WO1986002718A1 - Crossflow heat exchanger - Google Patents

Crossflow heat exchanger Download PDF

Info

Publication number
WO1986002718A1
WO1986002718A1 PCT/JP1984/000528 JP8400528W WO8602718A1 WO 1986002718 A1 WO1986002718 A1 WO 1986002718A1 JP 8400528 W JP8400528 W JP 8400528W WO 8602718 A1 WO8602718 A1 WO 8602718A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer element
heat exchanger
gas
grooves
Prior art date
Application number
PCT/JP1984/000528
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Toudoh
Masahito Honda
Fumio Shimoda
Shuzo Hara
Original Assignee
Mitsubishi Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jukogyo Kabushiki Kaisha filed Critical Mitsubishi Jukogyo Kabushiki Kaisha
Priority to PCT/JP1984/000528 priority Critical patent/WO1986002718A1/en
Priority to GB08614552A priority patent/GB2194626A/en
Priority to DE19843490777 priority patent/DE3490777T1/de
Publication of WO1986002718A1 publication Critical patent/WO1986002718A1/en
Priority to SE8602928A priority patent/SE8602928D0/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Definitions

  • the present invention relates to a cross-flow type heat exchanger that can be favorably used over a wide range from a high temperature region of an exhaust gas to a low temperature region of an exhaust gas having an acid dew point or lower.
  • Fig. 1 shows a schematic structure of a conventional air preheater 40.
  • ⁇ Fig. 1 shows a tube type air preheater. Normally, air flows inside the tube 41, gas flows outside the tube 41 ', or vice versa, in a crosswise or opposing manner to perform heat exchange.
  • the arrows in the figure indicate the flow direction of air or gas.
  • the preheater 40 is a non-leak type in which gas does not leak and mix between heat exchange fluids, but has a disadvantage that the heat transfer area per unit volume is small and the equipment becomes large.
  • the life of the pipe 41 can be extended to some extent by making the material of the pipe 41 low-temperature corrosion resistant (coalten).
  • the temperature of exhaust gas can be reduced to at least about 130'c in order to prevent low-temperature corrosion, and improvement in boiler efficiency has reached a plateau.
  • the present invention has been made to effectively solve the above-mentioned problems of the conventional technology.
  • the purpose of the present invention is to provide a gas containing a large amount of corrosive components from the high temperature region of the exhaust gas.
  • Provide a cross-flow type heat exchanger that can be used well over a wide range from the acid dew point to the low temperature area of exhaust gas and has a large heat transfer area per unit volume, thereby dramatically improving the ripening yield. It is in.
  • the object of the present invention is to
  • the non-leaky heat transfer element shall be resistant to high-temperature corrosion and low-temperature corrosion that can withstand exhaust gas temperatures below the acid dew point.
  • the exhaust gas temperature of the heat exchanger is sufficiently lowered to below the acid dew point to dramatically improve the heat recovery efficiency (improve the boiler efficiency by about 1.5%).
  • the leak type solves the problem of leakage of dust or harmful substances (such as SO x) from the high-pressure fluid side to the low-pressure fluid side (exhaust fluid side).
  • the present invention has a structure in which dust does not easily adhere to the heat transfer surface of the heat transfer element, and has a structure that is easy to clean and wash with water.
  • the heat transfer element should have sufficient compactness, mass production type structure, and durable economical efficiency suitable for large-capacity heat exchangers.
  • the gist of the present invention is that a plurality of fins are arranged on the surface of a ceramic plate.
  • a plurality of grooves are formed between the plurality of fins for allowing a heating fluid or a fluid to be heated to flow therethrough, and a plurality of the ceramic plates are formed in the plurality of fins.
  • the heat transfer element is formed by alternately laminating the heat transfer elements so that the heating fluid flows through one of the two orthogonal groove groups of the heat transfer element.
  • a cross-floor type heat exchanger characterized in that a fluid to be heated is made to flow through the other group of grooves.
  • the cross-flow type heat exchanger according to the present invention is provided with a ceramic for heat transfer (heat exchange) element in order to provide sufficient high corrosion resistance not only to high temperature corrosion but also to low temperature (sulfuric acid etc.) corrosion.
  • a non-cross-type, cross-flow element using a magnetic material for example, alumina
  • the element is a ceramic plate having a rectangular groove that forms a fluid passage. It is formed by laminating and laminating in a sandwich shape so that the paths of the fluid to be heated and the fluid to be heated are alternately orthogonal to each other, and is formed into a large body.
  • the heat exchanger according to the present invention is of a cross flow type, and can easily carry out the separation and introduction of both heat exchange fluids.
  • Another gist of the present invention is that a plurality of fins are integrally formed in parallel on a surface of a ceramic plate, and the plurality of fin phases are formed.
  • a heat transfer element having a rectangular parallelepiped shape is formed by stacking a plurality of the above ceramic plates so that the grooves cross each other at right angles.
  • the heat transfer element block is formed by arranging a plurality of the elements in the support frame in the up-down, left-right, and front-rear directions, and the groove of each of the plurality of heat transfer elements is formed.
  • the direction is matched to one of two directions (X direction, Y direction) that are at right angles to each other, and the direction that is the side of each heat transfer element and that is perpendicular to the plane including the two directions Of the sides extending to the inner side, the inner side is brought into close contact with the side of the adjacent heat transfer element via a packing member, and the outer side is connected to the above-mentioned support frame via a puffing member.
  • a gap is provided so as not to be continuous in two directions, and a packing material is disposed between adjacent heat transfer elements in a direction (Z direction) perpendicular to a plane including the two directions.
  • the heating fluid flows through one of the groove groups, and the fluid to be heated flows through the other groove group. It is located in the Grossov type 1 heat exchanger.
  • the gap between the ceramic heat transfer elements and the connection between the ceramic heat transfer element and the corrosion-resistant metal material should be asperity cross or fine flex. Sealing with a resilient, corrosion-resistant material,
  • a predetermined space (bridging space) is provided between adjacent ceramic heat transfer elements in the direction of the groove. Place and install, adjacent The openings at the ends of the grooves (gas passages) are misaligned with each other, and the area of the openings is reduced, soot accumulates at these openings and the passages To prevent blockage,
  • the cross-flow type heat exchanger according to the present invention can be applied to a land-based air preheater (particularly, a low-temperature section), a gas / gas heater for a desulfurization device, and the like.
  • FIGS. 1 and 2 show the heat transfer elements of the first cross flute type 1 heat exchanger.
  • FIG. 1 shows a ceramic plate 2 as a basic element of the heat transfer element 1 shown in FIG.
  • a large number of fins 3 are integrally formed in parallel on the side surface of the ceramic plate 2 by press roll or extrusion molding, and a heating fluid or a coating is provided between the fins 3.
  • a groove 4 having a rectangular cross section for flowing the heating fluid is formed.
  • the heat transfer element 1 is formed by stacking a plurality of ceramic plates 2 in a sandwich shape such that the grooves 4 are alternately orthogonal to each other. For lamination and bonding of the ceramic plate 2, the ceramic plate 2 is fired.
  • the lamination of the ceramic plate 2 needs to be pressed in the laminating direction so that the outermost fins 3 are completely adhered to the adjacent ceramic plate 2. .
  • the groove 4 of the heat transfer element 1 is composed of two groups of grooves orthogonal to each other, and a heating fluid (gas or high-temperature gas) flows through one of the groups of grooves as shown by arrows in FIG. Then, the fluid to be heated (air or low-temperature gas) flows through the other group of grooves. The two fluids are completely separated by the ceramic plate 2 and do not mix with each other.
  • FIG. 3 is a schematic side view of a cross-flow type heat exchanger using the heat transfer element 1 described above.
  • This heat exchanger is composed of a heat transfer element 1 made of ceramic, a gas inlet duct 5, an outlet duct 6, an air inlet duct 7, and an outlet duct 8.
  • the arrows in the figure indicate the flow directions of gas and air.
  • the gas When a highly contaminated gas (including soot) is used as the heating fluid, the gas should be circulated in the vertical direction, and clean air as the fluid to be heated should be circulated in the horizontal direction. preferable.
  • a highly contaminated gas including soot
  • FIG. 4 shows another embodiment of the heat exchanger according to the present invention, in which the heat transfer element 1 is divided and one of the fluids to be heated is a diffracted flow. According to the example, the heat exchange efficiency is improved, which is more effective.
  • Outlet ducts 14 and 15 are the inlet duct and outlet duct of the air (the fluid to be heated).
  • the heat exchanger according to the present invention can of course be applied to the high temperature region of the exhaust gas, but is highly corrosive, such as the low temperature region below the acid dew point of the exhaust gas (for example, a gas for a low-temperature air preheater, a gas for a desulfurization unit). Can be applied to gas heaters, etc., and in this case, heat exchange can be achieved without causing corrosion of the heat transfer element 1.
  • a large-capacity heat transfer element block is configured by disposing a plurality of the heat transfer elements 1 described above in the support frame 22.
  • FIGS. 5 and 6 show the heat transfer element block 19, which is completed at a factory and assembled on-site with a heat exchanger. . For this reason, the block will be manufactured in a size that can be easily transported and that can be easily assembled on site.
  • the heat transfer element block 19 includes a large number of heat transfer elements 1, a frame 20 for framing the elements 1, a seal member 21, a support frame 22, and the like.
  • the support frame 22 has a structure that can be assembled by stacking or arranging a number of element blocks 19 on site, and is connected to the element block 19 at right angles to each other.
  • Fig. 5 shows the case where the upper and lower gas passages ⁇ -side support frames 22-1 and 22-2 share a common joint flange.
  • the gas connection part to be connected has a structure that can be completely sealed.
  • 1 is a heat transfer element, and a plurality of heat transfer elements 1 are rectangular parallelepipeds formed by the support frames 22-1, 22-2, and 22-3.
  • the heat transfer element block 19 is arranged in the vertical and horizontal directions and the front and rear directions within the frame, and the heat transfer element 1 as a whole is formed as a rectangular parallelepiped assembly, and the support frame 22- 1 to 22-3.
  • the support frame 22-2 is assembled into a quadrilateral on the bottom of the heat transfer element block 19, and forms a flush (meaning the same plane) bottom flange. I have.
  • the support frame 22-1 is assembled in a quadrilateral on the top surface of the heat transfer element block 19, and forms a flat top surface flange.
  • the support frame 22-3 connects the corners ⁇ of the support frames 22-1 and 22-2 to each other, and constitutes a columnar member in the support frame 22.
  • the plurality of heat transfer elements 1 in the support frame 22 are arranged such that the direction of each groove 4 is in one of two directions perpendicular to each other (X direction and Y direction in FIG. 5). They are arranged to match. Specifically, of the two groove groups 23 and 24 of all the heat transfer elements 1 which are orthogonal to each other, heat is transferred so that one groove group 23 is in the vertical direction and the other groove group 24 is in the horizontal direction. Element 1 is provided. For this reason, in FIG. 5, the two groove groups 23 and 24 are perpendicular to each other.
  • the backing member 25 is mainly made of a corrosion-resistant seal backing material such as asbestos cross, fine flex, ceramic, fiber or mortar, water-kneading and heat insulating material. is there.
  • a packing material 26 is provided between the adjacent heat transfer elements 1 in the Z direction.
  • the backing material 26 is made of the same material as the backing member 25,
  • the gaps C,, C 2 are provided between each heat transfer element 1 so that each groove 4 is not continuous with the groove 4 of the adjacent heat transfer element 1 in the X and Y directions. Is provided.
  • the gap C, C 2 is provided between each heat transfer element 1 so that each groove 4 is not continuous with the groove 4 of the adjacent heat transfer element 1 in the X and Y directions. Is provided.
  • the a C 2 are provided are based on the following reasons. In other words, when the ends of the grooves 4 of the heat transfer element 1 are brought into contact with each other, if the ends of the grooves 4 are displaced from each other, the opening area at the ends of the grooves 4 is reduced, and The dust inside may be clogged. Accordingly, need to be provided with a gap C have C 2 is between the heat transfer Ereme down sheet 1 mutually
  • the gap CC 2 is preferably about 20-30 degree «.
  • the support frame 22-1 is made of a channel material, and a seal member 27 is attached to the inner periphery of the support frame 22-1 via the same backing material as described above.
  • the seal member 27 is pressed against the above-mentioned backing member 25 via a backing material.
  • the puffkin member 25 is pressed against the support frame 22-2 via a backing material.
  • the backing member 25 makes direct contact between the heat transfer element 1 and the frame 20 made of a corrosion-resistant material (such as a coal tenn or stainless steel) and the supporting frames 22-1 to 22-3. As a result, the heat transfer element 1 is prevented from being damaged, and the leakage and mixing of the fluid due to the reduced sealing performance of the contact portion of the heat transfer element 1 are prevented.
  • a corrosion-resistant material such as a coal tenn or stainless steel
  • the heat transfer element block 19 is configured as described above.
  • the gas indicated by the arrow is supplied to the inside of the support frame 22-1 on the top surface, and then the other gas flows. All of them pass through the groove group 23 and the gap d without leaking, and then pass through the inside of the support frame 22-2 on the bottom, and are sent out from the heat transfer element block 19.
  • the air indicated by the arrow ⁇ is also the heat transfer element block 19 surrounded by the support frames 22-1, 22-2, and 22-3. through C 2, and is discharged from the side surface of the subsequent opposite. Therefore, in the heat transfer element block 19, the above gas and air
  • the gas and the air may be exchanged with each other and flow, and the flow directions may be reversed.
  • Fig. 7 shows a heat exchanger using the heat transfer element block of the present invention.
  • FIG. 5 is a view showing an example of assembly.
  • This heat exchanger is constructed by assembling and installing a large number of heat transfer element blocks 19 manufactured in the factory on site.
  • 31 is a gas inlet duct
  • 32 is an outlet duct
  • 33 is a gas or air inlet duct
  • 34 is an outlet duct
  • 35 is a steel frame supporting a mature exchanger.
  • Dirty gas containing 10 dust or sulfuric acid mist flows vertically from top to bottom, while air or clean gas flows horizontally.
  • a corrosion-resistant alloy plate such as a stainless steel plate
  • a plate coated with a corrosion-resistant paint is used as a plate of a gas duct or the like that comes into contact with dirty gas containing sulfuric acid.
  • the heat exchanger is constructed by stacking the heat transfer element blocks 19, and the support frames above and below the element blocks 19 It is produced as.
  • the orthogonal gas or air passages are separated from each other, so that a corrosion-resistant seal backing 38 is attached to each common joint flange surface to mount the seal.
  • the ceramic heat transfer element has a plate fin structure with the highest heat transfer efficiency within a unit volume, and is a structure that is less likely to clog the dust, and is a cross-flow type Therefore, heat exchange and separation of both fluids are extremely easy and highly reliable.
  • one fluid flows vertically and the other fluid flows horizontally in the passage in the ceramic element at right angles to perform heat exchange with each other. But each Since the fluids do not leak, it is possible to construct a non-leaky heat exchanger where both fluids do not mix. Therefore, in the case of an air preheater, the air on the high pressure side does not leak, so that the capacity of the blower increases and the power for catching does not increase. Further, in the case of a gas / gas heater for a desulfurization unit, it is possible to prevent a decrease in desulfurization efficiency and dust removal efficiency due to leakage of untreated gas before desulfurization.
  • the heat transfer element block is easy to transport and can be easily assembled on site to form a heat exchanger, so that this type of heat exchanger can be significantly reduced in cost. it can. Also,
  • Fig. 115 is a perspective view of the ceramic plate
  • Fig. 2 is a perspective view of the heat transfer element
  • Figs. 3 and 4 are conceptual side views of the cross-flow heat exchanger. .
  • FIG. 5 to 7 show another embodiment of the present invention.
  • Figure 5 is Den'netsue Leme down Toburo Tsu conceptual side view of click
  • FIG. 6 is VI in FIG. 5 Z o - VI taken along line diagram conceptually side of FIG. 7 is click Rosufuro heat exchanger
  • FIG. 8 is a conceptual side view of a conventional air preheater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Abstract

