WO1986004982A1 - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
WO1986004982A1
WO1986004982A1 PCT/JP1985/000076 JP8500076W WO8604982A1 WO 1986004982 A1 WO1986004982 A1 WO 1986004982A1 JP 8500076 W JP8500076 W JP 8500076W WO 8604982 A1 WO8604982 A1 WO 8604982A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
metal
pipe
carbon fiber
working fluid
Prior art date
Application number
PCT/JP1985/000076
Other languages
French (fr)
Japanese (ja)
Inventor
Michio Takaoka
Tsuneaki Motai
Masuji Sakaya
Masataka Mochizuki
Kouichi Mashiko
Masashi Ida
Masahiko Ito
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to PCT/JP1985/000076 priority Critical patent/WO1986004982A1/en
Publication of WO1986004982A1 publication Critical patent/WO1986004982A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0241Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the tubes being flexible

Definitions

  • the present invention relates to a heat pipe, particularly when ripening transport is performed over a relatively long distance or when the ripening portion is slightly higher than the cooling portion.
  • this is a heat pipe that is effective when excellent ripe transport capacity is required.
  • heat pipes are used to enclose a working fluid such as water in a vacuum-evacuated sealed metal pipe and to generate capillary pressure, thereby providing a wiping pipe.
  • a working fluid such as water in a vacuum-evacuated sealed metal pipe and to generate capillary pressure, thereby providing a wiping pipe.
  • the working fluid that has been ripened from the outside flows into the inside of the metal tube to the lower side, then ripens and condenses and liquefies. Then, the working fluid in the liquid phase is returned to the ripening section by the capillary pressure generated in the wick, so that the latent flow accompanying the phase change of the working fluid is achieved. It is to carry out the transportation of ripeness.
  • the heat pipe has a thermal conductivity several tens to one hundred and several tens times higher than that of copper, which is the metal with the best ripening conductivity. It is used in various fields such as heat exchangers, solar water heaters, medical equipment, etc., and recently it is also used for indirect cooling of electric power cables. It has come. At this point, as described above, the heat pipe is used to return the condensed and liquefied working fluid to the ki-mature part side by means of a dip, so the dip JH In addition, the ripening transport characteristics are greatly affected.
  • the present invention provides a sufficiently high capillary pressure for refluxing a liquid-phase working fluid, and thus from a mature transport position over a long distance to a lower position.
  • the purpose is to provide a heat pipe that can be transported That is.
  • Another object of the present invention is to provide a heat pipe having excellent ripening ability and yet being flexible.
  • Yet another object of the present invention is to provide a heat pipe which can maintain the mature transport ability for a long period of time and is easily manufactured.
  • the present invention is based on a press made up of a number of ultrafine carbon fibers constituting a wick and an arrangement of the ultrafine carbon fibers on the inner peripheral side thereof. It is a heat pipe characterized by being closely attached to the inner peripheral surface of a sealed metal tube. Therefore, the carbon fiber bundle emits high capillary pressure.
  • the present invention has a configuration in which the carbon fiber is pressed and fixed against the inner peripheral surface of the metal tube by the presser disposed on the inner peripheral side thereof. It is possible to prevent a flow path formed between the carbon fibers from being closed or a failure to sufficiently exchange with a working fluid.
  • the present invention provides a method of twisting a plurality of ultrafine carbon fibers and adhering a plurality of stranded wires to the inner peripheral surface of a metal tube at a predetermined interval from each other. It is a heat pipe. By doing so, the area where the working fluid comes into direct contact with the inner surface of the metal pipe is increased, so that the transfer between the working fluid and the metal pipe can be efficiently performed. Wear .
  • the heat pipe according to the present invention comprises a presser formed of a spiral band, and a spiral pitch formed by the spiral pitch.
  • the width of which is larger than the width, the penetration of the working fluid into the wick and the evaporation of the working fluid from the wick.
  • the presser can be made of a resilient metal net.
  • the ultra-fine carbon fiber forming the stick can be securely pressed and fixed to the inner peripheral surface of the metal tube, and the working fluid for the wick can be fixed. This ensures the penetration of the fluid and the generation of the working fluid from the wick.
  • the wick can be formed by a cloth material made of carbon steel. With such a configuration, a large number of carbon fiber The fiber can be easily attached to the inside of the metal tube, and its shape can be maintained.
  • the present invention is a heat pipe provided with a wick having a sandwich structure in which a fine carbon fiber is sandwiched between metal nets.
  • FIG. 1 is a schematic partial sectional view showing an example of a heat pipe according to the present invention
  • FIG. 2 is a diagram of FIG. 1 I-line cross-sectional view
  • Fig. 3 is a graph showing the measurement results of the capillary height by carbon fiber and the capillary height by the comparative example
  • Fig. 4 is the graph of the carbon fiber strand.
  • Fig. 5 is a cross-sectional view similar to Fig. 2 showing another example of the arrangement of carbon fibers
  • Fig. 6 is a top view FIG.
  • FIG. 7 is a graph showing the experimental results of examining the soaking temperature characteristics of the product of the present invention and a comparative example.
  • FIG. 7 is a typical graph showing another example of a heat pipe according to the present invention.
  • Fig. 8 is a sectional view taken along the line H-71 in Fig. 7, and
  • Fig. 9 is a partial enlarged view of a structure in which carbon fibers are sandwiched between metal nets.
  • Fig. 10 is a cross-sectional view similar to Fig. 8, showing another example of the arrangement of carbon fibers in the heat pipe shown in Fig. 7, and Fig. 10 is a cross-sectional view of the present invention.
  • FIG. 2 is a schematic partial cross-sectional view showing another example of the heat pipe, FIG.
  • FIG. 2 is a cross-sectional view taken along line XI—XI of FIG. 1
  • FIG. FIG. 14 is a plan view and FIG. 14 is a graph showing the results of measuring the temperature distribution in the axial direction during operation of the heat pipe shown in FIG. 11 and the comparative example.
  • FIG. 1 is a schematic partial cross-sectional view showing an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line K !
  • reference numeral 1 denotes an outer body.
  • a large number of ultrafine carbon fibers 2 are attached as a wick to the inner peripheral surface of the metal tube 1, and the carbon fibers 2 are wrapped around the inner peripheral surface of the metal tube 1.
  • a presser 3 is arranged on the inner peripheral side of the carbon fiber 2 so that the metal tube 1 can be tightly fixed to the surface. Later, a working fluid such as water is sealed.
  • the metal pipe 1 may be a straight pipe, but in order to be flexible, it may be a collet pipe as shown in FIG. I like it.
  • the reason why the wick was formed by the ultrafine carbon fiber 2 is explained below. For that reason.
  • FIG. 3 is a graph showing the results of an experiment performed by the present inventors.
  • curve A represents a bundle of a large number of carbon fibers 2 having a diameter of 5 *.
  • Curve B is a 60-80 mesh active alumina
  • curve C is a 60-mesh mesh gel
  • curve D is a sintered metal with a length of about 8 cm. The song that I just joined
  • each sample was set up vertically in the water, and the height of the rising water surface in the sample was defined as the capillary length.
  • the carbon fiber 2 has a maximum capillary length of 100 cm or more, whereas the metal mesh is fired.
  • carbon fiber 2 was extremely excellent, with conventional wick materials such as TOj3 ⁇ 4 having a maximum capillary length of only about 40 cm.
  • the second reason for using the wick as carbon fiber 2 is as follows.
  • the ultrafine carbon fibers 2 are bundled, if the carbon fibers 2 are separated from each other, that is, if the flow path of the liquid-phase working fluid is continuous, the friction coefficient is small at the time of the circumference, so that the carbon fibers 2 are cooled.
  • the pressure loss of the liquid-phase working fluid that flows back from the section to the ripening section is small, and therefore, ⁇ ⁇ Capillary pressure can be obtained. This is because the recirculation of the fluid is improved.
  • the maximum ripening transport amount Q max varies depending on the diameter of the carbon fiber itself, the most preferable diameter of the carbon wire to be used for forming the wick is determined here.
  • the maximum matured transport quantity Q flix is generally expressed by the following equation.
  • Figure 4 shows that the value of (K / r) in the above equation depends on the wick, and that the value is obtained from the measured value for the wick made of carbon fiber bundles. Therefore, the diameter of the carbon fiber wire used as a wick should be as follows. It is preferable to take about 30 JJ »from 2 JJm.
  • the thickness of the wick made of the carbon fiber 2 is 1 to 3 to reduce the total maturation resistance to the working fluid. It is preferably about 5 mm, generally about 2.
  • the third reason for using the carbon fiber 2 as the stick is that the carbon fiber 2 is rich in elasticity and has a small coefficient of linear expansion.
  • the pipe in order to improve the communication between the working fluid and the metal pipe that forms the outer casing, it is preferable that the pipe be closely attached to the inner peripheral surface of the metal pipe. Therefore, if the heat pipe is made of a flexible material, the heat pipe is made of carbon fiber. After bending, return to the original state, and the wick follows the curve and returns to the original state due to elasticity, maintaining the tightness between the pipe and the metal pipe Even when the temperature difference between the non-operating and operating states is large, the low linear expansion coefficient does not cause the slack of the wick. Therefore, it is possible to maintain the adhesion between the steel pipe and the metal tube 1.
  • the carbon fiber 2 since the carbon fiber 2 has a large heat resistance and a high corrosion resistance, it can be used as a wick for the heat pipe at the operating temperature, and the working fluid can be selected. Because carbon fiber 2 has a large weight and destructive strength, the carbon fiber 2 can form a dirt with carbon fiber 2. This makes it possible to obtain a heat pipe that is easy to handle and versatile.
  • the carbon fiber itself does not have a mutual binding force and a close contact force with the metal tube 1 forming the outer body, a large number of carbon fibers are formed by some means. 2 must be tied together and closely attached to the metal tube ⁇ . If an adhesive is used for this purpose, the adhesive will close the gap between the two carbon fibers, that is, the flow path of the liquid-phase working fluid, and the adhesive will not work with the working fluid. Heat transfer between the metal tube 1 and the metal tube 1 is hindered. Therefore, in the present invention, the inside of the carbon fiber 2 disposed on the inner peripheral surface of the metal tube 1 is not preferable.
  • the holding member 3 was arranged on the peripheral side, and the carbon fiber 2 was pressed and fixed by the holding member 3 against the inner peripheral surface of the metal tube 1.
  • the carbon fibers 2 may be arranged on the inner circumferential surface of the metal tube 1 along the axial direction of the metal tube 1, or may be spirally arranged. It may be arranged on the inner peripheral surface of the metal tube 1 in the same manner.
  • the carbon fibers 2 may be disposed so as to be in close contact with the entire inner peripheral surface of the metal tube 1.For example, a plurality of carbon fibers are twisted to form a stranded wire 2a. These may be arranged at regular intervals in the circumferential direction of the metal tube 1 as shown in FIG. This increases the area in which the working fluid comes into direct contact with the inner peripheral surface of the metal pipe 1. It is possible to efficiently exchange information between students.
  • a band-shaped material 3 a made of a scale plate or the like is formed in a spiral shape.
  • the material 3 a acts to expand by its own elastic force, so that the carbon fiber 2 is pressed and fixed to the inner peripheral surface of the metal tube 1.
  • the spiral pitch P of the helical holding member 3 is set to be larger than the width w of the strip 3a, and accordingly, the holding member 3 is made of carbon. Since the entire surface of the fiber 2 is not covered, the liquefied working fluid can easily permeate the carbon fiber 2 ⁇ and evaporate the working fluid from the carbon fiber 2. Uniteru: Yes.
  • the presser 3 can use a metal net rich in elasticity in addition to the above-mentioned spirally-shaped band-shaped material 3a.
  • the carbon fiber 2 is made of such a metal mesh, the working fluid is evaporated from the carbon fiber 2 and the carbon fiber 2 is removed so that the displacement of the carbon fiber 2 can be more reliably prevented. Can be more easily penetrated.
  • FIG. 6 is a graph showing the results of an experiment performed to confirm the performance of the heat pipe according to the present invention described above.
  • the subject was placed in the vertical direction, the sample was ripened in a so-called top-heat mode in which the upper part was a heating part, and the temperature of each part in that case was measured.
  • curve F shows the temperature distribution in the product of the present invention
  • curve G shows the wick made of a mixture of sintered metal and carbon fiber.
  • Curve I is a comparative example in which the wick is made of a sintered metal.
  • Curve J is a comparative example in which the wick is made of a sintered metal.
  • Curve J is a comparative example in which the wick is made of a sintered metal.
  • the temperature distributions in the comparative example in which the metal mesh is a sash are shown below.
  • FIG. 7 is a schematic sectional view showing another embodiment of the present invention
  • FIG. 8 is a sectional view taken along line H— — of FIG.
  • the heat pipe is different from the first embodiment described above in that the structure 5 in which a large number of carbon fibers 2 are sandwiched by a metal net 4 is used as a wick. In this case, no holding member is provided for holding the carbon fiber 2 by the metal net 4, and other configurations are the same as those of the above-described embodiment.
  • the structure 5 has a sandwich structure in which a large number of carbon fibers 2 are sandwiched by a metal net 4, as shown in a partially enlarged view in FIG. And cylindrical And inserted inside the metal tube 1.
  • the carbon fiber 2 in this structure 5 has a diameter of about 2 to about 30 mm, and a total thickness of about 1 to 5 mi ⁇ , preferably about 2 mm.
  • Each carbon tea fiber 2 is arranged in any direction, such as in the axial direction of the metal tube ⁇ or in a spiral shape. ing .
  • the ash fibers 2 are arranged so as to form an annular shape along the entire inner peripheral surface of the metal tube 1 as shown in FIG. 8, but a plurality of stranded fibers are twisted. As shown in Fig. 10, place the line 2a at a fixed distance as shown in Fig. 10, so that the working fluid is applied to the inner peripheral surface of the metal tube 1. Since the area for direct contact is increased, it is possible to efficiently transfer the working fluid to and from the metal pipe 1 efficiently.
  • the mesh of the metal net 4 in the structure 5 may have a mesh of about 50 to 300 mesh, but if the metal net 4 having a fine mesh is used, carbon mesh may be used. In order not to hinder the generation of capillary pressure by the fiber 2, it is preferable not to provide the metal net 4 on the inner peripheral side of the carbon fiber 2 in the portion serving as the evaporating section. ⁇
  • the flow path of the liquid-phase working fluid is sufficiently ensured, and the carbon fiber 2 is wrapped around the inner periphery of the metal pipe 1 without causing any displacement. It can be held stably on the surface, and it also provides good transfer of working fluid be able to . That is, since the carbon fiber 2 itself has a lower ripening conductivity than a metal, some supplementary means is necessary for fc to improve the ripening and receiving of the working fluid. Further, since the carbon fibers 2 themselves do not have a mutual binding force and a close contact force with the metal tube 1 forming the outer body, a large number of carbon fibers may be formed by some means.
  • the metal net 4 in the heat pipe, the structure 5 of the sandwich structure in which the carbon fiber 2 is sandwiched between the metal nets 4 was used as the wick. Further, it is possible to efficiently transfer the working fluid to and from the working fluid through the metal net 4 having high thermal conductivity, and to bundle the carbon fibers 2 with the metal net 4 at the same time. In addition, due to the elasticity of the metal net 4, the metal net 4 can be stably adhered to the inner peripheral surface of the metal pipe ⁇ .
  • FIG. 6 shows the same as in the first embodiment described above.
  • FIG. 1 is a partial sectional view showing still another heat pipe according to the present invention
  • FIG. 12 is a view taken along the line XI--XI of FIG.
  • the heat pipe shown here is obtained by using a cloth-like body 6 made of carbon fiber as a wick, that is, a cloth-like body 6 made of carbon fiber is provided on the inner peripheral surface of the sealed metal tube 1.
  • the cloth member 6 is pressed and fixed to the inner peripheral surface of the metal tube 1 by a retainer 3 disposed on the inner peripheral side of the metal tube 1. After a non-condensable gas is suctioned and exhausted from the inside of the metal tube 1, an appropriate working fluid is sealed therein.
  • the cloth-like body 6 is made of carbon fiber warp 7 crossing a carbon fiber warp 7 along the axial direction of the metal tube 1.
  • the cloth body 6 is rolled into a tubular shape and inserted into the metal tube 1, and the presser 3 inserted into the inner circumference of the metal tube 1 is knitted by the weft 8.
  • the metal tube 1 is pressed and fixed to the inner peripheral surface of the metal tube 1 by the elastic force of the metal tube 1.
  • the gap formed between the warp yarns 7 serves as a return path for the liquid-phase working fluid 10, that is, usually, the metal pipe 1.
  • the return path is a straight flow path along the direction in which the liquid-phase working fluid should flow. For this reason, heat pipes with low flow resistance to liquid-phase working fluids can be used.
  • the gap between the carbon fiber members constituting the cloth-like body 6 as an article is extremely narrow and the effective capillary radius is reduced, a high capillary pressure is obtained. This can cause
  • the weft yarn 8 crosses the return path of the liquid working fluid.
  • the warp was vertical. It was found that the volume ratio of the horizontal system 8 to the yarn 7 was set to 0.1 or less, and the influence on the flow of the liquid-phase working fluid was minimized. That is, a heat pipe in which the volume ratio of the weft yarn 8 to the warp yarn 7 is 0.1, a heat pipe in which the volume ratio is 1 and a metal knitted fabric
  • the ripening part was slightly extended (inclination angle 5 °), so that the so-called top heat mode was carried out. At that time, the temperature distribution at many points of each heat pipe was measured. The results are as shown in FIG.
  • the warp-yarn Therefore, it is possible to increase the capillary pressure over a long period of time, and to maintain a small pressure loss in the return line. it can .
  • presser 3 various things such as a metal net or a metal wire rounded in a ring can be used in addition to the spiral strip. .
  • the heat pipe of the present invention can effectively return the liquid-phase working fluid to the ripening section by using carbon fiber as the material of the wick. For this reason, indirect cooling of the power cable is required.For example, when the temperature source and the low-temperature source are far apart, or when congestion is transmitted over long distances, or when the power source goes from a high position to a low position. So-called birds to transport This is effective in the top heat mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

