WO1990008990A1 - Preparation method of machining program of cylindrical groove shape - Google Patents

Preparation method of machining program of cylindrical groove shape Download PDF

Info

Publication number
WO1990008990A1
WO1990008990A1 PCT/JP1990/000029 JP9000029W WO9008990A1 WO 1990008990 A1 WO1990008990 A1 WO 1990008990A1 JP 9000029 W JP9000029 W JP 9000029W WO 9008990 A1 WO9008990 A1 WO 9008990A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining program
axis
groove shape
machining
cylindrical
Prior art date
Application number
PCT/JP1990/000029
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Fujita
Teruyuki Matsumura
Noritake Nagashima
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1990008990A1 publication Critical patent/WO1990008990A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40931Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
    • G05B19/40932Shape input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36185Application, for cylindrical groove shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a method for creating a cylindrical groove shape machining program of an interactive numerical controller for machining a groove shape on a side surface of a cylindrical workpiece. See how to create a machining program for a cylindrical groove that allows you to create a machining program in a talking format. Background technology
  • the present invention has been made in view of the above points, and has been made in consideration of the above-described circumstances. It aims to provide a method.
  • the present invention in order to solve the above problems,
  • the method In the method of creating a machining program for a cylindrical groove shape of an interactive numerical control device that forms a groove shape on the side surface of a cylindrical work, the method consists of an axis with the rotation axis developed linearly and an axis in the longitudinal direction of the cylinder.
  • the side surface of the workpiece is made to correspond to an area in an angle range of 0 ° or more and less than 360 ° of the developed rotation axis on a plane of the rectangular coordinate system, and the coordinate value of the rectangular coordinate system is used.
  • a method for creating a machining program for a cylindrical groove shape is provided, in which required data is input interactively to define the groove shape and create a machining program.
  • FIG. 1 (a) is a conceptual diagram of a method for creating a cylindrical groove-shaped machining program according to one embodiment of the present invention.
  • FIG. 1 (b) is a table showing the procedure of a method for producing a cylindrical groove machining program according to an embodiment of the present invention.
  • FIG. 2 is a display screen of an interactive numerical controller according to a method for creating a machining program for a cylindrical groove shape according to an embodiment of the present invention
  • FIG. 3 is a schematic configuration diagram of a window of an interactive numerical controller for implementing the present invention
  • FIG. 4 is a diagram showing an example of processing of a circular fii groove shape.
  • FIG. 4 is a perspective view showing an example of processing of a cylindrical groove shape.
  • the machining shape 20 has a groove shape 23 with a predetermined width and a depth such that the cylindrical diameter is 27 mm on the side surface 22 of the cylindrical work 21 having a length of 65 ⁇ .
  • the groove shape 23 is manufactured by rotating the work 21 by 720 ′ (two rotations) in the C-axis direction while controlling the tool 24 in the Z-axis direction.
  • FIG. 1 (a) is a conceptual diagram of one embodiment of the present invention, and corresponds to a diagram in which the processed shape 20 of FIG.
  • the horizontal axis of the coordinate system in this figure is the Z axis, and the unit of the coordinate value is mm.
  • the vertical axis is a linearly developed axis of the C axis, and the unit of the coordinate value is angle).
  • the region 22a corresponds to the side surface 22 in FIG.
  • FIG. 1 (b) is a table showing the procedure of a method for creating a cylindrical groove shape machining program according to one embodiment of the present invention.
  • the definition step 1 is composed of steps ST1 to ST9, and the shape component 2 and the numerical data 3 are set for each step.
  • This setting (4) The operator operates the prescribed shape symbol keys and numeric keys each time to answer the questions displayed on the display screen of the talk-type numerical controller, and answers them.
  • the operation procedure of the operator will be described in detail according to the order of the definition steps, while simultaneously referring to FIG. 1 (a).
  • the machining path defined by the operations up to this point is a path that moves from the point Pa in FIG. 1 (a) as a starting point to the point Pb with the tool 24 at a position as shown in the figure.
  • CST 3 j For the question of the shape component, set the element in the lower left direction. For the end point coordinates, set the Z coordinate to 50 mm. Set the C coordinate to 240 °.
  • This operation defines a machining path that moves tool 24 to point Pc after chamfering a radius of 1 O mm at point Pb. It is.
  • This operation defines a machining path for moving the tool 24 to the point Pd after chamfering a radius of 10 mm at the point Pc.
  • This operation defines a machining path that moves tool 24 to point Pe after chamfering a radius of 10 mm at point Pd.
  • FIG. 2 shows the display screen of the interactive numerical control device after performing the above operations.
  • the shape component 2 is displayed on the display screen 4 in accordance with the set order, and a machining path 23 a corresponding to the groove shape 23 is drawn inside the area 22 a.
  • FIG. 3 is a schematic configuration diagram of a hard disk of a speech-type numerical control device for implementing the method for creating a machining program for a cylindrical groove according to the present invention.
  • the processor 11 controls the entire interactive numerical controller according to the system program stored in the R ⁇ M12. EPR ⁇ M or EEP R ⁇ M is used for R ⁇ M12.
  • the RAM I3 uses a DRAM or the like, and stores various data and input / output signals.
  • the non-volatile memory 14 uses a battery backed-up CMOS, and stores parameters to be retained even after the power is turned off, pitch error correction amount, tool correction amount, and the like.
  • the graphic control circuit 15 converts the digital signal into a signal for display and supplies the signal to the display 16.
  • the display 16 uses a CRT or a liquid crystal display device, and displays the position of each axis, the state of input / output signals, parameters, and the like.
  • the work board 17 is composed of a keyboard and the like, and is used for inputting various data or operating the machine tool 18. These are connected by a bus 29.
  • the interactive numerical control device is used, but the method for creating a cylindrical groove-shaped machining program of the present invention can be applied to an automatic program creating device.
  • the rotation axis is developed linearly.
  • the side surface of one circumference of the work is made to correspond to an area in the range of 0 ° or more and less than 360 ° of the expanded rotation axis on a plane formed by Since the area is displayed on the display screen of the interactive numerical controller and the groove shape is defined interactively, machining programs can be easily created even by non-skilled operators.
  • the coordinate values of the developed rotation axis are in units of angles, and machining paths with a rotation angle of 360 ° or more are also drawn in one area so that they correspond to the side of the actual workpiece. It is easy to remove, and the creation time of the processing program is shortened.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

This invention relates to a preparation method of a machining program of a cylindrical groove shape for an interactive numeric controller for machining a groove shape on the side surface of a cylindrical work. The side surface on one periphery of a work is made to correspond onto a plane (22a) of an orthogonal coordinates system consisting of an axis (C) developing linearly a spindle and an axis (Z) in the longitudinal direction of a cylinder. Required data (2, 3) are inputted interactively by use of the coordinates values of the orthogonal coordinates system so as to define the groove shape and to prepare a machining program. In this manner the machining program can be prepared easily in the two-dimensional orthogonal coordinates system and in an interactive manner.

Description

明 細 書 , 円筒溝形状の加工プログラムの作成方法 技 術 分 野  Description, How to create a machining program for cylindrical grooves
本発明は円筒形のヮークの側面に溝形状を加工する対話型 数値制御装置の円筒溝形状の加工プログラムの作成方法に関 し、 特にワークの側面を平面の特定の領域に対応させて、 対 話形式で加工プログラムを作成可能にした円筒溝形状の加工 プログラムの作成方法に閲する。 背 景 技 術  The present invention relates to a method for creating a cylindrical groove shape machining program of an interactive numerical controller for machining a groove shape on a side surface of a cylindrical workpiece. See how to create a machining program for a cylindrical groove that allows you to create a machining program in a talking format. Background technology
従来、 数値制御装置 (C N C ) を使用して円筒形のワーク の側面に溝形状の加工を行う場合には、 Gコー ド等を用いて 溝形状を定義し、 加工プログラムを作成していた。  Conventionally, when processing a groove on the side surface of a cylindrical workpiece using a numerical controller (CNC), a groove program was defined using a G code or the like, and a processing program was created.
しかし、 従来の方法ではオペレータに N Cテープフ ォーマ ッ トゃ自動プログラ ミ ングの言語規約等の知識が充分にない とプログラ ミ ングが容易でなく、 また熟練したオペレータで も三次元形状のプログラ ミ ングには相当な時間がかかる。 発 明 の 開 示  However, with the conventional method, programming is not easy unless the operator has sufficient knowledge of the NC tape format and the language rules of automatic programming, etc. Takes a considerable amount of time. Disclosure of the invention
本発明はこのような点に鑑みてなされたものであり、 ヮ一 クの側面を平面の特定の領域に対応させて、 対話形式で加工 プログラムを作成可能とした円筒溝形状の加工プログラムの 作成方法を提供することを目的とする。 本発明では上記課題を解決するために、 SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has been made in consideration of the above-described circumstances. It aims to provide a method. In the present invention, in order to solve the above problems,
円筒形のワークの側面に溝形状を加工する対話型数値制御 装置の円筒溝形状の加工プログラムの作成方法において、 回 転軸を直線状に展開した軸と円筒の長手方向の軸とで構成さ れる直交座標系の平面上の、 前記展開した回転軸の 0 ° 以上 3 6 0 ° 未満の角度の範囲の領域に前記ワークの一周の側面 を対応させ、 前記直交座標系の座標値を用いて対話形式で所 要のデータを入力して前記溝形状を定義し、 加工プログラム を作成することを特徴とする円筒溝形状の加工プログラムの 作成方法が提供される。  In the method of creating a machining program for a cylindrical groove shape of an interactive numerical control device that forms a groove shape on the side surface of a cylindrical work, the method consists of an axis with the rotation axis developed linearly and an axis in the longitudinal direction of the cylinder. The side surface of the workpiece is made to correspond to an area in an angle range of 0 ° or more and less than 360 ° of the developed rotation axis on a plane of the rectangular coordinate system, and the coordinate value of the rectangular coordinate system is used. A method for creating a machining program for a cylindrical groove shape is provided, in which required data is input interactively to define the groove shape and create a machining program.
回転軸を直線状に展開した軸と円筒の長手方向の軸とで構 成される平面上の、 且つ展照した回転軸の 0 ° 以上 3 6 0 ° 未満の角度の範囲の領域にワークの一周の側面を対応させて 対話形式で溝形状を定義する。 二次元の座標系で、 且つ对話 形式で容易に加工プ nグラムを作成することができる。 図 面 の 簡 単 な 説 明 第 1図 ( a ) は本発明の一実施例の円筒溝形状の加工プロ グラムの作成方法の概念図、  The workpiece is located on a plane consisting of the axis developed in a straight line and the axis in the longitudinal direction of the cylinder, and in the range of the angle of 0 ° or more and less than 360 ° of the projected rotating axis. The groove shape is defined interactively by matching the sides of one circumference. A processing program can be easily created in a two-dimensional coordinate system and in the form of a story. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a conceptual diagram of a method for creating a cylindrical groove-shaped machining program according to one embodiment of the present invention.
第 1図 (b ) は本発明の一実施例の円筒溝形状の加工プロ グラムの作成方法の手順を示した表、  FIG. 1 (b) is a table showing the procedure of a method for producing a cylindrical groove machining program according to an embodiment of the present invention.
第 2図は本発明の一実施例の円筒溝形状の加工プログラム の作成方法による対話型数値制御装置の表示画面、  FIG. 2 is a display screen of an interactive numerical controller according to a method for creating a machining program for a cylindrical groove shape according to an embodiment of the present invention;
第 3図は本発明を実施するための対話型数値制御装置のハ 一ドウ エアの概略構成図、 第 4図は円 fii溝形状の加工の一例を示した図である。 発明を実施するための最良の形態 以下、 本発明の一実施例を図面に基づいて説明する。 なお 以下の説明では回転軸を C軸、 円筒の長手方向の軸を Z軸と 記す。 FIG. 3 is a schematic configuration diagram of a window of an interactive numerical controller for implementing the present invention, FIG. 4 is a diagram showing an example of processing of a circular fii groove shape. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, the axis of rotation is referred to as C axis, and the axis in the longitudinal direction of the cylinder is referred to as Z axis.
4図は円筒溝形状の加工の一例を示した斜視図である。 図において、 加工形状 2 0は長さ 6 5 πιιηの円筒状のワーク 2 1の側面 2 2に所定の幅で、 且つ円筒直径が 2 7 mmとな るような深さの溝形状 2 3を有する。 溝形状 2 3は工具 2 4 を Z軸方向に制御しながら、 ワーク 2 1を C軸方向に 7 2 0 ' ( 2回転) 回転させることにより製作されるものである。  FIG. 4 is a perspective view showing an example of processing of a cylindrical groove shape. In the figure, the machining shape 20 has a groove shape 23 with a predetermined width and a depth such that the cylindrical diameter is 27 mm on the side surface 22 of the cylindrical work 21 having a length of 65 ππιη. Have. The groove shape 23 is manufactured by rotating the work 21 by 720 ′ (two rotations) in the C-axis direction while controlling the tool 24 in the Z-axis direction.
次に、 この溝形状 2 3を本発明の円筒溝形状の加工プログ ラムの作成方法によつて加工プロダラムを作成する方法につ いて説明する。  Next, a description will be given of a method of creating a machining program using the groove shape 23 according to the method of creating a cylindrical groove machining program of the present invention.
第 1図 ( a ) は本発明の一実施例の概念図であり、 第 4図 の加工形状 2 0を側面 2 2に関して展開した図に相当する。 本図の座標系の横軸は Z軸であり、 座標値の単位は mmであ る。 縦軸は C軸を直線状に展開した軸であり、 座標値の単位 は角度 ) である。 領域 2 2 aは第 4図の側面 2 2に対応 する。  FIG. 1 (a) is a conceptual diagram of one embodiment of the present invention, and corresponds to a diagram in which the processed shape 20 of FIG. The horizontal axis of the coordinate system in this figure is the Z axis, and the unit of the coordinate value is mm. The vertical axis is a linearly developed axis of the C axis, and the unit of the coordinate value is angle). The region 22a corresponds to the side surface 22 in FIG.
第 1図 ( b ) は本発明の一実施例の円筒溝形状の加工プロ グラムの作成方法の手順を示した表である。 定義ステップ 1 は S T 1〜S T 9の各ステップより成り、 各ステップ毎に、 形状構成要素 2と数値データ 3の設定を行う。 この設定は、 对話型数値制御装置の表示画面に表示された質問事項に対し、 その都度オペレータが所定の形状記号キー及び数値キーを操 作して答える形式で行う。 以下、 第 1図 (a) も同時に参照 して、 定義ステツプの順序に従ってオペレータの操作手順を 詳細に説明する。 FIG. 1 (b) is a table showing the procedure of a method for creating a cylindrical groove shape machining program according to one embodiment of the present invention. The definition step 1 is composed of steps ST1 to ST9, and the shape component 2 and the numerical data 3 are set for each step. This setting (4) The operator operates the prescribed shape symbol keys and numeric keys each time to answer the questions displayed on the display screen of the talk-type numerical controller, and answers them. Hereinafter, the operation procedure of the operator will be described in detail according to the order of the definition steps, while simultaneously referring to FIG. 1 (a).
〔S T 1〕 形状構成要素の問いに対し、 下方向の形状構成要 素を設定する。  [ST 1] In response to the question of the shape component, set the shape component in the downward direction.
次に始点の C座標と Z座標、 及び円筒直径の問いに対し、 それぞれひ。 、 2 0 mm. 2 7 mmの値を設定する。 切削方 向のパラメ ータの問いに対しては Γ 1 j を設定する。 ここで、 パラメ ータ Γ 1』 は形状構成要素の進行方向に対して左側を 切削することを意味する。 なお、 形状構成要素の進行方向に 対して右側あるいは要素上を切削させる場合には、 パラメ一 タの値をそれぞれ Γ一 1』 あるいは Γ 0」 に設定する。 終点 座標の問いに対しては C座標を 1 2 0 ° に設定する。  Next, when asked about the C and Z coordinates of the starting point and the diameter of the cylinder, each of them was used. , 20 mm. Set the value of 27 mm. Set Γ 1 j for the question of the cutting direction parameter. Here, the parameter Γ1 ”means that the left side is cut with respect to the traveling direction of the shape component. When cutting on the right side or on the element with respect to the traveling direction of the shape component, the parameter value is set to "1-1" or "0", respectively. When asked about the end point coordinates, set the C coordinate to 120 °.
ここまでの操作によって定義された加工通路は第 1図 ( a ) の点 P aを始点として、 工具 2 4を図のような位置に置い て、 点 P bまで移動する通路である。  The machining path defined by the operations up to this point is a path that moves from the point Pa in FIG. 1 (a) as a starting point to the point Pb with the tool 24 at a position as shown in the figure.
〔S T 2〕 形状構成要素の問いに対しては丸みの形状構成要 素を、 半径の間いに対しては 1 O mmを設定する。  [ST2] Set a rounded shape element for the question of the shape element, and set 1 O mm for the distance between the radii.
C S T 3 j 形状構成要素の問いに対しては左下方向の要素を 設定する。 終点座標の間いに対しては Z座標を 5 0 mm. C 座標を 2 4 0 ° に設定する。  CST 3 j For the question of the shape component, set the element in the lower left direction. For the end point coordinates, set the Z coordinate to 50 mm. Set the C coordinate to 240 °.
この操作により、 点 P bにおいて半径 1 O mmの面取りを 行った後、 工具 2 4を点 P cまで移動する加工通路が定義さ れる。 This operation defines a machining path that moves tool 24 to point Pc after chamfering a radius of 1 O mm at point Pb. It is.
[: S T 4〕 形状構成要素の問いに対しては丸みの形状構成要 素を、 半径の問いに対しては 1 O mmを設定する。  [: S T 4] Set the rounded shape component for the shape component question and 1 O mm for the radius question.
〔 S T 5〕 形状構成要素の問いに対しては下方向の形状構成 要素を設定する。 終点座標の問いに対しては C座標を 4 8 0 ' に設定する。  [ST 5] When asked about the shape component, set the shape component in the downward direction. When asked about the end point coordinates, set the C coordinate to 480 '.
この操作により、 点 P c において半径 1 0 m mの面取りを 行った後、 工具 2 4を点 P dまで移動する加工通路が定義さ れる。  This operation defines a machining path for moving the tool 24 to the point Pd after chamfering a radius of 10 mm at the point Pc.
[ S T 6 J 形状構成要素の間いに対しては丸みの形状構成要 素を、 半径の問いに对しては 1 O mmを設定する。  [Set the rounded shape component for the space between the ST 6 J shape components and 1 O mm for the radius.
〔 S T 7〕 形状構成要素の問いに対しては右下方向の形状構 成要素を設定する。 終点座標の間いに対しては Z座標を 2 0 mm. C座標を 6 0 0 ° に設定する。  [ST 7] When asked about the shape component, set the shape component in the lower right direction. For the end point coordinates, set the Z coordinate to 20 mm. Set the C coordinate to 600 °.
この操作により、 点 P dにおいて半径 1 0 mmの面取りを 行った後、 工具 2 4を点 P eまで移動する加工通路が定義さ This operation defines a machining path that moves tool 24 to point Pe after chamfering a radius of 10 mm at point Pd.
?し ^ ) o ? Then ^) o
〔 S T 8〕 形状構成要素の問いに対しては丸みの形状構成要 素を、 半径の間いに対しては 1 O mmを設定する。  [ST 8] Set the rounded shape component for the question of the shape component, and set 1 O mm for the radius.
〔 S T 9〕 形状構成要素の問いに対しては下方向の形状構成 要素を設定する。 終点座標の問いに対しては C座標を 7 2 0 ° ¾k疋 。  [ST 9] When asked about the shape component, set the shape component in the downward direction. When asked about the coordinates of the end point, use the C coordinate of 720 ° ¾k.
この操作により、 点 P eにおいて半径 1 0 mmの面取りを 行った後、 工具 2 4を点 P aまで移動する加工通路が定義さ れる。 第 2図に上記の操作を実行した後の対話型数値制御装置の 表示画面を示す。 図において、 表示画面 4には設定した順序 • に従って形状構成要素 2が表示され、 また領域 2 2 aの内部 に溝形状 2 3に相当する加工通路 2 3 aが描画されている。 第 3図は本発明の円筒溝形状の加工プログラムの作成方法 を実施するための对話型数値制御装置のハ ードゥエァの概略 構成図である。 プロセッサ 1 1は R〇 M 1 2に格納されたシ ステムプロ グラ ムに従って対話型数値制御装置全体を制御す る。 R〇M 1 2にはE P R〇MぁるぃはEEP R〇Mが使用 される。 RAM I 3は D R AM等が使用され、 各種のデータ 及び入出力信号が格納される。 不揮発性メ モ リ 1 4にはバッ テリバックアップされた CMO Sが使用され、 電源切断後も 保持すべきパラメ ータ、 ピッチ誤差補正量及び工具補正量等 が格 t¾されている。 This operation defines a machining path for moving the tool 24 to the point Pa after chamfering a radius of 10 mm at the point Pe. Fig. 2 shows the display screen of the interactive numerical control device after performing the above operations. In the figure, the shape component 2 is displayed on the display screen 4 in accordance with the set order, and a machining path 23 a corresponding to the groove shape 23 is drawn inside the area 22 a. FIG. 3 is a schematic configuration diagram of a hard disk of a speech-type numerical control device for implementing the method for creating a machining program for a cylindrical groove according to the present invention. The processor 11 controls the entire interactive numerical controller according to the system program stored in the R〇M12. EPR〇M or EEP R〇M is used for R〇M12. The RAM I3 uses a DRAM or the like, and stores various data and input / output signals. The non-volatile memory 14 uses a battery backed-up CMOS, and stores parameters to be retained even after the power is turned off, pitch error correction amount, tool correction amount, and the like.
グラフィ ック制御回路 1 5はディ ジタル信号を表示用の信 号に変換し、 表示器 1 6に与える。 表示器 1 6は C RTある いは液晶表示装置等が使用され、 各軸の位置表示、 入出力信 号の状態、 パラメ ータ等が表示される。 掇作盤 1 7はキーボ 一ド等から構成され、 各種のデータの入力あるいは工作機械 1 8の操作に使用される。 これらはバス 2 9によって結合さ れている。  The graphic control circuit 15 converts the digital signal into a signal for display and supplies the signal to the display 16. The display 16 uses a CRT or a liquid crystal display device, and displays the position of each axis, the state of input / output signals, parameters, and the like.掇 The work board 17 is composed of a keyboard and the like, and is used for inputting various data or operating the machine tool 18. These are connected by a bus 29.
なお、 上記の説明では対話型数値制御装置を使用したが、 本発明の円筒溝形状の加工プ Ώグラムの作成方法は自動プロ グラム作成装置にも適用することができる。  In the above description, the interactive numerical control device is used, but the method for creating a cylindrical groove-shaped machining program of the present invention can be applied to an automatic program creating device.
以上説明したように本発明では、 回転軸を直線状に展開し た軸と円筒の長手方向の軸とで構成される平面上で、 且つ展 開した回転軸の 0 ° 以上 3 6 0 ° 未満の角度の範囲の領域に ワークの一周の側面を対応させ、 この領域を対話型数値制御 装置の表示画面に表示して、 対話形式で溝形状を定義するの で、 熟練したオペレータでなくても加工プログラムを容易に 作成できる。 As described above, in the present invention, the rotation axis is developed linearly. The side surface of one circumference of the work is made to correspond to an area in the range of 0 ° or more and less than 360 ° of the expanded rotation axis on a plane formed by Since the area is displayed on the display screen of the interactive numerical controller and the groove shape is defined interactively, machining programs can be easily created even by non-skilled operators.
また、 展開した回転軸の座標値は角度を単位と し、 さ らに 3 6 0 ° 以上の回転角度の加工通路も一つの領域に重ねて描 画するので、 実際のワークの側面との対応がし易く、 加工プ 口グラムの作成時間が短縮する。  In addition, the coordinate values of the developed rotation axis are in units of angles, and machining paths with a rotation angle of 360 ° or more are also drawn in one area so that they correspond to the side of the actual workpiece. It is easy to remove, and the creation time of the processing program is shortened.

Claims

請 求 の 範 囲 The scope of the claims
1 . 円筒形のワークの側面に溝形状を加工する対話型数値 制御装置の円筒溝形状の加工プログラムの作成方法において、 回転軸を直線状に展開した軸と円筒の長手方向の軸とで構 成される直交座標系の平面上の、 前記展開した回転軸の 0 ° 以上 3 6 0 ° 未満の角度の範囲の領域に前記ワークの一周の 側面を対応させ、  1. In the method of creating a cylindrical groove machining program for an interactive numerical control device for machining a groove on the side surface of a cylindrical work, the rotary axis is composed of an axis developed linearly and an axis in the longitudinal direction of the cylinder. The side surface of the work around the work corresponding to an area in an angle range of 0 ° or more and less than 360 ° of the developed rotation axis on a plane of a rectangular coordinate system to be formed,
前記直交座標系の座標値を用いて対話形式で所要のデータ を入力して前記溝形状を定義し、 加エブ口グラムを作成する ことを特徴とする円筒溝形状の加工プログラムの作成方法。  A method for creating a machining program for a cylindrical groove shape, comprising defining necessary groove data by inputting required data in an interactive manner using the coordinate values of the rectangular coordinate system, and creating an Ebogram.
2 . 前記領域を表示画面に表示し、 前記入力されたデータ に基づいて前記領域内に加工通路を描画することを特徴とす る特許請求の範囲第 1項記載の円筒溝形状の加工プログラム の作成方法。  2. The processing program according to claim 1, wherein the area is displayed on a display screen, and a processing path is drawn in the area based on the input data. How to make.
3 . 前記展開した回転軸の座標値は角度を単位とすること を特徴とする特許請求の範囲第 1項記載の円筒溝形状の加工 プログラムの作成方法。  3. The method according to claim 1, wherein the coordinate values of the developed rotation axis are in units of angles.
4 . 前記回転軸の角度が 0 ° 未満または 3 6 0 ° 以上に相 当する範囲の溝形状は、 前記領域に重ねて表示することを特 徴とする特許請求の範囲第 1項記載の円筒溝形状の加工プロ グラムの作成方法。  4. The cylinder according to claim 1, wherein a groove shape in a range in which the angle of the rotation axis is less than 0 ° or equal to or more than 360 ° is displayed so as to overlap the area. How to create a groove shape machining program.
PCT/JP1990/000029 1989-01-30 1990-01-10 Preparation method of machining program of cylindrical groove shape WO1990008990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1020066A JPH02199505A (en) 1989-01-30 1989-01-30 Method of forming working program for cylindrical groove shape
JP1/20066 1989-01-30

Publications (1)

Publication Number Publication Date
WO1990008990A1 true WO1990008990A1 (en) 1990-08-09

Family

ID=12016720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000029 WO1990008990A1 (en) 1989-01-30 1990-01-10 Preparation method of machining program of cylindrical groove shape

Country Status (2)

Country Link
JP (1) JPH02199505A (en)
WO (1) WO1990008990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433455A1 (en) * 1989-06-07 1991-06-26 Fanuc Ltd. Preparation method of machining program of cylindrical groove shape

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496111A (en) * 1990-08-09 1992-03-27 Fanuc Ltd Tool locus plotting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293312A (en) * 1986-06-12 1987-12-19 Mitsubishi Electric Corp Numerical controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293312A (en) * 1986-06-12 1987-12-19 Mitsubishi Electric Corp Numerical controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433455A1 (en) * 1989-06-07 1991-06-26 Fanuc Ltd. Preparation method of machining program of cylindrical groove shape
EP0433455A4 (en) * 1989-06-07 1994-09-14 Fanuc Ltd Preparation method of machining program of cylindrical groove shape

Also Published As

Publication number Publication date
JPH02199505A (en) 1990-08-07

Similar Documents

Publication Publication Date Title
US4575791A (en) Method for restarting a tool onto a workpiece contour
WO1992008574A1 (en) Numerically controlled device with working simulation function
JP2002254273A (en) Control device for cutting tool, cutting tool and its cutting method
JPH1094945A (en) Machining limit area designating method and manual machining method in numerical control device
US5126646A (en) Nc program drawing method
WO1990008990A1 (en) Preparation method of machining program of cylindrical groove shape
JPH024378B2 (en)
EP0509102A1 (en) Method of working simulation
KR890001355B1 (en) Numerical control device
JP2696206B2 (en) Automatic part program creation method
WO1985000678A1 (en) Method of inspecting machining locus control
EP0419672A1 (en) Method of plotting tool shape
US5773950A (en) Program creating method for uniform-shape machining
JPS60101606A (en) Automatic robot operation system
JP3248081B2 (en) Automatic program creation device with automatic cutting axis change function
JP2000353003A (en) Nc data recognition device
EP0433455A1 (en) Preparation method of machining program of cylindrical groove shape
JPS59124561A (en) Cam grinding method
JP2742959B2 (en) Laser processing equipment
WO1992002346A1 (en) Method of drawing locus of tool
JPH0218603A (en) Numerical controller
JPH06250722A (en) Interactive numerical controller
JPH0272413A (en) Program forming device for numeral controller
JP2686157B2 (en) Numerical control device with work shape drawing function
JPH03156506A (en) Nc program generating method for interactive numerical controller or automatic programming device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB