WO1991000614A1 - Process for the anisotropic etching of semiconductor materials - Google Patents

Process for the anisotropic etching of semiconductor materials Download PDF

Info

Publication number
WO1991000614A1
WO1991000614A1 PCT/DE1990/000418 DE9000418W WO9100614A1 WO 1991000614 A1 WO1991000614 A1 WO 1991000614A1 DE 9000418 W DE9000418 W DE 9000418W WO 9100614 A1 WO9100614 A1 WO 9100614A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
etching liquid
silicon
aluminum
liquid
Prior art date
Application number
PCT/DE1990/000418
Other languages
German (de)
French (fr)
Inventor
Wolfgang Benecke
Uwe Schnackenberg
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1991000614A1 publication Critical patent/WO1991000614A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials

Definitions

  • the invention relates to a method for anisotropic etching of semiconducting materials using an etching liquid which contains a hydroxide and water which is compatible with the manufacturing processes of integrated circuits and is suitable for use in clean rooms.
  • Such methods are used in microsystem technology when micromechanical or micro-optical components are integrated monolithically into a chip together with microelectronic components.
  • the clean room compatibility of the etching liquid is decisive for the usability of an etching process for the common monolithic integration.
  • KOH is eliminated because no alkali-containing etching components can be tolerated in IC production.
  • EDP ethylenediamine, pyrocatechol and water
  • Hydrazine is very toxic and explosive, so its use requires a lot of safety precautions.
  • Alkali-free etching liquids are known from several publications. In “Thi Film Processes", Academic Press 1978, pp. 444 and 452f, JL Vossen and Werner Kern suggest the use of ⁇ ir ⁇ noriiumhydroxid (NH OH) for etching silicon Gallium arsenide. US Pat. No. 3,898,141 describes a process for the electrolytic etching of compound semiconductors using an NH.OH solution. The anisotropic etching of silicon using a hydroxide and water is known from GDR patent specification DD 24 19 75.
  • the known etching liquids are not compatible with the standard metallization processes in IC production.
  • aluminum with 1% silicon is now used as the conductor material.
  • the aluminum is usually deposited using sputtering techniques and alloyed in a forming gas.
  • micromechanical structures are generally formed as one of the last process stages in the production of multifunctional microsystems, the microelectronic components are already integrated in the chip when the chip is exposed to the anisotropic etching liquid.
  • the invention is based on the object of specifying an etching process using an etching liquid which contains a hydroxide and water, which is suitable for use in clean rooms and which has a selective action with respect to aluminum.
  • This object is achieved in that silicon is added to the etching liquid to increase the ratio of the etching rate in the semiconducting material to the etching rate of aluminum.
  • the pyrophyllite-containing silicates can passivate the aluminum surface and prevent attack by the etching liquid.
  • the etching liquid is heated to 75 C before the etching process. At this temperature, the stability of the etching liquid is guaranteed and the etched surface has less surface roughness.
  • tetramethylammonium hydroxide N (CH) OH
  • etching liquid consists of 0.6% (percent by weight) N (CH_) .OH and deionized water and at least 1.3 g silicon are added per liter.
  • the method is carried out at a temperature of 85 °, since the stability of the etching liquid is ensured at this temperature and the etched surface has low roughness.
  • Hydrogen peroxide in the etching solution has proven to be particularly favorable during the entire etching period.
  • the etching rate of the etching solution in silicon increases, and at the same time the roughness of the etched surfaces decreases, since the formation of pimples on the etched surface, which is frequently observed in etching processes, due to the addition of hydrogen peroxide is avoided.
  • the selectivity of the method compared to aluminum offers the advantage that the areas of the semiconductor surface from which the etching liquid must be kept can be protected by applying a passivation layer made of aluminum.
  • the method can be used in the same clean room in which the IC manufacturing processes are carried out. This eliminates the need to transport wafers from a clean room to other process rooms.
  • the method according to the invention also acts selectively with respect to SiO and silicon nitride. As a result, these materials can also serve as passivation layers.
  • the etching rate in the case of highly borated silicon is negligibly low compared to the etching rate in undoped silicon. Therefore the etching process can be ended with the help of the p-etching stop.
  • the etching process can be stopped in a defined manner with this method by suitably applying a voltage to the pn junction of a sample to be etched with the aid of electrochemical processes.
  • Figure 1 The relative etching rate of aluminum in relation to the etching rate of silicon (100) depending on the concentration of the dissolved silicon in an etching liquid which contains NH OH.
  • FIG. 2 The relative etching rate of aluminum in relation to the etching rate of silicon (100) as a function of the concentration of the dissolved silicon in an etching liquid which contains N (CH) OH.
  • Figure 3 The etching rate for silicon in an etching liquid as a function of the N (CH) OH concentration.
  • the process according to the invention is carried out in a double-walled, thermated glass vessel.
  • the etching liquid is produced by diluting a commercially available ammonia solution in VLSI quality (for use for the very arge s_cale. Integration) with preheated, deionized water and adding silicon.
  • the NH.OH concentration is measured during the entire etching period. For the same reason, the temperature must not be chosen too high. On the other hand, the temperature must not be too low, since the etching rate decreases with falling temperature. Good results are achieved at a temperature of the etching liquid of 75 ° C.
  • the etching rate depends on the concentration of NH OH in the etching solution. The highest etching rate (30 ⁇ m / h) is reached at a concentration of approx. 9%. However, a concentration of 3.7% (weight percent) is recommended for the method according to the invention, since the etching surfaces at this concentration have low roughness at a high etching rate.
  • the etching solution which contains N (CH) .OH, tolerates higher temperatures and is heated to 85 ° C. before the etching process.
  • the optimal concentration of the hydride portion is 0.6% (weight percent) N (CH-) OH, whereby a silicon etching rate of over 50 ⁇ m / h is achieved.
  • FIGS. 1 and 2 The effect of adding silicon to the etching liquid is shown in FIGS. 1 and 2 for two different etching liquids.
  • the ratio of the etching rates of aluminum and silicon (100) is plotted on the vertical axis.
  • the horizontal axis shows the amount of dissolved silicon in grams per liter. Without the addition of silicon, aluminum is etched almost as quickly as silicon.
  • FIG. 3 shows the etching rate of the etching solution in silicon as a function of the N (CH) OH concentration.
  • the etching rate in the 100 direction is plotted in silicon in the vertical direction, and the concentration of N (CH_) .OH in the etching solution in percent by weight in the horizontal direction.
  • a weight fraction of 0.6% has proven to be the optimum concentration of the hydroxide, an etching rate of approximately 55 ⁇ m / h being achieved in silicon.
  • the etching rate drops sharply at higher and lower concentrations.
  • the curve shown was obtained at a temperature of 85 ° C., the etching time being 4 hours at each concentration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)

Abstract

Described is a process for the anisotropic etching of semiconductor materials, which is suitable for use in clean rooms and exhibits high selectivity towards aluminium. The etching solution contains a hydroxide, water and silicon. The aluminium conductor tracks and contacts are not attacked in this process.

Description

VERFAHREN ZUM ANISOTROPEN ÄTZEN HALBLEITENDER MATERIALIEN METHOD FOR ANISOTROPICALLY ETCHING SEMI-CONDUCTING MATERIALS
BESCHREIBUNGDESCRIPTION
Technisches GebietTechnical field
Die Erfindung betrifft ein Verfahren zum anisotropen Ätzen von halbleitenden Materialien unter Verwendung einer Ätzflüssig¬ keit, die ein Hydroxid und Wasser enthält, das mit den Ferti¬ gungsprozessen integrierter Schaltkreise kompatibel und zur Verwendung in Reinsträumen geeignet ist. Solche Verfahren werden in der Mikrosystemtechnik eingesetzt, wenn mikromecha¬ nische oder mikrooptische Komponenten zusammen mit mikroelek¬ tronischen Komponenten monolithisch in einen Chip integriert werden.The invention relates to a method for anisotropic etching of semiconducting materials using an etching liquid which contains a hydroxide and water which is compatible with the manufacturing processes of integrated circuits and is suitable for use in clean rooms. Such methods are used in microsystem technology when micromechanical or micro-optical components are integrated monolithically into a chip together with microelectronic components.
Entscheidend für die Verwendbarkeit eines Ätzverfahrens für die gemeinsame monolithische Integration ist die Reinstraumverträglichkeit der Ätzflüssigkeit. KOH scheidet aus, weil in der IC- Fertigung keine alkalihaltigen Ätzbestandteile geduldet werden können. Auch EDP (Ethylendiamin, Pyrocatechol und Wasser) entspricht nicht den Anforderungen in Reinsträumen. Hydrazin ist sehr toxisch und explosiv, deshalb ist bei seiner Verwendung ein großer Aufwand an Sicherheitsvorkehrungen erforderlich.The clean room compatibility of the etching liquid is decisive for the usability of an etching process for the common monolithic integration. KOH is eliminated because no alkali-containing etching components can be tolerated in IC production. EDP (ethylenediamine, pyrocatechol and water) also does not meet the requirements in clean rooms. Hydrazine is very toxic and explosive, so its use requires a lot of safety precautions.
Stand der TechnikState of the art
Alkalifreie Ätzflüssigkeiten sind aus mehreren Veröffentli¬ chungen bekannt. J.L. Vossen und Werner Kern schlagen in "Thi Film Processes", Academic Press 1978, S. 444 und 452f die Ver wendung von Äirαnoriiumhydroxid (NH OH) zum Ätzen von Silicium un Galliumarsenid vor. In der US-Patentschrift US 3,898,141 wird ein Verfahren zum elektrolytischen Ätzen von Verbindungs¬ halbleitern unter Verwendung einer NH.OH-Lösung beschrieben. Aus DDR-Patentschrift DD 24 19 75 ist das anisotrope Ätzen von Silizium mittels eines Hydroxids und Wasser bekannt.Alkali-free etching liquids are known from several publications. In "Thi Film Processes", Academic Press 1978, pp. 444 and 452f, JL Vossen and Werner Kern suggest the use of Äirαnoriiumhydroxid (NH OH) for etching silicon Gallium arsenide. US Pat. No. 3,898,141 describes a process for the electrolytic etching of compound semiconductors using an NH.OH solution. The anisotropic etching of silicon using a hydroxide and water is known from GDR patent specification DD 24 19 75.
In der unveröffentlichten deutschen Patentanmeldung DE 38 05 752 ist eine Ätzflüssigkeit auf der Basis von Ammoniumhydroxid (NH OH) angegeben, die die Bedingung der Reinstraumverträg- lichkeit erfüllt.The unpublished German patent application DE 38 05 752 specifies an etching liquid based on ammonium hydroxide (NH OH) which fulfills the requirement of being compatible with clean rooms.
Allerdings sind die bekannten Ätzflüssigkeiten nicht mit den Standard-Metallisierungsprozessen in der IC-Fertigung verträg¬ lich. In der IC-Fertigung wird heute Aluminium mit 1 % Silizium als Leiterbahnmaterial verwendet. Das Aluminium wird üblicher¬ weise mit Sputtertechniken abgeschieden und in einem Formiergas legiert.However, the known etching liquids are not compatible with the standard metallization processes in IC production. In IC manufacturing, aluminum with 1% silicon is now used as the conductor material. The aluminum is usually deposited using sputtering techniques and alloyed in a forming gas.
Da die Ausbildung der mikromechanischen Strukturen im allge¬ meinen als einer der letzten Prozeßabschnitte in der Herstel¬ lung von multifunktionalen Mikrosystemen erfolgt, sind die mikroelektronischen Komponenten bereits im Chip integriert, wenn der Chip der anisotropen Ätzflüssigkeit ausgesetzt wird.Since the micromechanical structures are generally formed as one of the last process stages in the production of multifunctional microsystems, the microelectronic components are already integrated in the chip when the chip is exposed to the anisotropic etching liquid.
Bei der Verwendung einer der oben genannten Ätzflüssigkeiten werden die Aluminium-Leiterbahnen und Kontakte stark angegrif¬ fen, deshalb müssen alle offenliegenden Leiterbahnen in einem zusätzlichen Prozeßschritt mit einer Schutzschicht versehen werden, die nach Abschluß der mikromechanischen Prozesse wenigstens im Bereich der Kontakte wieder entfernt werden muß. Darstellung der ErfindungWhen using one of the above-mentioned etching liquids, the aluminum conductor tracks and contacts are severely attacked, which is why all exposed conductor tracks must be provided with a protective layer in an additional process step, which must be removed at least in the area of the contacts after the micromechanical processes have been completed . Presentation of the invention
Der Erfindung liegt die Aufgabe zugrunde, ein Ätzverfahren unter Verwendung einer Ätzflüssigkeit, die ein Hydroxid und Wasser enthält, anzugeben, das zur Verwendung in Reinsträumen geeignet ist und das gegenüber Aluminium selektiv wirkt.The invention is based on the object of specifying an etching process using an etching liquid which contains a hydroxide and water, which is suitable for use in clean rooms and which has a selective action with respect to aluminum.
Diese Aufgabe wird dadurch gelöst, daß der Ätzflüssigkeit zur Erhöhung des Verhältnisses der Ätzrate im halbleitenden Mate¬ rial zur Ätzrate von Aluminium Silizium beigemengt wird.This object is achieved in that silicon is added to the etching liquid to increase the ratio of the etching rate in the semiconducting material to the etching rate of aluminum.
Das Beimengen von Silizium hat überraschenderweise zur Folge, daß die Ätzflüssigkeit selektiv gegenüber Aluminium wirkt, d. h. , daß zwar der Halbleiter-Wafer weiterhin geätzt wird, aber die Aluminium-Leiterbahnen praktisch nicht mehr angegriffen werden.The addition of silicon surprisingly has the consequence that the etching liquid acts selectively towards aluminum, i. H. that the semiconductor wafer is still etched, but the aluminum conductor tracks are practically no longer attacked.
Diese überraschende Wirkung kann durch folgenden Prozeß erklärt werden:This surprising effect can be explained by the following process:
Wegen seiner a photären Eigenschaft ist die Löslichkeit von Aluminium in alkalischen Lösungen hoch. Bei diesem Lösungsvor¬ gang bilden sich Aluminiumhydroxide. In Anwesenheit von Sili¬ katen, die durch den Zusatz von Silizium in der Ätzflüssigkeit vorhanden sind, können schwer lösliche Pyrophyllite gebildet werden:Because of its photogenic property, the solubility of aluminum in alkaline solutions is high. Aluminum hydroxides are formed in this solution process. In the presence of silicates, which are present in the etching liquid due to the addition of silicon, poorly soluble pyrophyllites can be formed:
2H2Si205 + 2A1 (OH)3 Al2 (OH)2 [Si205]2 + 4H202H 2 Si 2 0 5 + 2A1 (OH) 3 Al 2 (OH) 2 [Si 2 0 5 ] 2 + 4H 2 0
Die pyrophyllithaltigen Silikate können die Aluminiumoberfläche passivieren und einen Angriff der Ätzflüssigkeit verhindern.The pyrophyllite-containing silicates can passivate the aluminum surface and prevent attack by the etching liquid.
Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Nach Anspruch 2 wird zur Durchführung des Ätzverfahrens eine Mischung aus NH.OH und Wasser verwendet, die gemäß Anspruch 3 aus 3 % (Gewichtsprozenten) NH OH und entionisiertem Wasser besteht, und ^r wenigstens 100 mg Silizium pro Liter zugefügt werden. Mit dieser Weiterbildung des Verfahrens werden die besten Resultate hinsichtlich der Oberflächenrauhigkeit er¬ zielt.Developments of the invention are characterized in the subclaims. According to claim 2, a mixture of NH.OH and water is used to carry out the etching process, which according to claim 3 consists of 3% (weight percent) NH OH and deionized water, and ^ r at least 100 mg silicon per liter are added. This further development of the method achieves the best results with regard to the surface roughness.
Gemäß Anspruch 4 wird die Ätzflüssigkeit vor dem Ätzprozeß auf 75 C erwärmt. Bei dieser Temperatur ist die Stabilität der Ätzflüssigkeit gewährleistet und die geätzte Oberfläche weist geringere Oberflächenrauhigkeiten auf.According to claim 4, the etching liquid is heated to 75 C before the etching process. At this temperature, the stability of the etching liquid is guaranteed and the etched surface has less surface roughness.
Bei einer weiteren vorteilhaften Ausgestaltung des erfindungs- gemäßen Verfahrens wird nach Anspruch 5 Tetramethylamoniumhy- droxid (N(CH ) OH) verwendet. Eine optimale Wirkung wird er¬ zielt, wenn die Ätzflüssigkeit gemäß Anspruch 6 aus 0,6% (Ge¬ wichtsprozent) N(CH_) .OH und entionisiertem Wasser besteht und pro Liter wenigstens 1,3g Silizium beigemengt werden.In a further advantageous embodiment of the method according to the invention, tetramethylammonium hydroxide (N (CH) OH) is used. An optimal effect is achieved if the etching liquid consists of 0.6% (percent by weight) N (CH_) .OH and deionized water and at least 1.3 g silicon are added per liter.
Wie in Anspruch 7 gekennzeichnet, wird das Verfahren bei einer Temperatur von 85° durchgeführt, da bei dieser Temperatur die Stabilität der Ätzflüssigkeit gewährleistet ist und die geätzte Oberfläche geringe Rauhigkeiten aufweist.As characterized in claim 7, the method is carried out at a temperature of 85 °, since the stability of the etching liquid is ensured at this temperature and the etched surface has low roughness.
In den Ansprüchen 8 und 9 ist eine vorteilhafte Weiterbildung des erfindungsgemäßen Verfahrens gekennzeichnet. Vor und während des Ätzprozesses wird der Ätzlösung Wasserstoffperoxid zugesetzt, wobei sich eine 10 -3 molare Konzentration vonAn advantageous development of the method according to the invention is characterized in claims 8 and 9. Before and during the etching process, hydrogen peroxide is added to the etching solution, a 10 -3 molar concentration of
Wasserstoffperoxid in der Ätzlösung während der gesamten Ätzdauer als besonders günstig erweist. Durch Zugabe des Wasserstoffperoxid erhöht sich die Ätzrate der Ätzlösung in Silizium, gleichzeitig nimmt die Rauhigkeit der geätzten Flächen ab, da die bei Ätzprozessen häufig beobachtete Ausbil¬ dung von Pickeln auf der geätzten Oberfläche durch die Zugabe von Wasserstoffperoxid vermieden wird. Die Selektivität des Verfahrens gegenüber Aluminium bietet nach Anspruch 10 den Vorteil, daß die Bereiche der Halbleiteroberfläche, von denen die Ätzflüssigkeit fern gehalten werden muß, durch Aufbringen einer Passivierungsschicht aus Aluminium geschützt werden können.Hydrogen peroxide in the etching solution has proven to be particularly favorable during the entire etching period. By adding the hydrogen peroxide, the etching rate of the etching solution in silicon increases, and at the same time the roughness of the etched surfaces decreases, since the formation of pimples on the etched surface, which is frequently observed in etching processes, due to the addition of hydrogen peroxide is avoided. The selectivity of the method compared to aluminum offers the advantage that the areas of the semiconductor surface from which the etching liquid must be kept can be protected by applying a passivation layer made of aluminum.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß integrierte Schaltungen mit offenliegenden Leiter¬ bahnen und Kontaktstellen, die einem mikromechanischen Prozeß unterzogen werden, ohne zusätzliche SchutzVorkehrungen der Ätzflüssigkeit ausgesetzt werden dürfen. Dadurch erübrigt sich auch ein nachträgliches Entfernen irgendwelcher Schutzschich¬ ten.The advantages achieved by the invention consist in particular in that integrated circuits with exposed conductor tracks and contact points which are subjected to a micromechanical process may be exposed to the etching liquid without additional protective measures. This also makes it unnecessary to subsequently remove any protective layers.
Das Verfahren kann in demselben Reinstraum angewendet werden, in welchem auch die IC-Fertigungsprozesse durchgeführt werden. Dadurch erübrigt sich der Transport von Wafern aus einem Reinstraum in andere Prozeßräume.The method can be used in the same clean room in which the IC manufacturing processes are carried out. This eliminates the need to transport wafers from a clean room to other process rooms.
Das erfindungsgemäße Verfahren wirkt auch selektiv gegenüber SiO und Siliziumnitrid. Dadurch können auch diese Materialien als Passivierungsschichten dienen. Die Ätzrate bei hoch Bordo¬ tiertem Silizium ist verschwindend gering gegenüber der Ätzrate in nicht dotiertem Silizium. Deshalb kann der Ätzprozeß mit Hilfe des p -Ätzstopp beendet werden.The method according to the invention also acts selectively with respect to SiO and silicon nitride. As a result, these materials can also serve as passivation layers. The etching rate in the case of highly borated silicon is negligibly low compared to the etching rate in undoped silicon. Therefore the etching process can be ended with the help of the p-etching stop.
Ebenso kann mit diesem Verfahren der Ätzvorgang durch geeigne¬ tes Anlegen einer Spannung an den pn-Übergang einer zu ätzenden Probe mit Hilfe elektrochemischer Prozesse definiert gestoppt werden. Kurze Beschreibung der ZeichnungenLikewise, the etching process can be stopped in a defined manner with this method by suitably applying a voltage to the pn junction of a sample to be etched with the aid of electrochemical processes. Brief description of the drawings
Ein Ausführungsbeispiel der Erfindung wird im folgenden unter Bezugnahme auf die Zeichnungen näher beschrieben.An embodiment of the invention is described below with reference to the drawings.
Es zeigen:Show it:
Figur 1 Die relative Ätzrate von Aluminium im Verhältnis zur Ätzrate von Silizium (100) in Abhängigkeit von der Konzentration des gelösten Siliziums in einer Ätzflüssigkeit, die NH OH enthält.Figure 1 The relative etching rate of aluminum in relation to the etching rate of silicon (100) depending on the concentration of the dissolved silicon in an etching liquid which contains NH OH.
Figur 2 Die relative Ätzrate von Aluminium im Verhältnis zur Ätzrate von Silizium (100) in Abhängigkeit von der Konzentration des gelösten Siliziums in einer Ätzflüssigkeit, die N(CH ) OH enthält.FIG. 2 The relative etching rate of aluminum in relation to the etching rate of silicon (100) as a function of the concentration of the dissolved silicon in an etching liquid which contains N (CH) OH.
Figur 3 Die Ätzrate für Silizium in einer Ätzflüssigkeit in Abhängigkeit der N(CH ) OH-Konzentration.Figure 3 The etching rate for silicon in an etching liquid as a function of the N (CH) OH concentration.
Weg zur Ausführung der ErfindungWay of carrying out the invention
Das erfindungsgemäße Verfahren wird in einem doppelwandigen thermatisierten Glasgefäß durchgeführt. Die Ätzflüssigkeit wird durch Verdünnung einer handelsüblichen Ammoniak-Lösung in VLSI- Qualität (zur Verwendung für die very arge s_cale .Integration) mit vorgeheitztem, entionisiertem Wasser und Zugabe von Sili¬ zium hergestellt.The process according to the invention is carried out in a double-walled, thermated glass vessel. The etching liquid is produced by diluting a commercially available ammonia solution in VLSI quality (for use for the very arge s_cale. Integration) with preheated, deionized water and adding silicon.
Da NH OH bei Normaldruck und hohen Temperaturen die Tendenz aufweist, zu zerfallen, wird die NH.OH-Konzentration während der gesamten Ätzdauer gemessen. Aus demselben Grunde darf die Temperatur nicht zu hoch gewählt werden. Andererseits darf die Temperatur keine zu niedrigen Werte annehmen, da die Ätzrate mit fallender Temperatur sinkt. Bei einer Temperatur der Ätz¬ flüssigkeit von 75 C werden gute Ergebnisse erzielt. Die Ätzgeschwindigkeit hängt von der Konzentration von NH OH in der Ätzlösung ab. Die höchste Ätzrate (30 μm/h) wird bei einer Konzentration von ca. 9 % erreicht. Für das erfindungsgemäße Verfahren empfiehlt sich jedoch eine Konzentration von 3,7 % (Gewichtsprozent) , da die Ätzflächen bei dieser Konzentration bei einer hohen Ätzrate geringe Rauhigkeiten aufweisen.Since NH OH tends to disintegrate at normal pressure and high temperatures, the NH.OH concentration is measured during the entire etching period. For the same reason, the temperature must not be chosen too high. On the other hand, the temperature must not be too low, since the etching rate decreases with falling temperature. Good results are achieved at a temperature of the etching liquid of 75 ° C. The etching rate depends on the concentration of NH OH in the etching solution. The highest etching rate (30 μm / h) is reached at a concentration of approx. 9%. However, a concentration of 3.7% (weight percent) is recommended for the method according to the invention, since the etching surfaces at this concentration have low roughness at a high etching rate.
Die Ätzlösung, die N(CH ).OH enthält verträgt höhere Tempera¬ turen und wird vor dem ÄtzVorgang auf 85 C erwärmt. Die opti¬ male Konzentration des Hydridanteils beträgt 0,6% (Gewichts¬ prozent) N(CH-) OH, wodurch eine Siliziumätzrate von über 50μm/h erreicht wird.The etching solution, which contains N (CH) .OH, tolerates higher temperatures and is heated to 85 ° C. before the etching process. The optimal concentration of the hydride portion is 0.6% (weight percent) N (CH-) OH, whereby a silicon etching rate of over 50 μm / h is achieved.
Die Wirkung der Zugabe von Silizium zu der Ätzflüssigkeit ist in den Figuren 1 und 2 für zwei verschiedene Ätzflüssigkeiten dargestellt.The effect of adding silicon to the etching liquid is shown in FIGS. 1 and 2 for two different etching liquids.
Auf der vertikalen Achse ist jeweils das Verhältnis der Ätzra¬ ten von Aluminium und von Silizium (100) aufgetragen. Die horizontale Achse zeigt die Menge des gelösten Siliziums in Gramm pro Liter. Ohne Zusatz von Silizium wird Aluminium annähernd ebenso rasch geätzt wie Silizium.The ratio of the etching rates of aluminum and silicon (100) is plotted on the vertical axis. The horizontal axis shows the amount of dissolved silicon in grams per liter. Without the addition of silicon, aluminum is etched almost as quickly as silicon.
Je mehr Silizium in der Ätzflüssigkeit gelöst ist, desto ge¬ ringer wird die Ätzrate für Aluminium. Bei der Ätzlösung, die NH OH enthält kann nach Zugabe von etwa 100mg Silizium pro Liter Ätzlösung keine Ätzwirkung in Aluminium mehr festgestellt werden, die relative Ätzrate sinkt auf 0 (Figur 1) .The more silicon is dissolved in the etching liquid, the lower the etching rate for aluminum. With the etching solution containing NH OH, after adding about 100 mg of silicon per liter of etching solution, no etching effect can be found in aluminum, the relative etching rate drops to 0 (FIG. 1).
Bei der Ätzlösung, die das Hydroxid N(CH^) OH enthält, wird die Ätzwirkung in Aluminium nach Zugabe von Ca. 1,3g Silizium pro Liter Ätzlösung gestoppt (Figur 2) . Die Figur 3 zeigt die Ätzrate der Ätzlösung in Silzium als Funktion der N(CH ) OH-Konzentration. In vertikaler Richtung ist die Ätzrate in 100-Richtung in Silizium aufgetragen, in horizontaler Richtung die Konzentration von N(CH_).OH in der Ätzlösung in Gewichtsprozenten. Als optimale Konzentration des Hydroxids erweist sich ein Gewichtsanteil von 0,6%, wobei eine Ätzrate von ca. 55μm/h in Silizium erreicht wird. Bei höheren und tieferen Konzentrationen fällt die Ätzrate stark ab.With the etching solution, which contains the hydroxide N (CH ^) OH, the etching effect in aluminum after adding Ca. 1.3 g of silicon per liter of etching solution stopped (FIG. 2). FIG. 3 shows the etching rate of the etching solution in silicon as a function of the N (CH) OH concentration. The etching rate in the 100 direction is plotted in silicon in the vertical direction, and the concentration of N (CH_) .OH in the etching solution in percent by weight in the horizontal direction. A weight fraction of 0.6% has proven to be the optimum concentration of the hydroxide, an etching rate of approximately 55 μm / h being achieved in silicon. The etching rate drops sharply at higher and lower concentrations.
Die dargestellte Kurve wurde bei einer Temperatur von 85°C ge¬ wonnen, wobei die Ätzzeit bei jeder Konzentration 4 Stunden betrug. The curve shown was obtained at a temperature of 85 ° C., the etching time being 4 hours at each concentration.

Claims

PATENTANSPRÜCHEPATENT CLAIMS
l. Verfahren zum anisotropen Ätzen von halbleitenden Materia¬ lien, unter Verwendung einer Ätzflüssigkeit die ein Hydroxid und Wasser enthält, dadurch gekennzeichnet, daß der Ätz¬ flüssigkeit zur Erhöhung des Verhältnisses der Ätzrate im halbleitenden Material zur Ätzrate von Aluminium Silizium beigemengt wird.l. Method for anisotropic etching of semiconducting materials, using an etching liquid which contains a hydroxide and water, characterized in that silicon is added to the etching liquid to increase the ratio of the etching rate in the semiconducting material to the etching rate of aluminum.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß alsA method according to claim 1, characterized in that as
Ä Ättzzfflüssigkeit eine Mischung aus NH OH und H O verwendet wirdEtching liquid a mixture of NH OH and H O is used
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ätzflüssigkeit aus 3,7 % (Gewichtsprozent) NH.OH und ent¬ ionisiertem Wasser besteht, und daß dieser Ätzflüssigkeit wenigstens 100 mg Silizium pro Liter beigemengt werden.3. The method according to claim 1, characterized in that the etching liquid consists of 3.7% (weight percent) NH.OH and deionized water, and that this etching liquid is admixed with at least 100 mg silicon per liter.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Ätzflüssigkeit vor dem Eintauchen der zu ätzenden Substanz auf eine Temperatur von ca. 75° C erwärmt wird.4. The method according to claim 2 or 3, characterized in that the etching liquid is heated to a temperature of about 75 ° C before immersing the substance to be etched.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Ätzflüssigkeit eine Mischung aus N(CH ) OH und H20 verwendet wird.5. The method according to claim 1, characterized in that a mixture of N (CH) OH and H 2 0 is used as the etching liquid.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Ätzflüssigkeit aus 0,6% (Gewichtsprozent) N(CH ) OH und entionisiertem Wasser besteht und daß dieser Ätzflüssigkeit wenigstens 1,3g Silizium pro Liter beigemengt wird. 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Ätzflüssigkeit vor dem Eintauchen der zu ätzenden Substanz auf eine Temperatur von ca. 85 C erwärmt wird.6. The method according to claim 5, characterized in that the etching liquid consists of 0.6% (weight percent) N (CH) OH and deionized water and that this etching liquid is admixed with at least 1.3 g silicon per liter. 7. The method according to claim 5 or 6, characterized in that the etching liquid is heated to a temperature of about 85 C before immersing the substance to be etched.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekenn¬ zeichnet, daß der Ätzflüssigkeit vor und während des Ätz- prozesses Wasserstoffperoxid beigemengt wird.8. The method according to any one of claims 1 to 7, characterized gekenn¬ characterized in that the etching liquid is admixed with hydrogen peroxide before and during the etching process.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der9. The method according to claim 8, characterized in that the
Ätzlösung vor und während des Ätzprozesses so viel Wasser- stoffperoxid beigemengt wird, daß stets eine 10 -3 molareEtching solution before and during the etching process so much hydrogen peroxide is added that always a 10 -3 molar
Konzentration von Wasserstoffperoxid in der Lösung vorliegt.Concentration of hydrogen peroxide is present in the solution.
10.Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekenn¬ zeichnet, daß Bereiche der Halbleiteroberfläche, die vor der Ätzflüssigkeit geschützt werden müssen, mit einer Passivie- rungsschicht aus Aluminium versehen werden. 10.The method according to any one of claims 1 to 9, characterized gekenn¬ characterized in that areas of the semiconductor surface that must be protected from the etching liquid are provided with a passivation layer made of aluminum.
PCT/DE1990/000418 1989-06-23 1990-06-01 Process for the anisotropic etching of semiconductor materials WO1991000614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3920644.0 1989-06-23
DE19893920644 DE3920644C1 (en) 1989-06-23 1989-06-23

Publications (1)

Publication Number Publication Date
WO1991000614A1 true WO1991000614A1 (en) 1991-01-10

Family

ID=6383445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000418 WO1991000614A1 (en) 1989-06-23 1990-06-01 Process for the anisotropic etching of semiconductor materials

Country Status (2)

Country Link
DE (1) DE3920644C1 (en)
WO (1) WO1991000614A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970008354B1 (en) * 1994-01-12 1997-05-23 엘지반도체 주식회사 Selective etching method
DE19926599C2 (en) * 1998-09-12 2002-07-04 Univ Gesamthochschule Kassel Silicon etching solution and silicon etching method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506509A (en) * 1967-11-01 1970-04-14 Bell Telephone Labor Inc Etchant for precision etching of semiconductors
US4137123A (en) * 1975-12-31 1979-01-30 Motorola, Inc. Texture etching of silicon: method
EP0209194A1 (en) * 1985-07-15 1987-01-21 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device, in which a layer of gallium arsenide is etched in a basic solution of hydrogen peroxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898141A (en) * 1974-02-08 1975-08-05 Bell Telephone Labor Inc Electrolytic oxidation and etching of III-V compound semiconductors
DD241975A1 (en) * 1985-10-14 1987-01-07 Messgeraetewerk Zwonitz Veb K METHOD OF MANUFACTURING SEMICONDUCTOR BODIES WITH INTEGRATED CIRCUIT PARTS AND ASSOCIATED THREE-DIMENSIONAL STRUCTURES
DE3805752A1 (en) * 1988-02-24 1989-08-31 Fraunhofer Ges Forschung ANISOTROPIC ETCHING PROCESS WITH ELECTROCHEMICAL ETCH STOP

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506509A (en) * 1967-11-01 1970-04-14 Bell Telephone Labor Inc Etchant for precision etching of semiconductors
US4137123A (en) * 1975-12-31 1979-01-30 Motorola, Inc. Texture etching of silicon: method
EP0209194A1 (en) * 1985-07-15 1987-01-21 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device, in which a layer of gallium arsenide is etched in a basic solution of hydrogen peroxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Applied Physics, Band 40, Nr. 11, Oktober 1969, D.B. LEE: "Anisotropic Etching of Silicon", seiten 4569-4574 *
Sensors and Actuators, Band 9, Nr. 4, Juli 1986, Elsevier Sequoia, (Lausanne, CH), X.-P. WU et al.: "A Study on Deep Etching of Silicon Using Ethylene-Diamine-Procatecholwater", seiten 333-343 *

Also Published As

Publication number Publication date
DE3920644C1 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
DE3780795T2 (en) METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT OF THE TYPE "SEMICONDUCTOR ON ISOLATOR".
DE69722832T2 (en) Method for transporting a thin layer from an initial substrate to a final substrate
EP0585256B1 (en) Direct substrate bonding
DE4301451C2 (en) Process for forming a conductive plug in an insulating layer
DE4317274A1 (en) Process for the production of surface-micromechanical structures
DE4433833A1 (en) Method for producing a three-dimensional integrated circuit while achieving high system yields
DE69024977T2 (en) METHOD FOR ELIMINATING ETCH LOCK UNDERCUTS
DE2749636A1 (en) ETCHING MIXTURE FOR POLYCRYSTALLINE SILICON
DE19612450A1 (en) Semiconductor module with two metal connections on substrate
DE3841588A1 (en) DYNAMIC VERTICAL SEMICONDUCTOR STORAGE WITH OPTIONAL ACCESS AND METHOD FOR THE PRODUCTION THEREOF
DE69112545T2 (en) Method of manufacturing a semiconductor device.
DE69424388T2 (en) Process and dielectric structure to facilitate metal overetching without damaging the intermediate dielectric
DE4203833A1 (en) Acceleration sensors made in silicon semiconductor material - uses an aluminium metallisation layer to protect the suspended part of the device during singulating and assembly
DE19654791B4 (en) Method and device for separating a semiconductor layer from a substrate
DE69124773T2 (en) Process for the production of a substrate with dielectric separation
DE1917995B2 (en) METHOD FOR FORMING AN INSULATING FILM AND AFTER-MANUFACTURED SEMICONDUCTOR ELEMENT
WO1991000614A1 (en) Process for the anisotropic etching of semiconductor materials
DE10261407A1 (en) Chemical-mechanical polishing slurry for oxide films, used in production of metal wiring contact plug of semiconductor device, has acid to neutral pH and contains oxidant and chelant
DE3742912A1 (en) METHOD FOR PRODUCING SEMICONDUCTOR CIRCUITS
DE69329897T2 (en) Process for improving the properties of the CaF2 interface on silicon
DE4003472C2 (en) Process for anisotropic etching of silicon plates
DE112018003720T5 (en) CUTTING PROCESS
EP0309782B1 (en) Etching process for silicon (100)
DE19624315C2 (en) Process for etching structures in a silicon layer
DD272737A1 (en) METHOD FOR PRODUCING A NARROW (100) ORIENTED RECTANGULAR MEMBRANE OF MONOCRYSTALLINE SILICON

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE