WO1990009272A1 - Production of hollow article of fiber reinforced thermoplastic resin - Google Patents

Production of hollow article of fiber reinforced thermoplastic resin Download PDF

Info

Publication number
WO1990009272A1
WO1990009272A1 PCT/JP1990/000192 JP9000192W WO9009272A1 WO 1990009272 A1 WO1990009272 A1 WO 1990009272A1 JP 9000192 W JP9000192 W JP 9000192W WO 9009272 A1 WO9009272 A1 WO 9009272A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
thermoplastic resin
mandrel
hollow
fiber
Prior art date
Application number
PCT/JP1990/000192
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Satoh
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to JP2503370A priority Critical patent/JPH074878B2/en
Publication of WO1990009272A1 publication Critical patent/WO1990009272A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/006Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor the force created by the liberation of the internal stresses being used for compression moulding or for pressing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles

Definitions

  • the present invention relates to a method for producing a hollow fiber-reinforced thermoplastic resin body (for example, a round pipe, an elliptical pipe, a square pipe, etc.) using a prepreg using a thermoplastic resin as a matrix.
  • a hollow fiber-reinforced thermoplastic resin body for example, a round pipe, an elliptical pipe, a square pipe, etc.
  • Composite materials made of thermoplastic resin reinforced with continuous fibers have high specific strength, high specific stiffness, and high toughness, and are mainly used in the space and aviation fields.
  • the hollow fiber-reinforced thermoplastic resin body can be used for single-shell structures such as the body of a flying object, torque tubes, pressure vessels, pipe piping, and truss structures.
  • a winder in which a band-shaped prepreg impregnated in a resin matrix with the continuous fibers is wound around a mandrel made of metal or the like.
  • a switching method When a hollow body is manufactured by this winding method, a pre-prepared material whose matrix is a thermosetting resin is tacky, self-adhesive, and plastic at room temperature. As a result, the mandrel can be wound tightly while avoiding the formation of voids, and there was no major obstacle to productivity.
  • thermoplastic pre-predator a pre-predder that uses a thermoplastic resin as a matrix
  • a thermoplastic pre-predator has not only low tackiness and plasticity at room temperature but also a thin sheet form.
  • the rigidity is high because there is no change to a hard plate reinforced with steel.
  • the thermoplastic resin pre-bleder cannot be temporarily fixed on the mandrel simply by being wound around the mandrel. Therefore, before winding the thermoplastic resin prepreg around the mandrel, it is necessary to locally heat the thermoplastic resin prepreg with an oral heating device.
  • the portion where the thermoplastic resin prepreg is wound around the mandrel is set as the hot spot area, and the hot spot area is wound while being heated by the local heat device.
  • the thermoplastic resin pre-leg is plasticized in the hot spot area to impart tackiness to that area, and the thermoplastic resin pre-leg is applied to the mandrel while removing the void from between the winding plies. It was necessary to wrap it. Therefore, since the hot spot area had to be moved in conjunction with the movement of the wrapping place, the mouth-to-mouth apparatus had to be a complicated and expensive apparatus.
  • thermoplastic resin of the thermoplastic resin pre-predader in order to raise the temperature of the thermoplastic resin of the thermoplastic resin pre-predader to its plasticizing temperature, the hot spot area is heated by taking a considerable amount of time for the heat to stay in the hot spot area.
  • the time required for winding the thermoplastic resin prepreg on the barrel became very long, which forced the productivity of the air body to decrease.
  • productivity when manufacturing a hollow body using a thermoplastic resin pre-prepared material, it is difficult to make a tight contact between the laminated ply, so that a void is easily formed between the laminated ply.
  • productivity when using existing equipment, there was an essential disadvantage that productivity was poor.
  • thermoplastic resin prepreg is wound around a mandrel while being sufficiently pulled, it is difficult to orientate the reinforcing fibers of the thermoplastic resin prepreg without loosening. There was a problem that the strength of the thermoplastic resin pre-bleda was not sufficiently reflected on the body, and the appearance was likely to be poor.
  • the present invention has been made to solve the above-mentioned drawbacks when manufacturing a hollow body using a thermoplastic resin prebleder. Accordingly, it is an object of the present invention to produce a hollow body of high quality with high degree of freedom and a high quality in which a fiber arrangement and a laminated structure of a thermoplastic resin pre-preda are realized in a hollow body as designed. An object of the present invention is to provide a method for producing a hollow fiber-reinforced thermoplastic resin body. The present invention is particularly suitable when using a pre-predder using a high melting point mature plastic resin as a matrix. Disclosure of the invention
  • a method for producing a fiber-reinforced thermoplastic resin ⁇ air space comprises the steps of: preparing a pre-prepared material using a thermoplastic resin as a matrix; a thermally expandable core; Between the outer mold and the outer mold, and then the thermoplastic resin. After the pre-preda and the core are heated to a temperature equal to or higher than the plasticization temperature to expand the core, the core and the pre-preda are cooled.
  • FIG. 1 (A) is an explanatory diagram showing a solid mandrel used in the present invention
  • FIG. 1 (B) is an explanatory view showing an example of a thermoplastic resin pre-preda used in the present invention
  • Fig. 2 is an illustration showing the winding of a thermoplastic resin pre-predder around a solid mandrel
  • Fig. 3 is an explanatory view showing a roll obtained after winding
  • Fig. 4 is a perspective explanatory view showing a state in which a solid mandrel is restrained by a vacuum bag together with the roll;
  • Fig. 5 is an explanatory cross-sectional view of the apparatus in the heat forming process
  • Fig. 6 is a perspective view of a solid mandrel wrapped with a thermoplastic resin pre-predesheet and a metal pipe placed over it;
  • Fig. 7 is a perspective view of the state shown in Fig. 6 when it is heated above the plasticizing temperature of the thermoplastic resin of the matrix and then lowered to below that temperature;
  • FIG. 8 shows the replacement of the solid mandrel of Fig. 7 with a thicker one, and again heating the solid mandrel above the plasticizing temperature of the matrix thermoplastics, and then below Perspective view of the state when the temperature is lowered to;
  • FIG. 9 is a perspective explanatory view showing an example of a method for manufacturing a hollow body using a hollow mandrel;
  • 10 to 12 are perspective explanatory views showing a hollow mandrel used in the present invention.
  • Fig. 13 and Fig. 14 are explanatory diagrams each showing an example of a heating means for a hollow mandrel
  • FIG. 15 is a perspective explanatory view showing a state in which a thermoplastic resin prepreg is wound around the inner surface of the cavity in the outer mold to form a hollow roll;
  • FIG. 16 is a perspective explanatory view showing a state in which a core including a core and a heat-expandable element is inserted into a hollow portion of a hollow roll;
  • FIG. 17 is a perspective explanatory view showing a state in which the thermally expandable element thermally expands when the hollow roll is heated;
  • FIG. 18 is a perspective view showing an example of a product obtained by the present invention.
  • FIGS. 19 (A) and (B) are perspective views each showing an example of a core used in the present invention.
  • FIG. 20 is a perspective view showing an example of a product obtained by the present invention.
  • FIG. 21 is a side view explanatory view showing an example of a core constituting the core
  • FIG. 22 is a side view explanatory view showing an example of a thermal expansion element constituting the core
  • Fig. 23 is a side view explanatory view showing an example of the outer mold
  • FIG. 24 is a perspective view showing an example of a product obtained by the present invention
  • Fig. 25 (A) is a side view explanatory diagram showing an example of a core body constituting a core;
  • Fig. 25 (B) is an explanatory view of the front view
  • Fig. 26 (A) is a side view explanatory view showing an example of the thermal expansion element constituting the core
  • Fig. 26 (B) is an explanatory view of the front view
  • FIG. 27 (A) is a side view showing an example of a product obtained by the present invention.
  • Figure 27 (B) is the front view
  • FIG. 28 (A) is a side view explanatory view showing an example of a core constituting a core
  • FIG. 28 (B) is a front view explanatory view thereof
  • Fig. 29 (A) is a side view explanatory view showing an example of the thermal expansion element constituting the core
  • Fig. 29 (B) is an explanatory view of the front view
  • FIG. 30 (A) is a perspective view showing an example of a product obtained by the present invention.
  • Figure 30 (B) is the front view
  • FIG. 31 is a side view explanatory view showing an example of a core constituting a core
  • FIG. 32 (A) is a side view explanatory view showing an example of a thermal expansion element constituting a core
  • FIG. 32 (B) is a front view explanatory view thereof
  • Fig. 33 is a side view explanatory view showing an example of a core
  • FIG. 34 is a perspective view showing an example of a product obtained by the present invention
  • FIG. 35 is a side view explanatory view showing an example of a core constituting the core
  • FIG. 36 is a side view explanatory view showing an example of a thermal expansion element constituting the core
  • FIG. 37 is a perspective view showing an example of a product obtained by the present invention.
  • FIG. 38 is a side view explanatory view showing an example of a core constituting a core
  • FIG. 39 ( ⁇ ) is a plan view explanatory view showing an example of a thermal expansion element constituting a core
  • Fig. 39 ( ⁇ ) is a plan view explanatory view showing a state in which the thermal expansion elements are combined;
  • FIG. 40 is an explanatory sectional view showing a main part of an example of a core
  • Fig. 41 is a sectional explanatory view showing a state in which a metal member is charged into a molding material
  • FIG. 43 Perspective view showing an example of a product ⁇ ⁇ "lambda FIG. 43 obtained One by the present invention (an elongated tapered pipe);
  • FIG. 42 is a sectional explanatory view showing an example of a product having a portion of the metal member;
  • Fig. 44 is an explanatory side view showing an example of the outer mold
  • Fig. 45 is an explanatory side view showing an example of a core
  • Fig. 46 is a perspective view showing the preform and the core;
  • Fig. 47 is the temperature profile during the heating process of the molding material. Explanatory diagram showing three files;
  • FIG. 48 is an explanatory diagram showing a temperature profile when the molding material is pushed down from one end to the other end in the molding process;
  • Fig. 49 is an illustration showing the cooling pattern during the cooling process of the product at the processing temperature;
  • FIGS. 50 (A), (B), and (C) are illustrations showing the state of mold clamping in the cooling process.
  • BEST MODE FOR CARRYING OUT THE INVENTION The thermoplastic resin pre-preda used in the present invention is, specifically, formed into a fiber bundle generally called “to” in which a plurality of continuous fibers are aligned and arranged in a band in one direction.
  • the reinforcing fibers used in the fiber bundle constituting the thermoplastic resin pre-preda are not particularly limited, but are preferably carbon fibers, glass fibers, aramide fibers (aromatic polyamide fibers), silicon carbide fibers, Examples thereof include continuous fibers having high heat resistance and high strength such as boron fibers and alumina fibers.
  • the thermoplastic resin of the matrix is not particularly limited, but is preferably a polyether ether ketone (PEEK) having a melting point of 343, and a polyolefin ether having a melting point of 282 to 288'C.
  • PEEK polyether ether ketone
  • Polyolefin ether having a melting point of 282 to 288'C.
  • PEI polyetherimide
  • PES Polyether Sulfone
  • Poly-Lenketone Poly-L-Ren Sulfide with a softening point of 219 Lia Lui Mid, Polyamido, Polyimid, Polyimid Sulfo
  • thermoplastic resins having a high melting point or a high softening point such as polystyrene, polysulfone, polyarylsulfone, and polyester.
  • the heat-expandable core (inner mold) used in the present invention is made of a resin having higher heat resistance than the thermoplastic resin which is the matrix of the thermoplastic resin pre-spreader. . That is, the core must have heat resistance that does not melt and flow at a temperature at which the thermoplastic resin of the thermoplastic resin pre-plasticizer plasticizes. In addition, this core compresses the thermoplastic resin pre-pre- der laminated between the core and the outer die from the inside to the outside, so that the product of the thermoplastic pre-pre- der can be stacked. It is necessary that the material be thermally expandable so that voids are eliminated from the space between the laminated plies so that the reinforcing fibers of the thermoplastic resin pre-predator are oriented closely.
  • the core may be a solid mandrel, a hollow mandrel, a composite in which a plurality of thermal expansion elements are arranged on the surface of a core, or a plurality of heat expandable elements. It is in the form of an aggregate consisting of only expandable elements.
  • the core may be made of metal such as iron or aluminum alloy.
  • these solid mandrels, hollow mandrels, thermal expansion Preferred examples of the resin constituting each of the conductive elements include a fluorine-based resin ⁇ a silicone-based resin ⁇ .
  • fluorine resins include polytetrafluoroethylene (PTFE, trade name Teflon), polyfluoroalkoxyethylene resin (PFA), and fluoroethylenepropylene ether copolymer resin (FEP).
  • PTFE polytetrafluoroethylene
  • PFA polyfluoroalkoxyethylene resin
  • FEP fluoroethylenepropylene ether copolymer resin
  • a resin having a large thermal expansion property and a high heat resistance can be exemplified.
  • silicon-based resin since the resin alone is too soft, a silicone resin mixed with a reinforcing material having high heat resistance can be exemplified. In use, these resins may be reinforced with a reinforcing material such as inorganic fibers.
  • PTFE has a usable limit of about 260 and a higher melting point at about 335, but retains its own shape without melting even above 335 due to its very large molecular weight. Also, the volume expansion is large, and when the temperature is increased from room temperature to 400'c, the volume expands by about 60%. Thermal decomposition temperature is about 420'c.
  • an outer mold is arranged outside the above-mentioned heat-expandable core, and a thermoplastic resin pre-reader is interposed between the core and the outer mold. At this temperature, the thermoplastic resin pre-bledder and the core are heated to expand the core.
  • the heating in this case may be performed in air, inert gas, or vacuum.
  • the required heating atmosphere may be selected depending on the matrix resin. Heating is generally faster, It is preferable from the viewpoint of prevention of deterioration of the resin and economy of time.
  • the heating process of the heat-expandable element can be described as follows: whether all the heat-expandable elements of the core heat up at the same time, or heat the heat from one end to the other end. Or, the core rises in temperature from the center, and the end of the core is better: slightly slower.
  • the energy supply means for heating can be selected according to the specific product shape while taking the above into account. For example, use atmosphere heating, heating of inner and outer molds, heat-induced ripening, and an appropriate combination of these! > Things are possible.
  • the core and the thermoplastic resin prepreg are cooled together with the outer mold after heating and melting the thermosetting resin and clamping the mold.
  • This cooling has a profound effect on controlling the crystallinity and residual stress of the thermoplastic resin, which is the matrix, and maintaining the mold clamping pressure (at least the mold clamping pressure until the resin degrades). . : ...-For controlling crystallinity and residual stress, it is a matrix Some cases are very severe depending on the type of thermoplastic resin, while others are not so severe. Maintaining the clamping pressure is a problem that applies to all matrices. This problem is mainly solved by the design of the core structure. In other words, for example, in order to make a difference in the cooling rate between the molding material (thermoplastic resin pre-paeder) and the thermal expansion element of the core, the force that makes the core hard to cool down.
  • a cooling means may be appropriately selected. For quenching, it is better to spray the core, molding compound, and outer mold with water or soak the whole in water. In order to cool slowly, it is necessary to keep the temperature appropriate for the required cooling rate.
  • the core may be appropriately disassembled and removed from the molded product.
  • a core that can be disassembled and assembled in advance may be used.
  • release processing may be performed by covering the inner surface of the outer die with a release film, a release foil, a release agent, or the like.
  • a copper die is used as the outer die, for example, it is not necessary to provide any means for releasing.
  • the outer mold itself can be etched and chemically dissolved. Also, when copper pipes are used as the outer mold, it is convenient when the number of products to be produced is small, since it is not necessary to separately prepare the outer mold. In addition, copper pipes have particularly high wall surface accuracy, so that the surface accuracy of the outer surface of the resulting product can be increased.
  • the core consists of only a solid mandrel, a hollow mandrel, a composite in which a plurality of thermal expansion elements are arranged on the surface of a core, and a plurality of thermal expansion elements.
  • a method for manufacturing a thermoplastic resin hollow body using each of the aggregates will be specifically described.
  • thermoplastic resin pre-predator is wound around the solid mandrel.
  • This winding is performed by, for example, a normal winding method or a lorry. What is necessary is just to perform by the method.
  • a thermoplastic resin pre-reader with a width of 3 to 6 is used.
  • the width is 70 mn!
  • the device used in the filament winding method or the tape winding method may be a winding device or a rolling method in a mouth ring method. Device.
  • thermoplastic resin pre-preda is wound around the solid mandrel in a pipe shape while applying tension to the solid mandrel.
  • a soldering iron or the like at an appropriate point in the winding process. It is preferable to wind as tightly as possible while heating and temporarily fixing the brim.
  • thermoplastic resin pre-predder on the solid mandrel When the winding of the thermoplastic resin pre-predder on the solid mandrel is completed and the wound is formed, the wound is then subjected to a heating shaping process.
  • the outer shape of the wound product to be subjected to the heat forming step be restricted by the outer die.
  • This constraint on the outer shape is due to the fact that the winding is heated even if the outer shape of the wound is temporarily fixed because the ply of the wound is temporarily fixed as described above. Preventing the molding process from causing its shape to collapse or the direction of the fibers arranged in the roll to be disturbed or displaced when the solid mandrel expands It is in. More importantly, however, due to the outer shape constraint of the roll, the pressure caused by the thermal expansion of the solid mandrel is evenly distributed from inside to outside of the laminated briquette of the roll wound in a pipe shape for the first time. In addition, the laminated ply is brought into close contact with each other, voids are removed from between the laminated ply, and the thermoplastic resin pre-predder constituting the roll is supplemented. The ability to correctly orient the strong fibers.
  • Examples of the above-mentioned outer shape constraining method include a method of inserting a solid mandrel together with a middle wound material of a vacuum bag and applying atmospheric pressure or the like to the surface thereof, or a tape such as a heat-resistant film or a metal foil. There is a method of taping the surface of the wound material using a method such as using a tubing tension, a method of covering a thin metal pipe on the surface of the wound material, and a method of using a mold. These restraining methods are appropriately selected according to the specifications of the hollow body to be molded. Prior to restraining the outer shape, a release agent or release sheet may be added to the roll to prevent adhesion between the outer mold for restraining the ⁇ shape and the thermoplastic resin of the roll. It is also possible to intervene between the outer mold.
  • the molding temperature in the heat molding step is equal to or higher than the plasticization temperature of the thermoplastic resin of the thermoplastic resin pre-preda constituting the roll.
  • the thermoplastic resin is a crystalline thermoplastic resin
  • a temperature higher than its melting point preferably a temperature of [melt + 1020'c] or more
  • a temperature higher than its softening point preferably a temperature higher than [softening point + 100'c] is preferable.
  • the heating means at the time of heat molding is not particularly limited, but the simplest means is an electric oven.
  • the heating time is generally set according to the size of the roll so that a predetermined molding temperature is obtained at the center of the solid mandrel. Normally, when the wound material is considered to have risen to the prescribed molding temperature, it takes only a few thousand hours, e.g. Good to keep.
  • the solid mandrel is sufficiently expanded by heating, the close contact between the wound plies is completed. Finally, the solid mandrel is extracted from the roll after cooling the roll and the solid mandrel thus heated. This will recover the product and the solid mandrel.
  • the cooling may be natural cooling or active cooling using some cooling means.
  • FIG. 1 (A) and FIG. 1 (B) show the first step of the present invention.
  • 1 is a solid mandrel made of PTFE
  • 2 is a thermoplastic resin prepreg having reinforcing fibers 3 in which continuous fibers are arranged in an oblique direction. It is.
  • the thermoplastic resin pre-predator 2 is formed by stacking two sheets each having the reinforcing fibers 3 cut in the bias direction.
  • the thermoplastic resin pre-predator 2 has a fiber volume fraction Vf of 0.61 and a sheet width of 305 using PEEK as a matrix and carbon fiber filaments of about 7 / m in diameter as reinforcing fibers.
  • APC-2 / AS-4 manufactured by ICI-Fiberite with a thickness of 0.125 mm was used.
  • thermoplastic resin pre-pre- der 2 is wound around a mandrel 1 by a winding device as shown in FIG.
  • the thermoplastic resin pre-predator 2 applies tension to minimize tarnish. It is wound in a pipe shape, and is heated by a soldering iron at some points in the middle of winding and is temporarily fixed.
  • FIG. 3 shows a roll 11 obtained after the above winding operation.
  • the diameter of the mandrel 1 was 3 (T, the number of briquettes of the thermoplastic resin pre-predator 2 was 30, and the thickness of the ply layer was about 4.8 »».
  • the inter-layer distance was 1.2, corresponding to about 1/4 in total.
  • the mandrel 1 together with the wound material 11 is placed in a vacuum bag 6 to be sealed, and then vacuumed through an exhaust hose 7 connected to a vacuum pump.
  • the air in bag 6 is removed by suction.
  • a polyimide film (“Kapton (KAPT0N) 11 100H” manufactured by DuPont) was used as the vacuum bag 6.
  • the roll film 11 and the polyimide film of the vacuum bag 6 on the surface of the mandrel 1 do not wrinkle.
  • the atmospheric pressure of l kg / crf acts evenly from the outer periphery of the roll 11 to the laminated portion of the roll 11 and the outer shape is reliably restrained. You.
  • the rolled material 11 and the mandrel 1 whose outer shapes are restricted as described above are placed in an electric oven as shown in FIG.
  • the electric oven has heating blocks 8 and 9 arranged above and below, and is sealed with an insulating block 10 so that the inside can be heated to keep the inside at 400'c. 30 minutes after the start of heating, the roll 11 and the mandrel 1 are taken out of the electric oven and allowed to cool, and then the mandrel 1 is pulled from the roll 11. This was punched out to obtain a molded pipe.
  • the obtained pipe has an inner diameter of 36 «a, a wall thickness of 3.7 w, and a reinforcing fiber of ⁇ 45.
  • the layers were stacked without any disturbance at any angle, and as a result of microscopic observation, they were of high quality with no voids.
  • thermoplastic resin pre-preda The fiber orientation of the thermoplastic resin pre-preda is 0 ° and 90 °.
  • a pipe was produced under exactly the same conditions as in Example 1 except that the pipes were laminated such that
  • the resulting pipe has no reinforcing fibers. And 90. Except for the lamination at an angle of, as in Example 1, it was of high quality with no fiber disturbance or voids.
  • the obtained pipe had an inner diameter of 34 mm, a wall thickness of 3.9 mm, and a captive fiber of ⁇ 45.
  • the layers were stacked without any disturbance at any angle, and as a result of microscopic observation, they were of high quality with no voids.
  • the above-described method using a solid mandrel relies on the thermal expansion of the solid mandrel and mold clamping.
  • the thickness of the hollow body to be manufactured is relatively thick and one thermal expansion of a solid mandrel is insufficient, or the melting point or softening point of the thermoplastic resin of the matrix Is relatively low, the difference in temperature between the solid mandrel and the thermoplastic resin is not large enough, and thermal expansion on one side is not enough.
  • the present invention provides a method for manufacturing a hollow fiber-reinforced thermoplastic resin body using a solid mandrel, which overcomes the manufacturing limit of thickening and manufactures a hollow body having a small outer diameter and a small thickness ratio. It also provides a way to do this.
  • the four hollow bodies obtained by this method are used especially for pressure-resistant parts that require strength and power transmission parts that require bending and torsional rigidity.
  • this method is also applied to the production of continuous fiber-reinforced pipes using engineering ring plastics with a somewhat melting point as matrix.
  • a prepreg made of a thermoplastic resin as a matrix is wound around a solid mandrel made of a resin having a high thermal expansion property and a higher heat resistance than the thermoplastic resin. Heating the wound material and the solid mandrel to a temperature equal to or higher than the plasticizing temperature of the thermoplastic resin while restraining the outer shape of the obtained wound material with an outer mold; Inflate and
  • the inner diameter of the hollow body obtained by thermally expanding the solid mandrel from the inside is expanded by using a thin solid mandrel, and then the first mandrel is used.
  • a slightly thicker solid mandrel is inserted into the hollow body and thermally expanded again from the inside, expanding the inner diameter of the hollow body further than before, virtually eliminating voids in the hollow body layer
  • the heating is repeated until the diameter of the solid mandrel is increased.
  • a single thermal expansion of a solid mandrel can be achieved by expanding the solid mandrel to produce a thick hollow body that requires more expansion of the solid mandrel. Since the inner diameter of the hollow body cannot be expanded sufficiently, the remaining hollow body of the laminated void may not be replaced. However, at this stage, since the inner diameter of the hollow body is larger than the outer diameter of the solid mandrel used initially, the solid mandrel that is one turn thicker than this solid mandrel is hollow. Can be inserted into the body.
  • a solid mandrel is first expanded from the inside with a thin object to expand the inner diameter of the finished hollow body.
  • a solid mandrel slightly thicker than the one used first, is inserted into the hollow body and thermally expanded again from the inside.
  • the inserted solid mandrel is unheated, but the hollow body can be unheated or heated.
  • both the solid mandrel and the hollow body reach the temperature (above the plasticization temperature)
  • the inner diameter of the hollow body expands and the number of laminated voids decreases compared to the first stage.
  • the heating is repeated by sequentially increasing the diameter of the solid mandrel until the voids in the hollow body layer are substantially eliminated. It is often possible to eliminate laminated voids in one go, but if that is not feasible, use thicker solid mandrels sequentially. This will eventually eliminate the laminated void completely. This is due to the fact that the matrix resin is thermoplastic and can be plasticized and solidified reversibly many times by heating and cooling.
  • FIG. 6, FIG. 7, and FIG. 8 are diagrams showing the procedure of an example of this method.
  • 21 is a solid mandrel made of PTFE
  • 22 is a gap as far as it comes out of a pre-predasite (APC-2 / AS4) reinforced with carbon fiber using PEEK as matrix. It is a roll wound around mandrel 21 as if Is constrained by copper pipe 23.
  • the pre-prepared material to be the product pipe is placed in the space between the thermally expanding mandrel 21 and the copper pipe 23 for externally constraining the shape.
  • the diameter of the mandrel 21 is 20 «and the inner diameter of the copper pipe 23 is 32 ⁇ ».
  • the material in the state shown in Fig. 6 was heated to 400'c, and after the mandrel 21, the pre-predated sheet, and the copper vibrator 23 reached 400, both were cooled to room temperature. Get the state of. Since the diameter of the mandrel 21 was expanded to 23 M at 400 'c, the pre-predated sheet was evenly compressed between the copper pipe 23 and the mandrel 21 under the melting of PEEK. Form a pipe 25 of 2 3 TM.
  • Pipe 25 still has laminated voids due to insufficient compression.
  • a gap 27 is formed between the pipe 25 and the mandrel 21 by cooling the mandrel 21.
  • a thick mandrel 21a (diameter 22 w) can be easily inserted into the space 27.
  • the diameter of the mandrel is 20 «m and the inner diameter of the copper pipe is 3 2
  • the heating temperature was 330, and the state shown in Fig. 7 was obtained.
  • the mandrel expanded at 3330'c to a diameter of 22.6c, forming a pipe 25 with an inner diameter of 22.6.
  • a mandrel with a diameter of 23M was (1 3 % Thermal expansion) up to 25.99 m, but the radial expansion is limited by the material of the prepreg (after the void has been removed) and the excess expansion The tension causes axial expansion, so that no extra expansion is applied to the pre-preda to be molded.
  • Example 4 Example 5
  • a comparative example following this will be described.
  • the wall thickness when laminated so as not to include the laminated voids does not substantially flow out of the resin. If the amount of the pre-preducted material to be wound, that is, the length in the winding direction is given, it is naturally determined.
  • the diameter of the mandrel, when inflated, finally matches or exceeds the expected inner diameter a pipe without a laminated body as shown in Examples 4 and 5 is obtained. If not, it is a poor pipe with a stacked body.
  • This pipe has a wall thickness of 3.3 «to 4.5 « in the absence of laminated voids and has a reasonable appearance but a laminated void of about 25%. (A pipe with a large body is very poor in strength.)
  • thermoplastic resin pre-reader 32 is interposed between the outer die 33 and the inner peripheral surface. Hollow mandrels have better thermal conductivity than solid mandrels.
  • a molding material is interposed between the outer peripheral surface of the hollow cylindrical mandrel 31 and the inner peripheral surface of the hollow cylindrical outer die 33. This can be done in the same manner as when using a solid mandrel as described above. Then, heating and cooling are performed in the same manner as when a solid mandrel is used, so that a fiber-reinforced hollow thermoplastic resin body can be obtained.
  • a solid or hollow metal or ceramic core 34 may be fitted into the mandrel 31.
  • the mandrel 31 can be supported, even when the mandrel 31 is thin, the molding material can be pressed uniformly without deformation of the mandrel 31.
  • heat transfer is particularly rapid and uniform, which has a particularly remarkable effect in terms of production efficiency and quality.
  • the mandrel 31 may be reinforced by a fiber 35 parallel (0) to the axis. Thereby, the thermal expansion can be suppressed in the axial direction and the radial direction can be emphasized.
  • the mandrel 31 may be reinforced by a fiber 35 parallel (0) to the axis and a fiber 36 perpendicular to the axis (90). This allows the mandrel 31 to expand more uniformly in the radial direction.
  • an electric heater 37 is inserted into the core 34 as shown in FIG. 13 or a cylinder 41 having a heat medium supply pipe 42 built in as shown in FIG. It is good to charge inside. This allows for faster and more uniform processing temperatures than with ambient heating. As a result, the production time can be shortened and the quality can be improved. In particular, atmospheric heating is particularly effective for long pipes (large molded products), which take time to reach the ambient temperature as a whole.
  • reference numeral 40 denotes a power supply unit.
  • reference numeral 43 denotes a wall of the heating furnace
  • 44 denotes a heat medium inlet
  • 45 denotes a heat medium outlet.
  • a prepreg (APC-2 / AS4, manufactured by ICI-FIBE IHTE) wound around £ 1 ⁇ It was placed between the tube 31 and the outer mold 33, and the whole was put in a heating furnace at 400 ° for 30 minutes, and then poured into a water tank filled with cold water (about 20) to be quenched.
  • the carbon continuous fiber reinforced hollow body obtained by using PEEK as a matrix was an extremely uniform and good molded body without fiber turbulence and laminated voids everywhere. Comparative Example 2
  • a hollow body reinforced with continuous carbon fiber using PEEK as a matrix was manufactured in the same configuration as in Example 6, except that a solid PTFE mandrel was used. It was placed in a heating furnace and kept for 30 minutes, but the center of the mandrel was not sufficiently heated, and a stacking board remained in the center, which was a problem.
  • the mandrel shown in Fig. 10 almost the same as in Example 6.
  • a hollow body was manufactured in the same manner.
  • the mandrel used here is a metal pipe provided with a hollow body made of solid PTFE of the same dimensions as that of the sixth embodiment. In this case, heat transfer was uniformly and quickly achieved by the effect of the metal pipe, and a product excellent in quality similar to that of Example 6 could be obtained by heating for 20 minutes.
  • a product was made in the same configuration as in Example 6, except that the mandrel shown in FIG. 11 was used.
  • the outer diameter of the mandrel is the same except that the mandrel is reinforced with glass fiber in the axial direction and the thickness of the PTFE is 1 ⁇ 2 in Example 7.
  • the outer diameter of the metal pipe is larger due to the thinner part). In this case, the thermal expansion in the axial direction is limited by the glass fiber, and the thermal expansion in the radial direction is sufficiently achieved, even though the thickness of the PTFE is small.
  • the PTFE layer was thin, a good product could be obtained in a heating time of 10 minutes.
  • the mandrel was less deformed and could be reused as it was.
  • the heating time be as short as 10 minutes TeSumi, for re-use shape once: such as the recovery is not necessary, overall The effect of reducing the production cost is remarkable.
  • the rod-shaped electric heater (cartridge heater) shown in Fig. 13 is inserted into the metal pipe shown in Fig. Manufactured a product in the same manner as in the other examples. When the heater was heated in the heating furnace, uniform heating of the whole was completed in 3 minutes, and a good product could be obtained.
  • the heater shown in Fig. 13 is inserted into the mandrel shown in Fig. 10 to make a mandrel having heating means, and a pre-prepared tape (APC- 2 / AS 4) was wound so as to form a layer structure of ⁇ 45 °, and an outer mold was placed on top of it.
  • a pre-prepared tape APC- 2 / AS 4
  • This is put into a heating furnace at 400, and the heater is operated at the same time, and is uniformly and rapidly heated in the axial direction by the atmospheric heating and the heating of the heater, and the prepreg, the mandrel, and the outer mold are heated in about 3 minutes. 00 ⁇ .
  • the hollow body of the product obtained in this way was good without any disturbance of the fiber or void.
  • the function of the core is to support the clamping force generated by the thermal expansion of the core during clamping, and to define the position of each thermal expansion element. Therefore, the core is required to have mechanical properties such as strength and rigidity at the temperature used, as well as partitions, irregularities, or the like that restrain the thermal expansion element. (Otherwise, depending on the shape of the heat-expandable element, these may not be necessary). In addition, it is preferable to have appropriate means for promoting heating and controlling cooling.
  • the interior of the core may be hollow or solid. Further, it is preferable that the core is constituted so that it can be disassembled as needed.
  • core components consists of only a plurality of thermally expandable elements.
  • the problem of non-uniform product quality due to heat conduction can be ignored.
  • Good products can be obtained by using a child. Therefore, in this case, it is not necessary to use a core with a core body.
  • FIG. 19 ( ⁇ ) shows a case where three core-shaped heat-expandable elements 71 are fitted into the core body 70.
  • FIG. 19 ( ⁇ ) shows a case where one ring-shaped heat-expandable element 71 is fitted into the core body 70.
  • a single thermal expansion element corresponds to a solid or hollow mandrel.
  • the diameter and size of each of the ring-shaped thermally expandable elements can be changed according to the shape of the product.
  • the means for connecting the heat-expandable element and the core include, for example, a convex portion of a partition provided on the core, Any of a surface unevenness provided on the core body, some mechanism of the outer mold, and a mechanism independent of the core body and the outer mold may be used.
  • the heat-expandable elements need not be in close contact with each other, but are designed in advance so that the matrix of the molding material expands and adheres to the core surface before the flow of the molding material starts to flow.
  • the heat-expandable elements may be connected to each other by fitting each other like a puzzle.
  • the heat-expandable elements when individually subjected to a high thermal expansion force in the X, Y, and z directions, and under a high compressive stress as in the present invention, may appropriately elastically or plastically deform to fill the void. To expand. For this reason, it is not always necessary to design a thermally expandable element assuming isotropic thermal expansion based on the shape of the thermally expandable element during heat deformation.
  • the heat-expandable element is reinforced to give a significant anisotropy to the heat-expandability (in extreme cases, it expands only in the X direction and expands in the ⁇ and ⁇ directions). It is possible to use only the effective direction of expansion (in this case, to match the X direction to the product normal).
  • a heat-expandable element containing a filler having high heat conductivity may be used.
  • a composite having a plurality of thermal expansion elements arranged on the surface of a core body is used as a core, for example, as shown in FIG. 15, a cavity 62 having a circular or elliptical cross section is formed.
  • the inner surface of the cavity 62 of the outer mold 61 through transmural to 3 ⁇ 4 other end from over end, the lateral surface the circular also a thermoplastic resin prepreg is wound to a desired layer constitution, the hollow winding of oval 63.
  • the material of the outer die 61 is not particularly limited. However, since it is necessary that the outer die 61 is not deformed or deteriorated at the processing temperature and that it withstands the pressure caused by the expansion of the heat-expandable element, It is preferably made of metal such as aluminum or aluminum alloy.
  • the outer die 61 may be an integral type, but is preferably a split type that can be split into two upper and lower parts and can be clamped with a bolt or the like because it is easy to take out the product.
  • thermoplastic resin prepreg is wound around the inner surface of the cavity 62 of the outer die 61 so as to have a desired layer configuration.
  • thermoplastic resin pre-preda since the thermoplastic resin pre-preda is in the form of a cured sheet, for example, it may be spirally wound into the cavity 62. Also, when winding in a spiral shape, spot welding may be performed on the pre-preda with a soldering iron or the like to temporarily fix it. A release agent or the like may be applied to the inner surface of the cavity 62 in advance.
  • a core 66 having a cross-sectional elliptical shape composed of a core 64 and a plurality of mature expandable elements 65 arranged around the core 64 is used to form a hollow roll 63 Insert into the hollow part.
  • the core body 64 is deformed and deteriorated at the processing temperature, like the outer mold 61.
  • the material is not particularly limited because it is necessary to prevent the occurrence of pressure and to withstand the pressure caused by the expansion of the thermally expandable element, but it is made of metal such as iron or aluminum alloy. Is good. Further, it may not be solid and may be hollow or hollow. It is preferable that the core 64 itself be hollow or hollow because the weight of the core 64 itself is reduced and the thermal conductivity is improved.
  • the thermal expansion element 65 shows isotropic thermal expansion (some anisotropy may remain due to molding conditions, etc., but it is considered macroscopically isotropic). ). Therefore, as shown in FIG. 16, the thermally expandable elements 65 are arranged with a gap therebetween. In addition, if necessary, a metal foil or the like may be disposed between the thermally expandable elements 65 to prevent the elements from being welded to each other.
  • the hollow roll 63 into which the core 66 has been inserted is heated.
  • Heating may be performed by placing the entire outer mold 66 in a heating furnace (preferably a hot blast furnace or a degreasing furnace).
  • the heating temperature is 30 higher than the melting point of the matrix resin of the pre-preda. c-100. c should be higher.
  • the heating time may be a time during which the whole reaches the ambient temperature. Due to this heating, the heat-expandable element 65 thermally expands in the X, Y, and Z directions of length, width, and height, and as shown in FIG.
  • the object 63 is pressed from the inside toward the outer mold 61 to uniformly clamp the hollow wound article 63 over the entire circumference.
  • a pre-precast (APC-2 / AS4, manufactured by ICI Fiberite) using PEEK as a matrix is ⁇ 45.
  • a total of 24 brushes, each of 12 brushes, is mounted so as to have a thickness of just 3.0 mm, and a PTFE heat-expandable element 65 is further disposed inside, and a Further, an aluminum core 64 was mounted.
  • This is placed in a hot-air oven maintained at 400 mm, and kept for 60 minutes. As shown in FIG. 17, the heat-expandable elements 65 adhere to each other, and there is no gap between the layers of the hollow roll 63. After confirming that it was in place, the whole was taken out of the oven and cooled, and as shown in Fig. 18, there was no void or fiber disturbance, and an ellipse that was both excellent in appearance and characteristics A panel was obtained.
  • This elliptical spring had a ring width of 50 mm, a minor axis of 77 mm, a major axis of 154 mm, a wall thickness of 3 mm, and a VF of 0.61.
  • the same elliptical spring was obtained as in Example 11, except that the lamination structure was such that the lamination was alternately laminated at 0 ° and 90 ° (outermost layer at 0 °).
  • thermoplastic fibers reinforced by continuous fibers When molding with a composite material using resin as matrix, it is necessary to (1) realize the fiber orientation without disorder as designed, (2) eliminate the laminated body, or (3) vary the distribution of arrowheads. As a result, it is important in terms of performance whether there is any place where the resin pool is generated. This is because there is no fiber turbulence, no laminated voids, and no separation between the arrowhead fibers and the resin, which guarantees the high performance of the product. Conversely, if there are locations that do not satisfy these points, the locations will be weak and the blasting will proceed from there, leading to poor performance. Therefore, for the products obtained in Examples 11 and 12, a large number of test pieces were cut out and subjected to a bending test to see these points. It was found that the composition exhibited excellent performance satisfying these points with very little homogeneity.
  • the processing temperature was maintained at 330, and the core 64 and the heat-expandable element 65 were used.
  • the procedure was the same as in Example 11, except that an aluminum plate having a thickness of 1.0 mm was sandwiched between the two.
  • Bench lily tube (layer structure of ⁇ 45 ° with respect to the facet):
  • the product 72 (bench lily tube, diameter 10 cm) shown in Fig. 20 is replaced with the outer die 73 (split type) shown in Fig. 23.
  • the inner surface is subjected to tephron processing for release), and a core 82 comprising a core body 80 shown in FIG. 21 and a PTFE thermal expansion element 81 shown in FIG. 22.
  • the core 82 has a structure that can be disassembled, and after the product is completed, it can be disassembled and the product can be taken out of the core 82).
  • a pre-prepader using PEEK as a matrix ( ⁇ 3 mm wide, 0.13 mm thick, APC-2 / AS4., ICI), braided with a blade, 45.
  • a total of 16 preforms with a total of weaving angles were formed.
  • the wall thickness of the preform of this Venturi tube was about 5 mm, which was about 2.5 times the thickness of the finished product of 2 mm.
  • the preform was spotted where it was deemed necessary to prevent fragmentation.
  • a core 80 shown in FIG. 21 was partially disassembled and passed through the preform, and a heat-expandable element 81 was arranged on the core 80 to assemble a core.
  • the thermal expansion elements 81 Although there was a small gap, when the processing temperature was reached, the gap disappeared, and the heat-expandable element 81 pressed the preform to the outer mold 73 and took care to clamp the mold.
  • the entire preform and core were placed in an outer mold 73 shown in FIG. 23 to prevent the outer mold 73 from opening, and then sent to the next step.
  • an outer mold 73 a split mold is used because it is necessary to take out the product, and a Teflon coating is applied to the inner surface for release.
  • the flange 83 prevents the axial movement of the core body 80 of the thermally expandable element 81 because the nut 85 prevents the core body 80 from moving outward in the axis direction. Effectively causes thermal expansion in the radial direction.
  • the flange 83 also prevents the thermal expansible element 81 from being quenched by contact with water during cooling, thereby causing the thermal expansible element 81 to contract before the matrix of the product solidifies. Prevents peeling from the product due to excessive application, or interlayer voids due to insufficient mold clamping.
  • 84 is a sleeve with a taper section.
  • the core and outer mold were disassembled and demolded to obtain a product.
  • the core can be disassembled by removing nut 85.
  • the obtained product was very uniform in appearance first, had no irregularities in the weaving angle, no wrinkles, voids, irregularities on the inner and outer surfaces, and had extremely good dimensional accuracy.
  • a part of this product was sampled as a test sample, which was subjected to a static mechanical test. As a result, it was clarified that this product exhibited the expected strength and rigidity, had sufficient mechanical properties, and sufficiently exhibited the performance of the thermoplastic resin matrix.
  • a one-way aligned prepreg tape (width: about 30 cm, thickness: about 0.13, APC-2 / AS4, manufactured by IC1 company) using PEEK as a matrix is cut into a predetermined layer structure.
  • This strip was wound into a cylindrical shape with the same outer circumference, and spots were stopped at several places where it was deemed necessary to prevent loosening.
  • the preform thus obtained was placed in an outer mold subjected to a mold release treatment in the same manner as in Example 14 while deforming. After preventing the outer mold from opening, the core was assembled in the preform.
  • the core 91 was made of metal square pie as shown in Figs. 25 (A) and (B). (The movement of the thermal expansion element in the axial direction of the core body 91 is prevented by the flange 94), and a groove 93 is formed on the surface in contact with the thermal expansion element made of PTFE. Carved. The groove 93 is used for the thermal expansion shown in FIGS. 26 (A) and (B), This is a measure to prevent the core body 91 from expanding in the axial direction each time.
  • the heat insulating material is not wound around the outer end of the outer die as in the fourteenth embodiment.
  • the core body 91 is a hollow square pipe, so that the temperature rises sufficiently quickly from the center of the product 90, and substantially no trouble occurs.
  • the product has a longer length even with the same structure core, it is better to wind the heat insulating material as in the fourteenth embodiment.
  • the core and outer mold were disassembled and demolded to obtain the product.
  • the obtained product was extremely well-balanced in appearance, as in Example 14, was free from irregularities in the constituent angles, no wrinkles, voids, irregularities on the inner and outer surfaces, and had extremely good dimensional accuracy.
  • a part of this product was sampled as a test sample and subjected to a static mechanical test. As a result, it was clarified that this product exhibited the expected strength and rigidity as in Example 14, had sufficient mechanical properties, and sufficiently exhibited the performance of the thermoplastic resin matrix.
  • Example 14 had sufficient mechanical properties, and sufficiently exhibited the performance of the thermoplastic resin matrix.
  • Elliptic tube ( ⁇ 45 °, major axis 10 cm, minor axis 6 cm, wall thickness 1, Fig. 27 (A), (B)):
  • One-way alignment pre-reading with PPS as matrix One piece was cut into a predetermined layer structure, and was further spliced into a band.
  • This belt-shaped apricot outer circumference was wound in a cylindrical shape that matched, and several spots were stopped at places considered to be necessary to prevent loosening.
  • the preform obtained in this manner was placed in an outer mold subjected to release treatment in the same manner as in Example 14, while being deformed. After preventing the outer mold from opening, the core was assembled in the preform.
  • the core body 101 was made of aluminum, as shown in Figs. 28 (A) and (B).
  • the thermal expansion element 105 is composed of a metal plate 102 and a flange 103 (the movement of the thermal expansion element to the outside of the axis of the core body 101 is prevented by the flange 103), and the thermal expansion element made of PTFE is used.
  • a groove 104 is carved on the surface in contact with.
  • the groove 104 is a means for preventing the mature expandable element 105 shown in FIGS. 29 (A) and 29 (B) from excessively expanding in the axial direction of the core body 101. Since there is relatively little contact between each of the thermal expansion elements 105 and the core 101, the grooves 104 are engraved more.
  • a silicone resin with fiber reinforcement in the axial direction was used for the thermal expansion element 105.
  • Example U The obtained product 100 is extremely well-balanced in appearance, as in Example U, and has no irregularities in the constituent angles, no wrinkles, voids, irregularities on the inner and outer surfaces, and extremely good dimensional accuracy. Met.
  • a part of the product 100 was taken as a test sample and subjected to a static mechanical test. As a result, this product 100 exhibited the expected strength and toughness as in Example 14, had sufficient mechanical properties, and could sufficiently exhibit the performance of the thermoplastic resin matrix. It became clear.
  • the preformed ribs were housed in two grooves 113 on the core 112 in FIG.
  • a plain weave of commingled yarn made of PEEK yarn and carbon fiber is slanted45.
  • the cut piece was tightly wound by a predetermined amount.
  • a 35-m-thick copper foil was wrapped around it as a mold release mold. The whole was inserted into the outer mold (integral type, not split type), and both ends of the outer mold were closed with flanges 114 of the core 112. After replacing the inside of the outer mold with nitrogen gas (N 2 ), the nuts 115 at both ends of the core 112 were tightened so that no gap was formed.
  • N 2 nitrogen gas
  • the core 112 has a PTFE heat-expandable element 117 as shown in FIGS. 32 (A) and (B) arranged on a core body 116 shown in FIG.
  • the core 116 is made of iron parts, It can be disassembled by removing nut 115.
  • the outer surfaces of both ends of the outer mold were wound with a heat insulating material for the same purpose as in Example 14.
  • the reason why the molding material was heated in the N 2 atmosphere is to prevent the surface of the carbon fiber from being affected by oxidation or the like, thereby preventing a problem in forming an interface with PEEK.
  • This is a common practice when using a pre-preda with no interface formed.
  • the holding time of about 20 minutes after the whole reached almost 400 was to ensure that the impregnation and dispersion of the polishing on the carbon fibers was sufficiently achieved. This is also a common means when using a molding material that is immersed during molding.
  • the core 112 was disassembled, and 11 products to which the copper foil was attached were extracted from the outer mold.
  • Copper foil can be easily removed from product 110, but as an alternative, immerse product 110 with copper foil in a chemical solution that dissolves copper (for example, ferric chloride solution) to remove the copper foil. You may.
  • the resulting product 110 is extremely well-balanced in appearance, free from irregularities in constituent angles, wrinkles, voids, and irregularities on the inner and outer surfaces.
  • the dimensional accuracy was also very good, and the mounting portion of the rib 111 on the inner surface was smoothly fused and integrated.
  • a part of the product 110 was taken as a test sample and subjected to a static mechanical test.
  • this product 100 shows the expected strength and rigidity as in the other examples, has sufficient mechanical properties, and fully demonstrates the performance of the thermoplastic matrix. Became clear.
  • a preform having an outer diameter that can be exactly inserted into the outer mold was formed using a pre-preeder tape using PEEK, which is the same material as in Example 15, as a matrix. This was inserted into the outer mold of a 1.0 mm thick seamless copper tube.
  • Fig. 47 shows the temperature profile of the molding material during the heating process.
  • the core inside the molding material 129 is thermally expanded sequentially from the center to the end, and as indicated by the arrow 128 It is made to wash out in the direction to prevent shrinkage, sagging, and voids.
  • the outer mold was removed with a chemical solution that dissolves copper (here, a sulfuric acid / hydrogen peroxide aqueous solution was used, but a ferric chloride solution or the like can also be used) to obtain a product 120.
  • a chemical solution that dissolves copper here, a sulfuric acid / hydrogen peroxide aqueous solution was used, but a ferric chloride solution or the like can also be used
  • the ridge of the rod 121 has the function of stopping the nut 122 (both ends) and the unevenness that prevents the thermal expansion element 124 from moving too much in the axial direction of the core body 123. It also has the function of Therefore, the existing screw rod can be used as the rod 121, which is economical.
  • the nut 122 prevents the thermally expandable element 124 from overexpanding, also outwardly in the axial direction.
  • thermal expansion occurs sufficiently in the radial direction of the core body 123 at the end of the product 120, and mold clamping is sufficiently realized.
  • nuts in the cooling process The function of the dead volume near the end of the thermal expansion element 124 blocked by 2: 2 also realizes mold clamping in the cooling process similar to that shown in FIG.
  • the corner of the pipe at the left end in Fig. 36 is Work as Dead Bolly Yuum.
  • Figures 50 (A), (B) and (C) illustrate the effect of dead volume on ensuring mold clamping during the cooling process.
  • the thermal expansion element 130 between the product 134 and the core 131 moves along the cooling butter shown in FIG. Has achieved sufficient mold clamping (Fig. 50 (A)), and a slight excessive expansion of the thermal expansion element 130 forms a curved portion 132 so as to crush the dead volume and protrude.
  • Fig. 50 (A) sufficient mold clamping
  • a slight excessive expansion of the thermal expansion element 130 forms a curved portion 132 so as to crush the dead volume and protrude.
  • the overhang to the dead volume disappears while the mold clamping is maintained, and the curved portion 132 changes to the bent portion 133 (FIG. 50 ( B))).
  • Fig. 49 shows the cooling pattern during the cooling process of the product at the processing temperature.
  • the product at the processing temperature cools, it reaches the melting point of the matrix at time a.
  • the temperature of the heat-expandable element should be reduced only slightly. In this way, voids due to insufficient mold clamping and demolding of the core before solidification of the product do not occur.
  • thermal expansion element 124 many short ones are used because of the use of ready-made pipes, but long ones can be used without any problem.
  • the total length of these heat-expandable elements is 85% of the distance between the nuts of the core.
  • the outer die unlike the other embodiments, uses a copper seamless pipe that cannot be reused.
  • (1) the initial cost is low because there is no need to prepare a separate outer mold.
  • (3) The inner surface of the mold is smooth due to the seamless wrapping, which has the advantage that the appearance of the product is particularly excellent.
  • drawbacks such as the need for a high price for making a seamless rope of a rope, and the necessity of a facility for melting copper seamless pipes.
  • pipes can be manufactured more efficiently if they are properly used according to the application.
  • the obtained product 120 has the most beautiful outer surface of all the examples because there are no split seam lines and no overlapping line of release molds. There were no irregularities on the inner and outer surfaces, voids, and the dimensional accuracy was extremely good.
  • a part of the product 120 was collected as a test sample and subjected to a static mechanical test. As a result, it exhibited the expected strength and strength as in the other examples, and the mechanical properties sufficiently exhibited the performance of the thermoplastic resin matrix.
  • a core 141 On a core 141 that can be divided and has a partition plate on the surface as shown in Fig. 38, Fig. 39 (A) The thermally expandable elements 142a and U2b (each having a thickness of about 2 cm) made of PTPE shown in Fig. 39 were interconnected and spread as shown in Fig. 39 (B). A preform was formed on this core using a braider using the same material as in Example 14.
  • Fig. 38 shows the case of splittable iron
  • Fig. 3 shows a core composed of a hollow body.
  • a partition plate 143 On the surface of the core 141, a partition plate 143 is provided to restrict the movement of the thermal expansion element.
  • the core and the outer mold were disassembled and removed to obtain a product 140.
  • the outer surface of the obtained product 140 was partially discolored due to the release agent, but was extremely uniform in appearance except for this discoloration. Further, the product 140 was free from irregularities in the constituent angles, the seams, the voids, and the irregularities on the inner and outer surfaces, and had extremely good dimensional accuracy.
  • a portion of this product 120 was taken as a test sample and subjected to a static mechanical test. As a result, it was excellent as in the other examples.
  • FIG. 40 shows a cross section of a part of the core, in which a thermal expansion element 142 is partitioned by a partition plate 143 of the core 141.
  • the individual heat-expandable elements 142 expand to the size shown by the dotted lines to become the expansion elements 144, which together form the core surface.
  • FIG. 41 shows where the metal member is inserted into the hollow body.
  • a molding material 153, a metal part 154, and a preformed reinforcing ring 155 are charged into a space between the outer die 151 and the thermal expansion element 152 of the core.
  • the product 156 was obtained in the same manner as described above.
  • the insert part of the metal member of the product 156 is as shown in FIG. 42, and a structure that can obtain the initial performance is realized.
  • the preform was knitted with a blader on the tapered core 160 shown in Fig. 45 using a pre-preed toe having PEEK as a matrix.
  • FIG. 48 shows a temperature profile in a case where the heater is turned on from one end to the other end.
  • Polyimide film is attached to the product, It can be easily removed by dipping in an alkaline solution.
  • the obtained product 164 was sufficiently excellent in both appearance and mechanical performance as in the other examples.
  • the core 160 used here is composed of only a thermal expansion element without using a core. Cores used to obtain relatively thin or small products may omit the core in this way. This is because, in this case, the heat transfer does not take too much time, a large amount of expensive heat-expanding elements are not required, and the performance of the product is not a problem.
  • the obtained product was almost uniform in appearance, except that the wrinkles of the vacuum pack were picked up, and there was no disturbance in the void angle.
  • thermoplastic resin hollow body can be efficiently produced.
  • the hollow body obtained by the present invention is not only used as a lightweight and high-strength member under harsh usage environments, but also utilizes the characteristics of the thermoplastic resin matrix. It can be used for single-shell structures, torque tubes, pressure vessels, and truss structures in outer space.

Abstract

A method for producing a hollow article of a fiber-reinforced thermoplastic resin, wherein a prepreg comprising a thermoplastic resin as the matrix is placed between a thermally expansive core and an outer die surrounding the core.

Description

明 細 書 繊維補強熱可塑性樹脂中空体の製造方法 技術分野  Description Method for manufacturing hollow fiber-reinforced thermoplastic resin
本発明は、 熱可塑性樹脂をマ ト リ ッ ク スとするプリ プレ グを使用した繊維補強熱可塑性樹脂中空体 (例えば、 丸パ イ ブ、 楕円パイ プ、 角パイ プ等) の製造方法に関する。 連続繊維で補強された熱可塑性樹脂による複合材料は、 高い比強度、 高い比剛性ならびに高い靱性などを有するた め主として宇宙 · 航空分野での利用が進められている。 繊 維補強熱可塑性樹脂中空体は、 飛翔体の胴体などの単殻構 造体や トルクチューブ、 圧力容器、 パイブ配管、 トラス構 造体などへの利用が可能である。 冃景技術  The present invention relates to a method for producing a hollow fiber-reinforced thermoplastic resin body (for example, a round pipe, an elliptical pipe, a square pipe, etc.) using a prepreg using a thermoplastic resin as a matrix. . Composite materials made of thermoplastic resin reinforced with continuous fibers have high specific strength, high specific stiffness, and high toughness, and are mainly used in the space and aviation fields. The hollow fiber-reinforced thermoplastic resin body can be used for single-shell structures such as the body of a flying object, torque tubes, pressure vessels, pipe piping, and truss structures. Landscape technology
従来、 連続繊維で補強された樹脂中空体の製造法として その連続繊維が樹脂マ ト リ ッ ク ス中に含浸された帯状のブ リプレグを金属製等のマン ド レルに卷き付けるワイ ンデ ング法がある。 このワ イ ンデイ ング法により中空体を製造 する場合、 マ ト リ ックスが熱硬化性樹脂であるプリ プレダ では、 それ自体が室温においてタ ック性で自己粘着性を有 し、 かつ可塑性を有しているので、 マンドレルにボイ ドの 形成を避けながら緊密に巻回することができる め、 生産 性に大きな支障を生ずることはなかった。 しかし、 熱可塑性樹脂をマ ト リ ックスとするプリプレダ (以下、 熱可塑性樹脂プリプレダという) は、 室温におい てタ ック性や可塑性がないばかりでなく、 薄いシ一 ト状の 形態にしても繊維で補強された硬い板状物に変わり はない ため剛性が高い。 このため、 熱可塑性樹脂プリ ブレダは単 にマンドレルに卷き付けただけではマン ドレル上に仮止め することができない。 そこで、 熱可塑性樹脂プリ プレ レグ をマ ン ド レルに巻き付ける前に、 口—カルヒー ト装置によ り熱可塑性樹脂ブリプレレグを局所加熱する必要がある。 すなわち、 熱可塑性樹脂プリプレ レグのマン ドレルへの巻 き付けはじめ箇所をホッ トスポッ ト域として、 このホッ ト スポ ッ ト域をローカルヒ — ト装置で加熱しながら巻き付け ている。 換言すると、 ホッ トスポッ ト域で熱可塑性樹脂プ リブレグを可塑化してその域にタ ック性を付与し、 さ らに 巻き付けプライ間からボイ ドを除きながら熱可塑性榭脂プ リブレレグをマン ドレルに卷き付ける必要があつたのであ る。 したがって、 巻き付け場所の移動と連携させてホッ ト スポッ ト域を移動させなく てはならないため、 口一カルヒ 一 ト装置は複雑かつ高価な装置とならざるを得なかった。 さらに、 熱可塑性樹脂プリプレダの熱可塑性樹脂をその 可塑化温度まで上昇させるにはホッ トスボッ ト域內部での 熱の滞留時間をかなりかけてホッ トスポッ ト域を加熱する ことになるため、 マ ン ド レルへの熱可塑性樹脂ブリ プレグ の卷き付けに要する時間が非常に長く なり、 このために中 空体の生産性が低下せざるを得なかった。 上述したところから明らかなように、 熱可塑性樹脂プリ プレダを使用して中空体を製造する場合は、 積層ブラィ間 を密着させることが難しく、 このため積層プライ間にボイ ドが形成され易い上に、 既存の装置を使用する場合には生 産性が劣るという本質的な欠点があった。 しかも熱可塑性 樹脂プリ プレグを十分に引張りながらマン ドレルに巻回し た場合でも、 可塑化した後の熱可塑性樹脂プリ プレダの補 強織維を弛みな く配向させることが難しいため、'得られる 中空体に熱可塑性樹脂プリ ブレダの強度が十分に反映され ず、 外観も悪いものになり易いという問題があった。 Conventionally, as a method for manufacturing a hollow resin body reinforced with continuous fibers, a winder in which a band-shaped prepreg impregnated in a resin matrix with the continuous fibers is wound around a mandrel made of metal or the like. There is a switching method. When a hollow body is manufactured by this winding method, a pre-prepared material whose matrix is a thermosetting resin is tacky, self-adhesive, and plastic at room temperature. As a result, the mandrel can be wound tightly while avoiding the formation of voids, and there was no major obstacle to productivity. However, a pre-predder that uses a thermoplastic resin as a matrix (hereinafter referred to as a thermoplastic pre-predator) has not only low tackiness and plasticity at room temperature but also a thin sheet form. The rigidity is high because there is no change to a hard plate reinforced with steel. For this reason, the thermoplastic resin pre-bleder cannot be temporarily fixed on the mandrel simply by being wound around the mandrel. Therefore, before winding the thermoplastic resin prepreg around the mandrel, it is necessary to locally heat the thermoplastic resin prepreg with an oral heating device. In other words, the portion where the thermoplastic resin prepreg is wound around the mandrel is set as the hot spot area, and the hot spot area is wound while being heated by the local heat device. In other words, the thermoplastic resin pre-leg is plasticized in the hot spot area to impart tackiness to that area, and the thermoplastic resin pre-leg is applied to the mandrel while removing the void from between the winding plies. It was necessary to wrap it. Therefore, since the hot spot area had to be moved in conjunction with the movement of the wrapping place, the mouth-to-mouth apparatus had to be a complicated and expensive apparatus. Furthermore, in order to raise the temperature of the thermoplastic resin of the thermoplastic resin pre-predader to its plasticizing temperature, the hot spot area is heated by taking a considerable amount of time for the heat to stay in the hot spot area. The time required for winding the thermoplastic resin prepreg on the barrel became very long, which forced the productivity of the air body to decrease. As is clear from the above description, when manufacturing a hollow body using a thermoplastic resin pre-prepared material, it is difficult to make a tight contact between the laminated ply, so that a void is easily formed between the laminated ply. However, when using existing equipment, there was an essential disadvantage that productivity was poor. Furthermore, even when the thermoplastic resin prepreg is wound around a mandrel while being sufficiently pulled, it is difficult to orientate the reinforcing fibers of the thermoplastic resin prepreg without loosening. There was a problem that the strength of the thermoplastic resin pre-bleda was not sufficiently reflected on the body, and the appearance was likely to be poor.
本発明は、 熱可塑性樹脂プリブレダを使用して中空体を 製造する際の上述した欠点を解消するためになされたも である。 したがって、 本発明の目的は、 熱可塑性樹脂プリ プレダの繊維配列や積層構造を設計通りに中空体に実現し た形状の自由度が高く高品質の中空体を生産性よ く製造す ることができる、 織維補強熱可塑性樹脂中空体の製造方法 を提供するこ とである。 本発明は、 特に高融点熟可塑性樹 脂をマ ト リ ッ ク スとするプリプレダを使用する場合に好適 である。 発明の開示  The present invention has been made to solve the above-mentioned drawbacks when manufacturing a hollow body using a thermoplastic resin prebleder. Accordingly, it is an object of the present invention to produce a hollow body of high quality with high degree of freedom and a high quality in which a fiber arrangement and a laminated structure of a thermoplastic resin pre-preda are realized in a hollow body as designed. An object of the present invention is to provide a method for producing a hollow fiber-reinforced thermoplastic resin body. The present invention is particularly suitable when using a pre-predder using a high melting point mature plastic resin as a matrix. Disclosure of the invention
この目的を達成するために、 本発明の繊維補強熱可塑性 樹脂 Φ空体の製造方法は、 熱可塑性樹脂をマ ト リハン ク ス と するプリ プレダを、 熱膨張性の中子と該中子'.の外側に配さ れた外型との間に介在させ、 ついで前記熱可塑性樹脂の可' 塑化温度以上の温度に該プリ プレダおよび該中子を加熱し て該中子を膨張させた後、 該中子および該プリ プレダを冷 却することを特徴とする。 図面の簡単な説明 In order to achieve this object, a method for producing a fiber-reinforced thermoplastic resin 空 air space according to the present invention comprises the steps of: preparing a pre-prepared material using a thermoplastic resin as a matrix; a thermally expandable core; Between the outer mold and the outer mold, and then the thermoplastic resin. After the pre-preda and the core are heated to a temperature equal to or higher than the plasticization temperature to expand the core, the core and the pre-preda are cooled. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (A ) は本発明で用いる中実のマン ドレルを示す 説明図 ;  FIG. 1 (A) is an explanatory diagram showing a solid mandrel used in the present invention;
第 1図 ( B ) は本発明で用いる熱可塑性樹脂プリプレダ の一例を示す説明図 ;  FIG. 1 (B) is an explanatory view showing an example of a thermoplastic resin pre-preda used in the present invention;
第 2図は中実のマン ドレルに熱可塑性樹脂プリプレダを 巻回する様子を示す説明図 ;  Fig. 2 is an illustration showing the winding of a thermoplastic resin pre-predder around a solid mandrel;
第 3図は卷回後に得られる巻回物を示す説明図 ; 第 4図は卷回物と共に中実のマン ドレルを真空バッグで 拘束した状態を示す斜視説明図 ;  Fig. 3 is an explanatory view showing a roll obtained after winding; Fig. 4 is a perspective explanatory view showing a state in which a solid mandrel is restrained by a vacuum bag together with the roll;
第 5図は加熱成形工程の装置の断面説明図 ;  Fig. 5 is an explanatory cross-sectional view of the apparatus in the heat forming process;
第 6図は中実のマン ドレルに熱可塑性樹脂プリプレダシ ー トを巻きつけ、 その上に金属製パイプを被せた状態の斜 視図 ;  Fig. 6 is a perspective view of a solid mandrel wrapped with a thermoplastic resin pre-predesheet and a metal pipe placed over it;
第 7図は第 6図に示したものをマ ト リ クスの熱可塑性樹 脂の可塑化温度以上に加熱し、 その後にそれ以下の温度に 下げたときの状態の斜視図 ;  Fig. 7 is a perspective view of the state shown in Fig. 6 when it is heated above the plasticizing temperature of the thermoplastic resin of the matrix and then lowered to below that temperature;
第 8図は第 7図の中実のマン ドレルをより太いものに交 換して再度中実のマン ドレルをマ ト リ クスの熱可塑性樹脂 の可塑化温度以上に加熱し、 その後にそれ以下の温度に下 げたときの状態の斜視図 ; 第 9図は中空のマ ン ド レルを用いた中空体の製造方法の 一例を示す斜視説明図 ; Fig. 8 shows the replacement of the solid mandrel of Fig. 7 with a thicker one, and again heating the solid mandrel above the plasticizing temperature of the matrix thermoplastics, and then below Perspective view of the state when the temperature is lowered to; FIG. 9 is a perspective explanatory view showing an example of a method for manufacturing a hollow body using a hollow mandrel;
第 10図乃至第 12図は本発明で用いる中空のマン ドレルを 示す斜視説明図 ;  10 to 12 are perspective explanatory views showing a hollow mandrel used in the present invention;
第 13図および第 14図はそれぞれ中空のマン ドレルの加熱 手段の一例を示す説明図 ;  Fig. 13 and Fig. 14 are explanatory diagrams each showing an example of a heating means for a hollow mandrel;
第 15図は外型における空洞の内面に熱可塑性樹脂プリ プ レグを巻き付けて中空巻回物を形成させる様子を示す斜視 説明図 ;  FIG. 15 is a perspective explanatory view showing a state in which a thermoplastic resin prepreg is wound around the inner surface of the cavity in the outer mold to form a hollow roll;
第 16図は芯体と熱膨張性素子とからなる中子を中空巻回 物の中空部に挿入した様子を示す斜視説明図 ;  FIG. 16 is a perspective explanatory view showing a state in which a core including a core and a heat-expandable element is inserted into a hollow portion of a hollow roll;
第 17図は中空巻回物を加熱したときに熱膨張性素子が熱 膨張した様子を示す斜視説明図 ;  FIG. 17 is a perspective explanatory view showing a state in which the thermally expandable element thermally expands when the hollow roll is heated;
第 18図は本発明によって得られる製品の一例を示す斜視 図 ;  FIG. 18 is a perspective view showing an example of a product obtained by the present invention;
第 19図 (A ) , ( B ) はそれぞれ本発明で用いる中子 © 一例を示す斜視図 ;  FIGS. 19 (A) and (B) are perspective views each showing an example of a core used in the present invention;
第 20図は本発明によって得られる製品の一例を示す,斜視 図 ;  FIG. 20 is a perspective view showing an example of a product obtained by the present invention;
第 21図は中子を構成する芯体の一例を示す側面視説明図 ; 第 22図は中子を構成する熱膨張性素子の一例を示す側面 視説明図 ;  FIG. 21 is a side view explanatory view showing an example of a core constituting the core; FIG. 22 is a side view explanatory view showing an example of a thermal expansion element constituting the core;
第 23図は外型の一例を示す側面視説明図 ;  Fig. 23 is a side view explanatory view showing an example of the outer mold;
第 24図は本発明によつて得られる製品の一例を示す斜視 図 ; 第 25図 (A) は中子を構成する芯体の一例を示す側面視 説明図 ; FIG. 24 is a perspective view showing an example of a product obtained by the present invention; Fig. 25 (A) is a side view explanatory diagram showing an example of a core body constituting a core;
第 25図 (B ) はその正面視説明図 ;  Fig. 25 (B) is an explanatory view of the front view;
第 26図 (A ) は中子を構成する熱膨張性素子の一例を示 す側面視説明図 ;  Fig. 26 (A) is a side view explanatory view showing an example of the thermal expansion element constituting the core;
第 26図 (B ) はその正面視説明図 ;  Fig. 26 (B) is an explanatory view of the front view;
第 27図 (A) は本発明によって得られる製品の一例を示 す側面図 ;  FIG. 27 (A) is a side view showing an example of a product obtained by the present invention;
第 27図 ( B ) はその正面図 ;  Figure 27 (B) is the front view;
第 28図 (A) は中子を構成する芯体の一例を示す側面視 説明図 ;  FIG. 28 (A) is a side view explanatory view showing an example of a core constituting a core;
第 28図 (B ) はその正面視説明図 ;  FIG. 28 (B) is a front view explanatory view thereof;
第 29図 (A) は中子を構成する熱膨張性素子の一例を示 す側面視説明図 ;  Fig. 29 (A) is a side view explanatory view showing an example of the thermal expansion element constituting the core;
第 29図 (B ) はその正面視説明図 ;  Fig. 29 (B) is an explanatory view of the front view;
第 30図 (A ) は本発明によって得られる製品の一例を示 す斜視図 ;  FIG. 30 (A) is a perspective view showing an example of a product obtained by the present invention;
第 30図 ( B ) はその正面図 ;  Figure 30 (B) is the front view;
第 31図は中子を構成する芯体の一例を示す側面視説明図 ; 第 32図 (A) は中子を構成する熱膨張性素子の一例を示 す側面視説明図 ;  FIG. 31 is a side view explanatory view showing an example of a core constituting a core; FIG. 32 (A) is a side view explanatory view showing an example of a thermal expansion element constituting a core;
第 32図 (B ) はその正面視説明図 ;  FIG. 32 (B) is a front view explanatory view thereof;
第 33図は中子の一例を示す側面視説明図 ;  Fig. 33 is a side view explanatory view showing an example of a core;
第 34図は本発明によって得られる製品の一例を示す斜視 図 ; 第 35図は中子を構成する芯体の一例を示す側面視説明図 ; 第 36図は中子を構成する熱膨張性素子の一例を示す側面 視説明図 ; FIG. 34 is a perspective view showing an example of a product obtained by the present invention; FIG. 35 is a side view explanatory view showing an example of a core constituting the core; FIG. 36 is a side view explanatory view showing an example of a thermal expansion element constituting the core;
第 37図は本発明によって得られる製品の一例を示す斜視 図 ;  FIG. 37 is a perspective view showing an example of a product obtained by the present invention;
第 38図は中子を構成する芯体の一例を示す側面視説明図 ; 第 39図 (Α ) は中子を構成する熱膨張性素子の一例を示 す平面視説明図 ;  FIG. 38 is a side view explanatory view showing an example of a core constituting a core; FIG. 39 (Α) is a plan view explanatory view showing an example of a thermal expansion element constituting a core;
第 39図 ( Β ) はその熱膨張性素子を組合わせた状態を示 す平面視説明図 ;  Fig. 39 (Β) is a plan view explanatory view showing a state in which the thermal expansion elements are combined;
第 40図は中子の一例の要部を示す断面説明図 ;  FIG. 40 is an explanatory sectional view showing a main part of an example of a core;
第 41図は金属部材を成形材料に仕込んだ様子を示す断面 説明図 ;  Fig. 41 is a sectional explanatory view showing a state in which a metal member is charged into a molding material;
第 42図は金属部材を一部に有する製品の一例を示す断面 説明図 ; ·■ " Λ 第 43図は本発明によつて得られる製品 (細長いテーパー 管) の一例を示す斜視図 ; Perspective view showing an example of a product · ■ "lambda FIG. 43 obtained One by the present invention (an elongated tapered pipe); FIG. 42 is a sectional explanatory view showing an example of a product having a portion of the metal member;
第 44図は外型の一例を示す側面視説明図 ;  Fig. 44 is an explanatory side view showing an example of the outer mold;
第 45図は中子の一例を示す側面視説明図 ;  Fig. 45 is an explanatory side view showing an example of a core;
第 46図はブリ フ ォ —ムおよび中子を示す斜視図 ; 第 47図は成形材料の异温過程における温度ブ! 3 フ ァ イ ル を示す説明図 ;  Fig. 46 is a perspective view showing the preform and the core; Fig. 47 is the temperature profile during the heating process of the molding material. Explanatory diagram showing three files;
第 48図は成形材料を成形過程において一端から他端にゥ ォ ッ シュアゥ 卜させる場合の温度プロフア イルを示す説明 図 ; 第 49図は加工温度にある製品の冷却過程における冷却パ タ一ンを示す説明図 ; および FIG. 48 is an explanatory diagram showing a temperature profile when the molding material is pushed down from one end to the other end in the molding process; Fig. 49 is an illustration showing the cooling pattern during the cooling process of the product at the processing temperature; and
第 50図 (A ) , ( B ) , ( C ) は冷却過程における型締 めの様子を示す説明図である。 発明を実施するための最良の形態 本発明で使用する熱可塑性樹脂プリ プレダは、 具体的に は、 複数本の連続繊維を引き揃えて一方向に帯状に配列し た一般に トゥと呼ばれる繊維束にマ ト リ ックスの熱可塑性 樹脂を含浸させたもの (一方向引き揃えのプリプレダ (UD プリブレダ) ) 、 コ ミ ングル ドヤー ンに代表される舍浸お よび 又は界面の形成の完了していないャー ンの織布や一 方向引き揃えの布、 織組物などである。 この熱可塑性樹脂 プリ プレダを構成する繊維束に用いる補強繊維としては、 特に限定されないが、 好ましく は炭素繊維, ガラス繊維, ァラ ミ ド繊維 (芳香族ポリ ア ミ ド繊維) 、 炭化珪素繊維、 ボロ ン繊維、 アルミ ナ繊維等の耐熱性を備えた強度の大き い連続繊維を例示することができる。  FIGS. 50 (A), (B), and (C) are illustrations showing the state of mold clamping in the cooling process. BEST MODE FOR CARRYING OUT THE INVENTION The thermoplastic resin pre-preda used in the present invention is, specifically, formed into a fiber bundle generally called “to” in which a plurality of continuous fibers are aligned and arranged in a band in one direction. Matrix thermoplastic resin impregnated (unidirectionally aligned pre-preda (UD pre-bledder)), soaked and / or unfinished interface represented by the common dry yarn Woven fabric, one-way aligned fabric, and woven fabric. The reinforcing fibers used in the fiber bundle constituting the thermoplastic resin pre-preda are not particularly limited, but are preferably carbon fibers, glass fibers, aramide fibers (aromatic polyamide fibers), silicon carbide fibers, Examples thereof include continuous fibers having high heat resistance and high strength such as boron fibers and alumina fibers.
また、 マ ト リ ックスの熱可塑性樹脂としては、 特に限定 されないが、 好ま しく は融点が 343でのポリ エーテルエー テルケ ト ン (PEEK ) 、 融点が 282〜288 'C のポ リ フユユ レ ンサルフ ア イ ド (PPS)、 軟化点が 219で のポ リ エーテルィ ミ ド (PE I ) 、 ボ リ エーテルスルフ ォ ン (PES)、 ポ リ ァ リ レンケ ト ン、 ポ リ ア リ レ ンサルフ ア イ ド、 ポ リ ア リ ルイ ミ ド、 ポ リ ア ミ ドイ ミ ド、 ボ リ イ ミ ド、 ポ リ イ ミ ドスルフ ォ ン、 ポ リ スルフ ォ ン、 ポ リ ア リ ルスルフ ォ ン、 ポ リ エステ ル等の高融点または高軟化点の熱可塑性樹脂を例示するこ とができる。 The thermoplastic resin of the matrix is not particularly limited, but is preferably a polyether ether ketone (PEEK) having a melting point of 343, and a polyolefin ether having a melting point of 282 to 288'C. Polyetherimide (PEI) with a softening point of 219, Polyether Sulfone (PES), Poly-Lenketone, Poly-L-Ren Sulfide with a softening point of 219 Lia Lui Mid, Polyamido, Polyimid, Polyimid Sulfo Examples thereof include thermoplastic resins having a high melting point or a high softening point, such as polystyrene, polysulfone, polyarylsulfone, and polyester.
この熱可塑性樹脂プリ プレダにおける纖維の体積分率 V f )は、 一般の繊維強化熱可塑性樹脂が有する V f = 0 . 1〜0 . 3 に比べて高い 0 . 4〜0 . 7 程度であることが好まし い。  The volume fraction Vf) of the fiber in this thermoplastic resin pre-preda is about 0.4 to 0.7, which is higher than Vf = 0.1 to 0.3 of general fiber reinforced thermoplastic resin. Is preferred.
本発明で使用する熱膨張性の中子 (内型) は、 熱可塑性 樹脂プリ プレダのマ ト リ ッ ク スである熱可塑性樹脂より も 大きな耐熱性を有する樹脂からなる ことが必要で'ある。 す なわち、 この中子は熱可塑性樹脂プリ プレダの熱可塑性樹 脂が可塑化する温度で溶融流動しない耐熱性を有すること が必要である。 しかも、 この中子は、 この中子と外型との 間に積層配置された熱可塑性樹脂プリ プレダを内側から外 側へ向けて圧縮し、 その熱可塑性樹脂プリ プレダの積'雇 ライ間を密着させてその積層プライ間からボイ ドを排除し- さ らに熱可塑性樹脂プリ プレダの補強繊維を配向させるに 十分な大きさの熱膨張を行う熱膨張性であることが必要で ある。  It is necessary that the heat-expandable core (inner mold) used in the present invention is made of a resin having higher heat resistance than the thermoplastic resin which is the matrix of the thermoplastic resin pre-spreader. . That is, the core must have heat resistance that does not melt and flow at a temperature at which the thermoplastic resin of the thermoplastic resin pre-plasticizer plasticizes. In addition, this core compresses the thermoplastic resin pre-pre- der laminated between the core and the outer die from the inside to the outside, so that the product of the thermoplastic pre-pre- der can be stacked. It is necessary that the material be thermally expandable so that voids are eliminated from the space between the laminated plies so that the reinforcing fibers of the thermoplastic resin pre-predator are oriented closely.
こ の中子は、 具体的には、 中実のマ ン ド レル、 中空のマ ン ドレル、 芯体の表面に複数個の熱膨張性素子を配置して なる複合体、 又は複数個の熱膨張性素子だけからなる集合 体の形態にある。 芯体は、 鉄やアル ミ合金等の金属製のも のでよい。  Specifically, the core may be a solid mandrel, a hollow mandrel, a composite in which a plurality of thermal expansion elements are arranged on the surface of a core, or a plurality of heat expandable elements. It is in the form of an aggregate consisting of only expandable elements. The core may be made of metal such as iron or aluminum alloy.
これらの中実のマ ン ド レル、 中空のマン ドレル、 熱膨張 性素子をそれぞれ構成する好ましい樹脂としては、 フ ッ素 系樹脂ゃシリ コーン系樹腊を挙げることができる。 フ ッ素 系樹脂としては、 ポリテ トラフルォ口エチレ ン (PTFE、 商 品名テフ ロ ン) 、 ポ リ弗化アルコ キシエチ レン樹脂 (P FA)、 弗化ヱチレンプロピレンエーテル共重合体樹脂 (FE P )等の 熱膨張性が大で耐熱性の高い樹脂を例示することができる。 また、 シリ コ一ン系樹脂としては、 樹脂だけでは軟らか過 ぎるので、 耐熱性が大きい補強材料と混合したシ リ コ ー ン 樹脂を例示することができる。 これらの樹脂は、 使用に際 して、 無機繊維等の補強材料で補強してもよい。 These solid mandrels, hollow mandrels, thermal expansion Preferred examples of the resin constituting each of the conductive elements include a fluorine-based resin {a silicone-based resin}. Examples of fluorine resins include polytetrafluoroethylene (PTFE, trade name Teflon), polyfluoroalkoxyethylene resin (PFA), and fluoroethylenepropylene ether copolymer resin (FEP). For example, a resin having a large thermal expansion property and a high heat resistance can be exemplified. Further, as the silicon-based resin, since the resin alone is too soft, a silicone resin mixed with a reinforcing material having high heat resistance can be exemplified. In use, these resins may be reinforced with a reinforcing material such as inorganic fibers.
これらの樹脂のう ちで、 PTF Eを用いることが特に好まし レ、。 PTFEは、 260 で程度が使用限界で、 約 335 で の融点を もっとされるが、 分子量が極めて大きいため 335 でを超え ても融解することがな く、 それ自体の形状を保持している。 また、 体積膨張も大き く、 室温から 400 'cに温度を上げる と約 60 %も体積が膨張する。 熱分解温度は 420 'c程度であ る。  Among these resins, it is particularly preferable to use PTFE. PTFE has a usable limit of about 260 and a higher melting point at about 335, but retains its own shape without melting even above 335 due to its very large molecular weight. Also, the volume expansion is large, and when the temperature is increased from room temperature to 400'c, the volume expands by about 60%. Thermal decomposition temperature is about 420'c.
本発明では、 まず、 上記熱膨張性の中子の外側に外型を 配し、 この中子と外型との間に熱可塑性樹脂プリ プレダを 介在させ、 その熱可塑性樹脂の可塑化温度以上の温度に該 熱可塑性樹脂プリ ブレダおよび該中子を加熱して該中子を 膨張させるのである。  In the present invention, first, an outer mold is arranged outside the above-mentioned heat-expandable core, and a thermoplastic resin pre-reader is interposed between the core and the outer mold. At this temperature, the thermoplastic resin pre-bledder and the core are heated to expand the core.
この場合の加熱は、 空気中でも不活性ガス中でも真空中 でも行ってよい。 マ ト リ ックス樹脂によって必要な加熱の 雰囲気を選択すればよい。 加熱は一般に素早い方が、 マ ト リ ッ クス樹脂の劣化防止および時間の経済性の上から好ま しい。 また、 例えば、 熱膨張性素子の舁温過程について述 ベると、 それは、 中子の全ての熱膨張性素子が同時に昇温 するか、 片端部から他端部へ向って舁温するか、 又は中子 の中央部から先に昇温し、 中子の端部はそれより:やや遅れ る方が好ま しい。 その理由は、 パイプを製造する.場合に例 をとると、 パイ プの中央部が先ず膨張し、 ついでその膨張 がパィ プの端部に進行して行く ときにはパイ プを構成する 繊維の皺や弛みがその端部に向って掃きだされ ためであ る。 パイ プ全体が一様に昇温する場合には繊維 皺や弛み が発生しに く いが、 両端部から昇温する場合に:は繊維の皺 や弛みがパイ プの中央部に集まり易い。 The heating in this case may be performed in air, inert gas, or vacuum. The required heating atmosphere may be selected depending on the matrix resin. Heating is generally faster, It is preferable from the viewpoint of prevention of deterioration of the resin and economy of time. In addition, for example, the heating process of the heat-expandable element can be described as follows: whether all the heat-expandable elements of the core heat up at the same time, or heat the heat from one end to the other end. Or, the core rises in temperature from the center, and the end of the core is better: slightly slower. The reason is that pipes are manufactured; for example, in the case of pipes, the central part of the pipe expands first, and then when the expansion proceeds to the end of the pipe, the wrinkles and fibers of the fibers that make up the pipe The slack is swept toward its end. When the entire pipe is uniformly heated, wrinkles and looseness of the fiber are unlikely to occur, but when the temperature is raised from both ends: wrinkles and looseness of the fiber are likely to collect at the center of the pipe.
加熱のためのエネルギー供給の手段は、 上記のことを考 慮しつつ具体的な製品形状に合わせて選択することができ る。 例えば、 雰囲気加熱、 内型や外型へのヒータ—の装塡 熱誘導加熟、 およびこれらの適当な組み合わせを利,用す!> ことなどが可能である。 ' ' つぎに、 本発明では、 このよう に加熱して熱 變性樹脂 を溶融させて型締めした後、 外型と共に該中子および該熱 可塑性樹脂プリ プレダを冷却する。  The energy supply means for heating can be selected according to the specific product shape while taking the above into account. For example, use atmosphere heating, heating of inner and outer molds, heat-induced ripening, and an appropriate combination of these! > Things are possible. Next, in the present invention, the core and the thermoplastic resin prepreg are cooled together with the outer mold after heating and melting the thermosetting resin and clamping the mold.
この冷却は、 マ ト リ ックスたる熱可塑性樹脂の 晶性ゃ 残留応力の制御、 および型締め圧力 (少なく とも樹脂の阖 化に至るまでの型締め圧力) の維持に関して重矢な影響力 をもつ。 : … - 結晶性や残留応力の制御に関しては、 マ ト リ ックスたる 熱可塑性樹脂の種類により非常にシビアなケースもあれば、 それ程でもないケースもある。 型締め圧力の維持に関して は、 あらゆるマ ト リ ックスの場合に当てはまる問題である。 この問題には、 主として中子の構造のデザィ ンによって解 決される。 つまり、 例えば、 成形材料 (熱可塑性樹脂プリ プレダ) と中子の熱膨張性素子との冷却速度に差をつける ために、 中子を冷えにく くする力、 (もともと中子は成形材 料より も内側にあるので冷えに く いが、 さらにそれを救け るべく 中子を熱的に遮蔽する) 、 又は中子の熱膨張性素子 のデッ ドボリ ュ―ムや体積弾性の効果により、 熱膨張性素 子が若干収縮しても型締めをマ ト リ ックス樹脂が固化する まで維持できる。 このことは、 あまり意識しなく ても自然 に解決されている場合が多いが、 製品の形状によつては、 かなり困難な問題となることもある。 This cooling has a profound effect on controlling the crystallinity and residual stress of the thermoplastic resin, which is the matrix, and maintaining the mold clamping pressure (at least the mold clamping pressure until the resin degrades). . : …-For controlling crystallinity and residual stress, it is a matrix Some cases are very severe depending on the type of thermoplastic resin, while others are not so severe. Maintaining the clamping pressure is a problem that applies to all matrices. This problem is mainly solved by the design of the core structure. In other words, for example, in order to make a difference in the cooling rate between the molding material (thermoplastic resin pre-paeder) and the thermal expansion element of the core, the force that makes the core hard to cool down. It is harder to cool down because it is on the inside, but the core is thermally shielded to save it further) or due to the dead volume and bulk elasticity of the thermal expansion element of the core, Even if the heat-expandable element shrinks slightly, mold clamping can be maintained until the matrix resin solidifies. This is often resolved spontaneously with little awareness, but depending on the shape of the product, it can be quite a challenge.
一方、 結晶性や残留応力の制御に閬しては、 シビアなコ ン トロールが必要な場合には、 冷却手段を適宜選択すれば よい。 急冷には、 中子、 成形材料、 および外型の全体に水 をかけるとか全体を水に漬けるのがよい。 徐冷するには、 必要とされる冷却速度に見合った保温を行えばよい。  On the other hand, when severe control is required for controlling the crystallinity and residual stress, a cooling means may be appropriately selected. For quenching, it is better to spray the core, molding compound, and outer mold with water or soak the whole in water. In order to cool slowly, it is necessary to keep the temperature appropriate for the required cooling rate.
中子からの製品の脱型は、 マン ド レル又は熱膨張性素子 が冷却後には賦形時より も縮んでいるために、 容易に行う ことができる。 成形体 (製品) の形状により脱型が不可能 な場合には、 中子を適当に分解して成形体より取り出せば よい。 このためには、 予め分解と組立が可能な中子を用い ればよい。 外型からの製品の脱型を容易とするためには、 離型のための何らかの手立てを講じておく ことが好ましい < 例えば、 離型用フィルム、 離型用フォィル、 離型剤などで 外型の内面を覆うなどにより離型処理を行えばよい。 しか し、 外型として例えば銅バイ プを用いる場合には、 離型の 手立てを何ら施さな く ともよい。 この場合、 外型自体をェ ツチングして化学的に溶解させてしまう ことが可能だから である。 また、 銅パイプを外型として用いる場合には、 い ちいち別に外型をあつらえな く て済むので制作する製品の 数量が少ないときに便利である。 さ らに、 銅パイ プは肉面 の表面精度が特に優れているので、 得られる製品の外面の 表面精度を高めることができる。 Demolding of the product from the core is easy because the mandrel or the heat-expandable element shrinks after cooling compared to when shaping. If mold removal is not possible due to the shape of the molded product (product), the core may be appropriately disassembled and removed from the molded product. For this purpose, a core that can be disassembled and assembled in advance may be used. To make it easier to release the product from the outer mold, It is preferable to take some measures for release. <For example, release processing may be performed by covering the inner surface of the outer die with a release film, a release foil, a release agent, or the like. However, when a copper die is used as the outer die, for example, it is not necessary to provide any means for releasing. In this case, the outer mold itself can be etched and chemically dissolved. Also, when copper pipes are used as the outer mold, it is convenient when the number of products to be produced is small, since it is not necessary to separately prepare the outer mold. In addition, copper pipes have particularly high wall surface accuracy, so that the surface accuracy of the outer surface of the resulting product can be increased.
以下、 中子として、 中実のマン ドレル、 中空のマン ド レ ル、 芯体の表面に複数個の熱膨張性素子を配置してなる複 合体、 および複数個の熱膨張性素子だけからなる集合体を それぞれ用いて、 熱可塑性樹脂製中空体を製造する方法を 具体的に説明する。  Hereinafter, the core consists of only a solid mandrel, a hollow mandrel, a composite in which a plurality of thermal expansion elements are arranged on the surface of a core, and a plurality of thermal expansion elements. A method for manufacturing a thermoplastic resin hollow body using each of the aggregates will be specifically described.
(1) 中実のマン ドレルを用いる場合、 本発明では、 上記熱可 塑性樹脂プリ プレダを、 この中実のマン ドレルに巻回する この巻回は、 例えば、 通常のワイ ンディ ング法又はローリ ング法によって行えばよい。 ワイ ンデイ ング法では幅が 3 〜6 の熱可塑性樹脂プリ プレダが、 ローリ ング怯では幅 が 70mn!〜 600m m の熱可塑性樹脂プリ プレダのテープが婊ま しく使用される。 この場合に用いる装置としては、 フイ ラ メ ン ト ワイ ンディ ング法やテープワイ ンデイ ング法におけ ワイ ンデイ ング装置や口一リ ング法におけるロー リ ング 装置が挙げられる。 (1) In the case of using a solid mandrel, in the present invention, the thermoplastic resin pre-predator is wound around the solid mandrel. This winding is performed by, for example, a normal winding method or a lorry. What is necessary is just to perform by the method. In the winding method, a thermoplastic resin pre-reader with a width of 3 to 6 is used. In the case of rolling, the width is 70 mn! Up to 600 mm of thermoplastic resin pre-taper tape is preferably used. In this case, the device used in the filament winding method or the tape winding method may be a winding device or a rolling method in a mouth ring method. Device.
これらの装置等により熱可塑性樹脂プリプレダは中実の マ ン ド レルに対し張力を与えながらパイ ブ状に中実のマ ン ドレルに巻回される。 この巻回作業をするとき、 熱可塑性 樹脂プリ プレダの巻きほぐれを防止し、 卷回物のプライ間 の隙間を低減させるため、 巻回途中の適当なところでハン ダコテ等を用いて熱可塑性樹脂プリプレダを加熱してブラ ィ間を仮止めしながら、 できるだけ緊密に巻回することが 好ましい。  With these devices, the thermoplastic resin pre-preda is wound around the solid mandrel in a pipe shape while applying tension to the solid mandrel. When performing this winding work, in order to prevent the unraveling of the thermoplastic resin pre-reader and to reduce the gap between the plies of the wound material, use a soldering iron or the like at an appropriate point in the winding process. It is preferable to wind as tightly as possible while heating and temporarily fixing the brim.
中実のマン ドレルに対する熱可塑性樹脂プリプレダの卷 回が完了して卷回物ができると、 次にその巻回物は加熱成 形工程に付される。  When the winding of the thermoplastic resin pre-predder on the solid mandrel is completed and the wound is formed, the wound is then subjected to a heating shaping process.
本発明では、 この加熱成形工程に付すときの巻回物の外 形を外型で拘束状態にすることが必要である。 この外形の 拘束は、 卷回物のプライ間が前記のように仮止めされてい るために巻回物の外形が一時的には一定に保たれていると しても、 巻回物を加熱成形工程に付すとその外形が崩れて しまったり、 中実のマン ドレルが膨張する際に巻回物中に 配列した繊維の方向が乱れたり、 ズレたりする恐れがある ため、 それを防止することにある。 しかし、 さらに重要な ことは、 この卷回物の外形拘束により、 はじめて中実のマ ン ド レルの熱膨張による圧力をパイプ状に卷かれた巻回物 の積層ブライ の内側から内外に均等に加えて、 その積層プ ライ間を密着させ、 その積層プライ間からボイ ドを除去す ると共に、 巻回物を構成する熱可塑性樹脂プリプレダの補 強繊維を正しく配向させることができることである。 In the present invention, it is necessary that the outer shape of the wound product to be subjected to the heat forming step be restricted by the outer die. This constraint on the outer shape is due to the fact that the winding is heated even if the outer shape of the wound is temporarily fixed because the ply of the wound is temporarily fixed as described above. Preventing the molding process from causing its shape to collapse or the direction of the fibers arranged in the roll to be disturbed or displaced when the solid mandrel expands It is in. More importantly, however, due to the outer shape constraint of the roll, the pressure caused by the thermal expansion of the solid mandrel is evenly distributed from inside to outside of the laminated briquette of the roll wound in a pipe shape for the first time. In addition, the laminated ply is brought into close contact with each other, voids are removed from between the laminated ply, and the thermoplastic resin pre-predder constituting the roll is supplemented. The ability to correctly orient the strong fibers.
上記外形拘束方法としては、 例えば、 真空バッグの中 巻回物と共に中実のマン ドレルを揷入してその表面に大気 圧等を作用させる方法、 耐熱フ ィ ルムや金属フォイ ルのよ うなテープ等を使用して巻回物の表面をテーピングし、 チ ビングの張力を利用する方法、 薄肉の金属パイ ブを巻回 物の表面に被せる方法、 金型を用いる方法などがある。 こ れらの拘束方法は成形すべき中空体の仕様に応じて適宜選 択される。 また、 外形を拘束するのに先立って、 ^形を拘 束する外型と巻回物の熱可塑性樹脂との間の接着を防ぐた めに、 離型剤や離型シー トを卷回物とその外型との間に介 在させることも可能である。  Examples of the above-mentioned outer shape constraining method include a method of inserting a solid mandrel together with a middle wound material of a vacuum bag and applying atmospheric pressure or the like to the surface thereof, or a tape such as a heat-resistant film or a metal foil. There is a method of taping the surface of the wound material using a method such as using a tubing tension, a method of covering a thin metal pipe on the surface of the wound material, and a method of using a mold. These restraining methods are appropriately selected according to the specifications of the hollow body to be molded. Prior to restraining the outer shape, a release agent or release sheet may be added to the roll to prevent adhesion between the outer mold for restraining the ^ shape and the thermoplastic resin of the roll. It is also possible to intervene between the outer mold.
加熱成形工程の成形温度は、 巻回物を構成する熱可塑性 樹脂プリ プレダの熱可塑性樹脂の可塑化温度以上である。 具体的には、 その熱可塑性樹脂が結晶性の熱可塑性樹脂の 場合には、 その融点より も高い温度、 好ま しぐは 〔融 + 10 20 'c〕 以上の温度がよい。 また、 非結晶性め熱可塑性 樹脂の場合には、 その軟化点より高い温度、 好ま しく は 〔軟化点 + 100 'c〕 以上の温度がよい。  The molding temperature in the heat molding step is equal to or higher than the plasticization temperature of the thermoplastic resin of the thermoplastic resin pre-preda constituting the roll. Specifically, when the thermoplastic resin is a crystalline thermoplastic resin, a temperature higher than its melting point, preferably a temperature of [melt + 1020'c] or more, is preferable. In the case of an amorphous thermoplastic resin, a temperature higher than its softening point, preferably a temperature higher than [softening point + 100'c] is preferable.
加熱成形の際の加熱手段としては、 特に限定されないが、 最も簡単な手段としては、 電気オーブンを挙げることがで きる。 加熱時間は、 一般に、 中実のマン ド レルの中心 で 所定の成形温度となるように巻回物サイ ズに応じて設定さ れる。 通常、 巻回物が所定の成形温度に上昇したと思われ た時から、 若千時間、 たとえば 30 60分間、 その威形温度 に保つのがよい。 加熱により中実のマ ン ドレルが十分に膨 張したときに、 巻回物の積層プライ間の密着が完了する。 最後に、 このよ う に加熱された巻回物および中実のマ ン ドレルを冷却した後に巻回物から中実のマン ドレルを引き 抜く。 これによつて、 製品と中実のマ ン ド レルが回収され る。 冷却は自然放冷でもよいし、 何らかの冷却手段を使つ て積極的に冷却してもよい。 The heating means at the time of heat molding is not particularly limited, but the simplest means is an electric oven. The heating time is generally set according to the size of the roll so that a predetermined molding temperature is obtained at the center of the solid mandrel. Normally, when the wound material is considered to have risen to the prescribed molding temperature, it takes only a few thousand hours, e.g. Good to keep. When the solid mandrel is sufficiently expanded by heating, the close contact between the wound plies is completed. Finally, the solid mandrel is extracted from the roll after cooling the roll and the solid mandrel thus heated. This will recover the product and the solid mandrel. The cooling may be natural cooling or active cooling using some cooling means.
以下に図を参照して、 この場合の中空体の製造方法の実 施例を説明する。  An embodiment of the method for manufacturing a hollow body in this case will be described below with reference to the drawings.
実施例 1  Example 1
第 1図 (A ) および第 1図 ( B ) は本発明の最初のステ ッブを示す。 第 1図 ( A ) において 1 は PTFE 製の中実の マ ン ド レル、 第 1図 ( B ) において 2 は斜線の方向に連続 繊維を配列させた補強繊維 3を有する熱可塑性樹脂プリ プ レグである。 この熱可塑性樹脂プリプレダ 2 は、 補強繊維 3がバイアス方向にカ ツ トされてなるシー トを 2枚重ね合 わせて形成されている。 なお、 熱可塑性樹脂プリプレダ 2 としては、 PEEK をマ ト リ フ クスとし、 直径約 7 / m の炭 素繊維フイ ラメ ン トを補強繊維とする繊維体積分率 Vf が 0.61 、 シー ト幅が 305 m、 厚さが 0.125 mmの ICI— Fibe rite社製の APC— 2/AS— 4 を用いた。  FIG. 1 (A) and FIG. 1 (B) show the first step of the present invention. In FIG. 1 (A), 1 is a solid mandrel made of PTFE, and in FIG. 1 (B), 2 is a thermoplastic resin prepreg having reinforcing fibers 3 in which continuous fibers are arranged in an oblique direction. It is. The thermoplastic resin pre-predator 2 is formed by stacking two sheets each having the reinforcing fibers 3 cut in the bias direction. The thermoplastic resin pre-predator 2 has a fiber volume fraction Vf of 0.61 and a sheet width of 305 using PEEK as a matrix and carbon fiber filaments of about 7 / m in diameter as reinforcing fibers. APC-2 / AS-4 manufactured by ICI-Fiberite with a thickness of 0.125 mm was used.
第 1図 (A) および第 1図 (B ) の準備に次いで、 第 2 図のようにワイ ンディ ング装置によりマン ドレル 1 に熱可 塑性樹脂プリ プレダ 2を卷回してい く。 熱可塑性樹脂プリ プレダ 2 は、 できるだけタルミが生じないように張力を与 えながらパイ ブ状に巻回され、 巻回途中の所々でハ ンダゴ テで加熱され、 仮止めが施される。 Following the preparation of FIGS. 1 (A) and 1 (B), a thermoplastic resin pre-pre- der 2 is wound around a mandrel 1 by a winding device as shown in FIG. The thermoplastic resin pre-predator 2 applies tension to minimize tarnish. It is wound in a pipe shape, and is heated by a soldering iron at some points in the middle of winding and is temporarily fixed.
第 3図は上記巻回作業を終えてできた巻回物 1 1を示して いる。 なお、 この状態でマ ン ド レル 1 の直径は 3(T 、 熱可 塑性樹脂プリ プレダ 2のブライ数は 30、 プライ層の肉厚は 約 4 . 8 »»であった。 また、 こ の状態で層間の^ィ ドは合計 で約 1 / 4 に相当する 1 . 2關 であった。  FIG. 3 shows a roll 11 obtained after the above winding operation. In this state, the diameter of the mandrel 1 was 3 (T, the number of briquettes of the thermoplastic resin pre-predator 2 was 30, and the thickness of the ply layer was about 4.8 »». In this state, the inter-layer distance was 1.2, corresponding to about 1/4 in total.
次いで、 巻回物 1 1と共にマ ン ド レル 1 を第 4図に示すよ うに、 真空バッグ 6の中に入れ、 密封状態にした後、 真空 ポンプに接続された排気用ホース 7 を介して真空バッグ 6 内の空気を吸引除去する。 真空バッグ 6には、 ポリ イ ミ ド フ ィ ルム (デュポ ン社製の " カプ ト ン(KAPT0N ) 11 100H ) を用いた。 Next, as shown in FIG. 4, the mandrel 1 together with the wound material 11 is placed in a vacuum bag 6 to be sealed, and then vacuumed through an exhaust hose 7 connected to a vacuum pump. The air in bag 6 is removed by suction. As the vacuum bag 6, a polyimide film ("Kapton (KAPT0N) 11 100H" manufactured by DuPont) was used.
真空包装後において、 巻回物 11およびマン ド レル 1 の表 面の真空バッグ 6のポリ ィ ミ ドフ ィ ルムが皺にならないよ うにすることが好ま しい。 真空バッグ 6で真空包装するこ とによ って l K g/ crf の大気圧が巻回物 11の外周から巻回物 1 1の積層部に均等に作用し、 その外形が確実に拘束される。  After vacuum packaging, it is preferable that the roll film 11 and the polyimide film of the vacuum bag 6 on the surface of the mandrel 1 do not wrinkle. By vacuum packaging in the vacuum bag 6, the atmospheric pressure of l kg / crf acts evenly from the outer periphery of the roll 11 to the laminated portion of the roll 11 and the outer shape is reliably restrained. You.
上記のように外形を拘束した巻回物 11およびマン ドレル 1 を、 第 5図のように電気オーブンに入れて加熱成形する。 電気オーブンは、 上下に熱ブロ ック 8 , 9を配し、 断熱ブ 口 ック 10でシールすることにより内部を 400 'cに保つよう に加熱できるようになつている。 加熱開始後、 30分間経過 した後に巻回物 11およびマ ン ド レル 1 を電気オーブンから 取り出して放冷し、 ついで卷回物 1 1からマ ン ド レル 1 を引 き抜いて成形体のパイプを得た。 The rolled material 11 and the mandrel 1 whose outer shapes are restricted as described above are placed in an electric oven as shown in FIG. The electric oven has heating blocks 8 and 9 arranged above and below, and is sealed with an insulating block 10 so that the inside can be heated to keep the inside at 400'c. 30 minutes after the start of heating, the roll 11 and the mandrel 1 are taken out of the electric oven and allowed to cool, and then the mandrel 1 is pulled from the roll 11. This was punched out to obtain a molded pipe.
得られたパイプは、 内径 36 «a , 肉厚 3. 7 wで、 補強織維 が ± 45。 の角度で乱れの全く ないように積層され、 しかも 顕微鏡観察の結果、 ボイ ドの全く ない高品質のものであつ た。  The obtained pipe has an inner diameter of 36 «a, a wall thickness of 3.7 w, and a reinforcing fiber of ± 45. The layers were stacked without any disturbance at any angle, and as a result of microscopic observation, they were of high quality with no voids.
実施例 2  Example 2
熱可塑性樹脂プリ プレダの繊維配列が 0 ° と 90 。 になる ように積層した以外は、 実施例 1 と全く 同じ条件でパイプ を作製した。  The fiber orientation of the thermoplastic resin pre-preda is 0 ° and 90 °. A pipe was produced under exactly the same conditions as in Example 1 except that the pipes were laminated such that
得られたパイ プは、 補強繊維が 0 。 と 90。 の角度で積層 している以外は実施例 1 と同様に繊維の乱れやボイ ドのな い高品質のものであった。  The resulting pipe has no reinforcing fibers. And 90. Except for the lamination at an angle of, as in Example 1, it was of high quality with no fiber disturbance or voids.
実施例 3  Example 3
熱可塑性樹脂プリプレダとして PPS をマ ト リ ックスとす るフ ィ リ ップス石油㈱製の繊維体積分率が 0. 5 の AC - 40 - 60を使用し、 マン ドレルとして PFA製の中実丸棒を使用し て実施例 1 と同様にしてパイプを作製した。 ただし、 巻回 物の外形の拘束手段としては、 厚さ 50 ;« rn のポリ イ ミ ドフ イ ルム (デュポン社製 " カプ ト ン(KAPT0N) " 200Hテ一プ) を 1 /3 幅づっラ ップさせながら巻き付ける方法を使用し、 加熱成形温度は 310で とした。  Uses AC-40-60, a fiber volume fraction of 0.5, manufactured by Philips Petroleum Co., Ltd. that uses PPS as a matrix for the thermoplastic resin pre-predeer, and a solid round bar made of PFA as a mandrel. And a pipe was produced in the same manner as in Example 1. However, as a means for restraining the outer shape of the wound product, a polyimide film (Dupont “KAPT0N” 200H tape) with a thickness of 50; The heat molding temperature was 310.
得られたパイプは、 内径 34mm, 肉厚 3. 9mmで、 捕強織維 が ± 45。 の角度で乱れの全く ないように積層され、 しかも 顕微鏡観察の結果、 ボイ ドの全く ない高品質のものであつ た。 (2) しかしながら、 上述した中実のマン ドレルを用いる方法 では、 中実のマン ドレルの熱膨張と型締めとに頼っている 為、 熱膨張が型締めに対して不十分な場合、 即ち、 製作し よう とする中空体の肉厚が比較的厚く て中実のマ ン ドレル の 1 回の熱膨張では不足であるとか、 マ ト リ ク の熱可塑 性樹脂の融点若し く は軟化点が比較的低い為に中実のマン ド レルと熱可塑性樹脂との温度差が大き く取れな くて 1面 の熱膨張では不足な場合等には、 ボイ ドのない品質 · 外観 ともに優良なる中空体を得ることはできない場合がある。 そこで、 本発明では、 中実のマン ドレルを用いる繊維補 強熱可塑性樹脂中空体の製造方法において、 厚肉化の製造 限界を打破し、 外径 Z厚さ比の小さな中空体の製造.を可能 とする方法をも提供する。 この方法で得られ 4中空体は、 特に強度を要する耐圧部品、 曲げやねじり剛性を要求され る動力伝達部品に利用される。 また、 こ の方法ほ、 やや牴 融点のエ ンジニア リ ングプラ スチク スをマ ト リ ク ス とする 連続繊維補強のパイプ製造にも応用される。 The obtained pipe had an inner diameter of 34 mm, a wall thickness of 3.9 mm, and a captive fiber of ± 45. The layers were stacked without any disturbance at any angle, and as a result of microscopic observation, they were of high quality with no voids. (2) However, the above-described method using a solid mandrel relies on the thermal expansion of the solid mandrel and mold clamping. The thickness of the hollow body to be manufactured is relatively thick and one thermal expansion of a solid mandrel is insufficient, or the melting point or softening point of the thermoplastic resin of the matrix Is relatively low, the difference in temperature between the solid mandrel and the thermoplastic resin is not large enough, and thermal expansion on one side is not enough. It may not be possible to obtain a hollow body. Thus, the present invention provides a method for manufacturing a hollow fiber-reinforced thermoplastic resin body using a solid mandrel, which overcomes the manufacturing limit of thickening and manufactures a hollow body having a small outer diameter and a small thickness ratio. It also provides a way to do this. The four hollow bodies obtained by this method are used especially for pressure-resistant parts that require strength and power transmission parts that require bending and torsional rigidity. In addition, this method is also applied to the production of continuous fiber-reinforced pipes using engineering ring plastics with a somewhat melting point as matrix.
この方法は、 熱可塑性樹脂をマ ト リ ッ ク スとするプリプ レグを、 熱膨張性が大き くて前記熱可塑性樹脂より も耐熱 性が大きい樹脂からなる中実のマ ン ド レルに巻回し、 得-ら れる巻回物の外形を外型で拘束しながら前記熱可塑性樹脂 の可塑化温度以上の温度に該巻回物および前記中実のマン ドレルを加熱して該中実のマン ドレルを膨張させ と共  In this method, a prepreg made of a thermoplastic resin as a matrix is wound around a solid mandrel made of a resin having a high thermal expansion property and a higher heat resistance than the thermoplastic resin. Heating the wound material and the solid mandrel to a temperature equal to or higher than the plasticizing temperature of the thermoplastic resin while restraining the outer shape of the obtained wound material with an outer mold; Inflate and
. '' ' '. 巻回物の内部空隙を減少させ、 次いで該巻回物および前記 中実のマン ドレルを冷却した後に該巻回物から前記中実の マン ドレルを引き抜いて中空体を回収した後、 前記中実の マン ドレルと材質が同じで前記中実のマン ドレルより も外 径のやや大きい中実のマン ドレルを上記中空体に挿入し、 この中空体の外柽を拘束しながら再度中実のマン ドレルを 熱膨張させ、 中空体の層内の空隙が実質的に排除されるま で、 中実のマン ドレルの外径を順次大き く してこの手順を 繰り返すことを特徴とする。 ''''. Reduce the internal voids of the wound, and then cool the solid and the solid mandrel from the wound after cooling the solid mandrel. After withdrawing the mandrel and collecting the hollow body, a solid mandrel having the same material as the solid mandrel and having a slightly larger outer diameter than the solid mandrel is inserted into the hollow body. The solid mandrel is thermally expanded again while restraining the outer circumference of the hollow body, and the outer diameter of the solid mandrel is sequentially increased until the voids in the hollow body layer are substantially eliminated. It is characterized by repeating this procedure.
すなわち、 この方法では、 先ず細い中実のマン ドレルを 用いてこの中実のマン ドレルを内側より熱膨張させて得ら れる中空体の内径を拡張しておき、 次いで、 最初に用いた のより もやや太い中実のマン ドレルをその中空体に挿入し て、 再び内側より熱膨張させて、 先より も更に中空体の内 径を拡張させ、 中空体の層内の空隙が実質的に排除される まで、 中実のマン ドレルの径を順次多く して加熱をく り返 すのである。  That is, in this method, first, the inner diameter of the hollow body obtained by thermally expanding the solid mandrel from the inside is expanded by using a thin solid mandrel, and then the first mandrel is used. A slightly thicker solid mandrel is inserted into the hollow body and thermally expanded again from the inside, expanding the inner diameter of the hollow body further than before, virtually eliminating voids in the hollow body layer The heating is repeated until the diameter of the solid mandrel is increased.
1 回の中実のマンドレルの熱膨張では、 中実のマン ドレ ルの膨張をより多く必要とする厚肉の中空体を製造するに 際しては、 中実のマン ドレルを膨張させても中空体の内径 を十分に拡張できないので、 積層ボイ ドの残った中空体し かえられない場合がある。 しかし、 この段階では、 最初に 用いた中実のマン ドレルの外径より も中空体の内径は拡張 している為に、 この中実のマン ドレルより も 1廻り太い中 実のマン ドレルを中空体に挿入することが出来る。  A single thermal expansion of a solid mandrel can be achieved by expanding the solid mandrel to produce a thick hollow body that requires more expansion of the solid mandrel. Since the inner diameter of the hollow body cannot be expanded sufficiently, the remaining hollow body of the laminated void may not be replaced. However, at this stage, since the inner diameter of the hollow body is larger than the outer diameter of the solid mandrel used initially, the solid mandrel that is one turn thicker than this solid mandrel is hollow. Can be inserted into the body.
そこで、 中実のマン ドレルを先ず、 細いものを用いて内 側より熱膨張させて仕上り中空体の内径を拡張しておき、 次いで、 最初に用いたのより もやや太い中実のマ ン ド レル をその中空体に挿入して、 再び内側より熱膨張させる。 こ の場合、 未だ積層ボイ ドを有する中空体にやや太い中実の マン ドレルを揷入することは容易である。 挿入される中実 のマ ン ド レルは加熱されていない状態にあるが、 中空体は 加熱されていなく ても、 加温状態であっても差しつかえな い。 そして、 中実のマン ドレル、 中空体ともに ェ温度 (可塑化温度以上) に至れば、 最初の段階に比較してより 中空体の内径は拡張し、 積層ボイ ドも減少する。 Therefore, a solid mandrel is first expanded from the inside with a thin object to expand the inner diameter of the finished hollow body. Next, a solid mandrel, slightly thicker than the one used first, is inserted into the hollow body and thermally expanded again from the inside. In this case, it is easy to insert a somewhat thick solid mandrel into a hollow body that still has a laminated void. The inserted solid mandrel is unheated, but the hollow body can be unheated or heated. When both the solid mandrel and the hollow body reach the temperature (above the plasticization temperature), the inner diameter of the hollow body expands and the number of laminated voids decreases compared to the first stage.
中空体の層内の空隙が実質的に排除されるまで、 中実の マ ン ド レルの径を順次大き く して加熱をく り返す。 1 回で 積層ボイ ドを排除することが出来る場合が多いが、 それが 叶わぬときはより太い中実のマン ドレルを順次使用してい く。 これにより、 最後には積層ボイ ドを完全にな く すこと が出来る。 これはマ ト リ ク ス樹脂が熱可塑性であり、 加熱 と冷却の温度操作によつて可逆的に何度でも可塑化と固化 を行えるからに他ならない。  The heating is repeated by sequentially increasing the diameter of the solid mandrel until the voids in the hollow body layer are substantially eliminated. It is often possible to eliminate laminated voids in one go, but if that is not feasible, use thicker solid mandrels sequentially. This will eventually eliminate the laminated void completely. This is due to the fact that the matrix resin is thermoplastic and can be plasticized and solidified reversibly many times by heating and cooling.
以下に図を参照して、 この場合の中空体の製造方法の実 施例を説明する。  An embodiment of the method for manufacturing a hollow body in this case will be described below with reference to the drawings.
実施例 4  Example 4
第 6図, 第 7図, 及び第 8図は、 こ の方法の一例の手順 を示す図である。 第 6図及び第 7図において、 21は P T F E製の中実のマン ドレル、 22は P E E Kをマ ト リ クスとし 炭素繊維で強化したプリ プレダシー ト( APC - 2/A S4 ) を出 来るだけ隙間なき様にマ ン ド レル 21に巻いた巻回物で、 そ の外形を銅パィプ 23で拘束してある。 FIG. 6, FIG. 7, and FIG. 8 are diagrams showing the procedure of an example of this method. In Fig. 6 and Fig. 7, 21 is a solid mandrel made of PTFE, and 22 is a gap as far as it comes out of a pre-predasite (APC-2 / AS4) reinforced with carbon fiber using PEEK as matrix. It is a roll wound around mandrel 21 as if Is constrained by copper pipe 23.
第 6図の状態は、 製品のパイプとなるプリ プレダ材料を. 熱膨張するマン ドレル 21と外形拘束を行う銅パイ プ 23との 空間に配置したところである。 因みにマ ン ド レル 21の径は 2 0 «、 銅パイブ 23の内径は 3 2■»である。  In the state shown in FIG. 6, the pre-prepared material to be the product pipe is placed in the space between the thermally expanding mandrel 21 and the copper pipe 23 for externally constraining the shape. Incidentally, the diameter of the mandrel 21 is 20 «and the inner diameter of the copper pipe 23 is 32 ■».
第 6図の状態の素材を、 4 0 0 'cにまで加熱し、 マ ン ド レル 21 , プリプレダシー ト, 銅バィブ 23がともに 4 0 0 で まで達した後に室温まで冷却して、 第 7図の状態を得る。 マ ン ド レル 21は 4 0 0 'cにおいて径が 2 3 Mまで膨張した ために、 プリプレダシ— トは P E E Kの溶融下に銅パィプ 23とマ ン ドレル 21の間で均等に圧縮を受けて内径 2 3™の パイプ 25を形成する。  The material in the state shown in Fig. 6 was heated to 400'c, and after the mandrel 21, the pre-predated sheet, and the copper vibrator 23 reached 400, both were cooled to room temperature. Get the state of. Since the diameter of the mandrel 21 was expanded to 23 M at 400 'c, the pre-predated sheet was evenly compressed between the copper pipe 23 and the mandrel 21 under the melting of PEEK. Form a pipe 25 of 2 3 ™.
しかし、 パイ プ 25は未だ圧縮が十分でない為に積層ボイ ドを有する。 尚、 マン ドレル 21の冷却によってパイ ブ 25と マ ン ド レル 21の間には空隙 27が生じている。 この空隙 27に は、 太いマ ン ドレル 21 a (直径 2 2 w ) を容易に挿入する ことが出来る。  However, Pipe 25 still has laminated voids due to insufficient compression. A gap 27 is formed between the pipe 25 and the mandrel 21 by cooling the mandrel 21. A thick mandrel 21a (diameter 22 w) can be easily inserted into the space 27.
この様にして太いマ ン ドレル 21 aを細いマ ン ドレル 21と 交換して、 再び先と同様に 4 0 0 でまで加熱し、 同様に冷 却して第 8図に示すパイプ 26を得た。  In this way, the thick mandrel 21a was replaced with the thin mandrel 21, heated again to 400 as before, and cooled similarly to obtain the pipe 26 shown in FIG. .
この過程で積層ボイ ドを舍んでいたパイプ 25は内径が 2 5. 3 ««となって、 積層ボイ ドを全く含まない外観 ' 品質と もに良好なるパイ ブ 26を得ることが出来た。 第 8図におい て、 マン ドレル 21 a の冷却によつて空隙 28が生じ、 パイプ 26からマン ドレル 21 aを容易に引き抜く ことが出来る。 この様にして、 ± 4 5 ての繊維配向を持つ、 肉厚 3. 3 5 «、 外径 3 2 «の (外径ノ肉厚 9. 6 ) 積層ボイ ドを舍まな い良好なる厚肉のパイプを得ることが出来た (尚、 1 回の マン ドレル膨張で作成できるバイ プ 厚の限界は、 外接/ 肉厚比 = 13 . 17である。 ) In this process, the inner diameter of the pipe 25, which contained the laminated void, became 25.3, so that a pipe 26 having good appearance and quality not including the laminated void could be obtained. In FIG. 8, a gap 28 is formed by cooling the mandrel 21a, and the mandrel 21a can be easily pulled out from the pipe 26. In this way, a thick wall having a fiber orientation of ± 45, a wall thickness of 3.35 «, and an outer diameter of 3 2« (external diameter of 9.6) does not impede a laminated void. (The limit of the pipe thickness that can be created by one mandrel expansion is the circumscribed / thickness ratio = 13.17.)
実施例 5  Example 5
実施例 4 とほぼ同じ手順に従って P P Sをマ ト リ ッ クス とし、 ガラス繊維で強化したプリブレダ材料を甩いてパイ プを製作した。 ' '  According to almost the same procedure as in Example 4, PPS was used as a matrix, and a pipe was manufactured using a pre-bleder material reinforced with glass fiber. ''
但し、 マン ドレルの径は 2 0 «m、 銅パイ プの内径は 3 2 However, the diameter of the mandrel is 20 «m and the inner diameter of the copper pipe is 3 2
■»、 加熱温度は 3 3 0 でであり、 第 7図の状態を得た。 マ ン ド レルは 3 3 0 'cにて径が 2 2. 6 «まで膨張したため、 内径 2 2. 6 «のパイ プ 25を形成する。 ■ », The heating temperature was 330, and the state shown in Fig. 7 was obtained. The mandrel expanded at 3330'c to a diameter of 22.6c, forming a pipe 25 with an inner diameter of 22.6.
これに再び太いマン ドレル (直径 2 2 » ) を揷入し、 再 び 3 3 0 てまで加熱し、 内径 2 4. 9 miのパイプを得た。 当 パィ プは未だわずかではあるが、 積層ボィ ドを含んでおり、 良好なるパイ プではない為、 もう一度マン ドレルを少し太 いものに交換し (直径 2 3 « 再び 3 3 0 てまで加熱し冷 却して、 第 8図 (但し、 マン ドレルは 21 aよ も 1 M太い) の如き状態を得た。 こう して得られたバイブは内径 2 5. 6 «»、 肉厚 3. 2™、 外径 3 2 ««の (外径ノ肉厚 = 1 0. 0〉 積 層ボィ ドのない良好なものであった。 この場合に直径 2 3 Mのマン ドレルは ( 1 3 %の熱膨張となるので) 2 5. 9 9 m にまで膨張するが、 径方向の膨張はプ プレグの材料に よって (ボイ ドがな く なつてからは) 制限され、 余つた膨 張は軸方向の膨張となり、 成形するプリプレダに余分な膨 張はかからないですむ。 A thick mandrel (diameter 2 2 ») was again introduced into the pipe, and the pipe was heated again to 330, and a pipe with an inner diameter of 24.9 mi was obtained. Although this pipe is still small, it contains a laminated body and is not a good pipe. Therefore, replace the mandrel with a slightly thicker one again (heat until the diameter is 2 3 «3 0 again). and then cooling, FIG. 8 (however, mandrel is 21 a'll also thick 1 M) were obtained, such as the state of. Vibe obtained in this way is an inner diameter of 2 5.6 «», wall thickness 3. 2 ™, outer diameter 3 2 «« (outer diameter thickness = 10.0) It was a good product without a laminated board. In this case, a mandrel with a diameter of 23M was (1 3 % Thermal expansion) up to 25.99 m, but the radial expansion is limited by the material of the prepreg (after the void has been removed) and the excess expansion The tension causes axial expansion, so that no extra expansion is applied to the pre-preda to be molded.
ここで実施例 4、 実施例 5及びこれにつづく比較例に共 通する肉厚について述べる。 積層ボイ ドを含まない様に積 層したときの肉厚は (熱硬化性樹脂のプリ プレダとは異な り) 樹脂の流れ出しが実質的には生じないため、 緒元とし てパイプの外径と、 巻回するプリ プレダシ一 トの量、 即ち 巻回方向の長さを与えれば自ずと定まる。 マン ド レル径が 膨張時において、 最終的に期待される内径に一致するか、 又は上廻るときに、 実施例 4、 実施例 5に示す様な積層ボ ィ ドのないパイブが得られ、 それに満たないときには、 積 層ボィ ドのある良好でないパイブとなる。  Here, the thickness common to Example 4, Example 5, and a comparative example following this will be described. The wall thickness when laminated so as not to include the laminated voids (unlike a thermosetting resin pre-prepared material) does not substantially flow out of the resin. If the amount of the pre-preducted material to be wound, that is, the length in the winding direction is given, it is naturally determined. When the diameter of the mandrel, when inflated, finally matches or exceeds the expected inner diameter, a pipe without a laminated body as shown in Examples 4 and 5 is obtained. If not, it is a poor pipe with a stacked body.
比較例 1  Comparative Example 1
実施例 4 と途中までは全く 同じで、 1 回だけ加熱を行つ たもの。 このパイプは積層ボィ ドのない状態の肉厚 3. 3 « に対して 4. 5 »の肉厚を有しており、 外観的にはまずまず だが約 2 5 %の積層ボイ ドを有していた (この様にボィ ド の大きいパイプは強度的にも非常に劣る。 )  The process is exactly the same as that of Example 4, except that heating is performed only once. This pipe has a wall thickness of 3.3 «to 4.5« in the absence of laminated voids and has a reasonable appearance but a laminated void of about 25%. (A pipe with a large body is very poor in strength.)
(3) 中空のマン ドレルを用いる場合には、 第 9図に示すよう に、 熱膨張性の中空筒状マン ドレル 31の外周面と、 内径が マン ドレル 31の外径より も大きい中空筒状外型 33の内周面 との間に、 熱可塑性樹脂プリ プレダ 32を介在させる。 中空 のマン ドレルは中実のマン ドレルに比して熱伝導性がよい。 中空筒状マン ドレル 31の外周面と中空筒状外型 33の内周 面との間に成形材料( 熱可塑性樹脂プリプレダ 32) を介在 させるには、 前述した中実のマン ドレルを用いる場合と同 様に行えばよい。 ついで、 中実のマン ドレルを用いる場合 と同様に加熱および冷却を行う ことにより、 繊維補強熱可 塑性樹脂中空体を得ることができる。 (3) When a hollow mandrel is used, as shown in Fig. 9, the outer peripheral surface of the heat-expandable hollow cylindrical mandrel 31 and the hollow cylindrical shape whose inner diameter is larger than the outer diameter of the mandrel 31 are used. A thermoplastic resin pre-reader 32 is interposed between the outer die 33 and the inner peripheral surface. Hollow mandrels have better thermal conductivity than solid mandrels. A molding material (thermoplastic resin pre-predator 32) is interposed between the outer peripheral surface of the hollow cylindrical mandrel 31 and the inner peripheral surface of the hollow cylindrical outer die 33. This can be done in the same manner as when using a solid mandrel as described above. Then, heating and cooling are performed in the same manner as when a solid mandrel is used, so that a fiber-reinforced hollow thermoplastic resin body can be obtained.
また、 マン ドレル 31には、 第 10図に示すように、 中実又 は中空の金属又はセラ ミ ックスの芯 34を嵌入しておいても よい。  Further, as shown in FIG. 10, a solid or hollow metal or ceramic core 34 may be fitted into the mandrel 31.
これによつて、 マン ドレル 31を支持できるのでマン ドレ ル 31が薄肉の場合でもマン ドレル 31が変形することなく 、 成形材料を均一に圧着することができる。 また、 中空の金 属芯を配する場合には、 特に熱伝達が迅速かつ均 ""となり、 生産効率、 品質の面で特に著しい効果がある。  Accordingly, since the mandrel 31 can be supported, even when the mandrel 31 is thin, the molding material can be pressed uniformly without deformation of the mandrel 31. In addition, when a hollow metal core is provided, heat transfer is particularly rapid and uniform, which has a particularly remarkable effect in terms of production efficiency and quality.
さらに、 例えば第 11図に示すように、 マ ン ド レル 31は軸 に対して平行 ( 0 。) な繊維 35で補強されていてもよい。 これによつて、 熱膨張を軸方向は抑制し、 径方向を強調す ることができる。  Further, for example, as shown in FIG. 11, the mandrel 31 may be reinforced by a fiber 35 parallel (0) to the axis. Thereby, the thermal expansion can be suppressed in the axial direction and the radial direction can be emphasized.
その上、 第 12図に示すように、 マン ドレル 31は軸に対し て平行 ( 0 。) の織維 35および軸に対して直角 (90。) の 繊維 36によって補強されていてもよい。 これによつて、 マ ン ドレル 31が径方向にいっそう均一に膨張することが可能 となる。  In addition, as shown in FIG. 12, the mandrel 31 may be reinforced by a fiber 35 parallel (0) to the axis and a fiber 36 perpendicular to the axis (90). This allows the mandrel 31 to expand more uniformly in the radial direction.
芯 34が中空の場合には、 第 13図に示すように電熱ヒータ 一 37を芯 34内に装入するか又は第 14図に示すように熱媒体 供給管 42を内蔵した筒 41を芯 34内に装入するとよい。 これ によって、 雰囲気加熱によるより も迅速かつ均一に加工温 度を得ることができるため、 やはり生産時間の短縮や品質 の向上などの効果がある。 特に雰囲気加熱では全体が雰囲 気温度に達するのに時間がかかる長尺パイブ (大型成形物) においては効果が著しい。 なお、 第 13図中、 40は電力供給 部を表わす。 第 14図中、 43は加熱炉の壁面を、 44は熱媒体 入口を、 45は熱媒体出口を表わす。 When the core 34 is hollow, an electric heater 37 is inserted into the core 34 as shown in FIG. 13 or a cylinder 41 having a heat medium supply pipe 42 built in as shown in FIG. It is good to charge inside. This allows for faster and more uniform processing temperatures than with ambient heating. As a result, the production time can be shortened and the quality can be improved. In particular, atmospheric heating is particularly effective for long pipes (large molded products), which take time to reach the ambient temperature as a whole. In FIG. 13, reference numeral 40 denotes a power supply unit. In FIG. 14, reference numeral 43 denotes a wall of the heating furnace, 44 denotes a heat medium inlet, and 45 denotes a heat medium outlet.
以下に、 この場合の中空体の製造方法の実施例を示す。 実施例 6  An example of a method for manufacturing a hollow body in this case will be described below. Example 6
第 9図に示すような中空の P T F E製マ ン ド レル 31を用 いて、 £ £ 1{製1; 0プリプレグ (APC-2/AS 4、 ICI-FIBE IHTE社製) を巻いたものをマ ン ドレル 31と外型 33との間に 装てんし、 これら全体を 400 ° の加熱炉に入れて 30分間保 ち、 次いで冷水 (約 20で) を満たした水槽中に投じて急冷 した。  Using a hollow PTFE mandrel 31 as shown in Fig. 9, a prepreg (APC-2 / AS4, manufactured by ICI-FIBE IHTE) wound around £ 1 { It was placed between the tube 31 and the outer mold 33, and the whole was put in a heating furnace at 400 ° for 30 minutes, and then poured into a water tank filled with cold water (about 20) to be quenched.
このようにして得られた P E E Kをマ ト リ クスとする炭 素の連続繊維強化中空体は、 いたるところで繊維の乱れや 積層ボイ ドのない極めて均質で良好なる成形体であつた。 比較例 2  The carbon continuous fiber reinforced hollow body obtained by using PEEK as a matrix was an extremely uniform and good molded body without fiber turbulence and laminated voids everywhere. Comparative Example 2
中実の P T F Eマ ン ド レルを用いた他は実施例 6 と同じ 構成で P E E Kをマ ト リ ク スとする炭素の連続繊維強化の 中空体を製作した。 加熱炉に入れて 30分保ったが、 マン ド レルの中央部が十分に加熱されておらず、 中央部に積属ボ ィ ドが残存しており、 不具合であった。  A hollow body reinforced with continuous carbon fiber using PEEK as a matrix was manufactured in the same configuration as in Example 6, except that a solid PTFE mandrel was used. It was placed in a heating furnace and kept for 30 minutes, but the center of the mandrel was not sufficiently heated, and a stacking board remained in the center, which was a problem.
実施例 7  Example 7
第 10図に示したマン ドレルを用いて、 実施例 6 とほぼ同 様にして中空体を製作した。 ここで用いたマン ドレルは、 金属パイ プ上に実施例 6 のものと同一寸法の無垢材の P T F E製の中空体を設けたものである。 この場合、 金属バイ プの効果により熱伝達が均一かつ速やかに達成され、 20分 の加熱で実施例 6 と同様の品質的に優れた製品を得ること ができた。 Using the mandrel shown in Fig. 10, almost the same as in Example 6. A hollow body was manufactured in the same manner. The mandrel used here is a metal pipe provided with a hollow body made of solid PTFE of the same dimensions as that of the sixth embodiment. In this case, heat transfer was uniformly and quickly achieved by the effect of the metal pipe, and a product excellent in quality similar to that of Example 6 could be obtained by heating for 20 minutes.
実施例 8  Example 8
第 11図に示したマ ン ド レルを用いた他は実施例 6 と同じ 構成で製品を作つた。 マン ドレルについて述べると、 軸方 向にガラス織維で補強してあり、 P T F Eの肉厚が実施例 7 の場合の ½である他は、 マン ドレルの外径等も同一であ る ( P T F Eが薄い分だけ、 金属パイ ブの外径が大きい) 。 この場合、 P T F Eの肉厚がうすいにも拘らず、 軸方向の 熱膨張がガラス繊維で制限されて、 半径方向の熱膨張は十 分に達成される。  A product was made in the same configuration as in Example 6, except that the mandrel shown in FIG. 11 was used. Regarding the mandrel, the outer diameter of the mandrel is the same except that the mandrel is reinforced with glass fiber in the axial direction and the thickness of the PTFE is ½ in Example 7. The outer diameter of the metal pipe is larger due to the thinner part). In this case, the thermal expansion in the axial direction is limited by the glass fiber, and the thermal expansion in the radial direction is sufficiently achieved, even though the thickness of the PTFE is small.
本例では、 P T F E層がうすいため、 加熱時間は 10分で 良好なる製品を得ることができた。 また、 マン ド レルの変 形も少な く 、 そのまま再使用が可能であった。 マン ドレル の構造がやや複雑である為に、 マ ン ド レルは高価ではある が、 加熱時間も 10分と短く てすみ、 再使用のための形状回 : 復も不要であるなど、 全体的にみれば製作コス トを低缄さ せる効果が著しい。 In this example, since the PTFE layer was thin, a good product could be obtained in a heating time of 10 minutes. In addition, the mandrel was less deformed and could be reused as it was. For the structure of the mandrel is slightly more complicated, but Ma down de barrels are expensive, the heating time be as short as 10 minutes TeSumi, for re-use shape once: such as the recovery is not necessary, overall The effect of reducing the production cost is remarkable.
実施例 9  Example 9
第 13図に示した棒状の電熱ヒーター (カー ト リ ッジヒ ー ター) を第 10図に示した金属製パイ プの中に挿入して、 後 は他の実施例と同様の方法で製品を製作した。 加熱炉中で ヒーターを加熱したところ、 3分間で全体の均一な加熱が 完了し、 良好なる製品を得ることができた。 The rod-shaped electric heater (cartridge heater) shown in Fig. 13 is inserted into the metal pipe shown in Fig. Manufactured a product in the same manner as in the other examples. When the heater was heated in the heating furnace, uniform heating of the whole was completed in 3 minutes, and a good product could be obtained.
実施例 10  Example 10
第 10図に示したマ ン ド レルに、 第 13図に示したヒーター を揷入して、 加熱手段を持つマン ド レルとし、 その周囲に P E E Kをマ ト リ クスとするプリ プレダテープ (APC- 2/AS 4)を ± 45 ° の層構成になるように巻きつけ、 その上に外型 を配した。  The heater shown in Fig. 13 is inserted into the mandrel shown in Fig. 10 to make a mandrel having heating means, and a pre-prepared tape (APC- 2 / AS 4) was wound so as to form a layer structure of ± 45 °, and an outer mold was placed on top of it.
これを 4 00での加熱炉中に入れ、 同時にヒーターを作動 させ、 雰囲気加熱およびヒーター加熱によって軸方向に均 一かつ急速に加熱し、 約 3分でプリ プレグおよびマン ドレ ル、 外型を 4 00 ΐに到達させた。  This is put into a heating furnace at 400, and the heater is operated at the same time, and is uniformly and rapidly heated in the axial direction by the atmospheric heating and the heating of the heater, and the prepreg, the mandrel, and the outer mold are heated in about 3 minutes. 00 ΐ.
次いで、 ヒーターを抜き取り、 そのまま冷水中に投じて 急冷した。  Next, the heater was pulled out and immediately poured into cold water for rapid cooling.
このようにして得られた製品の中空体は、 織維の乱れや ボィ ドもなく良好なるものであった。  The hollow body of the product obtained in this way was good without any disturbance of the fiber or void.
(4) つぎに、 芯体の表面に複数個の熱膨張性素子を配置して なる複合体、 および複数個の熱膨張性素子だけからなる集 合体を中子として用いる場合について説明する。  (4) Next, a description will be given of a case where a composite in which a plurality of thermal expansible elements are arranged on the surface of a core body and an aggregate composed of only a plurality of thermal expansible elements are used as a core.
芯体の機能は、 型締めのときに中子の熱膨張によって生 じた型締めの力を支えると共に、 個々の熱膨張性素子の位 置を規定することである。 したがって、 芯体に必要とされ るのは、 使用される温度における強度、 剛性などの機械的 性質と、 熱膨張性素子を拘束する仕切り、 凹凸、 或いはそ の他の適当な手立てを有するこ とである (熱膨張性素子の 形状によっては、 これらの手立てを要しない場合もある) 。 さらに、 加熱を促進したり、 冷却を制御するための適当な 手段を併せ持つていることが好ま しい。 芯体の内部は、 中 空又は中実のいずれでもよい。 また、 芯体は、 必要に応じ て分解可能なように構成されるのが好ま しい。 The function of the core is to support the clamping force generated by the thermal expansion of the core during clamping, and to define the position of each thermal expansion element. Therefore, the core is required to have mechanical properties such as strength and rigidity at the temperature used, as well as partitions, irregularities, or the like that restrain the thermal expansion element. (Otherwise, depending on the shape of the heat-expandable element, these may not be necessary). In addition, it is preferable to have appropriate means for promoting heating and controlling cooling. The interior of the core may be hollow or solid. Further, it is preferable that the core is constituted so that it can be disassembled as needed.
中子の構成要素に関する例外としては、 中 が複数個の 熱膨張性素子だけから構成されるこ とである。 比較的小さ い製品又は比較的細い製品を成形する場合には、 熱伝導に 起因して製品の品質が不均一となるという問題が無視し得 るので、 熱膨張性素子だけから構成される中子を用いても 良好な製品を得ることができる。 したがって、 この場合に は、 敢えて芯体のある中子を用いる必要はない。  An exception for core components is that the core consists of only a plurality of thermally expandable elements. When molding relatively small or relatively thin products, the problem of non-uniform product quality due to heat conduction can be ignored. Good products can be obtained by using a child. Therefore, in this case, it is not necessary to use a core with a core body.
芯体のある中子としては、 熱膨張性素子の個数や形状に は特に制限はないが、 例を挙げると第 19図 (Α ) , ( Β ) に示すように輪切り状のものを 1個〜数個並べたものがあ る。 第 19図 (Α ) は、 芯体 70に輪切り状の熱膨張性素子 71 を 3個嵌め込んだ場合を示す。 第 19図 (Β ) は、 芯体 70に 1個の輪切り状の熱膨張性素子 71を嵌め込んだ場合を示す。 熱膨張性素子が 1個の場合には、 中実又は中空のマ ン ド レ ルに相当する。  There is no particular limitation on the number and shape of the thermal expansion element as the core with a core, but for example, one piece with a ring shape as shown in Fig. 19 (Α) and (Β) ~ There are several arranged. FIG. 19 (Α) shows a case where three core-shaped heat-expandable elements 71 are fitted into the core body 70. FIG. 19 (Β) shows a case where one ring-shaped heat-expandable element 71 is fitted into the core body 70. A single thermal expansion element corresponds to a solid or hollow mandrel.
こ こで、 各々の輪切り状の熱膨張性素子は、 製品の彤状 に応じて径ゃ大きさを変化させることができる。 輪切り状 の熱膨張性素子を利用する場合の熱膨張性素字と芯体との 結合手段としては、 例えば、 芯体上に設けた仕切りの凸部、 芯体上に設けた表面の凹凸、 外型の一部の機構、 芯体 . 外 型とは独立した機構の何れでもよい。 Here, the diameter and size of each of the ring-shaped thermally expandable elements can be changed according to the shape of the product. When the heat-expandable element having a ring shape is used, the means for connecting the heat-expandable element and the core include, for example, a convex portion of a partition provided on the core, Any of a surface unevenness provided on the core body, some mechanism of the outer mold, and a mechanism independent of the core body and the outer mold may be used.
輪切り状ではない板状や棒状、 レ ンガ状ゃタ イ ル状の熱 膨張性素子を利用する場合には、 結合手段としては輪切り 状の場合より も確実に結合し得るものを用いるのがよい。 この場合の結合はタイ トである必要はないが、 脱落しない ことが肝要である。  When using a plate-shaped, rod-shaped, or rectangular-shaped thermally expandable element that is not a ring-shape, it is better to use a bonding means that can be connected more securely than a ring-shape. . The bond in this case does not need to be tight, but it is important that it not fall off.
熱膨張性素子は相互に密着していなくてもよいが、 成形 材料のマ ト リ ックスが流動を開始するまでには膨張して中 子表面上で密着するように、 予め設計しておく 。 熱膨張性 素子をジクソ一パズルの如く相互に嵌合させて連結してお いてもよい。  The heat-expandable elements need not be in close contact with each other, but are designed in advance so that the matrix of the molding material expands and adheres to the core surface before the flow of the molding material starts to flow. The heat-expandable elements may be connected to each other by fitting each other like a puzzle.
熱膨張性素子は、 個々には X , Y , z方向に一般に熱膨 張する力 本発明におけるように高い圧縮応力下に置かれ ると、 適当に弾性変形又は塑性変形して空隙を埋めるよう に膨張する。 このため、 必ずしも加熱変形時の熱膨張性素 子の形状を基準として、 等方的な熱膨張を仮定して熱膨張 性素子を設計しな く ともよい。  The heat-expandable elements, when individually subjected to a high thermal expansion force in the X, Y, and z directions, and under a high compressive stress as in the present invention, may appropriately elastically or plastically deform to fill the void. To expand. For this reason, it is not always necessary to design a thermally expandable element assuming isotropic thermal expansion based on the shape of the thermally expandable element during heat deformation.
逆に、 熱膨張性素子を織維強化しておき、 これにより熱 膨張性に著しい異方性を与えて (極端な場合には X方向の みに膨張して、 Υ、 Ζ方向には膨張しないようにすること ができる) 、 膨張の有効な方向のみを利用することもでき る (この場合、 X方向を製品の法線に一致させる) 。 また、 熱伝導をよ くするために、 熱伝導率の高いフ イ ラ一を含有 する熱膨張性素子を用いてもよい。 芯体の表面に複数個の熱膨張性素子を配置してなる複合 体を中子と して用いる場合には、 例えば、 第 15図に示すよ うに、 横断面円形又は楕円形の空洞 62がー端から ¾他端に貫 通した外型 61の該空洞 62の内面に、 熱可塑性樹脂プリプレ グを所望の層構成となるように巻き付けて横 面円形又,は 楕円形の中空巻回物 63とする。 Conversely, the heat-expandable element is reinforced to give a significant anisotropy to the heat-expandability (in extreme cases, it expands only in the X direction and expands in the Υ and Ζ directions). It is possible to use only the effective direction of expansion (in this case, to match the X direction to the product normal). Further, in order to improve heat conduction, a heat-expandable element containing a filler having high heat conductivity may be used. In the case where a composite having a plurality of thermal expansion elements arranged on the surface of a core body is used as a core, for example, as shown in FIG. 15, a cavity 62 having a circular or elliptical cross section is formed. the inner surface of the cavity 62 of the outer mold 61 through transmural to ¾ other end from over end, the lateral surface the circular also a thermoplastic resin prepreg is wound to a desired layer constitution, the hollow winding of oval 63.
外型 61は、 その材質としては特に限定されるものではな いが、 加工温度において変形や変質が生じることがなく 、 かつ熱膨張性素子の膨張による圧力に耐えることが必要で あるため、 鉄やアルミ合金等の金属製であることが好まし い。 また、 この外型 61は、 一体型のものでもよいが、 上下 2つに割れてボル ト等で型締めできるような割り型であ のが製品の取り出しなどが容易となるので好ましい。  The material of the outer die 61 is not particularly limited. However, since it is necessary that the outer die 61 is not deformed or deteriorated at the processing temperature and that it withstands the pressure caused by the expansion of the heat-expandable element, It is preferably made of metal such as aluminum or aluminum alloy. The outer die 61 may be an integral type, but is preferably a split type that can be split into two upper and lower parts and can be clamped with a bolt or the like because it is easy to take out the product.
本発明では、 外型 61の空洞 62の内面に、 熱可塑性樹脂プ リ プレグを所望の層構成となるように巻き付ける。 この壕 合、 熱可塑性樹脂プリ プレダは硬化した例えばシ— ト状の ものであるため、 これを渦巻状に巻いて空洞 62内に入れれ ばよい。 また、 渦巻状に卷く に際して、 ハンダゴテ等にて プリ プレダにスポ ッ ト溶接を施して仮止めしておいてもよ い。 なお、 空洞 62の内面には、 離型剤等を前以つて塗布レ てもよい。  In the present invention, a thermoplastic resin prepreg is wound around the inner surface of the cavity 62 of the outer die 61 so as to have a desired layer configuration. In this case, since the thermoplastic resin pre-preda is in the form of a cured sheet, for example, it may be spirally wound into the cavity 62. Also, when winding in a spiral shape, spot welding may be performed on the pre-preda with a soldering iron or the like to temporarily fix it. A release agent or the like may be applied to the inner surface of the cavity 62 in advance.
ついで、 第 16図に示すように、 芯体 64とこの芯体 64の周 囲に配置された複数個の熟膨張性素子 65からな^横断面楕 円形の中子 66を中空巻回物 63の中空部に挿入する。  Next, as shown in FIG. 16, a core 66 having a cross-sectional elliptical shape composed of a core 64 and a plurality of mature expandable elements 65 arranged around the core 64 is used to form a hollow roll 63 Insert into the hollow part.
芯体 64は、 外型 61と同様に加工温度において変形や変質 が生じることがなく 、 かつ熱膨張性素子の膨張による圧力 に耐えることが必要であるため、 その材質としては特に限 定されるものではないが、 鉄やアルミ合金等の金属製であ るのがよい。 また、 中実でな く ともよ く、 中空又は空洞化 してもよい。 中空又は空洞化していると、 芯体 64自体が軽 く なると共に熱伝導性も良く なるので好ましい。 The core body 64 is deformed and deteriorated at the processing temperature, like the outer mold 61. The material is not particularly limited because it is necessary to prevent the occurrence of pressure and to withstand the pressure caused by the expansion of the thermally expandable element, but it is made of metal such as iron or aluminum alloy. Is good. Further, it may not be solid and may be hollow or hollow. It is preferable that the core 64 itself be hollow or hollow because the weight of the core 64 itself is reduced and the thermal conductivity is improved.
熱膨張性ヱレメ ン ト 65は、 等方的な熱膨張を示す (成形 条件等に起因して若干の異方性が残る場合もあるが、 巨視 的には等方的であると見做される) 。 このため、 熱膨張性 素子 65は、 第 16図に示されるように、 相互に隙間を開けて 配置される。 また、 必要に応じて、 熱膨張性素子 65の相互 間に金属箔等を配してエ レメ ン ト同士の熔着を防ぐことも ίτえる。  The thermal expansion element 65 shows isotropic thermal expansion (some anisotropy may remain due to molding conditions, etc., but it is considered macroscopically isotropic). ). Therefore, as shown in FIG. 16, the thermally expandable elements 65 are arranged with a gap therebetween. In addition, if necessary, a metal foil or the like may be disposed between the thermally expandable elements 65 to prevent the elements from being welded to each other.
このようにして中子 66が揷入された中空巻回物 63を加熱 する。  Thus, the hollow roll 63 into which the core 66 has been inserted is heated.
加熱は、 外型 66ごと加熱炉 (熱風炉、 脱脂炉などが好ま しい) に入れて行えばよい。 この場合、 加熱温度は、 プリ プレダのマ ト リ ッ ク ス樹脂の融点より も 30。c 〜 100 。c高く するとよい。 加熱時間は全体が雰囲気温度に達する時間で よい。 この加熱により、 熱膨張性素子 65が縦 · 横 · 高さの X · Y · Z方向に熱膨張して、 第 17図に示すように、 熱膨 張性素子同士が密着し、 中空卷回物 63を内側より外型 61方 向へ押圧して中空巻回物 63を全周に亘つて均等に型締めす る。  Heating may be performed by placing the entire outer mold 66 in a heating furnace (preferably a hot blast furnace or a degreasing furnace). In this case, the heating temperature is 30 higher than the melting point of the matrix resin of the pre-preda. c-100. c should be higher. The heating time may be a time during which the whole reaches the ambient temperature. Due to this heating, the heat-expandable element 65 thermally expands in the X, Y, and Z directions of length, width, and height, and as shown in FIG. The object 63 is pressed from the inside toward the outer mold 61 to uniformly clamp the hollow wound article 63 over the entire circumference.
ついで冷却することにより、 熱膨張性素子 65は元の大き さに戻る (第 16図参照) 。 したがって、 冷却後に中空巻 H} 物 63を外型 61から取り出すことにより、 第 1&図に示され ¾ ような外観的にも繊維の乱れや厚みムラのない機械的特性 にも優れた製品 (楕円バネ) 67が得られる。 Then, by cooling, the heat-expandable element 65 returns to its original size. Return to the previous section (see Fig. 16). Therefore, by removing the hollow wound material 63 from the outer mold 61 after cooling, a product (elliptical) excellent in appearance and mechanical properties free from fiber disturbance and thickness unevenness as shown in FIG. Spring) 67 is obtained.
以下、 この場合の中空体の製造方法の実施例を示す。  Hereinafter, an example of a method for manufacturing a hollow body in this case will be described.
実施例 11  Example 11
第 15図に示すような鉄製の外型 61の空洞 62内に、 PEEKを マ ト リ ックスとする プリ プレダシ一 ト(APC-2/AS4、 ICI Fiberite社製) を ±45。 の積層構成となるように各 12ブラ ィ の合計 24ブラィで丁度 3.0 mmの厚さとなるように装塡し、 さらにその内部に PTFE製の熱膨張性素子 65を配し、 その内 部にさ らにアルミ ニゥム製の芯体 64を装塡した。  In the cavity 62 of the iron outer mold 61 as shown in Fig. 15, a pre-precast (APC-2 / AS4, manufactured by ICI Fiberite) using PEEK as a matrix is ± 45. A total of 24 brushes, each of 12 brushes, is mounted so as to have a thickness of just 3.0 mm, and a PTFE heat-expandable element 65 is further disposed inside, and a Further, an aluminum core 64 was mounted.
これを 400 てに保った熱風オーブン中に入れ、 60分間保 持し、 第 17図に示すように熱膨張性素子 65が相互に密着し、 しかも中空巻回物 63の層間の隙間がな く なつているのを確 かめた上で、 全体をオーブンから出して冷却したところ、 第 18図に示されるようなボイ ドもなく繊維の乱れもない外 観的にも特性的にも優れた楕円パネが得られた。 この楕円 バネは、 リ ング幅 50 mm 、 短径 77 mm 、 長径 154 mm、 肉厚 3 mm、 VF 0.61 であった。  This is placed in a hot-air oven maintained at 400 mm, and kept for 60 minutes. As shown in FIG. 17, the heat-expandable elements 65 adhere to each other, and there is no gap between the layers of the hollow roll 63. After confirming that it was in place, the whole was taken out of the oven and cooled, and as shown in Fig. 18, there was no void or fiber disturbance, and an ellipse that was both excellent in appearance and characteristics A panel was obtained. This elliptical spring had a ring width of 50 mm, a minor axis of 77 mm, a major axis of 154 mm, a wall thickness of 3 mm, and a VF of 0.61.
実施例 12  Example 12
積層構成が周方向に対し 0 ° 、 90 ° の交互積層 (最外層 0 ° 〉 となるようにした以外は、 実施例 11におけると同様 に行った。 同様の楕円バネが得られた。  The same elliptical spring was obtained as in Example 11, except that the lamination structure was such that the lamination was alternately laminated at 0 ° and 90 ° (outermost layer at 0 °).
ここで若干補足的に述べると、 連続織維補強の熱可塑性 樹脂をマ ト リ ックスとする複合材料で成形を行う場合、 ① 繊維配向が設計通りに乱れな く実現しているか、 ②積層ボ ィ ドが消滅しているか、 ③鏃維の分散に粗密が生じ、 その 結果、 樹脂溜りが生じている箇所はないかという点が性能 上肝要となる。 繊維の乱れがな く、 積層ボイ ドがな く、 鏃 維と樹脂の分離がないことが製品の高性能を保証するから である。 逆に、 これらの点を満足しない箇所がある場合、 その箇所が弱く てそこから破壌が進むという性能的に劣つ たケースに至ってしまう。 そこで、 実施例 1 1および実施例 12で得られた製品について、 これらの点を見るために試験 片を多 く切り出して曲げ試験を行ったところ、 十分な機械 的強度を有し、 品質のバラツキの非常に少ない均質で優れ たこれらの点を満足する性能を示すことが判った。 As a supplementary note here, thermoplastic fibers reinforced by continuous fibers When molding with a composite material using resin as matrix, it is necessary to (1) realize the fiber orientation without disorder as designed, (2) eliminate the laminated body, or (3) vary the distribution of arrowheads. As a result, it is important in terms of performance whether there is any place where the resin pool is generated. This is because there is no fiber turbulence, no laminated voids, and no separation between the arrowhead fibers and the resin, which guarantees the high performance of the product. Conversely, if there are locations that do not satisfy these points, the locations will be weak and the blasting will proceed from there, leading to poor performance. Therefore, for the products obtained in Examples 11 and 12, a large number of test pieces were cut out and subjected to a bending test to see these points. It was found that the composition exhibited excellent performance satisfying these points with very little homogeneity.
実施例 13  Example 13
PPS をマ ト リ ックスとする(J Dプリ プレダシー ト(R y to n、 フイ リ ップス石油㈱製) を用いて、 加工温度を 330 でに保 持したことおよび芯体 64と熱膨張性素子 65との間に厚さ 1 . 0 mmのアルミ板を挟んだこと以外は、 実施例 11におけると 同様に行った。 外観的にも性能的にも同様に優れた楕円バ ネが得られた。  Using the PPS as a matrix (JD pre-predesheet (Ry ton, manufactured by Philips Oil Co., Ltd.)), the processing temperature was maintained at 330, and the core 64 and the heat-expandable element 65 were used. The procedure was the same as in Example 11, except that an aluminum plate having a thickness of 1.0 mm was sandwiched between the two.
なお、 こ こでアルミ板を用いたのは、 400 でに設計した 熱膨張性素子 65では熱膨張が不足する で、 それを補うた めである。  The reason why the aluminum plate was used here is to compensate for the lack of thermal expansion of the thermally expandable element 65 designed for 400.
比較例 3  Comparative Example 3
31 0 'cに加熱した鉄製マン ドレルを回転させながらこれ に PPS/炭素織維のプリ プレダシー トを巻き付け、 これに 2 組の口ールを圧着させて脱泡を行い、 楕円パイ プを製造し た。 Rotate the iron mandrel heated to 31 0 'c A prepreg sheet of PPS / carbon fiber was wrapped around this, and two sets of jaws were pressed against it to defoam, producing an elliptical pipe.
この場合、 310 でに加熱した鉄製マ ン ド レルにプリ プレ ダシー トを正確な繊維角度で巻き付けるのは困難であるの で、 品質の安定した製品が得られなかった。  In this case, it was difficult to wind the pre-preheated sheet at an accurate fiber angle around the iron mandrel heated in 310, so that a product of stable quality could not be obtained.
実施例 14  Example 14
ベンチユリ 一管( 面転鼬に対して ± 45 ° の層構成): 第 20図に示す製品 72 ( ベンチユ リ 一管、 直径 10 cm)を、 第 23図に示す外型 73 ( 2つ割り型で、 内面には離型のため にテフロ ン加工が施されている) と、 第 21図に示す芯体 80 および第 22図に示す PTFE製の熱膨張性素子 81とからなる中 子 82を用いて制作した( この中子 82は分解可能な構造とな つており、 製品ができ上がった後に分解して中子 82から製 品を取り出すことができる) 。  Bench lily tube (layer structure of ± 45 ° with respect to the facet): The product 72 (bench lily tube, diameter 10 cm) shown in Fig. 20 is replaced with the outer die 73 (split type) shown in Fig. 23. And the inner surface is subjected to tephron processing for release), and a core 82 comprising a core body 80 shown in FIG. 21 and a PTFE thermal expansion element 81 shown in FIG. 22. (The core 82 has a structure that can be disassembled, and after the product is completed, it can be disassembled and the product can be taken out of the core 82).
先ず、 PEEKをマ ト リ ックスとするプリ プレダの ^ゥ( 幅 約 3 mm、 厚さ約 0. 13 mm 、 APC- 2/A S4 .、 I C I 社製) をブレ ーダにて編み上げ、 ± 45。 の織組角の合計 16のプリ フ ォ ー ムを成形した。 このベンチュ リ 一管のプリ フ ォームの肉厚 は、 約 5 mmであり、 仕上がり品の肉厚 2 mmの約 2. 5 倍であ つた。 プリ フ ォームは、 ばらぱらになるのを防ぐために、 必要と思われる箇所をスポ ッ ト止めしておいた。  First of all, a pre-prepader using PEEK as a matrix (ゥ 3 mm wide, 0.13 mm thick, APC-2 / AS4., ICI), braided with a blade, 45. A total of 16 preforms with a total of weaving angles were formed. The wall thickness of the preform of this Venturi tube was about 5 mm, which was about 2.5 times the thickness of the finished product of 2 mm. The preform was spotted where it was deemed necessary to prevent fragmentation.
ついで、 このプリ フ ォ ーム中に、 第 21図に示す芯体 80を 一部分解して通人し、 この芯体 80に熱膨張性素子 81を配し て中子を組み立てた。 この場合、 熱膨張性素子 81の相互閽 には少しの隙間があつたが、 加工温度に至つたときにその 隙間がな く なり、 熱膨張性素子 81がプリ フォームを外型 73 に圧着し、 型締めするように配慮されていた。 Next, a core 80 shown in FIG. 21 was partially disassembled and passed through the preform, and a heat-expandable element 81 was arranged on the core 80 to assemble a core. In this case, the thermal expansion elements 81 Although there was a small gap, when the processing temperature was reached, the gap disappeared, and the heat-expandable element 81 pressed the preform to the outer mold 73 and took care to clamp the mold.
つぎに、 このプリ フォームおよび中子の全体を第 23図に 示す外型 73に収め、 外型 73が開く のを防いだ上で、 これら 全体をつぎの工程に送った。 なお、 外型 73としては、 製品 を取り出す必要から割り型を用いると共に、 離型のために テフロンコーティ ングを内面に施してある。  Next, the entire preform and core were placed in an outer mold 73 shown in FIG. 23 to prevent the outer mold 73 from opening, and then sent to the next step. As the outer mold 73, a split mold is used because it is necessary to take out the product, and a Teflon coating is applied to the inner surface for release.
つぎの工程では、 外型 73の太い部分の外面に断熱材を巻 き付けて、 外型 73の細い部分から先に加熱されるようにし て、 これら全体を 400 での加熱炉中に入れた。 全体が殆ど 400 'cに達した後、 先に巻き付けた断熱材を除いて、 全体 を水槽の中に投じて冷却を行った。 このようにして、 APC - 2 について推奨されている急冷プロセスが実現された。  In the next step, heat insulation was wrapped around the outer surface of the thick part of the outer mold 73 so that the thin part of the outer mold 73 was heated first, and these were all put into a heating furnace at 400 . After the whole reached almost 400'c, the whole was thrown into a water tank to cool it, excluding the previously wound insulation. In this way, the quenching process recommended for APC-2 was realized.
ここで、 第 21図中のフラ ンジ 83の効果について触れてお く 。 このフランジ 83は、 ナ ツ ト 85で芯体 80の軸の外方向へ の移動が防止されているため、 熱膨張性素子 81の芯体 80の 軸方向への膨張を食い止めて、 芯体 80の半径方向への熱膨 張を効果的に生じさせる。 また、 このフラ ンジ 83は、 冷却 時に熱膨張性素子 81が水と触れて急冷されるのを防止し、 その結果として製品のマ ト リ ックスが凝固する以前に熱膨 張性素子 81が収縮しすぎて製品から剝がれたり、 或いは型 締めが不十分となつて層間ボィ ドが生じるのを防止する。  Here, the effect of the flange 83 in FIG. 21 will be described. The flange 83 prevents the axial movement of the core body 80 of the thermally expandable element 81 because the nut 85 prevents the core body 80 from moving outward in the axis direction. Effectively causes thermal expansion in the radial direction. The flange 83 also prevents the thermal expansible element 81 from being quenched by contact with water during cooling, thereby causing the thermal expansible element 81 to contract before the matrix of the product solidifies. Prevents peeling from the product due to excessive application, or interlayer voids due to insufficient mold clamping.
84はテ一パ部付きスリ ーブである。 84 is a sleeve with a taper section.
つぎに、 中子および外型を分解し、 脱型して製品を得た。 ナ ツ ト 85を外すことにより中子の分解が可能である。 得ら れた製品は、 先ず外観的に極めて均整がとれており、 織組 角の乱れ、 皺、 ボイ ド、 内面および外面の凹凸がなく 、 寸 法精度も極めて良好なものであった。 また、 この製品から 一部を試験サ ンプルとして採取して、 これを静的な力学試 験に供した。 この結果、 この製品は、 期待される強度、 剛 性を示しており、 機械的特性も十分で、 熱可塑性樹脂マ ト リ ックスの性能を十分に発揮するこ とが明らかとなった。 実施例 15 Next, the core and outer mold were disassembled and demolded to obtain a product. The core can be disassembled by removing nut 85. The obtained product was very uniform in appearance first, had no irregularities in the weaving angle, no wrinkles, voids, irregularities on the inner and outer surfaces, and had extremely good dimensional accuracy. In addition, a part of this product was sampled as a test sample, which was subjected to a static mechanical test. As a result, it was clarified that this product exhibited the expected strength and rigidity, had sufficient mechanical properties, and sufficiently exhibited the performance of the thermoplastic resin matrix. Example 15
角パイフ' (第 24図に示す。 軸に対して 0 ° 、 ± 45 ° の層 構成、 断面は約 4 cm X 6 cm、 角は 10 mtnR、 肉厚 3 mm) : Square pie '(shown in Fig. 24; layer configuration at 0 °, ± 45 ° to axis, cross section about 4 cm X 6 cm, corner 10 mtnR, wall thickness 3 mm):
PEEKをマ ト リ ックスとする一方向引き揃えプリ プレグテ 一プ( 幅約 30 cm 、 厚さ約 0.13 關 、 APC-2/AS4 、 IC1 社 製〉 を所定の層構成となるように裁断し、 さ らにバッ トス プライスして帯状とした。 この帯状物を外周長が一致する 円筒状に巻き重ね、 ほぐれるのを防止するために必要と思 われる所を何箇所がスポ ッ ト止めした。 A one-way aligned prepreg tape (width: about 30 cm, thickness: about 0.13, APC-2 / AS4, manufactured by IC1 company) using PEEK as a matrix is cut into a predetermined layer structure. This strip was wound into a cylindrical shape with the same outer circumference, and spots were stopped at several places where it was deemed necessary to prevent loosening.
こ のよ うにして得られたプリ フ ォ ームを、 実施例 14と同 様に離型処理した外型に変形させながら収めた。 外型が開 く のを防いだ上で、 プリ フ ォ ームの中で中子を組み立てた, 芯体 91は、 第 25図 ( A ) , ( B ) に示すように、 金属の 角パイ プ 92とフ ラ ンジ 94から構成され (芯体 91 軸方向へ の熱膨張性素子の移動がフラ ンジ 94で防止されている) 、 PTFE製の熱膨張性素子と接する面には溝 93が彫ってある。 溝 93は、 第 26図 (A ) , ( B ) に示す熱膨張、性素子 95が過 度に芯体 91の軸方向に膨張しないための手立てである。 ついで、 これら全体を 400 での加熱炉中に入れた。 本実 施例 15では、 実施例 14におけるように外型の端部外面への 断熱材の巻き付けは行わない。 何故ならば、 実施例 15では 芯体 91が中空の角パイ プであり、 このため製品 90の中央部 からも十分に速く昇温し、 実質的に不具合が生じないから である。 しかし、 同じ構造の中子でも、 製品がもっと長く なる場合には、 実施例 14におけると同様に断熱材の卷き付 けを行う方がよい。 The preform thus obtained was placed in an outer mold subjected to a mold release treatment in the same manner as in Example 14 while deforming. After preventing the outer mold from opening, the core was assembled in the preform. The core 91 was made of metal square pie as shown in Figs. 25 (A) and (B). (The movement of the thermal expansion element in the axial direction of the core body 91 is prevented by the flange 94), and a groove 93 is formed on the surface in contact with the thermal expansion element made of PTFE. Carved. The groove 93 is used for the thermal expansion shown in FIGS. 26 (A) and (B), This is a measure to prevent the core body 91 from expanding in the axial direction each time. The whole was then placed in a heating furnace at 400 ° C. In the fifteenth embodiment, the heat insulating material is not wound around the outer end of the outer die as in the fourteenth embodiment. This is because in Embodiment 15, the core body 91 is a hollow square pipe, so that the temperature rises sufficiently quickly from the center of the product 90, and substantially no trouble occurs. However, if the product has a longer length even with the same structure core, it is better to wind the heat insulating material as in the fourteenth embodiment.
つぎに、 全体が殆ど 400 でに達した後に、 全体を水槽の 中に投じて冷却を行った。 このようにして、 A P C - 2 につい て推奨されている急冷プロセスが実現された。  Next, after the whole reached almost 400, the whole was put into a water tank to cool it. In this way, the quenching process recommended for APC-2 was realized.
中子および外型を分解し、 脱型して製品を得た。 得られ た製品は、 実施例 14と同じく外観的に極めて均整がとれて おり、 構成角の乱れ、 皺、 ボイ ド、 内面および外面の凹凸 がなく 、 寸法精度も極めて良好なものであった。 また、 こ の製品から一部を試験サンプルとして採取して、 これを静 的な力学試験に供した。 この結果、 この製品は、 実施例 1 4 と同じく期待される強度、 剛性を示しており、 機械的特性 も十分で、 熱可塑性樹脂マ ト リ ックスの性能を十分に発揮 することが明らかとなった。  The core and outer mold were disassembled and demolded to obtain the product. The obtained product was extremely well-balanced in appearance, as in Example 14, was free from irregularities in the constituent angles, no wrinkles, voids, irregularities on the inner and outer surfaces, and had extremely good dimensional accuracy. In addition, a part of this product was sampled as a test sample and subjected to a static mechanical test. As a result, it was clarified that this product exhibited the expected strength and rigidity as in Example 14, had sufficient mechanical properties, and sufficiently exhibited the performance of the thermoplastic resin matrix. Was.
実施例 1 6  Example 16
楕円管( ± 45 ° 、 長径 1 0 cm 、 短径 6 c m、 肉厚 1 、 第 27図 ( A ) , ( B ) ) :  Elliptic tube (± 45 °, major axis 10 cm, minor axis 6 cm, wall thickness 1, Fig. 27 (A), (B)):
P P S をマ ト リ ックスとする一方向引き揃えプリ プレダテ 一プ( 幅約 10 cm 、 厚さ約 0 . 13 mm 、 フイ リ ッ プス石油㈱ 製の RY T0N ) を所定の層構成となるように裁断し、 さ ら バッ トスプライ スして帯状とした。 この帯状物杏外周長 一致する円筒状に巻き重ね、 ほぐれるのを防止するために 必要と思われる所を何箇所がスボ ッ ト止めした。 , - このようにして得られたプリ フ ォ ームを、 実施例 14と同 様に離型処理した外型に変形させながら収めた。 外型が開 く のを防いだ上で、 プリ フ ォ ームの中で中子を組み立てた, 芯体 101 はアル ミ製で、 第 28図 (A ) , ( B ) に示すよ うに、 金属の板 1 02 とフ ラ ンジ 103 から構成され (芯体 10 1 の軸の外方向への熱膨張性素子の移動がフラ ンジ 103 ,で 防止されている) 、 PTFE製の熱膨張性素子と接する面には 溝 104 が彫ってある。 溝 104 は、 第 29図 (A ) , ( B ) に 示す熟膨張性素子 105 が過度に芯体 101 の軸方向に膨張し ないための手立てである。 各熱膨張性素子 105 と芯体 101 との接する部分が比較的少ないので、 溝 104 は多く彫って ある。 熱膨張性素子 105 には、 その軸方向( 長羊方向) に 繊維補強を施したシ リ コ ー ン樹脂を用いた。 One-way alignment pre-reading with PPS as matrix One piece (RY T0N made by Philips Oil Co., Ltd., about 10 cm in width and about 0.13 mm in thickness) was cut into a predetermined layer structure, and was further spliced into a band. This belt-shaped apricot outer circumference was wound in a cylindrical shape that matched, and several spots were stopped at places considered to be necessary to prevent loosening. ,-The preform obtained in this manner was placed in an outer mold subjected to release treatment in the same manner as in Example 14, while being deformed. After preventing the outer mold from opening, the core was assembled in the preform. The core body 101 was made of aluminum, as shown in Figs. 28 (A) and (B). It is composed of a metal plate 102 and a flange 103 (the movement of the thermal expansion element to the outside of the axis of the core body 101 is prevented by the flange 103), and the thermal expansion element made of PTFE is used. A groove 104 is carved on the surface in contact with. The groove 104 is a means for preventing the mature expandable element 105 shown in FIGS. 29 (A) and 29 (B) from excessively expanding in the axial direction of the core body 101. Since there is relatively little contact between each of the thermal expansion elements 105 and the core 101, the grooves 104 are engraved more. For the thermal expansion element 105, a silicone resin with fiber reinforcement in the axial direction (the direction of the sheep) was used.
ついで、 外型の両端約 4分の 1 ずつの外表面に断熱树を 巻き付けて製品の中央部から先に加熱されるようにして、 " 全体を 310 'Cの加熱炉に入れた。  Then, heat insulation was wrapped around the outer surface of each of the outer molds, about one-fourth at each end, so that the product was heated first from the center, and the whole was put into a 310'C heating furnace.
全体が殆ど 310 'cに達した後に、 先に巻き付けた断熟材 を除いて、 全体を水槽の中に投じて冷却を行った。 このよ う にして、 RYT0 N について推奨されている急冷プロセ が 実現された。 中子および外型を分解し、 脱型して製品を得た。 得られ た製品 100 は、 実施例 Uと同じ く外観的に極めて均整がと れており、 構成角の乱れ、 皺、 ボイ ド、 内面および外面の 凹凸がな く、 寸法精度も極めて良好なものであった。 また、 この製品 100 から一部を試験サンプルとして採取して、 こ れを静的な力学試験に供した。 この結果、 この製品 100 は、 実施例 14と同じく期待される強度、 劂性を示しており、 機 械的特性も十分で、 熱可塑性樹脂マ ト リ ックスの性能を十 分に発揮することが明らかとなった。 After the whole reached almost 310'c, the whole was thrown into a water tank except for the aged material wound earlier and cooled. In this way, the quenching process recommended for RYT0 N was realized. The core and outer mold were disassembled and demolded to obtain the product. The obtained product 100 is extremely well-balanced in appearance, as in Example U, and has no irregularities in the constituent angles, no wrinkles, voids, irregularities on the inner and outer surfaces, and extremely good dimensional accuracy. Met. In addition, a part of the product 100 was taken as a test sample and subjected to a static mechanical test. As a result, this product 100 exhibited the expected strength and toughness as in Example 14, had sufficient mechanical properties, and could sufficiently exhibit the performance of the thermoplastic resin matrix. It became clear.
実施例 17  Example 17
リブ付き円管( ± 45 ° 、 直径 1 0 cm 、 肉厚 3 mmのパイ プ 内に、 第 30図 (A〉 , ( B ) に示すような径方向の長さ約 3 cmのリブ 111 を有する):  In a pipe with a ribbed circular pipe (± 45 °, a diameter of 10 cm, and a wall thickness of 3 mm), a rib 111 with a radial length of about 3 cm as shown in Figs. 30 (A) and (B) is inserted. Has):
予め成形してある リブを、 第 33図の中子 112 にある 2本 の溝 113 の中に収めた。 その上に、 PEEK糸と炭素繊維から なるコ ミ ングルドヤー ンの平織布を斜め 45。 に裁断したも のを所定量だけ緊密に巻き付けた。 さ らに、 その上に、 離 型用フオイ ルとして厚さ 35 m の銅箔を 1周巻いた。 これ ら全体を外型 (一体型であり、 割り型ではない) に揷入し、 中子 112 のフラ ンジ 1 14 で外型の両端部を塞いだ。 外型の 内部を窒素ガス (N 2 )で置換した後、 隙間が生じないよう に中子 112 の両端にあるナ ツ ト 115 を締めた。 The preformed ribs were housed in two grooves 113 on the core 112 in FIG. On top of this, a plain weave of commingled yarn made of PEEK yarn and carbon fiber is slanted45. The cut piece was tightly wound by a predetermined amount. Furthermore, a 35-m-thick copper foil was wrapped around it as a mold release mold. The whole was inserted into the outer mold (integral type, not split type), and both ends of the outer mold were closed with flanges 114 of the core 112. After replacing the inside of the outer mold with nitrogen gas (N 2 ), the nuts 115 at both ends of the core 112 were tightened so that no gap was formed.
中子 112 は、 第 31図に示される芯体 116 の上に、 第 32図 ( A ) , ( B ) に示すような PTFE製の熱膨張性素子 1 1 7 を 配置してなる。 芯体 116 は、 鉄製の部品からなり、 端部の ナ ツ ト 115 を外すことで分解可能である。 The core 112 has a PTFE heat-expandable element 117 as shown in FIGS. 32 (A) and (B) arranged on a core body 116 shown in FIG. The core 116 is made of iron parts, It can be disassembled by removing nut 115.
ついで、 外型の両端部の外表面に断熱材を巻き付けて、 成形材料が中央部から加熱されるようにして、 全体を 4Q0 •C の N 2 雰囲気下に加熱炉に入れた。 全体が殆ど 400 でに 達した後、 約 20分間その状態を保持し、 先に巻き付けた断 熱材を除いて、 全体を水槽の中に投じて冷却を行った。 こ のよう にして、 PEEK/ 炭素鏃維について推奨されている急 冷プロセスが実現された。 Next, a heat insulating material was wound around the outer surfaces of both ends of the outer mold so that the molding material was heated from the center, and the whole was put into a heating furnace under a 4Q0 • C N 2 atmosphere. After the whole reached almost 400, it was kept in that state for about 20 minutes, and except for the heat insulating material wound earlier, the whole was put into a water tank for cooling. In this way, the quenching process recommended for PEEK / carbon arrowheads was realized.
こ こで、 外型の両端部の外表面を断熱材で巻いたのは、 実施例 14などと同じ目的のためである。 また、 成形材料を N 2 雰囲気下に加熱したのは、 炭素繊維の表面が酸化等の 影響を受けて PEEKとの界面形成に問題が生じるのを防ぐた めである。 これは、 界面が形成されていないプリ プレダを 用いるときの常套手段である。 全体が殆ど 400 でに達した 後に約 20分間の保持時間をとつたのは、 炭素繊維への樹磨 の含浸 · 分散が十分に達成されるようにするた,めである。 これもまた、 成形時に舍浸を行う成形材料を用いるときの 常套手段である。 Here, the outer surfaces of both ends of the outer mold were wound with a heat insulating material for the same purpose as in Example 14. The reason why the molding material was heated in the N 2 atmosphere is to prevent the surface of the carbon fiber from being affected by oxidation or the like, thereby preventing a problem in forming an interface with PEEK. This is a common practice when using a pre-preda with no interface formed. The holding time of about 20 minutes after the whole reached almost 400 was to ensure that the impregnation and dispersion of the polishing on the carbon fibers was sufficiently achieved. This is also a common means when using a molding material that is immersed during molding.
つぎに、 中子 112 を分解し、 銅箔の付着した製品 11ひ を 外型から抜き取った。 銅箔は簡単に製品 110 から剝がすこ とができるが、 別法として、 銅を溶解する薬液( 例えば、 塩化第二鉄溶液) に銅箔の付着した製品 110 を浸潰して銅 箔を取り除いてもよい。  Next, the core 112 was disassembled, and 11 products to which the copper foil was attached were extracted from the outer mold. Copper foil can be easily removed from product 110, but as an alternative, immerse product 110 with copper foil in a chemical solution that dissolves copper (for example, ferric chloride solution) to remove the copper foil. You may.
得られた製品 110 は、 外観的に極めて均整がとれており、 構成角の乱れ、 皺、 ボイ ド、 内面および外面の凹凸がな く 、 寸法精度も極めて良好なもので、 内面のリ ブ 1 11 の取付部 も滑らかに溶融一体化していた。 また、 この製品 110 から 一部を試験サンプルとして採取して、 これを静的な力学試 験に供した。 この結果、 この製品 100 は、 他の実施例と同 じく期待される強度、 剛性を示しており、 機械的特性も十 分で、 熱可塑性樹脂マ ト リ ツクスの性能を十分に発揮する ことが明らかとなった。 The resulting product 110 is extremely well-balanced in appearance, free from irregularities in constituent angles, wrinkles, voids, and irregularities on the inner and outer surfaces. The dimensional accuracy was also very good, and the mounting portion of the rib 111 on the inner surface was smoothly fused and integrated. In addition, a part of the product 110 was taken as a test sample and subjected to a static mechanical test. As a result, this product 100 shows the expected strength and rigidity as in the other examples, has sufficient mechanical properties, and fully demonstrates the performance of the thermoplastic matrix. Became clear.
実施例 18  Example 18
長尺パイプ (第 34図に示す。 軸に対して 0 ° 、 90。、 土 45 ° の層構成。 直径 5 cm 、 長さ 2 m、 肉厚 2. 5 mm):  Long pipe (shown in Fig. 34, layered at 0 °, 90., 45 ° soiled with respect to axis. Diameter 5cm, length 2m, wall thickness 2.5mm):
実施例 15と同じ材料である PEEKをマ ト リ ックスとするプ リプレダテープを用い、 実施例 15と同様にして、 外型に丁 度揷入できる外径のプリ フォームを成形した。 これを、 肉 厚 1 . 0 mmのシーム レス銅管の外型に挿入した。 第 351]に示 すネジ山を切った棒 121 とナツ ト 122 からなる芯体 123 に、 第 36図に示す PTFE製パイプの熱膨張性素子 124 を必要個数 貫通配置してなる中子を、 さらにプリ フォームの中に揷入 した。 熱膨張性素子 124 は、 中子の両端部に位置する部分 の角が削り落としてある。  In the same manner as in Example 15, a preform having an outer diameter that can be exactly inserted into the outer mold was formed using a pre-preeder tape using PEEK, which is the same material as in Example 15, as a matrix. This was inserted into the outer mold of a 1.0 mm thick seamless copper tube. A core formed by penetrating a required number of PTFE pipe thermal expansion elements 124 shown in FIG. 36 to a core body 123 consisting of a threaded rod 121 and a nut 122 shown in FIG. In addition, it was inserted into the preform. In the thermally expandable element 124, corners of portions located at both ends of the core are cut off.
ついで、 管状炉を 5台横につなげて準備し、 これら管状 炉の温度を第 47図に示した温度プ口フ ァ イ ルとなるように 制御した。  Next, five tubular furnaces were connected side by side to prepare them, and the temperatures of these tubular furnaces were controlled so as to become a temperature port file shown in FIG.
第 47図は、 成形材料の舁温過程の温度プロファ イ ルを示 す。 昇温に際しては、 成形材料 129 の内部にある中子を、 その中心部より端部に向けて順次熱膨張させ、 矢印 128 の 方向にゥォ ッ シュアゥ ト(wa sh ou t) させ、 シヮやたるみの 発生、 ボイ ドの残留を防止する。 Fig. 47 shows the temperature profile of the molding material during the heating process. At the time of temperature rise, the core inside the molding material 129 is thermally expanded sequentially from the center to the end, and as indicated by the arrow 128 It is made to wash out in the direction to prevent shrinkage, sagging, and voids.
初期温度(t。 ) においては室温と同じ温度で一様である が、 " , t 2 , " , t 4 という温度変化で時間の経過中は 中子の中央部を端部に先行して昇温させ、 最終温度 (t∞) では全体が一様に加工温度になるようにする。 At the initial temperature (t.), It is uniform at the same temperature as room temperature, but the temperature changes as “, t 2 ,” and t 4 , and during the passage of time, the center of the core rises before the end At the final temperature (t∞), make sure that the whole becomes the processing temperature uniformly.
ついで、 全体が殆ど 400 'cに達した後に、 外型の表面に 水シャヮ—を浴びせて、 外型の内部へ水が浸入しない状態 で冷却した。 このようにすれば、 APC - 2 について推奨され ている急冷が実現できる。  Then, after the whole reached almost 400'c, the surface of the outer mold was immersed in water to cool the inside of the outer mold without water entering. In this way, the quenching recommended for APC-2 can be achieved.
中子を抜き取った後、 外型を銅を溶解する薬液( ここで は、 硫酸 · 過酸化水素水溶液を用いたが 塩化第二鉄溶液 なども使用できる) で除去し、 製品 120 を得た。  After removing the core, the outer mold was removed with a chemical solution that dissolves copper (here, a sulfuric acid / hydrogen peroxide aqueous solution was used, but a ferric chloride solution or the like can also be used) to obtain a product 120.
芯体 123 について説明を加えると、 棒 121 の 、ジ山はナ ッ ト 122 を止める機能( 両端都) と熱膨牽性素子 124 が芯 体 123 の軸方向へ動き過ぎるのを防止する凹凸としての機 能を併せもっている。 このため、 既存のネジ棒を棒 121 と して使用できるので経済的である。 ナツ ト 122 は、 熱膨張 性素子 124 がやはり軸方向の外に向って過度膨張するのを 防ぐ。 また、 ナ ツ ト 122 により、 製品 120 の端部において 十分に芯体 123 の径方向に熱膨張が生じて型締めが十分に 実現する。 さらに、 冷却過程においてもナ ツ ト!;2:2 でせき 止められた熱膨張性素子 124 の端部近傍のデッ ドボリ ゥ ムの機能で、 第 50図に示したのと同様の冷却過程における 型締めも実現される。 なお、 第 36図の左端のパイ プの角が デッ ドボリ ユウムとして働く。 To explain the core body 123, the ridge of the rod 121 has the function of stopping the nut 122 (both ends) and the unevenness that prevents the thermal expansion element 124 from moving too much in the axial direction of the core body 123. It also has the function of Therefore, the existing screw rod can be used as the rod 121, which is economical. The nut 122 prevents the thermally expandable element 124 from overexpanding, also outwardly in the axial direction. In addition, due to the nut 122, thermal expansion occurs sufficiently in the radial direction of the core body 123 at the end of the product 120, and mold clamping is sufficiently realized. Furthermore, nuts in the cooling process! The function of the dead volume near the end of the thermal expansion element 124 blocked by 2: 2 also realizes mold clamping in the cooling process similar to that shown in FIG. The corner of the pipe at the left end in Fig. 36 is Work as Dead Bolly Yuum.
第 50図 (A ) , ( B ) , ( C ) は、 冷却過程における型 締めを確実にするデッ ドボリ ユウムの効果を説明している。 製品 134 と芯体 131 の間にある熱膨張性素子 130 は、 第 49 図に示す冷却バタ一ンに沿つて時刻 a。では十分な型締めを 達成しており (第 50図 (A ) ) 、 熱膨張性素子 130 のやや 過剰な膨張はデッ ドボリ ュウムをつぶすように湾曲部 132 を形成して張り出している。 時刻 a ,では、 熱膨張性素子 130 は若干温度が低下するので型締めは維持しながら、 デッ ド ボリ ユウムへの張り出しは消滅し、 湾曲部 132 が屈曲部 133 に変化する (第 50図 (B ) ) 。 さらに冷却が進んだ時刻 a 2 では、 部分的に中子が脱型している (第 50図 ( C ) ) 。 Figures 50 (A), (B) and (C) illustrate the effect of dead volume on ensuring mold clamping during the cooling process. The thermal expansion element 130 between the product 134 and the core 131 moves along the cooling butter shown in FIG. Has achieved sufficient mold clamping (Fig. 50 (A)), and a slight excessive expansion of the thermal expansion element 130 forms a curved portion 132 so as to crush the dead volume and protrude. At time a, since the temperature of the thermal expansion element 130 is slightly lowered, the overhang to the dead volume disappears while the mold clamping is maintained, and the curved portion 132 changes to the bent portion 133 (FIG. 50 ( B))). Further cooling at the time a 2 advances, partially core is demolded (50th diagram (C)).
第 49図は、 加工温度にある製品の冷却過程における冷却 パター ンを示す。 加工温度にある製品を冷却してい く と、 やがて時刻 a ,にはマ ト リ ッ クスの融点に達する。 このとき に熱膨張性素子は、 僅かしか温度が低下しないようにする。 このようにすれば、 型締め不足によるボイ ド発生や製品固 化前の中子の脱型が生じない。  Fig. 49 shows the cooling pattern during the cooling process of the product at the processing temperature. As the product at the processing temperature cools, it reaches the melting point of the matrix at time a. At this time, the temperature of the heat-expandable element should be reduced only slightly. In this way, voids due to insufficient mold clamping and demolding of the core before solidification of the product do not occur.
熱膨張性素子 124 は、 パイ プ找の既成品を用いたために 短いものを数多 く連ねているが、 長いものを用いても一向 に差支えない。 これら熱膨張性素子を合わせた全長は、 芯 体のナ ツ ト間距離の 85 %となるようにする。  As for the thermal expansion element 124, many short ones are used because of the use of ready-made pipes, but long ones can be used without any problem. The total length of these heat-expandable elements is 85% of the distance between the nuts of the core.
外型は、 他の実施例とは異なり、 再使用のきかない銅の シームレスパイプを用いている。 この場合、 ①外型を別あ つらえとしないですむのでイ ニシャルコス トが安い、 ②外 型が薄肉であるために熱のまわりが速い、 ③シ一ム レスパ ィプのためその内面が平滑となり、 これにより製品の外観 が特に優れるという利点が生じて く る。 反面、 既成 の中 から選べない場合に綱のシーム レスパイプを作るための型 代が高く つ く とか、 銅のシ―ム レスパイ プの溶解設備を要 するなどの欠点がある。 しかし、 これら利点および欠点は、 ト レー ドオフの閬係にあるため、 用途に応じた使い分けを 行えば却って効率的にパイプの製造を実施できる。 The outer die, unlike the other embodiments, uses a copper seamless pipe that cannot be reused. In this case, (1) the initial cost is low because there is no need to prepare a separate outer mold. (2) Since the mold is thin, heat can flow around quickly. (3) The inner surface of the mold is smooth due to the seamless wrapping, which has the advantage that the appearance of the product is particularly excellent. On the other hand, when it is not possible to select from existing ones, there are drawbacks, such as the need for a high price for making a seamless rope of a rope, and the necessity of a facility for melting copper seamless pipes. However, since these advantages and disadvantages are related to trade-off, pipes can be manufactured more efficiently if they are properly used according to the application.
得られた製品 120 は、 割り型の合わせ目の線や離型フォ ィルの重なりの線などが全く ないため全ての実施例の中で 最も美しい外表面をもち、 構成角の乱れ、 シヮ、 ボイ ド、 内面および外面の凹凸がな く、 寸法精度も極めて良好であ つた。 また、 製品 120 からその一部を試験サ ンプルとして 採取して、 それを静的な力学試験に供-した。 この結果、 他 の実施例と同じ く期待される強度 · »性を示し、 機械的性 質も熱可塑性樹脂マ ト リ ックスの性能を十分に発揮してい た。  The obtained product 120 has the most beautiful outer surface of all the examples because there are no split seam lines and no overlapping line of release molds. There were no irregularities on the inner and outer surfaces, voids, and the dimensional accuracy was extremely good. In addition, a part of the product 120 was collected as a test sample and subjected to a static mechanical test. As a result, it exhibited the expected strength and strength as in the other examples, and the mechanical properties sufficiently exhibited the performance of the thermoplastic resin matrix.
実施例 19  Example 19
大型異形管 (外径約 30 cm 、 县さ約 1 m、 第 37阅) : 第 38図に示したような分割可能で表面に仕切り板のある 芯体 141 上に、 第 39図 (A ) に示した PTPE製の熱膨張性素 子 142aおよび U2b ( それぞれ厚さ約 2 cm) を、 第 39図 ( B )· に示すように相互に連結して敷き詰めて中子とした。 この 中子上に、 ブレーダーにて実施例 14と同じ材料を用いてプ リ フ ォ ームを成形した。 なお、 第 38図は、 分割可能な鉄製 中空体で構成される芯体を示す。 この芯体 141 の表面には、 熱膨張性素子の動きを拘束するための仕切り板 143 が立て てある。 Large deformed pipe (outside diameter: about 30 cm, length: about 1 m, No. 37): On a core 141 that can be divided and has a partition plate on the surface as shown in Fig. 38, Fig. 39 (A) The thermally expandable elements 142a and U2b (each having a thickness of about 2 cm) made of PTPE shown in Fig. 39 were interconnected and spread as shown in Fig. 39 (B). A preform was formed on this core using a braider using the same material as in Example 14. Fig. 38 shows the case of splittable iron Fig. 3 shows a core composed of a hollow body. On the surface of the core 141, a partition plate 143 is provided to restrict the movement of the thermal expansion element.
ついで、 これらを内面に離型剤を塗布した外型( 割り型) に収め、 全体を 300 での加熱炉内に置き、 さらに中子の中 心部へ熱風吹き出し口を挿入し、 400 に加熱した空気を 中子の中心部に送風した。 このよう に、 中子の中心部から さきに昇温するようにして、 全体が殆ど 400 'cに達した後 に、 外型の周囲から外型に一様に水シャヮ一を浴びせた。 このよう にすれば、 APC- 2 について推奨されている急冷が 実現される。  Then, they were placed in an outer mold (split mold) coated with a release agent on the inner surface, and the whole was placed in a heating furnace of 300, and a hot air outlet was inserted into the core of the core, and heated to 400. The blown air was sent to the center of the core. In this way, the temperature was raised from the center of the core to the beginning, and after the whole reached almost 400'c, the outer mold was evenly exposed to water shuffle from the periphery of the outer mold. In this way, the quenching recommended for APC-2 is achieved.
つぎに、 中子と外型とを分解して取り除き、 製品 140 を 得た。 得られた製品 140 の外表面は、 離型剤のために部分 的に変色していたが、 この変色を除けば外観的に極めて均 整がとれていた。 また、 製品 140 は、 構成角の乱れ、 シヮ、 ボイ ド、 内面および外面の凹凸がなく 、 寸法精度も極めて 良好であった。 この製品 120 からその一部を試験サンプル として採取して、 それを静的な力学試験に供した。 この結 果、 他の実施例と同じく優れたものであった。  Next, the core and the outer mold were disassembled and removed to obtain a product 140. The outer surface of the obtained product 140 was partially discolored due to the release agent, but was extremely uniform in appearance except for this discoloration. Further, the product 140 was free from irregularities in the constituent angles, the seams, the voids, and the irregularities on the inner and outer surfaces, and had extremely good dimensional accuracy. A portion of this product 120 was taken as a test sample and subjected to a static mechanical test. As a result, it was excellent as in the other examples.
なお、 第 40図は、 中子の一部の断面を示したもので、 芯 体 141 の仕切り板 143 で熱膨張性素子 142 が仕切られてい る。 この中子が加工温度まで上昇するときは、 個々の熱膨 張性素子 142 は点線で示した大きさまで膨らんで拡大素子 144 となり、 これが一つに連なって中子の表面を形成する。 実施例 20 金属部材の中空体への揷入 : FIG. 40 shows a cross section of a part of the core, in which a thermal expansion element 142 is partitioned by a partition plate 143 of the core 141. When the core rises to the processing temperature, the individual heat-expandable elements 142 expand to the size shown by the dotted lines to become the expansion elements 144, which together form the core surface. Example 20 Introducing metal members into hollow bodies:
第 41図に金属部材を中空体に挿入した箇所を示す。  FIG. 41 shows where the metal member is inserted into the hollow body.
外型 151 と中子の熱膨張性素子 152 との空間に、 成形材 料 153 、 金属部品 154 、 および予め成形した補強用リ ング 155 (擬似等方積層板) を仕込み、 ついで他の実施例と同様 にして製品 156 を得た。  A molding material 153, a metal part 154, and a preformed reinforcing ring 155 (pseudo-isotropic laminate) are charged into a space between the outer die 151 and the thermal expansion element 152 of the core. The product 156 was obtained in the same manner as described above.
製品 156 の金属部材ィ ンサ— ト部は、 第 42図に示した通 りであり、 初期の性能が得られる構造が実現している。  The insert part of the metal member of the product 156 is as shown in FIG. 42, and a structure that can obtain the initial performance is realized.
実施例 21  Example 21
細長いテーパー管( 第 43図) : .  Elongated tapered tube (Fig. 43):
P EE Kをマ ト リ ックスとするプリ プレダの トウを用いて、 第 45図に示すテーパー付きの中子 160 の上に、 ブレーダ- にてプリ フ ォームを編み上げた。  The preform was knitted with a blader on the tapered core 160 shown in Fig. 45 using a pre-preed toe having PEEK as a matrix.
ついで、 これを第 44図に示す外型 1 61 に、 その外型 1 61 の内面に離型のためのポリ ィ ミ ドフ ィ ルム( デュポン社の APTO N 100H)を 1周卷いた後、 収めた。 外型 161 のフタ 1,62 を筒部 163 に対してしつかり と固定し、 中子 160 が熱膨張 の最中に脱落しないようにした上で、 全体を管状炉^ 3台 連ねた炉の中に入れた。  Next, this is put in an outer mold 161 shown in Fig. 44, and after a round of polyimide film (Dupont's APTO N 100H) has been wound around the inner surface of the outer mold 161, it is stored. Was. The lids 1,62 of the outer mold 161 are fixed tightly to the cylinder 163 so that the core 160 does not fall off during thermal expansion, and the entire furnace is a tubular furnace ^ 3. I put it inside.
つぎに、 第 48図に示した昇温プロフ ァ イ ルとなるように 成形材料 129 をその太い端から順次舁温し、 全体が殆ど 40 0 'cに達した後に実施例 18と同様にシャ ヮ—を用いて冷却 し、 脱型して製品を得た。 なお、 第 48図は、 子の一端よ り他端にゥォ ッ シュアゥ トさせる場合の温度プロファ ィル を示す。 ボリ イ ミ ドフ ィ ルムは、 製品に付着しているが、 アルカ リ溶液に浸漬すれば容易に除去でき る。 Next, the molding material 129 was sequentially heated from its thick end so as to obtain the temperature-raising profile shown in FIG. The product was cooled using ヮ-and demolded to obtain a product. FIG. 48 shows a temperature profile in a case where the heater is turned on from one end to the other end. Polyimide film is attached to the product, It can be easily removed by dipping in an alkaline solution.
得られた製品 164 は、 他の実施例と同様に、 外観、 機械 的性能共に十分に優れたものであった。 なお、 こ こで用い た中子 160 は、 芯体を用いずに熱膨張性素子だけで構成さ れている。 比較的細い製品や小さい製品を得るのに用いる 中子は、 このように芯体を省略しても構わない。 何故なら ば、 この場合、 伝熱に時間がかかり過ぎるとか高価な熱膨 張性素子を大量に必要とすることもなく 、 製品の性能も問 題がないからである。  The obtained product 164 was sufficiently excellent in both appearance and mechanical performance as in the other examples. The core 160 used here is composed of only a thermal expansion element without using a core. Cores used to obtain relatively thin or small products may omit the core in this way. This is because, in this case, the heat transfer does not take too much time, a large amount of expensive heat-expanding elements are not required, and the performance of the product is not a problem.
実施例 22  Example 22
直径 4 cmのパイプ :  4 cm diameter pipe:
PEEKをマ ト リ ックスとする U Dプリ プレダテ—プ(APC - 2/ AS4 、 I C I 社製) を用いて、 実施例 15と同様にして、 第 46 図に示すように熟膨張性素子の丸棒からなる中子 170 の上 にプリ フ ォ ーム 171 を成形した。  Using a UD pre-prepared tape (APC-2 / AS4, manufactured by ICI) using PEEK as the matrix, as in Example 15, round rods of the mature element were used as shown in Fig. 46. A preform 171 was formed on a core 170 made of.
ついで、 外型として二枚のポリ ィ ミ ドフ ィ ルムを用いて 真空パックを行った。 つぎに、 これら全体を 400 で の炉に 入れ、 全体が殆ど 400 でに達した後、 全体を水槽中に投じ て冷却した。  Then, vacuum packing was performed using two polyimide films as outer dies. Next, the whole was put in a furnace at 400, and after the whole reached almost 400, the whole was thrown into a water tank and cooled.
得られた製品は、 真空パックのしわを拾っていた他は、 外観的にほぼ均一であり、 ボイ ドゃ搆成角の乱れもなかつ た。  The obtained product was almost uniform in appearance, except that the wrinkles of the vacuum pack were picked up, and there was no disturbance in the void angle.
また、 製品の一部を試験サンプルとして採取して、 それ を静的な力学試験に供した。 この結果、 他の実施例と同じ く満足のい く ものであった。 産業上の利用可能性 In addition, a part of the product was collected as a test sample and subjected to a static mechanical test. As a result, it was as satisfactory as the other examples. Industrial applicability
以上説明したように本発明によれば、 繊維補強熱可塑性 樹脂中空体を効率よ く製造することができる。 また、 本発 明によって得られる中空体は、 熱可塑性樹脂マ ト リ ックス の特性を生かして厳しい使用環境下で軽量 · 高強度部材と して利用されるばかりでな く、 飛翔体 ©胴体などの単殻襻 造体や トルクチューブ、 圧力容器、 宇宙空間における トラ ス構造体などへの利用が可能である。  As described above, according to the present invention, a fiber-reinforced thermoplastic resin hollow body can be efficiently produced. In addition, the hollow body obtained by the present invention is not only used as a lightweight and high-strength member under harsh usage environments, but also utilizes the characteristics of the thermoplastic resin matrix. It can be used for single-shell structures, torque tubes, pressure vessels, and truss structures in outer space.

Claims

請求の範囲 The scope of the claims
1 . 熱可塑性樹脂をマ ト リ ッ クスとするプリプレグを、 熱膨 張性の中子と該中子の外側に配された外型との間に介在さ せ、 ついで前記熱可塑性樹脂の可塑化温度以上の温度に該 プリ プレダおよび該中子を加熱して該中子を膨張させた後、 該中子および該プリ プレダを冷却することを特徴とする繊 維補強熱可塑性樹脂中空体の製造方法。  1. A prepreg made of a thermoplastic resin as a matrix is interposed between a heat-expandable core and an outer mold arranged outside the core, and then the thermoplastic resin is plasticized. Heating the prepreg and the core to a temperature equal to or higher than the sintering temperature to expand the core, and then cooling the core and the prepreg. Production method.
2 . 熱可塑性樹脂がポ リ ェ一テルエ—テルケ ト ン、 ポ リ フ エ 二 レ ンサルフ ア イ ド、 ボ リ エーテルィ ミ ド、 ポ リ エ一テル スルフ ォ ン、 ポリ アリ レ ンケ ト ン、 ポリ アリ レ ンサルフ ァ ィ ド、 ボ リ アリルィ ミ ド、 ポ リ ア ミ ドイ ミ ド、 ポ リ イ ミ ド、 ポ リ イ ミ ドスルフ ォ ン、 ポ リ スノレフォ ン、 ポ リ ァ リ ノレスル フ ォ ン、 又はポリ エステルである請求の範囲第 1項記載の 鏃維補強熱可塑性樹脂中空体の製造方法。 2. Thermoplastic resin is polyether telketone, polyphenylene sulfide, polyetherimide, polyether sulfone, polyarylentone, poly Arylene sulfide, poly imide, poly imide, poly imide, poly imide sulfone, poly nose refone, poly eno resulfone, or 2. The method for producing a hollow arrowhead fiber-reinforced thermoplastic resin body according to claim 1, which is a polyester.
3 . プリ ブレダを構成する補強織維が炭素繊維、 ガラス繊維、 又は芳香族ポリア ミ ド織維、 炭化珪素繊維、 ポロ ン繊維、 アルミナ繊維である請求の範囲第 1項記載の繊維補強熱可 塑性樹脂中空体の製造方法。 3. The fiber-reinforced heat-resistant fiber according to claim 1, wherein the reinforcing fibers constituting the pre-bledder are carbon fibers, glass fibers, or aromatic polyamide fibers, silicon carbide fibers, polyethylene fibers, and alumina fibers. A method for producing a plastic resin hollow body.
4 . 熱膨張性の中子が中実のマ ン ド レル、 中空のマ ン ド レル、 芯体の表面に複数個の熱膨張性素子を配置してなる複合体、 又は複数個の熱膨張性素子だけからなる集合体である請求 の範囲第 1項記載の繊維補強熱可塑性樹脂中空体の製造方 法。  4. A solid mandrel with a heat-expandable core, a hollow mandrel, a complex in which a plurality of heat-expandable elements are arranged on the surface of a core, or a plurality of heat-expandable cores 2. The method for producing a hollow fiber-reinforced thermoplastic resin body according to claim 1, wherein the assembly is an aggregate consisting of only a conductive element.
5 . 中実のマ ン ド レル、 中空のマ ン ド レル、 および熱膨張性 素子をそれぞれ構成する樹脂が、 ポリ テ ト ラ フルォロェチ 5. The resin that composes the solid mandrel, hollow mandrel, and the thermal expansion element is made of polytetrafluoroethylene.
δ δ
レ ン、 ポリ弗化アルコ キ シエチ レ ン樹脂、 弗化工チ レ ンプ ロピレ ンエーテル共重合体樹脂、 シ リ コ ー ン樹脂である請 求の範囲第 1項記載の繊維補強熱可塑性樹脂中空体の製造 方法。  The fiber-reinforced thermoplastic resin hollow body according to claim 1, wherein the fiber is a propylene, a polyfluoroalkoxyethylene resin, a fluorinated polyethylene propylene ether copolymer resin, or a silicone resin. Production method.
6 . 熱膨張性の中子が分解および組立が可能である請求の範 囲第 1 項記載の繊維補強熱可塑性樹脂中空体の製造方法。 7 . プリ プレダおよび中子を加熱するに際し、 一部を他部よ り も先行して加熱舁温させる請求の範囲第 1項記載の繊維 補強熱可塑性樹脂中空体の製造方法。 6. The method for producing a hollow fiber-reinforced thermoplastic resin body according to claim 1, wherein the thermally expandable core can be disassembled and assembled. 7. The process for producing a hollow fiber-reinforced thermoplastic resin body according to claim 1, wherein a part of the pre-preda and the core are heated before the other parts are heated.
0 δ . プリ プレダおよび中子を冷却するに際し、 プリ プレグを 中子より も先行して冷却する請求の範囲第 1 項記載 Ρ繊維 補強熱可塑性樹脂中空体の製造方法。 0 δ. The method for producing a hollow fiber-reinforced thermoplastic resin body according to claim 1, wherein the prepreg is cooled before the prepreg before cooling the prepreg and the core.
9 . 中子のデッ ドボリ ゥムを利用して、 冷却過程の型締めを 維持する請求の範囲第 1項記載の繊維補強熱可塑性樹脂中5 空体の製造方法。  9. The method for producing a fiber-reinforced thermoplastic resin hollow body according to claim 1, wherein the mold clamping in the cooling process is maintained by utilizing a dead core of the core.
1 0 . 得られる中空体が突起、 仕切り、 又は金属部材を一部に 有する請求の範囲第 1項記載の繊維補強熱可塑性樹脂中空 体の製造方法。 0  10. The method for producing a hollow fiber-reinforced thermoplastic resin body according to claim 1, wherein the obtained hollow body has a projection, a partition, or a metal member in a part thereof. 0
PCT/JP1990/000192 1989-02-20 1990-02-19 Production of hollow article of fiber reinforced thermoplastic resin WO1990009272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2503370A JPH074878B2 (en) 1989-02-20 1990-02-19 Manufacturing method of fiber reinforced thermoplastic resin hollow body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP3820589 1989-02-20
JP1/38205 1989-02-20
JP1/104535 1989-04-26
JP10453589 1989-04-26
JP22038389 1989-08-29
JP1/220383 1989-08-29
JP1/293932 1989-11-14
JP29393289 1989-11-14

Publications (1)

Publication Number Publication Date
WO1990009272A1 true WO1990009272A1 (en) 1990-08-23

Family

ID=27460551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000192 WO1990009272A1 (en) 1989-02-20 1990-02-19 Production of hollow article of fiber reinforced thermoplastic resin

Country Status (1)

Country Link
WO (1) WO1990009272A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585062A (en) * 1993-12-29 1996-12-17 Toho Rayon Co., Ltd. Process for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
RU2488486C1 (en) * 2012-03-02 2013-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Method of producing hollow articles from composite materials
CN103373834A (en) * 2013-07-05 2013-10-30 燕山大学 Preparation method of aluminum oxide-polyethersulfone-aluminum silicate ceramic fiber flame-retardant heat preservation composite material
CN117656538A (en) * 2024-02-02 2024-03-08 哈尔滨远驰航空装备有限公司 Forming die and forming method for special-shaped hollow pipe fitting
CN117681458A (en) * 2024-02-02 2024-03-12 哈尔滨远驰航空装备有限公司 Aviation multidirectional connecting pipe fitting and forming method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087170A (en) * 1973-12-05 1975-07-14
JPS5422470A (en) * 1977-07-21 1979-02-20 Fujikura Rubber Works Ltd Fiber reinforced resin pipe and manufacture of its complex pipe
JPS54161676A (en) * 1978-06-12 1979-12-21 Sekisui Chem Co Ltd Mold for reinforced plastic pipe
JPS5562930A (en) * 1978-11-01 1980-05-12 Yunipura Kk Laminate impregnated with thermoplastic resin and method of making the same
JPS5591628A (en) * 1978-12-28 1980-07-11 Union Carbide Corp Method of impregnating fibrous knit textile matter
JPS6159230B2 (en) * 1981-12-18 1986-12-15 Sekisui Kagaku Kogyo Kk
JPS62198448A (en) * 1986-02-24 1987-09-02 デビツド ヤン Manufacture of tubular member made of composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087170A (en) * 1973-12-05 1975-07-14
JPS5422470A (en) * 1977-07-21 1979-02-20 Fujikura Rubber Works Ltd Fiber reinforced resin pipe and manufacture of its complex pipe
JPS54161676A (en) * 1978-06-12 1979-12-21 Sekisui Chem Co Ltd Mold for reinforced plastic pipe
JPS5562930A (en) * 1978-11-01 1980-05-12 Yunipura Kk Laminate impregnated with thermoplastic resin and method of making the same
JPS5591628A (en) * 1978-12-28 1980-07-11 Union Carbide Corp Method of impregnating fibrous knit textile matter
JPS6159230B2 (en) * 1981-12-18 1986-12-15 Sekisui Kagaku Kogyo Kk
JPS62198448A (en) * 1986-02-24 1987-09-02 デビツド ヤン Manufacture of tubular member made of composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585062A (en) * 1993-12-29 1996-12-17 Toho Rayon Co., Ltd. Process for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
US5840347A (en) * 1993-12-29 1998-11-24 Toho Rayon Co., Ltd. Apparatus for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
RU2488486C1 (en) * 2012-03-02 2013-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Method of producing hollow articles from composite materials
CN103373834A (en) * 2013-07-05 2013-10-30 燕山大学 Preparation method of aluminum oxide-polyethersulfone-aluminum silicate ceramic fiber flame-retardant heat preservation composite material
CN103373834B (en) * 2013-07-05 2014-11-26 燕山大学 Preparation method of aluminum oxide-polyethersulfone-aluminum silicate ceramic fiber flame-retardant heat preservation composite material
CN117656538A (en) * 2024-02-02 2024-03-08 哈尔滨远驰航空装备有限公司 Forming die and forming method for special-shaped hollow pipe fitting
CN117681458A (en) * 2024-02-02 2024-03-12 哈尔滨远驰航空装备有限公司 Aviation multidirectional connecting pipe fitting and forming method thereof
CN117681458B (en) * 2024-02-02 2024-04-26 哈尔滨远驰航空装备有限公司 Aviation multidirectional connecting pipe fitting and forming method thereof
CN117656538B (en) * 2024-02-02 2024-04-26 哈尔滨远驰航空装备有限公司 Forming die and forming method for special-shaped hollow pipe fitting

Similar Documents

Publication Publication Date Title
US7422714B1 (en) Method of using a shape memory material as a mandrel for composite part manufacturing
JP4874326B2 (en) Manufacture of composite tube
EP0415207B1 (en) Process for producing hollow article of fiber-reinforced thermoplastic resin
US20050258575A1 (en) Non-isothermal method for fabricating hollow composite parts
TWI703030B (en) Process for the continuous production of fibre-reinforced profiles comprising a foam core
TWI667118B (en) Process for the continuous production of fibre-reinforced profiles comprising a foam core, and fibre-reinforced profile produced by said process and use thereof
US6361840B2 (en) Injection molded, rigidized bladder with varying wall thickness for manufacturing composite shafts
US5840347A (en) Apparatus for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
JP2003260717A (en) Method for manufacturing hollow reinforced resin composite material article
WO1990009272A1 (en) Production of hollow article of fiber reinforced thermoplastic resin
WO2005070668A1 (en) Hollow composite body of fiber reinforced thermoplastic material
JP3143754B2 (en) Method for producing deformed tube made of fiber-reinforced thermoplastic resin
JPH074878B2 (en) Manufacturing method of fiber reinforced thermoplastic resin hollow body
JPWO2020184163A1 (en) Manufacturing method and core of fiber reinforced plastic products
JPH03277532A (en) Production of bent pipe made of fiber reinforced plastic
JP2772388B2 (en) Method and apparatus for manufacturing fiber reinforced thermoplastic resin pipe
GB2222653A (en) Hollow tubular structures of fibre reinforced plastics material and method for their production
JPH05116233A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH1148318A (en) Method and apparatus for manufacturing hollow fiber-reinforced resin molding
JPH05131555A (en) Molding die for fiber-reinforced thermoplastic resin hollow body
JP3044360B2 (en) Cylindrical intermediate for molding fiber-reinforced thermoplastic resin pipe, method for producing fiber-reinforced thermoplastic resin pipe, and apparatus for producing cylindrical intermediate
JPH0524042A (en) Pipe-shaped composite material, pipe-shaped prepreg and manufacture thereof
JPH05329856A (en) Manufacture and device of hollow fiber-reinforced resin molded product
JPH05293908A (en) Production of fiber reinforced thermoplastic resin pipe
JP2651457B2 (en) Intermediate body for tapered pipe, method for manufacturing tapered pipe, and apparatus for manufacturing intermediate body for tapered pipe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PAT.BUL.20/90,UNDER INID (51) "IPC" REPLACE THE EXISTING SYMBOLS BY "B29D 22/00, 23/00, 23/22, B29C 33/40, 33/44, 67/14"