A crossflow heat exchanger which is capable of being excellently used over a wide range from an exhaust gas high-temperature region to an exhaust gas low-temperature region below the acid dew point. In a conventional heat exchanger, such as a steel pipe type air preheater, when a gas including a large amount of a corrosive component is employed, it is necessary to prevent low-temperature corrosion and, therefore, it is not possible to lower the exhaust gas temperature below the acid dew point; consequently, this involves a disadvantageously low heat recovery rate for the heat exchanger. The crossflow heat exchanger according to the present invention employs a heat exchanger element of ceramics, which is free from low-temperature corrosion, whereby it is possible to lower the exhaust gas temperature and thereby to increase the heat recovery rate. The heat exchanger may be applied to a marine air preheater (particularly for a low-temperature portion), a gas heater for a desulfurizer and similar devices.

Description

明 細 書 ク ロスフロー型熱交換器 技術分野  Description Cross-flow heat exchanger Technical field
本 明は、 排ガス高温部域から、 酸露点以下の排ガス低温部域 までの広領域にわたって、 良好に使用できるク ロスフロー型熱交 換器に閬するものである。  The present invention relates to a cross-flow type heat exchanger that can be favorably used over a wide range from a high temperature region of an exhaust gas to a low temperature region of an exhaust gas having an acid dew point or lower.
背景技術  Background art
従来の空気予熱機 40の概略構造を第 1図に示す。 · 第 1図に示すものは鐧管型空気予熱機である。 通常、 空気は管 41内を、、 ガスは管 41'外を あるいはこの逆の組み合わせで直交又 は対向して流れ熱交換を行なう。 なお、 図中の矢印は空気又はガ スの流れ方向を示している。  Fig. 1 shows a schematic structure of a conventional air preheater 40. · Fig. 1 shows a tube type air preheater. Normally, air flows inside the tube 41, gas flows outside the tube 41 ', or vice versa, in a crosswise or opposing manner to perform heat exchange. The arrows in the figure indicate the flow direction of air or gas.
1 s この予熱機 40は、 熱交換流体相互間のガスの漏洩混合のないノ ンリ ーク型であるが、 単位容積当りの伝熱面積が小さ く 、 機器が 大型化するという欠点がある。 また低温腐食 (硫酸腐食) に対し ては、 管 41の材質を低温耐食鐧 (コールテン鐧) とすることによ り、 ある程度の寿命の延長をはかることはできるが、 硫黄分の多 1 s The preheater 40 is a non-leak type in which gas does not leak and mix between heat exchange fluids, but has a disadvantage that the heat transfer area per unit volume is small and the equipment becomes large. For low-temperature corrosion (sulfuric acid corrosion), the life of the pipe 41 can be extended to some extent by making the material of the pipe 41 low-temperature corrosion resistant (coalten).
2 0 いガスにおける酸露点以下の徘ガス低温部域では、 ほとんど効果 がないという欠点がある。 There is a drawback that there is almost no effect in the low-temperature region of the wandering gas below the acid dew point of 20 gases.
従って、 腐食成分の多いガスの場合、 低温腐食防止上、 排ガス 温度は最低でも 130 'c程度までしか下げることができず、 ボイ ラ 効率の向上は頭打ちとなっているのが現状である。  Therefore, in the case of a gas with a large amount of corrosive components, the temperature of exhaust gas can be reduced to at least about 130'c in order to prevent low-temperature corrosion, and improvement in boiler efficiency has reached a plateau.
Z 5 発明の開示 本発明は、 上述した従来の技術の問題点を有効に解決すベく創 案するに至ったものであって、 その目的は、 腐食成分の多いガス に対しても、 排ガス高温部域から、 酸露点以下の排ガス低温部域 までの広領域にわたって、 良好に使用でき、 しかも単位容積当り の伝熱面積が大きいク ロスフロー型熱交換器を提供し、 もって熟 面収率を飛躍的に向上させることにある。 Z5 Disclosure of the Invention The present invention has been made to effectively solve the above-mentioned problems of the conventional technology. The purpose of the present invention is to provide a gas containing a large amount of corrosive components from the high temperature region of the exhaust gas. Provide a cross-flow type heat exchanger that can be used well over a wide range from the acid dew point to the low temperature area of exhaust gas and has a large heat transfer area per unit volume, thereby dramatically improving the ripening yield. It is in.
さらに詳し く は、 本発明の目的は、  More specifically, the object of the present invention is to
(1) ノ ンリ ーク型の伝熱ェレメ ン トを耐高温腐食はもとより、 酸露点以下の排ガス温度にも耐え得る耐低温腐食性のものと し、 ·  (1) The non-leaky heat transfer element shall be resistant to high-temperature corrosion and low-temperature corrosion that can withstand exhaust gas temperatures below the acid dew point.
(2) 熱交換器の排ガス温度を酸露点以下に充分下げ、 熱回収効 率を一躍向上させ (ボイ ラ効率、を約 1 . 5 %向上させる) 、 は) 伝熱エレメ ン トをノ ンリ ーク型とすることにより、 高圧流 体側から低圧流体側 (排出流体側) へのダス トあるいは有害 物質 ( S O x 等) のリ ーク問題を解決し、  (2) The exhaust gas temperature of the heat exchanger is sufficiently lowered to below the acid dew point to dramatically improve the heat recovery efficiency (improve the boiler efficiency by about 1.5%). The leak type solves the problem of leakage of dust or harmful substances (such as SO x) from the high-pressure fluid side to the low-pressure fluid side (exhaust fluid side).
(4) 熱交換器の排ガス温度を酸露点以下に下げた場合、 従来の 熱交換器では排ガス中のダス トが伝熱ヱ レメ ン トの伝熱面に 粘着しやすいという問題があつたが、 本発明は伝熱ェレメ ン トの伝熱面にダス トが付着しにく い構造とし、 かつスーツク リ ー二ング及び水洗しやすい構造とし、  (4) When the exhaust gas temperature of the heat exchanger is lowered to below the acid dew point, the dust in the exhaust gas tends to stick to the heat transfer surface of the heat transfer element in the conventional heat exchanger. The present invention has a structure in which dust does not easily adhere to the heat transfer surface of the heat transfer element, and has a structure that is easy to clean and wash with water.
(5) 伝熱ェレメ ン トを、 大容量熱交換器に適するよう充分なコ ンバク ト性、 量産型構造、 耐久性のある経済性の優れたもの とする、  (5) The heat transfer element should have sufficient compactness, mass production type structure, and durable economical efficiency suitable for large-capacity heat exchangers.
ことにある。 It is in.
本発明の要旨は、 セラ ミ ック板の表面に、 複数本のフイ ンを並 列的に一体成形するとともに、 上記複数本のフィ ン相互間に、 加 熱流体または被加熱流体を流通させるための複数の溝部を形成し- 上記セラ ミ ツク板の複数枚を、 上記溝部が交互に直交するように 積層して伝熱ヱ レメ ン トを構成し、 上記伝熱ヱ レメ ン 卜の互いに 直交する 2つの溝部群のう ち、 一方の溝部群に加熱流体を流通さ せるとともに、 他方の溝部群に被加熱流体を流通させるように構 成したことを特徴とするクロスフ口一型熱交換器にある。 The gist of the present invention is that a plurality of fins are arranged on the surface of a ceramic plate. A plurality of grooves are formed between the plurality of fins for allowing a heating fluid or a fluid to be heated to flow therethrough, and a plurality of the ceramic plates are formed in the plurality of fins. The heat transfer element is formed by alternately laminating the heat transfer elements so that the heating fluid flows through one of the two orthogonal groove groups of the heat transfer element. A cross-floor type heat exchanger characterized in that a fluid to be heated is made to flow through the other group of grooves.
本発明に係るク ロスフロー型熱交換器は、 高温腐食は勿論、 低 温 (硫酸等) 腐食に対しても充分な高耐食性をもたせるために、 伝熱 (熱交換) エ レメ ン トにセラ ミ ッ ク (例えば、 アルミナ系) を利用したノ ンリ ーク型でク ロスフロー型のエレメ ン トを採用し. 該エレメ ン トは、 流体通路を形成する矩形の溝部を有するセラ ミ ック板を、 加熱流体と被加熱流体の通路が交互に直交するように サン ドィ ツチ状に多重にはり合わせて積層して大きなプロ フ クに l 5 —体成形したものである。  The cross-flow type heat exchanger according to the present invention is provided with a ceramic for heat transfer (heat exchange) element in order to provide sufficient high corrosion resistance not only to high temperature corrosion but also to low temperature (sulfuric acid etc.) corrosion. A non-cross-type, cross-flow element using a magnetic material (for example, alumina) is adopted. The element is a ceramic plate having a rectangular groove that forms a fluid passage. It is formed by laminating and laminating in a sandwich shape so that the paths of the fluid to be heated and the fluid to be heated are alternately orthogonal to each other, and is formed into a large body.
このよう に、 本発明に係る熱交換器は、 ク ロスフロー型であり 熱交換両流体の分離取入れ, 取出しを容易に行う ことができる。  As described above, the heat exchanger according to the present invention is of a cross flow type, and can easily carry out the separation and introduction of both heat exchange fluids.
なお、 従来、 セラ ミ ッ クを利用した熱交換器としてローテミ ュ ーレ式空気予熱機があるが、 この熱交換器は蓄熱型であって、 空 Conventionally, there is a rotary-type air preheater as a heat exchanger using ceramics, but this heat exchanger is a heat storage type and
Z 0 気がガス側へ漏洩する構造となっており、 セラ ミ ックを利用した ノ ンリ ーク型のクロスフロー型熱交換器はこれまで提案されてい ない。 It has a structure in which Z0 gas leaks to the gas side, and a non- leaky cross-flow heat exchanger using ceramics has not been proposed so far.
また、 本発明の別の要旨は、 セラ ミ ツク板の表面に、 複数本の フィ ンを並列的に一体成形するとともに、 上記複数本のフイ ン相 Another gist of the present invention is that a plurality of fins are integrally formed in parallel on a surface of a ceramic plate, and the plurality of fin phases are formed.
2 5 互間に、 加熱流体または被加熱流体を流通させるための複数の溝 部を形成し、 上記セ ラ ミ ツク板の複数枚を、 上記溝部が交互に直 交するように積層して直方体形状の伝熱ヱレメ ン トを構成し、 上 記伝熱エ レメ ン ト の複数ヱ レメ ン トを、 支持フ レーム内に上下, 左右および前後方向に整列して配設して伝熱ェレメ ン トブロ ック を構成するとともに、 上記複数の伝熱ヱレメ ン トの各溝部の方向 を、 互いに直角をなす 2方向 ( X方向, Y方向) のいずれかの方 向にそれぞれ一致させ、 各伝熱エレメ ン トの辺部であって、 上記 2方向を含む平面に垂直な方向に延びる辺部のう ち、 内側の辺部 を隣り合う伝熱ヱレメ ン トの辺部にパッキン部材を介して密接さ せるとともに、 外側の辺部を上記支持フレームにパ フ キ ン部材を 介して密接させ、 各伝熱ェレメ ン ト の間には、 各溝部が上記 2方 向に連続しないように間隙を設け、 かつ上記 2方向を含む平面に 垂直な方向 ( Z方向) において隣り合う各伝熱ェレメ ン ト間に、 パッキン材料を配設し、 上記伝熱ェレメ ン トブロ ックの互いに直 交する 2つの溝部群のう ち、 一方の溝部群に加熱流体を流通させ るとともに、 他方の溝部群に被加熱流体を流通させるように構成 したことを特徴とするク ロスフ口一型熱交換器にある。 2 5 Multiple grooves for flowing heated or heated fluid between each other A heat transfer element having a rectangular parallelepiped shape is formed by stacking a plurality of the above ceramic plates so that the grooves cross each other at right angles. The heat transfer element block is formed by arranging a plurality of the elements in the support frame in the up-down, left-right, and front-rear directions, and the groove of each of the plurality of heat transfer elements is formed. The direction is matched to one of two directions (X direction, Y direction) that are at right angles to each other, and the direction that is the side of each heat transfer element and that is perpendicular to the plane including the two directions Of the sides extending to the inner side, the inner side is brought into close contact with the side of the adjacent heat transfer element via a packing member, and the outer side is connected to the above-mentioned support frame via a puffing member. And between each heat transfer element, A gap is provided so as not to be continuous in two directions, and a packing material is disposed between adjacent heat transfer elements in a direction (Z direction) perpendicular to a plane including the two directions. Of the two groove groups that are orthogonal to each other, the heating fluid flows through one of the groove groups, and the fluid to be heated flows through the other groove group. It is located in the Grossov type 1 heat exchanger.
この発明のアイデアとして新しい点は、  What is new about the idea of this invention is
(1) セ ラ ミ ック製伝熱ェレメ ン ト同志間の間隙及びセラ ミ ック 製伝熱ヱ レメ ン ト と耐食性金属材料との取合部を、 アスペス トク ロスまたはフア イ ンフレックス等の弾力性のある耐食性 材料にてシールする点、  (1) The gap between the ceramic heat transfer elements and the connection between the ceramic heat transfer element and the corrosion-resistant metal material should be asperity cross or fine flex. Sealing with a resilient, corrosion-resistant material,
(2) セ ラ ミ ッ ク製伝熱ェレメ ン トの据付方法として、 隣接する セラ ミ ッ製伝熱ェレメ ン トの相互間に、 溝部の方向において 所定の間隔 (ブリ ージ ングスペース) を置いて据付け、 隣接 するエ レメ ン ト との間で、 溝部 (ガス通路) の端部開口部同 志がうま く合わずにずれることによって、 開口部面積が狭く なり、 この開口部に煤が堆積して通路が閉塞するのを防止す るようにした点、 (2) As a method of installing the ceramic heat transfer element, a predetermined space (bridging space) is provided between adjacent ceramic heat transfer elements in the direction of the groove. Place and install, adjacent The openings at the ends of the grooves (gas passages) are misaligned with each other, and the area of the openings is reduced, soot accumulates at these openings and the passages To prevent blockage,
にある。  It is in.
以下に本究明の実施例を図面に基づいて説明する。  An embodiment of the present invention will be described below with reference to the drawings.
本発明に係るク ロスフロー型熱交換器は、 陸舶用空気予熱機 (特に低温部),脱硫装置用ガス · ガスヒータ等に応用するこ とが できる。  The cross-flow type heat exchanger according to the present invention can be applied to a land-based air preheater (particularly, a low-temperature section), a gas / gas heater for a desulfurization device, and the like.
I 0 第 1図および第 2図は、 第 1 のク ロスフ口一型熱交換器の伝熱 エ レメ ン トを示したものである。  I 0 FIGS. 1 and 2 show the heat transfer elements of the first cross flute type 1 heat exchanger.
第 1図は、 第 2図に示す伝熱エ レメ ン ト 1 の基本要素としての セラ ミ ッ ク板 2を示す。 このセラ ミ ッ ク板 2 の側面には、 多数本 のフ ィ ン 3がプレスロールまたは押出し成形にて並列的に一体成 形されており、 各フ ィ ン 3相互間に、 加熱流体または被加熱流体 を流通させるための断面が矩形の溝部 4が形成されている。  FIG. 1 shows a ceramic plate 2 as a basic element of the heat transfer element 1 shown in FIG. A large number of fins 3 are integrally formed in parallel on the side surface of the ceramic plate 2 by press roll or extrusion molding, and a heating fluid or a coating is provided between the fins 3. A groove 4 having a rectangular cross section for flowing the heating fluid is formed.
伝熱ヱレメ ン ト 1 は、 複数枚のセラ ミ ック板 2を、 その溝部 4 が交互に直交するようにサン ドイ ッチ状に積層して構成される。 セラ ミ ック板 2 の積層, はり合わせは、 セラ ミ ック板 2を焼成す The heat transfer element 1 is formed by stacking a plurality of ceramic plates 2 in a sandwich shape such that the grooves 4 are alternately orthogonal to each other. For lamination and bonding of the ceramic plate 2, the ceramic plate 2 is fired.
Z 0 る前 (粘土状の加工段階) に行なわれ、 その後、 セラ ミ ック板 2 を積層した状態で乾燥, 焼成される。 This is performed before Z 0 (clay-like processing stage), and then dried and fired with the ceramic plates 2 stacked.
なお、 セラ ミ ック板 2 の積層は、 特に最も外側のフ ィ ン 3が、 隣接するセラ ミ ック板 2 に完全に密着するように、 積層方向にプ レスする こ とが必要である。  The lamination of the ceramic plate 2 needs to be pressed in the laminating direction so that the outermost fins 3 are completely adhered to the adjacent ceramic plate 2. .
なお、 上述した 「溝部 4が交互に直交するように」 という場合 の 「直交」 という意味は、 厳密な意味での直交のみを示すもので はなく 、 90 β前後の角度で交差する場合をも含む概念である。 伝熱ヱメ レ ン ト 1 の溝部 4 は、 互いに直交する 2つの溝都群か らなり、 第 2図で矢印にて示す如く 、 一方の溝部群に加熱流体 (ガスまたは高温ガス) を流通させ、 他方の溝部群に被加熱流体 (空気または低温ガス) を流通させる。 なお、 両流体はセラ ミ ツ ク板 2によって完全に区画されているので、 互いに混り合う こと がない。 Note that the above-mentioned "so that the grooves 4 are alternately orthogonal" Means "orthogonal" of not indicate only orthogonal in a strict sense is a concept including a case that intersect at an angle of about 90 beta. The groove 4 of the heat transfer element 1 is composed of two groups of grooves orthogonal to each other, and a heating fluid (gas or high-temperature gas) flows through one of the groups of grooves as shown by arrows in FIG. Then, the fluid to be heated (air or low-temperature gas) flows through the other group of grooves. The two fluids are completely separated by the ceramic plate 2 and do not mix with each other.
第 3図は.、 上述した伝熱ェレメ ン ト 1を利用したク ロスフ ロ ー 型熱交換器の概略側面図である。 この熱交換器は、 セラ ミ 'ンク製 の伝熱ェレメ ン ト 1 , ガスの入口ダク ト 5 , 出口ダク ト 6 , 空気 の入口ダク ト 7および出口ダク ト 8によって構成される。 なお、 図中の矢印はガスおよび空気の流れ方向を示す。  FIG. 3 is a schematic side view of a cross-flow type heat exchanger using the heat transfer element 1 described above. This heat exchanger is composed of a heat transfer element 1 made of ceramic, a gas inlet duct 5, an outlet duct 6, an air inlet duct 7, and an outlet duct 8. The arrows in the figure indicate the flow directions of gas and air.
なお、 汚れの多い (煤を含んだ) ガスを加熱流体とする場合に は、 このガスを垂直方向に流通させ、 被加熱流体としてのク リ ー ンな空気は、 水平方向に流通させるのが好ましい。  When a highly contaminated gas (including soot) is used as the heating fluid, the gas should be circulated in the vertical direction, and clean air as the fluid to be heated should be circulated in the horizontal direction. preferable.
第 3図において、 入口ダク ト 5 , 7 より熱交換器内に流入した 流体 (ガスまたは空気) は、 伝熱エ レメ ン ト 1 の溝部 4を通り、 他方の流体と熱交換を行なつた後、 出口ダク ト 6 , 8 より出てい In Fig. 3, the fluid (gas or air) flowing into the heat exchanger from the inlet ducts 5 and 7 passes through the groove 4 of the heat transfer element 1 and exchanges heat with the other fluid. Later, exit exits 6 and 8
< ο <ο
第 4図は本発明に係る熱交換器の他の実施例を示すもので、 伝 熱エ レメ ン ト 1を分割配置して、 一方の被加熱流体 "を回折流と したものであり、 この例によれば、 熱交換効率が良く なり、 一 層効果的である。  FIG. 4 shows another embodiment of the heat exchanger according to the present invention, in which the heat transfer element 1 is divided and one of the fluids to be heated is a diffracted flow. According to the example, the heat exchange efficiency is improved, which is more effective.
なお第 4図において、 12および 13は、 ガスの入口ダク トおよび  In Fig. 4, 12 and 13 represent the gas inlet duct and
¾i ATlO¾ 出口ダク ト、 14および 15は、 空気 (被加熱流体) の入口ダク 卜お よび出口ダク トである。 ¾i ATlO¾ Outlet ducts 14 and 15 are the inlet duct and outlet duct of the air (the fluid to be heated).
本発明に係る熱交換器は、 排ガスの高温部域にも勿論適用でき るが、 排ガスの酸露点以下の低温部域等、 腐食の激しい領域 (例 えば低温空気予熱機, 脱硫装置用ガス · ガス ヒ ータ等) に .も適用 可能であり、 この場合、 伝熱エレメ ン ト 1 の腐食をきたすことな く、 熱交換をはかることができる。  The heat exchanger according to the present invention can of course be applied to the high temperature region of the exhaust gas, but is highly corrosive, such as the low temperature region below the acid dew point of the exhaust gas (for example, a gas for a low-temperature air preheater, a gas for a desulfurization unit). Can be applied to gas heaters, etc., and in this case, heat exchange can be achieved without causing corrosion of the heat transfer element 1.
次に、 本発明の他の実施例を第 5図〜第 7図に基づいて説明す る。 この第 2 の熱交換器は、 前述した伝熱ヱ レメ ン ト 1 を支持フ レーム 22内に複数配設して大容量の伝熱エ レメ ン トブロ ックを構 成したものである。  Next, another embodiment of the present invention will be described with reference to FIGS. 5 to 7. FIG. In the second heat exchanger, a large-capacity heat transfer element block is configured by disposing a plurality of the heat transfer elements 1 described above in the support frame 22.
第 5図および第 6図は、 上記伝熱ェレメ ン トブロ ック 19を示し たものであって、 この伝熱エレメ ン トブロ ック 19は工場で完成さ れ、 現地で熱交換器に組立てられる。 このため、 容易に輸送でき る大きさで、 かつ簡単に現地組立ができる構造のブロ ックに製作 する。 伝熱エ レメ ン トブロ ック 19は、 多数の伝熱エ レメ ン ト 1 , エ レメ ン ト 1 同志を枠組みするためのフ レーム 20 , シール部材 21 及び支持フ レーム 22等で構成される。  FIGS. 5 and 6 show the heat transfer element block 19, which is completed at a factory and assembled on-site with a heat exchanger. . For this reason, the block will be manufactured in a size that can be easily transported and that can be easily assembled on site. The heat transfer element block 19 includes a large number of heat transfer elements 1, a frame 20 for framing the elements 1, a seal member 21, a support frame 22, and the like.
なお、 支持フ レーム 22は、 現地において多数のエ レメ ン トプロ ック 19を積み重ねたり、 あるいは並べ合わせることによる組立が 可能な構造で、 かつエレメ ン トブロ ック 19に対して互いに直交し て接続されるガスおよび空気ダク トの取合部 (図示省略のダク ト 等との取合部のこと) の少く ともいずれか一方を完全にシールで きる構造とする。 第 5図では上 · 下のガス通路 ^側の支持フ レー ム 22 - 1 , 22 - 2が共通合フ ラ ンジとなっている場合で、 上 . 下に接 続されるガス取合部が完全にシールできる構造になつている。 The support frame 22 has a structure that can be assembled by stacking or arranging a number of element blocks 19 on site, and is connected to the element block 19 at right angles to each other. A structure that can completely seal at least one of the joints for the gas and air ducts (the joints with ducts, etc., not shown) to be used. Fig. 5 shows the case where the upper and lower gas passages ^ -side support frames 22-1 and 22-2 share a common joint flange. The gas connection part to be connected has a structure that can be completely sealed.
第 5図および第 6図において、 1 は伝熱エ レメ ン トであり、 複 数の伝熟ェレメ ン ト 1 は、 支持フ レーム 22-1, 22-2, 22-3が形成 する直方体状の枠内に上下, 左右および前後方向に整列して配設 されて伝熱ェレメ ン トブロ ック 19を構成し、 伝熱ェレメ ン ト 1 は 全体として直方体状集合体をなして支持フレーム 22-1〜 22-3に挾 持されている。  In FIGS. 5 and 6, 1 is a heat transfer element, and a plurality of heat transfer elements 1 are rectangular parallelepipeds formed by the support frames 22-1, 22-2, and 22-3. The heat transfer element block 19 is arranged in the vertical and horizontal directions and the front and rear directions within the frame, and the heat transfer element 1 as a whole is formed as a rectangular parallelepiped assembly, and the support frame 22- 1 to 22-3.
支持フ レーム 22-2は、 伝熱エ レメ ン トブロ ック 19の底面部にお いて四辺形に組み立てられており、 面一状 (同一平面をなすの意) の底面フラ ンジを形成している。 支持フ レーム 22-1は、 伝熱エ レ メ ン トブロ ック 19の頂面部において四辺形に組み立てられており、 面一伏の頂面フ ラ ンジを形成している。 支持フ レーム 22-3は、 上 記支持フ レーム 22-1, 22-2の各角部閩を相互に結合しており、 支 持フ レーム 22におけ.る柱状部材を構成している。  The support frame 22-2 is assembled into a quadrilateral on the bottom of the heat transfer element block 19, and forms a flush (meaning the same plane) bottom flange. I have. The support frame 22-1 is assembled in a quadrilateral on the top surface of the heat transfer element block 19, and forms a flat top surface flange. The support frame 22-3 connects the corners の of the support frames 22-1 and 22-2 to each other, and constitutes a columnar member in the support frame 22.
支持フレ一ム 22内の複数の伝熱ェレメ ン ト 1 は、 それぞれの溝 部 4の方向が、 互いに直角をなす 2方向 (第 5図で X方向および Y方向) のいずれかの方向にそれぞれ一致するように配.設されて いる。 詳しく は、 すべての伝熱ェレメ ン ト 1 の互いに直交する 2 つの溝部群 23, 24のう ち、 一方の溝部群 23は鉛直方向に、 他方の 溝部群 24は水平方向になるように伝熱エ レメ ン ト 1 が配設されて いる。 このため、 第 5図においては 2つの溝部群 23, 24が互いに 直角となっている。  The plurality of heat transfer elements 1 in the support frame 22 are arranged such that the direction of each groove 4 is in one of two directions perpendicular to each other (X direction and Y direction in FIG. 5). They are arranged to match. Specifically, of the two groove groups 23 and 24 of all the heat transfer elements 1 which are orthogonal to each other, heat is transferred so that one groove group 23 is in the vertical direction and the other groove group 24 is in the horizontal direction. Element 1 is provided. For this reason, in FIG. 5, the two groove groups 23 and 24 are perpendicular to each other.
爷伝熱エ レメ ン ト 1 の辺部であって、 第 5図の紙面に垂直な方 向 (X , Y方向を舍む平面に垂直な方向であって、 第 6図で Z方 向) に延びる辺部のう ち、 内側の辺部はバツキン部材 25および心  辺 The side of heat transfer element 1 in the direction perpendicular to the plane of FIG. 5 (the direction perpendicular to the plane containing the X and Y directions, and the direction of Z in FIG. 6). Of the sides extending to the inner side, the inner side is the backing member 25 and the center.
C ?I C? I
WIPO 材と してのフ レーム 20を介して隣り合う伝熱ェレメ ン ト 1 の辺部 に気密的に圧着している。 また外側の辺部は、 パツキン部材 25お よびフレーム 20を介して支持フ レーム 22に気密的に圧着している。 なお、 上記バッキ ン部材 25は、 アスベス ト ク ロス, ファ イ ン . フ レ ッ クス · セラ ミ ッ ク · ファ イ バまたはモルタル, 水練り保温材 等の耐食シールバッキン材料を主体としたものである。 WIPO It is air-tightly pressed to the side of the adjacent heat transfer element 1 via the frame 20 as a material. The outer side is hermetically pressed to the support frame 22 via the packing member 25 and the frame 20. The backing member 25 is mainly made of a corrosion-resistant seal backing material such as asbestos cross, fine flex, ceramic, fiber or mortar, water-kneading and heat insulating material. is there.
また第 6図に示す如く、 Z方向において隣り合う各伝熱ヱレメ ン ト 1相互間にはパッキン材料 26が配設されている。 このバッキ ン材料 26は、 前記バツキン部材 25と同種類の材料からなり、 伝熱 In addition, as shown in FIG. 6, a packing material 26 is provided between the adjacent heat transfer elements 1 in the Z direction. The backing material 26 is made of the same material as the backing member 25,
I 0 エ レメ ン ト 1 同志の直接接触により シール性が低下して流体が漏 洩したり、 伝熱エ レメ ン ト 1 が破損するのを防止する作用をなす。 I 0 Element 1 This function prevents the fluid from leaking or the heat transfer element 1 from being damaged due to the direct contact between them.
また各伝熱ェレメ ン ト 1相互間には、 それぞれの溝部 4が、 隣 接する他の伝熱ェレメ ン ト 1 の溝部 4 と Xおよび Y方向に連続し ないように、 間隙 C , , C 2 が設けられている。 このように間隙 C ,The gaps C,, C 2 are provided between each heat transfer element 1 so that each groove 4 is not continuous with the groove 4 of the adjacent heat transfer element 1 in the X and Y directions. Is provided. Thus, the gap C,
1 5 C 2 を設けているのは次のような理由に基づく 。 すなわち、 瞵り 合う伝熱エ レメ ン ト 1 の溝部 4 の端部を相互に当接させた場合、 溝部 4の端部が互いにずれると、 溝部 4の端部における開口面積 が狭く なり、 ガス中のダス トがつまるおそれがある。 従って、 各 伝熱ェレメ ン ト 1相互間には間隙 Cい C 2 を設けておく必要があ1 5 The a C 2 are provided are based on the following reasons. In other words, when the ends of the grooves 4 of the heat transfer element 1 are brought into contact with each other, if the ends of the grooves 4 are displaced from each other, the opening area at the ends of the grooves 4 is reduced, and The dust inside may be clogged. Accordingly, need to be provided with a gap C have C 2 is between the heat transfer Ereme down sheet 1 mutually
Z 0 る。 なお、 間隙 C C 2 は、 約 20〜 30 «程度とするのが好ましい。 Z 0 Incidentally, the gap CC 2 is preferably about 20-30 degree «.
このように各伝熱エ レメ ン ト 1相互間に間隙 Cい C 2 を設ける こ とにより、 間隙 C tは垂直方向の溝部群 23と連通し、 間隙 C 2は 水平方向の溝部群 24と連通する。 この結果、 伝熟:!:レメ ン トブロ ック 19内には相互に直交するノ ンリ ーク式の 2系統の通気路が形 成される。 Thus by the this providing a Kakuden'netsue Leme down sheet 1 mutual clearance C have C 2, the gap C t communicates with the vertical groove group 23, the clearance C 2 is the horizontal direction of the groove group 24 Communicate. As a result, two non-leak-type air passages are formed in the block 19 of the “maturity:!: Rement block”.
c n また本実施例^おいては、 支持フレーム 22- 1はチヤ ンネル材で 構成されており、 その内周には上述同様のバッキン材料を介して シール部材 27が取付けられている。 なお、 このシール部材 27はバ ッキン材料を介して前述のバツキン部材 25と圧接せしめている。 また伝熱エ レメ ン トブロ ッ 19の底面部においても、 パフキン部材 25はバッキン材料を介して支持フレーム 22 - 2に圧接されている。 cn In the present embodiment, the support frame 22-1 is made of a channel material, and a seal member 27 is attached to the inner periphery of the support frame 22-1 via the same backing material as described above. The seal member 27 is pressed against the above-mentioned backing member 25 via a backing material. Also on the bottom surface of the heat transfer element block 19, the puffkin member 25 is pressed against the support frame 22-2 via a backing material.
上記バッキン部材 25によつて、 伝熱ェレメ ン ト 1 と、 耐食鐧 (コールテ ン鐧またはステ ン レス鐧等) 製のフ レーム 20および支 持フレーム 22 - 1〜 22- 3とが直接接触することによる伝熱ェレメ ン ト 1 の破損や、 伝熱ェレメ ン ト 1 の接触部のシール性が低下する こ とによる流体の漏洩混合が防止される。  The backing member 25 makes direct contact between the heat transfer element 1 and the frame 20 made of a corrosion-resistant material (such as a coal tenn or stainless steel) and the supporting frames 22-1 to 22-3. As a result, the heat transfer element 1 is prevented from being damaged, and the leakage and mixing of the fluid due to the reduced sealing performance of the contact portion of the heat transfer element 1 are prevented.
ノ、' ッ キ ングの締付けは、 伝熱エ レメ ン ト 1 の自重がバ ッ キ ング に働く場合はその自重により締付け、 伝熱ェレメ ン ト 1 の自重に よらない場合は、 支.持フ レーム 22に取付けた補助フ レーム (図示 せず) によってフレーム 20を押え付けてバッキングを締付けシー ルする。  No, tighten the backing if the self-weight of heat transfer element 1 acts on the backing, if not, and if it does not depend on the self-weight of heat transfer element 1. An auxiliary frame (not shown) attached to frame 22 presses down frame 20 and tightens the backing to seal.
伝熱エ レメ ン トブロ ック 19は上述の如く構成されてなり、 第 5 図において、 矢印 で示すガスは、 頂面部の支持フ レーム 22- 1の 内側に送入された後は、 他にリ ークすることなく全て溝部群 23お よび間隙 d を通り、 その後底面部の支持フ レーム 22 -2の内側部 を通り、 伝熱ヱレメ ン トブロ ック 19から送出される。 一方、 矢印 αにて示す空気は、 同様に、 支持フ レーム 22- 1 , 22 - 2, 22 - 3によ つてかこまれた伝熱ェレメ ン トブロ ック 19側面部から溝部群 24お よび間隙 C 2 を通り、 その後反対側の側面部から排出される。 従 つて、 伝熱エレメ ン トブロ フク 19内において、 上記ガスと空気と The heat transfer element block 19 is configured as described above. In FIG. 5, the gas indicated by the arrow is supplied to the inside of the support frame 22-1 on the top surface, and then the other gas flows. All of them pass through the groove group 23 and the gap d without leaking, and then pass through the inside of the support frame 22-2 on the bottom, and are sent out from the heat transfer element block 19. On the other hand, the air indicated by the arrow α is also the heat transfer element block 19 surrounded by the support frames 22-1, 22-2, and 22-3. through C 2, and is discharged from the side surface of the subsequent opposite. Therefore, in the heat transfer element block 19, the above gas and air
レ , は互いにリ ーク混合することがない。 レ, Do not leak mix with each other.
なお、 上記ガスと空気は互いに入れ換えて流してもよ く、 また 流れ方向も逆であってよい。  The gas and the air may be exchanged with each other and flow, and the flow directions may be reversed.
第 7図は本発明伝熱エ レメ ン トブロ ックを利用した熱交換器の Fig. 7 shows a heat exchanger using the heat transfer element block of the present invention.
5 組立例を示す図である。 FIG. 5 is a view showing an example of assembly.
この熱交換器は、 工場で製作された多数の伝熱ヱ レメ ン トブロ ック 19を現地にて組立 · 据付けることにより建設される。 第 7図 中、 31はガスの入口ダク ト、 32は出口ダク ト、 33はガス又は空気 の入口ダク ト、 34は出口ダク ト、 35は熟交換器支持鉄骨である。  This heat exchanger is constructed by assembling and installing a large number of heat transfer element blocks 19 manufactured in the factory on site. In FIG. 7, 31 is a gas inlet duct, 32 is an outlet duct, 33 is a gas or air inlet duct, 34 is an outlet duct, and 35 is a steel frame supporting a mature exchanger.
1 0 ダス トまたは硫酸ミス ト等を含んだダーティガスは、 垂直方向に 上から下へ、 一方、 空気またはク リ ーンガスは水平方向に流す。 硫酸分を含んだダーティガスに接触するガスダク ト等の鐧板は 耐食合金鐧板 (ステ ン レス鐧板等) または耐食塗料をコーテ ィ ン グしたものが使用される。 Dirty gas containing 10 dust or sulfuric acid mist flows vertically from top to bottom, while air or clean gas flows horizontally. As a plate of a gas duct or the like that comes into contact with dirty gas containing sulfuric acid, a corrosion-resistant alloy plate (such as a stainless steel plate) or a plate coated with a corrosion-resistant paint is used.
i s 第 7図に示す例は、 伝熱エ レメ ン トブロ ック 19を積み重ねて熱 交換器を構成したもので、 エ レメ ン トブロ ック 19の上 ' 下の支持 フ レームは、 共通合フランジとして製作されている。 is In the example shown in Fig. 7, the heat exchanger is constructed by stacking the heat transfer element blocks 19, and the support frames above and below the element blocks 19 It is produced as.
また、 エレメ ン トブロ ック 19内においては、 直交するガス又は 空気の通路は互いに分離されているので、 それぞれの共通合フラ 2 0 ンジ面に耐食性シ一ルバッキング 38を取付けてシ一ルをして熱交 換器を組立てることにより、 直交して流れる 2流体の漏洩混合を 防止することができる。  Also, in the element block 19, the orthogonal gas or air passages are separated from each other, so that a corrosion-resistant seal backing 38 is attached to each common joint flange surface to mount the seal. By assembling the heat exchanger in this way, it is possible to prevent the leakage and mixing of two fluids flowing orthogonally.
以上説明した本発明に係る第 1 の熱交換器によれば、 次のよう な効果を奏することができる。  According to the first heat exchanger according to the present invention described above, the following effects can be obtained.
2 5 (1) ガス中の硫酸または硝酸ミ ス ト等に対して耐食性を有する セラ ミ ツ クを伝熱ェレメ ン トに採用するこ とにより、 排ガス の酸露点以下の低温部域での熱回収が可能となるため、 低温 腐食 (硫酸腐食等) の面で制限されることなく極低温域まで の熱回収がはかれ (従来は排ガス温度約 130 'cまでの熱回収 に対し、 約 90 'cまでの熱回収がはかれる。 ) 、 ボイ ラ効率の 向上により燃費 (運転費) 削減ができる。 2 5 (1) Corrosion resistance to sulfuric acid or nitric acid mist in gas By using ceramics as heat transfer element, heat can be recovered in low-temperature areas below the acid dew point of exhaust gas, so that it is limited in terms of low-temperature corrosion (such as sulfuric acid corrosion). Heat recovery up to the extremely low temperature range (up to 90'c compared to the exhaust gas temperature up to about 130'c in the past), and improved fuel efficiency (operating cost) by improving boiler efficiency ) Can be reduced.
(2) 低温腐食に対し根本的な解決がはかれるため、 エ レメ ン ト の換装費が不要となり、 メ イ ンテナンスコ ス トが小さ く なる , (2) The fundamental solution to low-temperature corrosion is eliminated, so there is no need to replace elements and the maintenance cost is reduced.
(3) ノ ンリ ーク型の熱交換器となるため、 補機動力が必要以上 に増加することな く 、 運転費の削減もはかれる。 . (3) Since it is a non-leak type heat exchanger, the operating cost can be reduced without increasing the power of auxiliary equipment more than necessary. .
(4) 脱硫装置用ガス · ガスヒータに適用すれば、 硫酸腐食を完 全に防止できるとともに、 ノ ンリ ーク型であるため未処理ガ スが漏洩するこ とな く 、 脱硫効率並びに脱塵の向上が図れる , (4) Gas for desulfurization equipmentIf applied to a gas heater, sulfuric acid corrosion can be completely prevented, and since it is a non- leak type, untreated gas does not leak, and the desulfurization efficiency and dedusting efficiency are reduced. Can improve,
(5) セラ ミ ック製伝熱ェレメ ン トは、 単位容積内で最も伝熱効 率の高いプレー トフィ ン構造で、 かつダス トのつまりに く い 構造であり、 しかもク ロスフロー型としてあるため、 熱交換 両流体の分離, シールが極めて容易で、 かつ信頼性も高い。 (5) The ceramic heat transfer element has a plate fin structure with the highest heat transfer efficiency within a unit volume, and is a structure that is less likely to clog the dust, and is a cross-flow type Therefore, heat exchange and separation of both fluids are extremely easy and highly reliable.
(6) 伝熱ェレメ ン ト は大型量産向きの構成となつているため、 その成形も極めて経済的に行う ことができる。  (6) Since the heat transfer element is designed for large-scale mass production, it can be formed extremely economically.
また、 以上説明した本発明に係る第 2 の熱交換器によれば、 低 温 (硫酸) 腐食に耐える熱交換器としてセラ ミ ックを利用した熱 交換器を提供する こ とができる。  Further, according to the second heat exchanger according to the present invention described above, it is possible to provide a heat exchanger using ceramics as a heat exchanger resistant to low temperature (sulfuric acid) corrosion.
また、 本発明における伝熱エ レメ ン トブロ ックでは、 一方流体 は垂直方向に、 また他方流体は水平方向にそれぞれセラ ミ ックェ レメ ン ト内の通路を直交して流れ、 互いに熱交換を行なうが、 各 流体はそれぞれ漏洩することがないため両流体が混合するこ との ないノ ンリ ーク型の熱交換器を構成することができる。 従って、 空気予熱機の場合には、 高圧側の空気が漏洩することがないため 送風機容量が大き く なり、 捕機動力が増加することはない。 また. 5 脱硫装置用ガス · ガスヒータの場合には、 脱硫前の未処理ガスが 漏洩することによる脱硫効率及び脱塵効率の低下を防止できる。 In the heat transfer element block according to the present invention, one fluid flows vertically and the other fluid flows horizontally in the passage in the ceramic element at right angles to perform heat exchange with each other. But each Since the fluids do not leak, it is possible to construct a non-leaky heat exchanger where both fluids do not mix. Therefore, in the case of an air preheater, the air on the high pressure side does not leak, so that the capacity of the blower increases and the power for catching does not increase. Further, in the case of a gas / gas heater for a desulfurization unit, it is possible to prevent a decrease in desulfurization efficiency and dust removal efficiency due to leakage of untreated gas before desulfurization.
また伝熱ェレメ ン トブロ ッ クは輸送が容易であり、 かつ現地に て簡単に組立てて熱交換器を構成することができるので、 この種 の熱交換器の大幅なコス トダウ ンを図ることができる。 また、 伝 In addition, the heat transfer element block is easy to transport and can be easily assembled on site to form a heat exchanger, so that this type of heat exchanger can be significantly reduced in cost. it can. Also,
1 0 熱エ レメ ン トブロ ッ クの数を增減する こ とにより、 熱交換器の容 量を自在に変更することができるため、 伝熱エレメ ン トブロ ック の仕様の共通化により量産性を高めることができる。 10 10 By reducing the number of heat element blocks, the capacity of the heat exchanger can be changed freely, and mass production can be achieved by standardizing the specifications of heat transfer element blocks. Can be increased.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図〜第 4図は本発明の一実施例を示したものである。 第 1 1 5 図はセラ ミ ツク板の斜視図、 第 2図は伝熱エレメ ン 卜の斜視図、 第 3図および第 4図は、 それぞれク ロスフロー型熱交換器の概念 的側面図を示す。  1 to 4 show an embodiment of the present invention. Fig. 115 is a perspective view of the ceramic plate, Fig. 2 is a perspective view of the heat transfer element, and Figs. 3 and 4 are conceptual side views of the cross-flow heat exchanger. .
第 5図〜第 7図は本発明の別の実施例を示したものである。 第 5図は伝熱エ レメ ン トブロ ッ クの概念的側面図、 第 6図は第 5図 Z o の VI - VI線矢視図、 第 7図はク ロスフロー型熱交換器の概念的側 面図である。 5 to 7 show another embodiment of the present invention. Figure 5 is Den'netsue Leme down Toburo Tsu conceptual side view of click, FIG. 6 is VI in FIG. 5 Z o - VI taken along line diagram conceptually side of FIG. 7 is click Rosufuro heat exchanger FIG.
第 8図は従来の空気予熱機の概念的側面図である。  FIG. 8 is a conceptual side view of a conventional air preheater.

Claims

請求の範囲 The scope of the claims
1. セラ ミ ツク板の表面に、 複数本のフィ ンを並列的に一体成形 するとともに、 上記複数本のフィ ン相互間に、 加熱流体または 被加熱流体を流通させるための複数の溝部を形成し、 上記セラ 1. A plurality of fins are integrally formed in parallel on the surface of the ceramic plate, and a plurality of grooves are formed between the fins to allow the heating fluid or the fluid to be heated to flow. And the above Serra
5 ミ ック板の複数枚を、 上記溝部が交互に直交するように積層し て伝熱ヱ レメ ン トを構成し、 上記伝熱ヱ レメ ン トの互いに直交 する 2つの溝部群のう ち、 一方の溝部群に加熱流体を流通させ るとともに、 他方の溝部群に被加熱流体を流通させるように構 成したことを特徴とするク口スフ ロ ー型熱交換器。 5 A plurality of mix plates are laminated so that the grooves are alternately perpendicular to each other to form a heat transfer element, and the heat transfer element includes two orthogonal groove groups. A mouth-flow type heat exchanger characterized in that a heating fluid flows through one groove group and a heated fluid flows through the other groove group.
1 0 2. セラ ミ ツク板の表面に、 複数本のフィ ンを並列的に一体成形 するとともに、 上記複数本のフィ ン相互間に、 加熱流体または 被加熱流体を流通させるための複数の溝部を形成し、 上記セラ ミ ック板の複数枚を、 上記溝部が交互に直交するように積層し て直方体形状の伝熱ェレメ ン トを構成し、 上記伝熱ヱレメ ン ト10 2. A plurality of fins are integrally formed in parallel on the surface of the ceramic plate, and a plurality of grooves for flowing a heating fluid or a heated fluid between the plurality of fins. A plurality of the ceramic plates are stacked so that the grooves are alternately orthogonal to each other to form a rectangular parallelepiped heat transfer element, and the heat transfer element is formed.
, 5 の複数ェ レメ ン トを、 支持フ レーム内に上下, 左右および前後 方向に整列して配設して伝熱ェレメ ン トブロ ツクを構成すると ともに、 上記複数の伝熱ェレメ ン トの各溝部の方向を、 互いに 直角をなす 2方向 ( X方向, Y方向) のいずれかの方向にそれ ぞれ一致させ、 各伝熱ェレメ ン トの辺部であって、 上記 2方向, 5 are arranged in the support frame in the vertical, horizontal, and front-rear directions to form a heat transfer element block, and each of the heat transfer elements described above is arranged. The direction of the groove is aligned with one of two directions (X direction, Y direction) perpendicular to each other, and is the side of each heat transfer element.
2 0 を舍む平面に垂直な方向に延びる辺部のうち、 内側の辺部を隣 り合う伝熱ヱ レメ ン トの辺部にバッキ ン部材を介して密接させ るとともに、 外側の辺部を上記支持フ レームにバッキ ン部材を 介して密接させ、 各伝熱ヱレメ ン トの間には、 各溝部が上記 2 方向に連続しないように間隙を設け、 かつ上記 2方向を含む平Among the sides extending in the direction perpendicular to the plane containing the 20's, the inner side is closely contacted with the side of the adjacent heat transfer element via a backing member, and the outer side is The heat transfer frame is provided with a gap between the heat transfer elements so that the grooves are not continuous in the two directions, and a flat space including the two directions is provided between the heat transfer elements.
2 5 面に垂直な方向 ( Z方向) において隣り合う各伝熱エレメ ン ト 間に、 バッキン材料を配設し、 上記伝熱ェレメ ン トブロ ックの 互いに直交する 2つの溝部群のう ち、 一方の溝部群に加熱流体 を流通させるとともに、 他方の溝部群に被加熱流体を流通させ るように構成したことを特徴とするク ロス フ ロ ー型熱交換器。 2 Adjacent heat transfer elements in the direction perpendicular to the five surfaces (Z direction) A bucking material is disposed between the heat transfer element blocks, and the heating fluid flows through one of the two groove groups orthogonal to each other of the heat transfer element block, and the heated fluid flows through the other groove group. A cross-flow type heat exchanger characterized in that the heat exchanger is configured to circulate water.
PCT/JP1984/000528 1984-11-02 1984-11-02 Crossflow heat exchanger WO1986002718A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP1984/000528 WO1986002718A1 (en) 1984-11-02 1984-11-02 Crossflow heat exchanger
GB08614552A GB2194626A (en) 1984-11-02 1984-11-02 Crossflow heat exchanger
DE19843490777 DE3490777T1 (en) 1984-11-02 1984-11-02
SE8602928A SE8602928D0 (en) 1984-11-02 1986-07-01 REVERSE TYPE-EXCHANGER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1984/000528 WO1986002718A1 (en) 1984-11-02 1984-11-02 Crossflow heat exchanger

Publications (1)

Publication Number Publication Date
WO1986002718A1 true WO1986002718A1 (en) 1986-05-09

Family

ID=13818457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000528 WO1986002718A1 (en) 1984-11-02 1984-11-02 Crossflow heat exchanger

Country Status (4)

Country Link
DE (1) DE3490777T1 (en)
GB (1) GB2194626A (en)
SE (1) SE8602928D0 (en)
WO (1) WO1986002718A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287848A (en) * 2011-07-29 2011-12-21 茂名重力石化机械制造有限公司 Oblique fin cast air preheater
CN103017193A (en) * 2013-01-08 2013-04-03 洛阳瑞昌石油化工设备有限公司 Plate type ceramic air preheater
WO2018157192A1 (en) * 2017-03-03 2018-09-07 Ficom Pty Ltd Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361346A1 (en) * 2003-12-16 2005-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Plate heat exchanger, method for producing a plate heat exchanger and ceramic fiber composite material, in particular for a plate heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535897A (en) * 1978-09-01 1980-03-13 Gte Sylvania Inc Heat recovery structure and assembly made from ceramic
JPS55102891A (en) * 1978-09-22 1980-08-06 Ceraver Method of making indirect heat exchange element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126267A1 (en) * 1981-07-03 1983-01-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich AIR HEATING DEVICE WITH A HEAT EXCHANGER FLOWED FROM THE COMBUSTION GASES OF A BURNER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535897A (en) * 1978-09-01 1980-03-13 Gte Sylvania Inc Heat recovery structure and assembly made from ceramic
JPS55102891A (en) * 1978-09-22 1980-08-06 Ceraver Method of making indirect heat exchange element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287848A (en) * 2011-07-29 2011-12-21 茂名重力石化机械制造有限公司 Oblique fin cast air preheater
CN103017193A (en) * 2013-01-08 2013-04-03 洛阳瑞昌石油化工设备有限公司 Plate type ceramic air preheater
WO2018157192A1 (en) * 2017-03-03 2018-09-07 Ficom Pty Ltd Heat exchanger

Also Published As

Publication number Publication date
GB8614552D0 (en) 1986-07-23
DE3490777T1 (en) 1987-01-29
SE8602928L (en) 1986-07-01
GB2194626A (en) 1988-03-09
SE8602928D0 (en) 1986-07-01

Similar Documents

Publication Publication Date Title
US3590917A (en) Plate-type heat exchanger
US4235281A (en) Condenser/evaporator heat exchange apparatus and method of utilizing the same
KR960007989B1 (en) Counter flow heat exchanger with floating plate
US4909318A (en) Method and apparatus for recovering heat from flue gases and for cleaning the same
US4308915A (en) Thin sheet heat exchanger
JPH0221519B2 (en)
US20100139900A1 (en) Gas Turbine Regenerator Apparatus and Method of Manufacture
US4216820A (en) Condenser/evaporator heat exchanger and method of using the same
RU2076295C1 (en) Plate-type heat exchanger
RU2100733C1 (en) Plate-type heat exchanger and method for its manufacture
US3363681A (en) Heat exchanger
WO1986002718A1 (en) Crossflow heat exchanger
US4681157A (en) Crossflow heat exchanger
JPH01131892A (en) Heat exchanger
CN210689292U (en) Heat exchanger core structure
JPS59219695A (en) Heat conductive element block for heat exchanger
US11959708B2 (en) Plate heat exchanger for heating or cooling bulk solids
JPS6124997A (en) Heat exchanging body made of ceramics
GB2032611A (en) Heat exchanger
JPS63267889A (en) Heat transfer element block for crossflow type heat exchanger
RU2289067C1 (en) Plane-channel glass air heater
JPH0335108B2 (en)
JPH0351669Y2 (en)
JP3106763B2 (en) Plate heat exchanger
JPH04122966U (en) heat exchange element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB SE US

RET De translation (de og part 6b)

Ref document number: 3490777

Country of ref document: DE

Date of ref document: 19870129

WWE Wipo information: entry into national phase

Ref document number: 3490777

Country of ref document: DE