In the heat pipe, wicks for refluxing the condensed and liquefied operation fluid into the heating portion are composed chiefly of a carbon fiber. The carbon fiber is not specially bundled, but is simply pressed and fastened onto the inner peripheral surface of a closed metal pipe by a pressing fitting, or is formed in a sandwich construction using a metal gauze. Or, the carbon fiber is knitted with wefts in the form of a cloth. Relying upon any structure, the capillary tube pressure can be increased, pressure loss of the liquid-phase operation fluid can be reduced, and the heat transfer ability can be increased. Furthermore, the heat pipe exhibits flexibility.

Description

明 細 書  Specification
ヒ ー 卜 パ イ プ  Heat pipe
技術分野  Technical field
こ の発明 は 、 ヒ ー 卜 パイ プ に 関す るもので あ り 、 特に 比較的長距離 に わ た っ て 熟輸送を行な う 場合や 加熟部が冷却部に 対 し てわずか に高い場合な ど 、 優 . れた 熟輸送能力 が要求さ れる場合 に有効 な ヒ ー 卜 パ イ ブに 関するもので あ る 。  The present invention relates to a heat pipe, particularly when ripening transport is performed over a relatively long distance or when the ripening portion is slightly higher than the cooling portion. For example, this is a heat pipe that is effective when excellent ripe transport capacity is required.
背景技術  Background art
周知 の よ う に ヒ ー 卜 パイ プ は 、 真空排気 し た 密閉 金属管の 内部 に水な ど の作動流体を封入す る と と も に 、 毛細管圧力 を生 じ させ、るた め の ウ ィ ッ ク をそ の 金属管の 内部 に設け た構造で あ り 、 外部か ら熟を受 け て蒸発 し た作動流体が 、 金属管の内部を低溫側へ 流れた後、 放熟 し て 凝縮液化 し 、 その液相 の作動流 体が ウ ィ ッ ク に お いて生 じ る毛細管圧力 に よ っ て加 熟部制 へ還流する こ と に よ り 、 作動流体の相変化に 伴う 潜熟 と し て熟の輪送を行な う もので ある 。 し た が っ て ヒ ー 卜 パ イ プは 、 熟伝導率の最も良い金属で あ る銅 に比べて数十倍〜百数十倍の熱伝導率を有 し て い るので 、 排熟回収用 の熟交換器や太陽熱温水器、 さ ら に は医療機器等の各種の分野で用 い ら れて お り 、 最近で は電力 ケ ー ブルの間接冷却等に も用 い ら れる よ う に な つ て き た 。 と こ ろ で ヒ一 卜 パ イ ブ は、 し た よ う に 、 凝縮 液化 し た作動流体を ゥ イ ツ ク に よ つ て ki熟部側ぺ還 流させる か ら 、 ゥ イ ツ ク の JH よ■つ て熟輸送特性 が大き く 左右さ れる 。 し た が つ て例えば、 長距離 に わ た つ て 熱輸送を行な う 場合や 、 高い位置か ら 低い 位置へ熱輸送を行な う 場合に は 、 髙い毛細管圧力 を 発生でき 、 かつ 液相作動流体の圧力損失の小さ い ゥ イ ツ ク を用 いる必要が あ り 、 ま た 長距離にわ た っ て 熱輪送を行な う ベ く 長尺 と し た 場合に は、 運搬や布 設を容易な ら し め る た め に 、 可撓性の あ る ち の と す る こ と が望 ま れる As is well known, heat pipes are used to enclose a working fluid such as water in a vacuum-evacuated sealed metal pipe and to generate capillary pressure, thereby providing a wiping pipe. In this structure, the working fluid that has been ripened from the outside flows into the inside of the metal tube to the lower side, then ripens and condenses and liquefies. Then, the working fluid in the liquid phase is returned to the ripening section by the capillary pressure generated in the wick, so that the latent flow accompanying the phase change of the working fluid is achieved. It is to carry out the transportation of ripeness. Therefore, the heat pipe has a thermal conductivity several tens to one hundred and several tens times higher than that of copper, which is the metal with the best ripening conductivity. It is used in various fields such as heat exchangers, solar water heaters, medical equipment, etc., and recently it is also used for indirect cooling of electric power cables. It has come. At this point, as described above, the heat pipe is used to return the condensed and liquefied working fluid to the ki-mature part side by means of a dip, so the dip JH In addition, the ripening transport characteristics are greatly affected. Therefore, for example, when heat transfer is performed over a long distance, or when heat transfer is performed from a high position to a low position, a large capillary pressure can be generated, and If the pressure loss of the phase working fluid is small, it is necessary to use it, and if the length is long enough to carry the heat transfer over long distances, transportation and In order to facilitate the installation, it is desirable to use a flexible material.
し かる に従来、 溝や金属網ぁ る い は多孔質焼結金 属を ゥ イ ツ ク と し た ヒ ー 卜 パ イ プが知 ら れて い る が こ れ ら め う ち 溝を ゥ イ ツ ク と し た ヒ ー 卜 パ イ プで は 得 ら れる毛細管圧力 が低い う え に 、 ウ イ ッ ク と し て の溝 は金属管の軸線方向 に 沿 つ て形成する た め に 、 金属管の 内周面全体に 液相の作動流体を行きわ た ら せる こ と が困難であ り 、 し た が つ て溝を ウ ィ ッ ク と し た ヒ ー 卜 パ ィ プで は熟輸送能力 が比較旳低 く 、 長 距離 にわた つ て熟輸送を行な う こ と が困難であ っ た ま た 金属網 を ゥ イ ツ ク と し た ヒ ー 卜 パ ィ プで は 、 金属管の内周面全体に液相の作動流体を行きわ た ら せる こ と が容易であ R面、 液相 の作動流体を流動 させ る流路が 、 複雜に 曲が り かつ 縦横 に錯綜 し た も の と なる か ら 、 加熟部 に 還流す る 液相作動流体の圧 力損失が大き い欠点があ っ た Conventionally, however, there has been known a heat pipe in which a groove, a metal net, or a porous sintered metal is used as a die. In the heat pipe, the capillary pressure obtained is low, and the groove as the wick is formed along the axial direction of the metal pipe. It is difficult to spread the liquid-phase working fluid over the entire inner peripheral surface of the metal tube, so that a heat pipe with a groove as a wick is not mature. Transport capacity is relatively low, and it has been difficult to carry out mature transportation over long distances. It is easy to spread the working fluid in the liquid phase over the entire inner peripheral surface of the pipe. The R surface and the flow path for flowing the working fluid in the liquid phase are complexly curved. Ri and was also complicated in the vertical and horizontal directions Therefore, there was a disadvantage that the pressure loss of the liquid-phase working fluid refluxing to the ripening section was large.
さ ら に 多孔質焼結金属を ゥ イ ツ ク と し た ヒ ー 卜 パ イ ブで は 、 多孔質焼結金属 に お ける実効毛細管半径 が極め て 小さ く な る た め に 、 m し た 溝や金属網 か ら な る ウ ィ ッ ク に 比べて高い毛細管圧力 を得る こ と がで き る が 、 焼結金属 は可撓性が全 く な い か ら 、 ヒ 一 卜 パ イ プ自体に可撓性を付与する こ と がでぎない 問題が あ っ た 。 ま た 、 特に 焼結銅 は水を作動流体 と し た 場 合 に髙ぃ毛細管圧力 を生 じ る が 、 そ の特性を 充分生 かす こ と ので きる長尺の焼結銅を製造 す る こ と が困難であ り 、 現実 に は ¾較的短い焼結銅 を継ぎ た さ さ せ る を得ず 、 そ の結果、 接合部が液相作動 流 体の還流を阻害 し 、 長距離熟輪送可能な長尺の ヒ ー 卜 パ イ プを得 ら れな い の が実情で あ る 。  Further, in a heat pipe using porous sintered metal as a dirt, the effective capillary radius in the porous sintered metal was extremely small, so that the diameter was set to m. Higher capillary pressure can be obtained compared to a wick made of grooves or metal nets, but since the sintered metal is not very flexible, the heat pipe itself is not used. There was a problem that it was inevitable to provide flexibility to the skin. In particular, sintered copper generates a capillary pressure when water is used as a working fluid.However, it is necessary to produce a long sintered copper that can make full use of its characteristics. In practice, relatively short sintered copper has to be replaced, and as a result, the joints hinder the reflux of the liquid-phase working fluid, and The fact is that it is not possible to obtain a long heat pipe that can be sent.
他方 、 最近で は 、 ウ ィ ッ ク材 と し て ガラ ス镍維ゃ ニ ッ ケル繊維を用 い る よ う に な っ て ぎ て い る が 、 こ れ ら の ウ ィ ッ ク材は水を作動流体 と し た場合 に 、 ぬ れ性が劣 り 、 ま た充分 に 髙ぃ毛細管圧力 を得 ら れな い問題が あ っ た 。  On the other hand, recently, glass materials have been replaced by glass fibers and nickel, but these wicks are made of water. When 場合 was used as a working fluid, there was a problem that the wettability was poor and the capillary pressure could not be sufficiently obtained.
こ の発明 は 、 液相 の作動流体を還流さ せ る た め の 毛細管圧力 を充分高 く し 、 し た が っ て 長距離 に わ た つ て の熟輸送ゃ髙ぃ位置か ら低い位置への熟輸送が 可能な ヒ ー 卜 パイ プを提供する こ と を 目 的 と す る も ので あ る 。 The present invention provides a sufficiently high capillary pressure for refluxing a liquid-phase working fluid, and thus from a mature transport position over a long distance to a lower position. The purpose is to provide a heat pipe that can be transported That is.
ま た こ の発明の他の 目 的 は 、 熟輸送能力 に 優れ、 し かも可撓性のある ヒ ー 卜 パ イ プを提供する こ と に Another object of the present invention is to provide a heat pipe having excellent ripening ability and yet being flexible.
、ある 。 ,is there .
こ の発明 の更に 他の 目 的 は 、 髙ぃ熟輸送能力 を長 期 間 に わ た っ て維持で き 、 し かも製造の容易 な ヒ ー 卜 パイ プを提供する こ と に あ る 。  Yet another object of the present invention is to provide a heat pipe which can maintain the mature transport ability for a long period of time and is easily manufactured.
発明 の開示  DISCLOSURE OF THE INVENTION
こ の発明 は 、 多数本の極細炭素繊維に よ っ て ウ イ ッ ク を構成す る と と も に 、 そ の極細炭素繊維をそ の 内周側 に配置 し た 押 え具に よ つ て密閉金属管の内周 面に 密着さ せ た こ と を特徴 と す る ヒ ー 卜 パ イ プで あ る 。 し た が っ て 炭素繊維束は 、 高い毛細管圧力 を発  The present invention is based on a press made up of a number of ultrafine carbon fibers constituting a wick and an arrangement of the ultrafine carbon fibers on the inner peripheral side thereof. It is a heat pipe characterized by being closely attached to the inner peripheral surface of a sealed metal tube. Therefore, the carbon fiber bundle emits high capillary pressure.
»  »
生 す る こ と ができ る う えに 、 炭素繊維相互間 に 形成 さ れる流路で の圧力 損失が小さ い た め に 、 熟輸送能 力 に ϋれた ヒ ー 卜 パ イ プ と する こ と がで き 、 ま た 炭 素繊維は可撓性があ るか ら 、 ヒ ー 卜 パイ プ全体を可 撓性の あ る も の と す る こ と がで き る 。 ま た こ の発明 は 、 炭素繊維をそ の 内周側 に配置 し た押 え具 に よ つ て 金属管の内周面に対 し て 押圧固定 し た構成で あ り 、 し た が っ て炭素繊維相互の 間 に形成される流路の 閉 塞や作動流体 と の熟授受の不良な ど を防止できる 。 As a result, the pressure drop in the flow path formed between the carbon fibers is small, so that the heat pipe has a good ripening ability. The carbon fiber is flexible, so that the entire heat pipe can be made flexible. In addition, the present invention has a configuration in which the carbon fiber is pressed and fixed against the inner peripheral surface of the metal tube by the presser disposed on the inner peripheral side thereof. It is possible to prevent a flow path formed between the carbon fibers from being closed or a failure to sufficiently exchange with a working fluid.
さ ら に こ の発明 に おいて 、 金属管を コ ルゲー 卜 管 と す る こ と に よ り 、 可撓性の あ るもの と する こ と が で き 、 かつ 単位長さ 当 り の外部 と の熟授受面積を広 < す る こ と ができ る Further, in the present invention, by using a metal tube as a corrugated tube, it is possible to make the tube flexible. And increase the area of external communication per unit length with the outside
ま た さ ら に こ の発明 は 、 複数本の極細炭素繊維を 撚 り 合わせる と と も に 、 複数の撚線を互い に所定の 間 隔を あ け て 金属管の 内周面に密着さ せ た ヒ ー 卜 パ ィ プであ る 。 こ の よ う に す れば作動流体が金属管の 内 面 に 直接接触す る面積が広 く な る ので 、 作動流体 と金属管 と の 間の熟授受を効率良 く 行なわせる こ と がで き る 。  In addition, the present invention provides a method of twisting a plurality of ultrafine carbon fibers and adhering a plurality of stranded wires to the inner peripheral surface of a metal tube at a predetermined interval from each other. It is a heat pipe. By doing so, the area where the working fluid comes into direct contact with the inner surface of the metal pipe is increased, so that the transfer between the working fluid and the metal pipe can be efficiently performed. Wear .
そ し て ま た こ の発明の ヒ ー 卜 パイ プ は 、 押 え具を 嫘旋状の帯状材 に よ つ て 構 .成す る と と も に 、 そ の 螺 旋の ピ ッ チを帯状材の.幅よ り も大き く し た も のであ る こ の よ う な構成であ れば、 ウ ィ ッ ク に対す る作 流体の浸透お よ びウ ィ ッ ク か ら の作動 流体の蒸発 を確実な ら し め る こ と がで さる 。  The heat pipe according to the present invention comprises a presser formed of a spiral band, and a spiral pitch formed by the spiral pitch. In such a configuration, the width of which is larger than the width, the penetration of the working fluid into the wick and the evaporation of the working fluid from the wick. You can be sure that
こ れに替え こ の発明で は 、 押 え具を弾性 に富ん だ 属網 と す る こ と がで き る 。 こ の よ う に す れば 、 ゥ ィ ッ ク を形成する極細炭素繊維を金属管の内周面に 確実 に 押圧固定で き る こ と に加 え 、 ウ ィ ッ ク に対 す る作動流体の浸透お よびウ ィ ッ ク か ら の作動流体の 発を 、 よ り 確実な ら し め る こ と がで ぎ る 。  Instead, according to the present invention, the presser can be made of a resilient metal net. In this way, the ultra-fine carbon fiber forming the stick can be securely pressed and fixed to the inner peripheral surface of the metal tube, and the working fluid for the wick can be fixed. This ensures the penetration of the fluid and the generation of the working fluid from the wick.
他方 、 こ の発明で は 、 ウ ィ ッ ク を 、 炭素鐵維か ら な る布状材 に よ っ て 形成する こ と が で き る 。 こ の よ う な構成で あ れば 、 ウ ィ ッ ク と な る多数本の炭素繊 維を金属管の 内部に容易に添わせ る こ と がで き 、 さ ら にその形状を維持させ る こ と がで き る 。 On the other hand, in the present invention, the wick can be formed by a cloth material made of carbon steel. With such a configuration, a large number of carbon fiber The fiber can be easily attached to the inside of the metal tube, and its shape can be maintained.
そ し て こ の発明 は 、 極細炭素鐵維を金属網で挾ん だサ ン ド ウ イ ツ チ構造の ウ ィ ッ ク を備え た ヒ ー 卜 パ イ ブで あ る 。 こ の よ う な構成で あ れば、 金属管の 内 周面への ウ ィ ッ ク の添設が容易で ある う え に 、 炭素 繊維を介 し た熟伝導の不足を金属網 に よ っ て 補い 、 こ の点でも熱的特性を良好な もの と する こ と がで き 、 さ ら に 金属管の内周面全体への添設状態を維持さ せ る こ と ができ 、 それ に伴い高い熟輸送能力 を 長期 間 に わ た て維持で き る 。  In addition, the present invention is a heat pipe provided with a wick having a sandwich structure in which a fine carbon fiber is sandwiched between metal nets. With such a configuration, it is easy to attach the wick to the inner peripheral surface of the metal pipe, and the lack of ripening through carbon fiber is reduced by the metal net. In this respect, the thermal characteristics can be improved in this respect as well, and furthermore, the state of attachment to the entire inner peripheral surface of the metal pipe can be maintained. High maturity transport capacity can be maintained over a long period of time.
' · . 図面の簡単な '説 ¾ ' 第 1 図 は こ の発明 に係る ヒ ー 卜 パ イ プの一例 を示 す概略的な部分断面図 、 第 2 図 は第 1 図 の ]! 一 I 線 矢視断面図 、 第 3 図 は炭素繊維に よ る毛細管高 さ と 比較例 に よ る毛細管高さ と を測定 し た結果を示すグ ラ フ 、 第 4 図 は炭素繊維素線の直径 と ( K Z r ) と の 関係を示すグラ フ 、 第 5 図 は炭素接維の他の配列 例 を示す第 2 図同様の断面図、 第 6 図 は 卜 ッ プ ヒ ー 卜 モ ー ド に おける本発明品 と比較例 と に お け る均温 特性を調 べ た実験結果を示すグラ フ 、 第 7 図 は この 発明 に係る ヒ ー 卜 パ イ プの他の例を示す溉格的な部 分断面図 、 第 8 図 は第 7 図 の H— 71線矢視断面図 、 第 9 図 は炭素織維を金属網で挾んだ構成体の部分拡 大断面図 、 第 1 0 図 は第 7 図 に 示す ヒ ー 卜 パ イ プに お ける炭素繊維の他の配列例を示す第 8 図同様の断 面図 、 第 Ί 1 図 は こ の発明 に係る ヒ ー 卜 パ イ プの更 に他の例 を示す概略的な部分断面図 、 第 Ί 2 図 は第 1 図 の XI— XI線矢視断面図 、 第 1 3 図 は布状体の 部分平面図 、 第 1 4 図 は第 1 1 図 に示す ヒ ー 卜 パイ プ と 比較例 と に お け る作動 時の軸線方向で の温度分 布を測定 し た結果を示すグラ フ である 。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic partial sectional view showing an example of a heat pipe according to the present invention, and FIG. 2 is a diagram of FIG. 1 I-line cross-sectional view, Fig. 3 is a graph showing the measurement results of the capillary height by carbon fiber and the capillary height by the comparative example, and Fig. 4 is the graph of the carbon fiber strand. A graph showing the relationship between the diameter and (KZ r), Fig. 5 is a cross-sectional view similar to Fig. 2 showing another example of the arrangement of carbon fibers, and Fig. 6 is a top view FIG. 7 is a graph showing the experimental results of examining the soaking temperature characteristics of the product of the present invention and a comparative example. FIG. 7 is a typical graph showing another example of a heat pipe according to the present invention. Fig. 8 is a sectional view taken along the line H-71 in Fig. 7, and Fig. 9 is a partial enlarged view of a structure in which carbon fibers are sandwiched between metal nets. Fig. 10 is a cross-sectional view similar to Fig. 8, showing another example of the arrangement of carbon fibers in the heat pipe shown in Fig. 7, and Fig. 10 is a cross-sectional view of the present invention. FIG. 2 is a schematic partial cross-sectional view showing another example of the heat pipe, FIG. 2 is a cross-sectional view taken along line XI—XI of FIG. 1, and FIG. FIG. 14 is a plan view and FIG. 14 is a graph showing the results of measuring the temperature distribution in the axial direction during operation of the heat pipe shown in FIG. 11 and the comparative example.
発明を実施す る た めの最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
こ の発明の ヒ ー 卜 パ イ プを図面を参照 し て 詳細 に 説明 す る 。  The heat pipe of the present invention will be described in detail with reference to the drawings.
第 1 図 は こ の発明の一実施例 を示す概略旳な部分 断面図 で あ り 、 第 2 図 はそ の ]! 一 K 線矢視断面図で あ っ て 、 符号 1 は外装体をな す密閉金属管を示 し 、 そ の金属管 1 の 内周面 に 、 ウ ィ ッ ク と し て 多数本の 極細炭素繊維 2 が添設さ れ 、 その炭素繊維 2 を金属 管 1 の 内周面に密着固定す る べ く 炭素耩維 2 の 内周 側 に押え具 3 が配置さ れて お り 、 さ ら にそ の金属管 1 の 内部 に は 、 非凝縮性気体を真空排気 し fc後、 水 等の作動流体が封入さ れて いる 。  FIG. 1 is a schematic partial cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line K !, and reference numeral 1 denotes an outer body. A large number of ultrafine carbon fibers 2 are attached as a wick to the inner peripheral surface of the metal tube 1, and the carbon fibers 2 are wrapped around the inner peripheral surface of the metal tube 1. A presser 3 is arranged on the inner peripheral side of the carbon fiber 2 so that the metal tube 1 can be tightly fixed to the surface. Later, a working fluid such as water is sealed.
こ こ で前記金属管 1 は直管で も よ い が 、 可撓性の あ る も の と す る た め に 、 第 1 図 に示す よ う に コ ルゲ 一 卜 管 と す る こ と が好 ま し い 。 ま た 極細炭素截維 2 に よ っ て ウ ィ ッ ク を形成 し た の は 、 以下に述べる理 由 か ら で あ る 。 Here, the metal pipe 1 may be a straight pipe, but in order to be flexible, it may be a collet pipe as shown in FIG. I like it. The reason why the wick was formed by the ultrafine carbon fiber 2 is explained below. For that reason.
ま ず第 1 に 、 炭素織維 2 に よ れば従来知 ら れて い る ウ イ ッ ク材 よ り も極め て 髙い毛細管圧力 を得る こ と がでぎる か らで る 。 し れは 、 炭素繊維 2 が極め て 細 く 、 実効毛細管半径が小さ く な Ό 、 こ れ に加 え 水 を作動流体 と し た場合の ぬれ性に優れて い るた め で あ り 、 本発明者等の実験に よ っ て も 、 炭素線維 2 に よ り 極め て髙ぃ毛細管圧力 を生 じ させ得る こ と が 認め ら れた 。 第 3 図 は本発明者等が行な つ た 実験結 果を示すグラ フで あ っ て 、 第 3 図中曲線 A は直径 5 の多数本の炭素繊維 2 を束 * ol す ¾3合の毛細管髙さ 以下曲線 B は 6 0 〜 8 0 メ ッ シ ュ の活性ァルミ ナ 、 曲線 C は 6 0 メ ッ シ ュ 程度のシ リ 力 ゲル、 曲線 D は 長さ が 8 c m程度の焼結金属を継ぎた し た ち の 、 曲 First of all, carbon fiber 2 makes it possible to obtain a much higher capillary pressure than conventionally known wick materials. This is because the carbon fiber 2 is extremely thin, the effective capillary radius is small, and in addition to this, the wettability when water is used as a working fluid is excellent. According to experiments performed by the inventors, it was also recognized that the carbon fiber 2 could generate extremely high capillary pressure. FIG. 3 is a graph showing the results of an experiment performed by the present inventors. In FIG. 3, curve A represents a bundle of a large number of carbon fibers 2 having a diameter of 5 *. Curve B is a 60-80 mesh active alumina, curve C is a 60-mesh mesh gel, and curve D is a sintered metal with a length of about 8 cm. The song that I just joined
^¾ L- 【 金属網 ( 3 0 0 メ ッ シ ュ 〉 を用 い た 場合の毛^ ¾ L- [Hair using metal mesh (300 mesh)]
? ifc ^ 1^1さ をそれぞれ示す 。 なお 、 こ の実験で は各試 料を水の 中 に 垂直に 立て て行ない 、 試料内の上昇水 面の高さ を毛細管髙さ と し た 図 に 示す実験結 果か ら 明 ら かな よ う に 、 炭素纖維 2 で は最大 1 0 0 c m以上の毛細管髙さ と な り 、 こ れ に対 し金属網ゃ焼? ifc ^ 1 ^ 1 respectively. In this experiment, each sample was set up vertically in the water, and the height of the rising water surface in the sample was defined as the capillary length. On the other hand, the carbon fiber 2 has a maximum capillary length of 100 cm or more, whereas the metal mesh is fired.
TO j¾等の従来の ウ ィ ッ ク材で は毛細管髙さ が最大 であ 4 0 c m程度 に し か到 らす、 炭素繊維 2 が極めて 優れて いる こ と が認め ら れた It was recognized that carbon fiber 2 was extremely excellent, with conventional wick materials such as TOj¾ having a maximum capillary length of only about 40 cm.
ま た ウ ィ ッ ク を炭素繊維 2 と し た第 2 の理由 は 、 極細炭素繊維 2 を束ね た場合、 炭素繊維 2 の相 互の 間 隔すなわ ち 液相作動流体の流路が連続 し た も の と な る と周 時に 、 摩擦係数が小さ い た め 、 冷 部か ら 加熟部 に 還流する液相作動流体の圧力損失が小さ く 、 し た が っ て 髙ぃ 毛細 管圧力 を得 る こ と がで き る こ と と相 ま っ て 、 液相作動流体の還流性が良 く な るか ら で あ る 。 The second reason for using the wick as carbon fiber 2 is as follows. When the ultrafine carbon fibers 2 are bundled, if the carbon fibers 2 are separated from each other, that is, if the flow path of the liquid-phase working fluid is continuous, the friction coefficient is small at the time of the circumference, so that the carbon fibers 2 are cooled. The pressure loss of the liquid-phase working fluid that flows back from the section to the ripening section is small, and therefore, 作 動 Capillary pressure can be obtained. This is because the recirculation of the fluid is improved.
なお 、 炭素繊維自体の直径に よ っ て は最大熟輸送 量 Q max が変化す る ので 、 こ こ で ウ ィ ッ ク を形成す べ き炭素镙雑素線の最も好ま し い直径を求めて みる と 、 最大熟輸送量 Q fli x は 、 一般 に 次式 で表わ さ れ る 。  Since the maximum ripening transport amount Q max varies depending on the diameter of the carbon fiber itself, the most preferable diameter of the carbon wire to be used for forming the wick is determined here. As can be seen, the maximum matured transport quantity Q flix is generally expressed by the following equation.
Qmax =2 (K/P ) A ί 1 +r · _ο * g . Lsin</>/25) ( · δ♦ λ/ ) Κ ; ウ ィ ッ ク の透過率 ( fi ) 、 r ; 実効毛細管 半径 ( m ) 、 Α ; ウ ィ ッ ク の 断面積 ( n ) 、  Qmax = 2 (K / P) A ί 1 + r · _ο * g. Lsin </> / 25) (· δ ♦ λ /) Κ; wick transmittance (fi), r; effective capillary radius (M), Α; cross section of the wick (n),
: 液相作動流体の密度 !: く !^ノ !]!3 ) ♦ ] 、 g ; 重力加速度 ( m sec 2 ) 、 し ; ウ ィ ッ ク の 全長 ( m ) 、 傾斜角 ( deg ) 、 δ : 表面 張力 ( kg/ m ) 、 λ ; 蒸発潜熟 ( kcalノ kg ) 、 粘性係数 ( kg ' s z n ) : Density of liquid working fluid! : Ku! ^ No!]! 3 )], g; gravity acceleration (msec 2 ), then; total length of the wick (m), inclination angle (deg), δ: surface tension (kg / m), λ; Evaporation latent ripening (kcal / kg), viscosity coefficient (kg'szn)
上記の式 の う ち ( K / r ) の値が ウ ィ ッ ク に依存 し 、 その値を炭素繊維束か ら な る ウ ィ ッ ク につ い て 測定値か ら 求め る と 第 4 図 に 示す よ う に な り 、 し た が っ て ウ ィ ッ ク と し て用 い る炭素繊維素線の直径 は 、 2 JJmか ら 3 0 JJ»程度で 09 る と が好 ま し い 。 Figure 4 shows that the value of (K / r) in the above equation depends on the wick, and that the value is obtained from the measured value for the wick made of carbon fiber bundles. Therefore, the diameter of the carbon fiber wire used as a wick should be as follows. It is preferable to take about 30 JJ »from 2 JJm.
ま た炭 Λ¾ ¾ 2 は熟伝導率が小さ い ので 、 作動流 体に対す る全熟抵抗を小さ く す る た め に 、 炭素接維 2 か ら なる ウ イ ッ ク の厚さ は 1 〜 5 m m程度、 一般に は 2 程度 と す る こ と が好 ま し い 。  In addition, since the carbon dioxide 2 has a low maturation conductivity, the thickness of the wick made of the carbon fiber 2 is 1 to 3 to reduce the total maturation resistance to the working fluid. It is preferably about 5 mm, generally about 2.
さ ら に 、 ゥ ィ ッ ク を炭素繊維 2 と した第 3 の理由 は 、 炭素繊維 2 は弾性 に 富み、 かつ 線膨張率が小さ いか ら で あ る 。 すなわ ち作動流体 と外装体をなす金 属管 と の熟伝達を良好 と す るた め に は 、 ゥ イ ツ ク を 金属管の内周面に 密着さ せ て お く こ と が好ま し 、 し た が つ て ヒ ー 卜 パ イ プを可撓性のあ る も の と し た 場合、 ゥ イ ツ ク を炭素繊.維 2 で形瑋すれば、 その ヒ 一 卜 パ イ プを湾曲 さ せた後、 元 の状態に 戻 し て ち 、 ウ ィ ッ ク が追従 し て 曲 が り かつ弾性で元の状態に戻 る ので 、 ゥ イ ツ ク と金属管 と の密着性を保持す る こ と ができ 、 ま た非作動時 と作動 時 と の温度差が大き い場合であ っ て も 、 線膨張率が小さ い た め に 、 ウ イ ッ クのた る みが生ぜず 、 した が っ て ゥ イ ツ ク と金属 管 1 と の密着性を保つ こ と がでぎる のである 。  Further, the third reason for using the carbon fiber 2 as the stick is that the carbon fiber 2 is rich in elasticity and has a small coefficient of linear expansion. In other words, in order to improve the communication between the working fluid and the metal pipe that forms the outer casing, it is preferable that the pipe be closely attached to the inner peripheral surface of the metal pipe. Therefore, if the heat pipe is made of a flexible material, the heat pipe is made of carbon fiber. After bending, return to the original state, and the wick follows the curve and returns to the original state due to elasticity, maintaining the tightness between the pipe and the metal pipe Even when the temperature difference between the non-operating and operating states is large, the low linear expansion coefficient does not cause the slack of the wick. Therefore, it is possible to maintain the adhesion between the steel pipe and the metal tube 1.
その他 、 炭素纖維 2 は耐熱強度が大ぎ く 、 ま た耐 食性に 富むか ら 、 作動温度の髙ぃ ヒ ー 卜 パィ プに も ウ ィ ッ ク と し て使用でぎ 、 かつ作動流体の選択の余 地が広 く 、 さ ら に炭素織維 2 は軽量 滅的強度が 大きいか ら 、 炭素繊維 2 に て ゥ イ ツ ク を形成する こ と に よ り 、 取扱い が容易で かつ用途の広い ヒ ー 卜 パ ィ プを得る こ と ができ る 。 In addition, since the carbon fiber 2 has a large heat resistance and a high corrosion resistance, it can be used as a wick for the heat pipe at the operating temperature, and the working fluid can be selected. Because carbon fiber 2 has a large weight and destructive strength, the carbon fiber 2 can form a dirt with carbon fiber 2. This makes it possible to obtain a heat pipe that is easy to handle and versatile.
な お、 炭素繊維自 体に は 、 相互の結束力 お よび外 装体をな す金属管 1 に対す る密着力 がな いので 、 何 ら かの 手段 に よ っ て 多数本の炭素锾維 2 を結束 し か つ金属管 Ί に対 し 密着させる必要が あ る 。 そ の た め に接着剤を用 い る と す れば、 接着剤が炭素繊維 2 相 互の 間隙すなわち 液相作動流体の流路を閉鎖 し て し ま い 、 ま た 接着剤 が作動流体 と 金属管 1 と の 間 の熱 授受を阻害す る こ と に な る ので好ま し ぐ な く 、 そ こ で こ の発明で は 、 金属管 1 の 内周面 に 配置 し た 炭素 繊維 2 の内周側 に押え具 3 を配置 し 、 その押え具 3 に よ っ て炭素繊維 2 を金属管 1 の内周面に対 し て 押 圧固定 し た ので あ る 。  Since the carbon fiber itself does not have a mutual binding force and a close contact force with the metal tube 1 forming the outer body, a large number of carbon fibers are formed by some means. 2 must be tied together and closely attached to the metal tube Ί. If an adhesive is used for this purpose, the adhesive will close the gap between the two carbon fibers, that is, the flow path of the liquid-phase working fluid, and the adhesive will not work with the working fluid. Heat transfer between the metal tube 1 and the metal tube 1 is hindered. Therefore, in the present invention, the inside of the carbon fiber 2 disposed on the inner peripheral surface of the metal tube 1 is not preferable. The holding member 3 was arranged on the peripheral side, and the carbon fiber 2 was pressed and fixed by the holding member 3 against the inner peripheral surface of the metal tube 1.
さ ら に炭素織維 2 の配置形態に つ い て 述べ れば、 炭素繊維 2 は金属管 1 の軸線方向 に沿 つ てそ の内周 面に 配置 し て も よ く 、 あ る い は螺旋状 に 金属管 1 の 内周面に配置 し て も よ い 。 ま た 炭素繊維 2 は金属管 1 の 内周面全体に密着さ せて 配置 し て ち よ いが 、 例 え ば複数本の炭素織雜を撚 り 合わせて撚線 2 a を作 り 、 こ れを第 5 図 に 示す よ う に 金属管 1 の円 周方向 に一定間 隔を お いて配置 し て お よ い 。 こ の よ う に す れば作動流体が金属管 1 の内周面に対 し て 直接接触 する面積が広 く なるので 、 作動流体 と金属管 1 と の 間の熟授受を効率良 く 行なわせ る こ と がで き る 。 Further, regarding the arrangement of the carbon fibers 2, the carbon fibers 2 may be arranged on the inner circumferential surface of the metal tube 1 along the axial direction of the metal tube 1, or may be spirally arranged. It may be arranged on the inner peripheral surface of the metal tube 1 in the same manner. The carbon fibers 2 may be disposed so as to be in close contact with the entire inner peripheral surface of the metal tube 1.For example, a plurality of carbon fibers are twisted to form a stranded wire 2a. These may be arranged at regular intervals in the circumferential direction of the metal tube 1 as shown in FIG. This increases the area in which the working fluid comes into direct contact with the inner peripheral surface of the metal pipe 1. It is possible to efficiently exchange information between students.
ま た さ ら に押え具 3 につ いて 説明する と 、 第 1 図 に示す例で は、 鱗板等か ら なる帯状材 3 a を螺旋状 に形成 し た も ので あ っ て 、 そ の帯状材 3 a がそれ自 体の弾性力 で拡が る よ う 作用 す る こ と に よ り 、 炭素 繊維 2 を金属管 1 の内周面に押圧固定する よ う に な つ て い る 。 こ こ で 、 燦旋状をなす押え具 3 の螺旋の ピ ッ チ P は 、 帯状材 3 a の幅 w よ り 大き く 設定さ れ て お り 、 し た が っ て押 え具 3 が炭素繊維 2 の全表面 を覆 っ て いな い こ と に よ り 、 液化 し た作動流体の炭 素鐵維 2 © 浸透お よび炭素繊維 2 か ら の作動流体の 蒸発を容易な ら し め る よ う にな つ て:いる 。  To further explain the presser 3, in the example shown in FIG. 1, a band-shaped material 3 a made of a scale plate or the like is formed in a spiral shape. The material 3 a acts to expand by its own elastic force, so that the carbon fiber 2 is pressed and fixed to the inner peripheral surface of the metal tube 1. Here, the spiral pitch P of the helical holding member 3 is set to be larger than the width w of the strip 3a, and accordingly, the holding member 3 is made of carbon. Since the entire surface of the fiber 2 is not covered, the liquefied working fluid can easily permeate the carbon fiber 2 © and evaporate the working fluid from the carbon fiber 2. Uniteru: Yes.
な お 、 こ の発明 に お け る押 え具 3 は 、 上述 し た嫁 旋状の帯状材 3 a 以外 に 、 弾性 に 富んだ金属網を用 い る こ と ができ 、 押 え具 3 .をその よ う な金属網製 と し た場合 に は、 炭素繊維 2 のズ レを よ り 確実 に 防止 でき る う え に 、 作動流体の炭素鐵維 2 か ら の蒸発お よ び炭素繊維 2 へ の浸透を 、 よ り容易な ら しめ る こ とがで ぎ る 。  The presser 3 according to the present invention can use a metal net rich in elasticity in addition to the above-mentioned spirally-shaped band-shaped material 3a. When the carbon fiber 2 is made of such a metal mesh, the working fluid is evaporated from the carbon fiber 2 and the carbon fiber 2 is removed so that the displacement of the carbon fiber 2 can be more reliably prevented. Can be more easily penetrated.
第 6 図 は上述 し た こ の発明 に係る ヒ ー 卜 パイ プの 性能を確認する た め に行な っ た実験結果を示すグラ フ で ある 。 そ の実験で は 、 被検体を上下方向 に 向け て 配置 し 、 上側 を加熱部 と し た所謂 ト ッ プ ヒ ー 卜 モ 一 ドで熟を与え、 その場合の各部の温度を測定 し た 。 第 6 図中 曲線 F は本発明品 に おけ る温度分布を示 し 、 以下、 曲線 G は ウ ィ ッ ク を焼結金属 と炭素繊維 と の混合体で構成 し た.比較例 、 曲線 H は ウ ィ ッ ク を 吸着剤 に よ っ て 構成 し た比較倒 、 曲線 I は ウ ィ ッ ク を焼結金属 に よ っ て 構成 し た 比較例 、 曲線 J は ウ イ ッ ク を 3 0 0 メ ッ シ ュ の金属網 と し た 比較例 に おけ る温度分布をそ れぞれ示す 。 FIG. 6 is a graph showing the results of an experiment performed to confirm the performance of the heat pipe according to the present invention described above. In that experiment, the subject was placed in the vertical direction, the sample was ripened in a so-called top-heat mode in which the upper part was a heating part, and the temperature of each part in that case was measured. In Fig. 6, curve F shows the temperature distribution in the product of the present invention, and hereinafter curve G shows the wick made of a mixture of sintered metal and carbon fiber. Curve I is a comparative example in which the wick is made of a sintered metal. Curve J is a comparative example in which the wick is made of a sintered metal. Curve J is a comparative example in which the wick is made of a sintered metal. The temperature distributions in the comparative example in which the metal mesh is a sash are shown below.
第 6 図 に示す結果か ら 明 ら かな よ う に 、 .こ の発明 に係る ヒ ー 卜 パ イ プで は 、 加熟部 と冷 部 と の温度 差が小さ く 、 全体 と し て均温化 し て お り 、 ヒ ー 卜 パ イ ブ と し て優れに性能を有する もの で あ る こ と が認 め ら れた 。  As is evident from the results shown in Fig. 6, in the heat pipe according to the present invention, the temperature difference between the ripened part and the cold part was small, and the temperature as a whole was uniform. It was confirmed that the heat pipe had excellent performance as a heat pipe.
つ ぎ に こ の発明の他の実施例 につ い て説明 す る 。 第 7 図 は こ の発明の他の実施例 を示す概培的な部 分'断面図で あ り 、 第 8 図 はそ の H — ¾線矢視断面図 で あ っ て 、 こ こ に示す ヒ ー 卜 パ イ プ は 、 前述 し た 第 1 の実施例 と は異な り 、 多数本の炭素繊維 2 を金属 網 4 に よ っ て 挾み付け て な る構成体 5 を ウ ィ ッ ク と し た も のであ り 、 金属網 4 が炭素繊維 2 を保持する た め に 、 押 え具が特 に 設け ら れて いず 、 他の構成は 前述 し た実施例 と同様である 。  Next, another embodiment of the present invention will be described. FIG. 7 is a schematic sectional view showing another embodiment of the present invention, and FIG. 8 is a sectional view taken along line H— — of FIG. The heat pipe is different from the first embodiment described above in that the structure 5 in which a large number of carbon fibers 2 are sandwiched by a metal net 4 is used as a wick. In this case, no holding member is provided for holding the carbon fiber 2 by the metal net 4, and other configurations are the same as those of the above-described embodiment.
す なわ ち 構成体 5 は第 9 図 に その一部を拡大 し て 示す よ う に 、 多数本の炭素繊維 2 を金属網 4 に よ つ て 挾み付け たサン ド ウ イ ツ チ構造で あ っ て 、 円筒状 に丸め て金属管 1 の 内部 に 挿入さ れて い る 。 こ の構 成体 5 に おける炭素繊維 2 は 、 直径が 2 〜 3 0 «程 度の も のであ つ て 、 全体 と し て の厚さ が 1 〜 5 mi ^ 好 ま し く は 2 mm程度 と なる よ う 束ね ら れて お り 、 さ ら に各炭茶織維 2 は金属管 Ί の軸線方向 を向ぎ 、 あ る い は镙旋状 と なる な ど任意の方向 に 向けて配置さ れて いる 。 なお 、 灰素繊維 2 は第 8 図 に示す よ う に 金属管 1 の内周面全体に沿 っ て環状 と なる よ う に配 置 し て ち ょ いが 、 複数本を撚 り 合わせ て 撚線 2 a と し 、 これを第 1 0 図 に示す よ う に一定閭隔を お いて 配置 し て ¾ よ < 、 こ の よ う に すれぱ作動流体が金属 管 1 の内周面に対 し て直接接.鰊する面積が広 く なる ので 、 作動流体 と 金属管 1 と の間 の熟授受を効率良 く 行なわせる こ と がでぎる 。 That is, the structure 5 has a sandwich structure in which a large number of carbon fibers 2 are sandwiched by a metal net 4, as shown in a partially enlarged view in FIG. And cylindrical And inserted inside the metal tube 1. The carbon fiber 2 in this structure 5 has a diameter of about 2 to about 30 mm, and a total thickness of about 1 to 5 mi ^, preferably about 2 mm. Each carbon tea fiber 2 is arranged in any direction, such as in the axial direction of the metal tube Ί or in a spiral shape. ing . The ash fibers 2 are arranged so as to form an annular shape along the entire inner peripheral surface of the metal tube 1 as shown in FIG. 8, but a plurality of stranded fibers are twisted. As shown in Fig. 10, place the line 2a at a fixed distance as shown in Fig. 10, so that the working fluid is applied to the inner peripheral surface of the metal tube 1. Since the area for direct contact is increased, it is possible to efficiently transfer the working fluid to and from the metal pipe 1 efficiently.
ま た構成体 5 に お け る金属網 4 の 目 の粗さ は 、 5 0 〜 3 0 0 メ ッ シ ュ 程度で よ いが 、 目 の細い金属網 4 を用 い る場合に は 、 炭素織維 2 に よ る毛細管圧力 の発生を阻害 し ない よ に するた め に 、 蒸発部 と な る部分で は、 炭素繊維 2 の内周側 に金属網 4 を設け ない こ と が好ま し い α  The mesh of the metal net 4 in the structure 5 may have a mesh of about 50 to 300 mesh, but if the metal net 4 having a fine mesh is used, carbon mesh may be used. In order not to hinder the generation of capillary pressure by the fiber 2, it is preferable not to provide the metal net 4 on the inner peripheral side of the carbon fiber 2 in the portion serving as the evaporating section. α
し か し て 上記の ヒ一 卜 パ イ プで は 、 液相作動流体 の流路を充分確保 し 、 かつズ レな ど を生 じ る こ と な く 炭素繊維 2 を金属管 1 の内周面に 安定 し て 保持で さ 、 さ ら に作動流体に対す る熟授受を良好に 行なう こ と がで き る 。 す なわ ち炭素纖維 2 自体は熟伝導率 が金属 と比較 し て小さ い ので 、 作動流体に対す る熟 授受を良好な ら し め る fc め に何 ら かの補完手段が必 要である 。 ま た 、 炭素繊維 2 自体 に は 、 相互の結束 力 お よ.び外装体を な す金属管 1 に対す る密着力 が な い ので 、 何 ら かの手段に よ っ て多数本の炭素繊維 2 を結束 し かつ 金属管 1 に 対 し密着さ せ る必要が あ る が 、 そ のた め に接着剤を用 いる と すれば、 接着剤が 炭素繊維 2 相互の園隙す なわち 液相作動流体の流路 を 閉鎖 し て し ま い 、 ま た接着剤が作動流体 と金属管 と の ϋの熟授受を阻害す る こ と に な る の '好 ま し く な い 。 こ れ に対 し上記の ヒ ー 卜 パ イ プで'は 、 .炭素繊 維 2 を金属網 4 で挾ん だサン ド ウ イ ツ チ構造の構成 体 5 を ウ ィ ッ ク と し た か ら 、 作動流体に 対する熟授 受を熱伝導率の大きい金属網 4 を介 し て効率良 く 行 なわせる こ と ができ 、 ま た同時 に炭素繊維 2 を金属 網 4 で挾んで束ねる と と も に 、 金属網 4 の有す る弾 性力 に よ っ て金属管 Ί の 内周面 に 安定 し て密着させ る こ と がで きる 。 However, in the above-mentioned heat pipe, the flow path of the liquid-phase working fluid is sufficiently ensured, and the carbon fiber 2 is wrapped around the inner periphery of the metal pipe 1 without causing any displacement. It can be held stably on the surface, and it also provides good transfer of working fluid be able to . That is, since the carbon fiber 2 itself has a lower ripening conductivity than a metal, some supplementary means is necessary for fc to improve the ripening and receiving of the working fluid. Further, since the carbon fibers 2 themselves do not have a mutual binding force and a close contact force with the metal tube 1 forming the outer body, a large number of carbon fibers may be formed by some means. 2 must be tied together and closely adhered to the metal tube 1, but if an adhesive is used for that purpose, the adhesive will be a gap between the carbon fibers 2 or a liquid phase. It is not preferable that the flow path of the working fluid is closed, and that the adhesive hinders the exchange of heat between the working fluid and the metal pipe. On the other hand, in the above heat pipe, in the heat pipe, the structure 5 of the sandwich structure in which the carbon fiber 2 is sandwiched between the metal nets 4 was used as the wick. Further, it is possible to efficiently transfer the working fluid to and from the working fluid through the metal net 4 having high thermal conductivity, and to bundle the carbon fibers 2 with the metal net 4 at the same time. In addition, due to the elasticity of the metal net 4, the metal net 4 can be stably adhered to the inner peripheral surface of the metal pipe Ί.
し た が っ て第 7 図 に示す ヒ ー 卜 パイ プに おいて も 液相の作動流体を還流させる た め の毛細管圧力 を従 来以上に 髙め 、 髙ぃ熟輪送能力 を有するも の と する こ と ができ 、 従来の ヒ ー 卜 パ イ プ と 比較 し た 場合、 前述 し た第 1 の実施例 に お ける と 同様に 、 第 6 図 に per陶嶋 Accordingly, even the heat pipe shown in Fig. 7 has a capillary pressure for recirculating the liquid-phase working fluid higher than before, and has a mature wheel feeding capability. In comparison with the conventional heat pipe, FIG. 6 shows the same as in the first embodiment described above. per Toshima
1 6 1 6
示す よ う な結果を得る こ と ができ る 。 ま た第 7 図 に 示す ヒ ー 卜 パイ プ に あ っ て は、 炭素繊維 2 が金属網 4 に よ っ て束ね ら れて 一体化 し て い る か ら 、 その取 扱いのみな らず 、 金属管 1 内へ の揷入作業が容易 と な り 、 し かもズ レが生 じ て 配列 が乱れる おそれが な い か ら 、 当初の髙ぃ熟輸送能力 を長期 間 に わた っ て 維持す る こ と ができる 。 You can get the results as shown. In the heat pipe shown in FIG. 7, since the carbon fibers 2 are bundled and integrated by the metal net 4, the handling is not limited. Maintaining the initial matured transport capacity for a long period of time, since the work of inserting into the metal tube 1 becomes easy and there is no danger that the arrangement will be disturbed due to misalignment. be able to .
第 1 "1 図 は こ の発明 に係る更に他の ヒ ー 卜 パ イ プ を示す部分断面図であ り 、 ま た第 1 2 図 はそ の XI— XI線矢視図で あ っ て 、 こ こ に示す ヒ ー 卜 パイ プは 、 炭素繊維か ら なる布状体 6 を ウ イ ッ ク と し た も ので ある 。 すなわち密閉金属管 1 の 内周面 に炭素繊維製 の布状体 6 が 添.設さ れ、 そ の 内周側 に 配置 し た押 え 具 3 に よ っ てそ の布状体 6 が金属管 1 の内周面に 押 圧固定 さ れて お り 、 さ ら に金属管 1 の 内部か ら 非凝 縮性の気体を吸引排気 し た後 、 適宜の作動流体が封 入さ れて いる 。  FIG. 1 is a partial sectional view showing still another heat pipe according to the present invention, and FIG. 12 is a view taken along the line XI--XI of FIG. The heat pipe shown here is obtained by using a cloth-like body 6 made of carbon fiber as a wick, that is, a cloth-like body 6 made of carbon fiber is provided on the inner peripheral surface of the sealed metal tube 1. The cloth member 6 is pressed and fixed to the inner peripheral surface of the metal tube 1 by a retainer 3 disposed on the inner peripheral side of the metal tube 1. After a non-condensable gas is suctioned and exhausted from the inside of the metal tube 1, an appropriate working fluid is sealed therein.
前記布状体 6 は 、 第 1 1 図お よ び第 1 3 図 に示す よ う に 、 金属管 1 の軸線方向 に 沿 う 炭素繊維製の縱 糸 7 を こ れに交差する炭素繊維製の横糸 8 に よ っ て 編ん だ構成で あ り 、 その布状体 6 は筒状に 丸め ら れ て金属管 1 の内部に挿入さ れる と ともに 、 その内周 儺 に 挿入 し た押 え具 3 の弾性力 に よ っ て金属管 1 の 内周面に押圧固定さ れて いる 。 上記の よ ο に檎成 し た ヒ ー 卜 パ イ プで は 、 前記縦 糸 7 の間 に形成さ れた 間隙が液相作動流体の還流路 と な 10 、 し かち通常は 、 金属管 1 の一端部を加熟部 と し かつ 他端部を冷却部 と するか ら 、 還流路 は液相 作動 流体が本来流動 す べ き方向 に 沿 つ た 直線状の 流 路 と な り 、 その た め に 液相作動流体 に対する流動抵 抗の小さ い ヒ ー 卜 パ イ プ と す る こ と がでぎ る 。 ま た ゥ イ ツ クである布状体 6 を構成す る炭素繊維周'士 の 間 の間 隙が極め て狭 く 、 実効毛綑管半径が小さ く な る か ら 、 高い毛翱管圧力 を生 じ させる こ と がで ぎ る 。 As shown in FIGS. 11 and 13, the cloth-like body 6 is made of carbon fiber warp 7 crossing a carbon fiber warp 7 along the axial direction of the metal tube 1. The cloth body 6 is rolled into a tubular shape and inserted into the metal tube 1, and the presser 3 inserted into the inner circumference of the metal tube 1 is knitted by the weft 8. The metal tube 1 is pressed and fixed to the inner peripheral surface of the metal tube 1 by the elastic force of the metal tube 1. In the heat pipe formed as described above, the gap formed between the warp yarns 7 serves as a return path for the liquid-phase working fluid 10, that is, usually, the metal pipe 1. Since one end is a ripening section and the other end is a cooling section, the return path is a straight flow path along the direction in which the liquid-phase working fluid should flow. For this reason, heat pipes with low flow resistance to liquid-phase working fluids can be used. In addition, since the gap between the carbon fiber members constituting the cloth-like body 6 as an article is extremely narrow and the effective capillary radius is reduced, a high capillary pressure is obtained. This can cause
なお 、 言 U 記布状体 6 に お い て は 、 横糸 8 が液相作 動流体の還流路を横切る こ と に なる が 、 本発明者等 が実験を行な つ た と こ ろ 、 縱糸 7 に 対する横系 8 の 体積比を 0 . 1以下に す れぱ、 液相作動流体の流動 に 対す る影軎を最も小さ < で さ る こ と が認め ら れた 。 す なわち縱糸 7 に対する横糸 8 の体積比を 0 . 1と し た ヒ ー 卜 パ イ プ と 、 その体積比を 1 と し た ヒ ー 卜 パ イ ブ と 、 金属編を ウ イ ッ ク と し た ヒ ー 卜 パ イ プ と の 各々 に つ い て 、 加熟部を若干髙 く し た ( 傾斜角 5 ° ) 所謂 卜 ッ プ ヒ ー 卜 モ ー ドで熟輪送を行なわせ 、 そ の 際の各 ヒ ー 卜 パ イ ブの多数点での 温度分布を測定 し た 。 結果 は第 1 4 図 に示す通 り であ っ て 、 前記の体 積比を 1 と し た ヒ ー 卜 パイ プ ( 曲線 ) お よ び金属 網 を ゥ イ ツ ク と し た ヒ 一 卜 パ イ プ ( 曲線 し ) と は共 に温度勾配が大き く 、 こ れに対 し BU §己布 体 6 を ヴ イ ツ ク と し た本発明品 ( 曲線 M ) は温度勾配が極め て小さ い こ と が認め ら れた 。 すなわ ち 、 液相作動流 体が充分加熱部 に還流すれば、 ヒ ー 卜 パイ プの 内部 が均温化 する こ と が知 ら れて い る か ら 、 上記 の結果 か ら縦糸 7 と横糸 8 と の体積比を 0 . 1以下 と すれば 液相作動流体の加熟部へ の還流が充分生 じ 、 ひ(/、 て は熟輪送能力 に 優れる こ とが認め ら れた 。 In the U-shaped cloth 6, the weft yarn 8 crosses the return path of the liquid working fluid. However, when the present inventors conducted experiments, the warp was vertical. It was found that the volume ratio of the horizontal system 8 to the yarn 7 was set to 0.1 or less, and the influence on the flow of the liquid-phase working fluid was minimized. That is, a heat pipe in which the volume ratio of the weft yarn 8 to the warp yarn 7 is 0.1, a heat pipe in which the volume ratio is 1 and a metal knitted fabric For each of the heat pipes described above, the ripening part was slightly extended (inclination angle 5 °), so that the so-called top heat mode was carried out. At that time, the temperature distribution at many points of each heat pipe was measured. The results are as shown in FIG. 14 and show a heat pipe (curve) with the above-mentioned volume ratio of 1 and a heat pipe with a metal net as a dip. Ip (curve) On the other hand, it was found that the temperature gradient of the present invention (curve M) using the BU § self-cloth body 6 as a fire was extremely small. That is, it is known that if the liquid-phase working fluid is sufficiently refluxed to the heating section, the inside of the heat pipe will be evenly heated. When the volume ratio with the weft 8 was set to 0.1 or less, it was recognized that the liquid-phase working fluid was sufficiently recirculated to the ripening section, and that the ri (/, in turn) was excellent in ripe wheel feeding ability.
他方、 上述 し た構成の ヒ ー 卜 パ イ プで は 、 ゥ イ ツ ク を構成する縦糸 7 の周方向 への移動 が横糸 8 に よ つ て 規制 さ れ て い るか ら 、 縦-糸 7 がず れて均 - 性 損われる こ と がな く 、 し た が つ て長期 に S つ て毛細 管圧力 を髙 く 、 .かつ還流路での圧力 損失を小さ く 維 持する こ と ができる 。  On the other hand, in the heat pipe having the above-described configuration, since the circumferential movement of the warp yarn 7 constituting the fish is regulated by the weft yarn 8, the warp-yarn Therefore, it is possible to increase the capillary pressure over a long period of time, and to maintain a small pressure loss in the return line. it can .
なお 、 前記押え具 3 と し て は 、 嫘旋状の帯状材以 外 に例えば金属網や金属線を環状に 丸めた構成のも の等種々 の も の を用 い る こ と がで き る 。  Note that, as the presser 3, various things such as a metal net or a metal wire rounded in a ring can be used in addition to the spiral strip. .
産業上の利用可能性  Industrial applicability
こ の発明 の ヒ ー 卜パ イ プは 、 炭素繊維を ウ ィ ッ ク の素材 と し た こ と に伴い 、 液相の作動流体を効果的 に加熟部に還流さ せる こ と ができるち のであ るか ら 電力 ケーブルの 間接冷却ゃ髙温源 と低温源と が離れ て いる場合な ど 、 長距離にわ た つ て熟輳送す る場合 あるい は高い位置か ら低い位置へ熟輸送する所謂 卜 ッ プ ヒ ー 卜 モ ー ドの場合に有効で ある The heat pipe of the present invention can effectively return the liquid-phase working fluid to the ripening section by using carbon fiber as the material of the wick. For this reason, indirect cooling of the power cable is required.For example, when the temperature source and the low-temperature source are far apart, or when congestion is transmitted over long distances, or when the power source goes from a high position to a low position. So-called birds to transport This is effective in the top heat mode.

Claims

請求の範囲 The scope of the claims
. 密閉金属管の内部 に作動流体を封入する と と も に 、 そ の金属管の内周面に 、 液相作動流体を流動 させ る た めの ウ ィ ッ ク を設けた ヒ ー 卜 パイ プ に お い て 、 前記 ウ ィ ッ ク が多数本の極細炭素繊維 に よ つ て構成さ れ、 かつそ の極細炭素繊雜がその内周 側 に S置 し た 押 え具に よ つ て 前記金属管の内周面 に 密着させ られて いる こ と を特徴 と する ヒ ー 卜 パ ィ プ 。  A heat pipe in which a working fluid is sealed inside a sealed metal pipe and a wick is provided on the inner peripheral surface of the metal pipe to allow liquid-phase working fluid to flow. In this case, the wick is constituted by a large number of microfine carbon fibers, and the microfine carbon fibers are formed by a holding tool placed on the inner peripheral side of the wick. A heat pipe characterized in that it is in close contact with the inner peripheral surface of a metal tube.
2 . 前記密閉金属管が 、 コ ルゲー ト 管であ る こ と を 特徴 と す る特許請求の籍囲第 1 項記載の ヒ ー 卜 パ2. The heat pipe according to claim 1, wherein the sealed metal pipe is a corrugated pipe.
— イ ブ 。 ' — Eve. '
3 . 前記棰翱炭素纖維は 、 複数を懋 り 合わせ た撚鎳 と さ れ 、 そ の複数本の撚線が互い に所定の囿隔を あ けて前記金属管の内周面 に添設さ れて いる こ と を特徴 と す る特許請求の範囲第 1 項記載の ヒ ー 卜 パ イ プ。  3. The carbon fiber is formed by twisting a plurality of fibers, and the plurality of twisted wires are attached to the inner peripheral surface of the metal tube at a predetermined distance from each other. The heat pipe according to claim 1, wherein the heat pipe is characterized in that:
4 . 前記押 え具が 、 螺旋状の帯状材か ら な り 、 かつ その螺旋の ピ ッ チが帯状材の幅よ り 大きい こ と を 特徴 とする特許請求の範囲第 1 項記載の ヒ ー 卜 パ - ィ プ 。  4. The heat according to claim 1, wherein the holding member is made of a spiral strip, and a pitch of the spiral is larger than a width of the strip. Utopia-type.
5 . 前記押え具が 、 弾性に富んだ金属網か ら なる こ とを特徴とす る特許請求の範囲第 1 項記載の ヒ ー 卜 パ イ プ。 5. The heat pipe according to claim 1, wherein the holding member is made of a metal net having high elasticity.
. m adウ ィ ッ ク か 、 BU 記金属管の軸線方向 に 沿 う 縱添え炭素繊維束を 、 こ れに交差する炭素繊維で 編んだ布状であ る こ と を特徴 と す る特許請求の範 囲第 1 項記載の ヒ ー 卜 パ イ プ。 A claim characterized in that it is a cloth made by knitting a vertically attached carbon fiber bundle along the axial direction of a metal pipe or a BU marked metal tube with crossing carbon fibers. The heat pipe described in Paragraph 1 of the range.
. sij 記縱添え繊維束 に 対す る横繊維の体積比がThe volume ratio of the transverse fibers to the sij
0 . 1以下で あ る こ と を特徴 と す る特許請求の範囲 第 6 項記載の ヒ ー 卜 パ ィ プ。 The heat pipe according to claim 6, wherein the heat pipe is 0.1 or less.
. 密閉金属管の 内部 に作動流体を封入する と とあ に 、 その金属管の内周面に 、 液相作勒流体を流動 させ るた め の ゥ イ ツ ク を設けた ヒ一 卜 パ イ プに お い て 、 前記ウ イ ッ ク が 、 多数本の極細炭素! ^維を 金属網で挾ん だサ ン ド ウ イ ツ チ構造である こ と を 特徴 と す る ヒ ー 卜 パ イ プ 。 A heat pipe is provided in which the working fluid is sealed inside the sealed metal pipe, and a pipe is provided on the inner peripheral surface of the metal pipe to allow the liquid phase fluid to flow. In this case, the wick has a large number of fine carbon! A heat pipe characterized by a sandwich structure in which fibers are sandwiched between metal nets.
. 前記極細炭素繊維が複数本ずつ撚 り 合わせ て 撚 線 と さ れる と ともに 、 そ の複数の撚線が互い に 所 定 の間隔をあけて BU記金属網の間 に挾ま れて いる こ と を特徴 と する特許請求の範囲第 8 項記載の ヒ ー 卜 パィ プ。 The ultrafine carbon fibers are twisted into a stranded wire by twisting a plurality thereof, and the plurality of stranded wires are sandwiched between BU metal nets at a predetermined interval from each other. 9. A heat pipe according to claim 8, wherein the heat pipe is characterized in that:
PCT/JP1985/000076 1985-02-21 1985-02-21 Heat pipe WO1986004982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1985/000076 WO1986004982A1 (en) 1985-02-21 1985-02-21 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1985/000076 WO1986004982A1 (en) 1985-02-21 1985-02-21 Heat pipe

Publications (1)

Publication Number Publication Date
WO1986004982A1 true WO1986004982A1 (en) 1986-08-28

Family

ID=13846366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000076 WO1986004982A1 (en) 1985-02-21 1985-02-21 Heat pipe

Country Status (1)

Country Link
WO (1) WO1986004982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017365A2 (en) * 2001-08-17 2003-02-27 Honeywell International Inc. Thermal transfer devices using heat pipes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145884A (en) * 1982-02-22 1983-08-31 Fujikura Ltd Long heat pipe for heat transfer
JPS5935785A (en) * 1982-08-20 1984-02-27 Fujikura Ltd Heat pipe
JPS5960184A (en) * 1982-09-28 1984-04-06 Fujikura Ltd Heat pipe
JPS6044796A (en) * 1983-08-22 1985-03-09 Fujikura Ltd Heat pipe having wick of extremely fine filament

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145884A (en) * 1982-02-22 1983-08-31 Fujikura Ltd Long heat pipe for heat transfer
JPS5935785A (en) * 1982-08-20 1984-02-27 Fujikura Ltd Heat pipe
JPS5960184A (en) * 1982-09-28 1984-04-06 Fujikura Ltd Heat pipe
JPS6044796A (en) * 1983-08-22 1985-03-09 Fujikura Ltd Heat pipe having wick of extremely fine filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003017365A2 (en) * 2001-08-17 2003-02-27 Honeywell International Inc. Thermal transfer devices using heat pipes
WO2003017365A3 (en) * 2001-08-17 2003-09-04 Honeywell Int Inc Thermal transfer devices using heat pipes

Similar Documents

Publication Publication Date Title
US6456785B1 (en) Resistance heating element
US4038519A (en) Electrically heated flexible tube having temperature measuring probe
JPS6011089A (en) Heat exchanger
FR1455991A (en) heat exchanger and its manufacturing process
US3419069A (en) Heat transfer apparatus having flexible plastic tubular elements arranged in a braided configuration
JPH0474599B2 (en)
JPH05500102A (en) Flexible tubular conduit containing integrated heating means
US2310970A (en) Heat exchanger
DE1800863A1 (en) With a foamable plastic, thermally insulated, coaxial pipe system
US4830059A (en) Relatively articulatable hose
CA1235114A (en) Heat exchanger duct with heat exchange wiring
JPH05196334A (en) Conduit for transferring low-temperature fluid
WO1986004982A1 (en) Heat pipe
JPH0330078B2 (en)
WO2009060487A1 (en) Pliable tubular heat exchanger
CN115040227A (en) Multi-interlayer catheter sheath
US267343A (en) Andrew harbison
CA1278291C (en) Heat pipe
JPS5935785A (en) Heat pipe
JP3003543U (en) Flat heater
WO2012032548A3 (en) Heat exchanger
JPS6141398B2 (en)
SU1108323A1 (en) Heat pipe
JPH0463316B2 (en)
JPS6136692A (en) Heat pipe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB