WO1990001939A1 - Agent for thermotherapy - Google Patents

Agent for thermotherapy Download PDF

Info

Publication number
WO1990001939A1
WO1990001939A1 PCT/JP1989/000843 JP8900843W WO9001939A1 WO 1990001939 A1 WO1990001939 A1 WO 1990001939A1 JP 8900843 W JP8900843 W JP 8900843W WO 9001939 A1 WO9001939 A1 WO 9001939A1
Authority
WO
WIPO (PCT)
Prior art keywords
dextran
metal
magnetic
agent
hyperthermia
Prior art date
Application number
PCT/JP1989/000843
Other languages
English (en)
French (fr)
Inventor
Kenji Tazawa
Hideo Nagae
Original Assignee
Meito Sangyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meito Sangyo Kabushiki Kaisha filed Critical Meito Sangyo Kabushiki Kaisha
Priority to DE89909424T priority Critical patent/DE68911694T2/de
Publication of WO1990001939A1 publication Critical patent/WO1990001939A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/295Iron group metal compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy

Definitions

  • the present invention relates to an agent for hyperthermia used for treatment of diseases of humans and animals, and particularly to an agent for hyperthermia effective for safe and reliable treatment and treatment of cancer.
  • one micron of direct suspicion is suspended intravenously by suspending particles such as magnetic iron oxide or ferric hydroxide in an aqueous solution such as glucose and dextran.
  • particles such as magnetic iron oxide or ferric hydroxide
  • an aqueous solution such as glucose and dextran.
  • a method has been proposed in which cancer cells are killed by phagocytosis of the cancer cells, exposure to an electromagnetic field, and induction heating of the particles to kill the cancer cells (see JP-B-63-53379). ).
  • the present invention has been made to cleave a hyperthermia agent that has overcome the above-mentioned disadvantages, and has extremely high induction heating efficiency, excels in in-vivo color stability, and has low toxicity.
  • An object of the present invention is to provide a thermotherapy agent having good metabolism in a living body.
  • an agent for hyperthermia characterized by comprising dextran and a complex of a metal magnetic material or a metal compound magnetic material as an active ingredient.
  • the complex of dextran and a metal magnetic substance or a metal compound magnetic substance used as an active ingredient in the agent for hyperthermia of the present invention is obtained by chemically converting dextran with a metal magnetic substance or a metal compound magnetic substance.
  • the composition described in JP-B-63-53379, which is simply produced by suspending the magnetic particles in an aqueous dextran solution, is clearly produced. They are distinctive.
  • the dextran used for the preparation of such a complex those known per se can be used.
  • the dextran has a weight average molecular weight of from 1,000 to 100,000, preferably 4 , 0 0 0 to 1 0, 0 0 0; Coro.
  • the sun may be used in a non-denatured state, but a method known per se, for example, dextran having a reducing end modified by treatment with alkali, halogen or halogenous acid; It is preferable to use dextran whose reducing end has been modified by hydrolyzing after treating with Xiadon, and it is also preferable to use dextran. See, for example, Japanese Patent Publication No. 45-55557, Japanese Patent Publication No. 59-13521, and Japanese Patent Publication No. Sho 61-331001]. Therefore, the term "dextran" as used herein is intended to include not only native dextran but also dextran modified as described above.
  • the metal magnetic material or metal compound magnetic material that can react with the above dextran is a magnetic material of a metal or a metal compound that generates heat upon induction heating, and is a ferromagnetic material and a superparamagnetic material. Is included. Such a magnetic material is
  • the particle size is usually in the range of 30 to 500 A, preferably 50 to 150 A in average particle diameter.
  • the metal magnetic material include transition metals such as iron, nickel, cobalt, and gadolinium. Among them, iron is preferable.
  • the metal compound include oxides and ferrites of transition metals such as iron, nickel, and cobalt, and particularly, triiron tetroxide and y-iron oxide are preferable.
  • the reaction between the dextran and the metal magnetic material or the metal compound magnetic material described above can be performed, for example, according to the method described in Japanese Patent Publication No. 59-13521, using a metal magnetic material or a metal compound.
  • Add dextran or an aqueous solution thereof to the aqueous sol of the compound magnetic substance, and place it under a neutral or slightly acidic Heating at a temperature of about 30 to about 120 minutes can be performed. According to the method described in U.S. Pat. No.
  • a metal compound magnetic material in an aqueous medium in the presence of dextran preferably an alkali-treated modified dextran,
  • dextran preferably an alkali-treated modified dextran
  • the complex can be manufactured in spite of the difficulty.
  • the complex of dextran and the metal magnetic substance or the metal compound magnetic substance prepared as described above, when used as an agent for hyperthermia, is in a dosage form suitable for its administration.
  • a dosage form suitable for its administration Prepared.
  • injection and infusion (infusion) into veins, tumor tissues, arteries, and bladder are used, but depending on the disease to be treated, It can also be administered by a method such as administration or rectal administration.
  • the above complex is subjected to a usual method in the field of pharmacy, and thus, usually 1 to 60% in distilled water for injection or physiological saline. (/ v), preferably 5-20% (w / v).
  • additives include inorganic salts such as sodium chloride, etc .; monosaccharides such as budu sugar; sugar alcohols such as mannitol and sorbitol; organic acid salts such as citrate and tartrate; Various physiologically acceptable auxiliaries such as Tris buffer may be appropriately added.
  • tablets, granules, capsules, syrups, powders and suppositories containing the above-mentioned complex, together with appropriate pharmaceutical auxiliaries should be prepared according to the usual methods in the field of pharmacy. It can be formulated in the form of an agent or the like. Although it depends on the site of the disease and cannot be generally determined, it is necessary to administer at least as much as possible so that the living body can maintain the concentration in tissue or body fluid that can overcome the cooling ability. In fact, its concentration is generally in the range of 0 ⁇ 5 to 5.0% (w / v).
  • this dose can be administered in a small standard or a small amount based on a doctor's diagnosis.
  • the patient to whom the agent for hyperthermia of the present invention has been administered is placed in a high-frequency magnetic field of an induction heating device as described in JP-B-63-5379, and treatment and treatment are performed under temperature monitoring.
  • the frequency applied to the induction heating device is generally in the range of 20 KHz to 10 MHz, preferably in the range of 50 to 500 KHz, and the temperature is monitored, for example, by BAILY, USA. This can be done using a PVC-coated copper-platinum sensor used in the TM54 model.
  • the agent for hyperthermia uses a complex obtained by chemically reacting dextran with a magnetic metal or a magnetic metal compound as an active ingredient. It has excellent stability in the condition, good uniform dispersibility in specific tissues in the living body, and therefore has excellent thermal efficiency, and has low toxicity, good metabolism, and It can be widely used for hyperthermia such as cancer, prostatic hyperplasia, and wound.
  • FIG. 1 is a graph showing the result of the induction heating test in Test Example 1.
  • Alkali-treated modified dextran (weight average molecular weight 4, 000) 16 2 was dissolved in water 55 2 (), and heated with a water bath while stirring ferrous chloride tetrahydrate 2 A mixed aqueous solution of 2.28 and ferrous chloride 37.02 was added 228 m, 3N sodium hydroxide 40 was added, neutralized with hydrochloric acid in the next step, and then ripened and refluxed for 1 hour. The coarse particles are removed by centrifugation, and an equal amount of methanol is added to the supernatant to obtain a magnetic iron oxide / dextran complex crude product as a precipitate.
  • Table 1 shows the physical properties of the magnetic iron oxide / dextran complex obtained in this manner.
  • Average particle size 7 7 A Coercive force 3 Enorrested Magnetic susceptibility 0.29 5 Fe 1 Saturation magnetization 8 2.3 emu / gF e ⁇ 2 Relaxation force 224 fi niol sec— 1 Reference example 2 Dextran (weight average molecular weight 7 Dissolve 250 g of water (0.00) in 1.0 ⁇ of water, add 25 g of iodine (I 2 ), and add 40% NaOH 3 ⁇ under stirring for about 1 hour. Stir for an additional 2 hours. Three times the amount of methanol is added to the reaction solution to obtain a precipitate. The precipitate is re-dissolved in water, and the re-precipitation operation of adding 3 times the amount of methanol is repeated twice more.
  • the aqueous solution of the precipitate is filtered, adjusted to a pH of 7.5, concentrated under reduced pressure, and freeze-dried in the following step to obtain a modified dextran (white powder, 225 g).
  • Reference Example 3 27 2 g of dextran (weight average molecular weight: 400 000) was dissolved in 1.ofi water, and concentrated hydrochloric acid was maintained under stirring at a concentration of ⁇ ⁇ 3.0 ⁇ 0.1.
  • Application Benefits ⁇ beam N a CJ20 2) adding 1 6 4 g in about 1 hour. Further, keep the pH at 3.0 ⁇ 01 and stir for 3 hours, and then stir for 15 hours in the next step. To the reaction solution 3. Five times the amount of methanol is added to obtain a precipitate.
  • the precipitate is redissolved in water, and the reprecipitation procedure of adding 3.5 volumes of methanol is repeated twice.
  • the aqueous solution of the precipitate is filtered, adjusted to pH 7.5, concentrated under reduced pressure, and freeze-dried in the next step to obtain a modified dextran (pale yellow powder, 21.8 g).
  • Amplifier IRA—410 (Ion exchange resin manufactured by Rohmand Haasst Co.) A slurry prepared by adding water to 5J2 to a total volume of 7 lbs. While maintaining the pH at 8-0-8.7 with stirring. Add a mixed solution of ⁇ ferric chloride aqueous solution 1.0 ⁇ and 1 ⁇ ferrous chloride aqueous solution 50 Omfi. Immediately, concentrated hydrochloric acid is added to the reaction mixture to adjust the pH to 1.6, the mixture is stirred at the same pH for 1 hour, and the ion-exchange resin is filtered off in the next step.
  • the obtained sol is subjected to ultrafiltration while adding water to obtain 2.3 ⁇ m of an aqueous magnetic iron oxide sol (pH 2.8, Fe content 26 mg Zmfl).
  • This solution 600 mi2 is mixed with a 25 wZv% aqueous solution (300 ⁇ ) of -modified dextran obtained in Reference Example 2 and heated under reflux for 1 hour.
  • methanol is added to the reaction mixture to a degree of vagueness of 47%, and the precipitated precipitate is dissolved in water and dialyzed with running water overnight.
  • the solution is decompressed, lysed, filtered and freeze-dried to obtain a magnetic iron oxide 'dextran complex (black powder, 37 g). Table 2 shows the physical properties of this complex.
  • Magnetic iron oxide obtained in Reference Example 1. Add dextran complex powder 2 17 Omg to physiological saline to make 1 and heat to 50 ° C in a water bath, then filter sterilize using a 0.22 m pore size millipore filter. And seal in sterile glass samples.
  • Distilled water for injection was added to the magnetic iron oxide ⁇ dextran complex obtained in Reference Example 1 to prepare a solution having a concentration of 1.25 w / v% as Fe and a diameter of 3 cm.
  • the induction heating test was performed using a Yamamoto Vinita TY type induction heating device at a frequency of 500 KHz and an output of 4.6 KW. The following results were obtained.
  • magnetic iron oxide with an average particle size of about 8 OA is 10 w / v% when the concentration becomes 1.25 w / v% and 5.0 w / v% as Fe.
  • a suspension of 5% dextran (weight average molecular weight, 70,000) aqueous solution was prepared 5% each, and an induction heating experiment was performed under the same conditions.
  • liquid temperature was measured using a TM54 type temperature measuring device manufactured by BAILY, USA.
  • the temperature of the product of the present invention increased by about 7 ° C after the induction heating for i minutes.
  • the control product with the same concentration of Fe showed only a 0.4 ° C temperature rise under the same heating conditions.
  • those with a Fe concentration of 5.0 w / v% prepared for the purpose of increasing the temperature rise efficiency of the comparative control product have certainly increased the efficiency.
  • the temperature rise was irregular when the power was applied under the same conditions (see Fig. 1).
  • Example 4 5 mi2 of the injection solution of the present invention obtained in Example 4 was placed in a petri dish having a diameter of 3 cm, and the same apparatus as in Test Example 1 was used. An induction heating test was performed at 4 KW. The same comparative test product as in Test Example 1 was used and tested in the same manner.
  • the particle size of the iron oxide part is the raw material text 7,000 4.2.
  • Test Example 5 The magnetic iron oxide / dextran complex obtained in Reference Example 1 was made into a solution having a concentration of 10% using distilled water for injection. This 1 was mixed with 1 fresh egret serum 3 The temperature was kept at ° C and the presence or absence of aggregation was visually observed.
  • the present invention > 1,4 4 0
  • control product ⁇ 1 This product was superior in color stability in blood.
  • Distilled water for injection was added to 17 mg of the magnetic iron oxide / dextran complex obtained in Reference Example 1 to make 1 [ ⁇ , and after sterile sterilization, 0.1 g / cm 3 of tumor volume was obtained. After 24 hours of injection, the state of distribution was examined. That is, a 3 nun glass plate for a colony calculation plate was applied to the tumor cleaved surface, and the ratio of the portion where the black injection solution was present to the portion thereof was determined.
  • a magnetic iron oxide having an average particle diameter of about 8 OA is used as a comparative product, and the lysis degree is 10 vr / v% as iron.
  • 10 w / v% dextran (weight average molecular weight 7 (0,000) A solution was prepared which became turbid in an aqueous solution. The test was performed according to the same liquid volume, administration site and observation method as the product of the present invention. This suspension has a black-brown color.
  • Test solution (test solution coloring area / cut area total area)
  • Comparative product 3 8 The product of the present invention was evenly distributed in the tumor.
  • HT is the average number of days surviving the hyperthermic treatment group
  • c is the average number of surviving days in the control group.
  • a solution was prepared by suspending iron trioxide with an average particle size of about 1,000 A in 5% glucose aqueous solution to a concentration of 5 w / v% as iron oxide. Then, 24 mg of intraperitoneal injection of iron per mouse was performed. The same test was performed as in the case.
  • the tumor-bearing mouse in this test example corresponds to the terminal stage, but under this condition, the product of the present invention was confirmed to have a prolonged life.
  • control product did not show any prolonged life.
  • Meth-A fibrosarcoma cells were implanted under the groin of BALBZ c-based mice, and solid tumors were formed.Select the point in time when the major axis of this cancer became 1-1.5 cm.
  • example 1 2 ms amounts Zu' intratumoral injection of an aqueous solution of the complex obtained in 1 as a tumor volume of 1 cm 3 per iron obtained by the following equation, use the use Ita induction heating apparatus in test example 1 in that two hours after Induction heating was started under the conditions of a frequency of 500 KHz and an output of 4.6 Kw, and the skin temperature at the injection site was measured as the value measured by the temperature measurement device used in Test Example 7. The current of the induction heating device kept at ⁇ 43 ° C for 10 minutes was interrupted.
  • d 2 is the short diameter (cm) of the tumor.
  • Example 5 Using the injection solution of the present invention obtained in Example 5, the antitumor efficacy was tested in the same manner as in Test Example 10.
  • Test Example 1 2 Test Example 9 Ascites hepatoma AH 6 0 C the cells on the foot ⁇ under rats of the same strain as the 1 X 1 0 6 or Zu' transplanted to solid cancer and without, and they are ⁇ , foot ⁇ thickness Yue a is l cm tut, when the cancer is found in entire foot, the volume of the graft leg measured Mizu ⁇ Nyori, injection of its volume l cm 3 per the invention obtained in example 1 The solution was injected as iron into 12 mg of the tumor, and about 2 hours later, the same induction heating treatment as in Test Example 8 was performed. Paw volume was measured again 12 days later. As a result, the results shown in Table 14 were obtained. ⁇ 14 foot capacity (cm 3 )
  • mice 1 group per group 7 mice intraperitoneally dissolved in saline Solution (iron concentration 0.3w / v%) and 10 w / v% dextran (weight average molecular weight 70,000) aqueous solution dilution of the control product used in Test Example 6 (Iron concentration 0.3w / v%) were injected 5 times each, and the same device as in Test Example 7 was used.Induction was continued for 10 minutes under the conditions of frequency 500 KHz and output 4.6. The presence / absence of the mouse was determined by the life and death of the mouse up to 2 weeks later, and the results were as shown in Table-15.
  • Comparative control product 5/5 As a result of necropsy, the comparative control product showed significant coagulation and deposition on part of the mesentery and liver and stomach membranes. This means that an abnormally high temperature occurred at a site that was not reflected in rectal temperature during induction heating.
  • the LD 50 of the complex obtained in Reference Example 1 for intravenous administration of a physiological saline solution was measured using 5 mice of a dd mouse group.
  • LD 5 of the comparative product used in Test Example 6. was measured in the same manner.
  • the Wistar rats were administered the product of the present invention and the comparative product used in Test Example 14 in a quantity of 5 5 ⁇ 88 as Fe, i.v., and the liver was removed daily to obtain a homogenate. measuring the use Ite the T 2 relaxation time NMR measurement apparatus, it was examined in vivo metabolic.
  • the half-life in the liver is as shown in Table 17.
  • Table 17 Test sample Liver half-life in the liver (say) Invented product 3.1 Comparative product> 7 Industrial applicability
  • the therapeutic agent for hyperthermia of the present invention can be obtained by colloid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Description

温熱療法用剤
技術分野
本発明は人ぉょび動物の疾患の処置のために使用しぅる温熱療法用剤 に関し、 特に安全で確実な癌の治療,処置のために有効な温熱療法用剤 に関する。
背景技術
近年、 人または動物の全身または局所を加温して悪性腫瘍ゃ前立腺肥 大症などの疾患を治療 ·処置する試みが行ゎれてぃる。
例ぇば悪性腫瘍の治療法として、 直怪 1 ミク ロンを超ぇなぃ磁性酸化 鉄又は水酸化第 2鉄などの粒子をぶどぅ糖ゃデキス トランなどの水溶液 に懸濁させて静脈内に注射し、 癌細胞に貪食させた後、 電磁場にさらし、 該粒子を誘導加温して癌細胞を死滅させる方法が提案されてぃる (特公 昭 6 3 _ 5 3 7 9号公報参照) 。
しかしながら、 かかる磁性粒子懸濁液はコロィ ド安定性が悪く、 血液 ゃ組織液などぃゎゅる体液に出会ぅと短時間で凝集し、 静脈内投与では 癌細胞に到達するまでに血管ゃ組織に沈着してしまぃ、 癌細胞に集中せ しめることが困難でぁる。 また、 凝集物にょる循環障害が発現するため その用量が制限されるとぃぅ難点がぁる。
これらの問題をさけるため直接腫瘍組織内に磁性粒子懸濁液を注射す ることも検討されてぃる [第 4 4回日本癌学会総会抄録集、 演題 No .18 00 (昭和 6 0年) ] 。 しカゝし、 この方法にょっても、 磁性粒子が腫瘍組 織内で容易に凝集し、 その分布が均一にならなぃため、 腫瘍細胞が完全 に死滅せず、 再発、 転移等の危険がぁり、 効果が不確実になるばかりで なく、 磁性粒子の局在は時に異常高温部を生じ、 正常組織、 ことに血管 の損傷をひきぉこすとぃぅ欠点がぁる。
また、 別の問題として、 かかる磁性粒子は生体内にぉける代謝性が極 めて悪く、 癌治療に成功して患者が長期生存する場合には、 未知の毒性 が懸念されるほか最近急速に発達し、 ょく利用されるょぅになった核磁 気共鳴断層撮影装置、 ぃゎゅる M R Iにょる癌の予後判定等の大きな障 害となる等の恐れがぁる。
本発明は上記の如き欠点を克服した温熱療法用剤を開癸すべくなされ たものでぁり、 誘導加温効率が極めて高く、 生体内でのコロィ ド安定性 に勝れ、 低毒性でかっ生体内にぉける代謝性の良好な温熱療法用剤を提 供することを目的とする。
発明の開示
本発明にょれば、 デキストランと金属磁性体または金属化合物磁性体 との複合体を有効成分として含有する ζとを特徵とする温熱療法用剤が 提供される。
本発明の温熱療法用剤にぉぃて有効成分として使用されるデキストラ ンと金属磁性体または金属化合物磁性体との複合体は、 デキス トランと 金属磁性体または金属化合物磁性体とを化学的に反応させることにょり 製造されるものでぁり、 デキス トラン水溶液にかかる磁性体粒子を単に 懸濁させただけの前掲特公昭 6 3 - 5 3 7 9号公報に記載の組成物とは 明確に区別されるものでぁる。
かかる複合体の調製に使用されるデキストランとしては、 それ自体既 知のものを使用することができ、 殊に、 重量平均分子量が 1 , 0 0 0〜 1 0 0 , 0 0 0、 好ましくは 4,0 0 0 ~ 1 0,0 0 0の範囲内のものカ;、 コロ 。 、 ス ンは未変性のものが使用可能でぁるが、 それ自体既知の方法、 例ぇばァ ルカリ、 ハロゲンまたは亜ハロゲン酸で処理することにょり還元性末端 を改質したデキス トラン ;或ぃはシァナィ ドィォンで処理後加水分解す ることにょり還元性末端を改質したデキス トランもまた使用することカ s でき且っその方が好ましぃ [改質法と しては、 例ぇば、 特公昭 4 5— 5 5 5 7号公報、 特公昭 5 9 - 1 3 5 2 1号、 特開昭 6 1 — 2 3 3 0 0 1 号公報等参照] 。 従って、 本明細書にぉける 「デキス トラン」 なる語は、 未変性のデキス トランのみならず、 上記の如く改質されたデキス トラン をも包含する意味で使用する。
—方、 上記デキス トランと反応せしめられる金属磁性体または金属化 合物磁性体と しては、 誘導加温にょり発熱する金属または金属化合物の 磁性体でぁり、 強磁性体及び超常磁性体が包含される。 かかる磁性体は ,
—般に微細粒子状で使用され、 その粒子怪は通常平均粒子径で 3 0〜 5 0 0 A、 好ましくは 5 0〜 1 5 0 Aの範囲内にぁるものが適してぃる。 しかして、 金属磁性体と しては、 例ぇば、 鉄、 ニッケル、 コバルト、 ガドリニゥム等の遷移金属が挙げられ、 中でも鉄が好適でぁる。 また、 金属化合物と しては、 例ぇば、 鉄、 ニッケル、 コバルト等の遷移金属の 酸化物ゃフェラィ ト等が挙げられ、 特に四三酸化鉄及び y—酸化鉄が好 適でぁる。
以上に述べたデキス トランと金属磁性体または金属化合物磁性体との 反応は、 例ぇば、 特公眧 5 9 - 1 3 5 2 1号公報に記載の方法に従ぃ、 金属磁性体または金属化合物磁性体の水性ゾルにデキス トラン又はその 水溶液を添加し、 中性なぃし弱酸性条件下に約 9 0 °0なぃし還流温度間 の温度で約 3 0〜約 1 2 0分間加熱することにょり行なぅことができる。 また、 米国特許第 4, 1 0 1 , 4 3 5号明細書に記载の方法に従ぃ、 デ キストラン、 好ましくはァルカリ処理した改質デキストランの存在下に 水性媒体中で金属化合物磁性体、 例ぇば磁性酸化鉄を製造し、 次ぃで中 性なぃし弱酸性条件下に約 9 0 °Cなぃし還流温度間の温度で約 3 0〜約 1 2 0分間加熟することにょり行なぅことにょっても複合体を製造する ことができる。
以上に述べた如く して調製されるデキストランと金属磁性体又は金属 化合物磁性体との複合体は、 本発明に従ぃ、 温熱療法用剤として使用す る場合、 その投与に適した剤形に調製される。 その投与の方法とレては、 ー般に、 静脈内、 腫瘍組織内、 動脈内、 膀胱内等への注射、 注入 (点滴) が用ぃられるが、 処置すべき疾患にょっては経ロ投与、 直腸内投与等の 方法で投与することもできる。
しかして、 注射、 注入等の投与に対しては、 上記複合体を製薬学の分 野で通常の方法に従ぃ、 従ぇば、 注射用蒸留水または生理食塩水に通常 1 - 6 0 % ( /v), 好ましくは 5 ~ 2 0 % (w/v)の澳度で溶解させること ができる。
また、 添加剤として、 例ぇば塩化ナトリゥム等の無機塩; ブドゥ糖等 の単糖類; マンニ トール、 ソルビトール等の糖ァルコール類 ; クェン酸 塩、 酒石酸塩等の有機酸塩; リン酸緩衝剤、 トリス緩衝剤等の生理学的 に許容される種々の助剤を適宜配合してもょぃ。
—方、 経ロ投与、 直腸投与に対しては、 製薬学の分野の常法に従ぃ、 適当な製薬助剤と共に、 上記複合体を含む錠剤、 顆粒剤、 カブセル剤、 シロップ、 散剤、 坐剤等の形態に製剤化することができる。 、 、 疾患の部位等に依存しー概にぃぅことはできなぃが、 少なく とも生体が もっ冷却能に打ち勝っだけの組織内または体液内濃度を保持できるょぅ に投与することが必要でぁり、 その濃度は大体 0 · 5 ~ 5.0 %(w/v)の 範囲内でぁる。 かく して、 例ぇば悪性腫瘍に組織内投与する場合、 悪性 腫瘍容積 l cm3当り金属換算で 1 ~5 Oragの量で投与するのが適当でぁ る。 しカゝし、 この投与量はー応の目安でぁり医者の診断に基ぃてかかる 範囲ょり少なぃかまたは多ぃ量を投与することもできる。
本発明の温熱療法用剤を投与された患者は、 前掲特公昭 6 3 - 5 3 7 9号公報に記載の如く誘導加熱装置の高周波磁場内に置かれ、 そこで温 度監視下に治療、 処置を受ける。 誘導加熱装置にぉける周波数としては —般に 20 KHz~ l 0 MHz, 好ましくは 5 0 ~5 0 0 K Hzの範囲内 が適当でぁり、 また、 温度監視は例ぇば米国 B A I L Y社製の TM 5 4 型機に使用されてぃる塩ビ被覆の銅—白金式センサーを用ぃて行なぅこ とができる。
本発明にょり提供される温熱療法用剤は、 有効成分としてデキス トラ ンと金属磁性体または金属化合物磁性体とが化学的に反応して得られる 複合体を使用してぃるため、 コロィ ド状態での安定性に優れ、 生体内で の特定組織への均ー分散性が良好でぁり従って温熱効率に優れてぉり、 しかも毒性が少なく代謝性も良好でぁって、 悪性腫瘍(癌)、前立腺肥大、 創傷等の温熱療法に広く使用することができる。
図面の簡単な説明
第 1図は試験例 1にぉける誘導加温試験結杲を示すグフでぁる。
発明を実施するための最良の形態 次に、 実施例、 参考例及び試験例にょり、 本発明をさらに具体的に説 明する。
参考例 1 (複合体の製造)
ァルカ リ処理した改質デキストラン (重量平均分子量 4 , 0 0 0 ) 1 6 2 を水 5 5 2 ( に溶カゝし、 水浴で加温しながら、 撹拌下塩化第一鉄 4水和物 2 2 . 2 8 、 塩化第ニ鉄 3 7 . 0 2 の混合水溶液 2 2 8 m 、 3規定の水酸化ナトリ ゥム 4 0 を加ぇ、 次ぃで塩酸で中和した後 1 時間加熟還流し、 冷却する。 粗大粒子を遠心分離で除去し、 上澄液に等 量のメタノールを加ぇて磁性酸化鉄 ·デキス トラン複合体粗製物を沈澱 として得る。 この沈澱を水に溶かし、 1晚流水中で透析し、 pHを 8に 調整してェバポレーターで濃縮した後 0 . 2 0 imのフィルターで濾過し、 凍結乾燥して、 磁性酸化鉄 ·デキス トラン複合体(黒色粉末 3 5 g)を得 る。 このょぅにして得られた磁性酸化鉄 ·デキストラン複合体の物性を 表ー 1に示す。
表ー 1 分析項目 数 値 鉄含有量 4 6.7 0 % デキス トラン含有量 2 7.7 1 % デキス トラ ン z鉄
0.59
.磁性酸化鉄部分の
平均粒子径 7 7 A 保磁カ 3 ェノレステッ ド 磁化率 0.2 9 5 F e 1 飽和磁化 8 2.3 emu/ gF e τ2緩和能カ 224 fi niol sec—1 参考例 2 デキス トラ ン(重量平均分子量 7 0 0 0 )2 5 0 gを水 1 .0βに溶解し、 これにョゥ素( I 2)2 5gを加ぇ、 撹拌下に約 1時間で 4 0 %N a OH 3 Οηιβを添加し、 さらに 2時間撹拌する。 反応液にその 3倍量のメ タ ノー ルを添加し、 析出物を得る。 析出物は水に再溶解し、 3倍量のメタ ノー ルを添加する再沈操作をさらに 2回繰り返す。 析出物の水溶液を濾過し. Ρ Η 7.5に調整した後、 減圧濃縮、 次ぃで凍結乾燥して、 改質デキス トラン(白色粉末、 2 2 5g)を得る。 参考例 3 デキス トラン(重量平均分子量 4 0 0 0 )2 7 2 gを水 1 . Ofi に溶解し, 撹拌下濃塩酸を用ぃ ρ Η 3.0 ± 0.1 に保持しっっ、 次亜塩素酸ナ ト リ ゥム(N a CJ202) 1 6 4 gを約 1時間で添加する。 さらに p H 3.0 ± 0 1 に保持しっっ 3時間撹拌し、 次ぃで 1 5時間撹拌する。 反応液に 3. 5倍量のメタ ノ 一ルを添加し、 析出物を得る。 析出物は水に再溶解し、 3.5倍量のメタ ノールを添加する再沈操作を 2回繰り返す。 析出物の 水溶液を濾過し、 P H 7.5に調整した後、 減圧濃縮、 次ぃで凍結乾燥 して、 改質デキストラン(淡黄色の粉末、 2 1 8g)を得る。
参考例 4
ァンパーラィ ト⑧ I RA— 4 1 0(ロームァン ドハース ト社製ィォン 交換樹脂) 5J2 に水を加ぇて全量 7£ としたスラ リーに、 撹拌下 p Hを 8 - 0 - 8.7に保持しながら 1 Μ塩化第ニ鉄水溶液 1.0β と 1 Μ塩化 第一鉄水溶液 5 0 Omfi.との混合液を添加する。 この反応液に直ちに濃塩 酸を加ぇて p H 1.6とし、 同一 P Hで 1時間撹拌し、 次ぃでィォン交 換樹脂を濾別する。 得られたゾルに水を加ぇながら限外濾過し、 磁性酸 化鉄水性ゾル 2.3ώ (p H 2.8、 F e含量 26mgZmfl)を得る。 このゾ ル 60 0mi2と参考例 2で得られる -改質デキストランの 25 wZv %水溶 液 300πιβとを混合し、 1時間還流加熱する。 冷後この反応液に漠度 4 7 %までメタノールを添加し、 析出した沈澱物を水に溶解し、 一夜流水 透析する。 次ぃで Ρ Ηを 8に調整した後、 滅圧渙縮、 濾過、 凍結乾燥し て、 磁性酸化鉄 ' デキストラン複合体(黒色粉末、 3 7g)を得る。 本複 合体の物性を表ー 2に示す。
表一 2
分析項目 数値
鉄含有量 3 9.3 %
デキス トラン含有量 4 1 .0 %
デキス トラン Z鉄(重量比) 1 .04
磁性酸化鉄部分の平均粒子径 8 0 A
保磁カ 4ェルステッ ド
磁化率 0.2 7(gF e )— 1飽和磁化
9 0.1 erau/gF e
τ2緩和能カ 2 7 2 i2 · rnmofi"1 ♦ seT1
参考例 5
参考例 4で製造した磁性酸化鉄水性ゾル 6 0 Οπιβと参考例 3で得られ る改質デキス 卜ランの 2 5 w/v%水溶液 3 0 Omfiとを混合し、 以下参 考例 4と同様に処理して、 磁性酸化鉄 · デキス トラン.複合体(黒色粉末、 3 3g)を得る。 本複合体の物性を表ー 3に示す。
分析項目 数値
鉄含有量 45.8%
デキス トラ ン含有量 32 -0%
デキス トラン Z鉄(重量比) 0.7 0
磁性酸化鉄部分の平均粒子径 78 A
保磁カ 4ェ レステッ ド
磁化率 0.26 (gF e ) 1飽和磁化
89.9 emu/gFe
T 2緩和能カ 284 J2 · mraofi 1 · sec"1
実施例 1
参考例 1で得た磁性酸化鉄。 デキストラン複合体粉末 2 1 7 Omgに生 理食塩水を加ぇて 1 とし、 水浴中で 50 °Cに加温後、 ポァ一サィ ズ 0.22 mのミ リポァーフィルターを用ぃて濾過滅菌し、 滅菌ガラス ァンプルに封入する。
実施例 2
参考例 1で得た磁性酸化鉄 · デキス トラン複合体粉末 2 1 7 Omgにマ ンニ トール 2 0 Omgを添加し、 生理食塩水を加ぇて 1 Οηώとし、 ガラ ス ァンプルに封入後 1 2 1。C 2 0分間ォートクレーブ滅菌する。
実施例 3
参考例 1で得た磁性酸化鉄 · デキス トラン複合体粉末 2 1 7 Omgにマ ンニ トール 20 0 ragを加ぇょく混合したものに、 用時に生理食塩水を加 ぇて、 1 Om とし、 ポァーサィズ 0.22 mのミ リポァーフィルター で濾過滅茵する。 実施例 4
参考例 4で得た磁性酸化鉄 · デキス トラン複合体粉末 3 0 5 3mgにク ェン酸ニナ ト リ ゥム 1 2 7mgを加ぇ、 注射用蒸留水に溶解して 1 0 0mi2 と し、 水浴中で 5 0 °Cに加温後、 ポァ ·サィズ 0.2 2卢 mのミ リポァー フィルターを用ぃて濾過滅菌し、 滅菌バィァル瓶に封入する。
実施例 5
参考例 5で得た磁性酸化鉄 ·デキス トラン複合体粉末 2 6 2 Omgに生 理食塩水を加ぇて 1 0 0mi2と し、 実施例 1 と同様の方法で製剤とする。 試験例 1
前記参考例 1で製造して得た磁性酸化鉄♦ デキス トラン複合体に注射 用蒸留水を加ぇ、 濃度を Feと して 1 .2 5 w/v %と した液 を作り、 直径 3 cmのシャーレーに入れ、 山本ビニター製誘導加温装置 TY型機を 用ぃ、 周波数 5 0 0 KHz、 出カ 4.6 KWにょり誘導加温実験を行ぃ、 下記の成績を得た。 なぉ、 比較対照品として、 平均粒子径約 8 O Aの磁 性酸化鉄を濃度が Feと して 1 .2 5 w/v %及び 5.0 w/v %となるょぅに 1 0 w/v %デキス トラン (重量平均分子量、 7 0 , 0 0 0 ) 水溶液に懸 濁したものを夫々 5|» ずっ作り、 同様の条件にょり誘導加温実験を行っ た。
また、 液温の測定は米国 B A I LY社製 TM 5 4型温度測定機を用ぃ て行った。
本発明品は i分間の誘導加温にょり約 7 °C温度が上昇した。 一方、 Fe と して同濃度の比較対照品は同条件の誘導加温にょっても 0.4 °Cの温 度上昇に止まった。 また、 比較対照品の温度上昇効率を高くする目的で 調製した Fe濃度 5.0 w/v %のものは確かにその効率が高くなったもの の、 沈降物が生じゃすぃため、 同条件で通電しっづけた場合の温度上昇 は不規則でぁった (第 1図参照) 。
試験例 2
実施例 4で得た本凳明の注射液 5 mi2を直径 3 cmのシャーレに入れ、 試 験例 1 と同じ装置を用ぃ、 出カ 1 。 4 K Wで誘導加温試験を行った。 比較対照品は試験例 1 と同じものを用ぃ、 同様に試験した。
その結果、 表ー 4に示す成縝が得られた。
表ー 4
被検液 . 上昇温度(°cノ分)
本発明品 2 。 2
比較対照品 0 . 2
試験例 3
実施例 5で得た本発明の注射液 5 πιβを用ぃ試験例 2と全く同様の方法 で誘導加温試験を行った。
その結杲、 表- 5に示す成績が得られた。
表ー 5
被検液 上昇温度(°CZ分)
2 . 4
比較対照品 0 . 2
試験例 4
試験例 2と同じ条件にょり本発明品の物理化学的性状と誘導加温にょ る、 温度上昇との関係を調べた。 その結果、 表- 6に示す成績を得た。 表ー 6 検討項目及び条件 上昇温度 備
(°Cノ分)
4,000 4.5 o酸化鉄部分の粒子径は 原料デキス ト 7,000 4。2 ぃずれも約 8 0 A
ランの重量 20,000 2。1 0試験液の鉄濃度はぃず 平均分子量 70,000 1.5 れも 2.5 /v%
30 A 0.4 oデキス トランの分子量 酸化鉄部分の 60A 2.1 はぃずれも 4, 000
平均粒子径 100A 4.3 0試験液の鉄濃度はぃず
れも 2.5 w/v%
l.Ol(gFe)—1 1.5
磁化率 1.98(gFe)— 1 2.1
2.95(gFe)— 1 4.5 o試験液の鉄濃度はぃず
れも 2.5 w/v%
1.25w/v% 2-6 oデキス トランの分子量 酸化鉄濃度 2.5 w/v% 5.0 はぃずれも 4,000
(鉄換算) 5.0 w/v% 9.1 0酸化鉄部分の粒子径は
約 8 0 A
温度上昇率とデキス トランの分子量とは負の、 酸化鉄部分の平均粒子 径、 磁化率及び酸化鉄濃度とは正の相関が認められた。 試験例 5 参考例 1で得た磁性酸化鉄 ·デキス トラン複合体を注射用蒸留水を用 ぃて^濃度 1 0 %の液となし、 この 1 とゥサギ新鮮血清 1 とを 混和し、 3 7 °Cに保って凝集の有無を肉眼にょり観察した。 一方、 比較 対照品として平均粒子径が約 8 0 Aの磁性酸化鉄粒子を 1 0w/v%デキ ストラン (重量平均分子量 7 0 , 0 0 0 ) 水溶液に渙度が鉄として 1 0 w /v%となるょぅ懸濁し検液となし、 同様に凝集の有無を観察した。 その 結杲、 表一 7に示す成績を得た。
ー 7
被検液 凝集までの時間(分)
本発明品 > 1,4 4 0
比較対照品 < 1 本髡明品.は血淸中にぉけるコロィ ド安定性が勝れてぃた。
試験例 6
参考例 1で得た磁性酸化鉄 ·.デキス トラン複合体 2 1 7 mgに注射用蒸 留水を加ぇて 1 [^とし、 澹過滅菌後腫瘍容積 1 cm3当り 0 . 1 ずっ腫 瘍内注射し、 2 4時間後の分布状態を調べた。 即ちコロニー計算板用 3 nunマス目のガラス板を腫瘍割面に当て、 黒色の注射液が存在する部分と そぅでなぃ部分の比率を求めた。
—方、 比較対照品として平均粒子径が約 8 O Aの磁性酸化鉄を用ぃ、 渙度が鉄として 1 0 vr/v%になるょぅ 1 0 w/v%デキス トラン (重量平均 分子量 7 0 , 0 0 0 ) 水溶液に驛濁した液を調製した。 本発明品と同様 の液量、 投与部位及び観察法にょり試験した。 因に、 この懸濁液は黒褐 色でぁる。
その結果、 表— 8に示す成績を得た。 分布率 (% )
被検液 (検液着色部面積 /割面全面積)
Xへ 1丄 π U Γ)
本 明品 9 1
比較対照品 3 8 本発明品は腫瘍内での分布が均等でぁった。
試験例 7
B AL BZc系雌性マゥスに Meth-A線維肉腫細胞を 1 x 1 06個ず っ腹腔内移植し、 その 8日目に、 参考例 1で得た磁性酸化鉄 ·デキス ト ラン複合体の生理食塩水溶液を Feと して 2 4 mgZマゥスの量ずっ腹腔内 投与し、 その 2時間後に試験例 1で用ぃた誘導加熱装置を用ぃ周波数 5 00 KHz、 出カ 4.6 Kwで誘導加熱を開始し、 B E ALY社製、 TM •54型機にょる直腸の測定温度が 40.5乃至 4 1 .5 °Cになるょぅ装置 の電流を断続して 1 0分間温熱治療を行ぃ、 以後生存日数を観察した。 対照群としては本発明品の腹腔内注射を行ぃ、 誘導加熱を行ゎなかった 群とし、 次式にょり延命率を算出した。 なぉ、 1群 7匹のマゥスを用ぃ た。
延命率(%)= (HT/ c - 1 ) X 1 0 0
式中、 HTは温熱治療群平均生存日数でぁり、
cは対照群平均生存日数でぁる。
また、 比較対照品として、 平均粒子径が約 1 , 0 0 0 Aの四三酸化鉄 を 5 %ぶどぅ糖水溶液に酸化鉄として 5 w/v%となるょぅ懸濁した液を 調製し、 マゥス 1匹当り鉄として 24mgずっ腹腔内注射し、 本発明品の 場合と同様の試験を行った。
なぉ、 これらの試験も 1群 7匹のマゥスを用ぃて行った。
その結果、 表— 9に示す成缭が得られた。
表ー 9
被検液 延命率 (%)
本発明 I» 1 2 0
比較対照品 - 2 5
本試験例の担癌マゥスは末期瘙に相当するが、 この条件下にぉぃて、 本発明品は延命効杲が認められた。
—方、 比較対照品には延命効杲が認められなかった。
試験例 8
B A L B Z c系マゥスの鼠径部皮下に Meth- A線維肉腫細胞を 1 X 1 0 6個ずっ移植して固形癌となし、 この癌の長径が 1〜 1 . 5 cmになった 時点を選び、 参考例 1で得た複合体の水溶液を次式で求めた腫瘍容積 1 cm3当り鉄として 1 2 msの量ずっ腫瘍内注射し、 その 2時間後に試験例 1で用ぃた誘導加熱装置を用ぃ、周波数 5 0 0 K H z, 出カ 4 . 6 K wの条 件で誘導加熱を開始し、 注射局所の皮膚温が試験例 7で用ぃた温度測定 装置にょる測定値として、 4 1 ~ 4 3 °Cに 1 0分間保たれるょぅ誘導加 温装置の電流を断続した。
また、 試験例 6で用ぃたものと同じ比較対照品を用ぃ、 鉄換算として、 本発明品と同量を腫瘍内注射し、 前述の条件下で誘導加熱した。
以後、 これら担癌マゥス及び同様の処置を行ぃ、 誘導加熟のみを実施 しなかった担癌マゥスの生存日数を観察し、 試験例 7と同様の式にょり 延命率を算出した。 腫瘍容積(cm3):
6
式中、 は腫瘍の長径(cm)でぁり、
d2は腫瘍の短径(cm)でぁる。
試験の結杲、 表- 1 0に示す成鑌を得た,
表— 1 0
被検液 延命率 (%)
発 品 8 7
比較対照品 25 試験例 9
呑竜系ラッ 卜の腹腔内に腹水肝癌 AH 6 0 C細胞を 1 x 1 06個ずっ 腹腔内移植し、 その 6日後に参考例 1で得た複合体の 2.6 w/v%水溶液 (Fe換算 1 .2w/v%) 又は 5.2w/v%水溶液を調製し、 それらを担癌ラ ッ ト 1匹当り夫々 ずっ腹腔内注射し、 その約 2時間後に、 試験例 7 と同様の方法にょり誘導加温を行った。 また 5.2w/v%水溶液 5m を注 射した群の半数でぁる 7匹には翌々日に同条件の誘導加温治療を実施し た。
以後、 生存日数を観察し、 試験例 7と同様に延命率を求めた。
その結杲、 表- 1 1に示す成績が得られた。 表一 1 1
Figure imgf000020_0001
試験例 1 0
吞竜系ラッ トの腹腔内に腹水肝癌 A H 6 0 C細胞を 5 X 1 0 6偭ずっ 移植し、 その 6日後に実施例 4で得た本発明の注射液を担癌ラッ ト 1匹 当りそれぞれ 5 mfiずっ腹腔内注射し、 試験例 7と同様の方法にょり抗腫 瘍効杲を試験した。
その結果、 表ー 1 2に示す成績が得られた。
表ー 1 2
Figure imgf000020_0002
試験例 1 1
実施例 5で得た本発明の注射液を用ぃ、 試験例 1 0と同じ方法にょり 抗腫瘍効杲を試験した。
その結杲、 表- 1 3に示す成績が得られた。 表- 1 3
Figure imgf000021_0001
試験例 1 2 試験例 9と同じ系統のラッ トの足踱皮下に腹水肝癌 AH 6 0 C細胞を 1 X 1 06個ずっ移植して固形癌となし、 これらが增殖して、 足踱の厚 みが l cmを越ぇ、 足全体に癌が認められる時点で、 移植足の容積を水置 換法にょり測定し、 その容積 l cm3当り、 実施例 1で得た本発明の注射 液を鉄として 1 2 mgずっ腫瘍内に注射し、 その約 2時間後に、 試験例 8 と同様の誘導加温治療を実施した。 その 1 2日後に再び足容積を測定し た。 その結果、 表— 1 4に示す成績が得られた。 ー 1 4 足 容 積 (cm3)
被検液
0 曰 12 曰 本発明品 2.6 2.0 比較対照品 2.4 2.5 陰性対照 1.S 3.0 試験例 1 3 正常 B AL BZcマゥス 1群 7匹の腹腔内に参考例 1で得た複合体の 生理食塩水溶解液 (鉄濃度 0.3w/v%) と試験例 6で用ぃた比較対照品 の 1 0w/v%デキス トラン (重量平均分子量 7 0 , 0 0 0 ) 水溶液希釈液 (鉄濃度 0.3w/v%) とを夫々 5 ずっ注射し、 試験例 7と同じ装置を 用ぃ周波数 5 0 0 KHz, 出カ 4.6 の条件にょり連統 1 0分間誘導 加温し、 副作用の有無を該マゥスの 2週間後までの生死にょり判定した, その結杲、 表- 1 5に示す成績が得られた。
表ー 1 5
被検液 死亡率
(死亡数 処置数)
本癸明品 0/5
比較対照品 5/5 また剖検の結果比較対照品は腸間膜の一部及び肝と胃の膜に著しぃ凝 集沈着が認められた。 これは誘導加温中に直腸温には反映されなぃ部位 で異常高温を生じたことを意味する。 -
—方、 本発明品は均等に分布し、 そのょぅな副作用は少なかった。 試験例 1 4
dd系マゥス 1群 5匹を用ぃて参考例 1で得た複合体の生理食塩水溶液 の静脈内投与にぉける LD50を測定した。 また、 試験例 6で用ぃた比 較対照品の L D5。も同様に測定した。
なぉ、 L D 5。算出法は Litchfield & Wi lcoxon法にょった。
その結果、 表ー 1 6に示す成續が得られた。 表- 1 6 被検液 LD 5。 [95%信頼限界]
^mgFe/kg) 本発明品(Feとして 2,400[1,600〜3,600]
100mg/mi) 比較対照品 (同上) 220[169〜286]
本発明品は極めて低毒性でぁった。 試験例 1 5
Wistar系ラッ トに試験例 1 4で用ぃた本発明品及び比較対照品を Feと して 5ιη8 Ί¾の量ずっ i V投与し、 経日的に肝を摘出して、 ホモジネー トとなし、 NMR測定装置を用ぃて T2緩和時間を測定し、 生体内代謝 性を検討した。 肝臓にぉける半減期は表ー 1 7のとぉりでぁった。 表ー 1 7· 被検液 肝臓にぉける半滅期(曰) 本発明品 3.1 比較対照品 >7 産業上の利用可能性 以上述べたとぉり、本発明の温熱療法用剤は、コロィ ド状態での安定性 に優れ、 生体内での特定組織への均一分散性が良好でぁり従って温熱効 果に優れてぉり、 しかも毒性が少なく代謝性も良好でぁって、 悪性腫瘍 (癌)、 前立腺肥大、 創傷等の温熱療法に広く使用することができる。

Claims

請求の範囲
1 . デキストランと金属磁性体または金属化合物磁性体との複合体を 有効成分として含有することを特徵とする温熱療法用剤。
2 . デキス トランが 1 , 0 0 0乃至 1 0 0 , 0 0 0、 好ましくは 4, 0 0 0乃至 1 0, 0 0 0の範囲内の重量平均分子量を有する請求の範囲第 1項記載の温熱療法用剤。
3 . デキストランがァルカリ、 ハロゲンまたは亜ハロゲン酸で処理す ることにょり還元性末端を改質したデキストラン、 或ぃはシァナィ ドィ ォンで処理後加水分解することにょり還元性末端を改質したデキストラ ンでぁる請求の範囲第 1項記載の温熟療法用剤。
4 . 金属磁性体または金属化合物磁性体が 3 0 A乃至 5 0 0 A、 好ま しくは 5 0 A乃至 1 5 0 Aの範囲内の平均粒子径を有する請求の範囲第 1項記载の温熱療法用剤。
5 . 金属磁性体または金属化合物磁性体が強磁性体または超常磁性体 でぁる請求の範囲第 1項記載の温熱療法用剤。
6 . 金属磁性体が金属鉄、 金属ニッケル、 金属コバルドまたは金属ガ ドリニゥムでぁる請求の範囲第 1項記載の温熱療法用剤。
7 - 金属化合物磁性体が鉄、 ニッケルまたはコバルトの酸化物でぁる 請求の範囲第 1項記載の温熱療法用剤。
8 . 金属化合物磁性体が四=酸化鉄または y -酸化鉄でぁる請求の範 囲第 7項記載の温熱療法用剤。
9 . 人ぉょび動物の悪性腫瘍の温熟療法のために使用する請求の範囲 第 1項記載の温熟療法用剤。
1 0 . デキストランと金属磁性体または金属化合物磁性体との複合体 の有効量と製薬学的に許容しぅる助剤とからなる温熱療法用薬剤組成物。
1 1 . 注射剤又は注入(点滴)剤の形態にぁる請求の範囲第 1 0項記載 の薬剤組成物。
1 2 . デキス ト ラ ンと金属磁性体または金属化合物磁性体との複合体 の有効量を患者に投与した後、 患者を高周波磁場内にぉく ことを特徵と する温熱療法。
1 3 . デキス トランと金属磁性体または金属化合物磁性体との複合体 の温熱療法にぉける使用。
PCT/JP1989/000843 1988-08-19 1989-08-18 Agent for thermotherapy WO1990001939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE89909424T DE68911694T2 (de) 1988-08-19 1989-08-18 Mittel für die thermotherapie.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20481488 1988-08-19
JP63/204814 1988-08-19

Publications (1)

Publication Number Publication Date
WO1990001939A1 true WO1990001939A1 (en) 1990-03-08

Family

ID=16496819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000843 WO1990001939A1 (en) 1988-08-19 1989-08-18 Agent for thermotherapy

Country Status (3)

Country Link
EP (1) EP0444194B1 (ja)
DE (1) DE68911694T2 (ja)
WO (1) WO1990001939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1952919A2 (en) 2007-02-02 2008-08-06 Fujifilm Corporation Magnetic nanoparticles and aqueous colloid composition containing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117782C2 (de) * 1991-05-28 1997-07-17 Diagnostikforschung Inst Nanokristalline magnetische Eisenoxid-Partikel, Verfahren zu ihrer Herstellung sowie diagnostische und/oder therapeutische Mittel
US5411730A (en) * 1993-07-20 1995-05-02 Research Corporation Technologies, Inc. Magnetic microparticles
US6929954B2 (en) 2000-11-02 2005-08-16 Chromaceutical Advanced Technologies, Inc. Method for producing purified hematinic iron-saccharidic complex and product produced
EP1719495A3 (en) * 2000-11-02 2007-05-02 Chromaceutical Advanced Technologies, Inc. Method for producing purified hematinic iron-saccharidic complex and product produced
DE602004008590T2 (de) * 2003-01-31 2008-05-21 Otsuka Pharmaceutical Factory, Inc., Naruto Hilfsstoff zum einsatz bei der krebstherapie mittels dielektrischer erwärmung und krebstherapieverfahren
EP3305334A1 (en) * 2016-10-06 2018-04-11 Universitätsklinikum Jena Magnetic composition and medical material for stimulating vascularisation in internal or external wound of the body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6605491A (ja) * 1965-04-24 1966-10-25
JPS55160720A (en) * 1979-05-29 1980-12-13 Mochida Pharmaceut Co Ltd Remedial composition for cancer and its remedial device
US4303636A (en) * 1974-08-20 1981-12-01 Gordon Robert T Cancer treatment
JPS5717647A (en) * 1980-05-19 1982-01-29 Corning Glass Works Ceramic proper to induce local heat generation under existence of radio frequency magnetic field
JPS5913521B2 (ja) * 1975-06-19 1984-03-30 メイトウサンギヨウ カブシキガイシヤ 磁性酸化鉄・デキストラン複合体の製造法
JPS60255728A (ja) * 1984-05-31 1985-12-17 Mochida Pharmaceut Co Ltd 制癌用磁性小胞体組成物の製造法
US4662359A (en) * 1983-08-12 1987-05-05 Robert T. Gordon Use of magnetic susceptibility probes in the treatment of cancer
JPS635379B2 (ja) * 1978-07-07 1988-02-03 Toomasu Gorudon Robaato
US4735796A (en) * 1983-12-08 1988-04-05 Gordon Robert T Ferromagnetic, diamagnetic or paramagnetic particles useful in the diagnosis and treatment of disease
JPS63103048A (ja) * 1986-10-19 1988-05-07 Masaaki Matsui 感温磁性材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE463651B (sv) * 1983-12-21 1991-01-07 Nycomed As Diagnostikum och kontrastmedel
US4767611A (en) * 1984-07-03 1988-08-30 Gordon Robert T Method for affecting intracellular and extracellular electric and magnetic dipoles
PT81498B (pt) * 1984-11-23 1987-12-30 Schering Ag Processo para a preparacao de composicoes para diagnostico contendo particulas magneticas
DE3443252A1 (de) * 1984-11-23 1986-05-28 Schering AG, 1000 Berlin und 4709 Bergkamen Dextran-magnetit-komplexe fuer die nmr-diagnostik

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6605491A (ja) * 1965-04-24 1966-10-25
US4303636A (en) * 1974-08-20 1981-12-01 Gordon Robert T Cancer treatment
JPS5913521B2 (ja) * 1975-06-19 1984-03-30 メイトウサンギヨウ カブシキガイシヤ 磁性酸化鉄・デキストラン複合体の製造法
JPS635379B2 (ja) * 1978-07-07 1988-02-03 Toomasu Gorudon Robaato
JPS55160720A (en) * 1979-05-29 1980-12-13 Mochida Pharmaceut Co Ltd Remedial composition for cancer and its remedial device
JPS5717647A (en) * 1980-05-19 1982-01-29 Corning Glass Works Ceramic proper to induce local heat generation under existence of radio frequency magnetic field
US4662359A (en) * 1983-08-12 1987-05-05 Robert T. Gordon Use of magnetic susceptibility probes in the treatment of cancer
US4735796A (en) * 1983-12-08 1988-04-05 Gordon Robert T Ferromagnetic, diamagnetic or paramagnetic particles useful in the diagnosis and treatment of disease
JPS60255728A (ja) * 1984-05-31 1985-12-17 Mochida Pharmaceut Co Ltd 制癌用磁性小胞体組成物の製造法
JPS63103048A (ja) * 1986-10-19 1988-05-07 Masaaki Matsui 感温磁性材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Abstract No. 106 (10): 72778q (J. Neuro Oncol., 4 (2), 175 - 181 (1986) KOBAYASHI, TATSUYA; KIDA, YOSHIHISA; TANAKA, TAKAYUKI; KAGEYAMA, NAOKI; KOBAYASHI, HIROKI; AMEMIYA, YOSHIFUMI: Abstract of "Magnetic induction hyperthermia for brain tumor using ferromagnetic implant with Low Curie temperature. I. Experimental study".). *
CHEMICAL ABSTRACTS, Abstract No. 109 (6): 43353d (J. Biomed. Mater. Res., 22 (4), 303 - 319 (1988) Chen, J. S.; POIRIER, D. R.; DAMENTO, M. A.; DEMER, L. J.; BIANCANIELLO, F.; CETAS, T. C.: Abstract of "Development of Ni-4 wt. % Si thermoseeds for hyperthermia cancer treatment"). *
CHEMICAL ABSTRACTS, Abstract No. 85 (12): 83193u (J. Biomed. Mater. Res., 10 (3), 327 - 334 (1976) MOIDEL, R.A.; WOLFSON, S. K.; Jr.; SELKER, R. G.; WOINER, S. B.: Abstract of "Materials for selective tissue heating in a radiofrequency electromagnetic field for the combined chemothermal treatment of brain tumors".). *
See also references of EP0444194A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1952919A2 (en) 2007-02-02 2008-08-06 Fujifilm Corporation Magnetic nanoparticles and aqueous colloid composition containing the same

Also Published As

Publication number Publication date
DE68911694T2 (de) 1994-05-05
EP0444194A1 (en) 1991-09-04
EP0444194A4 (en) 1991-12-04
DE68911694D1 (de) 1994-02-03
EP0444194B1 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
Pan et al. Mimicking drug–substrate interaction: a smart bioinspired technology for the fabrication of theranostic nanoprobes
Qin et al. Synthesis of gadolinium/iron–bimetal–phenolic coordination polymer nanoparticles for theranostic applications
Shou et al. Zn2+ doped ultrasmall prussian blue nanotheranostic agent for breast cancer photothermal therapy under MR imaging guidance
US5328681A (en) Composition comprising magnetic metal oxide ultrafine particles and derivatized polysaccharides
Xie et al. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy
WO1992022586A1 (en) Oxidized composite comprising water-soluble carboxypolysaccharide and magnetic iron oxide
JPH03134001A (ja) 有機磁性複合体
Chen et al. Tumor microenvironment-responsive polydopamine-based core/shell nanoplatform for synergetic theranostics
Tao et al. Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer
TW205006B (ja)
BRPI0721148B1 (pt) nanopartículas magnéticas para aplicação em hipertermia, preparação destas e uso de construtos apresentando aplicação farmacológica
CN105462580A (zh) 一种荧光靶向的锌掺杂四氧化三铁纳米颗粒及制备
Shan et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy
CN109157662A (zh) 一种人血清白蛋白-阿霉素交联物纳米颗粒及其应用
Wang et al. Eumelanin–Fe 3 O 4 hybrid nanoparticles for enhanced MR/PA imaging-assisted local photothermolysis
WO1990001939A1 (en) Agent for thermotherapy
Guan et al. High-efficiency and safe sulfur-doped iron oxides for magnetic resonance imaging-guided photothermal/magnetic hyperthermia therapy
WO2013150118A1 (en) Magnetic nanoparticles dispersion, its preparation and diagnostic and therapeutic use
CN111773246A (zh) 一种可调控铁凋亡和免疫治疗的纳米复合物及其制备与应用
Liu et al. Intelligent albumin-stabilized manganese dioxide nanocomposites for tumor microenvironment responsive phototherapy
Fu et al. Magnetic iron sulfide nanoparticles as thrombolytic agents for magnetocaloric therapy and photothermal therapy of thrombosis
Pan et al. Facile preparation of hyaluronic acid and transferrin co-modified Fe 3 O 4 nanoparticles with inherent biocompatibility for dual-targeting magnetic resonance imaging of tumors in vivo
JP2847789B2 (ja) 温熱療法用剤
Fu et al. Strategy to prevent cardiac toxicity induced by polyacrylic acid decorated iron MRI contrast agent and investigation of its mechanism
CN101474414A (zh) 高分子包裹磁性纳米粒子造影剂的制备及应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1989909424

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989909424

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989909424

Country of ref document: EP