambridge Enterprise Limited Tau therapy
WO2023150778A1 (en) 2022-02-07 2023-08-10 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
US11725247B2 (en) 2016-02-29 2023-08-15 Foundation Medicine, Inc. Methods of treating cancer
WO2023212518A1 (en) 2022-04-25 2023-11-02 Visterra, Inc. Antibody molecules to april and uses thereof
WO2023220695A2 (en) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
EP4296279A1 (en) 2022-06-23 2023-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anti-transthyretin (ttr) binding proteins and uses thereof
WO2024030976A2 (en) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions and methods for crossing the blood brain barrier
EP4324518A2 (en) 2014-01-31 2024-02-21 Novartis AG Antibody molecules to tim-3 and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004036A1 (en) * 1988-10-12 1990-04-19 Medical Research Council Production of antibodies from transgenic animals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004036A1 (en) * 1988-10-12 1990-04-19 Medical Research Council Production of antibodies from transgenic animals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA. vol. 86, no. 7, September 1989, WASHINGTON US pages 6709 - 6713; BRUGGEMANN, M. et al.: "A repertoire of monoclonal antibodies with human heavy chains from transgenic mice" see the whole document *

Cited By (404)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075181A (en) * 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US6657103B1 (en) 1990-01-12 2003-12-02 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6150584A (en) * 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5789650A (en) * 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) * 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
EP0546073A1 (en) * 1990-08-29 1993-06-16 Genpharm Int Transgenic non-human animals capable of producing heterologous antibodies.
EP0546073A4 (en) * 1990-08-29 1994-04-27 Genpharm International, Inc.
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) * 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) * 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5625126A (en) * 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
EP0814159A2 (en) * 1990-08-29 1997-12-29 GenPharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5569825A (en) * 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0814159A3 (en) * 1990-08-29 1999-07-14 GenPharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5877397A (en) * 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5814318A (en) * 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5874299A (en) * 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7501552B2 (en) 1991-08-28 2009-03-10 Medarex, Inc. Transgenic non-human animals for producing chimeric antibodies
EP0746609A4 (en) * 1991-12-17 1997-12-17 Genpharm Int Transgenic non-human animals capable of producing heterologous antibodies
AU781922B2 (en) * 1991-12-17 2005-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
AU743883B2 (en) * 1991-12-17 2002-02-07 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0746609A1 (en) * 1991-12-17 1996-12-11 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies
WO1994025585A1 (en) * 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US8158419B2 (en) 1994-03-09 2012-04-17 Medarex, Inc. Transgenic non-human animals for producing chimeric antibodies
US8293480B2 (en) 1994-03-09 2012-10-23 Genpharm International Transgenic non-human animals for producing chimeric antibodies
EP1958966A2 (en) 1994-07-01 2008-08-20 Dana-Farber Cancer Institute Methods for modulating T cell responses by manipulating a common cytokine receptor gamma chain
WO1996034096A1 (en) * 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1997013852A1 (en) * 1995-10-10 1997-04-17 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7041871B1 (en) 1995-10-10 2006-05-09 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0939763A1 (en) * 1996-03-20 1999-09-08 Abgenix, Inc. Directed switch-mediated dna recombination
EP1714971A2 (en) * 1996-03-20 2006-10-25 Amgen Fremont Inc. Directed switch-mediated DNA recombination
EP1714971A3 (en) * 1996-03-20 2007-05-09 Amgen Fremont Inc. Directed switch-mediated DNA recombination
EP0939763A4 (en) * 1996-03-20 2002-05-08 Abgenix Inc Directed switch-mediated dna recombination
US7722873B2 (en) 1996-10-10 2010-05-25 Genpharm International, Inc. Heterologous antibodies which bind human CD4
US7084260B1 (en) 1996-10-10 2006-08-01 Genpharm International, Inc. High affinity human antibodies and human antibodies against human antigens
US8231877B2 (en) 1996-10-10 2012-07-31 Genpharm International, Inc. Heterologous antibodies which bind human CD4
US7820877B2 (en) 1996-12-03 2010-10-26 Amgen Fremont Inc. Transgenic mammals having human IG loci including plural Vh and Vk regions and antibodies produced therefrom
WO1998024893A2 (en) * 1996-12-03 1998-06-11 Abgenix, Inc. TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
EP1972194A1 (en) * 1996-12-03 2008-09-24 Amgen Fremont Inc. Transgenic mammals having human ig loci including plural vh and vk regions and antibodies produced therefrom
WO1998024893A3 (en) * 1996-12-03 1998-08-20 Abgenix Inc TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM
AU2008200005B2 (en) * 1996-12-03 2012-05-17 Amgen Fremont Inc. Transgenic Mammals Having Human Ig Loci Including Plural Vh and Vk Regions and Antibodies Produced Therefrom
US8809051B2 (en) 1996-12-03 2014-08-19 Amgen Fremont Inc. Transgenic mammals having human Ig loci including plural VH and Vκ regions and antibodies produced therefrom
US7064244B2 (en) 1996-12-03 2006-06-20 Abgenix, Inc. Transgenic mammals having human Ig loci including plural VH and VK regions and antibodies produced therefrom
US8227580B2 (en) 1997-05-05 2012-07-24 Amgen Inc Human monoclonal antibodies to epidermal growth factor receptor
US7807798B2 (en) 1997-05-05 2010-10-05 Amgen Fremont Inc. Human monoclonal antibodies to epidermal growth factor receptor
EP2251026A1 (en) 2000-06-08 2010-11-17 Immune Disease Institute, Inc. Methods and compositions for inhibiting immunoglobulin-mediated reperfusion injury
US9677129B2 (en) 2000-10-31 2017-06-13 Regeneron Pharmaceuticals, Inc. Method for detecting the replacement of an endogenous allele with a modified allele by homologous recombination in a mouse ES cell
US8759105B2 (en) 2000-10-31 2014-06-24 Regeneron Pharmaceuticals, Inc. Method for genetically modifying mouse embryonic stem cell by homologous recombination
US8791323B2 (en) 2000-10-31 2014-07-29 Regeneron Pharmaceuticals, Inc. Hybrid antibodies comprising human variable regions and mouse constant regions produced in a genetically modified mouse
US8846402B2 (en) 2000-10-31 2014-09-30 Regeneron Pharmaceuticals, Inc. Method for genetically modifying isolated non-human mammalian cell by homologous recombination
US9708635B2 (en) 2000-10-31 2017-07-18 Regeneron Pharmaceuticals, Inc. Methods of making a nucleic acid encoding a human variable region
US10227625B2 (en) 2000-10-31 2019-03-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US10344299B2 (en) 2000-10-31 2019-07-09 Regeneron Pharmaceuticals, Inc. Compositions and methods for modifying cells
US9376699B2 (en) 2000-10-31 2016-06-28 Regeneron Pharmaceuticals, Inc. Methods of producing hybrid antibodies
US8835712B2 (en) 2000-11-30 2014-09-16 Medarex, L.L.C. Transgenic trasnchromosomal rodents for making human antibodies
US9426970B2 (en) 2000-11-30 2016-08-30 E. R. Squibb & Sons, L.L.C. Transgenic transchromosomal rodents for making human antibodies
US7041870B2 (en) 2000-11-30 2006-05-09 Medarex, Inc. Transgenic transchromosomal rodents for making human antibodies
US7816578B2 (en) 2000-11-30 2010-10-19 Kyowa Hakko Kirin Co., Ltd. Transgenic transchromosomal rodents for making human antibodies
US7576258B2 (en) 2000-11-30 2009-08-18 Medarex, Inc. Transgenic transchromosomal rodents for making human antibodies
US10076103B2 (en) 2000-11-30 2018-09-18 Kyowa Hakko Kirin Co., Ltd. Transgenic transchromosomal rodents for making human antibodies
US10584364B2 (en) * 2000-12-07 2020-03-10 Rgeneron Pharmaceuticals, Inc. Mice that produce hybrid antibodies
US10378039B2 (en) 2001-02-16 2019-08-13 Regeneron Pharmaceuticals, Inc. Mouse embryonic stem cells comprising a hybrid heavy chain immunoglobulin locus
US10526630B2 (en) 2001-02-16 2020-01-07 Regeneron Pharmaceuticals, Inc. Genetically modified mice that produce hybrid antibodies
US20140017238A1 (en) 2001-02-16 2014-01-16 Regeneron Pharmaceuticals, Inc. Methods of Modifying Eukaryotic Cells
EP2787075A1 (en) * 2001-02-16 2014-10-08 Regeneron Pharmaceuticals, Inc. Rodent capable of producing hybrid antibodies containing human variable regions and rodent constant regions
US10378040B2 (en) 2001-02-16 2019-08-13 Regeneron Pharmaceuticals, Inc. Mice that produce hybrid antibodies
US20140013457A1 (en) * 2001-02-16 2014-01-09 Regeneron Pharmaceuticals, Inc. Methods of Modifying Eukaryotic Cells
EP3626819A1 (en) * 2001-02-16 2020-03-25 Regeneron Pharmaceuticals, Inc. Transgenic mouse which produces hybrid antibodies containing human variable regions and mouse constant regions
US10378038B2 (en) 2001-02-16 2019-08-13 Regeneron Pharmaceuticals, Inc. Mice that produce hybrid antibodies
EP3085779B1 (en) 2001-02-16 2019-04-03 Regeneron Pharmaceuticals, Inc. Method of modifying eukaryotic cells
EP2264163A2 (en) 2001-02-16 2010-12-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US10378037B2 (en) 2001-02-16 2019-08-13 Regeneron Pharmaceuticals, Inc. Methods of making a nucleic acid encoding a human variable region
US9528136B2 (en) 2001-02-16 2016-12-27 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
EP2264163B1 (en) * 2001-02-16 2015-10-14 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US9388446B2 (en) 2001-02-16 2016-07-12 Regeneron Pharmaceuticals, Inc. Methods of producing hybrid antibodies
EP2787075B1 (en) 2001-02-16 2016-11-30 Regeneron Pharmaceuticals, Inc. Rodent capable of producing hybrid antibodies containing human variable regions and rodent constant regions
US9353394B2 (en) 2001-02-16 2016-05-31 Regeneron Pharmaceuticals, Inc. Methods of producing hybrid antibodies
EP2786657B1 (en) 2001-02-16 2018-02-07 Regeneron Pharmaceuticals, Inc. A method of producing an antibody comprising a human variable region and a rodent constant region.
US9382567B2 (en) 2001-02-16 2016-07-05 Regeneron Pharmaceuticals, Inc. Methods of producing hybrid antibodies
EP2767588A1 (en) * 2001-02-16 2014-08-20 Regeneron Pharmaceuticals, Inc. Use of rodent to produce hybrid antibodies contaning human variable region and rodent constant or FC region
US9371553B2 (en) 2001-02-16 2016-06-21 Regeneron Pharmaceuticals, Inc. Genetically modified mice that produce hybrid antibodies
US20140073010A1 (en) * 2001-02-16 2014-03-13 Regeneron Pharmaceuticals, Inc. Methods of Modifying Eukaryotic Cells
US10640800B2 (en) 2001-02-16 2020-05-05 Regeneron Pharmaceuticals, Inc. Mice that produce hybrid antibodies
US10448622B2 (en) 2001-05-11 2019-10-22 E. R. Squibb & Sons, L.L.C. Human artificial chromosome containing human antibody lambda light chain gene and non-human animal containing the human artificial chromosome capable of genetic transmission
US9499838B2 (en) 2001-05-11 2016-11-22 Kyowa Hakko Kirin Co., Ltd. Human artificial chromosome containing human antibody λ light chain gene and non-human animal containing the human artificial chromosome capable of genetic transmission
EP2277542A1 (en) 2001-06-01 2011-01-26 Cornell Research Foundation Inc. Modified antibodies to prostrate-specific membrane antigen and uses thereof
US7745391B2 (en) 2001-09-14 2010-06-29 Compugen Ltd. Human thrombospondin polypeptide
EP3254687A1 (en) 2001-10-04 2017-12-13 Genetics Institute LLC Methods and compositions for modulating interleukin-21 receptor activity
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
US10934571B2 (en) 2002-07-18 2021-03-02 Merus N.V. Recombinant production of mixtures of antibodies
US8105588B2 (en) 2002-12-16 2012-01-31 Genmab A/S Human monoclonal antibodies against interleukin 8 (IL-8)
US10066012B2 (en) 2002-12-16 2018-09-04 Cormorant Pharmaceuticals Ab Human monoclonal antibodies against interleukin 8 (IL-8)
US10253093B2 (en) 2002-12-16 2019-04-09 Cormorant Pharmaceuticals Ab Human monoclonal antibodies against interleukin 8 (IL-8)
US8603469B2 (en) 2002-12-16 2013-12-10 Genmab A/S Methods of treating cancer with human monoclonal antibodies against interleukin 8
US11339215B2 (en) 2002-12-16 2022-05-24 Cormorant Pharmaceuticals Ab Methods of treating cancer with human monoclonal antibodies against interleukin 8 (IL-8)
US7282568B2 (en) 2002-12-16 2007-10-16 Medarex, Inc. Human monoclonal antibodies against interleukin 8 (IL-8)
US7622559B2 (en) 2002-12-16 2009-11-24 Genmab A/S Human monoclonal antibodies against interleukin 8 (IL-8)
EP2386318A1 (en) 2003-05-15 2011-11-16 Iogenetics, Inc. Targeted biocides
US9738701B2 (en) 2003-05-30 2017-08-22 Merus N.V. Method for selecting a single cell expressing a heterogeneous combination of antibodies
US10605808B2 (en) 2003-05-30 2020-03-31 Merus N.V. Antibody producing non-human animals
US10670599B2 (en) 2003-05-30 2020-06-02 Merus N.V. Method for selecting a single cell expressing a heterogeneous combination of antibodies
EP2508608A1 (en) 2003-06-09 2012-10-10 Alnylam Pharmaceuticals Inc. Method of treating neurodegenerative disease
EP2290077A2 (en) 2004-03-01 2011-03-02 Immune Disease Institute, Inc. Natural IGM antibodies and inhibitors thereof
US7704503B2 (en) 2005-02-14 2010-04-27 Wyeth Llc Use of IL-17F in diagnosis and therapy of airway inflammation
EP2436695A1 (en) 2005-04-14 2012-04-04 Wyeth LLC Methods for treating and preventing fibrosis by IL-21 / IL-21R antagonists
EP3263581A1 (en) 2005-05-17 2018-01-03 University of Connecticut Compositions and methods for immunomodulation in an organism
EP3805245A1 (en) 2005-05-17 2021-04-14 University of Connecticut Compositions and methods for immunomodulation in an organism
US9309315B2 (en) 2005-08-18 2016-04-12 Genmab A/S Therapy with CD4 binding peptides and radiation
EP2478918A2 (en) 2005-11-10 2012-07-25 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Compositions and methods for the treatment of addiction and other neuropsychiatric disorders
US9415107B2 (en) 2005-11-10 2016-08-16 Board Of Supervisors Of Louisiana State University & Agricultural & Mechanical College Compositions and methods for the treatment of addiction and other neuropsychiatric disorders
EP1798240A1 (en) 2005-12-15 2007-06-20 Industrial Technology Research Institute Recombinant triplex scaffold-based polypeptides
EP2336170A2 (en) 2005-12-15 2011-06-22 Industrial Technology Research Institute Recombinant triplex scaffold-based polypeptides
US10183986B2 (en) 2005-12-15 2019-01-22 Industrial Technology Research Institute Trimeric collagen scaffold antibodies
EP2338912A2 (en) 2005-12-15 2011-06-29 Industrial Technology Research Institute Recombinant triplex scaffold-base polypeptides
US8278421B2 (en) 2006-03-20 2012-10-02 Xoma Techolology Ltd. Human antibodies specific for gastrin materials and methods
US9220244B2 (en) 2006-03-31 2015-12-29 E. R. Squibb & Sons, L.L.C. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
EP2003960B1 (en) 2006-03-31 2015-06-10 E. R. Squibb & Sons, L.L.C. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US7910798B2 (en) 2006-03-31 2011-03-22 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
US8232449B2 (en) 2006-03-31 2012-07-31 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
EP2471815A1 (en) 2006-07-11 2012-07-04 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
EP2471809A1 (en) 2006-07-11 2012-07-04 University Of Medicine And Dentistry Of New Jersey Proteins, nucleic acids encoding the same and associated methods of use
WO2008060776A2 (en) 2006-10-03 2008-05-22 University Of Medicine And Dentistry Of New Jersey Atap peptides, nucleic acids encoding the same and associated methods of use
EP3124045A2 (en) 2006-12-20 2017-02-01 Xoma (Us) Llc Treatment of il-1 beta related diseases
EP3714906A1 (en) 2007-10-03 2020-09-30 Cornell University Treatment of proliferative disorders using radiolabelled antibodies to psma
EP2065402A1 (en) 2007-11-30 2009-06-03 Industrial Technology Research Institut Trimeric collagen scaffold antibodies
EP2851373A1 (en) 2007-12-20 2015-03-25 Xoma (Us) Llc Methods for the treatment of gout
WO2009086003A1 (en) 2007-12-20 2009-07-09 Xoma Technology Ltd. Methods for the treatment of gout
US8653020B2 (en) 2008-01-25 2014-02-18 Aarhus Universitet Selective exosite inhibition of PAPP-A activity against IGFBP-4
EP2732823A1 (en) 2008-06-25 2014-05-21 H. Lundbeck A/S Modulation of the TrpV : Vps10p-domain receptor system for the treatment of pain
US9951124B2 (en) 2008-06-27 2018-04-24 Merus N.V. Antibody producing non-human mammals
US11559049B2 (en) 2008-06-27 2023-01-24 Merus N.V. Antibody producing non-human animals
US9944695B2 (en) 2008-06-27 2018-04-17 Merus N.V. Antibody producing non-human mammals
US9765133B2 (en) 2008-06-27 2017-09-19 Merus N.V. Antibody producing non-human mammals
US11785924B2 (en) 2008-06-27 2023-10-17 Merus N.V. Antibody producing non-human animals
US10966411B2 (en) 2008-06-27 2021-04-06 Merus N.V. Antibody producing non-human mammals
US11237165B2 (en) 2008-06-27 2022-02-01 Merus N.V. Antibody producing non-human animals
US11925174B2 (en) 2008-06-27 2024-03-12 Merus N.V. Antibody producing non-human animals
US10638736B2 (en) 2008-09-30 2020-05-05 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10575504B2 (en) 2008-09-30 2020-03-03 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US9346873B2 (en) 2008-09-30 2016-05-24 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10561123B2 (en) 2008-09-30 2020-02-18 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10555506B2 (en) 2008-09-30 2020-02-11 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10492476B2 (en) 2008-09-30 2019-12-03 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
WO2010069331A2 (en) 2008-12-19 2010-06-24 H. Lundbeck A/S Modulation of the vps 10-domain receptor family for the treatment of mental and behavioural disorders
EP3165537A1 (en) 2008-12-19 2017-05-10 H. Lundbeck A/S Modulation of the vps 10-domain receptor family for the treatment of mental and behavioural disorders
WO2010075475A1 (en) 2008-12-23 2010-07-01 Abbott Laboratories SOLUBLE FMS-LIKE TYROSINE KINASE-1 (sFLT-1) ANTIBODY AND RELATED COMPOSITION, KIT, METHODS OF USING, AND MATERIALS AND METHOD FOR MAKING
WO2010112034A2 (en) 2009-04-02 2010-10-07 Aarhus Universitet Compositions and methods for treatment and diagnosis of synucleinopathies
EP3524275A1 (en) 2009-04-22 2019-08-14 Massachusetts Institute Of Technology Innate immune supression enables repeated delivery of long rna molecules
EP3248618A1 (en) 2009-04-22 2017-11-29 Massachusetts Institute Of Technology Innate immune suppression enables repeated delivery of long rna molecules
US10064398B2 (en) 2009-07-08 2018-09-04 Kymab Limited Animal models and therapeutic molecules
US9505827B2 (en) 2009-07-08 2016-11-29 Kymab Limited Animal models and therapeutic molecules
US9504236B2 (en) 2009-07-08 2016-11-29 Kymab Limited Animal models and therapeutic molecules
US11606941B2 (en) 2009-07-08 2023-03-21 Kymab Limited Animal models and therapeutic molecules
US9447177B2 (en) 2009-07-08 2016-09-20 Kymab Limited Transgenic mouse homozygous for chimeric IgH locus
US11812731B2 (en) 2009-07-08 2023-11-14 Kymab Ltd. Animal models and therapeutic molecules
US11564380B2 (en) 2009-07-08 2023-01-31 Kymab Limited Animal models and therapeutic molecules
US10165763B2 (en) 2009-07-08 2019-01-01 Kymab Limited Animal models and therapeutic molecules
US9434782B2 (en) 2009-07-08 2016-09-06 Kymab Limited Animal models and therapeutic molecules
EP3187877A1 (en) 2009-09-25 2017-07-05 XOMA Technology Ltd. Screening methods
EP2957296A1 (en) 2009-09-25 2015-12-23 Xoma (Us) Llc Insulin receptor binding antibodies
WO2011038301A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Screening methods
WO2011038302A2 (en) 2009-09-25 2011-03-31 Xoma Technology Ltd. Novel modulators
EP2501817B2 (en) 2010-02-08 2021-04-21 Regeneron Pharmaceuticals, Inc. Common light chain mouse
US10412940B2 (en) 2010-02-08 2019-09-17 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
EP2505654B1 (en) 2010-02-08 2016-08-24 Regeneron Pharmaceuticals, Inc. Common light chain mouse
EP2501817B1 (en) 2010-02-08 2015-08-26 Regeneron Pharmaceuticals, Inc. Common light chain mouse
US9969814B2 (en) 2010-02-08 2018-05-15 Regeneron Pharmaceuticals, Inc. Methods for making fully human bispecific antibodies using a common light chain
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
US11026407B2 (en) 2010-02-08 2021-06-08 Regeneran Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
US10167344B2 (en) 2010-02-08 2019-01-01 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
US10986820B2 (en) 2010-02-08 2021-04-27 Regeneron Pharmaceuticals, Inc. Common light chain mouse
US10143186B2 (en) 2010-02-08 2018-12-04 Regeneron Pharmaceuticals, Inc. Common light chain mouse
EP2505654B2 (en) 2010-02-08 2020-05-13 Regeneron Pharmaceuticals, Inc. Common light chain mouse
WO2011116023A1 (en) 2010-03-18 2011-09-22 Abbott Laboratories METHODS OF ASSAYING URINARY NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN (uNGAL) IN THE PROGNOSIS OF CADAVERIC KIDNEY TRANSPLANT FUNCTION IN A PATIENT, INCLUDING A PATIENT DIAGNOSED WITH DELAYED GRAFT FUNCTION (DGF), A METHOD OF ASSAYING uNGAL IN THE ASSESSMENT OF RISK OF DGF IN A PATIENT DIAGNOSED WITH EARLY GRAFT FUNCTION (EGF), AND RELATED KITS
WO2011119484A1 (en) 2010-03-23 2011-09-29 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
EP4012714A1 (en) 2010-03-23 2022-06-15 Iogenetics, LLC. Bioinformatic processes for determination of peptide binding
US11104743B2 (en) 2010-03-31 2021-08-31 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10618977B2 (en) 2010-03-31 2020-04-14 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10662255B2 (en) 2010-03-31 2020-05-26 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10494445B2 (en) 2010-03-31 2019-12-03 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10604587B2 (en) 2010-03-31 2020-03-31 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10829564B2 (en) 2010-03-31 2020-11-10 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10836832B2 (en) 2010-03-31 2020-11-17 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11220555B2 (en) 2010-03-31 2022-01-11 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10626188B2 (en) 2010-03-31 2020-04-21 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11104744B2 (en) 2010-03-31 2021-08-31 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10526420B2 (en) 2010-03-31 2020-01-07 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US9580491B2 (en) 2010-03-31 2017-02-28 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11352444B2 (en) 2010-03-31 2022-06-07 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11242409B2 (en) 2010-03-31 2022-02-08 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US9987286B2 (en) 2010-06-16 2018-06-05 Embera Neurotherapeutics, Inc. Compositions and methods for the treatment of addiction, psychiatric disorders, and neurodegenerative disease
US9078886B2 (en) 2010-06-16 2015-07-14 Embera Neurotherapeutics, Inc. Compositions for the treatment of addiction, psychiatric disorders, and neurodegenerative disease
US9551714B2 (en) 2010-06-25 2017-01-24 Abbott Laboratories Materials and methods for assay of anti-hepatitis C virus (HCV) antibodies
WO2011163558A1 (en) 2010-06-25 2011-12-29 Abbott Laboratories Materials and methods for assay of anti-hepatitis c virus (hcv) antibodies
WO2012010321A1 (en) 2010-07-23 2012-01-26 Erasmus University Medical Center Rotterdam Foetal haemoglobin inhibitor
WO2012010855A1 (en) 2010-07-23 2012-01-26 Medical Research Council Intracellular immunity
US10954310B2 (en) 2010-08-02 2021-03-23 Regeneran Pharmaceuticals, Inc. Mice that make VL binding proteins
US9686970B2 (en) 2010-08-02 2017-06-27 Regeneron Pharmaceuticals, Inc. Mice that make VL binding proteins
WO2012064674A1 (en) 2010-11-09 2012-05-18 Abbott Laboratories Materials and methods for immunoassay of pterins
US9932408B2 (en) 2011-02-25 2018-04-03 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US10905109B2 (en) 2011-02-25 2021-02-02 Regeneren Pharmaceuticals, Inc. ADAM6 mice
US10577430B2 (en) 2011-02-25 2020-03-03 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US11950578B2 (en) 2011-02-25 2024-04-09 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US10694725B2 (en) 2011-02-25 2020-06-30 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US10072095B2 (en) 2011-02-25 2018-09-11 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US10905108B2 (en) 2011-02-25 2021-02-02 Regeneron Pharmaceuticals, Inc. ADAM6 mice
US9944716B2 (en) 2011-02-25 2018-04-17 Regeneron Pharmaceuticals, Inc. ADAM6 mice
EP2701499B1 (en) 2011-04-25 2016-02-10 Regeneron Pharmaceuticals, Inc. Non-human animals expressing antibodies having a common light chain
WO2012167143A1 (en) 2011-06-03 2012-12-06 Xoma Technology Ltd. Antibodies specific for tgf-beta
EP3954704A1 (en) 2011-06-03 2022-02-16 XOMA Technology Ltd. Antibodies specific for tgf-beta
US11357217B2 (en) 2011-08-05 2022-06-14 Regeneron Pharmaceuticals, Inc. Humanized universal light chain mice
US10130081B2 (en) 2011-08-05 2018-11-20 Regeneron Pharmaceuticals, Inc. Humanized universal light chain mice
WO2013040142A2 (en) 2011-09-16 2013-03-21 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
US11051497B2 (en) 2011-09-19 2021-07-06 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US9963716B2 (en) 2011-09-26 2018-05-08 Kymab Limited Chimaeric surrogate light chains (SLC) comprising human VpreB
US11261248B2 (en) 2011-10-17 2022-03-01 Regeneron Pharmaceuticals, Inc. Restricted immunoglobulin heavy chain mice
US10246509B2 (en) 2011-10-17 2019-04-02 Regeneron Pharmaceuticals, Inc. Restricted immunoglobulin heavy chain mice
US9932398B2 (en) 2011-10-17 2018-04-03 Regeneron Pharmaceuticals, Inc. Restricted immunoglobulin heavy chain mice
WO2013096516A1 (en) 2011-12-19 2013-06-27 Xoma Technology Ltd. Methods for treating acne
EP3050900A1 (en) 2011-12-19 2016-08-03 Xoma (Us) Llc Methods for treating acne
US9706759B2 (en) 2011-12-20 2017-07-18 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
US10561124B2 (en) 2011-12-20 2020-02-18 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
US9622459B2 (en) 2011-12-20 2017-04-18 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
US11617357B2 (en) 2011-12-20 2023-04-04 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
US11612151B2 (en) 2011-12-20 2023-03-28 Regeneron Pharmaceuticals, Inc. Humanized light chain mice
WO2013102149A1 (en) 2011-12-31 2013-07-04 Abbott Laboratories Truncated human vitamin d binding protein and mutation and fusion thereof and related materials and methods of use
WO2013117735A1 (en) 2012-02-09 2013-08-15 Medical Research Council Conjugate comprising an agent and an antiviral ligand and its use in a method for delivering the agent intracellularly
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
US9938358B2 (en) 2012-03-28 2018-04-10 Kymab Limited Animal models and therapeutic molecules
US9924705B2 (en) 2012-03-28 2018-03-27 Kymab Limited Animal models and therapeutic molecules
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
US9938357B2 (en) 2012-03-28 2018-04-10 Kymab Limited Animal models and therapeutic molecules
US9896516B2 (en) 2012-03-28 2018-02-20 Kymab Limited Animal models and therapeutic molecules
US11297811B2 (en) 2012-03-28 2022-04-12 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
US10774155B2 (en) 2012-03-28 2020-09-15 Kymab Limited Animal models and therapeutic molecules
WO2013144567A1 (en) 2012-03-28 2013-10-03 Kymab Limited Transgenic non-human vertebrate for the expression of class - switched, fully human, antibodies
EP2831245A1 (en) * 2012-03-28 2015-02-04 Kymab Limited Transgenic non-human vertebrate for the expression of class - switched, fully human, antibodies
US9758805B2 (en) 2012-04-20 2017-09-12 Merus N.V. Methods and means for the production of Ig-like molecules
US11926859B2 (en) 2012-04-20 2024-03-12 Merus N.V. Methods and means for the production of Ig-like molecules
US10337045B2 (en) 2012-04-20 2019-07-02 Merus N.V. Methods and means for the production of Ig-like molecules
US10329596B2 (en) 2012-04-20 2019-06-25 Merus N.V. Methods and means for the production of Ig-like molecules
US10752929B2 (en) 2012-04-20 2020-08-25 Merus N.V. Methods and means for the production of ig-like molecules
US10667501B2 (en) 2012-05-17 2020-06-02 Kymab Limited Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins
US10238093B2 (en) 2012-06-12 2019-03-26 Regeneron Pharmaceuticals, Inc. Humanized non-human animals with restricted immunoglobulin heavy chain loci
US10542735B2 (en) 2012-06-12 2020-01-28 Regerneron Pharmaceuticals, Inc. Humanized non-human animals with restricted immunoglobulin heavy chain loci
US11559050B2 (en) 2012-06-12 2023-01-24 Regeneron Pharmaceuticals, Inc. Humanized non-human animals with restricted immunoglobulin heavy chain loci
US11666040B2 (en) 2012-06-12 2023-06-06 Regeneron Pharmaceuticals, Inc. Humanized non-human animals with restricted immunoglobulin heavy chain loci
WO2014058875A2 (en) 2012-10-09 2014-04-17 Biogen Idec Ma Inc. Combination therapies and uses for treatment of demyelinating disorders
EP3750560A2 (en) 2012-10-09 2020-12-16 Biogen MA Inc. Combination therapies and uses for treatment of demyelinating disorders
US9930871B2 (en) 2013-02-20 2018-04-03 Regeneron Pharmaceuticals, Inc. Non-human animals with modified immunoglobulin heavy chain sequences
US10226033B2 (en) 2013-03-18 2019-03-12 Kymab Limited Animal models and therapeutic molecules
US11297810B2 (en) 2013-03-18 2022-04-12 Kymab Limited Animal models and therapeutic molecules
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
US11820810B2 (en) 2013-05-02 2023-11-21 Kymab Limited Antibodies, variable domains and chains tailored for human use
US10730930B2 (en) 2013-05-02 2020-08-04 Kymab Limited Antibodies, variable domains and chains tailored for human use
US10149462B2 (en) 2013-10-01 2018-12-11 Kymab Limited Animal models and therapeutic molecules
US11399522B2 (en) 2013-10-01 2022-08-02 Kymab Limited Animal models and therapeutic molecules
EP3514179A1 (en) 2014-01-24 2019-07-24 Dana-Farber Cancer Institute, Inc. Antibody molecules to pd-1 and uses thereof
EP4324518A2 (en) 2014-01-31 2024-02-21 Novartis AG Antibody molecules to tim-3 and uses thereof
EP4047015A1 (en) 2014-02-11 2022-08-24 Visterra, Inc. Antibody molecules to dengue virus and uses thereof
WO2015122995A1 (en) 2014-02-11 2015-08-20 Visterra, Inc. Antibody moleules to dengue virus and uses thereof
EP3660050A1 (en) 2014-03-14 2020-06-03 Novartis AG Antibody molecules to lag-3 and uses thereof
WO2015138920A1 (en) 2014-03-14 2015-09-17 Novartis Ag Antibody molecules to lag-3 and uses thereof
US10881085B2 (en) 2014-03-21 2021-01-05 Regeneron Pharmaceuticals, Inc. Non-human animals that make single domain binding proteins
US10787522B2 (en) 2014-03-21 2020-09-29 Regeneron Pharmaceuticals, Inc. VL antigen binding proteins exhibiting distinct binding characteristics
EP3659621A1 (en) 2014-09-13 2020-06-03 Novartis AG Combination therapies for cancer
WO2016040880A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies of alk inhibitors
WO2016040892A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies
EP3925622A1 (en) 2014-09-13 2021-12-22 Novartis AG Combination therapies
WO2016054555A2 (en) 2014-10-03 2016-04-07 Novartis Ag Combination therapies
EP3662903A2 (en) 2014-10-03 2020-06-10 Novartis AG Combination therapies
WO2016061142A1 (en) 2014-10-14 2016-04-21 Novartis Ag Antibody molecules to pd-l1 and uses thereof
EP4245376A2 (en) 2014-10-14 2023-09-20 Novartis AG Antibody molecules to pd-l1 and uses thereof
WO2016100882A1 (en) 2014-12-19 2016-06-23 Novartis Ag Combination therapies
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
WO2016141111A1 (en) 2015-03-03 2016-09-09 Xoma (Us) Llc Treatment of post-prandial hyperinsulinemia and hypoglycemia after bariatric surgery
US10711067B2 (en) 2015-03-03 2020-07-14 Xoma (Us) Llc Treatment of post-prandial hyperinsulinemia and hypoglycemia after bariatric surgery
US11111314B2 (en) 2015-03-19 2021-09-07 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
WO2016161410A2 (en) 2015-04-03 2016-10-06 Xoma Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
US10167334B2 (en) 2015-04-03 2019-01-01 Xoma Technology Ltd. Treatment of cancer using anti-TGF-BETA and PD-1 antibodies
US11685775B2 (en) 2015-04-03 2023-06-27 Xoma Technology Ltd. Method of increasing the ratio of effector T cells to regulatory T cells in a tumor by administering to a subject a TGF-beta inhibitor and a PD-1 antibody
US10683347B2 (en) 2015-04-03 2020-06-16 Xoma Technology Ltd. Treatment of cancer using anti-TGF-β and anti-PD-1 antibodies
EP3770171A1 (en) 2015-04-03 2021-01-27 XOMA Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
EP3964528A1 (en) 2015-07-29 2022-03-09 Novartis AG Combination therapies comprising antibody molecules to lag-3
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
EP3878465A1 (en) 2015-07-29 2021-09-15 Novartis AG Combination therapies comprising antibody molecules to tim-3
WO2017019894A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to lag-3
US10253101B2 (en) 2015-08-06 2019-04-09 Xoma (Us) Llc Antibody fragments against the insulin receptor and uses thereof to treat hypoglycemia
WO2017083515A2 (en) 2015-11-10 2017-05-18 Visterra, Inc. Antibody molecule-drug conjugates and uses thereof
WO2017091683A1 (en) 2015-11-25 2017-06-01 Visterra, Inc. Antibody molecules to april and uses thereof
EP4285923A2 (en) 2015-11-25 2023-12-06 Visterra, Inc. Antibody molecules to april and uses thereof
WO2017106810A2 (en) 2015-12-17 2017-06-22 Novartis Ag Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof
WO2017106656A1 (en) 2015-12-17 2017-06-22 Novartis Ag Antibody molecules to pd-1 and uses thereof
US11725247B2 (en) 2016-02-29 2023-08-15 Foundation Medicine, Inc. Methods of treating cancer
WO2017158426A1 (en) 2016-03-14 2017-09-21 University Of Oslo Engineered immunoglobulins with altered fcrn binding
WO2017158421A1 (en) 2016-03-14 2017-09-21 University Of Oslo Anti-viral engineered immunoglobulins
WO2017158436A1 (en) 2016-03-17 2017-09-21 Oslo Universitetssykehus Hf Fusion proteins targeting tumour associated macrophages for treating cancer
WO2017165464A1 (en) 2016-03-21 2017-09-28 Elstar Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof
WO2017165736A1 (en) 2016-03-25 2017-09-28 Visterra, Inc. Formulation of antibody molecules to dengue virus
WO2017181098A2 (en) 2016-04-15 2017-10-19 Visterra, Inc. Antibody molecules to zika virus and uses thereof
WO2017221072A2 (en) 2016-06-21 2017-12-28 University Of Oslo Hla binding vaccine moieties and uses thereof
US11780924B2 (en) 2016-06-21 2023-10-10 University Of Oslo HLA binding vaccine moieties and uses thereof
WO2018013714A1 (en) 2016-07-13 2018-01-18 Biogen Ma Inc. Dosage regimens of lingo-1 antagonists and uses for treatment of demyelinating disorders
US11787876B2 (en) 2016-08-01 2023-10-17 Xoma (Us) Llc Parathyroid hormone receptor 1 (PTH1R) antibodies and uses thereof
WO2018026748A1 (en) 2016-08-01 2018-02-08 Xoma (Us) Llc Parathyroid hormone receptor 1 (pth1r) antibodies and uses thereof
US10519250B2 (en) 2016-08-01 2019-12-31 Xoma (Us) Llc Parathyroid hormone receptor 1 (PTH1R) antibodies and uses thereof
WO2018052556A1 (en) 2016-08-02 2018-03-22 Visterra, Inc. Engineered polypeptides and uses thereof
WO2018057955A1 (en) 2016-09-23 2018-03-29 Elstar Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
US11673971B2 (en) 2016-09-23 2023-06-13 Marengo Therapeutics, Inc. Multispecific antibody molecules comprising lambda and kappa light chains
WO2018064255A2 (en) 2016-09-28 2018-04-05 Xoma (Us) Llc Antibodies that bind interleukin-2 and uses thereof
US10858428B2 (en) 2016-09-28 2020-12-08 Xoma (Us) Llc Antibodies that bind interleukin-2 and uses thereof
WO2018119402A1 (en) 2016-12-23 2018-06-28 Visterra, Inc. Binding polypeptides and methods of making the same
WO2018136626A1 (en) 2017-01-18 2018-07-26 Visterra, Inc. Antibody molecule-drug conjugates and uses thereof
WO2018151820A1 (en) 2017-02-16 2018-08-23 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
WO2018158719A1 (en) 2017-03-02 2018-09-07 Novartis Ag Engineered heterodimeric proteins
US11179377B2 (en) 2017-03-10 2021-11-23 Embera Neurotherapeutics, Inc. Pharmaceutical compositions and uses thereof
US11571459B2 (en) 2017-04-03 2023-02-07 Oncxerna Therapeutics, Inc. Methods for treating cancer using PS-targeting antibodies with immuno-oncology agents
WO2018187227A1 (en) 2017-04-03 2018-10-11 Concologie, Inc. Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents
WO2018195283A1 (en) 2017-04-19 2018-10-25 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
EP4328241A2 (en) 2017-04-28 2024-02-28 Marengo Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
WO2018201047A1 (en) 2017-04-28 2018-11-01 Elstar Therapeutics, Inc. Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof
WO2018222901A1 (en) 2017-05-31 2018-12-06 Elstar Therapeutics, Inc. Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018237157A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
WO2019016213A1 (en) 2017-07-19 2019-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. ANTI- ISOASP7 AMYLOID β (Aβ) ANTIBODIES AND USES THEREOF
EP3431496A1 (en) 2017-07-19 2019-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anti- isoasp7 amyloid beta antibodies and uses thereof
US11703511B2 (en) 2017-07-19 2023-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anti-isoAsp7 amyloid β (Aβ) antibodies and uses thereof
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Multispecific molecules that bind to bcma and uses thereof
WO2019068733A1 (en) 2017-10-02 2019-04-11 Certest Biotec, S.L. Antibodies and test devices for the detection of bacteria of the genus campylobacter
EP3461841A1 (en) 2017-10-02 2019-04-03 Certest Biotec, S.L. Antibodies and test devices for the detection of bacteria of the genus campylobacter
WO2019070726A1 (en) 2017-10-02 2019-04-11 Visterra, Inc. Antibody molecules to cd138 and uses thereof
US11945868B2 (en) 2017-10-02 2024-04-02 Visterra, Inc. Antibody molecules to CD138 and uses thereof
WO2019077132A1 (en) 2017-10-19 2019-04-25 Debiopharm International S.A. Combination product for the treatment of cancer
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
WO2019113464A1 (en) 2017-12-08 2019-06-13 Elstar Therapeutics, Inc. Multispecific molecules and uses thereof
WO2019129137A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
WO2019129136A1 (en) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-pd-l1 antibody and uses thereof
US11512131B2 (en) 2017-12-27 2022-11-29 Innovent Biologies (Suzhou) Co., Ltd. Anti-PD-L1 antibody and uses thereof
US11572405B2 (en) 2018-01-12 2023-02-07 Bristol-Myers Squibb Company Combination therapy with anti-IL-8 antibodies and anti-PD-1 antibodies for treating cancer
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2019178364A2 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
WO2019200229A1 (en) 2018-04-13 2019-10-17 Novartis Ag Dosage regimens for anti-pd-l1 antibodies and uses thereof
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019246293A2 (en) 2018-06-19 2019-12-26 Atarga, Llc Antibody molecules to complement component 5 and uses thereof
US11965025B2 (en) 2018-07-03 2024-04-23 Marengo Therapeutics, Inc. Method of treating solid cancers with bispecific interleukin-anti-TCRß molecules
DE202019005887U1 (en) 2018-07-03 2023-06-14 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
WO2020010250A2 (en) 2018-07-03 2020-01-09 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and uses thereof
US11845797B2 (en) 2018-07-03 2023-12-19 Marengo Therapeutics, Inc. Anti-TCR antibody molecules and uses thereof
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020069372A1 (en) 2018-09-27 2020-04-02 Elstar Therapeutics, Inc. Csf1r/ccr2 multispecific antibodies
WO2020128898A1 (en) 2018-12-20 2020-06-25 Novartis Ag Pharmaceutical combinations
WO2020165868A1 (en) 2019-02-15 2020-08-20 Perkinelmer Cellular Technologies Germany Gmbh Low-power microscope-objective pre-scan and high-power microscope-objective scan in x,y and z-direction for imaging objects such as cells using a microscope
WO2020172605A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Antibody molecules that bind to nkp30 and uses thereof
WO2020172601A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2020172571A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
WO2020172598A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Multifunctional molecules that bind to t cells and uses thereof to treat autoimmune disorders
WO2020172596A1 (en) 2019-02-21 2020-08-27 Elstar Therapeutics, Inc. Anti-tcr antibody molecules and thereof
WO2020205523A1 (en) 2019-03-29 2020-10-08 Atarga, Llc Anti fgf23 antibody
WO2020257289A2 (en) 2019-06-17 2020-12-24 Visterra, Inc. Humanized antibody molecules to cd138 and uses thereof
WO2021021606A1 (en) 2019-07-26 2021-02-04 Visterra, Inc. Interleukin-2 agents and uses thereof
WO2021079188A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
WO2021079195A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
WO2021146320A1 (en) 2020-01-13 2021-07-22 Visterra, Inc. Antibody molecules to c5ar1 and uses thereof
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
WO2021203024A1 (en) 2020-04-03 2021-10-07 Visterra, Inc. Antibody molecule-drug conjugates and uses thereof
WO2021217085A1 (en) 2020-04-24 2021-10-28 Marengo Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
WO2021220215A1 (en) 2020-05-01 2021-11-04 Novartis Ag Engineered immunoglobulins
WO2021220218A1 (en) 2020-05-01 2021-11-04 Novartis Ag Immunoglobulin variants
WO2021262999A1 (en) 2020-06-24 2021-12-30 Visterra, Inc. Antibody molecules to april and uses thereof
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
WO2022046922A2 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Antibody molecules that bind to nkp30 and uses thereof
WO2022046920A2 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
WO2022047046A1 (en) 2020-08-26 2022-03-03 Marengo Therapeutics, Inc. Methods of detecting trbc1 or trbc2
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022120224A1 (en) 2020-12-04 2022-06-09 Visterra, Inc. Methods of using interleukin-2 agents
WO2022159590A1 (en) 2021-01-20 2022-07-28 Visterra, Inc. Interleukin-2 mutants and uses thereof
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022182872A2 (en) 2021-02-24 2022-09-01 Alladapt Immunotherapeutics, Inc. Compositions and methods for identification of cross-reactive allergenic proteins and treatment of allergies
WO2022195551A1 (en) 2021-03-18 2022-09-22 Novartis Ag Biomarkers for cancer and methods of use thereof
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
WO2022216993A2 (en) 2021-04-08 2022-10-13 Marengo Therapeutics, Inc. Multifuntional molecules binding to tcr and uses thereof
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
WO2023097254A1 (en) 2021-11-24 2023-06-01 Visterra, Inc. Engineered antibody molecules to cd138 and uses thereof
WO2023102463A1 (en) 2021-12-01 2023-06-08 Visterra, Inc. Methods of using interleukin-2 agents
WO2023139292A1 (en) 2022-01-24 2023-07-27 Cambridge Enterprise Limited Tau therapy
WO2023150778A1 (en) 2022-02-07 2023-08-10 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
WO2023212518A1 (en) 2022-04-25 2023-11-02 Visterra, Inc. Antibody molecules to april and uses thereof
WO2023220695A2 (en) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023247312A1 (en) 2022-06-23 2023-12-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anti-transthyretin (ttr) binding proteins and uses thereof
EP4296279A1 (en) 2022-06-23 2023-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anti-transthyretin (ttr) binding proteins and uses thereof
WO2024030976A2 (en) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions and methods for crossing the blood brain barrier

Similar Documents

Publication Publication Date Title
WO1991000906A1 (en) Chimeric and transgenic animals capable of producing human antibodies
EP0710719B1 (en) Generation of xenogeneic antibodies
JP2938569B2 (en) Method for producing xenogeneic immunoglobulin and transgenic mouse
KR100891634B1 (en) Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
CA2124967C (en) Transgenic non-human animals capable of producing heterologous antibodies
JP5588866B2 (en) HCO 32 and HCO 27 and related examples
RU2559524C2 (en) Antibody-producing non-human mammals
JP2001527386A (en) Transgenic non-human animals capable of producing heterologous antibodies
CN104994729A (en) Polynucleotides encoding rodent antibodies with human idiotypes and animals comprising same
CN101002549A (en) Transgenic non-human animals capable of producing heterologous antibodies
AU2011271046A1 (en) Hybrid light chain mice
CN112715482A (en) Non-human transgenic animals expressing humanized antibodies and uses thereof
JPH11206387A (en) Preparation of immunoglobulin and transgenic mouse therefor
AU720612B2 (en) Transgenic non-human animals capable of producing heterologous antibodies
NZ749259B2 (en) Polynucleotides encoding rodent antibodies with human idiotypes and animals comprising same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA