WO1989005524A1 - Planar led illuminant - Google Patents

Planar led illuminant Download PDF

Info

Publication number
WO1989005524A1
WO1989005524A1 PCT/JP1988/001210 JP8801210W WO8905524A1 WO 1989005524 A1 WO1989005524 A1 WO 1989005524A1 JP 8801210 W JP8801210 W JP 8801210W WO 8905524 A1 WO8905524 A1 WO 8905524A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting element
light source
emitting elements
Prior art date
Application number
PCT/JP1988/001210
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Suehiro
Shigeru Yamazaki
Original Assignee
Iwasaki Electric Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62301730A external-priority patent/JPH01143366A/en
Priority claimed from JP63028717A external-priority patent/JPH01205480A/en
Application filed by Iwasaki Electric Co., Ltd filed Critical Iwasaki Electric Co., Ltd
Publication of WO1989005524A1 publication Critical patent/WO1989005524A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2109/00Light sources with light-generating elements disposed on transparent or translucent supports or substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/20Illuminated signs; Luminous advertising with luminescent surfaces or parts
    • G09F13/22Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
    • G09F2013/222Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to an LED planar light source that radiates light emitted from a light emitting element to the outside after being reflected by a concave reflecting surface.
  • Fig. 24 is a schematic cross-sectional view of a conventional LED planar light source using a reflecting member
  • Fig. 2 ⁇ is an optical path diagram of light emitted from the light emitting element
  • Fig. 26 is a front view of the conventional LED planar light source. It is.
  • 51 is a light emitting element
  • 52 is a substrate
  • 53 is a circuit pattern
  • 54 is a wire
  • 55 is a reflecting member
  • 55a is formed on a reflecting member 55.
  • each light emitting element 51 is mounted on a substrate 52 and is electrically connected by a circuit pattern 53 and a wire 54.
  • each light emitting element 51 follows an optical path indicated by an arrow in FIG. That is, a part of the light emitted from the light emitting element 51 is directly radiated to the outside through the radiation surface 56a of the light transmitting material 56, and the remaining light is reflected by the reflection surface 55a. Radiated from Here, the light reflected by the reflecting surface 55a follows an optical path parallel to the central axis of the reflecting surface 55a as shown in FIG. Radiated. Therefore, these lights contribute to the improvement of the luminous intensity in the front direction of the LED planar light source.
  • the light radiated directly to the outside is a light transmitting material 56 'having a large refractive index and an external light having a small refractive index.
  • Most of the light is radiated in the lateral direction of the LED planar light source due to the refraction of the boundary surface (radiation surface 56a) with the part. Therefore, these lights do not contribute to the improvement of the luminous intensity in the front direction of the LED planar light source and are wasted light.
  • the reflecting surface 55 a cannot be disposed so close to the light emitting element 51 because of the connection of the wire 54 of the light emitting element 51. As a result, in the case of a conventional LED planar light source, as shown in FIG.
  • the brightness of the hatched portion 57 at the center of each reflection surface 55a decreases, and the brightness of the emission surface 56a decreases.
  • the conventional LED surface light source has a planar shape, there is a drawback that a dark portion 58 where light from the light emitting element 51 is not radiated exists at various positions on the radiation surface 56a.
  • an LED surface light source in which the hollow portion of the reflecting member 55 is filled with a light diffusing resin 59 as shown in FIG. 27 has been devised.
  • the optical path of the light emitted from the light emitting element 51 to the emission surface 56a is long, and light is attenuated due to simple absorption or the like.
  • the light diffusing resin 59 is made of an epoxy resin having a refractive index of about 1.5, light incident at an angle of about 40 degrees or more with respect to the radiation surface 56a is not allowed. The radiation surface is totally reflected at 56a.
  • the traveling direction of the sufficiently diffused light is considered to be uniform in all directions, only about 25% of the light reaching the emission surface 56a is emitted to the outside. Absent. Also, of the light radiated to the outside, the light incident on the radiation surface 56a at an angle of about 20 degrees or more is, as described above, the side direction at an angle of 3 Q degrees or more due to the refraction of the boundary surface. Is radiated to the outside. Therefore, when an LED planar light source using a light-diffusing resin 59 as shown in Fig. 27 is used for a backlight of a liquid crystal display or an outdoor display device, for example, the light intensity is low. The problem of shortage arises.
  • the area of the reflection surface 55a provided on the side surface of the light emitting element 51 needs to be as large as possible in order to improve the radiation efficiency of light in the front direction. For this reason, conventional LED planar light sources Has the disadvantage that it cannot be made thin.
  • the present invention has been made based on the above circumstances, and provides a thin LED surface light source that can eliminate uneven brightness and dark areas on the emission surface and can improve the light emission efficiency in the front direction.
  • the purpose is to do so. Disclosure of the invention
  • the present invention provides a plurality of light emitting elements, a lead section for supplying power to the light emitting elements, and a light emitting element provided for each of the light emitting elements on a light emitting surface side of the light emitting elements so as to face the light emitting elements.
  • a concave reflection surface formed in a polygonal shape whose front shape can uniformly fill the surface, and the end of each concave reflection surface is separated from the end of the other concave reflection surface without a gap.
  • An LED planar light source which is formed so as to be bonded, and which emits light emitted from each of the light emitting elements to the outside after being reflected once by each of the concave reflection-surfaces.
  • each concave reflecting surface is formed in a polygon that can evenly fill the surface, and the end of each concave reflecting surface is joined with the end of the other concave reflecting surface without any gap. So that there is no dark area on the radiation surface.
  • the concave reflecting surface is provided on the light emitting surface side of the light emitting element so as to face the light emitting element, the light emitted from the light emitting element can be efficiently emitted toward the front even if the thickness is reduced. .
  • each of the light emitting elements may be composed of a plurality of light emitting elements having different emission colors. This makes it possible to provide an LED planar light source having a multicolor function.
  • the concave reflecting surface is parabolic, and the light emitting element is arranged at a focal point of the concave reflecting surface. This allows the light emitted by the light emitting element to be emitted more efficiently toward the front. Can be.
  • FIG. 1 is a perspective view of an LED surface light source according to a first embodiment of the present invention
  • FIG. 2 is an exploded view thereof
  • FIG. 3 is a sectional view taken along a line II of FIG.
  • FIG. 4 is an optical path diagram of light emitted from the light emitting device of the first embodiment
  • FIGS. 5 to 7 are views showing a modification of the first embodiment
  • FIG. I is a perspective view of another modification of the first embodiment
  • FIG. 9 is an exploded view thereof
  • FIG. 10 is a schematic perspective view showing an application example thereof
  • FIG. 11 is a perspective view of the first embodiment.
  • FIG. 1 shows an application example
  • FIG. 12 is a front view of the character display board
  • FIGS. 13 to 15 show other application examples of the first embodiment
  • FIG. 17 is a schematic sectional view of a third embodiment of the present invention
  • FIG. 18 is a schematic sectional view of a fourth embodiment of the present invention
  • FIG. FIG. 9 is a front view of the concave / reflective surface
  • FIG. 20 is a view of the fourth embodiment shown in FIG.
  • FIG. 21 is an enlarged plan view of a road pattern
  • FIG. 21 and FIG. 22 are views showing an application example of the road pattern
  • FIG. 23 is a front view showing a modification of the concave reflecting surface of the fourth embodiment.
  • FIG. 24 is a schematic cross-sectional view of a conventional LED planar light source
  • FIG. 25 is an optical path diagram of light emitted from the light emitting element
  • FIG. 26 is a front view of the conventional LED planar light source
  • FIG. The figure is a schematic sectional view of another conventional LED planar light source.
  • FIG. 1 is a perspective view of an LED planar light source according to a first embodiment of the present invention
  • FIG. 2 is an exploded view thereof
  • FIG. 3 is a sectional view taken along the line II of FIG.
  • FIG. 4 is an optical path diagram of light emitted from the light emitting device of the first embodiment.
  • reference numeral 1 denotes a light emitting element
  • 2 denotes a transparent glass substrate
  • 2a denotes an upper surface of the transparent glass substrate 2
  • 3 denotes a west road.
  • the light-transmitting material 6 may be, for example, a light-transmitting resin, a low-melting glass, or a gel-like material as long as it has a structure that does not leak out. This is the same in other embodiments described below.
  • each light-emitting element 1 is mounted on one end of each circuit pattern 3 formed on the lower surface of a transparent glass substrate 2, and is electrically connected by a wire 4.
  • the reflecting member 5 is fixed to the transparent glass substrate 2 on which the light emitting element 1 is mounted as described above.
  • the fixed reflecting member 5 has a concave reflecting surface 5a formed in a parabolic shape with the focal point at each light emitting element 1 corresponding to each light emitting element 1 facing the light emitting surface of the light emitting element 1. It is provided.
  • the reflecting member 5 is a flat resin, and the concave reflecting surface 5a is formed with nine parabolic concave portions in the flat resin, and the concave portion is plated or metal-deposited. Mirror-finished.
  • Each concave reflecting surface 5a is formed such that the front shape is a square, and the end green 5b is joined without gap to the end 5b of the other concave reflecting surface 5a.
  • the front shape of each concave reflecting surface 5a may be, for example, a hexagonal shape as shown in FIG. 5 as long as it is a polygon capable of uniformly filling the radiation surface 2a. .
  • the radiation surface 2a cannot be uniformly filled, for example, an octagon-shaped one generates a dark part.
  • the concave reflecting surface 5a is formed by metal plating or metal evaporation, the lead wires 7.7 are insulated to prevent short-circuiting between the lead wires 7.7. I do.
  • a hollow portion formed by the transparent glass substrate 2 and the reflecting member 5 is filled with a light transmitting material 6.
  • the light transmitting material 6 fills the entire hollow portion formed between the transparent glass substrate 2 and the reflecting member 5. ⁇ Instead, only the light emitting element 1 and the wire 4 may be partially buried.
  • the hollow portion is not filled with the light transmitting material 6 as shown in FIG. It may be left hollow, or may be filled with gas or liquid if necessary.
  • each light emitting element 1 when power is supplied to the lead wire 7, power is supplied to each light emitting element 1 by the circuit pattern 3 and the wire 4 formed on the transparent glass substrate 2, and Element 1 emits light.
  • the light emitted from the light emitting element is reflected by each of the concave reflecting surfaces 5a provided opposite to each other, and then emitted to the outside.
  • each concave reflecting surface 5a is formed in a parabolic shape, and the light emitting element 1 is arranged at each focal point. Therefore, the light emitted from the light emitting element 1 is reflected by the concave reflecting surface 5a in a direction parallel to the central axis of the concave reflecting surface 5a as shown by the arrow in FIG. Is radiated.
  • each light emitting element 1 is transmitted to the central axis of the concave concave reflective surface 5a with almost no loss by the concave concave reflective surface 5a provided opposite to the light emitting surface of each photodetector 1. Can be effectively used as parallel light.
  • the front surface and the shape of the concave reflecting surface 5a are formed in a square shape, and the ends 5b of the concave reflecting surface 5a are joined without gaps as shown in FIG. There is no dark spot on the radiating surface like a LED planar light source:
  • an LED surface light source having a large number of light emitting elements 1 and a concave reflecting surface 5a opposed thereto is manufactured, and an appropriate number of light emitting elements 1 and concave reflecting surfaces 5a are provided as necessary. Since the LED surface light source can be provided by providing a lead wire 7 on the LED surface light source, the LED surface light source comprising one light emitting element 1 and one concave reflecting surface 5a can be used. , LED surface light source of any size and light source can be easily manufactured. The cost can be reduced.
  • the width of the line used in the fine line circuit formed on the transparent glass substrate 2 is 20 ⁇ m or less, and even if one side of the radiating surface per each light emitting element is 5 mm. Since the loss due to the shadow between the light emitting element 1 and the circuit pattern 3 is 1% or less, there is no particular problem visually. In addition, the adoption of a fine line circuit makes it possible to easily connect a large number of light emitting elements.
  • the light emitted from the light emitting element 1 can be efficiently radiated to the front direction by the reflection member 5, so that there is no loss of light in the side direction, and the area of the radiation surface 2a is reduced.
  • the luminous intensity in the front direction and the luminance of the radiating surface 2a can be improved while maintaining the conventional state, and the luminance unevenness can be eliminated.
  • the radiation surface 2a is the upper surface of the flat transparent glass substrate 2, the dustproofness can be improved.
  • the structure is simple, it can be easily manufactured, and the mass productivity can be improved.
  • each concave reflecting surface 5a is provided on the light emitting surface side of the light emitting element 1 so as to face each light emitting element 1, an extremely thin one ( Even with a thickness of several millimeters), the light emitted from the light-emitting element 1 can be efficiently emitted toward the front. Therefore, an extremely thin LED planar light source can be manufactured as compared with a conventional LED planar light source in which a concave reflecting surface is provided on the side surface of a light emitting element as in a conventional LED planar light source.
  • the case where nine light-emitting elements 1 are arranged in three rows and columns has been described.
  • the number of light-emitting elements 1 is not limited to this. The number may be increased or decreased.
  • each light emitting element is connected in series is described, but this may be a parallel connection or a combination of the series connection and the parallel connection.
  • FIG. 8 is a perspective view of a modification of the first embodiment, and FIG. It is an exploded view. 8 and 9, 7a is a lead wire pulled out below the transparent glass substrate 2, 5c is an upper groove formed on the upper surface of the side of the reflecting member 5, and 5d is a part of the reflecting member 5. This is a drawing groove formed on the side surface.
  • a lead wire 7a is formed by bending in advance below the transparent glass substrate 2, and the lead wire 7a is drawn out to the back surface of the LED planar light source.
  • the upper groove 5c is a groove having a step slightly larger than the thickness of the lead wire ⁇ a, and is used for fixing the transparent glass substrate 2 and the reflecting member 5 because of the thickness of the lead wire 7a.
  • the lead groove 5 d is a groove for leading the lead wire 7 a to the back surface of the reflection member 5.
  • the lead wire 7a is drawn out to the back surface of the LED planar light source by the above configuration, so that a plurality of LED planar light sources can be closely arranged vertically and horizontally.
  • FIG. 10 (a) and 10 (b) are schematic perspective views showing an application example of the present modified example
  • FIG. 10 (a) is a perspective view from the front
  • FIG. 10 (b) is a perspective view from the back.
  • the application example shown in FIG. 10 is one in which the LED planar light source shown in FIG. 8 is housed in an outer case 8, and a base 9 to which a lead wire 7a is connected is provided on the back surface.
  • the lead wire 7a is led out to the back surface of the LED planar light source, it easily conforms to each JIS standard f as shown in Fig. 10 on the back surface of the LED planar light source.
  • Base 9 can be attached. Thereby, the compatibility of the LED planar light source can be improved.
  • the base 9 shown in Fig. 10 was of the insertion type B type (for example, B22), the base 9 is not limited to this, and the screw-in type conforming to the JIS standard is used. (For example, E 26) or G type, and instead of the base 9, a pin shape not conforming to the JIS standard may be used.
  • the outer case 8 of the application example shown in FIG. 10 is an aluminum frame having a thickness of about 1 mm, the heat generated by each light emitting element 1 is transmitted to the outside through an aluminum frame having good heat conduction. Heat can be efficiently dissipated Thus, the temperature of the light emitting element 1 can be suppressed from rising.
  • FIG. 11 is a schematic sectional view of a first application example of the first embodiment.
  • reference numeral 11 denotes, for example, a character display board shown in FIG.
  • a character display plate 11 is formed on the upper part of the first embodiment, and an LED planar light source is used as a backlight of the character display plate 11.
  • the light emitted from the light emitting element 1 can be effectively used, and the light on the radiation surface is uniform, so that a bright and easy-to-view display is possible.
  • the shadow (approximately 0.4 mm. 0.4 mm) of the light-emitting element 1 causes almost no problem in function and appearance.
  • FIG. 13 is a schematic sectional view of a second application example of the first embodiment.
  • reference numeral 12 denotes a liquid crystal display
  • reference numeral 13 denotes a light diffusion layer.
  • a liquid crystal display 12 is provided on the upper part of the first embodiment, and a light diffusion layer 13 is formed between the transparent glass substrate 2 and the liquid crystal display 12 of the first embodiment. Things.
  • the LED planar light source is used as a backlight for the liquid crystal display 12.
  • the light-diffusing layer 13 only needs to have a function of eliminating the shadow (approximately 0.4 mm X 0.4 mm) of the light-emitting element 1, and the thickness of the light-diffusing layer 13 is extremely thin.
  • the light diffusing layer 13 may be a light diffusing resin, a light scattering film or a polished glass. Further, as shown in FIG. 14, instead of the transparent glass substrate 2, a transparent material having a light diffusing property may be used. The substrate 14 may be used. According to the second application example described above, a uniform radiating surface having high luminance and no shadow can be obtained, and can be used as a backlight for a fine display such as a liquid crystal display 12.
  • FIG. 15 shows a modification of the second application example, in which an air layer 15 is provided between the LED planar light source and the light diffusion layer 13 of the first embodiment. .
  • FIG. 16 is a schematic sectional view of a second embodiment of the present invention.
  • 6a is the lower end surface of the light transmitting material 6.
  • those having the same functions as those of the first embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals.
  • the second embodiment of the present invention differs from the first embodiment in that the reflection member 5 in the first embodiment is omitted to simplify the second embodiment.
  • the other points are the same as the first embodiment including the modified examples and the applied examples. That is, in the second embodiment, the lower end surface 6a of the light transmissive material 6 facing the light emitting surface of each light emitting element 1 is formed on a parabolic surface ⁇ ⁇ ⁇ focusing on each light emitting element 1, and the concave reflection
  • the surface 5a is formed by processing the surface of the lower end surface .6a by plating or metal deposition. According to this embodiment, a thinner LED planar light source can be obtained.
  • Other operations and effects are the same as the operations and effects of the first embodiment.
  • FIG. 17 is a schematic sectional view of a third embodiment of the present invention.
  • reference numeral 10 denotes a lead frame.
  • the third embodiment of the present invention is different from the second embodiment in that a lead frame 10 is used instead of the transparent glass substrate and the circuit pattern 3 in the second embodiment.
  • the other points are the same as the second embodiment including the modified examples and the applied examples of the first embodiment. That is, in the third embodiment, each light-emitting element 1 is attached to one end of each lead frame 10, and is connected to the end of the other read frame 10 by the wire 4. Then, each light emitting element 1, wire 4 and lead frame 10 are integrally buried with the light transmitting material 6.
  • the third embodiment not only power is supplied to the light emitting element 1 by the lead frame 10 but also the heat generated by the light emitting element 1 is efficiently radiated to the outside to improve the heat radiation. it can.
  • Other effects * Effects are the same as those of the second embodiment.
  • FIG. 18 is a schematic sectional view of an LED planar light source according to a fourth embodiment of the present invention.
  • FIG. 19 is a front view of the concave reflecting surface.
  • 1a is a red light emitting element
  • 1b is a yellow-green light emitting element
  • 5a is a concave reflecting surface formed on the reflecting member 5
  • 5b is a concave reflecting surface 5.
  • the end of a (boundary surface) and 7 are lead lines.
  • This embodiment is different from the first embodiment in that one set of a light emitting element composed of a red light emitting element 1a and a yellow-green light emitting element 1b is provided at a substantially focal position of each concave reflecting surface 5a. The point is that the elements are arranged. The other points are the same as the first embodiment including the modified examples and the applied examples.
  • the red light emitting element 1a is mounted on one circuit pattern 3a formed on the lower surface of the transparent glass substrate 2, which is the radiation surface, as shown in FIG. 20, and is connected to the other circuit pattern 3b. 4a are electrically connected.
  • the yellow-green light-emitting element 1b is mounted on the other circuit pattern 3b in the opposite manner, and is electrically connected to the circuit pattern 3a by the wire 4b. .
  • the reflecting member 5 is fixed to the transparent glass substrate 2 on which the nine sets of the light emitting elements 1a * 1b are mounted.
  • the reflecting member 5 is provided with a concave reflecting surface 5a formed in a parabolic shape with the center of the set of light emitting elements 1a and 1b being substantially the focal point.
  • the light emitting elements 1 a ⁇ 4 a ⁇ 4 b and the circuit patterns 3 a '3 b formed on the transparent glass substrate 2 are used.
  • 1b emits light, thereby providing an LED planar light source having a multicolor function. That is, when a current flows from the circuit pattern 3a to the circuit pattern 3b, one light emitting element emits light, and when a current flows in the opposite direction, the other light emitting element emits light. Therefore, when an AC current is applied, the red light-emitting elements 1a and the yellow-green light-emitting elements 1b are alternately lit, so that when the AC frequency is increased, both light-emitting elements appear to emit light. .
  • Other actions and effects are the same as those of the first embodiment.
  • the light emission colors of the light emitting elements are red and yellow-green.
  • the light emitting element may have another color or a single color. Further, the emission color of the light emitting element may be different for each set of light emitting elements, or may be different for each row. Further, in the above embodiment, the case where two light emitting elements of different emission colors are used has been described. However, the number of light emitting elements is not limited to two, and three or more light emitting elements are used. You may.
  • circuit patterns described in the above embodiments are not limited to those shown in FIG. 2Q, but may be changed as necessary, for example, as shown in FIG. 21 or FIG. It may be formed.
  • the circuit patterns 3a and 30a are on one side, 3b and 30b in FIG. 21 or FIG. Is the + side.
  • each concave reflecting surface 5a has a circular front shape as shown in FIG. It may be formed in a shape.
  • the case where the entire shape of the concave reflecting surface 5a is formed in a flat plate shape has been described, but this is the case in which the concave reflecting surface 5a is formed in a concave plate shape or a convex plate shape. It may be.
  • the section may be a stem.
  • the light emitting element 1 is disposed at the focal position of the concave reflecting surface 5a. They may be staggered along the axis. For example, if the position of the light-emitting element 1 is shifted along the central axis so as to approach the tetrahedral reflecting surface 5a, the radiated light radiated outside will be parallel light Instead, it spreads slightly and becomes diffuse light.
  • the concave reflecting surface 5a may be The shape may be an ellipsoidal shape or a spherical shape, or may be a shape obtained by combining a plurality of small planes to form, for example, a pseudo paraboloid.
  • the light emitted from the light emitting element can be effectively radiated in the front direction by the respective concave reflecting surfaces provided on the light emitting surface side of each light emitting element. It is possible to provide a thin LED planar light source that can eliminate luminance unevenness and improve the light emission efficiency in the front direction.
  • each concave reflecting surface is formed into a polygon whose front shape can uniformly fill the surface, and each concave reflecting surface is joined to another concave reflecting surface without a gap, It is possible to provide an LED planar light source having no dark area on the radiation surface.
  • the LED planar light source according to the present invention is used as a light source for general lighting equipment, as a light source for various display devices, for example, an outdoor display device, or as a light source for a brake lamp or a turn signal lamp for an automobile. Further, it is suitable for use as a backlight of a liquid crystal outdoor display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

The planar LED illuminant in accordance with the present invention has a structure wherein each of concave reflective surfaces is disposed in such a manner as to face each of the light emitting surfaces of a plurality of light emitting devices, said reflective surface having a polygonal shape so that a front shape can uniformly fill the entire surface and the edges of each reflective surface are bonded without any gaps. The rays of light that are emitted by each light emitting device are reflected by the concave reflective surfaces and then emitted to the outside. In this manner, the rays of light emitted from the light emitting device can be radiated efficiently to the outside and non-uniformity of luminance and dark portions on the radiation surface can be eliminated.

Description

明 細 書  Specification
L E D面状光源  LED surface light source
技術分野 '  Technical field '
本発明は、 発光素子が発した光を凹面状反射面で反射した後に外 部に放射する L E D面状光源に関する。 背景技術  The present invention relates to an LED planar light source that radiates light emitted from a light emitting element to the outside after being reflected by a concave reflecting surface. Background art
従来より発光素子、 例えば発光ダイォー ドを使用した、 種々の搆 造の L E D面状光源が案出されている。 第 2 4図は反射部材を利用 した従来の L E D面状光源の概略断面図、 第 2 δ図はその発光素子 が発する光の光路図、 第 2 6図は従来の L E D面状光源の正面図で ある。 第 2 4図乃至第 2 6図において 5 1 は発光素子、 5 2は基板、 5 3は回路パターン、 5 4はワイヤ、 5 5は反射部材、 5 5 a は反 射部材 5 5に形成された放物面状の反射面、 5 6は反射部材 5 5の 中空部に充塡された光透過性樹脂や低融点ガラス等の光透過性材料、 5 6 aは光透過性材料 5 6の上端面であり、 発光素子 5 1が発する 光を外部に放射する放射面である。 各発光素子 5 1 は基板 5 2にマ ゥン トされており、 回路パターン 5 3及びワイヤ 5 4によりそれぞ れ電気的に接続されている。  Conventionally, various LED planar light sources using a light emitting device, for example, a light emitting diode, have been devised. Fig. 24 is a schematic cross-sectional view of a conventional LED planar light source using a reflecting member, Fig. 2δ is an optical path diagram of light emitted from the light emitting element, and Fig. 26 is a front view of the conventional LED planar light source. It is. In FIGS. 24 to 26, 51 is a light emitting element, 52 is a substrate, 53 is a circuit pattern, 54 is a wire, 55 is a reflecting member, and 55a is formed on a reflecting member 55. 56 is a light-transmitting material such as a light-transmitting resin or a low-melting glass filled in the hollow portion of the reflecting member 55, and 56a is a light-transmitting material 56. The upper end face, which is a radiation surface that emits light emitted from the light emitting element 51 to the outside. Each light emitting element 51 is mounted on a substrate 52 and is electrically connected by a circuit pattern 53 and a wire 54.
上記のように構成された L E D面状光源においては、 各発光素子 5 1が発する光は第 2 5図の矢印で示すような光路をたどる。 即ち、 発光素子 5 1が発する光のうち一部は直接光透過性材料 5 6の放射 面 5 6 aを通過して外部に放射され、 残りの光は反射面 5 5 aで反 射してから放射される。 ここで.、 反射面 5 5 aで反射した光は、 第 2 5図に示すように反射面 5 5 aの中心軸に対して平行な光路をた どって、 L E D面状光源の前面方向に放射される。 従って、 これら の光は L E D面状光源の前面方向の光度の向上に寄与する。  In the LED planar light source configured as described above, the light emitted from each light emitting element 51 follows an optical path indicated by an arrow in FIG. That is, a part of the light emitted from the light emitting element 51 is directly radiated to the outside through the radiation surface 56a of the light transmitting material 56, and the remaining light is reflected by the reflection surface 55a. Radiated from Here, the light reflected by the reflecting surface 55a follows an optical path parallel to the central axis of the reflecting surface 55a as shown in FIG. Radiated. Therefore, these lights contribute to the improvement of the luminous intensity in the front direction of the LED planar light source.
しかしながら、 各発光素子 5 1が発する光のうち直接外部に放射 される光は、 屈折率の大きい光透過性材料 5 6' と屈折率の小さい外 部との境界面 (放射面 5 6 a ) の屈折により、 その多くが L E D面 状光源の側面方向に放射される。 したがって、 これらの光は L E D 面状光源の前面方向の光度の向上に寄与せず無駄な光となる。 また、 反射面 5 5 aは発光素子 5 1のワイヤ 5 4の結線の都合上、 あまり 発光素子 5 1に近接して配置することはできない。 この結果、 従来 の L E D面状光源でば、 第 2 6図に示すように各反射面 5 5 aの中 央部である斜線部 5 7の輝度が小さくなり、 放射面 5 6 aの輝度む らが大きいという欠点があった。 また、 従来の L E D面伏光源では、 面状にはなっているが、 放射面 5 6 aの各所に発光素子 5 1からの 光が放射されない暗部 5 8が存在するという欠点があった。 However, of the light emitted by each light emitting element 51, the light radiated directly to the outside is a light transmitting material 56 'having a large refractive index and an external light having a small refractive index. Most of the light is radiated in the lateral direction of the LED planar light source due to the refraction of the boundary surface (radiation surface 56a) with the part. Therefore, these lights do not contribute to the improvement of the luminous intensity in the front direction of the LED planar light source and are wasted light. In addition, the reflecting surface 55 a cannot be disposed so close to the light emitting element 51 because of the connection of the wire 54 of the light emitting element 51. As a result, in the case of a conventional LED planar light source, as shown in FIG. 26, the brightness of the hatched portion 57 at the center of each reflection surface 55a decreases, and the brightness of the emission surface 56a decreases. However, there was a drawback that they were large. Further, although the conventional LED surface light source has a planar shape, there is a drawback that a dark portion 58 where light from the light emitting element 51 is not radiated exists at various positions on the radiation surface 56a.
ところで、 この輝度むらや暗部 5 8を無くすため、 第 2 7図に示 すように反射部材 5 5の中空部を光拡散性の樹脂 5 9で埋めた L E D面状光源が案出されている。 しかし、 かかる L E D面伏光源では、 発光素子 5 1が発する光の、 放射面 5 6 aに達するまでの光路が長 くなるため、 その簡の吸収等により光の減衰が生じる。 また、 一般 に光拡散性の樹脂 5 9には屈折率が約 1. 5のエポキシ樹脂が使用さ れているので、 放射面 5 6 aに対し約 4 0度以上の角度で入射する 光は、 放射面 5 6 aで全反射される。 更に、 十分に拡散された光の 進行方向は、 全ての方向に対し均一であると考えられるので、 放射 面 5 6 aに達した光のうち、 その約 2 5 %の光しか外部に放射され ない。 また、 外部に放射される光のうち、 放射面 5 6 aに対し約 2 0度以上の角度で入射する光は、 前記説明のごとく、 境界面の屈折 により 3 Q度以上の角度で側面方向の外部に放射される。 したがつ て、 第 2 7図のように光拡散性の樹脂 5 9を使用した L E D面状光 源を、 たとえば液晶や屋外用の表示装置のバックライ トに用いた場 合には、 光量が不足するという問題が生じる。  By the way, in order to eliminate the uneven brightness and dark portion 58, an LED surface light source in which the hollow portion of the reflecting member 55 is filled with a light diffusing resin 59 as shown in FIG. 27 has been devised. . However, in such an LED surface light source, the optical path of the light emitted from the light emitting element 51 to the emission surface 56a is long, and light is attenuated due to simple absorption or the like. In general, since the light diffusing resin 59 is made of an epoxy resin having a refractive index of about 1.5, light incident at an angle of about 40 degrees or more with respect to the radiation surface 56a is not allowed. The radiation surface is totally reflected at 56a. Further, since the traveling direction of the sufficiently diffused light is considered to be uniform in all directions, only about 25% of the light reaching the emission surface 56a is emitted to the outside. Absent. Also, of the light radiated to the outside, the light incident on the radiation surface 56a at an angle of about 20 degrees or more is, as described above, the side direction at an angle of 3 Q degrees or more due to the refraction of the boundary surface. Is radiated to the outside. Therefore, when an LED planar light source using a light-diffusing resin 59 as shown in Fig. 27 is used for a backlight of a liquid crystal display or an outdoor display device, for example, the light intensity is low. The problem of shortage arises.
また、 従来の L E D面状光源は、 前面方向の光の放射効率を良く するために、 発光素子 5 1の側面に設けた反射面 5 5 aの面積をで きるだけ大き くする必要がある。 このため、 従来の L E D面状光源 は薄型にできないという欠点があつた。 In the conventional LED planar light source, the area of the reflection surface 55a provided on the side surface of the light emitting element 51 needs to be as large as possible in order to improve the radiation efficiency of light in the front direction. For this reason, conventional LED planar light sources Has the disadvantage that it cannot be made thin.
本発明は上記事情に基づいてなされたものであり、 放射面の輝度 むらや暗部をなくすことができ、 しかも前面方向に対する光の放射 効率の向上を図ることができる薄型の L E D面状光源を提供するこ とを目的とする。 発明の開示  The present invention has been made based on the above circumstances, and provides a thin LED surface light source that can eliminate uneven brightness and dark areas on the emission surface and can improve the light emission efficiency in the front direction. The purpose is to do so. Disclosure of the invention
本発明は、 複数の発光素子と、 該発光素子に電力を供給するリ - ド部と、 前記各発光素子毎に前記各発光素子の発光面側に前記各発 光素子と対向して設けられ且つ正面形状が面を均一に埋めることが できる多角形に形成された凹面状反射面とを備え、 前記各凹面状反 射面の端緣を他の前記凹面状反射面の端緣と隙間なく接合するよう に形成し、 且つ前記各発光素子が発する光を一度前記各凹面状反射 -面で反射した後に外部に放射する L E D面状光源である。 このこと により、 発光素子が発する光を効率よく前面方向に放射して前面方 向の光度の向上を図り、 発光素子が発する光を外部に放射する放射 面の輝度の向上を図ると共に、 放射面の輝度むらを少なくすること ができる。 また、 各凹面状反射面の正面形状は面を均一に埋めるこ とができる多角形に形成され、 且つ各凹面状反射面の端緣は他の凹 面状反射面の端緣と隙間なく接合されているので、 放射面に暗部が 生ずることはない。 更に、 凹面状反射面は発光素子の発光面側に発 光素子と対向して設けられているので、 厚さを薄く しても発光素子 が発する光を効率良く前面方向に放射することができる。  The present invention provides a plurality of light emitting elements, a lead section for supplying power to the light emitting elements, and a light emitting element provided for each of the light emitting elements on a light emitting surface side of the light emitting elements so as to face the light emitting elements. And a concave reflection surface formed in a polygonal shape whose front shape can uniformly fill the surface, and the end of each concave reflection surface is separated from the end of the other concave reflection surface without a gap. An LED planar light source which is formed so as to be bonded, and which emits light emitted from each of the light emitting elements to the outside after being reflected once by each of the concave reflection-surfaces. As a result, the light emitted from the light emitting element is efficiently radiated to the front side to improve the luminous intensity in the front direction, and the luminance of the radiation surface for radiating the light emitted from the light emitting element to the outside is improved. Brightness unevenness can be reduced. In addition, the front shape of each concave reflecting surface is formed in a polygon that can evenly fill the surface, and the end of each concave reflecting surface is joined with the end of the other concave reflecting surface without any gap. So that there is no dark area on the radiation surface. Further, since the concave reflecting surface is provided on the light emitting surface side of the light emitting element so as to face the light emitting element, the light emitted from the light emitting element can be efficiently emitted toward the front even if the thickness is reduced. .
また、 前記各発光素子は、 発光色の異なる複数の発光素子からな るものでもよい。 このことにより、 多色機能を持った L E D面状光 源とすることができる。  Further, each of the light emitting elements may be composed of a plurality of light emitting elements having different emission colors. This makes it possible to provide an LED planar light source having a multicolor function.
更に、 前記凹面状反射面は放物面状であり、 前記発光素子は前記 凹面状反射面の焦点に配置されていることが好ましい。 このことに より、 発光素子が発する光を更に効率よく前面方向に放射すること ができる。 図面の簡単な説明 Further, it is preferable that the concave reflecting surface is parabolic, and the light emitting element is arranged at a focal point of the concave reflecting surface. This allows the light emitted by the light emitting element to be emitted more efficiently toward the front. Can be. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1の実施例である L E D面扰光源の斜視図、 第 2図はその分解図、 第 3図ば第 1図の I - I線に沿って切断し矢 印の方向にみた概略断面図、 第 4図は第 1の実施例の発光素子が発 する光の光路図、 第 5図乃至第 7図は第 1の実施例の変形例を示す 図、 第 8図は第 1の実施例の他の変形例の斜視図、 第 9図はその分 解図、 第 1 0図はその応用例を示す概略斜視図、 第 1 1図は第 1 の 実施例の第 1応用例を示す図、 第 1 2図はその文字表示板の正面図、 第 1 3図乃至第 1 5図は第 1の実施例の他の応用例を示す図、 第 1 6図は本発明の第 2の実施例の概略断面図、 第 1 7図は本発明の第 3の実施例の概略断面図、 第 1 8図は本発明の第 4の実施例の概略 断面図、 第 1 9図はその凹面扰反射面の正面図、 第 2 0図は第 1 8 図に示す第 4の実施例の回路パターンの拡大平面図、 第 2 1図及び 第 2 2図はその面路パターンの応用例を示す図、 第 2 3図は第 4の 実施例の凹面状反射面の変形例を示す正面図、 第 2 4図は従来の L E D面状光源の概略断面図、 第 2 5図はその発光素子が発する光の 光路図、 第 2 6図は従来の L E D面状光源の正面図、 第 2 7図は従 来の他の L E D面状光源の概略断面図である。 発明を実施するための最良の形態  FIG. 1 is a perspective view of an LED surface light source according to a first embodiment of the present invention, FIG. 2 is an exploded view thereof, and FIG. 3 is a sectional view taken along a line II of FIG. FIG. 4 is an optical path diagram of light emitted from the light emitting device of the first embodiment, FIGS. 5 to 7 are views showing a modification of the first embodiment, FIG. Is a perspective view of another modification of the first embodiment, FIG. 9 is an exploded view thereof, FIG. 10 is a schematic perspective view showing an application example thereof, and FIG. 11 is a perspective view of the first embodiment. FIG. 1 shows an application example, FIG. 12 is a front view of the character display board, FIGS. 13 to 15 show other application examples of the first embodiment, and FIG. FIG. 17 is a schematic sectional view of a third embodiment of the present invention, FIG. 18 is a schematic sectional view of a fourth embodiment of the present invention, FIG. FIG. 9 is a front view of the concave / reflective surface, and FIG. 20 is a view of the fourth embodiment shown in FIG. FIG. 21 is an enlarged plan view of a road pattern, FIG. 21 and FIG. 22 are views showing an application example of the road pattern, and FIG. 23 is a front view showing a modification of the concave reflecting surface of the fourth embodiment. FIG. 24 is a schematic cross-sectional view of a conventional LED planar light source, FIG. 25 is an optical path diagram of light emitted from the light emitting element, FIG. 26 is a front view of the conventional LED planar light source, and FIG. The figure is a schematic sectional view of another conventional LED planar light source. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の第 1の実施例を第 1図乃至第 4図を参照して説明 する。 第 1図は本発明の第 1の実施例である L E D面状光源の斜視 図、 第 2図はその分解図、 第 3図は第 1図の I - I線に沿って切断 し矢印の方向にみた概略断面図、 第 4図は第 1の実施例の発光素子 が発する光の光路図である。 第 1図乃至第 4図において 1は発光素 子、 2は透明ガラス基板、 2 aは透明ガラス基板 2の上面であり、 発光素子 1が発する光を外部に放射する放射面、 3は西路パターン、 4はワイヤ、 5は反射部材、 5 aは反射部材 5に形成された凹面状 反射面、 5 bは凹面状反射面 5 aの端緣 (境异線) 、 6は光透過性 材料、 7はリ― ド線である。 尚、 光透過性材料 6は、 例えば光透過 性樹脂や低融点ガラスの他、 外部に流出するおそれがない構造であ ればゲル状のものでもよい。 このことは、 以下に説明する他の実施 例でも同様である。 A first embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a perspective view of an LED planar light source according to a first embodiment of the present invention, FIG. 2 is an exploded view thereof, and FIG. 3 is a sectional view taken along the line II of FIG. FIG. 4 is an optical path diagram of light emitted from the light emitting device of the first embodiment. 1 to 4, reference numeral 1 denotes a light emitting element, 2 denotes a transparent glass substrate, 2a denotes an upper surface of the transparent glass substrate 2, a radiation surface for emitting light emitted from the light emitting element 1 to the outside, and 3 denotes a west road. pattern, 4 is a wire, 5 is a reflecting member, 5 a is a concave reflecting surface formed on the reflecting member 5, 5 b is a concave reflecting surface 5 a terminal (boundary line), 6 is a light transmitting material, 7 Is a lead wire. The light-transmitting material 6 may be, for example, a light-transmitting resin, a low-melting glass, or a gel-like material as long as it has a structure that does not leak out. This is the same in other embodiments described below.
本実施例は 9個の発光素子 1を縦横 3列に配列し、 各発光素子 1 は、 透明ガラス基板 2の下面に形成された各回路パターン 3の一端 にマウン トされ、 ワイヤ 4によりそれぞれ電気的に直列接続されて いる。 このようにして発光素子 1がマウン トされた透明ガラス基板 2には反射部材 5が固着される。 固着された反射部材 5には、 各発 光素子 1に対応して各発光素子 1を焦点とする放物面状に形成され た凹面状反射面 5 aが発光素子 1 の発光面に対向して設けられてい る。 'たとえば、 反射部材 5は、 平板状の樹脂であり、 凹面状反射面 5 aはその平板状の樹脂に放物面状の凹面部を 9個形成し、 その凹 面部を鍍金や金属蒸着等により鏡面加工したものである。 各凹面状 反射面 5 a は正面形状が正方形となるように形成され、 その端緑 5 bが他の凹面状反射面 5 aの端緣 5 bと隙間なく接合されている。 尚、 各凹面状反射面 5 aの正面形状は放射面 2 aを均一に埋めるこ とができる多角形であれば、 たとえば第 5図に示すような六角形状 に形成したものであってもよい。 しかし、 放射面 2 aを均一に埋め ることができない、 たとえば八角形状に形成されたものは暗部が生 ずることになるので、 好ましくない。 また、 凹面状反射面 5 aを金 属鍍金又は金属蒸着により形成したときは、 リー ド線 7 · 7間が短 絡されるのを防止するために、 リ ー ド線 7 · 7間を絶縁する。  In this embodiment, nine light-emitting elements 1 are arranged in three rows and columns, and each light-emitting element 1 is mounted on one end of each circuit pattern 3 formed on the lower surface of a transparent glass substrate 2, and is electrically connected by a wire 4. Are serially connected. The reflecting member 5 is fixed to the transparent glass substrate 2 on which the light emitting element 1 is mounted as described above. The fixed reflecting member 5 has a concave reflecting surface 5a formed in a parabolic shape with the focal point at each light emitting element 1 corresponding to each light emitting element 1 facing the light emitting surface of the light emitting element 1. It is provided. 'For example, the reflecting member 5 is a flat resin, and the concave reflecting surface 5a is formed with nine parabolic concave portions in the flat resin, and the concave portion is plated or metal-deposited. Mirror-finished. Each concave reflecting surface 5a is formed such that the front shape is a square, and the end green 5b is joined without gap to the end 5b of the other concave reflecting surface 5a. In addition, the front shape of each concave reflecting surface 5a may be, for example, a hexagonal shape as shown in FIG. 5 as long as it is a polygon capable of uniformly filling the radiation surface 2a. . However, it is not preferable that the radiation surface 2a cannot be uniformly filled, for example, an octagon-shaped one generates a dark part. Also, when the concave reflecting surface 5a is formed by metal plating or metal evaporation, the lead wires 7.7 are insulated to prevent short-circuiting between the lead wires 7.7. I do.
また、 透明ガラス基板 2 と反射部材 5 とで形成される中空部には 光透過性材料 6が充塡されている。 尚、 第 6図に示すように光透過 性材料 6 として樹脂やガラスを用いた場合には、 光透過性材料 6は 透明ガラス基板 2 と反射部材 5内とで形成される中空部全部に充塡 せず、 凳光素子 1 とワイヤ 4の周囲にだけを部分的に埋めるように してもよい。 また、 衝撃や振動等によるワイヤ 4や発光素子 1 の断 線や故障を考慮する必要がない場合には、 中空部は第 7図に示すよ うに光透過性材料 6を充塡せずに、 中空のままでもよいし、 必要に 応じてガス又は液体等を封入してもよい。 Further, a hollow portion formed by the transparent glass substrate 2 and the reflecting member 5 is filled with a light transmitting material 6. When resin or glass is used as the light transmitting material 6 as shown in FIG. 6, the light transmitting material 6 fills the entire hollow portion formed between the transparent glass substrate 2 and the reflecting member 5.塡 Instead, only the light emitting element 1 and the wire 4 may be partially buried. In addition, when it is not necessary to consider the disconnection or failure of the wire 4 or the light emitting element 1 due to impact or vibration, the hollow portion is not filled with the light transmitting material 6 as shown in FIG. It may be left hollow, or may be filled with gas or liquid if necessary.
上記の構成によれば、 リ一ド線 7に電力が供給されると透明ガラ ス基板 2に形成された回路パターン 3とワイヤ 4とにより各発光素 子 1 に電力が供給され、 各癸光素子 1が発光する。 発光素子が発し た光は対向して設けられた各凹面状反射面 5 aによって反射された 後、 外部に放射される。 ここで、 各凹面状反射面 5 a は放物面状に 形成され、 しかもその各焦点に発光素子 1が配置されている。 した がって、 発光素子 1が発する光は第 4図の矢印に示すように凹面状 反射面 5 aにより凹面状反射面 5 aの中心軸に対して平行な方向に 反射された後、 外部に放射される。 このように、 各発光素子 1が発 する光を、 各究光素子 1 の.発光面に対向して設けた凹面伏反射面 5 aによりほぼ損失なく凹面伏反射面 5 aの中心軸に対して平行な光 として、 有効に利用することができる。 また、 凹面状反射面 5 aの 正面形,状は正方形に形成され、 且つ凹面状反射面 5 aの端緣 5 bは 第 2図に示すように各々隙間なく接合されているので、 従来の L E D面状光源のように放射面に暗部が生ずることはない:  According to the above configuration, when power is supplied to the lead wire 7, power is supplied to each light emitting element 1 by the circuit pattern 3 and the wire 4 formed on the transparent glass substrate 2, and Element 1 emits light. The light emitted from the light emitting element is reflected by each of the concave reflecting surfaces 5a provided opposite to each other, and then emitted to the outside. Here, each concave reflecting surface 5a is formed in a parabolic shape, and the light emitting element 1 is arranged at each focal point. Therefore, the light emitted from the light emitting element 1 is reflected by the concave reflecting surface 5a in a direction parallel to the central axis of the concave reflecting surface 5a as shown by the arrow in FIG. Is radiated. As described above, the light emitted from each light emitting element 1 is transmitted to the central axis of the concave concave reflective surface 5a with almost no loss by the concave concave reflective surface 5a provided opposite to the light emitting surface of each photodetector 1. Can be effectively used as parallel light. In addition, the front surface and the shape of the concave reflecting surface 5a are formed in a square shape, and the ends 5b of the concave reflecting surface 5a are joined without gaps as shown in FIG. There is no dark spot on the radiating surface like a LED planar light source:
また、 本実施例は 1つの L E D面状光源であっても、 9個の究光 素子 1を有しているので、 各発光素子 1の色を変えることにより、 混色が可能である。  Further, in the present embodiment, even if one LED planar light source is used, since nine light-measuring elements 1 are provided, it is possible to mix colors by changing the color of each light-emitting element 1.
また、 多数の発光素子 1 とこれに対向する凹面状反射面 5 a等を 有する L E D面状光源を製造し、 必要に応じて適当な個数の発光素 子 1 と凹面状反射面 5 a毎に力ッ トし、 これにリ― ド線 7を設けて L E D面犾光源とすることができるので、 一つの発光素子 1 と一^つ の凹面状反射面 5 a とからなる L E D面状光源から、 任意の大きさ の L E D面扰光源まで容易に製造することができると共に、 製造コ ス トの低減を図ることができる。 Also, an LED surface light source having a large number of light emitting elements 1 and a concave reflecting surface 5a opposed thereto is manufactured, and an appropriate number of light emitting elements 1 and concave reflecting surfaces 5a are provided as necessary. Since the LED surface light source can be provided by providing a lead wire 7 on the LED surface light source, the LED surface light source comprising one light emitting element 1 and one concave reflecting surface 5a can be used. , LED surface light source of any size and light source can be easily manufactured. The cost can be reduced.
更に、 透明ガラス基板 2に形成されるフ ァ イ ンライ ン回路におい て使用する線の幅は、 2 0 μ m以下であり、 各発光素子 1 当たりの 放射面の一辺を 5 m mとした場合でも発光素子 1 と回路パターン 3 との影による損失は 1 %以下であるので視覚上も特に問題とはなら ない。 その上、 ファイ ンライ ン回路の採用により、 多数の発光素子 を容易に接続すること.ができる。  Furthermore, the width of the line used in the fine line circuit formed on the transparent glass substrate 2 is 20 μm or less, and even if one side of the radiating surface per each light emitting element is 5 mm. Since the loss due to the shadow between the light emitting element 1 and the circuit pattern 3 is 1% or less, there is no particular problem visually. In addition, the adoption of a fine line circuit makes it possible to easily connect a large number of light emitting elements.
上記第 1 の実施例によれば、 発光素子 1が発する光を反射部材 5 により効率よく前面方向に放射することができるので、 側面方向へ の光の損失がなく、 放射面 2 aの面積を従来通りとしたままで前面 方向の光度及び放射面 2 aの輝度の向上を図ることができると共に、 輝度むらをなくすことができる。 また、 放射面 2 aは平面状の透明 ガラス基板 2の上面であるので、 防塵性の向上を図ることができる。 更に、 構造が簡易であるので、 容易に製造することができ、 しかも 量産性の向上を図ることができる。  According to the first embodiment, the light emitted from the light emitting element 1 can be efficiently radiated to the front direction by the reflection member 5, so that there is no loss of light in the side direction, and the area of the radiation surface 2a is reduced. The luminous intensity in the front direction and the luminance of the radiating surface 2a can be improved while maintaining the conventional state, and the luminance unevenness can be eliminated. In addition, since the radiation surface 2a is the upper surface of the flat transparent glass substrate 2, the dustproofness can be improved. Furthermore, since the structure is simple, it can be easily manufactured, and the mass productivity can be improved.
また、 上記第 1の実施例によれば、 各凹面状反射面 5 aは発光素 子 1の発光面側に各発光素子 1 と対向するように設けられているの で、 極めて薄型のもの (厚さ、 数ミ リ) でも、 発光素子 1 の発する 光を効率よく前面方向に放射することができる。 したがって、 従来 の L E D面状光源のように凹面状反射面が発光素子の側面に設けら れている型のものに比べて、 極めて薄型の L E D面状光源を製造す ることができる。  In addition, according to the first embodiment, since each concave reflecting surface 5a is provided on the light emitting surface side of the light emitting element 1 so as to face each light emitting element 1, an extremely thin one ( Even with a thickness of several millimeters), the light emitted from the light-emitting element 1 can be efficiently emitted toward the front. Therefore, an extremely thin LED planar light source can be manufactured as compared with a conventional LED planar light source in which a concave reflecting surface is provided on the side surface of a light emitting element as in a conventional LED planar light source.
尚、 上記第 1 の実施例においては、 発光素子 1を 9個、 縦横 3列 に配列した場合について説明したが、 発光素子 1 の数はこれに限ら れるものではなく、 用途に応じて数を増減したものであってもよい。 また、 上記第 1 の実施例においては、 各発光素子の接続が直列接 続の場合について説明したが、 これは並列接続でもよいし、 直列接 続と並列接続とを組み合わせたものでもよい。  In the first embodiment, the case where nine light-emitting elements 1 are arranged in three rows and columns has been described. However, the number of light-emitting elements 1 is not limited to this. The number may be increased or decreased. Further, in the first embodiment, the case where each light emitting element is connected in series is described, but this may be a parallel connection or a combination of the series connection and the parallel connection.
第 8図は第 1の実施例の変形例の斜視図であり、 第 9図はその分 解図である。 第 8図及び第 9図において、 7 aは透明ガラス基板 2 の下方に引き出されたリー ド線、 5 cは反射部材 5の側部上面に形 成された上溝、 5 dは反射部材 5の側面に形成された引出溝である。 本変形例は、 リ— ド線 7 aを透明ガラス基板 2の下方にあらかじ め折り曲げて形成し、 該リード線 7 aを L E D面状光源の裏面に引 き出すように構成したものである。 上溝 5 cは、 リ一ド線 Ί aの厚 さより若干大きい段差を持った溝であり、 透明ガラス基板 2と反射 部材 5とを固着する際に、 リ一 ド線 7 aの厚さのために、 両者の接 合面に隙間が生ずるのを防ぐためのものである。 また.、 引出溝 5 d はリ一ド線 7 aを反射部材 5の裏面に導き出すための溝である。 本変形例は上記構成により、 リ ー ド線 7 aが L E .D面状光源の裏 面に引き出されているので、 複数の L E D面状光源を縦横に緊密に 配列することができる。 FIG. 8 is a perspective view of a modification of the first embodiment, and FIG. It is an exploded view. 8 and 9, 7a is a lead wire pulled out below the transparent glass substrate 2, 5c is an upper groove formed on the upper surface of the side of the reflecting member 5, and 5d is a part of the reflecting member 5. This is a drawing groove formed on the side surface. In this modification, a lead wire 7a is formed by bending in advance below the transparent glass substrate 2, and the lead wire 7a is drawn out to the back surface of the LED planar light source. . The upper groove 5c is a groove having a step slightly larger than the thickness of the lead wire Ίa, and is used for fixing the transparent glass substrate 2 and the reflecting member 5 because of the thickness of the lead wire 7a. In addition, this is to prevent a gap from being formed at the joint surface between the two. Further, the lead groove 5 d is a groove for leading the lead wire 7 a to the back surface of the reflection member 5. In this modified example, the lead wire 7a is drawn out to the back surface of the LED planar light source by the above configuration, so that a plurality of LED planar light sources can be closely arranged vertically and horizontally.
第 1 0図(a) (b)は本変形例の応用例を示す概略斜視図であり、 同 図 (a)は正面からの斜視図、 同図 (b)は裏面からの斜視図である。 第 1 0図に示す応用例は、 第 8図に示す L E D面状光源を外函 8内 に収容し、 裏面にリ一ド線 7 aが接続された口金 9を設けたもので ある。 本変形例によれば、 リード線 7 aが L E D面状光源の裏面に 引き出されているので、 第 1 0図に示すように L E D面状光源の裏 面に容易に J I S規 f各に適合する口金 9を取り付けることができる。 これにより、 L E D面状光源の互換性の向上を図ることができる。 また、 第 1 0図に示す口金 9は差入式の B形 (たとえば B 2 2 ) の ものを使用したが、 口金 9はこれに限定されるものではなく、 J I S規格に適合するネジ込式の E形 (たとえば E 2 6 ) や G形でもよ く、 また、 口金 9の代わりに、 J I S規格にばないピン形状として もよい。  10 (a) and 10 (b) are schematic perspective views showing an application example of the present modified example, FIG. 10 (a) is a perspective view from the front, and FIG. 10 (b) is a perspective view from the back. . The application example shown in FIG. 10 is one in which the LED planar light source shown in FIG. 8 is housed in an outer case 8, and a base 9 to which a lead wire 7a is connected is provided on the back surface. According to this modification, since the lead wire 7a is led out to the back surface of the LED planar light source, it easily conforms to each JIS standard f as shown in Fig. 10 on the back surface of the LED planar light source. Base 9 can be attached. Thereby, the compatibility of the LED planar light source can be improved. In addition, although the base 9 shown in Fig. 10 was of the insertion type B type (for example, B22), the base 9 is not limited to this, and the screw-in type conforming to the JIS standard is used. (For example, E 26) or G type, and instead of the base 9, a pin shape not conforming to the JIS standard may be used.
尚、 第 1 0図に示す応用例の外函 8を扳厚約 1 m mのアルミフ レ ームとすれば、 各発光素子 1が発する熱を熱伝導のよいアルミ フ レ —ムを介して外部に効率よく放熱することができるので、 放熱性の 向上を図り、 発光素子 1 の温度上昇を抑えることができる。 If the outer case 8 of the application example shown in FIG. 10 is an aluminum frame having a thickness of about 1 mm, the heat generated by each light emitting element 1 is transmitted to the outside through an aluminum frame having good heat conduction. Heat can be efficiently dissipated Thus, the temperature of the light emitting element 1 can be suppressed from rising.
第 1 1図は第 1の実施例の第 1応用例の概略断面図である。 第 1 1図において 1 1 は、 例えば第 1 2図に示す文字表示板である。 第 1応用例は上記第 1 の実施例の上部に文字表示板 1 1を形成し、 L E D面状光源を文字表示板 1 1 のバックライ トとして使用したもの である。 本応用例によれば発光素子 1が発する光を有効に利用する ことができ、 しかも放射面の光は均一であるので明る く見易い表示 が可能となる。 尚、 発光素子 1 の影 (約 0. 4 m m. 0. 4 m m ) は機 能上及び見栄え上ほとんど問題とはならない。  FIG. 11 is a schematic sectional view of a first application example of the first embodiment. In FIG. 11, reference numeral 11 denotes, for example, a character display board shown in FIG. In the first application example, a character display plate 11 is formed on the upper part of the first embodiment, and an LED planar light source is used as a backlight of the character display plate 11. According to this application example, the light emitted from the light emitting element 1 can be effectively used, and the light on the radiation surface is uniform, so that a bright and easy-to-view display is possible. The shadow (approximately 0.4 mm. 0.4 mm) of the light-emitting element 1 causes almost no problem in function and appearance.
第 1 3図は第 1 の実施例の第 2応用例の概略断面図である。 第 1 3図において 1 2は液晶デイスプレイ、 1 3は光拡散層である。 第 2応用例は上記第 1の実施例の上部に液晶ディ スプレイ 1 2を設け、 更に第 1の実施例の透明ガラス基板 2 と液晶ディスプレイ 1 2 との 間に光拡散層 1 3を形成したものである。 そして、 L E D面状光源 を液晶デイ スプレイ 1 2用のバックライ 卜として使用したものであ る。 尚、 光拡散層 1 3は発光素子 1 の影 (約 0. 4 m m X 0. 4 m m ) を消すだけの機能があれば十分であり、 光拡散層 1 3の厚さは極め て薄いものでよいので、 光の利用効率には殆ど影響を及ぼさない。 また、 光拡散層 1 3は光拡散性樹脂、 光散乱フ ィ ルム又は磨りガラ スでもよ く、 更には第 1 4図に示すように透明ガラス基板 2の代わ りに光拡散性を有する透明基板 1 4を使用したものであってもよい。 上記の第 2応用例によれば輝度が高く、 しかも全く影のない均一 な放射面を得ることができ、 液晶ディ スプレイ 1 2等の微細な表示 のバックライ トとしても使用することができる。  FIG. 13 is a schematic sectional view of a second application example of the first embodiment. In FIG. 13, reference numeral 12 denotes a liquid crystal display, and reference numeral 13 denotes a light diffusion layer. In the second application example, a liquid crystal display 12 is provided on the upper part of the first embodiment, and a light diffusion layer 13 is formed between the transparent glass substrate 2 and the liquid crystal display 12 of the first embodiment. Things. In addition, the LED planar light source is used as a backlight for the liquid crystal display 12. The light-diffusing layer 13 only needs to have a function of eliminating the shadow (approximately 0.4 mm X 0.4 mm) of the light-emitting element 1, and the thickness of the light-diffusing layer 13 is extremely thin. Therefore, it has almost no effect on the light use efficiency. The light diffusing layer 13 may be a light diffusing resin, a light scattering film or a polished glass. Further, as shown in FIG. 14, instead of the transparent glass substrate 2, a transparent material having a light diffusing property may be used. The substrate 14 may be used. According to the second application example described above, a uniform radiating surface having high luminance and no shadow can be obtained, and can be used as a backlight for a fine display such as a liquid crystal display 12.
尚、 第 1 5図は上記第 2応用例の変形例であり .、 第 1の実施例で ある L E D面状光源と光拡散層 1 3 との間に空気層 1 5を設けたも のである。 かかる構成によれば発光素子 1が発する熱の放熱性が向 上し、 且つ空気層 1 5が設けられていることにより .、 伝導熱による 液晶ディスプレイ 1 2の温度上昇を抑制することができる o 第 1 6図ば本発明の第 2の実施例の概略断面図である。 第 1 6図 において 6 aは光透過性材料 6の下端面である。 尚、 第 1 6図に示 す第 2の実施例及び以下に説明する他の実施例において上記第 1図 乃至第 4図に示す第 1の実施例と同一の機能を有するものは同一の 符号を付すことによりその詳細な説明を省略する。 本発明の第 2の 実施例が第 1の実施例と異なるのは、 第 1の実施例における反射部 材 5を省略して、 簡略化した点にある。 その他の点は変形例や応用 例を含めて第 1の実施例と同様である。 即ち、 第 2の実施例では光 透過性材料 6の各発光素子 1の発光面と対向する下端面 6 aを、 各 発光素子 1を焦点とする放物面犾にそれぞれ形成し、 凹面状反射面 5 aはこの下端面.6 aの表面を鍍金又は金属蒸着等によって処理す ることにより形成したものである。 本実施例によれば、 より薄型の L E D面状光源とすることができる。 その他の作用 ·効果は、 第 1 の実施例の作用 ·効果と同様である。 FIG. 15 shows a modification of the second application example, in which an air layer 15 is provided between the LED planar light source and the light diffusion layer 13 of the first embodiment. . According to such a configuration, the heat radiation of the heat generated by the light emitting element 1 is improved, and the air layer 15 is provided, so that the temperature rise of the liquid crystal display 12 due to conduction heat can be suppressed. FIG. 16 is a schematic sectional view of a second embodiment of the present invention. In FIG. 16, 6a is the lower end surface of the light transmitting material 6. In the second embodiment shown in FIG. 16 and other embodiments described below, those having the same functions as those of the first embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals. The detailed description will be omitted by attaching the symbol. The second embodiment of the present invention differs from the first embodiment in that the reflection member 5 in the first embodiment is omitted to simplify the second embodiment. The other points are the same as the first embodiment including the modified examples and the applied examples. That is, in the second embodiment, the lower end surface 6a of the light transmissive material 6 facing the light emitting surface of each light emitting element 1 is formed on a parabolic surface と す る focusing on each light emitting element 1, and the concave reflection The surface 5a is formed by processing the surface of the lower end surface .6a by plating or metal deposition. According to this embodiment, a thinner LED planar light source can be obtained. Other operations and effects are the same as the operations and effects of the first embodiment.
第 1 7図は本発明の第 3の実施例の概略断面図である。 第 1 7図 において 1 0はリ一ドフレームである。 本発明の第 3の実施例が第 2の実施例と異なるのは、 上記第 2の実施例における透明ガラス基 板 と回路パターン 3の代わりに、 リードフレーム 1 0を用いた点 にある。 その他の点は第 1の実施例の変形例や応用例をも含めて第 2の実施例と同様である。 すなわち、 第 3の実施例では、 各発光素 子 1は各リー ドフ レーム 1 0の一端に取り付けられ、 他のリー ドフ レーム 1 0の端部とはヮィャ 4によりそれぞれ接続されている。 そ して、 各発光素子 1 とワイヤ 4とリードフ レーム 1 0 とが一体的に 光透過性材料 6で埋められている。 第 3の実施例によれば、 リード フ レーム 1 0により発光素子 1に電力を供給するだけでなく、 発光 素子 1の発する熱を効率よく外部に放射し、 放熱性の向上を図るこ とができる。 その他の作用 *効果は第 2の実施例の作用 ♦効果と同 様である。  FIG. 17 is a schematic sectional view of a third embodiment of the present invention. In FIG. 17, reference numeral 10 denotes a lead frame. The third embodiment of the present invention is different from the second embodiment in that a lead frame 10 is used instead of the transparent glass substrate and the circuit pattern 3 in the second embodiment. The other points are the same as the second embodiment including the modified examples and the applied examples of the first embodiment. That is, in the third embodiment, each light-emitting element 1 is attached to one end of each lead frame 10, and is connected to the end of the other read frame 10 by the wire 4. Then, each light emitting element 1, wire 4 and lead frame 10 are integrally buried with the light transmitting material 6. According to the third embodiment, not only power is supplied to the light emitting element 1 by the lead frame 10 but also the heat generated by the light emitting element 1 is efficiently radiated to the outside to improve the heat radiation. it can. Other effects * Effects are the same as those of the second embodiment.
第 1 8図は本発明の第 4の実施例である L E D面状光源の概略断 面図、 第 1 9図はその凹面状反射面の正面図である。 第 1 8図及び 第 1 9図において 1 aは赤色の発光素子、 1 bは黄緑色の発光素子、 5 a は反射部材 5 に形成された凹面状反射面、 5 bは凹面状反射面 5 aの端緣 (境界面) 、 7はリー ド線である。 本実施例が第 1 の実 施例と異なるのは、 各凹面状反射面 5 aの略焦点位置に、 赤色の発 光素子 1 a と黄緑色の発光素子 1 bとからなる 1組の発光素子が配 置されている点である。 その他の点は変形例や応用例も含めて第 1 の実施例と同様である。 FIG. 18 is a schematic sectional view of an LED planar light source according to a fourth embodiment of the present invention. FIG. 19 is a front view of the concave reflecting surface. In FIGS. 18 and 19, 1a is a red light emitting element, 1b is a yellow-green light emitting element, 5a is a concave reflecting surface formed on the reflecting member 5, and 5b is a concave reflecting surface 5. The end of a (boundary surface) and 7 are lead lines. This embodiment is different from the first embodiment in that one set of a light emitting element composed of a red light emitting element 1a and a yellow-green light emitting element 1b is provided at a substantially focal position of each concave reflecting surface 5a. The point is that the elements are arranged. The other points are the same as the first embodiment including the modified examples and the applied examples.
赤色の発光素子 1 a は、 第 2 0図に示すように放射面である透明 ガラス基板 2の下面に形成された一方の回路パターン 3 aにマウン トされ、 他方の回路パターン 3 bとはワイ ヤ 4 aにより電気的に接 続されている。 一方、 黄緑色の発光素子 1 bは、 上記とは逆に他方 の回路パタ一ン 3 bにマウ ン トされ、 回路パタ一ン 3 a とはワイ ヤ 4 bにより電気的に接続されている。 このようにして 1組の発光素 子 1 a * 1 bが 9組マウン 卜された透明ガラス基板 2には反射部材 5が固着される。 反射部材 5には、 1組の発光素子 1 a · 1 bの中 心を略焦点とする放物面状に形成された凹面状反射面 5 aが設けら れている。  The red light emitting element 1a is mounted on one circuit pattern 3a formed on the lower surface of the transparent glass substrate 2, which is the radiation surface, as shown in FIG. 20, and is connected to the other circuit pattern 3b. 4a are electrically connected. On the other hand, the yellow-green light-emitting element 1b is mounted on the other circuit pattern 3b in the opposite manner, and is electrically connected to the circuit pattern 3a by the wire 4b. . In this way, the reflecting member 5 is fixed to the transparent glass substrate 2 on which the nine sets of the light emitting elements 1a * 1b are mounted. The reflecting member 5 is provided with a concave reflecting surface 5a formed in a parabolic shape with the center of the set of light emitting elements 1a and 1b being substantially the focal point.
上記の構成によれば、 リ ― ド線 7に電力が供給されると透明ガラ ス基板 2に形成された回路バターン 3 a ' 3 b とワイヤ 4 a · 4 b とにより各発光素子 1 a · 1 bが発光し、 これにより多色機能を有 する L E D面状光源となる。 すなわち、 回路パターン 3 aから回路 バタ—ン 3 bへ電流を流したときには一方の発光素子が発光し、 逆 方向に電流を流したときには他方の発光素子が発光する。 したがつ て、 交流電流を流したときには赤色の発光素子 1 a と黄緑色の発光 素子 1 bは交互に点灯するので、 交流の周波数を高くすると両方の 発光素子が発光しているように見える。 その他の作用 ·効果は第 1 の実施例と同様である。  According to the above configuration, when power is supplied to the lead wire 7, the light emitting elements 1 a · 4 a · 4 b and the circuit patterns 3 a '3 b formed on the transparent glass substrate 2 are used. 1b emits light, thereby providing an LED planar light source having a multicolor function. That is, when a current flows from the circuit pattern 3a to the circuit pattern 3b, one light emitting element emits light, and when a current flows in the opposite direction, the other light emitting element emits light. Therefore, when an AC current is applied, the red light-emitting elements 1a and the yellow-green light-emitting elements 1b are alternately lit, so that when the AC frequency is increased, both light-emitting elements appear to emit light. . Other actions and effects are the same as those of the first embodiment.
尚、 上記の本実施例では発光素子の発光色が赤色と黄緑色である 場合について說明したが、 発光素子は他の配色又は単色でもよい。 更に、 発光素子の発光色は一組みの発光素子毎に異なるものでもよ いし、 また一列毎に異なるものであってもよい。 更に、 上記の実施 例においては、 異なる発光色の発光素子を 2個使用した場合につい て說明したが、 発光素子の数量は 2個に限定されるものではなく 3 個以上を使用したものであってもよい。 In the present embodiment, the light emission colors of the light emitting elements are red and yellow-green. Although the case has been described, the light emitting element may have another color or a single color. Further, the emission color of the light emitting element may be different for each set of light emitting elements, or may be different for each row. Further, in the above embodiment, the case where two light emitting elements of different emission colors are used has been described. However, the number of light emitting elements is not limited to two, and three or more light emitting elements are used. You may.
また、 上記の実施例で説明した回路パターンは、 前記第 2 Q図に 示したものに限定されるものではなく、 必要に応じて、 たとえば第 2 1図又ば第 2 2図に示すように形成したものであってもよい。 尚、 たとえば発光素子 l a . 1 bとして G a P系の発光素子を使用した 場合、 第 2 1図又は第 2 2図において回路パターン 3 a、 3 0 aは 一側、 3 b、 3 0 bは +側とする。 第 2 1図又は第 2 2図に示すよ うに接続することにより、 赤色の発光素子 1 aと黄緑色の発光素子 1 bとの点灯を容易に倔別に制御することができる。  Further, the circuit patterns described in the above embodiments are not limited to those shown in FIG. 2Q, but may be changed as necessary, for example, as shown in FIG. 21 or FIG. It may be formed. For example, when a Gap light-emitting element is used as the light-emitting element la.1b, the circuit patterns 3a and 30a are on one side, 3b and 30b in FIG. 21 or FIG. Is the + side. By connecting as shown in FIG. 21 or FIG. 22, lighting of the red light-emitting element 1a and the yellow-green light-emitting element 1b can be easily controlled separately.
更に、 本実施例のように、 各凹面状反射面 5 a毎に複数.の発光素 子を配置する場合には、 各凹面状反射面は第 2 3図に示すように、 正面形状が円形状に形成されたものでもよい。  Further, when a plurality of light-emitting elements are arranged for each concave reflecting surface 5a as in this embodiment, each concave reflecting surface has a circular front shape as shown in FIG. It may be formed in a shape.
尚、 上記第 1乃至第 4の実施例においては、 凹面状反射面 5 aの 全体形状が平板状に形成された場合について説明したが、 これは凹 面板状又は凸面板状に形成されたものであってもよい。  In the first to fourth embodiments, the case where the entire shape of the concave reflecting surface 5a is formed in a flat plate shape has been described, but this is the case in which the concave reflecting surface 5a is formed in a concave plate shape or a convex plate shape. It may be.
また、 上記第 1乃至第 4の実施例においては、 リー ド部が 0路パ タ一ンの形成された透明ガラス基板又はリ一ドフレームを舍むもの である場合について説明したが、 リ一ド部はステムを舍むものであ つてもよい。  Further, in the above first to fourth embodiments, the case where the lead portion covers the transparent glass substrate or the lead frame on which the zero-way pattern is formed has been described. The section may be a stem.
更に、 上記第 1乃至第 4の実施例においては、 発光素子 1が凹面 状反射面 5 aの焦点位置に配置されている場合について説明したが、 発光素子 1 は凹面状反射面 5 aの中心軸に沿ってずらして配置して もよい。 たとえば、 発光素子 1の位置を中心軸に沿って四面状反射 面 5 aに近づくようにずらすと、 外部に放射される放射光は平行光 ではなく、 若干拡がって拡散光となる。 Furthermore, in the first to fourth embodiments, the case where the light emitting element 1 is disposed at the focal position of the concave reflecting surface 5a has been described, but the light emitting element 1 is located at the center of the concave reflecting surface 5a. They may be staggered along the axis. For example, if the position of the light-emitting element 1 is shifted along the central axis so as to approach the tetrahedral reflecting surface 5a, the radiated light radiated outside will be parallel light Instead, it spreads slightly and becomes diffuse light.
加えて、 上記第 1乃至第 4の実施例においては、 凹面状反射面 5 aが放物面状に形成されている場合について説明したが、 凹面状反 射面 5 aは、 用途に応じて楕円面状又は球面状でもよ く、 また複数 の小平面を結合して、 たとえば疑似放物面状に形成したものであつ てもよい。  In addition, in the first to fourth embodiments, the case where the concave reflecting surface 5a is formed in a parabolic shape has been described, but the concave reflecting surface 5a may be The shape may be an ellipsoidal shape or a spherical shape, or may be a shape obtained by combining a plurality of small planes to form, for example, a pseudo paraboloid.
以上説明したように本発明によれば、 各発光素子の発光面側に設 けた各々の凹面状反射面により、 発光素子が発する光を有効に前面 方向に放射することができるので、 放射面の輝度むらをなくすこと ができ、 しかも前面方向に対する光の放射効率の向上を図ることが できる薄型の L E D面状光源を提供することができる。 また、 各凹 面状反射面は正面形状が面を均一に埋めることができる多角形に形 成され、 且つ各凹面状反射面は隙間なく他の凹面状反射面と接合さ れているので、 放射面に暗部のない L E D面状光源を提供すること ができる。 産業上の利用可能性  As described above, according to the present invention, the light emitted from the light emitting element can be effectively radiated in the front direction by the respective concave reflecting surfaces provided on the light emitting surface side of each light emitting element. It is possible to provide a thin LED planar light source that can eliminate luminance unevenness and improve the light emission efficiency in the front direction. In addition, since each concave reflecting surface is formed into a polygon whose front shape can uniformly fill the surface, and each concave reflecting surface is joined to another concave reflecting surface without a gap, It is possible to provide an LED planar light source having no dark area on the radiation surface. Industrial applicability
以上のように、 本発明に孫る L E D面状光源は一般の照明機器用 光源として、 また各種表示装置、 たとえば屋外用表示装置用の光源 又は自動車用ブレーキラ ンプやウイ ンカ—用の光源として、 更に液 晶ゃ屋外用表示装置のバックライ トとして用いるのに適している。  As described above, the LED planar light source according to the present invention is used as a light source for general lighting equipment, as a light source for various display devices, for example, an outdoor display device, or as a light source for a brake lamp or a turn signal lamp for an automobile. Further, it is suitable for use as a backlight of a liquid crystal outdoor display device.

Claims

請求の範固 Claim scope
(1) 複数の発光素子と、 該発光素子に電力を供給するリ一ド部と、 前記各発光素子毎に前記各発光素子の発光面側に前記各発光素子と 対向して設けられ且つ正面形状が面を均一に埋めることができる多 角形に形成された凹面状反射面とを備え、 前記各凹面状反射面の端 緣を他の前記 E1面扰反射面の端縁と隙間なく接合するように形成し、 且つ前記各発光素子が発する光を一度前記各凹面扰反射面で反射し た後に外部に放射するように構成したことを特徴とする L E D面状 光源。 (1) a plurality of light-emitting elements, a lead section for supplying power to the light-emitting elements, and a light-emitting surface side of each of the light-emitting elements, provided for each of the light-emitting elements, facing the light-emitting elements and facing the light-emitting elements. A concave reflecting surface having a polygonal shape capable of uniformly filling the surface, and joining the end of each concave reflecting surface to the other E1 surface and the edge of the reflecting surface without gaps. The LED planar light source is formed in such a manner that the light emitted from each of the light emitting elements is reflected once by each of the concave surface and the reflecting surface and then emitted to the outside.
(2) 前記各発光素子は、 発光色の異なる複数の発光素子からなる ものである請求の範囲第 1項記載の L E D面状発光光源。  (2) The LED planar light source according to claim 1, wherein each of the light emitting elements comprises a plurality of light emitting elements having different emission colors.
(3) 前記凹面状反射面は放物面扰であり、 前記発光素子は前記四 面状反射面の焦点に配置されたものである請求の範囲第 1項又は第 2項記載の L E D面状光源。  (3) The LED surface according to claim 1 or 2, wherein the concave reflecting surface is a parabolic surface 、, and the light emitting element is disposed at a focal point of the tetrahedral reflecting surface. light source.
(4) 前記発光素子と前記リ― ド部とは光透過性材料で埋められて いる請求の範囲第 1項乃至第 3項の何れかに記載の L E D面状光源。  (4) The LED planar light source according to any one of claims 1 to 3, wherein the light emitting element and the lead portion are filled with a light transmissive material.
(5) 前記凹面状反射面ば、 牢扳状の樹脂に彤成された凹面状部に 金属を蒸着したものである請求の範囲第 1項乃至第 4項の何れかに 記載の L E D面状光源。  (5) The LED surface according to any one of claims 1 to 4, wherein the concave reflection surface is formed by depositing a metal on a concave portion formed of a durable resin. light source.
(6) 前記凹面状反射面は、 前記光透過性材料の前記発光素子に対 向する面を凸面状と成し、 該凸面状と成した面に金属を蒸着して形 成したものである請求の範囲第 4項記載の L E D面状光源。  (6) The concave reflecting surface is formed by forming a surface of the light transmitting material facing the light emitting element into a convex shape, and depositing a metal on the surface having the convex shape. 5. The LED planar light source according to claim 4.
(7) 前記リ一ド部ば回路バタ—ンが形成された透明ガラス基板を 含み、 前記発光素子は該透明ガラス基板の回路パターン上に取り付 けられ、 ワイャ—ボンディ ングされている請求の範囲第 1項乃至第 6項の何れかに記載の L E D面状光源。  (7) The lead portion includes a transparent glass substrate on which a circuit pattern is formed, and the light-emitting element is mounted on a circuit pattern of the transparent glass substrate and wire-bonded. Item 7. The LED planar light source according to any one of Items 1 to 6.
(8) 前記リ一ド部はリ一ドフレームを含み、 前記発光素子は該リ — ドフレームの一方の上に取 付けられ、 他のリ ー ドフレ一厶とは ワイヤ—ボンディ ングされている請求の範囲第 1項乃至第 6項の何 れかに記載の L E D面状光源。 (8) The lead portion includes a lead frame, the light emitting element is mounted on one of the lead frames, and is separated from another lead frame. The LED planar light source according to any one of claims 1 to 6, which is wire-bonded.
PCT/JP1988/001210 1987-11-30 1988-11-30 Planar led illuminant WO1989005524A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62/301730 1987-11-30
JP62301730A JPH01143366A (en) 1987-11-30 1987-11-30 Led face light emitting source
JP63/28717 1988-02-12
JP63028717A JPH01205480A (en) 1988-02-12 1988-02-12 Light emitting diode and led surface light emission source

Publications (1)

Publication Number Publication Date
WO1989005524A1 true WO1989005524A1 (en) 1989-06-15

Family

ID=26366860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/001210 WO1989005524A1 (en) 1987-11-30 1988-11-30 Planar led illuminant

Country Status (1)

Country Link
WO (1) WO1989005524A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354468A2 (en) * 1988-08-10 1990-02-14 TELEFUNKEN electronic GmbH Flat light radiator
GB2365112A (en) * 2000-07-21 2002-02-13 Fiat Ricerche Flat panel lighting device
US6733156B2 (en) * 2000-11-16 2004-05-11 Kexin Ma Light-emitting diode illuminated light-emitting
WO2005020336A1 (en) * 2003-08-25 2005-03-03 Tabuchi Electric Co., Ltd. Process for producing light emitting diode
WO2007017833A1 (en) * 2005-08-10 2007-02-15 Koninklijke Philips Electronics N.V. Light emitting diode comprising multiple dies and optical system with number of lens elements
WO2008036640A1 (en) * 2006-09-21 2008-03-27 3M Innovative Properties Company Led backlight
WO2008044170A3 (en) * 2006-10-10 2008-06-12 Koninkl Philips Electronics Nv Thin illumination device, display device and luminary device
WO2008102287A1 (en) * 2007-02-23 2008-08-28 Koninklijke Philips Electronics N.V. A led luminaire
CN103840049A (en) * 2012-11-23 2014-06-04 苏州科医世凯半导体技术有限责任公司 Semiconductor LED light source with customized light emitting surface shape
WO2015147014A1 (en) * 2014-03-27 2015-10-01 オリンパス株式会社 Display panel and electric apparatus
WO2018157005A1 (en) * 2017-02-24 2018-08-30 Glint Photonics, Inc. Configurable luminaire
CN111308783A (en) * 2020-03-25 2020-06-19 深圳市隆利科技股份有限公司 LED backlight device and display equipment
WO2023025822A1 (en) * 2021-08-23 2023-03-02 Schreder S.A. Optical plate with integrated connection
IT202100030980A1 (en) * 2021-12-09 2023-06-09 Coelux Srl LED CIRCUIT BOARD AND LIGHT EMISSION MODULE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824180A (en) * 1981-08-06 1983-02-14 キムラ電機株式会社 Flat display unit
JPS5882290A (en) * 1981-11-11 1983-05-17 キムラ電機株式会社 Reflection type plane dispaly
JPS60149082A (en) * 1983-10-24 1985-08-06 三洋電機株式会社 Light emitting diode display
JPS6255975A (en) * 1985-09-05 1987-03-11 Mitaka Denshi Kagaku Kenkyusho:Kk Led multicolor light emitting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824180A (en) * 1981-08-06 1983-02-14 キムラ電機株式会社 Flat display unit
JPS5882290A (en) * 1981-11-11 1983-05-17 キムラ電機株式会社 Reflection type plane dispaly
JPS60149082A (en) * 1983-10-24 1985-08-06 三洋電機株式会社 Light emitting diode display
JPS6255975A (en) * 1985-09-05 1987-03-11 Mitaka Denshi Kagaku Kenkyusho:Kk Led multicolor light emitting system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354468A3 (en) * 1988-08-10 1991-09-04 TELEFUNKEN electronic GmbH Flat light radiator
EP0354468A2 (en) * 1988-08-10 1990-02-14 TELEFUNKEN electronic GmbH Flat light radiator
GB2365112A (en) * 2000-07-21 2002-02-13 Fiat Ricerche Flat panel lighting device
US6733156B2 (en) * 2000-11-16 2004-05-11 Kexin Ma Light-emitting diode illuminated light-emitting
WO2005020336A1 (en) * 2003-08-25 2005-03-03 Tabuchi Electric Co., Ltd. Process for producing light emitting diode
US8163580B2 (en) 2005-08-10 2012-04-24 Philips Lumileds Lighting Company Llc Multiple die LED and lens optical system
WO2007017833A1 (en) * 2005-08-10 2007-02-15 Koninklijke Philips Electronics N.V. Light emitting diode comprising multiple dies and optical system with number of lens elements
US8729571B2 (en) 2005-08-10 2014-05-20 Philips Lumileds Lighting Company Llc Multiple die LED and lens optical system
WO2008036640A1 (en) * 2006-09-21 2008-03-27 3M Innovative Properties Company Led backlight
US7481563B2 (en) 2006-09-21 2009-01-27 3M Innovative Properties Company LED backlight
US8251529B2 (en) 2006-10-10 2012-08-28 Koninklijke Philips Electronics N.V. Thin illumination device, display device and luminary device
US20100033954A1 (en) * 2006-10-10 2010-02-11 Koninklijke Philips Electronics N.V. Thin illumination device, display device and luminary device
WO2008044170A3 (en) * 2006-10-10 2008-06-12 Koninkl Philips Electronics Nv Thin illumination device, display device and luminary device
WO2008102287A1 (en) * 2007-02-23 2008-08-28 Koninklijke Philips Electronics N.V. A led luminaire
CN103840049A (en) * 2012-11-23 2014-06-04 苏州科医世凯半导体技术有限责任公司 Semiconductor LED light source with customized light emitting surface shape
WO2015147014A1 (en) * 2014-03-27 2015-10-01 オリンパス株式会社 Display panel and electric apparatus
US10393348B2 (en) 2017-02-24 2019-08-27 Glint Photonics, Inc. Configurable luminaire
WO2018157005A1 (en) * 2017-02-24 2018-08-30 Glint Photonics, Inc. Configurable luminaire
CN110352317A (en) * 2017-02-24 2019-10-18 闪耀光电股份有限公司 Configurable lamps and lanterns
US10563844B2 (en) 2017-02-24 2020-02-18 Glint Photonics, Inc. Configurable luminaire with light sources variably oriented with respect to an array of concave mirrors
CN110352317B (en) * 2017-02-24 2022-03-22 闪耀光电股份有限公司 Configurable light fixture
CN111308783A (en) * 2020-03-25 2020-06-19 深圳市隆利科技股份有限公司 LED backlight device and display equipment
WO2023025822A1 (en) * 2021-08-23 2023-03-02 Schreder S.A. Optical plate with integrated connection
NL2029021B1 (en) * 2021-08-23 2023-03-03 Schreder Sa Optical plate with integrated connection
IT202100030980A1 (en) * 2021-12-09 2023-06-09 Coelux Srl LED CIRCUIT BOARD AND LIGHT EMISSION MODULE
WO2023105367A1 (en) * 2021-12-09 2023-06-15 Coelux S.R.L. Led circuit board and light emitting module

Similar Documents

Publication Publication Date Title
US7722211B2 (en) Light engine
US6729746B2 (en) Light source device
US7029156B2 (en) Light emitting apparatus and display
US8425101B2 (en) Illumination system, luminaire and backlighting unit
CN102130109B (en) Light emitting device and light unit using the same
JP5025612B2 (en) LED light source and light emitter using the same
WO2010001604A1 (en) Illumination device
US20080198597A1 (en) Illumination Device
JP2015015494A (en) Light source module and surface light-emitting device
JP5188077B2 (en) Light direction changing element and planar light emitting device
JP2006294618A (en) Light emitting panel
TWI671574B (en) Light source module and display appartus
WO1989005524A1 (en) Planar led illuminant
JP6446202B2 (en) Wide-angle diffusion optical system and illumination device using the same
JP5538479B2 (en) LED light source and light emitter using the same
JPH01143366A (en) Led face light emitting source
TWI392125B (en) Light emitting device
JP2001230451A (en) Light emitting diode
JPH01205480A (en) Light emitting diode and led surface light emission source
JP2004288866A (en) Led lamp
JP5636790B2 (en) Lighting device
JP2022539405A (en) Lighting modules, lighting devices and lamps
KR101843503B1 (en) Illumination device
JPH01143368A (en) Led display element
JP4458214B2 (en) Light source device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE